[clang][NFC] simplify the unset check in `ParseLabeledStatement` (#117430)
[llvm-project.git] / llvm / lib / Target / AMDGPU / SIISelLowering.cpp
blob73ca59fe320d2777df6ef1af8efd6233bf996360
1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Custom DAG lowering for SI
12 //===----------------------------------------------------------------------===//
14 #include "SIISelLowering.h"
15 #include "AMDGPU.h"
16 #include "AMDGPUInstrInfo.h"
17 #include "AMDGPUTargetMachine.h"
18 #include "GCNSubtarget.h"
19 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "SIRegisterInfo.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/FloatingPointMode.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/UniformityAnalysis.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/ByteProvider.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
31 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
32 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineLoopInfo.h"
36 #include "llvm/IR/DiagnosticInfo.h"
37 #include "llvm/IR/IRBuilder.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/IntrinsicsAMDGPU.h"
40 #include "llvm/IR/IntrinsicsR600.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/KnownBits.h"
44 #include "llvm/Support/ModRef.h"
45 #include "llvm/Transforms/Utils/LowerAtomic.h"
46 #include <optional>
48 using namespace llvm;
50 #define DEBUG_TYPE "si-lower"
52 STATISTIC(NumTailCalls, "Number of tail calls");
54 static cl::opt<bool>
55 DisableLoopAlignment("amdgpu-disable-loop-alignment",
56 cl::desc("Do not align and prefetch loops"),
57 cl::init(false));
59 static cl::opt<bool> UseDivergentRegisterIndexing(
60 "amdgpu-use-divergent-register-indexing", cl::Hidden,
61 cl::desc("Use indirect register addressing for divergent indexes"),
62 cl::init(false));
64 static bool denormalModeIsFlushAllF32(const MachineFunction &MF) {
65 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
66 return Info->getMode().FP32Denormals == DenormalMode::getPreserveSign();
69 static bool denormalModeIsFlushAllF64F16(const MachineFunction &MF) {
70 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
71 return Info->getMode().FP64FP16Denormals == DenormalMode::getPreserveSign();
74 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
75 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
76 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
77 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
78 return AMDGPU::SGPR0 + Reg;
81 llvm_unreachable("Cannot allocate sgpr");
84 SITargetLowering::SITargetLowering(const TargetMachine &TM,
85 const GCNSubtarget &STI)
86 : AMDGPUTargetLowering(TM, STI), Subtarget(&STI) {
87 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
88 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
90 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
91 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
93 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
95 const SIRegisterInfo *TRI = STI.getRegisterInfo();
96 const TargetRegisterClass *V64RegClass = TRI->getVGPR64Class();
98 addRegisterClass(MVT::f64, V64RegClass);
99 addRegisterClass(MVT::v2f32, V64RegClass);
100 addRegisterClass(MVT::Untyped, V64RegClass);
102 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
103 addRegisterClass(MVT::v3f32, TRI->getVGPRClassForBitWidth(96));
105 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
106 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
108 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
109 addRegisterClass(MVT::v4f32, TRI->getVGPRClassForBitWidth(128));
111 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
112 addRegisterClass(MVT::v5f32, TRI->getVGPRClassForBitWidth(160));
114 addRegisterClass(MVT::v6i32, &AMDGPU::SGPR_192RegClass);
115 addRegisterClass(MVT::v6f32, TRI->getVGPRClassForBitWidth(192));
117 addRegisterClass(MVT::v3i64, &AMDGPU::SGPR_192RegClass);
118 addRegisterClass(MVT::v3f64, TRI->getVGPRClassForBitWidth(192));
120 addRegisterClass(MVT::v7i32, &AMDGPU::SGPR_224RegClass);
121 addRegisterClass(MVT::v7f32, TRI->getVGPRClassForBitWidth(224));
123 addRegisterClass(MVT::v8i32, &AMDGPU::SGPR_256RegClass);
124 addRegisterClass(MVT::v8f32, TRI->getVGPRClassForBitWidth(256));
126 addRegisterClass(MVT::v4i64, &AMDGPU::SGPR_256RegClass);
127 addRegisterClass(MVT::v4f64, TRI->getVGPRClassForBitWidth(256));
129 addRegisterClass(MVT::v9i32, &AMDGPU::SGPR_288RegClass);
130 addRegisterClass(MVT::v9f32, TRI->getVGPRClassForBitWidth(288));
132 addRegisterClass(MVT::v10i32, &AMDGPU::SGPR_320RegClass);
133 addRegisterClass(MVT::v10f32, TRI->getVGPRClassForBitWidth(320));
135 addRegisterClass(MVT::v11i32, &AMDGPU::SGPR_352RegClass);
136 addRegisterClass(MVT::v11f32, TRI->getVGPRClassForBitWidth(352));
138 addRegisterClass(MVT::v12i32, &AMDGPU::SGPR_384RegClass);
139 addRegisterClass(MVT::v12f32, TRI->getVGPRClassForBitWidth(384));
141 addRegisterClass(MVT::v16i32, &AMDGPU::SGPR_512RegClass);
142 addRegisterClass(MVT::v16f32, TRI->getVGPRClassForBitWidth(512));
144 addRegisterClass(MVT::v8i64, &AMDGPU::SGPR_512RegClass);
145 addRegisterClass(MVT::v8f64, TRI->getVGPRClassForBitWidth(512));
147 addRegisterClass(MVT::v16i64, &AMDGPU::SGPR_1024RegClass);
148 addRegisterClass(MVT::v16f64, TRI->getVGPRClassForBitWidth(1024));
150 if (Subtarget->has16BitInsts()) {
151 if (Subtarget->useRealTrue16Insts()) {
152 addRegisterClass(MVT::i16, &AMDGPU::VGPR_16RegClass);
153 addRegisterClass(MVT::f16, &AMDGPU::VGPR_16RegClass);
154 addRegisterClass(MVT::bf16, &AMDGPU::VGPR_16RegClass);
155 } else {
156 addRegisterClass(MVT::i16, &AMDGPU::SReg_32RegClass);
157 addRegisterClass(MVT::f16, &AMDGPU::SReg_32RegClass);
158 addRegisterClass(MVT::bf16, &AMDGPU::SReg_32RegClass);
161 // Unless there are also VOP3P operations, not operations are really legal.
162 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32RegClass);
163 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32RegClass);
164 addRegisterClass(MVT::v2bf16, &AMDGPU::SReg_32RegClass);
165 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
166 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
167 addRegisterClass(MVT::v4bf16, &AMDGPU::SReg_64RegClass);
168 addRegisterClass(MVT::v8i16, &AMDGPU::SGPR_128RegClass);
169 addRegisterClass(MVT::v8f16, &AMDGPU::SGPR_128RegClass);
170 addRegisterClass(MVT::v8bf16, &AMDGPU::SGPR_128RegClass);
171 addRegisterClass(MVT::v16i16, &AMDGPU::SGPR_256RegClass);
172 addRegisterClass(MVT::v16f16, &AMDGPU::SGPR_256RegClass);
173 addRegisterClass(MVT::v16bf16, &AMDGPU::SGPR_256RegClass);
174 addRegisterClass(MVT::v32i16, &AMDGPU::SGPR_512RegClass);
175 addRegisterClass(MVT::v32f16, &AMDGPU::SGPR_512RegClass);
176 addRegisterClass(MVT::v32bf16, &AMDGPU::SGPR_512RegClass);
179 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
180 addRegisterClass(MVT::v32f32, TRI->getVGPRClassForBitWidth(1024));
182 computeRegisterProperties(Subtarget->getRegisterInfo());
184 // The boolean content concept here is too inflexible. Compares only ever
185 // really produce a 1-bit result. Any copy/extend from these will turn into a
186 // select, and zext/1 or sext/-1 are equally cheap. Arbitrarily choose 0/1, as
187 // it's what most targets use.
188 setBooleanContents(ZeroOrOneBooleanContent);
189 setBooleanVectorContents(ZeroOrOneBooleanContent);
191 // We need to custom lower vector stores from local memory
192 setOperationAction(ISD::LOAD,
193 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
194 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
195 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
196 MVT::i1, MVT::v32i32},
197 Custom);
199 setOperationAction(ISD::STORE,
200 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
201 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
202 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32,
203 MVT::i1, MVT::v32i32},
204 Custom);
206 if (isTypeLegal(MVT::bf16)) {
207 for (unsigned Opc :
208 {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FDIV,
209 ISD::FREM, ISD::FMA, ISD::FMINNUM, ISD::FMAXNUM,
210 ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FSQRT, ISD::FCBRT,
211 ISD::FSIN, ISD::FCOS, ISD::FPOW, ISD::FPOWI,
212 ISD::FLDEXP, ISD::FFREXP, ISD::FLOG, ISD::FLOG2,
213 ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FEXP10,
214 ISD::FCEIL, ISD::FTRUNC, ISD::FRINT, ISD::FNEARBYINT,
215 ISD::FROUND, ISD::FROUNDEVEN, ISD::FFLOOR, ISD::FCANONICALIZE,
216 ISD::SETCC}) {
217 // FIXME: The promoted to type shouldn't need to be explicit
218 setOperationAction(Opc, MVT::bf16, Promote);
219 AddPromotedToType(Opc, MVT::bf16, MVT::f32);
222 setOperationAction(ISD::FP_ROUND, MVT::bf16, Expand);
224 setOperationAction(ISD::SELECT, MVT::bf16, Promote);
225 AddPromotedToType(ISD::SELECT, MVT::bf16, MVT::i16);
227 setOperationAction(ISD::FABS, MVT::bf16, Legal);
228 setOperationAction(ISD::FNEG, MVT::bf16, Legal);
229 setOperationAction(ISD::FCOPYSIGN, MVT::bf16, Legal);
231 // We only need to custom lower because we can't specify an action for bf16
232 // sources.
233 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
234 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
237 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
238 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
239 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
240 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
241 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
242 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
243 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
244 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
245 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
246 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
247 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
248 setTruncStoreAction(MVT::v2i16, MVT::v2i8, Expand);
249 setTruncStoreAction(MVT::v4i16, MVT::v4i8, Expand);
250 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Expand);
251 setTruncStoreAction(MVT::v16i16, MVT::v16i8, Expand);
252 setTruncStoreAction(MVT::v32i16, MVT::v32i8, Expand);
254 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
255 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
256 setTruncStoreAction(MVT::v4i64, MVT::v4i8, Expand);
257 setTruncStoreAction(MVT::v8i64, MVT::v8i8, Expand);
258 setTruncStoreAction(MVT::v8i64, MVT::v8i16, Expand);
259 setTruncStoreAction(MVT::v8i64, MVT::v8i32, Expand);
260 setTruncStoreAction(MVT::v16i64, MVT::v16i32, Expand);
262 setOperationAction(ISD::GlobalAddress, {MVT::i32, MVT::i64}, Custom);
264 setOperationAction(ISD::SELECT, MVT::i1, Promote);
265 setOperationAction(ISD::SELECT, MVT::i64, Custom);
266 setOperationAction(ISD::SELECT, MVT::f64, Promote);
267 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
269 setOperationAction(ISD::FSQRT, {MVT::f32, MVT::f64}, Custom);
271 setOperationAction(ISD::SELECT_CC,
272 {MVT::f32, MVT::i32, MVT::i64, MVT::f64, MVT::i1}, Expand);
274 setOperationAction(ISD::SETCC, MVT::i1, Promote);
275 setOperationAction(ISD::SETCC, {MVT::v2i1, MVT::v4i1}, Expand);
276 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
278 setOperationAction(ISD::TRUNCATE,
279 {MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32,
280 MVT::v6i32, MVT::v7i32, MVT::v8i32, MVT::v9i32,
281 MVT::v10i32, MVT::v11i32, MVT::v12i32, MVT::v16i32},
282 Expand);
283 setOperationAction(ISD::FP_ROUND,
284 {MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32,
285 MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v9f32,
286 MVT::v10f32, MVT::v11f32, MVT::v12f32, MVT::v16f32},
287 Expand);
289 setOperationAction(ISD::SIGN_EXTEND_INREG,
290 {MVT::v2i1, MVT::v4i1, MVT::v2i8, MVT::v4i8, MVT::v2i16,
291 MVT::v3i16, MVT::v4i16, MVT::Other},
292 Custom);
294 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
295 setOperationAction(ISD::BR_CC,
296 {MVT::i1, MVT::i32, MVT::i64, MVT::f32, MVT::f64}, Expand);
298 setOperationAction({ISD::UADDO, ISD::USUBO}, MVT::i32, Legal);
300 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i32, Legal);
302 setOperationAction({ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS}, MVT::i64,
303 Expand);
305 #if 0
306 setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY}, MVT::i64, Legal);
307 #endif
309 // We only support LOAD/STORE and vector manipulation ops for vectors
310 // with > 4 elements.
311 for (MVT VT :
312 {MVT::v8i32, MVT::v8f32, MVT::v9i32, MVT::v9f32, MVT::v10i32,
313 MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32,
314 MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64, MVT::v4i16,
315 MVT::v4f16, MVT::v4bf16, MVT::v3i64, MVT::v3f64, MVT::v6i32,
316 MVT::v6f32, MVT::v4i64, MVT::v4f64, MVT::v8i64, MVT::v8f64,
317 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
318 MVT::v16bf16, MVT::v16i64, MVT::v16f64, MVT::v32i32, MVT::v32f32,
319 MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
320 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
321 switch (Op) {
322 case ISD::LOAD:
323 case ISD::STORE:
324 case ISD::BUILD_VECTOR:
325 case ISD::BITCAST:
326 case ISD::UNDEF:
327 case ISD::EXTRACT_VECTOR_ELT:
328 case ISD::INSERT_VECTOR_ELT:
329 case ISD::SCALAR_TO_VECTOR:
330 case ISD::IS_FPCLASS:
331 break;
332 case ISD::EXTRACT_SUBVECTOR:
333 case ISD::INSERT_SUBVECTOR:
334 case ISD::CONCAT_VECTORS:
335 setOperationAction(Op, VT, Custom);
336 break;
337 default:
338 setOperationAction(Op, VT, Expand);
339 break;
344 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
346 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
347 // is expanded to avoid having two separate loops in case the index is a VGPR.
349 // Most operations are naturally 32-bit vector operations. We only support
350 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
351 for (MVT Vec64 : {MVT::v2i64, MVT::v2f64}) {
352 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
353 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
356 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
358 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
359 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
361 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
362 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
365 for (MVT Vec64 : {MVT::v3i64, MVT::v3f64}) {
366 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
367 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v6i32);
369 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
370 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v6i32);
372 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
373 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v6i32);
375 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
376 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v6i32);
379 for (MVT Vec64 : {MVT::v4i64, MVT::v4f64}) {
380 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
381 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v8i32);
383 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
384 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v8i32);
386 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
387 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v8i32);
389 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
390 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v8i32);
393 for (MVT Vec64 : {MVT::v8i64, MVT::v8f64}) {
394 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
395 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v16i32);
397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
398 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v16i32);
400 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
401 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v16i32);
403 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
404 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v16i32);
407 for (MVT Vec64 : {MVT::v16i64, MVT::v16f64}) {
408 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
409 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v32i32);
411 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
412 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v32i32);
414 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
415 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v32i32);
417 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
418 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v32i32);
421 setOperationAction(ISD::VECTOR_SHUFFLE,
422 {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32},
423 Expand);
425 setOperationAction(ISD::BUILD_VECTOR, {MVT::v4f16, MVT::v4i16, MVT::v4bf16},
426 Custom);
428 // Avoid stack access for these.
429 // TODO: Generalize to more vector types.
430 setOperationAction({ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT},
431 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v2i8, MVT::v4i8,
432 MVT::v8i8, MVT::v4i16, MVT::v4f16, MVT::v4bf16},
433 Custom);
435 // Deal with vec3 vector operations when widened to vec4.
436 setOperationAction(ISD::INSERT_SUBVECTOR,
437 {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32}, Custom);
439 // Deal with vec5/6/7 vector operations when widened to vec8.
440 setOperationAction(ISD::INSERT_SUBVECTOR,
441 {MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32,
442 MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32,
443 MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32,
444 MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32},
445 Custom);
447 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
448 // and output demarshalling
449 setOperationAction(ISD::ATOMIC_CMP_SWAP, {MVT::i32, MVT::i64}, Custom);
451 // We can't return success/failure, only the old value,
452 // let LLVM add the comparison
453 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, {MVT::i32, MVT::i64},
454 Expand);
456 setOperationAction(ISD::ADDRSPACECAST, {MVT::i32, MVT::i64}, Custom);
458 setOperationAction(ISD::BITREVERSE, {MVT::i32, MVT::i64}, Legal);
460 // FIXME: This should be narrowed to i32, but that only happens if i64 is
461 // illegal.
462 // FIXME: Should lower sub-i32 bswaps to bit-ops without v_perm_b32.
463 setOperationAction(ISD::BSWAP, {MVT::i64, MVT::i32}, Legal);
465 // On SI this is s_memtime and s_memrealtime on VI.
466 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
468 if (Subtarget->hasSMemRealTime() ||
469 Subtarget->getGeneration() >= AMDGPUSubtarget::GFX11)
470 setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Legal);
471 setOperationAction({ISD::TRAP, ISD::DEBUGTRAP}, MVT::Other, Custom);
473 if (Subtarget->has16BitInsts()) {
474 setOperationAction({ISD::FPOW, ISD::FPOWI}, MVT::f16, Promote);
475 setOperationAction({ISD::FLOG, ISD::FEXP, ISD::FLOG10}, MVT::f16, Custom);
476 } else {
477 setOperationAction(ISD::FSQRT, MVT::f16, Custom);
480 if (Subtarget->hasMadMacF32Insts())
481 setOperationAction(ISD::FMAD, MVT::f32, Legal);
483 if (!Subtarget->hasBFI())
484 // fcopysign can be done in a single instruction with BFI.
485 setOperationAction(ISD::FCOPYSIGN, {MVT::f32, MVT::f64}, Expand);
487 if (!Subtarget->hasBCNT(32))
488 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
490 if (!Subtarget->hasBCNT(64))
491 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
493 if (Subtarget->hasFFBH())
494 setOperationAction({ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, MVT::i32, Custom);
496 if (Subtarget->hasFFBL())
497 setOperationAction({ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF}, MVT::i32, Custom);
499 // We only really have 32-bit BFE instructions (and 16-bit on VI).
501 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
502 // effort to match them now. We want this to be false for i64 cases when the
503 // extraction isn't restricted to the upper or lower half. Ideally we would
504 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
505 // span the midpoint are probably relatively rare, so don't worry about them
506 // for now.
507 if (Subtarget->hasBFE())
508 setHasExtractBitsInsn(true);
510 // Clamp modifier on add/sub
511 if (Subtarget->hasIntClamp())
512 setOperationAction({ISD::UADDSAT, ISD::USUBSAT}, MVT::i32, Legal);
514 if (Subtarget->hasAddNoCarry())
515 setOperationAction({ISD::SADDSAT, ISD::SSUBSAT}, {MVT::i16, MVT::i32},
516 Legal);
518 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM}, {MVT::f32, MVT::f64},
519 Custom);
521 // These are really only legal for ieee_mode functions. We should be avoiding
522 // them for functions that don't have ieee_mode enabled, so just say they are
523 // legal.
524 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE},
525 {MVT::f32, MVT::f64}, Legal);
527 if (Subtarget->haveRoundOpsF64())
528 setOperationAction({ISD::FTRUNC, ISD::FCEIL, ISD::FROUNDEVEN}, MVT::f64,
529 Legal);
530 else
531 setOperationAction({ISD::FCEIL, ISD::FTRUNC, ISD::FROUNDEVEN, ISD::FFLOOR},
532 MVT::f64, Custom);
534 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
535 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, {MVT::f32, MVT::f64},
536 Legal);
537 setOperationAction(ISD::FFREXP, {MVT::f32, MVT::f64}, Custom);
539 setOperationAction({ISD::FSIN, ISD::FCOS, ISD::FDIV}, MVT::f32, Custom);
540 setOperationAction(ISD::FDIV, MVT::f64, Custom);
542 setOperationAction(ISD::BF16_TO_FP, {MVT::i16, MVT::f32, MVT::f64}, Expand);
543 setOperationAction(ISD::FP_TO_BF16, {MVT::i16, MVT::f32, MVT::f64}, Expand);
545 // Custom lower these because we can't specify a rule based on an illegal
546 // source bf16.
547 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f32, Custom);
548 setOperationAction({ISD::FP_EXTEND, ISD::STRICT_FP_EXTEND}, MVT::f64, Custom);
550 if (Subtarget->has16BitInsts()) {
551 setOperationAction({ISD::Constant, ISD::SMIN, ISD::SMAX, ISD::UMIN,
552 ISD::UMAX, ISD::UADDSAT, ISD::USUBSAT},
553 MVT::i16, Legal);
555 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
557 setOperationAction({ISD::ROTR, ISD::ROTL, ISD::SELECT_CC, ISD::BR_CC},
558 MVT::i16, Expand);
560 setOperationAction({ISD::SIGN_EXTEND, ISD::SDIV, ISD::UDIV, ISD::SREM,
561 ISD::UREM, ISD::BITREVERSE, ISD::CTTZ,
562 ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF,
563 ISD::CTPOP},
564 MVT::i16, Promote);
566 setOperationAction(ISD::LOAD, MVT::i16, Custom);
568 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
570 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
571 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
572 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
573 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
575 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::i16, Custom);
576 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
577 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i16, Custom);
579 setOperationAction({ISD::SINT_TO_FP, ISD::UINT_TO_FP}, MVT::i32, Custom);
581 // F16 - Constant Actions.
582 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
583 setOperationAction(ISD::ConstantFP, MVT::bf16, Legal);
585 // F16 - Load/Store Actions.
586 setOperationAction(ISD::LOAD, MVT::f16, Promote);
587 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
588 setOperationAction(ISD::STORE, MVT::f16, Promote);
589 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
591 // BF16 - Load/Store Actions.
592 setOperationAction(ISD::LOAD, MVT::bf16, Promote);
593 AddPromotedToType(ISD::LOAD, MVT::bf16, MVT::i16);
594 setOperationAction(ISD::STORE, MVT::bf16, Promote);
595 AddPromotedToType(ISD::STORE, MVT::bf16, MVT::i16);
597 // F16 - VOP1 Actions.
598 setOperationAction({ISD::FP_ROUND, ISD::STRICT_FP_ROUND, ISD::FCOS,
599 ISD::FSIN, ISD::FROUND},
600 MVT::f16, Custom);
602 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::f16, Promote);
603 setOperationAction({ISD::FP_TO_SINT, ISD::FP_TO_UINT}, MVT::bf16, Promote);
605 // F16 - VOP2 Actions.
606 setOperationAction({ISD::BR_CC, ISD::SELECT_CC}, {MVT::f16, MVT::bf16},
607 Expand);
608 setOperationAction({ISD::FLDEXP, ISD::STRICT_FLDEXP}, MVT::f16, Custom);
609 setOperationAction(ISD::FFREXP, MVT::f16, Custom);
610 setOperationAction(ISD::FDIV, MVT::f16, Custom);
612 // F16 - VOP3 Actions.
613 setOperationAction(ISD::FMA, MVT::f16, Legal);
614 if (STI.hasMadF16())
615 setOperationAction(ISD::FMAD, MVT::f16, Legal);
617 for (MVT VT :
618 {MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::v4i16, MVT::v4f16,
619 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16,
620 MVT::v16f16, MVT::v16bf16, MVT::v32i16, MVT::v32f16}) {
621 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
622 switch (Op) {
623 case ISD::LOAD:
624 case ISD::STORE:
625 case ISD::BUILD_VECTOR:
626 case ISD::BITCAST:
627 case ISD::UNDEF:
628 case ISD::EXTRACT_VECTOR_ELT:
629 case ISD::INSERT_VECTOR_ELT:
630 case ISD::INSERT_SUBVECTOR:
631 case ISD::SCALAR_TO_VECTOR:
632 case ISD::IS_FPCLASS:
633 break;
634 case ISD::EXTRACT_SUBVECTOR:
635 case ISD::CONCAT_VECTORS:
636 setOperationAction(Op, VT, Custom);
637 break;
638 default:
639 setOperationAction(Op, VT, Expand);
640 break;
645 // v_perm_b32 can handle either of these.
646 setOperationAction(ISD::BSWAP, {MVT::i16, MVT::v2i16}, Legal);
647 setOperationAction(ISD::BSWAP, MVT::v4i16, Custom);
649 // XXX - Do these do anything? Vector constants turn into build_vector.
650 setOperationAction(ISD::Constant, {MVT::v2i16, MVT::v2f16}, Legal);
652 setOperationAction(ISD::UNDEF, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
653 Legal);
655 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
656 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
657 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
658 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
660 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
661 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
662 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
663 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
665 setOperationAction(ISD::AND, MVT::v2i16, Promote);
666 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
667 setOperationAction(ISD::OR, MVT::v2i16, Promote);
668 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
669 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
670 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
672 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
673 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
674 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
675 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
676 setOperationAction(ISD::LOAD, MVT::v4bf16, Promote);
677 AddPromotedToType(ISD::LOAD, MVT::v4bf16, MVT::v2i32);
679 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
680 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
681 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
682 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
683 setOperationAction(ISD::STORE, MVT::v4bf16, Promote);
684 AddPromotedToType(ISD::STORE, MVT::v4bf16, MVT::v2i32);
686 setOperationAction(ISD::LOAD, MVT::v8i16, Promote);
687 AddPromotedToType(ISD::LOAD, MVT::v8i16, MVT::v4i32);
688 setOperationAction(ISD::LOAD, MVT::v8f16, Promote);
689 AddPromotedToType(ISD::LOAD, MVT::v8f16, MVT::v4i32);
690 setOperationAction(ISD::LOAD, MVT::v8bf16, Promote);
691 AddPromotedToType(ISD::LOAD, MVT::v8bf16, MVT::v4i32);
693 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
694 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
695 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
696 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
698 setOperationAction(ISD::STORE, MVT::v8i16, Promote);
699 AddPromotedToType(ISD::STORE, MVT::v8i16, MVT::v4i32);
700 setOperationAction(ISD::STORE, MVT::v8f16, Promote);
701 AddPromotedToType(ISD::STORE, MVT::v8f16, MVT::v4i32);
702 setOperationAction(ISD::STORE, MVT::v8bf16, Promote);
703 AddPromotedToType(ISD::STORE, MVT::v8bf16, MVT::v4i32);
705 setOperationAction(ISD::LOAD, MVT::v16i16, Promote);
706 AddPromotedToType(ISD::LOAD, MVT::v16i16, MVT::v8i32);
707 setOperationAction(ISD::LOAD, MVT::v16f16, Promote);
708 AddPromotedToType(ISD::LOAD, MVT::v16f16, MVT::v8i32);
709 setOperationAction(ISD::LOAD, MVT::v16bf16, Promote);
710 AddPromotedToType(ISD::LOAD, MVT::v16bf16, MVT::v8i32);
712 setOperationAction(ISD::STORE, MVT::v16i16, Promote);
713 AddPromotedToType(ISD::STORE, MVT::v16i16, MVT::v8i32);
714 setOperationAction(ISD::STORE, MVT::v16f16, Promote);
715 AddPromotedToType(ISD::STORE, MVT::v16f16, MVT::v8i32);
716 setOperationAction(ISD::STORE, MVT::v16bf16, Promote);
717 AddPromotedToType(ISD::STORE, MVT::v16bf16, MVT::v8i32);
719 setOperationAction(ISD::LOAD, MVT::v32i16, Promote);
720 AddPromotedToType(ISD::LOAD, MVT::v32i16, MVT::v16i32);
721 setOperationAction(ISD::LOAD, MVT::v32f16, Promote);
722 AddPromotedToType(ISD::LOAD, MVT::v32f16, MVT::v16i32);
723 setOperationAction(ISD::LOAD, MVT::v32bf16, Promote);
724 AddPromotedToType(ISD::LOAD, MVT::v32bf16, MVT::v16i32);
726 setOperationAction(ISD::STORE, MVT::v32i16, Promote);
727 AddPromotedToType(ISD::STORE, MVT::v32i16, MVT::v16i32);
728 setOperationAction(ISD::STORE, MVT::v32f16, Promote);
729 AddPromotedToType(ISD::STORE, MVT::v32f16, MVT::v16i32);
730 setOperationAction(ISD::STORE, MVT::v32bf16, Promote);
731 AddPromotedToType(ISD::STORE, MVT::v32bf16, MVT::v16i32);
733 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
734 MVT::v2i32, Expand);
735 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
737 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
738 MVT::v4i32, Expand);
740 setOperationAction({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND},
741 MVT::v8i32, Expand);
743 setOperationAction(ISD::BUILD_VECTOR, {MVT::v2i16, MVT::v2f16, MVT::v2bf16},
744 Subtarget->hasVOP3PInsts() ? Legal : Custom);
746 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
747 // This isn't really legal, but this avoids the legalizer unrolling it (and
748 // allows matching fneg (fabs x) patterns)
749 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
751 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, MVT::f16, Custom);
752 setOperationAction({ISD::FMAXNUM_IEEE, ISD::FMINNUM_IEEE}, MVT::f16, Legal);
754 setOperationAction({ISD::FMINNUM_IEEE, ISD::FMAXNUM_IEEE, ISD::FMINIMUMNUM,
755 ISD::FMAXIMUMNUM},
756 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
757 Custom);
759 setOperationAction({ISD::FMINNUM, ISD::FMAXNUM},
760 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
761 Expand);
763 for (MVT Vec16 :
764 {MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::v16i16, MVT::v16f16,
765 MVT::v16bf16, MVT::v32i16, MVT::v32f16, MVT::v32bf16}) {
766 setOperationAction(
767 {ISD::BUILD_VECTOR, ISD::EXTRACT_VECTOR_ELT, ISD::SCALAR_TO_VECTOR},
768 Vec16, Custom);
769 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec16, Expand);
773 if (Subtarget->hasVOP3PInsts()) {
774 setOperationAction({ISD::ADD, ISD::SUB, ISD::MUL, ISD::SHL, ISD::SRL,
775 ISD::SRA, ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
776 ISD::UADDSAT, ISD::USUBSAT, ISD::SADDSAT, ISD::SSUBSAT},
777 MVT::v2i16, Legal);
779 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FMINNUM_IEEE,
780 ISD::FMAXNUM_IEEE, ISD::FCANONICALIZE},
781 MVT::v2f16, Legal);
783 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
784 {MVT::v2i16, MVT::v2f16, MVT::v2bf16}, Custom);
786 setOperationAction(ISD::VECTOR_SHUFFLE,
787 {MVT::v4f16, MVT::v4i16, MVT::v8f16, MVT::v8i16,
788 MVT::v16f16, MVT::v16i16, MVT::v32f16, MVT::v32i16},
789 Custom);
791 for (MVT VT : {MVT::v4i16, MVT::v8i16, MVT::v16i16, MVT::v32i16})
792 // Split vector operations.
793 setOperationAction({ISD::SHL, ISD::SRA, ISD::SRL, ISD::ADD, ISD::SUB,
794 ISD::MUL, ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN,
795 ISD::UMAX, ISD::UADDSAT, ISD::SADDSAT, ISD::USUBSAT,
796 ISD::SSUBSAT},
797 VT, Custom);
799 for (MVT VT : {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16})
800 // Split vector operations.
801 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FCANONICALIZE},
802 VT, Custom);
804 setOperationAction({ISD::FMAXNUM, ISD::FMINNUM}, {MVT::v2f16, MVT::v4f16},
805 Custom);
807 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
808 setOperationAction(ISD::SELECT, {MVT::v4i16, MVT::v4f16, MVT::v4bf16},
809 Custom);
811 if (Subtarget->hasPackedFP32Ops()) {
812 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA, ISD::FNEG},
813 MVT::v2f32, Legal);
814 setOperationAction({ISD::FADD, ISD::FMUL, ISD::FMA},
815 {MVT::v4f32, MVT::v8f32, MVT::v16f32, MVT::v32f32},
816 Custom);
820 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v4f16, Custom);
822 if (Subtarget->has16BitInsts()) {
823 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
824 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
825 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
826 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
827 } else {
828 // Legalization hack.
829 setOperationAction(ISD::SELECT, {MVT::v2i16, MVT::v2f16}, Custom);
831 setOperationAction({ISD::FNEG, ISD::FABS}, MVT::v2f16, Custom);
834 setOperationAction(ISD::SELECT,
835 {MVT::v4i16, MVT::v4f16, MVT::v4bf16, MVT::v2i8, MVT::v4i8,
836 MVT::v8i8, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
837 MVT::v16i16, MVT::v16f16, MVT::v16bf16, MVT::v32i16,
838 MVT::v32f16, MVT::v32bf16},
839 Custom);
841 setOperationAction({ISD::SMULO, ISD::UMULO}, MVT::i64, Custom);
843 if (Subtarget->hasScalarSMulU64())
844 setOperationAction(ISD::MUL, MVT::i64, Custom);
846 if (Subtarget->hasMad64_32())
847 setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, MVT::i32, Custom);
849 if (Subtarget->hasPrefetch())
850 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
852 if (Subtarget->hasIEEEMinMax()) {
853 setOperationAction({ISD::FMAXIMUM, ISD::FMINIMUM},
854 {MVT::f16, MVT::f32, MVT::f64, MVT::v2f16}, Legal);
855 setOperationAction({ISD::FMINIMUM, ISD::FMAXIMUM},
856 {MVT::v4f16, MVT::v8f16, MVT::v16f16, MVT::v32f16},
857 Custom);
860 setOperationAction(ISD::INTRINSIC_WO_CHAIN,
861 {MVT::Other, MVT::f32, MVT::v4f32, MVT::i16, MVT::f16,
862 MVT::bf16, MVT::v2i16, MVT::v2f16, MVT::v2bf16, MVT::i128,
863 MVT::i8},
864 Custom);
866 setOperationAction(ISD::INTRINSIC_W_CHAIN,
867 {MVT::v2f16, MVT::v2i16, MVT::v2bf16, MVT::v3f16,
868 MVT::v3i16, MVT::v4f16, MVT::v4i16, MVT::v4bf16,
869 MVT::v8i16, MVT::v8f16, MVT::v8bf16, MVT::Other, MVT::f16,
870 MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
871 Custom);
873 setOperationAction(ISD::INTRINSIC_VOID,
874 {MVT::Other, MVT::v2i16, MVT::v2f16, MVT::v2bf16,
875 MVT::v3i16, MVT::v3f16, MVT::v4f16, MVT::v4i16,
876 MVT::v4bf16, MVT::v8i16, MVT::v8f16, MVT::v8bf16,
877 MVT::f16, MVT::i16, MVT::bf16, MVT::i8, MVT::i128},
878 Custom);
880 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom);
881 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
882 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
883 setOperationAction(ISD::GET_FPENV, MVT::i64, Custom);
884 setOperationAction(ISD::SET_FPENV, MVT::i64, Custom);
886 // TODO: Could move this to custom lowering, could benefit from combines on
887 // extract of relevant bits.
888 setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal);
890 setOperationAction(ISD::MUL, MVT::i1, Promote);
892 if (Subtarget->hasBF16ConversionInsts()) {
893 setOperationAction(ISD::FP_ROUND, MVT::v2bf16, Legal);
894 setOperationAction(ISD::FP_ROUND, MVT::bf16, Legal);
895 setOperationAction(ISD::BUILD_VECTOR, MVT::v2bf16, Legal);
898 setTargetDAGCombine({ISD::ADD,
899 ISD::UADDO_CARRY,
900 ISD::SUB,
901 ISD::USUBO_CARRY,
902 ISD::MUL,
903 ISD::FADD,
904 ISD::FSUB,
905 ISD::FDIV,
906 ISD::FMINNUM,
907 ISD::FMAXNUM,
908 ISD::FMINNUM_IEEE,
909 ISD::FMAXNUM_IEEE,
910 ISD::FMINIMUM,
911 ISD::FMAXIMUM,
912 ISD::FMA,
913 ISD::SMIN,
914 ISD::SMAX,
915 ISD::UMIN,
916 ISD::UMAX,
917 ISD::SETCC,
918 ISD::SELECT,
919 ISD::SMIN,
920 ISD::SMAX,
921 ISD::UMIN,
922 ISD::UMAX,
923 ISD::AND,
924 ISD::OR,
925 ISD::XOR,
926 ISD::SHL,
927 ISD::SRL,
928 ISD::SRA,
929 ISD::FSHR,
930 ISD::SINT_TO_FP,
931 ISD::UINT_TO_FP,
932 ISD::FCANONICALIZE,
933 ISD::SCALAR_TO_VECTOR,
934 ISD::ZERO_EXTEND,
935 ISD::SIGN_EXTEND_INREG,
936 ISD::EXTRACT_VECTOR_ELT,
937 ISD::INSERT_VECTOR_ELT,
938 ISD::FCOPYSIGN});
940 if (Subtarget->has16BitInsts() && !Subtarget->hasMed3_16())
941 setTargetDAGCombine(ISD::FP_ROUND);
943 // All memory operations. Some folding on the pointer operand is done to help
944 // matching the constant offsets in the addressing modes.
945 setTargetDAGCombine({ISD::LOAD,
946 ISD::STORE,
947 ISD::ATOMIC_LOAD,
948 ISD::ATOMIC_STORE,
949 ISD::ATOMIC_CMP_SWAP,
950 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
951 ISD::ATOMIC_SWAP,
952 ISD::ATOMIC_LOAD_ADD,
953 ISD::ATOMIC_LOAD_SUB,
954 ISD::ATOMIC_LOAD_AND,
955 ISD::ATOMIC_LOAD_OR,
956 ISD::ATOMIC_LOAD_XOR,
957 ISD::ATOMIC_LOAD_NAND,
958 ISD::ATOMIC_LOAD_MIN,
959 ISD::ATOMIC_LOAD_MAX,
960 ISD::ATOMIC_LOAD_UMIN,
961 ISD::ATOMIC_LOAD_UMAX,
962 ISD::ATOMIC_LOAD_FADD,
963 ISD::ATOMIC_LOAD_FMIN,
964 ISD::ATOMIC_LOAD_FMAX,
965 ISD::ATOMIC_LOAD_UINC_WRAP,
966 ISD::ATOMIC_LOAD_UDEC_WRAP,
967 ISD::INTRINSIC_VOID,
968 ISD::INTRINSIC_W_CHAIN});
970 // FIXME: In other contexts we pretend this is a per-function property.
971 setStackPointerRegisterToSaveRestore(AMDGPU::SGPR32);
973 setSchedulingPreference(Sched::RegPressure);
976 const GCNSubtarget *SITargetLowering::getSubtarget() const { return Subtarget; }
978 ArrayRef<MCPhysReg> SITargetLowering::getRoundingControlRegisters() const {
979 static const MCPhysReg RCRegs[] = {AMDGPU::MODE};
980 return RCRegs;
983 //===----------------------------------------------------------------------===//
984 // TargetLowering queries
985 //===----------------------------------------------------------------------===//
987 // v_mad_mix* support a conversion from f16 to f32.
989 // There is only one special case when denormals are enabled we don't currently,
990 // where this is OK to use.
991 bool SITargetLowering::isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
992 EVT DestVT, EVT SrcVT) const {
993 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
994 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
995 DestVT.getScalarType() == MVT::f32 &&
996 SrcVT.getScalarType() == MVT::f16 &&
997 // TODO: This probably only requires no input flushing?
998 denormalModeIsFlushAllF32(DAG.getMachineFunction());
1001 bool SITargetLowering::isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
1002 LLT DestTy, LLT SrcTy) const {
1003 return ((Opcode == TargetOpcode::G_FMAD && Subtarget->hasMadMixInsts()) ||
1004 (Opcode == TargetOpcode::G_FMA && Subtarget->hasFmaMixInsts())) &&
1005 DestTy.getScalarSizeInBits() == 32 &&
1006 SrcTy.getScalarSizeInBits() == 16 &&
1007 // TODO: This probably only requires no input flushing?
1008 denormalModeIsFlushAllF32(*MI.getMF());
1011 bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
1012 // SI has some legal vector types, but no legal vector operations. Say no
1013 // shuffles are legal in order to prefer scalarizing some vector operations.
1014 return false;
1017 MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1018 CallingConv::ID CC,
1019 EVT VT) const {
1020 if (CC == CallingConv::AMDGPU_KERNEL)
1021 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1023 if (VT.isVector()) {
1024 EVT ScalarVT = VT.getScalarType();
1025 unsigned Size = ScalarVT.getSizeInBits();
1026 if (Size == 16) {
1027 if (Subtarget->has16BitInsts()) {
1028 if (VT.isInteger())
1029 return MVT::v2i16;
1030 return (ScalarVT == MVT::bf16 ? MVT::i32 : MVT::v2f16);
1032 return VT.isInteger() ? MVT::i32 : MVT::f32;
1035 if (Size < 16)
1036 return Subtarget->has16BitInsts() ? MVT::i16 : MVT::i32;
1037 return Size == 32 ? ScalarVT.getSimpleVT() : MVT::i32;
1040 if (VT.getSizeInBits() > 32)
1041 return MVT::i32;
1043 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
1046 unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1047 CallingConv::ID CC,
1048 EVT VT) const {
1049 if (CC == CallingConv::AMDGPU_KERNEL)
1050 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1052 if (VT.isVector()) {
1053 unsigned NumElts = VT.getVectorNumElements();
1054 EVT ScalarVT = VT.getScalarType();
1055 unsigned Size = ScalarVT.getSizeInBits();
1057 // FIXME: Should probably promote 8-bit vectors to i16.
1058 if (Size == 16 && Subtarget->has16BitInsts())
1059 return (NumElts + 1) / 2;
1061 if (Size <= 32)
1062 return NumElts;
1064 if (Size > 32)
1065 return NumElts * ((Size + 31) / 32);
1066 } else if (VT.getSizeInBits() > 32)
1067 return (VT.getSizeInBits() + 31) / 32;
1069 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
1072 unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
1073 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1074 unsigned &NumIntermediates, MVT &RegisterVT) const {
1075 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
1076 unsigned NumElts = VT.getVectorNumElements();
1077 EVT ScalarVT = VT.getScalarType();
1078 unsigned Size = ScalarVT.getSizeInBits();
1079 // FIXME: We should fix the ABI to be the same on targets without 16-bit
1080 // support, but unless we can properly handle 3-vectors, it will be still be
1081 // inconsistent.
1082 if (Size == 16 && Subtarget->has16BitInsts()) {
1083 if (ScalarVT == MVT::bf16) {
1084 RegisterVT = MVT::i32;
1085 IntermediateVT = MVT::v2bf16;
1086 } else {
1087 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
1088 IntermediateVT = RegisterVT;
1090 NumIntermediates = (NumElts + 1) / 2;
1091 return NumIntermediates;
1094 if (Size == 32) {
1095 RegisterVT = ScalarVT.getSimpleVT();
1096 IntermediateVT = RegisterVT;
1097 NumIntermediates = NumElts;
1098 return NumIntermediates;
1101 if (Size < 16 && Subtarget->has16BitInsts()) {
1102 // FIXME: Should probably form v2i16 pieces
1103 RegisterVT = MVT::i16;
1104 IntermediateVT = ScalarVT;
1105 NumIntermediates = NumElts;
1106 return NumIntermediates;
1109 if (Size != 16 && Size <= 32) {
1110 RegisterVT = MVT::i32;
1111 IntermediateVT = ScalarVT;
1112 NumIntermediates = NumElts;
1113 return NumIntermediates;
1116 if (Size > 32) {
1117 RegisterVT = MVT::i32;
1118 IntermediateVT = RegisterVT;
1119 NumIntermediates = NumElts * ((Size + 31) / 32);
1120 return NumIntermediates;
1124 return TargetLowering::getVectorTypeBreakdownForCallingConv(
1125 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
1128 static EVT memVTFromLoadIntrData(const SITargetLowering &TLI,
1129 const DataLayout &DL, Type *Ty,
1130 unsigned MaxNumLanes) {
1131 assert(MaxNumLanes != 0);
1133 LLVMContext &Ctx = Ty->getContext();
1134 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1135 unsigned NumElts = std::min(MaxNumLanes, VT->getNumElements());
1136 return EVT::getVectorVT(Ctx, TLI.getValueType(DL, VT->getElementType()),
1137 NumElts);
1140 return TLI.getValueType(DL, Ty);
1143 // Peek through TFE struct returns to only use the data size.
1144 static EVT memVTFromLoadIntrReturn(const SITargetLowering &TLI,
1145 const DataLayout &DL, Type *Ty,
1146 unsigned MaxNumLanes) {
1147 auto *ST = dyn_cast<StructType>(Ty);
1148 if (!ST)
1149 return memVTFromLoadIntrData(TLI, DL, Ty, MaxNumLanes);
1151 // TFE intrinsics return an aggregate type.
1152 assert(ST->getNumContainedTypes() == 2 &&
1153 ST->getContainedType(1)->isIntegerTy(32));
1154 return memVTFromLoadIntrData(TLI, DL, ST->getContainedType(0), MaxNumLanes);
1157 /// Map address space 7 to MVT::v5i32 because that's its in-memory
1158 /// representation. This return value is vector-typed because there is no
1159 /// MVT::i160 and it is not clear if one can be added. While this could
1160 /// cause issues during codegen, these address space 7 pointers will be
1161 /// rewritten away by then. Therefore, we can return MVT::v5i32 in order
1162 /// to allow pre-codegen passes that query TargetTransformInfo, often for cost
1163 /// modeling, to work.
1164 MVT SITargetLowering::getPointerTy(const DataLayout &DL, unsigned AS) const {
1165 if (AMDGPUAS::BUFFER_FAT_POINTER == AS && DL.getPointerSizeInBits(AS) == 160)
1166 return MVT::v5i32;
1167 if (AMDGPUAS::BUFFER_STRIDED_POINTER == AS &&
1168 DL.getPointerSizeInBits(AS) == 192)
1169 return MVT::v6i32;
1170 return AMDGPUTargetLowering::getPointerTy(DL, AS);
1172 /// Similarly, the in-memory representation of a p7 is {p8, i32}, aka
1173 /// v8i32 when padding is added.
1174 /// The in-memory representation of a p9 is {p8, i32, i32}, which is
1175 /// also v8i32 with padding.
1176 MVT SITargetLowering::getPointerMemTy(const DataLayout &DL, unsigned AS) const {
1177 if ((AMDGPUAS::BUFFER_FAT_POINTER == AS &&
1178 DL.getPointerSizeInBits(AS) == 160) ||
1179 (AMDGPUAS::BUFFER_STRIDED_POINTER == AS &&
1180 DL.getPointerSizeInBits(AS) == 192))
1181 return MVT::v8i32;
1182 return AMDGPUTargetLowering::getPointerMemTy(DL, AS);
1185 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1186 const CallInst &CI,
1187 MachineFunction &MF,
1188 unsigned IntrID) const {
1189 Info.flags = MachineMemOperand::MONone;
1190 if (CI.hasMetadata(LLVMContext::MD_invariant_load))
1191 Info.flags |= MachineMemOperand::MOInvariant;
1193 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
1194 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
1195 AttributeList Attr =
1196 Intrinsic::getAttributes(CI.getContext(), (Intrinsic::ID)IntrID);
1197 MemoryEffects ME = Attr.getMemoryEffects();
1198 if (ME.doesNotAccessMemory())
1199 return false;
1201 // TODO: Should images get their own address space?
1202 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1204 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode = nullptr;
1205 if (RsrcIntr->IsImage) {
1206 const AMDGPU::ImageDimIntrinsicInfo *Intr =
1207 AMDGPU::getImageDimIntrinsicInfo(IntrID);
1208 BaseOpcode = AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
1209 Info.align.reset();
1212 Value *RsrcArg = CI.getArgOperand(RsrcIntr->RsrcArg);
1213 if (auto *RsrcPtrTy = dyn_cast<PointerType>(RsrcArg->getType())) {
1214 if (RsrcPtrTy->getAddressSpace() == AMDGPUAS::BUFFER_RESOURCE)
1215 // We conservatively set the memory operand of a buffer intrinsic to the
1216 // base resource pointer, so that we can access alias information about
1217 // those pointers. Cases like "this points at the same value
1218 // but with a different offset" are handled in
1219 // areMemAccessesTriviallyDisjoint.
1220 Info.ptrVal = RsrcArg;
1223 bool IsSPrefetch = IntrID == Intrinsic::amdgcn_s_buffer_prefetch_data;
1224 if (!IsSPrefetch) {
1225 auto *Aux = cast<ConstantInt>(CI.getArgOperand(CI.arg_size() - 1));
1226 if (Aux->getZExtValue() & AMDGPU::CPol::VOLATILE)
1227 Info.flags |= MachineMemOperand::MOVolatile;
1230 Info.flags |= MachineMemOperand::MODereferenceable;
1231 if (ME.onlyReadsMemory()) {
1232 if (RsrcIntr->IsImage) {
1233 unsigned MaxNumLanes = 4;
1235 if (!BaseOpcode->Gather4) {
1236 // If this isn't a gather, we may have excess loaded elements in the
1237 // IR type. Check the dmask for the real number of elements loaded.
1238 unsigned DMask =
1239 cast<ConstantInt>(CI.getArgOperand(0))->getZExtValue();
1240 MaxNumLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1243 Info.memVT = memVTFromLoadIntrReturn(*this, MF.getDataLayout(),
1244 CI.getType(), MaxNumLanes);
1245 } else {
1246 Info.memVT =
1247 memVTFromLoadIntrReturn(*this, MF.getDataLayout(), CI.getType(),
1248 std::numeric_limits<unsigned>::max());
1251 // FIXME: What does alignment mean for an image?
1252 Info.opc = ISD::INTRINSIC_W_CHAIN;
1253 Info.flags |= MachineMemOperand::MOLoad;
1254 } else if (ME.onlyWritesMemory()) {
1255 Info.opc = ISD::INTRINSIC_VOID;
1257 Type *DataTy = CI.getArgOperand(0)->getType();
1258 if (RsrcIntr->IsImage) {
1259 unsigned DMask = cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue();
1260 unsigned DMaskLanes = DMask == 0 ? 1 : llvm::popcount(DMask);
1261 Info.memVT = memVTFromLoadIntrData(*this, MF.getDataLayout(), DataTy,
1262 DMaskLanes);
1263 } else
1264 Info.memVT = getValueType(MF.getDataLayout(), DataTy);
1266 Info.flags |= MachineMemOperand::MOStore;
1267 } else {
1268 // Atomic, NoReturn Sampler or prefetch
1269 Info.opc = CI.getType()->isVoidTy() ? ISD::INTRINSIC_VOID
1270 : ISD::INTRINSIC_W_CHAIN;
1271 Info.flags |=
1272 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable;
1274 if (!IsSPrefetch)
1275 Info.flags |= MachineMemOperand::MOStore;
1277 switch (IntrID) {
1278 default:
1279 if ((RsrcIntr->IsImage && BaseOpcode->NoReturn) || IsSPrefetch) {
1280 // Fake memory access type for no return sampler intrinsics
1281 Info.memVT = MVT::i32;
1282 } else {
1283 // XXX - Should this be volatile without known ordering?
1284 Info.flags |= MachineMemOperand::MOVolatile;
1285 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
1287 break;
1288 case Intrinsic::amdgcn_raw_buffer_load_lds:
1289 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
1290 case Intrinsic::amdgcn_struct_buffer_load_lds:
1291 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
1292 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1293 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1294 Info.ptrVal = CI.getArgOperand(1);
1295 return true;
1297 case Intrinsic::amdgcn_raw_atomic_buffer_load:
1298 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
1299 case Intrinsic::amdgcn_struct_atomic_buffer_load:
1300 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
1301 Info.memVT =
1302 memVTFromLoadIntrReturn(*this, MF.getDataLayout(), CI.getType(),
1303 std::numeric_limits<unsigned>::max());
1304 Info.flags &= ~MachineMemOperand::MOStore;
1305 return true;
1309 return true;
1312 switch (IntrID) {
1313 case Intrinsic::amdgcn_ds_ordered_add:
1314 case Intrinsic::amdgcn_ds_ordered_swap: {
1315 Info.opc = ISD::INTRINSIC_W_CHAIN;
1316 Info.memVT = MVT::getVT(CI.getType());
1317 Info.ptrVal = CI.getOperand(0);
1318 Info.align.reset();
1319 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1321 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
1322 if (!Vol->isZero())
1323 Info.flags |= MachineMemOperand::MOVolatile;
1325 return true;
1327 case Intrinsic::amdgcn_ds_add_gs_reg_rtn:
1328 case Intrinsic::amdgcn_ds_sub_gs_reg_rtn: {
1329 Info.opc = ISD::INTRINSIC_W_CHAIN;
1330 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
1331 Info.ptrVal = nullptr;
1332 Info.fallbackAddressSpace = AMDGPUAS::STREAMOUT_REGISTER;
1333 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1334 return true;
1336 case Intrinsic::amdgcn_ds_append:
1337 case Intrinsic::amdgcn_ds_consume: {
1338 Info.opc = ISD::INTRINSIC_W_CHAIN;
1339 Info.memVT = MVT::getVT(CI.getType());
1340 Info.ptrVal = CI.getOperand(0);
1341 Info.align.reset();
1342 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1344 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1345 if (!Vol->isZero())
1346 Info.flags |= MachineMemOperand::MOVolatile;
1348 return true;
1350 case Intrinsic::amdgcn_global_atomic_csub: {
1351 Info.opc = ISD::INTRINSIC_W_CHAIN;
1352 Info.memVT = MVT::getVT(CI.getType());
1353 Info.ptrVal = CI.getOperand(0);
1354 Info.align.reset();
1355 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1356 MachineMemOperand::MOVolatile;
1357 return true;
1359 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
1360 Info.opc = ISD::INTRINSIC_W_CHAIN;
1361 Info.memVT = MVT::getVT(CI.getType()); // XXX: what is correct VT?
1363 Info.fallbackAddressSpace = AMDGPUAS::BUFFER_RESOURCE;
1364 Info.align.reset();
1365 Info.flags |=
1366 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable;
1367 return true;
1369 case Intrinsic::amdgcn_global_atomic_fmin_num:
1370 case Intrinsic::amdgcn_global_atomic_fmax_num:
1371 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1372 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1373 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1374 case Intrinsic::amdgcn_atomic_cond_sub_u32: {
1375 Info.opc = ISD::INTRINSIC_W_CHAIN;
1376 Info.memVT = MVT::getVT(CI.getType());
1377 Info.ptrVal = CI.getOperand(0);
1378 Info.align.reset();
1379 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
1380 MachineMemOperand::MODereferenceable |
1381 MachineMemOperand::MOVolatile;
1382 return true;
1384 case Intrinsic::amdgcn_global_load_tr_b64:
1385 case Intrinsic::amdgcn_global_load_tr_b128: {
1386 Info.opc = ISD::INTRINSIC_W_CHAIN;
1387 Info.memVT = MVT::getVT(CI.getType());
1388 Info.ptrVal = CI.getOperand(0);
1389 Info.align.reset();
1390 Info.flags |= MachineMemOperand::MOLoad;
1391 return true;
1393 case Intrinsic::amdgcn_ds_gws_init:
1394 case Intrinsic::amdgcn_ds_gws_barrier:
1395 case Intrinsic::amdgcn_ds_gws_sema_v:
1396 case Intrinsic::amdgcn_ds_gws_sema_br:
1397 case Intrinsic::amdgcn_ds_gws_sema_p:
1398 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1399 Info.opc = ISD::INTRINSIC_VOID;
1401 const GCNTargetMachine &TM =
1402 static_cast<const GCNTargetMachine &>(getTargetMachine());
1404 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1405 Info.ptrVal = MFI->getGWSPSV(TM);
1407 // This is an abstract access, but we need to specify a type and size.
1408 Info.memVT = MVT::i32;
1409 Info.size = 4;
1410 Info.align = Align(4);
1412 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1413 Info.flags |= MachineMemOperand::MOLoad;
1414 else
1415 Info.flags |= MachineMemOperand::MOStore;
1416 return true;
1418 case Intrinsic::amdgcn_global_load_lds: {
1419 Info.opc = ISD::INTRINSIC_VOID;
1420 unsigned Width = cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue();
1421 Info.memVT = EVT::getIntegerVT(CI.getContext(), Width * 8);
1422 Info.ptrVal = CI.getArgOperand(1);
1423 Info.flags |= MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1424 return true;
1426 case Intrinsic::amdgcn_ds_bvh_stack_rtn: {
1427 Info.opc = ISD::INTRINSIC_W_CHAIN;
1429 const GCNTargetMachine &TM =
1430 static_cast<const GCNTargetMachine &>(getTargetMachine());
1432 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1433 Info.ptrVal = MFI->getGWSPSV(TM);
1435 // This is an abstract access, but we need to specify a type and size.
1436 Info.memVT = MVT::i32;
1437 Info.size = 4;
1438 Info.align = Align(4);
1440 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1441 return true;
1443 case Intrinsic::amdgcn_s_prefetch_data: {
1444 Info.opc = ISD::INTRINSIC_VOID;
1445 Info.memVT = EVT::getIntegerVT(CI.getContext(), 8);
1446 Info.ptrVal = CI.getArgOperand(0);
1447 Info.flags |= MachineMemOperand::MOLoad;
1448 return true;
1450 default:
1451 return false;
1455 void SITargetLowering::CollectTargetIntrinsicOperands(
1456 const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const {
1457 switch (cast<IntrinsicInst>(I).getIntrinsicID()) {
1458 case Intrinsic::amdgcn_addrspacecast_nonnull: {
1459 // The DAG's ValueType loses the addrspaces.
1460 // Add them as 2 extra Constant operands "from" and "to".
1461 unsigned SrcAS = I.getOperand(0)->getType()->getPointerAddressSpace();
1462 unsigned DstAS = I.getType()->getPointerAddressSpace();
1463 Ops.push_back(DAG.getTargetConstant(SrcAS, SDLoc(), MVT::i32));
1464 Ops.push_back(DAG.getTargetConstant(DstAS, SDLoc(), MVT::i32));
1465 break;
1467 default:
1468 break;
1472 bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1473 SmallVectorImpl<Value *> &Ops,
1474 Type *&AccessTy) const {
1475 Value *Ptr = nullptr;
1476 switch (II->getIntrinsicID()) {
1477 case Intrinsic::amdgcn_atomic_cond_sub_u32:
1478 case Intrinsic::amdgcn_ds_append:
1479 case Intrinsic::amdgcn_ds_consume:
1480 case Intrinsic::amdgcn_ds_ordered_add:
1481 case Intrinsic::amdgcn_ds_ordered_swap:
1482 case Intrinsic::amdgcn_flat_atomic_fmax_num:
1483 case Intrinsic::amdgcn_flat_atomic_fmin_num:
1484 case Intrinsic::amdgcn_global_atomic_csub:
1485 case Intrinsic::amdgcn_global_atomic_fmax_num:
1486 case Intrinsic::amdgcn_global_atomic_fmin_num:
1487 case Intrinsic::amdgcn_global_atomic_ordered_add_b64:
1488 case Intrinsic::amdgcn_global_load_tr_b64:
1489 case Intrinsic::amdgcn_global_load_tr_b128:
1490 Ptr = II->getArgOperand(0);
1491 break;
1492 case Intrinsic::amdgcn_global_load_lds:
1493 Ptr = II->getArgOperand(1);
1494 break;
1495 default:
1496 return false;
1498 AccessTy = II->getType();
1499 Ops.push_back(Ptr);
1500 return true;
1503 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM,
1504 unsigned AddrSpace) const {
1505 if (!Subtarget->hasFlatInstOffsets()) {
1506 // Flat instructions do not have offsets, and only have the register
1507 // address.
1508 return AM.BaseOffs == 0 && AM.Scale == 0;
1511 decltype(SIInstrFlags::FLAT) FlatVariant =
1512 AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ? SIInstrFlags::FlatGlobal
1513 : AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ? SIInstrFlags::FlatScratch
1514 : SIInstrFlags::FLAT;
1516 return AM.Scale == 0 &&
1517 (AM.BaseOffs == 0 || Subtarget->getInstrInfo()->isLegalFLATOffset(
1518 AM.BaseOffs, AddrSpace, FlatVariant));
1521 bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1522 if (Subtarget->hasFlatGlobalInsts())
1523 return isLegalFlatAddressingMode(AM, AMDGPUAS::GLOBAL_ADDRESS);
1525 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1526 // Assume the we will use FLAT for all global memory accesses
1527 // on VI.
1528 // FIXME: This assumption is currently wrong. On VI we still use
1529 // MUBUF instructions for the r + i addressing mode. As currently
1530 // implemented, the MUBUF instructions only work on buffer < 4GB.
1531 // It may be possible to support > 4GB buffers with MUBUF instructions,
1532 // by setting the stride value in the resource descriptor which would
1533 // increase the size limit to (stride * 4GB). However, this is risky,
1534 // because it has never been validated.
1535 return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS);
1538 return isLegalMUBUFAddressingMode(AM);
1541 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1542 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1543 // additionally can do r + r + i with addr64. 32-bit has more addressing
1544 // mode options. Depending on the resource constant, it can also do
1545 // (i64 r0) + (i32 r1) * (i14 i).
1547 // Private arrays end up using a scratch buffer most of the time, so also
1548 // assume those use MUBUF instructions. Scratch loads / stores are currently
1549 // implemented as mubuf instructions with offen bit set, so slightly
1550 // different than the normal addr64.
1551 const SIInstrInfo *TII = Subtarget->getInstrInfo();
1552 if (!TII->isLegalMUBUFImmOffset(AM.BaseOffs))
1553 return false;
1555 // FIXME: Since we can split immediate into soffset and immediate offset,
1556 // would it make sense to allow any immediate?
1558 switch (AM.Scale) {
1559 case 0: // r + i or just i, depending on HasBaseReg.
1560 return true;
1561 case 1:
1562 return true; // We have r + r or r + i.
1563 case 2:
1564 if (AM.HasBaseReg) {
1565 // Reject 2 * r + r.
1566 return false;
1569 // Allow 2 * r as r + r
1570 // Or 2 * r + i is allowed as r + r + i.
1571 return true;
1572 default: // Don't allow n * r
1573 return false;
1577 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1578 const AddrMode &AM, Type *Ty,
1579 unsigned AS,
1580 Instruction *I) const {
1581 // No global is ever allowed as a base.
1582 if (AM.BaseGV)
1583 return false;
1585 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1586 return isLegalGlobalAddressingMode(AM);
1588 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1589 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1590 AS == AMDGPUAS::BUFFER_FAT_POINTER || AS == AMDGPUAS::BUFFER_RESOURCE ||
1591 AS == AMDGPUAS::BUFFER_STRIDED_POINTER) {
1592 // If the offset isn't a multiple of 4, it probably isn't going to be
1593 // correctly aligned.
1594 // FIXME: Can we get the real alignment here?
1595 if (AM.BaseOffs % 4 != 0)
1596 return isLegalMUBUFAddressingMode(AM);
1598 if (!Subtarget->hasScalarSubwordLoads()) {
1599 // There are no SMRD extloads, so if we have to do a small type access we
1600 // will use a MUBUF load.
1601 // FIXME?: We also need to do this if unaligned, but we don't know the
1602 // alignment here.
1603 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1604 return isLegalGlobalAddressingMode(AM);
1607 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1608 // SMRD instructions have an 8-bit, dword offset on SI.
1609 if (!isUInt<8>(AM.BaseOffs / 4))
1610 return false;
1611 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1612 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1613 // in 8-bits, it can use a smaller encoding.
1614 if (!isUInt<32>(AM.BaseOffs / 4))
1615 return false;
1616 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX9) {
1617 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1618 if (!isUInt<20>(AM.BaseOffs))
1619 return false;
1620 } else if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX12) {
1621 // On GFX9 the offset is signed 21-bit in bytes (but must not be negative
1622 // for S_BUFFER_* instructions).
1623 if (!isInt<21>(AM.BaseOffs))
1624 return false;
1625 } else {
1626 // On GFX12, all offsets are signed 24-bit in bytes.
1627 if (!isInt<24>(AM.BaseOffs))
1628 return false;
1631 if ((AS == AMDGPUAS::CONSTANT_ADDRESS ||
1632 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1633 AM.BaseOffs < 0) {
1634 // Scalar (non-buffer) loads can only use a negative offset if
1635 // soffset+offset is non-negative. Since the compiler can only prove that
1636 // in a few special cases, it is safer to claim that negative offsets are
1637 // not supported.
1638 return false;
1641 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1642 return true;
1644 if (AM.Scale == 1 && AM.HasBaseReg)
1645 return true;
1647 return false;
1650 if (AS == AMDGPUAS::PRIVATE_ADDRESS)
1651 return Subtarget->enableFlatScratch()
1652 ? isLegalFlatAddressingMode(AM, AMDGPUAS::PRIVATE_ADDRESS)
1653 : isLegalMUBUFAddressingMode(AM);
1655 if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1656 (AS == AMDGPUAS::REGION_ADDRESS && Subtarget->hasGDS())) {
1657 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1658 // field.
1659 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1660 // an 8-bit dword offset but we don't know the alignment here.
1661 if (!isUInt<16>(AM.BaseOffs))
1662 return false;
1664 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1665 return true;
1667 if (AM.Scale == 1 && AM.HasBaseReg)
1668 return true;
1670 return false;
1673 if (AS == AMDGPUAS::FLAT_ADDRESS || AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1674 // For an unknown address space, this usually means that this is for some
1675 // reason being used for pure arithmetic, and not based on some addressing
1676 // computation. We don't have instructions that compute pointers with any
1677 // addressing modes, so treat them as having no offset like flat
1678 // instructions.
1679 return isLegalFlatAddressingMode(AM, AMDGPUAS::FLAT_ADDRESS);
1682 // Assume a user alias of global for unknown address spaces.
1683 return isLegalGlobalAddressingMode(AM);
1686 bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1687 const MachineFunction &MF) const {
1688 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1689 return (MemVT.getSizeInBits() <= 4 * 32);
1690 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1691 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1692 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1694 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
1695 return (MemVT.getSizeInBits() <= 2 * 32);
1696 return true;
1699 bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1700 unsigned Size, unsigned AddrSpace, Align Alignment,
1701 MachineMemOperand::Flags Flags, unsigned *IsFast) const {
1702 if (IsFast)
1703 *IsFast = 0;
1705 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1706 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1707 // Check if alignment requirements for ds_read/write instructions are
1708 // disabled.
1709 if (!Subtarget->hasUnalignedDSAccessEnabled() && Alignment < Align(4))
1710 return false;
1712 Align RequiredAlignment(
1713 PowerOf2Ceil(divideCeil(Size, 8))); // Natural alignment.
1714 if (Subtarget->hasLDSMisalignedBug() && Size > 32 &&
1715 Alignment < RequiredAlignment)
1716 return false;
1718 // Either, the alignment requirements are "enabled", or there is an
1719 // unaligned LDS access related hardware bug though alignment requirements
1720 // are "disabled". In either case, we need to check for proper alignment
1721 // requirements.
1723 switch (Size) {
1724 case 64:
1725 // SI has a hardware bug in the LDS / GDS bounds checking: if the base
1726 // address is negative, then the instruction is incorrectly treated as
1727 // out-of-bounds even if base + offsets is in bounds. Split vectorized
1728 // loads here to avoid emitting ds_read2_b32. We may re-combine the
1729 // load later in the SILoadStoreOptimizer.
1730 if (!Subtarget->hasUsableDSOffset() && Alignment < Align(8))
1731 return false;
1733 // 8 byte accessing via ds_read/write_b64 require 8-byte alignment, but we
1734 // can do a 4 byte aligned, 8 byte access in a single operation using
1735 // ds_read2/write2_b32 with adjacent offsets.
1736 RequiredAlignment = Align(4);
1738 if (Subtarget->hasUnalignedDSAccessEnabled()) {
1739 // We will either select ds_read_b64/ds_write_b64 or ds_read2_b32/
1740 // ds_write2_b32 depending on the alignment. In either case with either
1741 // alignment there is no faster way of doing this.
1743 // The numbers returned here and below are not additive, it is a 'speed
1744 // rank'. They are just meant to be compared to decide if a certain way
1745 // of lowering an operation is faster than another. For that purpose
1746 // naturally aligned operation gets it bitsize to indicate that "it
1747 // operates with a speed comparable to N-bit wide load". With the full
1748 // alignment ds128 is slower than ds96 for example. If underaligned it
1749 // is comparable to a speed of a single dword access, which would then
1750 // mean 32 < 128 and it is faster to issue a wide load regardless.
1751 // 1 is simply "slow, don't do it". I.e. comparing an aligned load to a
1752 // wider load which will not be aligned anymore the latter is slower.
1753 if (IsFast)
1754 *IsFast = (Alignment >= RequiredAlignment) ? 64
1755 : (Alignment < Align(4)) ? 32
1756 : 1;
1757 return true;
1760 break;
1761 case 96:
1762 if (!Subtarget->hasDS96AndDS128())
1763 return false;
1765 // 12 byte accessing via ds_read/write_b96 require 16-byte alignment on
1766 // gfx8 and older.
1768 if (Subtarget->hasUnalignedDSAccessEnabled()) {
1769 // Naturally aligned access is fastest. However, also report it is Fast
1770 // if memory is aligned less than DWORD. A narrow load or store will be
1771 // be equally slow as a single ds_read_b96/ds_write_b96, but there will
1772 // be more of them, so overall we will pay less penalty issuing a single
1773 // instruction.
1775 // See comment on the values above.
1776 if (IsFast)
1777 *IsFast = (Alignment >= RequiredAlignment) ? 96
1778 : (Alignment < Align(4)) ? 32
1779 : 1;
1780 return true;
1783 break;
1784 case 128:
1785 if (!Subtarget->hasDS96AndDS128() || !Subtarget->useDS128())
1786 return false;
1788 // 16 byte accessing via ds_read/write_b128 require 16-byte alignment on
1789 // gfx8 and older, but we can do a 8 byte aligned, 16 byte access in a
1790 // single operation using ds_read2/write2_b64.
1791 RequiredAlignment = Align(8);
1793 if (Subtarget->hasUnalignedDSAccessEnabled()) {
1794 // Naturally aligned access is fastest. However, also report it is Fast
1795 // if memory is aligned less than DWORD. A narrow load or store will be
1796 // be equally slow as a single ds_read_b128/ds_write_b128, but there
1797 // will be more of them, so overall we will pay less penalty issuing a
1798 // single instruction.
1800 // See comment on the values above.
1801 if (IsFast)
1802 *IsFast = (Alignment >= RequiredAlignment) ? 128
1803 : (Alignment < Align(4)) ? 32
1804 : 1;
1805 return true;
1808 break;
1809 default:
1810 if (Size > 32)
1811 return false;
1813 break;
1816 // See comment on the values above.
1817 // Note that we have a single-dword or sub-dword here, so if underaligned
1818 // it is a slowest possible access, hence returned value is 0.
1819 if (IsFast)
1820 *IsFast = (Alignment >= RequiredAlignment) ? Size : 0;
1822 return Alignment >= RequiredAlignment ||
1823 Subtarget->hasUnalignedDSAccessEnabled();
1826 // FIXME: We have to be conservative here and assume that flat operations
1827 // will access scratch. If we had access to the IR function, then we
1828 // could determine if any private memory was used in the function.
1829 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1830 AddrSpace == AMDGPUAS::FLAT_ADDRESS) {
1831 bool AlignedBy4 = Alignment >= Align(4);
1832 if (IsFast)
1833 *IsFast = AlignedBy4;
1835 return AlignedBy4 || Subtarget->hasUnalignedScratchAccessEnabled();
1838 // So long as they are correct, wide global memory operations perform better
1839 // than multiple smaller memory ops -- even when misaligned
1840 if (AMDGPU::isExtendedGlobalAddrSpace(AddrSpace)) {
1841 if (IsFast)
1842 *IsFast = Size;
1844 return Alignment >= Align(4) ||
1845 Subtarget->hasUnalignedBufferAccessEnabled();
1848 // Smaller than dword value must be aligned.
1849 if (Size < 32)
1850 return false;
1852 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1853 // byte-address are ignored, thus forcing Dword alignment.
1854 // This applies to private, global, and constant memory.
1855 if (IsFast)
1856 *IsFast = 1;
1858 return Size >= 32 && Alignment >= Align(4);
1861 bool SITargetLowering::allowsMisalignedMemoryAccesses(
1862 EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags,
1863 unsigned *IsFast) const {
1864 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1865 Alignment, Flags, IsFast);
1868 EVT SITargetLowering::getOptimalMemOpType(
1869 const MemOp &Op, const AttributeList &FuncAttributes) const {
1870 // FIXME: Should account for address space here.
1872 // The default fallback uses the private pointer size as a guess for a type to
1873 // use. Make sure we switch these to 64-bit accesses.
1875 if (Op.size() >= 16 &&
1876 Op.isDstAligned(Align(4))) // XXX: Should only do for global
1877 return MVT::v4i32;
1879 if (Op.size() >= 8 && Op.isDstAligned(Align(4)))
1880 return MVT::v2i32;
1882 // Use the default.
1883 return MVT::Other;
1886 bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1887 const MemSDNode *MemNode = cast<MemSDNode>(N);
1888 return MemNode->getMemOperand()->getFlags() & MONoClobber;
1891 bool SITargetLowering::isNonGlobalAddrSpace(unsigned AS) {
1892 return AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS ||
1893 AS == AMDGPUAS::PRIVATE_ADDRESS;
1896 bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1897 unsigned DestAS) const {
1898 // Flat -> private/local is a simple truncate.
1899 // Flat -> global is no-op
1900 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1901 return true;
1903 const GCNTargetMachine &TM =
1904 static_cast<const GCNTargetMachine &>(getTargetMachine());
1905 return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1908 TargetLoweringBase::LegalizeTypeAction
1909 SITargetLowering::getPreferredVectorAction(MVT VT) const {
1910 if (!VT.isScalableVector() && VT.getVectorNumElements() != 1 &&
1911 VT.getScalarType().bitsLE(MVT::i16))
1912 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1913 return TargetLoweringBase::getPreferredVectorAction(VT);
1916 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1917 Type *Ty) const {
1918 // FIXME: Could be smarter if called for vector constants.
1919 return true;
1922 bool SITargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
1923 unsigned Index) const {
1924 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
1925 return false;
1927 // TODO: Add more cases that are cheap.
1928 return Index == 0;
1931 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1932 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1933 switch (Op) {
1934 case ISD::LOAD:
1935 case ISD::STORE:
1936 return true;
1937 default:
1938 return false;
1942 // SimplifySetCC uses this function to determine whether or not it should
1943 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1944 if (VT == MVT::i1 && Op == ISD::SETCC)
1945 return false;
1947 return TargetLowering::isTypeDesirableForOp(Op, VT);
1950 SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1951 const SDLoc &SL,
1952 SDValue Chain,
1953 uint64_t Offset) const {
1954 const DataLayout &DL = DAG.getDataLayout();
1955 MachineFunction &MF = DAG.getMachineFunction();
1956 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1957 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1959 auto [InputPtrReg, RC, ArgTy] =
1960 Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1962 // We may not have the kernarg segment argument if we have no kernel
1963 // arguments.
1964 if (!InputPtrReg)
1965 return DAG.getConstant(Offset, SL, PtrVT);
1967 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1968 SDValue BasePtr = DAG.getCopyFromReg(
1969 Chain, SL, MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1971 return DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::getFixed(Offset));
1974 SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1975 const SDLoc &SL) const {
1976 uint64_t Offset =
1977 getImplicitParameterOffset(DAG.getMachineFunction(), FIRST_IMPLICIT);
1978 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1981 SDValue SITargetLowering::getLDSKernelId(SelectionDAG &DAG,
1982 const SDLoc &SL) const {
1984 Function &F = DAG.getMachineFunction().getFunction();
1985 std::optional<uint32_t> KnownSize =
1986 AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
1987 if (KnownSize.has_value())
1988 return DAG.getConstant(*KnownSize, SL, MVT::i32);
1989 return SDValue();
1992 SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1993 const SDLoc &SL, SDValue Val,
1994 bool Signed,
1995 const ISD::InputArg *Arg) const {
1996 // First, if it is a widened vector, narrow it.
1997 if (VT.isVector() &&
1998 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1999 EVT NarrowedVT =
2000 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
2001 VT.getVectorNumElements());
2002 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
2003 DAG.getConstant(0, SL, MVT::i32));
2006 // Then convert the vector elements or scalar value.
2007 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) && VT.bitsLT(MemVT)) {
2008 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
2009 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
2012 if (MemVT.isFloatingPoint())
2013 Val = getFPExtOrFPRound(DAG, Val, SL, VT);
2014 else if (Signed)
2015 Val = DAG.getSExtOrTrunc(Val, SL, VT);
2016 else
2017 Val = DAG.getZExtOrTrunc(Val, SL, VT);
2019 return Val;
2022 SDValue SITargetLowering::lowerKernargMemParameter(
2023 SelectionDAG &DAG, EVT VT, EVT MemVT, const SDLoc &SL, SDValue Chain,
2024 uint64_t Offset, Align Alignment, bool Signed,
2025 const ISD::InputArg *Arg) const {
2026 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
2028 // Try to avoid using an extload by loading earlier than the argument address,
2029 // and extracting the relevant bits. The load should hopefully be merged with
2030 // the previous argument.
2031 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
2032 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
2033 int64_t AlignDownOffset = alignDown(Offset, 4);
2034 int64_t OffsetDiff = Offset - AlignDownOffset;
2036 EVT IntVT = MemVT.changeTypeToInteger();
2038 // TODO: If we passed in the base kernel offset we could have a better
2039 // alignment than 4, but we don't really need it.
2040 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
2041 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, Align(4),
2042 MachineMemOperand::MODereferenceable |
2043 MachineMemOperand::MOInvariant);
2045 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
2046 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
2048 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
2049 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
2050 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
2052 return DAG.getMergeValues({ArgVal, Load.getValue(1)}, SL);
2055 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
2056 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Alignment,
2057 MachineMemOperand::MODereferenceable |
2058 MachineMemOperand::MOInvariant);
2060 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
2061 return DAG.getMergeValues({Val, Load.getValue(1)}, SL);
2064 SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG,
2065 CCValAssign &VA, const SDLoc &SL,
2066 SDValue Chain,
2067 const ISD::InputArg &Arg) const {
2068 MachineFunction &MF = DAG.getMachineFunction();
2069 MachineFrameInfo &MFI = MF.getFrameInfo();
2071 if (Arg.Flags.isByVal()) {
2072 unsigned Size = Arg.Flags.getByValSize();
2073 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
2074 return DAG.getFrameIndex(FrameIdx, MVT::i32);
2077 unsigned ArgOffset = VA.getLocMemOffset();
2078 unsigned ArgSize = VA.getValVT().getStoreSize();
2080 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
2082 // Create load nodes to retrieve arguments from the stack.
2083 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
2084 SDValue ArgValue;
2086 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
2087 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
2088 MVT MemVT = VA.getValVT();
2090 switch (VA.getLocInfo()) {
2091 default:
2092 break;
2093 case CCValAssign::BCvt:
2094 MemVT = VA.getLocVT();
2095 break;
2096 case CCValAssign::SExt:
2097 ExtType = ISD::SEXTLOAD;
2098 break;
2099 case CCValAssign::ZExt:
2100 ExtType = ISD::ZEXTLOAD;
2101 break;
2102 case CCValAssign::AExt:
2103 ExtType = ISD::EXTLOAD;
2104 break;
2107 ArgValue = DAG.getExtLoad(
2108 ExtType, SL, VA.getLocVT(), Chain, FIN,
2109 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), MemVT);
2110 return ArgValue;
2113 SDValue SITargetLowering::getPreloadedValue(
2114 SelectionDAG &DAG, const SIMachineFunctionInfo &MFI, EVT VT,
2115 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
2116 const ArgDescriptor *Reg = nullptr;
2117 const TargetRegisterClass *RC;
2118 LLT Ty;
2120 CallingConv::ID CC = DAG.getMachineFunction().getFunction().getCallingConv();
2121 const ArgDescriptor WorkGroupIDX =
2122 ArgDescriptor::createRegister(AMDGPU::TTMP9);
2123 // If GridZ is not programmed in an entry function then the hardware will set
2124 // it to all zeros, so there is no need to mask the GridY value in the low
2125 // order bits.
2126 const ArgDescriptor WorkGroupIDY = ArgDescriptor::createRegister(
2127 AMDGPU::TTMP7,
2128 AMDGPU::isEntryFunctionCC(CC) && !MFI.hasWorkGroupIDZ() ? ~0u : 0xFFFFu);
2129 const ArgDescriptor WorkGroupIDZ =
2130 ArgDescriptor::createRegister(AMDGPU::TTMP7, 0xFFFF0000u);
2131 if (Subtarget->hasArchitectedSGPRs() &&
2132 (AMDGPU::isCompute(CC) || CC == CallingConv::AMDGPU_Gfx)) {
2133 switch (PVID) {
2134 case AMDGPUFunctionArgInfo::WORKGROUP_ID_X:
2135 Reg = &WorkGroupIDX;
2136 RC = &AMDGPU::SReg_32RegClass;
2137 Ty = LLT::scalar(32);
2138 break;
2139 case AMDGPUFunctionArgInfo::WORKGROUP_ID_Y:
2140 Reg = &WorkGroupIDY;
2141 RC = &AMDGPU::SReg_32RegClass;
2142 Ty = LLT::scalar(32);
2143 break;
2144 case AMDGPUFunctionArgInfo::WORKGROUP_ID_Z:
2145 Reg = &WorkGroupIDZ;
2146 RC = &AMDGPU::SReg_32RegClass;
2147 Ty = LLT::scalar(32);
2148 break;
2149 default:
2150 break;
2154 if (!Reg)
2155 std::tie(Reg, RC, Ty) = MFI.getPreloadedValue(PVID);
2156 if (!Reg) {
2157 if (PVID == AMDGPUFunctionArgInfo::PreloadedValue::KERNARG_SEGMENT_PTR) {
2158 // It's possible for a kernarg intrinsic call to appear in a kernel with
2159 // no allocated segment, in which case we do not add the user sgpr
2160 // argument, so just return null.
2161 return DAG.getConstant(0, SDLoc(), VT);
2164 // It's undefined behavior if a function marked with the amdgpu-no-*
2165 // attributes uses the corresponding intrinsic.
2166 return DAG.getUNDEF(VT);
2169 return loadInputValue(DAG, RC, VT, SDLoc(DAG.getEntryNode()), *Reg);
2172 static void processPSInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
2173 CallingConv::ID CallConv,
2174 ArrayRef<ISD::InputArg> Ins, BitVector &Skipped,
2175 FunctionType *FType,
2176 SIMachineFunctionInfo *Info) {
2177 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
2178 const ISD::InputArg *Arg = &Ins[I];
2180 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
2181 "vector type argument should have been split");
2183 // First check if it's a PS input addr.
2184 if (CallConv == CallingConv::AMDGPU_PS && !Arg->Flags.isInReg() &&
2185 PSInputNum <= 15) {
2186 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
2188 // Inconveniently only the first part of the split is marked as isSplit,
2189 // so skip to the end. We only want to increment PSInputNum once for the
2190 // entire split argument.
2191 if (Arg->Flags.isSplit()) {
2192 while (!Arg->Flags.isSplitEnd()) {
2193 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&
2194 "unexpected vector split in ps argument type");
2195 if (!SkipArg)
2196 Splits.push_back(*Arg);
2197 Arg = &Ins[++I];
2201 if (SkipArg) {
2202 // We can safely skip PS inputs.
2203 Skipped.set(Arg->getOrigArgIndex());
2204 ++PSInputNum;
2205 continue;
2208 Info->markPSInputAllocated(PSInputNum);
2209 if (Arg->Used)
2210 Info->markPSInputEnabled(PSInputNum);
2212 ++PSInputNum;
2215 Splits.push_back(*Arg);
2219 // Allocate special inputs passed in VGPRs.
2220 void SITargetLowering::allocateSpecialEntryInputVGPRs(
2221 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2222 SIMachineFunctionInfo &Info) const {
2223 const LLT S32 = LLT::scalar(32);
2224 MachineRegisterInfo &MRI = MF.getRegInfo();
2226 if (Info.hasWorkItemIDX()) {
2227 Register Reg = AMDGPU::VGPR0;
2228 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2230 CCInfo.AllocateReg(Reg);
2231 unsigned Mask =
2232 (Subtarget->hasPackedTID() && Info.hasWorkItemIDY()) ? 0x3ff : ~0u;
2233 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2236 if (Info.hasWorkItemIDY()) {
2237 assert(Info.hasWorkItemIDX());
2238 if (Subtarget->hasPackedTID()) {
2239 Info.setWorkItemIDY(
2240 ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 10));
2241 } else {
2242 unsigned Reg = AMDGPU::VGPR1;
2243 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2245 CCInfo.AllocateReg(Reg);
2246 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
2250 if (Info.hasWorkItemIDZ()) {
2251 assert(Info.hasWorkItemIDX() && Info.hasWorkItemIDY());
2252 if (Subtarget->hasPackedTID()) {
2253 Info.setWorkItemIDZ(
2254 ArgDescriptor::createRegister(AMDGPU::VGPR0, 0x3ff << 20));
2255 } else {
2256 unsigned Reg = AMDGPU::VGPR2;
2257 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
2259 CCInfo.AllocateReg(Reg);
2260 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
2265 // Try to allocate a VGPR at the end of the argument list, or if no argument
2266 // VGPRs are left allocating a stack slot.
2267 // If \p Mask is is given it indicates bitfield position in the register.
2268 // If \p Arg is given use it with new ]p Mask instead of allocating new.
2269 static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
2270 ArgDescriptor Arg = ArgDescriptor()) {
2271 if (Arg.isSet())
2272 return ArgDescriptor::createArg(Arg, Mask);
2274 ArrayRef<MCPhysReg> ArgVGPRs = ArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
2275 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
2276 if (RegIdx == ArgVGPRs.size()) {
2277 // Spill to stack required.
2278 int64_t Offset = CCInfo.AllocateStack(4, Align(4));
2280 return ArgDescriptor::createStack(Offset, Mask);
2283 unsigned Reg = ArgVGPRs[RegIdx];
2284 Reg = CCInfo.AllocateReg(Reg);
2285 assert(Reg != AMDGPU::NoRegister);
2287 MachineFunction &MF = CCInfo.getMachineFunction();
2288 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
2289 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
2290 return ArgDescriptor::createRegister(Reg, Mask);
2293 static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
2294 const TargetRegisterClass *RC,
2295 unsigned NumArgRegs) {
2296 ArrayRef<MCPhysReg> ArgSGPRs = ArrayRef(RC->begin(), 32);
2297 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
2298 if (RegIdx == ArgSGPRs.size())
2299 report_fatal_error("ran out of SGPRs for arguments");
2301 unsigned Reg = ArgSGPRs[RegIdx];
2302 Reg = CCInfo.AllocateReg(Reg);
2303 assert(Reg != AMDGPU::NoRegister);
2305 MachineFunction &MF = CCInfo.getMachineFunction();
2306 MF.addLiveIn(Reg, RC);
2307 return ArgDescriptor::createRegister(Reg);
2310 // If this has a fixed position, we still should allocate the register in the
2311 // CCInfo state. Technically we could get away with this for values passed
2312 // outside of the normal argument range.
2313 static void allocateFixedSGPRInputImpl(CCState &CCInfo,
2314 const TargetRegisterClass *RC,
2315 MCRegister Reg) {
2316 Reg = CCInfo.AllocateReg(Reg);
2317 assert(Reg != AMDGPU::NoRegister);
2318 MachineFunction &MF = CCInfo.getMachineFunction();
2319 MF.addLiveIn(Reg, RC);
2322 static void allocateSGPR32Input(CCState &CCInfo, ArgDescriptor &Arg) {
2323 if (Arg) {
2324 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_32RegClass,
2325 Arg.getRegister());
2326 } else
2327 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
2330 static void allocateSGPR64Input(CCState &CCInfo, ArgDescriptor &Arg) {
2331 if (Arg) {
2332 allocateFixedSGPRInputImpl(CCInfo, &AMDGPU::SGPR_64RegClass,
2333 Arg.getRegister());
2334 } else
2335 Arg = allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
2338 /// Allocate implicit function VGPR arguments at the end of allocated user
2339 /// arguments.
2340 void SITargetLowering::allocateSpecialInputVGPRs(
2341 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2342 SIMachineFunctionInfo &Info) const {
2343 const unsigned Mask = 0x3ff;
2344 ArgDescriptor Arg;
2346 if (Info.hasWorkItemIDX()) {
2347 Arg = allocateVGPR32Input(CCInfo, Mask);
2348 Info.setWorkItemIDX(Arg);
2351 if (Info.hasWorkItemIDY()) {
2352 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
2353 Info.setWorkItemIDY(Arg);
2356 if (Info.hasWorkItemIDZ())
2357 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
2360 /// Allocate implicit function VGPR arguments in fixed registers.
2361 void SITargetLowering::allocateSpecialInputVGPRsFixed(
2362 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2363 SIMachineFunctionInfo &Info) const {
2364 Register Reg = CCInfo.AllocateReg(AMDGPU::VGPR31);
2365 if (!Reg)
2366 report_fatal_error("failed to allocated VGPR for implicit arguments");
2368 const unsigned Mask = 0x3ff;
2369 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg, Mask));
2370 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg, Mask << 10));
2371 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg, Mask << 20));
2374 void SITargetLowering::allocateSpecialInputSGPRs(
2375 CCState &CCInfo, MachineFunction &MF, const SIRegisterInfo &TRI,
2376 SIMachineFunctionInfo &Info) const {
2377 auto &ArgInfo = Info.getArgInfo();
2378 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
2380 // TODO: Unify handling with private memory pointers.
2381 if (UserSGPRInfo.hasDispatchPtr())
2382 allocateSGPR64Input(CCInfo, ArgInfo.DispatchPtr);
2384 if (UserSGPRInfo.hasQueuePtr())
2385 allocateSGPR64Input(CCInfo, ArgInfo.QueuePtr);
2387 // Implicit arg ptr takes the place of the kernarg segment pointer. This is a
2388 // constant offset from the kernarg segment.
2389 if (Info.hasImplicitArgPtr())
2390 allocateSGPR64Input(CCInfo, ArgInfo.ImplicitArgPtr);
2392 if (UserSGPRInfo.hasDispatchID())
2393 allocateSGPR64Input(CCInfo, ArgInfo.DispatchID);
2395 // flat_scratch_init is not applicable for non-kernel functions.
2397 if (Info.hasWorkGroupIDX())
2398 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDX);
2400 if (Info.hasWorkGroupIDY())
2401 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDY);
2403 if (Info.hasWorkGroupIDZ())
2404 allocateSGPR32Input(CCInfo, ArgInfo.WorkGroupIDZ);
2406 if (Info.hasLDSKernelId())
2407 allocateSGPR32Input(CCInfo, ArgInfo.LDSKernelId);
2410 // Allocate special inputs passed in user SGPRs.
2411 void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
2412 MachineFunction &MF,
2413 const SIRegisterInfo &TRI,
2414 SIMachineFunctionInfo &Info) const {
2415 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
2416 if (UserSGPRInfo.hasImplicitBufferPtr()) {
2417 Register ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
2418 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
2419 CCInfo.AllocateReg(ImplicitBufferPtrReg);
2422 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
2423 if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
2424 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
2425 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
2426 CCInfo.AllocateReg(PrivateSegmentBufferReg);
2429 if (UserSGPRInfo.hasDispatchPtr()) {
2430 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
2431 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
2432 CCInfo.AllocateReg(DispatchPtrReg);
2435 if (UserSGPRInfo.hasQueuePtr()) {
2436 Register QueuePtrReg = Info.addQueuePtr(TRI);
2437 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
2438 CCInfo.AllocateReg(QueuePtrReg);
2441 if (UserSGPRInfo.hasKernargSegmentPtr()) {
2442 MachineRegisterInfo &MRI = MF.getRegInfo();
2443 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
2444 CCInfo.AllocateReg(InputPtrReg);
2446 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
2447 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
2450 if (UserSGPRInfo.hasDispatchID()) {
2451 Register DispatchIDReg = Info.addDispatchID(TRI);
2452 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
2453 CCInfo.AllocateReg(DispatchIDReg);
2456 if (UserSGPRInfo.hasFlatScratchInit() && !getSubtarget()->isAmdPalOS()) {
2457 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
2458 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
2459 CCInfo.AllocateReg(FlatScratchInitReg);
2462 if (UserSGPRInfo.hasPrivateSegmentSize()) {
2463 Register PrivateSegmentSizeReg = Info.addPrivateSegmentSize(TRI);
2464 MF.addLiveIn(PrivateSegmentSizeReg, &AMDGPU::SGPR_32RegClass);
2465 CCInfo.AllocateReg(PrivateSegmentSizeReg);
2468 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
2469 // these from the dispatch pointer.
2472 // Allocate pre-loaded kernel arguemtns. Arguments to be preloading must be
2473 // sequential starting from the first argument.
2474 void SITargetLowering::allocatePreloadKernArgSGPRs(
2475 CCState &CCInfo, SmallVectorImpl<CCValAssign> &ArgLocs,
2476 const SmallVectorImpl<ISD::InputArg> &Ins, MachineFunction &MF,
2477 const SIRegisterInfo &TRI, SIMachineFunctionInfo &Info) const {
2478 Function &F = MF.getFunction();
2479 unsigned LastExplicitArgOffset = Subtarget->getExplicitKernelArgOffset();
2480 GCNUserSGPRUsageInfo &SGPRInfo = Info.getUserSGPRInfo();
2481 bool InPreloadSequence = true;
2482 unsigned InIdx = 0;
2483 bool AlignedForImplictArgs = false;
2484 unsigned ImplicitArgOffset = 0;
2485 for (auto &Arg : F.args()) {
2486 if (!InPreloadSequence || !Arg.hasInRegAttr())
2487 break;
2489 unsigned ArgIdx = Arg.getArgNo();
2490 // Don't preload non-original args or parts not in the current preload
2491 // sequence.
2492 if (InIdx < Ins.size() &&
2493 (!Ins[InIdx].isOrigArg() || Ins[InIdx].getOrigArgIndex() != ArgIdx))
2494 break;
2496 for (; InIdx < Ins.size() && Ins[InIdx].isOrigArg() &&
2497 Ins[InIdx].getOrigArgIndex() == ArgIdx;
2498 InIdx++) {
2499 assert(ArgLocs[ArgIdx].isMemLoc());
2500 auto &ArgLoc = ArgLocs[InIdx];
2501 const Align KernelArgBaseAlign = Align(16);
2502 unsigned ArgOffset = ArgLoc.getLocMemOffset();
2503 Align Alignment = commonAlignment(KernelArgBaseAlign, ArgOffset);
2504 unsigned NumAllocSGPRs =
2505 alignTo(ArgLoc.getLocVT().getFixedSizeInBits(), 32) / 32;
2507 // Fix alignment for hidden arguments.
2508 if (Arg.hasAttribute("amdgpu-hidden-argument")) {
2509 if (!AlignedForImplictArgs) {
2510 ImplicitArgOffset =
2511 alignTo(LastExplicitArgOffset,
2512 Subtarget->getAlignmentForImplicitArgPtr()) -
2513 LastExplicitArgOffset;
2514 AlignedForImplictArgs = true;
2516 ArgOffset += ImplicitArgOffset;
2519 // Arg is preloaded into the previous SGPR.
2520 if (ArgLoc.getLocVT().getStoreSize() < 4 && Alignment < 4) {
2521 Info.getArgInfo().PreloadKernArgs[InIdx].Regs.push_back(
2522 Info.getArgInfo().PreloadKernArgs[InIdx - 1].Regs[0]);
2523 continue;
2526 unsigned Padding = ArgOffset - LastExplicitArgOffset;
2527 unsigned PaddingSGPRs = alignTo(Padding, 4) / 4;
2528 // Check for free user SGPRs for preloading.
2529 if (PaddingSGPRs + NumAllocSGPRs + 1 /*Synthetic SGPRs*/ >
2530 SGPRInfo.getNumFreeUserSGPRs()) {
2531 InPreloadSequence = false;
2532 break;
2535 // Preload this argument.
2536 const TargetRegisterClass *RC =
2537 TRI.getSGPRClassForBitWidth(NumAllocSGPRs * 32);
2538 SmallVectorImpl<MCRegister> *PreloadRegs =
2539 Info.addPreloadedKernArg(TRI, RC, NumAllocSGPRs, InIdx, PaddingSGPRs);
2541 if (PreloadRegs->size() > 1)
2542 RC = &AMDGPU::SGPR_32RegClass;
2543 for (auto &Reg : *PreloadRegs) {
2544 assert(Reg);
2545 MF.addLiveIn(Reg, RC);
2546 CCInfo.AllocateReg(Reg);
2549 LastExplicitArgOffset = NumAllocSGPRs * 4 + ArgOffset;
2554 void SITargetLowering::allocateLDSKernelId(CCState &CCInfo, MachineFunction &MF,
2555 const SIRegisterInfo &TRI,
2556 SIMachineFunctionInfo &Info) const {
2557 // Always allocate this last since it is a synthetic preload.
2558 if (Info.hasLDSKernelId()) {
2559 Register Reg = Info.addLDSKernelId();
2560 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2561 CCInfo.AllocateReg(Reg);
2565 // Allocate special input registers that are initialized per-wave.
2566 void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo, MachineFunction &MF,
2567 SIMachineFunctionInfo &Info,
2568 CallingConv::ID CallConv,
2569 bool IsShader) const {
2570 bool HasArchitectedSGPRs = Subtarget->hasArchitectedSGPRs();
2571 if (Subtarget->hasUserSGPRInit16Bug() && !IsShader) {
2572 // Note: user SGPRs are handled by the front-end for graphics shaders
2573 // Pad up the used user SGPRs with dead inputs.
2575 // TODO: NumRequiredSystemSGPRs computation should be adjusted appropriately
2576 // before enabling architected SGPRs for workgroup IDs.
2577 assert(!HasArchitectedSGPRs && "Unhandled feature for the subtarget");
2579 unsigned CurrentUserSGPRs = Info.getNumUserSGPRs();
2580 // Note we do not count the PrivateSegmentWaveByteOffset. We do not want to
2581 // rely on it to reach 16 since if we end up having no stack usage, it will
2582 // not really be added.
2583 unsigned NumRequiredSystemSGPRs =
2584 Info.hasWorkGroupIDX() + Info.hasWorkGroupIDY() +
2585 Info.hasWorkGroupIDZ() + Info.hasWorkGroupInfo();
2586 for (unsigned i = NumRequiredSystemSGPRs + CurrentUserSGPRs; i < 16; ++i) {
2587 Register Reg = Info.addReservedUserSGPR();
2588 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2589 CCInfo.AllocateReg(Reg);
2593 if (!HasArchitectedSGPRs) {
2594 if (Info.hasWorkGroupIDX()) {
2595 Register Reg = Info.addWorkGroupIDX();
2596 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2597 CCInfo.AllocateReg(Reg);
2600 if (Info.hasWorkGroupIDY()) {
2601 Register Reg = Info.addWorkGroupIDY();
2602 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2603 CCInfo.AllocateReg(Reg);
2606 if (Info.hasWorkGroupIDZ()) {
2607 Register Reg = Info.addWorkGroupIDZ();
2608 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2609 CCInfo.AllocateReg(Reg);
2613 if (Info.hasWorkGroupInfo()) {
2614 Register Reg = Info.addWorkGroupInfo();
2615 MF.addLiveIn(Reg, &AMDGPU::SGPR_32RegClass);
2616 CCInfo.AllocateReg(Reg);
2619 if (Info.hasPrivateSegmentWaveByteOffset()) {
2620 // Scratch wave offset passed in system SGPR.
2621 unsigned PrivateSegmentWaveByteOffsetReg;
2623 if (IsShader) {
2624 PrivateSegmentWaveByteOffsetReg =
2625 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
2627 // This is true if the scratch wave byte offset doesn't have a fixed
2628 // location.
2629 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
2630 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
2631 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
2633 } else
2634 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
2636 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
2637 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
2640 assert(!Subtarget->hasUserSGPRInit16Bug() || IsShader ||
2641 Info.getNumPreloadedSGPRs() >= 16);
2644 static void reservePrivateMemoryRegs(const TargetMachine &TM,
2645 MachineFunction &MF,
2646 const SIRegisterInfo &TRI,
2647 SIMachineFunctionInfo &Info) {
2648 // Now that we've figured out where the scratch register inputs are, see if
2649 // should reserve the arguments and use them directly.
2650 MachineFrameInfo &MFI = MF.getFrameInfo();
2651 bool HasStackObjects = MFI.hasStackObjects();
2652 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2654 // Record that we know we have non-spill stack objects so we don't need to
2655 // check all stack objects later.
2656 if (HasStackObjects)
2657 Info.setHasNonSpillStackObjects(true);
2659 // Everything live out of a block is spilled with fast regalloc, so it's
2660 // almost certain that spilling will be required.
2661 if (TM.getOptLevel() == CodeGenOptLevel::None)
2662 HasStackObjects = true;
2664 // For now assume stack access is needed in any callee functions, so we need
2665 // the scratch registers to pass in.
2666 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
2668 if (!ST.enableFlatScratch()) {
2669 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
2670 // If we have stack objects, we unquestionably need the private buffer
2671 // resource. For the Code Object V2 ABI, this will be the first 4 user
2672 // SGPR inputs. We can reserve those and use them directly.
2674 Register PrivateSegmentBufferReg =
2675 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
2676 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
2677 } else {
2678 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
2679 // We tentatively reserve the last registers (skipping the last registers
2680 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
2681 // we'll replace these with the ones immediately after those which were
2682 // really allocated. In the prologue copies will be inserted from the
2683 // argument to these reserved registers.
2685 // Without HSA, relocations are used for the scratch pointer and the
2686 // buffer resource setup is always inserted in the prologue. Scratch wave
2687 // offset is still in an input SGPR.
2688 Info.setScratchRSrcReg(ReservedBufferReg);
2692 MachineRegisterInfo &MRI = MF.getRegInfo();
2694 // For entry functions we have to set up the stack pointer if we use it,
2695 // whereas non-entry functions get this "for free". This means there is no
2696 // intrinsic advantage to using S32 over S34 in cases where we do not have
2697 // calls but do need a frame pointer (i.e. if we are requested to have one
2698 // because frame pointer elimination is disabled). To keep things simple we
2699 // only ever use S32 as the call ABI stack pointer, and so using it does not
2700 // imply we need a separate frame pointer.
2702 // Try to use s32 as the SP, but move it if it would interfere with input
2703 // arguments. This won't work with calls though.
2705 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
2706 // registers.
2707 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
2708 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
2709 } else {
2710 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()));
2712 if (MFI.hasCalls())
2713 report_fatal_error("call in graphics shader with too many input SGPRs");
2715 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
2716 if (!MRI.isLiveIn(Reg)) {
2717 Info.setStackPtrOffsetReg(Reg);
2718 break;
2722 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
2723 report_fatal_error("failed to find register for SP");
2726 // hasFP should be accurate for entry functions even before the frame is
2727 // finalized, because it does not rely on the known stack size, only
2728 // properties like whether variable sized objects are present.
2729 if (ST.getFrameLowering()->hasFP(MF)) {
2730 Info.setFrameOffsetReg(AMDGPU::SGPR33);
2734 bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
2735 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2736 return !Info->isEntryFunction();
2739 void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {}
2741 void SITargetLowering::insertCopiesSplitCSR(
2742 MachineBasicBlock *Entry,
2743 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
2744 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2746 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
2747 if (!IStart)
2748 return;
2750 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2751 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
2752 MachineBasicBlock::iterator MBBI = Entry->begin();
2753 for (const MCPhysReg *I = IStart; *I; ++I) {
2754 const TargetRegisterClass *RC = nullptr;
2755 if (AMDGPU::SReg_64RegClass.contains(*I))
2756 RC = &AMDGPU::SGPR_64RegClass;
2757 else if (AMDGPU::SReg_32RegClass.contains(*I))
2758 RC = &AMDGPU::SGPR_32RegClass;
2759 else
2760 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2762 Register NewVR = MRI->createVirtualRegister(RC);
2763 // Create copy from CSR to a virtual register.
2764 Entry->addLiveIn(*I);
2765 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2766 .addReg(*I);
2768 // Insert the copy-back instructions right before the terminator.
2769 for (auto *Exit : Exits)
2770 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2771 TII->get(TargetOpcode::COPY), *I)
2772 .addReg(NewVR);
2776 SDValue SITargetLowering::LowerFormalArguments(
2777 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2778 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2779 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2780 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2782 MachineFunction &MF = DAG.getMachineFunction();
2783 const Function &Fn = MF.getFunction();
2784 FunctionType *FType = MF.getFunction().getFunctionType();
2785 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2787 if (Subtarget->isAmdHsaOS() && AMDGPU::isGraphics(CallConv)) {
2788 DiagnosticInfoUnsupported NoGraphicsHSA(
2789 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2790 DAG.getContext()->diagnose(NoGraphicsHSA);
2791 return DAG.getEntryNode();
2794 SmallVector<ISD::InputArg, 16> Splits;
2795 SmallVector<CCValAssign, 16> ArgLocs;
2796 BitVector Skipped(Ins.size());
2797 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2798 *DAG.getContext());
2800 bool IsGraphics = AMDGPU::isGraphics(CallConv);
2801 bool IsKernel = AMDGPU::isKernel(CallConv);
2802 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2804 if (IsGraphics) {
2805 const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
2806 assert(!UserSGPRInfo.hasDispatchPtr() &&
2807 !UserSGPRInfo.hasKernargSegmentPtr() && !Info->hasWorkGroupInfo() &&
2808 !Info->hasLDSKernelId() && !Info->hasWorkItemIDX() &&
2809 !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ());
2810 (void)UserSGPRInfo;
2811 if (!Subtarget->enableFlatScratch())
2812 assert(!UserSGPRInfo.hasFlatScratchInit());
2813 if ((CallConv != CallingConv::AMDGPU_CS &&
2814 CallConv != CallingConv::AMDGPU_Gfx) ||
2815 !Subtarget->hasArchitectedSGPRs())
2816 assert(!Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
2817 !Info->hasWorkGroupIDZ());
2820 if (CallConv == CallingConv::AMDGPU_PS) {
2821 processPSInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2823 // At least one interpolation mode must be enabled or else the GPU will
2824 // hang.
2826 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2827 // set PSInputAddr, the user wants to enable some bits after the compilation
2828 // based on run-time states. Since we can't know what the final PSInputEna
2829 // will look like, so we shouldn't do anything here and the user should take
2830 // responsibility for the correct programming.
2832 // Otherwise, the following restrictions apply:
2833 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2834 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2835 // enabled too.
2836 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2837 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11))) {
2838 CCInfo.AllocateReg(AMDGPU::VGPR0);
2839 CCInfo.AllocateReg(AMDGPU::VGPR1);
2840 Info->markPSInputAllocated(0);
2841 Info->markPSInputEnabled(0);
2843 if (Subtarget->isAmdPalOS()) {
2844 // For isAmdPalOS, the user does not enable some bits after compilation
2845 // based on run-time states; the register values being generated here are
2846 // the final ones set in hardware. Therefore we need to apply the
2847 // workaround to PSInputAddr and PSInputEnable together. (The case where
2848 // a bit is set in PSInputAddr but not PSInputEnable is where the
2849 // frontend set up an input arg for a particular interpolation mode, but
2850 // nothing uses that input arg. Really we should have an earlier pass
2851 // that removes such an arg.)
2852 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2853 if ((PsInputBits & 0x7F) == 0 ||
2854 ((PsInputBits & 0xF) == 0 && (PsInputBits >> 11 & 1)))
2855 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
2857 } else if (IsKernel) {
2858 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
2859 } else {
2860 Splits.append(Ins.begin(), Ins.end());
2863 if (IsKernel)
2864 analyzeFormalArgumentsCompute(CCInfo, Ins);
2866 if (IsEntryFunc) {
2867 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2868 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2869 if (IsKernel && Subtarget->hasKernargPreload())
2870 allocatePreloadKernArgSGPRs(CCInfo, ArgLocs, Ins, MF, *TRI, *Info);
2872 allocateLDSKernelId(CCInfo, MF, *TRI, *Info);
2873 } else if (!IsGraphics) {
2874 // For the fixed ABI, pass workitem IDs in the last argument register.
2875 allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
2877 // FIXME: Sink this into allocateSpecialInputSGPRs
2878 if (!Subtarget->enableFlatScratch())
2879 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2881 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2884 if (!IsKernel) {
2885 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2886 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2889 SmallVector<SDValue, 16> Chains;
2891 // FIXME: This is the minimum kernel argument alignment. We should improve
2892 // this to the maximum alignment of the arguments.
2894 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2895 // kern arg offset.
2896 const Align KernelArgBaseAlign = Align(16);
2898 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2899 const ISD::InputArg &Arg = Ins[i];
2900 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2901 InVals.push_back(DAG.getUNDEF(Arg.VT));
2902 continue;
2905 CCValAssign &VA = ArgLocs[ArgIdx++];
2906 MVT VT = VA.getLocVT();
2908 if (IsEntryFunc && VA.isMemLoc()) {
2909 VT = Ins[i].VT;
2910 EVT MemVT = VA.getLocVT();
2912 const uint64_t Offset = VA.getLocMemOffset();
2913 Align Alignment = commonAlignment(KernelArgBaseAlign, Offset);
2915 if (Arg.Flags.isByRef()) {
2916 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, Chain, Offset);
2918 const GCNTargetMachine &TM =
2919 static_cast<const GCNTargetMachine &>(getTargetMachine());
2920 if (!TM.isNoopAddrSpaceCast(AMDGPUAS::CONSTANT_ADDRESS,
2921 Arg.Flags.getPointerAddrSpace())) {
2922 Ptr = DAG.getAddrSpaceCast(DL, VT, Ptr, AMDGPUAS::CONSTANT_ADDRESS,
2923 Arg.Flags.getPointerAddrSpace());
2926 InVals.push_back(Ptr);
2927 continue;
2930 SDValue NewArg;
2931 if (Arg.isOrigArg() && Info->getArgInfo().PreloadKernArgs.count(i)) {
2932 if (MemVT.getStoreSize() < 4 && Alignment < 4) {
2933 // In this case the argument is packed into the previous preload SGPR.
2934 int64_t AlignDownOffset = alignDown(Offset, 4);
2935 int64_t OffsetDiff = Offset - AlignDownOffset;
2936 EVT IntVT = MemVT.changeTypeToInteger();
2938 const SIMachineFunctionInfo *Info =
2939 MF.getInfo<SIMachineFunctionInfo>();
2940 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
2941 Register Reg =
2942 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs[0];
2944 assert(Reg);
2945 Register VReg = MRI.getLiveInVirtReg(Reg);
2946 SDValue Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
2948 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, DL, MVT::i32);
2949 SDValue Extract = DAG.getNode(ISD::SRL, DL, MVT::i32, Copy, ShiftAmt);
2951 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Extract);
2952 ArgVal = DAG.getNode(ISD::BITCAST, DL, MemVT, ArgVal);
2953 NewArg = convertArgType(DAG, VT, MemVT, DL, ArgVal,
2954 Ins[i].Flags.isSExt(), &Ins[i]);
2956 NewArg = DAG.getMergeValues({NewArg, Copy.getValue(1)}, DL);
2957 } else {
2958 const SIMachineFunctionInfo *Info =
2959 MF.getInfo<SIMachineFunctionInfo>();
2960 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
2961 const SmallVectorImpl<MCRegister> &PreloadRegs =
2962 Info->getArgInfo().PreloadKernArgs.find(i)->getSecond().Regs;
2964 SDValue Copy;
2965 if (PreloadRegs.size() == 1) {
2966 Register VReg = MRI.getLiveInVirtReg(PreloadRegs[0]);
2967 const TargetRegisterClass *RC = MRI.getRegClass(VReg);
2968 NewArg = DAG.getCopyFromReg(
2969 Chain, DL, VReg,
2970 EVT::getIntegerVT(*DAG.getContext(),
2971 TRI->getRegSizeInBits(*RC)));
2973 } else {
2974 // If the kernarg alignment does not match the alignment of the SGPR
2975 // tuple RC that can accommodate this argument, it will be built up
2976 // via copies from from the individual SGPRs that the argument was
2977 // preloaded to.
2978 SmallVector<SDValue, 4> Elts;
2979 for (auto Reg : PreloadRegs) {
2980 Register VReg = MRI.getLiveInVirtReg(Reg);
2981 Copy = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i32);
2982 Elts.push_back(Copy);
2984 NewArg =
2985 DAG.getBuildVector(EVT::getVectorVT(*DAG.getContext(), MVT::i32,
2986 PreloadRegs.size()),
2987 DL, Elts);
2990 // If the argument was preloaded to multiple consecutive 32-bit
2991 // registers because of misalignment between addressable SGPR tuples
2992 // and the argument size, we can still assume that because of kernarg
2993 // segment alignment restrictions that NewArg's size is the same as
2994 // MemVT and just do a bitcast. If MemVT is less than 32-bits we add a
2995 // truncate since we cannot preload to less than a single SGPR and the
2996 // MemVT may be smaller.
2997 EVT MemVTInt =
2998 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
2999 if (MemVT.bitsLT(NewArg.getSimpleValueType()))
3000 NewArg = DAG.getNode(ISD::TRUNCATE, DL, MemVTInt, NewArg);
3002 NewArg = DAG.getBitcast(MemVT, NewArg);
3003 NewArg = convertArgType(DAG, VT, MemVT, DL, NewArg,
3004 Ins[i].Flags.isSExt(), &Ins[i]);
3005 NewArg = DAG.getMergeValues({NewArg, Chain}, DL);
3007 } else {
3008 NewArg =
3009 lowerKernargMemParameter(DAG, VT, MemVT, DL, Chain, Offset,
3010 Alignment, Ins[i].Flags.isSExt(), &Ins[i]);
3012 Chains.push_back(NewArg.getValue(1));
3014 auto *ParamTy =
3015 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
3016 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
3017 ParamTy &&
3018 (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
3019 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
3020 // On SI local pointers are just offsets into LDS, so they are always
3021 // less than 16-bits. On CI and newer they could potentially be
3022 // real pointers, so we can't guarantee their size.
3023 NewArg = DAG.getNode(ISD::AssertZext, DL, NewArg.getValueType(), NewArg,
3024 DAG.getValueType(MVT::i16));
3027 InVals.push_back(NewArg);
3028 continue;
3030 if (!IsEntryFunc && VA.isMemLoc()) {
3031 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
3032 InVals.push_back(Val);
3033 if (!Arg.Flags.isByVal())
3034 Chains.push_back(Val.getValue(1));
3035 continue;
3038 assert(VA.isRegLoc() && "Parameter must be in a register!");
3040 Register Reg = VA.getLocReg();
3041 const TargetRegisterClass *RC = nullptr;
3042 if (AMDGPU::VGPR_32RegClass.contains(Reg))
3043 RC = &AMDGPU::VGPR_32RegClass;
3044 else if (AMDGPU::SGPR_32RegClass.contains(Reg))
3045 RC = &AMDGPU::SGPR_32RegClass;
3046 else
3047 llvm_unreachable("Unexpected register class in LowerFormalArguments!");
3048 EVT ValVT = VA.getValVT();
3050 Reg = MF.addLiveIn(Reg, RC);
3051 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
3053 if (Arg.Flags.isSRet()) {
3054 // The return object should be reasonably addressable.
3056 // FIXME: This helps when the return is a real sret. If it is a
3057 // automatically inserted sret (i.e. CanLowerReturn returns false), an
3058 // extra copy is inserted in SelectionDAGBuilder which obscures this.
3059 unsigned NumBits =
3060 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
3061 Val = DAG.getNode(
3062 ISD::AssertZext, DL, VT, Val,
3063 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
3066 // If this is an 8 or 16-bit value, it is really passed promoted
3067 // to 32 bits. Insert an assert[sz]ext to capture this, then
3068 // truncate to the right size.
3069 switch (VA.getLocInfo()) {
3070 case CCValAssign::Full:
3071 break;
3072 case CCValAssign::BCvt:
3073 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
3074 break;
3075 case CCValAssign::SExt:
3076 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val, DAG.getValueType(ValVT));
3077 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3078 break;
3079 case CCValAssign::ZExt:
3080 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val, DAG.getValueType(ValVT));
3081 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3082 break;
3083 case CCValAssign::AExt:
3084 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
3085 break;
3086 default:
3087 llvm_unreachable("Unknown loc info!");
3090 InVals.push_back(Val);
3093 // Start adding system SGPRs.
3094 if (IsEntryFunc)
3095 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsGraphics);
3097 // DAG.getPass() returns nullptr when using new pass manager.
3098 // TODO: Use DAG.getMFAM() to access analysis result.
3099 if (DAG.getPass()) {
3100 auto &ArgUsageInfo = DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
3101 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
3104 unsigned StackArgSize = CCInfo.getStackSize();
3105 Info->setBytesInStackArgArea(StackArgSize);
3107 return Chains.empty() ? Chain
3108 : DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3111 // TODO: If return values can't fit in registers, we should return as many as
3112 // possible in registers before passing on stack.
3113 bool SITargetLowering::CanLowerReturn(
3114 CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
3115 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
3116 // Replacing returns with sret/stack usage doesn't make sense for shaders.
3117 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
3118 // for shaders. Vector types should be explicitly handled by CC.
3119 if (AMDGPU::isEntryFunctionCC(CallConv))
3120 return true;
3122 SmallVector<CCValAssign, 16> RVLocs;
3123 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
3124 if (!CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg)))
3125 return false;
3127 // We must use the stack if return would require unavailable registers.
3128 unsigned MaxNumVGPRs = Subtarget->getMaxNumVGPRs(MF);
3129 unsigned TotalNumVGPRs = AMDGPU::VGPR_32RegClass.getNumRegs();
3130 for (unsigned i = MaxNumVGPRs; i < TotalNumVGPRs; ++i)
3131 if (CCInfo.isAllocated(AMDGPU::VGPR_32RegClass.getRegister(i)))
3132 return false;
3134 return true;
3137 SDValue
3138 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3139 bool isVarArg,
3140 const SmallVectorImpl<ISD::OutputArg> &Outs,
3141 const SmallVectorImpl<SDValue> &OutVals,
3142 const SDLoc &DL, SelectionDAG &DAG) const {
3143 MachineFunction &MF = DAG.getMachineFunction();
3144 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3146 if (AMDGPU::isKernel(CallConv)) {
3147 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
3148 OutVals, DL, DAG);
3151 bool IsShader = AMDGPU::isShader(CallConv);
3153 Info->setIfReturnsVoid(Outs.empty());
3154 bool IsWaveEnd = Info->returnsVoid() && IsShader;
3156 // CCValAssign - represent the assignment of the return value to a location.
3157 SmallVector<CCValAssign, 48> RVLocs;
3158 SmallVector<ISD::OutputArg, 48> Splits;
3160 // CCState - Info about the registers and stack slots.
3161 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3162 *DAG.getContext());
3164 // Analyze outgoing return values.
3165 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3167 SDValue Glue;
3168 SmallVector<SDValue, 48> RetOps;
3169 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3171 // Copy the result values into the output registers.
3172 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
3173 ++I, ++RealRVLocIdx) {
3174 CCValAssign &VA = RVLocs[I];
3175 assert(VA.isRegLoc() && "Can only return in registers!");
3176 // TODO: Partially return in registers if return values don't fit.
3177 SDValue Arg = OutVals[RealRVLocIdx];
3179 // Copied from other backends.
3180 switch (VA.getLocInfo()) {
3181 case CCValAssign::Full:
3182 break;
3183 case CCValAssign::BCvt:
3184 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3185 break;
3186 case CCValAssign::SExt:
3187 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3188 break;
3189 case CCValAssign::ZExt:
3190 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3191 break;
3192 case CCValAssign::AExt:
3193 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3194 break;
3195 default:
3196 llvm_unreachable("Unknown loc info!");
3199 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Glue);
3200 Glue = Chain.getValue(1);
3201 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3204 // FIXME: Does sret work properly?
3205 if (!Info->isEntryFunction()) {
3206 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
3207 const MCPhysReg *I =
3208 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3209 if (I) {
3210 for (; *I; ++I) {
3211 if (AMDGPU::SReg_64RegClass.contains(*I))
3212 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
3213 else if (AMDGPU::SReg_32RegClass.contains(*I))
3214 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3215 else
3216 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3221 // Update chain and glue.
3222 RetOps[0] = Chain;
3223 if (Glue.getNode())
3224 RetOps.push_back(Glue);
3226 unsigned Opc = AMDGPUISD::ENDPGM;
3227 if (!IsWaveEnd)
3228 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_GLUE;
3229 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
3232 SDValue SITargetLowering::LowerCallResult(
3233 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool IsVarArg,
3234 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
3235 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
3236 SDValue ThisVal) const {
3237 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
3239 // Assign locations to each value returned by this call.
3240 SmallVector<CCValAssign, 16> RVLocs;
3241 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
3242 *DAG.getContext());
3243 CCInfo.AnalyzeCallResult(Ins, RetCC);
3245 // Copy all of the result registers out of their specified physreg.
3246 for (CCValAssign VA : RVLocs) {
3247 SDValue Val;
3249 if (VA.isRegLoc()) {
3250 Val =
3251 DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InGlue);
3252 Chain = Val.getValue(1);
3253 InGlue = Val.getValue(2);
3254 } else if (VA.isMemLoc()) {
3255 report_fatal_error("TODO: return values in memory");
3256 } else
3257 llvm_unreachable("unknown argument location type");
3259 switch (VA.getLocInfo()) {
3260 case CCValAssign::Full:
3261 break;
3262 case CCValAssign::BCvt:
3263 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
3264 break;
3265 case CCValAssign::ZExt:
3266 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
3267 DAG.getValueType(VA.getValVT()));
3268 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3269 break;
3270 case CCValAssign::SExt:
3271 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
3272 DAG.getValueType(VA.getValVT()));
3273 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3274 break;
3275 case CCValAssign::AExt:
3276 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
3277 break;
3278 default:
3279 llvm_unreachable("Unknown loc info!");
3282 InVals.push_back(Val);
3285 return Chain;
3288 // Add code to pass special inputs required depending on used features separate
3289 // from the explicit user arguments present in the IR.
3290 void SITargetLowering::passSpecialInputs(
3291 CallLoweringInfo &CLI, CCState &CCInfo, const SIMachineFunctionInfo &Info,
3292 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
3293 SmallVectorImpl<SDValue> &MemOpChains, SDValue Chain) const {
3294 // If we don't have a call site, this was a call inserted by
3295 // legalization. These can never use special inputs.
3296 if (!CLI.CB)
3297 return;
3299 SelectionDAG &DAG = CLI.DAG;
3300 const SDLoc &DL = CLI.DL;
3301 const Function &F = DAG.getMachineFunction().getFunction();
3303 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
3304 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
3306 const AMDGPUFunctionArgInfo *CalleeArgInfo =
3307 &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
3308 if (const Function *CalleeFunc = CLI.CB->getCalledFunction()) {
3309 // DAG.getPass() returns nullptr when using new pass manager.
3310 // TODO: Use DAG.getMFAM() to access analysis result.
3311 if (DAG.getPass()) {
3312 auto &ArgUsageInfo =
3313 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
3314 CalleeArgInfo = &ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
3318 // TODO: Unify with private memory register handling. This is complicated by
3319 // the fact that at least in kernels, the input argument is not necessarily
3320 // in the same location as the input.
3321 // clang-format off
3322 static constexpr std::pair<AMDGPUFunctionArgInfo::PreloadedValue,
3323 StringLiteral> ImplicitAttrs[] = {
3324 {AMDGPUFunctionArgInfo::DISPATCH_PTR, "amdgpu-no-dispatch-ptr"},
3325 {AMDGPUFunctionArgInfo::QUEUE_PTR, "amdgpu-no-queue-ptr" },
3326 {AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, "amdgpu-no-implicitarg-ptr"},
3327 {AMDGPUFunctionArgInfo::DISPATCH_ID, "amdgpu-no-dispatch-id"},
3328 {AMDGPUFunctionArgInfo::WORKGROUP_ID_X, "amdgpu-no-workgroup-id-x"},
3329 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,"amdgpu-no-workgroup-id-y"},
3330 {AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,"amdgpu-no-workgroup-id-z"},
3331 {AMDGPUFunctionArgInfo::LDS_KERNEL_ID,"amdgpu-no-lds-kernel-id"},
3333 // clang-format on
3335 for (auto [InputID, Attr] : ImplicitAttrs) {
3336 // If the callee does not use the attribute value, skip copying the value.
3337 if (CLI.CB->hasFnAttr(Attr))
3338 continue;
3340 const auto [OutgoingArg, ArgRC, ArgTy] =
3341 CalleeArgInfo->getPreloadedValue(InputID);
3342 if (!OutgoingArg)
3343 continue;
3345 const auto [IncomingArg, IncomingArgRC, Ty] =
3346 CallerArgInfo.getPreloadedValue(InputID);
3347 assert(IncomingArgRC == ArgRC);
3349 // All special arguments are ints for now.
3350 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
3351 SDValue InputReg;
3353 if (IncomingArg) {
3354 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
3355 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
3356 // The implicit arg ptr is special because it doesn't have a corresponding
3357 // input for kernels, and is computed from the kernarg segment pointer.
3358 InputReg = getImplicitArgPtr(DAG, DL);
3359 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
3360 std::optional<uint32_t> Id =
3361 AMDGPUMachineFunction::getLDSKernelIdMetadata(F);
3362 if (Id.has_value()) {
3363 InputReg = DAG.getConstant(*Id, DL, ArgVT);
3364 } else {
3365 InputReg = DAG.getUNDEF(ArgVT);
3367 } else {
3368 // We may have proven the input wasn't needed, although the ABI is
3369 // requiring it. We just need to allocate the register appropriately.
3370 InputReg = DAG.getUNDEF(ArgVT);
3373 if (OutgoingArg->isRegister()) {
3374 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3375 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
3376 report_fatal_error("failed to allocate implicit input argument");
3377 } else {
3378 unsigned SpecialArgOffset =
3379 CCInfo.AllocateStack(ArgVT.getStoreSize(), Align(4));
3380 SDValue ArgStore =
3381 storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset);
3382 MemOpChains.push_back(ArgStore);
3386 // Pack workitem IDs into a single register or pass it as is if already
3387 // packed.
3389 auto [OutgoingArg, ArgRC, Ty] =
3390 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
3391 if (!OutgoingArg)
3392 std::tie(OutgoingArg, ArgRC, Ty) =
3393 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
3394 if (!OutgoingArg)
3395 std::tie(OutgoingArg, ArgRC, Ty) =
3396 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
3397 if (!OutgoingArg)
3398 return;
3400 const ArgDescriptor *IncomingArgX = std::get<0>(
3401 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X));
3402 const ArgDescriptor *IncomingArgY = std::get<0>(
3403 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y));
3404 const ArgDescriptor *IncomingArgZ = std::get<0>(
3405 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z));
3407 SDValue InputReg;
3408 SDLoc SL;
3410 const bool NeedWorkItemIDX = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-x");
3411 const bool NeedWorkItemIDY = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-y");
3412 const bool NeedWorkItemIDZ = !CLI.CB->hasFnAttr("amdgpu-no-workitem-id-z");
3414 // If incoming ids are not packed we need to pack them.
3415 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
3416 NeedWorkItemIDX) {
3417 if (Subtarget->getMaxWorkitemID(F, 0) != 0) {
3418 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
3419 } else {
3420 InputReg = DAG.getConstant(0, DL, MVT::i32);
3424 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
3425 NeedWorkItemIDY && Subtarget->getMaxWorkitemID(F, 1) != 0) {
3426 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
3427 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
3428 DAG.getShiftAmountConstant(10, MVT::i32, SL));
3429 InputReg = InputReg.getNode()
3430 ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y)
3431 : Y;
3434 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
3435 NeedWorkItemIDZ && Subtarget->getMaxWorkitemID(F, 2) != 0) {
3436 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
3437 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
3438 DAG.getShiftAmountConstant(20, MVT::i32, SL));
3439 InputReg = InputReg.getNode()
3440 ? DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z)
3441 : Z;
3444 if (!InputReg && (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
3445 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
3446 // We're in a situation where the outgoing function requires the workitem
3447 // ID, but the calling function does not have it (e.g a graphics function
3448 // calling a C calling convention function). This is illegal, but we need
3449 // to produce something.
3450 InputReg = DAG.getUNDEF(MVT::i32);
3451 } else {
3452 // Workitem ids are already packed, any of present incoming arguments
3453 // will carry all required fields.
3454 ArgDescriptor IncomingArg =
3455 ArgDescriptor::createArg(IncomingArgX ? *IncomingArgX
3456 : IncomingArgY ? *IncomingArgY
3457 : *IncomingArgZ,
3458 ~0u);
3459 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
3463 if (OutgoingArg->isRegister()) {
3464 if (InputReg)
3465 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
3467 CCInfo.AllocateReg(OutgoingArg->getRegister());
3468 } else {
3469 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, Align(4));
3470 if (InputReg) {
3471 SDValue ArgStore =
3472 storeStackInputValue(DAG, DL, Chain, InputReg, SpecialArgOffset);
3473 MemOpChains.push_back(ArgStore);
3478 static bool canGuaranteeTCO(CallingConv::ID CC) {
3479 return CC == CallingConv::Fast;
3482 /// Return true if we might ever do TCO for calls with this calling convention.
3483 static bool mayTailCallThisCC(CallingConv::ID CC) {
3484 switch (CC) {
3485 case CallingConv::C:
3486 case CallingConv::AMDGPU_Gfx:
3487 return true;
3488 default:
3489 return canGuaranteeTCO(CC);
3493 bool SITargetLowering::isEligibleForTailCallOptimization(
3494 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
3495 const SmallVectorImpl<ISD::OutputArg> &Outs,
3496 const SmallVectorImpl<SDValue> &OutVals,
3497 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
3498 if (AMDGPU::isChainCC(CalleeCC))
3499 return true;
3501 if (!mayTailCallThisCC(CalleeCC))
3502 return false;
3504 // For a divergent call target, we need to do a waterfall loop over the
3505 // possible callees which precludes us from using a simple jump.
3506 if (Callee->isDivergent())
3507 return false;
3509 MachineFunction &MF = DAG.getMachineFunction();
3510 const Function &CallerF = MF.getFunction();
3511 CallingConv::ID CallerCC = CallerF.getCallingConv();
3512 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
3513 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3515 // Kernels aren't callable, and don't have a live in return address so it
3516 // doesn't make sense to do a tail call with entry functions.
3517 if (!CallerPreserved)
3518 return false;
3520 bool CCMatch = CallerCC == CalleeCC;
3522 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
3523 if (canGuaranteeTCO(CalleeCC) && CCMatch)
3524 return true;
3525 return false;
3528 // TODO: Can we handle var args?
3529 if (IsVarArg)
3530 return false;
3532 for (const Argument &Arg : CallerF.args()) {
3533 if (Arg.hasByValAttr())
3534 return false;
3537 LLVMContext &Ctx = *DAG.getContext();
3539 // Check that the call results are passed in the same way.
3540 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
3541 CCAssignFnForCall(CalleeCC, IsVarArg),
3542 CCAssignFnForCall(CallerCC, IsVarArg)))
3543 return false;
3545 // The callee has to preserve all registers the caller needs to preserve.
3546 if (!CCMatch) {
3547 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3548 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3549 return false;
3552 // Nothing more to check if the callee is taking no arguments.
3553 if (Outs.empty())
3554 return true;
3556 SmallVector<CCValAssign, 16> ArgLocs;
3557 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
3559 // FIXME: We are not allocating special input registers, so we will be
3560 // deciding based on incorrect register assignments.
3561 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
3563 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
3564 // If the stack arguments for this call do not fit into our own save area then
3565 // the call cannot be made tail.
3566 // TODO: Is this really necessary?
3567 if (CCInfo.getStackSize() > FuncInfo->getBytesInStackArgArea())
3568 return false;
3570 for (const auto &[CCVA, ArgVal] : zip_equal(ArgLocs, OutVals)) {
3571 // FIXME: What about inreg arguments that end up passed in memory?
3572 if (!CCVA.isRegLoc())
3573 continue;
3575 // If we are passing an argument in an SGPR, and the value is divergent,
3576 // this call requires a waterfall loop.
3577 if (ArgVal->isDivergent() && TRI->isSGPRPhysReg(CCVA.getLocReg())) {
3578 LLVM_DEBUG(
3579 dbgs() << "Cannot tail call due to divergent outgoing argument in "
3580 << printReg(CCVA.getLocReg(), TRI) << '\n');
3581 return false;
3585 const MachineRegisterInfo &MRI = MF.getRegInfo();
3586 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
3589 bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3590 if (!CI->isTailCall())
3591 return false;
3593 const Function *ParentFn = CI->getParent()->getParent();
3594 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
3595 return false;
3596 return true;
3599 // The wave scratch offset register is used as the global base pointer.
3600 SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
3601 SmallVectorImpl<SDValue> &InVals) const {
3602 CallingConv::ID CallConv = CLI.CallConv;
3603 bool IsChainCallConv = AMDGPU::isChainCC(CallConv);
3605 SelectionDAG &DAG = CLI.DAG;
3607 TargetLowering::ArgListEntry RequestedExec;
3608 if (IsChainCallConv) {
3609 // The last argument should be the value that we need to put in EXEC.
3610 // Pop it out of CLI.Outs and CLI.OutVals before we do any processing so we
3611 // don't treat it like the rest of the arguments.
3612 RequestedExec = CLI.Args.back();
3613 assert(RequestedExec.Node && "No node for EXEC");
3615 if (!RequestedExec.Ty->isIntegerTy(Subtarget->getWavefrontSize()))
3616 return lowerUnhandledCall(CLI, InVals, "Invalid value for EXEC");
3618 assert(CLI.Outs.back().OrigArgIndex == 2 && "Unexpected last arg");
3619 CLI.Outs.pop_back();
3620 CLI.OutVals.pop_back();
3622 if (RequestedExec.Ty->isIntegerTy(64)) {
3623 assert(CLI.Outs.back().OrigArgIndex == 2 && "Exec wasn't split up");
3624 CLI.Outs.pop_back();
3625 CLI.OutVals.pop_back();
3628 assert(CLI.Outs.back().OrigArgIndex != 2 &&
3629 "Haven't popped all the pieces of the EXEC mask");
3632 const SDLoc &DL = CLI.DL;
3633 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3634 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3635 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3636 SDValue Chain = CLI.Chain;
3637 SDValue Callee = CLI.Callee;
3638 bool &IsTailCall = CLI.IsTailCall;
3639 bool IsVarArg = CLI.IsVarArg;
3640 bool IsSibCall = false;
3641 MachineFunction &MF = DAG.getMachineFunction();
3643 if (Callee.isUndef() || isNullConstant(Callee)) {
3644 if (!CLI.IsTailCall) {
3645 for (ISD::InputArg &Arg : CLI.Ins)
3646 InVals.push_back(DAG.getUNDEF(Arg.VT));
3649 return Chain;
3652 if (IsVarArg) {
3653 return lowerUnhandledCall(CLI, InVals,
3654 "unsupported call to variadic function ");
3657 if (!CLI.CB)
3658 report_fatal_error("unsupported libcall legalization");
3660 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
3661 return lowerUnhandledCall(CLI, InVals,
3662 "unsupported required tail call to function ");
3665 if (IsTailCall) {
3666 IsTailCall = isEligibleForTailCallOptimization(Callee, CallConv, IsVarArg,
3667 Outs, OutVals, Ins, DAG);
3668 if (!IsTailCall &&
3669 ((CLI.CB && CLI.CB->isMustTailCall()) || IsChainCallConv)) {
3670 report_fatal_error("failed to perform tail call elimination on a call "
3671 "site marked musttail or on llvm.amdgcn.cs.chain");
3674 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
3676 // A sibling call is one where we're under the usual C ABI and not planning
3677 // to change that but can still do a tail call:
3678 if (!TailCallOpt && IsTailCall)
3679 IsSibCall = true;
3681 if (IsTailCall)
3682 ++NumTailCalls;
3685 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3686 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3687 SmallVector<SDValue, 8> MemOpChains;
3689 // Analyze operands of the call, assigning locations to each operand.
3690 SmallVector<CCValAssign, 16> ArgLocs;
3691 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
3692 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
3694 if (CallConv != CallingConv::AMDGPU_Gfx && !AMDGPU::isChainCC(CallConv)) {
3695 // With a fixed ABI, allocate fixed registers before user arguments.
3696 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
3699 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
3701 // Get a count of how many bytes are to be pushed on the stack.
3702 unsigned NumBytes = CCInfo.getStackSize();
3704 if (IsSibCall) {
3705 // Since we're not changing the ABI to make this a tail call, the memory
3706 // operands are already available in the caller's incoming argument space.
3707 NumBytes = 0;
3710 // FPDiff is the byte offset of the call's argument area from the callee's.
3711 // Stores to callee stack arguments will be placed in FixedStackSlots offset
3712 // by this amount for a tail call. In a sibling call it must be 0 because the
3713 // caller will deallocate the entire stack and the callee still expects its
3714 // arguments to begin at SP+0. Completely unused for non-tail calls.
3715 int32_t FPDiff = 0;
3716 MachineFrameInfo &MFI = MF.getFrameInfo();
3717 auto *TRI = static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
3719 // Adjust the stack pointer for the new arguments...
3720 // These operations are automatically eliminated by the prolog/epilog pass
3721 if (!IsSibCall)
3722 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
3724 if (!IsSibCall || IsChainCallConv) {
3725 if (!Subtarget->enableFlatScratch()) {
3726 SmallVector<SDValue, 4> CopyFromChains;
3728 // In the HSA case, this should be an identity copy.
3729 SDValue ScratchRSrcReg =
3730 DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
3731 RegsToPass.emplace_back(IsChainCallConv
3732 ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
3733 : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3,
3734 ScratchRSrcReg);
3735 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
3736 Chain = DAG.getTokenFactor(DL, CopyFromChains);
3740 const unsigned NumSpecialInputs = RegsToPass.size();
3742 MVT PtrVT = MVT::i32;
3744 // Walk the register/memloc assignments, inserting copies/loads.
3745 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3746 CCValAssign &VA = ArgLocs[i];
3747 SDValue Arg = OutVals[i];
3749 // Promote the value if needed.
3750 switch (VA.getLocInfo()) {
3751 case CCValAssign::Full:
3752 break;
3753 case CCValAssign::BCvt:
3754 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
3755 break;
3756 case CCValAssign::ZExt:
3757 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
3758 break;
3759 case CCValAssign::SExt:
3760 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
3761 break;
3762 case CCValAssign::AExt:
3763 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
3764 break;
3765 case CCValAssign::FPExt:
3766 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
3767 break;
3768 default:
3769 llvm_unreachable("Unknown loc info!");
3772 if (VA.isRegLoc()) {
3773 RegsToPass.push_back(std::pair(VA.getLocReg(), Arg));
3774 } else {
3775 assert(VA.isMemLoc());
3777 SDValue DstAddr;
3778 MachinePointerInfo DstInfo;
3780 unsigned LocMemOffset = VA.getLocMemOffset();
3781 int32_t Offset = LocMemOffset;
3783 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
3784 MaybeAlign Alignment;
3786 if (IsTailCall) {
3787 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3788 unsigned OpSize = Flags.isByVal() ? Flags.getByValSize()
3789 : VA.getValVT().getStoreSize();
3791 // FIXME: We can have better than the minimum byval required alignment.
3792 Alignment =
3793 Flags.isByVal()
3794 ? Flags.getNonZeroByValAlign()
3795 : commonAlignment(Subtarget->getStackAlignment(), Offset);
3797 Offset = Offset + FPDiff;
3798 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
3800 DstAddr = DAG.getFrameIndex(FI, PtrVT);
3801 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
3803 // Make sure any stack arguments overlapping with where we're storing
3804 // are loaded before this eventual operation. Otherwise they'll be
3805 // clobbered.
3807 // FIXME: Why is this really necessary? This seems to just result in a
3808 // lot of code to copy the stack and write them back to the same
3809 // locations, which are supposed to be immutable?
3810 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
3811 } else {
3812 // Stores to the argument stack area are relative to the stack pointer.
3813 SDValue SP = DAG.getCopyFromReg(Chain, DL, Info->getStackPtrOffsetReg(),
3814 MVT::i32);
3815 DstAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, SP, PtrOff);
3816 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
3817 Alignment =
3818 commonAlignment(Subtarget->getStackAlignment(), LocMemOffset);
3821 if (Outs[i].Flags.isByVal()) {
3822 SDValue SizeNode =
3823 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
3824 SDValue Cpy =
3825 DAG.getMemcpy(Chain, DL, DstAddr, Arg, SizeNode,
3826 Outs[i].Flags.getNonZeroByValAlign(),
3827 /*isVol = */ false, /*AlwaysInline = */ true,
3828 /*CI=*/nullptr, std::nullopt, DstInfo,
3829 MachinePointerInfo(AMDGPUAS::PRIVATE_ADDRESS));
3831 MemOpChains.push_back(Cpy);
3832 } else {
3833 SDValue Store =
3834 DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Alignment);
3835 MemOpChains.push_back(Store);
3840 if (!MemOpChains.empty())
3841 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
3843 SDValue ReadFirstLaneID =
3844 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, DL, MVT::i32);
3846 SDValue TokenGlue;
3847 if (CLI.ConvergenceControlToken) {
3848 TokenGlue = DAG.getNode(ISD::CONVERGENCECTRL_GLUE, DL, MVT::Glue,
3849 CLI.ConvergenceControlToken);
3852 // Build a sequence of copy-to-reg nodes chained together with token chain
3853 // and flag operands which copy the outgoing args into the appropriate regs.
3854 SDValue InGlue;
3856 unsigned ArgIdx = 0;
3857 for (auto [Reg, Val] : RegsToPass) {
3858 if (ArgIdx++ >= NumSpecialInputs &&
3859 (IsChainCallConv || !Val->isDivergent()) && TRI->isSGPRPhysReg(Reg)) {
3860 // For chain calls, the inreg arguments are required to be
3861 // uniform. Speculatively Insert a readfirstlane in case we cannot prove
3862 // they are uniform.
3864 // For other calls, if an inreg arguments is known to be uniform,
3865 // speculatively insert a readfirstlane in case it is in a VGPR.
3867 // FIXME: We need to execute this in a waterfall loop if it is a divergent
3868 // value, so let that continue to produce invalid code.
3870 SmallVector<SDValue, 3> ReadfirstlaneArgs({ReadFirstLaneID, Val});
3871 if (TokenGlue)
3872 ReadfirstlaneArgs.push_back(TokenGlue);
3873 Val = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Val.getValueType(),
3874 ReadfirstlaneArgs);
3877 Chain = DAG.getCopyToReg(Chain, DL, Reg, Val, InGlue);
3878 InGlue = Chain.getValue(1);
3881 // We don't usually want to end the call-sequence here because we would tidy
3882 // the frame up *after* the call, however in the ABI-changing tail-call case
3883 // we've carefully laid out the parameters so that when sp is reset they'll be
3884 // in the correct location.
3885 if (IsTailCall && !IsSibCall) {
3886 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, DL);
3887 InGlue = Chain.getValue(1);
3890 std::vector<SDValue> Ops({Chain});
3892 // Add a redundant copy of the callee global which will not be legalized, as
3893 // we need direct access to the callee later.
3894 if (GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(Callee)) {
3895 const GlobalValue *GV = GSD->getGlobal();
3896 Ops.push_back(Callee);
3897 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
3898 } else {
3899 if (IsTailCall) {
3900 // isEligibleForTailCallOptimization considered whether the call target is
3901 // divergent, but we may still end up with a uniform value in a VGPR.
3902 // Insert a readfirstlane just in case.
3903 SDValue ReadFirstLaneID =
3904 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, DL, MVT::i32);
3906 SmallVector<SDValue, 3> ReadfirstlaneArgs({ReadFirstLaneID, Callee});
3907 if (TokenGlue)
3908 ReadfirstlaneArgs.push_back(TokenGlue); // Wire up convergence token.
3909 Callee = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Callee.getValueType(),
3910 ReadfirstlaneArgs);
3913 Ops.push_back(Callee);
3914 Ops.push_back(DAG.getTargetConstant(0, DL, MVT::i64));
3917 if (IsTailCall) {
3918 // Each tail call may have to adjust the stack by a different amount, so
3919 // this information must travel along with the operation for eventual
3920 // consumption by emitEpilogue.
3921 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
3924 if (IsChainCallConv)
3925 Ops.push_back(RequestedExec.Node);
3927 // Add argument registers to the end of the list so that they are known live
3928 // into the call.
3929 for (auto &[Reg, Val] : RegsToPass)
3930 Ops.push_back(DAG.getRegister(Reg, Val.getValueType()));
3932 // Add a register mask operand representing the call-preserved registers.
3933 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
3934 assert(Mask && "Missing call preserved mask for calling convention");
3935 Ops.push_back(DAG.getRegisterMask(Mask));
3937 if (SDValue Token = CLI.ConvergenceControlToken) {
3938 SmallVector<SDValue, 2> GlueOps;
3939 GlueOps.push_back(Token);
3940 if (InGlue)
3941 GlueOps.push_back(InGlue);
3943 InGlue = SDValue(DAG.getMachineNode(TargetOpcode::CONVERGENCECTRL_GLUE, DL,
3944 MVT::Glue, GlueOps),
3948 if (InGlue)
3949 Ops.push_back(InGlue);
3951 // If we're doing a tall call, use a TC_RETURN here rather than an
3952 // actual call instruction.
3953 if (IsTailCall) {
3954 MFI.setHasTailCall();
3955 unsigned OPC = AMDGPUISD::TC_RETURN;
3956 switch (CallConv) {
3957 case CallingConv::AMDGPU_Gfx:
3958 OPC = AMDGPUISD::TC_RETURN_GFX;
3959 break;
3960 case CallingConv::AMDGPU_CS_Chain:
3961 case CallingConv::AMDGPU_CS_ChainPreserve:
3962 OPC = AMDGPUISD::TC_RETURN_CHAIN;
3963 break;
3966 return DAG.getNode(OPC, DL, MVT::Other, Ops);
3969 // Returns a chain and a flag for retval copy to use.
3970 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, {MVT::Other, MVT::Glue}, Ops);
3971 Chain = Call.getValue(0);
3972 InGlue = Call.getValue(1);
3974 uint64_t CalleePopBytes = NumBytes;
3975 Chain = DAG.getCALLSEQ_END(Chain, 0, CalleePopBytes, InGlue, DL);
3976 if (!Ins.empty())
3977 InGlue = Chain.getValue(1);
3979 // Handle result values, copying them out of physregs into vregs that we
3980 // return.
3981 return LowerCallResult(Chain, InGlue, CallConv, IsVarArg, Ins, DL, DAG,
3982 InVals, /*IsThisReturn=*/false, SDValue());
3985 // This is identical to the default implementation in ExpandDYNAMIC_STACKALLOC,
3986 // except for applying the wave size scale to the increment amount.
3987 SDValue SITargetLowering::lowerDYNAMIC_STACKALLOCImpl(SDValue Op,
3988 SelectionDAG &DAG) const {
3989 const MachineFunction &MF = DAG.getMachineFunction();
3990 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
3992 SDLoc dl(Op);
3993 EVT VT = Op.getValueType();
3994 SDValue Tmp1 = Op;
3995 SDValue Tmp2 = Op.getValue(1);
3996 SDValue Tmp3 = Op.getOperand(2);
3997 SDValue Chain = Tmp1.getOperand(0);
3999 Register SPReg = Info->getStackPtrOffsetReg();
4001 // Chain the dynamic stack allocation so that it doesn't modify the stack
4002 // pointer when other instructions are using the stack.
4003 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl);
4005 SDValue Size = Tmp2.getOperand(1);
4006 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
4007 Chain = SP.getValue(1);
4008 MaybeAlign Alignment = cast<ConstantSDNode>(Tmp3)->getMaybeAlignValue();
4009 const TargetFrameLowering *TFL = Subtarget->getFrameLowering();
4010 unsigned Opc =
4011 TFL->getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp
4012 ? ISD::ADD
4013 : ISD::SUB;
4015 SDValue ScaledSize = DAG.getNode(
4016 ISD::SHL, dl, VT, Size,
4017 DAG.getConstant(Subtarget->getWavefrontSizeLog2(), dl, MVT::i32));
4019 Align StackAlign = TFL->getStackAlign();
4020 Tmp1 = DAG.getNode(Opc, dl, VT, SP, ScaledSize); // Value
4021 if (Alignment && *Alignment > StackAlign) {
4022 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1,
4023 DAG.getConstant(-(uint64_t)Alignment->value()
4024 << Subtarget->getWavefrontSizeLog2(),
4025 dl, VT));
4028 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain
4029 Tmp2 = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl);
4031 return DAG.getMergeValues({Tmp1, Tmp2}, dl);
4034 SDValue SITargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4035 SelectionDAG &DAG) const {
4036 // We only handle constant sizes here to allow non-entry block, static sized
4037 // allocas. A truly dynamic value is more difficult to support because we
4038 // don't know if the size value is uniform or not. If the size isn't uniform,
4039 // we would need to do a wave reduction to get the maximum size to know how
4040 // much to increment the uniform stack pointer.
4041 SDValue Size = Op.getOperand(1);
4042 if (isa<ConstantSDNode>(Size))
4043 return lowerDYNAMIC_STACKALLOCImpl(Op, DAG); // Use "generic" expansion.
4045 return AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(Op, DAG);
4048 SDValue SITargetLowering::LowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const {
4049 if (Op.getValueType() != MVT::i32)
4050 return Op; // Defer to cannot select error.
4052 Register SP = getStackPointerRegisterToSaveRestore();
4053 SDLoc SL(Op);
4055 SDValue CopyFromSP = DAG.getCopyFromReg(Op->getOperand(0), SL, SP, MVT::i32);
4057 // Convert from wave uniform to swizzled vector address. This should protect
4058 // from any edge cases where the stacksave result isn't directly used with
4059 // stackrestore.
4060 SDValue VectorAddress =
4061 DAG.getNode(AMDGPUISD::WAVE_ADDRESS, SL, MVT::i32, CopyFromSP);
4062 return DAG.getMergeValues({VectorAddress, CopyFromSP.getValue(1)}, SL);
4065 SDValue SITargetLowering::lowerGET_ROUNDING(SDValue Op,
4066 SelectionDAG &DAG) const {
4067 SDLoc SL(Op);
4068 assert(Op.getValueType() == MVT::i32);
4070 uint32_t BothRoundHwReg =
4071 AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 4);
4072 SDValue GetRoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32);
4074 SDValue IntrinID =
4075 DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32);
4076 SDValue GetReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, Op->getVTList(),
4077 Op.getOperand(0), IntrinID, GetRoundBothImm);
4079 // There are two rounding modes, one for f32 and one for f64/f16. We only
4080 // report in the standard value range if both are the same.
4082 // The raw values also differ from the expected FLT_ROUNDS values. Nearest
4083 // ties away from zero is not supported, and the other values are rotated by
4084 // 1.
4086 // If the two rounding modes are not the same, report a target defined value.
4088 // Mode register rounding mode fields:
4090 // [1:0] Single-precision round mode.
4091 // [3:2] Double/Half-precision round mode.
4093 // 0=nearest even; 1= +infinity; 2= -infinity, 3= toward zero.
4095 // Hardware Spec
4096 // Toward-0 3 0
4097 // Nearest Even 0 1
4098 // +Inf 1 2
4099 // -Inf 2 3
4100 // NearestAway0 N/A 4
4102 // We have to handle 16 permutations of a 4-bit value, so we create a 64-bit
4103 // table we can index by the raw hardware mode.
4105 // (trunc (FltRoundConversionTable >> MODE.fp_round)) & 0xf
4107 SDValue BitTable =
4108 DAG.getConstant(AMDGPU::FltRoundConversionTable, SL, MVT::i64);
4110 SDValue Two = DAG.getConstant(2, SL, MVT::i32);
4111 SDValue RoundModeTimesNumBits =
4112 DAG.getNode(ISD::SHL, SL, MVT::i32, GetReg, Two);
4114 // TODO: We could possibly avoid a 64-bit shift and use a simpler table if we
4115 // knew only one mode was demanded.
4116 SDValue TableValue =
4117 DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits);
4118 SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue);
4120 SDValue EntryMask = DAG.getConstant(0xf, SL, MVT::i32);
4121 SDValue TableEntry =
4122 DAG.getNode(ISD::AND, SL, MVT::i32, TruncTable, EntryMask);
4124 // There's a gap in the 4-bit encoded table and actual enum values, so offset
4125 // if it's an extended value.
4126 SDValue Four = DAG.getConstant(4, SL, MVT::i32);
4127 SDValue IsStandardValue =
4128 DAG.getSetCC(SL, MVT::i1, TableEntry, Four, ISD::SETULT);
4129 SDValue EnumOffset = DAG.getNode(ISD::ADD, SL, MVT::i32, TableEntry, Four);
4130 SDValue Result = DAG.getNode(ISD::SELECT, SL, MVT::i32, IsStandardValue,
4131 TableEntry, EnumOffset);
4133 return DAG.getMergeValues({Result, GetReg.getValue(1)}, SL);
4136 SDValue SITargetLowering::lowerSET_ROUNDING(SDValue Op,
4137 SelectionDAG &DAG) const {
4138 SDLoc SL(Op);
4140 SDValue NewMode = Op.getOperand(1);
4141 assert(NewMode.getValueType() == MVT::i32);
4143 // Index a table of 4-bit entries mapping from the C FLT_ROUNDS values to the
4144 // hardware MODE.fp_round values.
4145 if (auto *ConstMode = dyn_cast<ConstantSDNode>(NewMode)) {
4146 uint32_t ClampedVal = std::min(
4147 static_cast<uint32_t>(ConstMode->getZExtValue()),
4148 static_cast<uint32_t>(AMDGPU::TowardZeroF32_TowardNegativeF64));
4149 NewMode = DAG.getConstant(
4150 AMDGPU::decodeFltRoundToHWConversionTable(ClampedVal), SL, MVT::i32);
4151 } else {
4152 // If we know the input can only be one of the supported standard modes in
4153 // the range 0-3, we can use a simplified mapping to hardware values.
4154 KnownBits KB = DAG.computeKnownBits(NewMode);
4155 const bool UseReducedTable = KB.countMinLeadingZeros() >= 30;
4156 // The supported standard values are 0-3. The extended values start at 8. We
4157 // need to offset by 4 if the value is in the extended range.
4159 if (UseReducedTable) {
4160 // Truncate to the low 32-bits.
4161 SDValue BitTable = DAG.getConstant(
4162 AMDGPU::FltRoundToHWConversionTable & 0xffff, SL, MVT::i32);
4164 SDValue Two = DAG.getConstant(2, SL, MVT::i32);
4165 SDValue RoundModeTimesNumBits =
4166 DAG.getNode(ISD::SHL, SL, MVT::i32, NewMode, Two);
4168 NewMode =
4169 DAG.getNode(ISD::SRL, SL, MVT::i32, BitTable, RoundModeTimesNumBits);
4171 // TODO: SimplifyDemandedBits on the setreg source here can likely reduce
4172 // the table extracted bits into inline immediates.
4173 } else {
4174 // table_index = umin(value, value - 4)
4175 // MODE.fp_round = (bit_table >> (table_index << 2)) & 0xf
4176 SDValue BitTable =
4177 DAG.getConstant(AMDGPU::FltRoundToHWConversionTable, SL, MVT::i64);
4179 SDValue Four = DAG.getConstant(4, SL, MVT::i32);
4180 SDValue OffsetEnum = DAG.getNode(ISD::SUB, SL, MVT::i32, NewMode, Four);
4181 SDValue IndexVal =
4182 DAG.getNode(ISD::UMIN, SL, MVT::i32, NewMode, OffsetEnum);
4184 SDValue Two = DAG.getConstant(2, SL, MVT::i32);
4185 SDValue RoundModeTimesNumBits =
4186 DAG.getNode(ISD::SHL, SL, MVT::i32, IndexVal, Two);
4188 SDValue TableValue =
4189 DAG.getNode(ISD::SRL, SL, MVT::i64, BitTable, RoundModeTimesNumBits);
4190 SDValue TruncTable = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, TableValue);
4192 // No need to mask out the high bits since the setreg will ignore them
4193 // anyway.
4194 NewMode = TruncTable;
4197 // Insert a readfirstlane in case the value is a VGPR. We could do this
4198 // earlier and keep more operations scalar, but that interferes with
4199 // combining the source.
4200 SDValue ReadFirstLaneID =
4201 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32);
4202 NewMode = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
4203 ReadFirstLaneID, NewMode);
4206 // N.B. The setreg will be later folded into s_round_mode on supported
4207 // targets.
4208 SDValue IntrinID =
4209 DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32);
4210 uint32_t BothRoundHwReg =
4211 AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 4);
4212 SDValue RoundBothImm = DAG.getTargetConstant(BothRoundHwReg, SL, MVT::i32);
4214 SDValue SetReg =
4215 DAG.getNode(ISD::INTRINSIC_VOID, SL, Op->getVTList(), Op.getOperand(0),
4216 IntrinID, RoundBothImm, NewMode);
4218 return SetReg;
4221 SDValue SITargetLowering::lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const {
4222 if (Op->isDivergent())
4223 return SDValue();
4225 switch (cast<MemSDNode>(Op)->getAddressSpace()) {
4226 case AMDGPUAS::FLAT_ADDRESS:
4227 case AMDGPUAS::GLOBAL_ADDRESS:
4228 case AMDGPUAS::CONSTANT_ADDRESS:
4229 case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
4230 break;
4231 default:
4232 return SDValue();
4235 return Op;
4238 // Work around DAG legality rules only based on the result type.
4239 SDValue SITargetLowering::lowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
4240 bool IsStrict = Op.getOpcode() == ISD::STRICT_FP_EXTEND;
4241 SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
4242 EVT SrcVT = Src.getValueType();
4244 if (SrcVT.getScalarType() != MVT::bf16)
4245 return Op;
4247 SDLoc SL(Op);
4248 SDValue BitCast =
4249 DAG.getNode(ISD::BITCAST, SL, SrcVT.changeTypeToInteger(), Src);
4251 EVT DstVT = Op.getValueType();
4252 if (IsStrict)
4253 llvm_unreachable("Need STRICT_BF16_TO_FP");
4255 return DAG.getNode(ISD::BF16_TO_FP, SL, DstVT, BitCast);
4258 SDValue SITargetLowering::lowerGET_FPENV(SDValue Op, SelectionDAG &DAG) const {
4259 SDLoc SL(Op);
4260 if (Op.getValueType() != MVT::i64)
4261 return Op;
4263 uint32_t ModeHwReg =
4264 AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23);
4265 SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32);
4266 uint32_t TrapHwReg =
4267 AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5);
4268 SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32);
4270 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::Other);
4271 SDValue IntrinID =
4272 DAG.getTargetConstant(Intrinsic::amdgcn_s_getreg, SL, MVT::i32);
4273 SDValue GetModeReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList,
4274 Op.getOperand(0), IntrinID, ModeHwRegImm);
4275 SDValue GetTrapReg = DAG.getNode(ISD::INTRINSIC_W_CHAIN, SL, VTList,
4276 Op.getOperand(0), IntrinID, TrapHwRegImm);
4277 SDValue TokenReg =
4278 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, GetModeReg.getValue(1),
4279 GetTrapReg.getValue(1));
4281 SDValue CvtPtr =
4282 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, GetModeReg, GetTrapReg);
4283 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
4285 return DAG.getMergeValues({Result, TokenReg}, SL);
4288 SDValue SITargetLowering::lowerSET_FPENV(SDValue Op, SelectionDAG &DAG) const {
4289 SDLoc SL(Op);
4290 if (Op.getOperand(1).getValueType() != MVT::i64)
4291 return Op;
4293 SDValue Input = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op.getOperand(1));
4294 SDValue NewModeReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input,
4295 DAG.getConstant(0, SL, MVT::i32));
4296 SDValue NewTrapReg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Input,
4297 DAG.getConstant(1, SL, MVT::i32));
4299 SDValue ReadFirstLaneID =
4300 DAG.getTargetConstant(Intrinsic::amdgcn_readfirstlane, SL, MVT::i32);
4301 NewModeReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
4302 ReadFirstLaneID, NewModeReg);
4303 NewTrapReg = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32,
4304 ReadFirstLaneID, NewTrapReg);
4306 unsigned ModeHwReg =
4307 AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_MODE, 0, 23);
4308 SDValue ModeHwRegImm = DAG.getTargetConstant(ModeHwReg, SL, MVT::i32);
4309 unsigned TrapHwReg =
4310 AMDGPU::Hwreg::HwregEncoding::encode(AMDGPU::Hwreg::ID_TRAPSTS, 0, 5);
4311 SDValue TrapHwRegImm = DAG.getTargetConstant(TrapHwReg, SL, MVT::i32);
4313 SDValue IntrinID =
4314 DAG.getTargetConstant(Intrinsic::amdgcn_s_setreg, SL, MVT::i32);
4315 SDValue SetModeReg =
4316 DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0),
4317 IntrinID, ModeHwRegImm, NewModeReg);
4318 SDValue SetTrapReg =
4319 DAG.getNode(ISD::INTRINSIC_VOID, SL, MVT::Other, Op.getOperand(0),
4320 IntrinID, TrapHwRegImm, NewTrapReg);
4321 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, SetTrapReg, SetModeReg);
4324 Register SITargetLowering::getRegisterByName(const char *RegName, LLT VT,
4325 const MachineFunction &MF) const {
4326 Register Reg = StringSwitch<Register>(RegName)
4327 .Case("m0", AMDGPU::M0)
4328 .Case("exec", AMDGPU::EXEC)
4329 .Case("exec_lo", AMDGPU::EXEC_LO)
4330 .Case("exec_hi", AMDGPU::EXEC_HI)
4331 .Case("flat_scratch", AMDGPU::FLAT_SCR)
4332 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
4333 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
4334 .Default(Register());
4336 if (Reg == AMDGPU::NoRegister) {
4337 report_fatal_error(
4338 Twine("invalid register name \"" + StringRef(RegName) + "\"."));
4341 if (!Subtarget->hasFlatScrRegister() &&
4342 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
4343 report_fatal_error(Twine("invalid register \"" + StringRef(RegName) +
4344 "\" for subtarget."));
4347 switch (Reg) {
4348 case AMDGPU::M0:
4349 case AMDGPU::EXEC_LO:
4350 case AMDGPU::EXEC_HI:
4351 case AMDGPU::FLAT_SCR_LO:
4352 case AMDGPU::FLAT_SCR_HI:
4353 if (VT.getSizeInBits() == 32)
4354 return Reg;
4355 break;
4356 case AMDGPU::EXEC:
4357 case AMDGPU::FLAT_SCR:
4358 if (VT.getSizeInBits() == 64)
4359 return Reg;
4360 break;
4361 default:
4362 llvm_unreachable("missing register type checking");
4365 report_fatal_error(
4366 Twine("invalid type for register \"" + StringRef(RegName) + "\"."));
4369 // If kill is not the last instruction, split the block so kill is always a
4370 // proper terminator.
4371 MachineBasicBlock *
4372 SITargetLowering::splitKillBlock(MachineInstr &MI,
4373 MachineBasicBlock *BB) const {
4374 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
4375 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4376 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
4377 return SplitBB;
4380 // Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
4381 // \p MI will be the only instruction in the loop body block. Otherwise, it will
4382 // be the first instruction in the remainder block.
4384 /// \returns { LoopBody, Remainder }
4385 static std::pair<MachineBasicBlock *, MachineBasicBlock *>
4386 splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
4387 MachineFunction *MF = MBB.getParent();
4388 MachineBasicBlock::iterator I(&MI);
4390 // To insert the loop we need to split the block. Move everything after this
4391 // point to a new block, and insert a new empty block between the two.
4392 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
4393 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
4394 MachineFunction::iterator MBBI(MBB);
4395 ++MBBI;
4397 MF->insert(MBBI, LoopBB);
4398 MF->insert(MBBI, RemainderBB);
4400 LoopBB->addSuccessor(LoopBB);
4401 LoopBB->addSuccessor(RemainderBB);
4403 // Move the rest of the block into a new block.
4404 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
4406 if (InstInLoop) {
4407 auto Next = std::next(I);
4409 // Move instruction to loop body.
4410 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
4412 // Move the rest of the block.
4413 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
4414 } else {
4415 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
4418 MBB.addSuccessor(LoopBB);
4420 return std::pair(LoopBB, RemainderBB);
4423 /// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
4424 void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
4425 MachineBasicBlock *MBB = MI.getParent();
4426 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4427 auto I = MI.getIterator();
4428 auto E = std::next(I);
4430 // clang-format off
4431 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
4432 .addImm(0);
4433 // clang-format on
4435 MIBundleBuilder Bundler(*MBB, I, E);
4436 finalizeBundle(*MBB, Bundler.begin());
4439 MachineBasicBlock *
4440 SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
4441 MachineBasicBlock *BB) const {
4442 const DebugLoc &DL = MI.getDebugLoc();
4444 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
4446 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4448 // Apparently kill flags are only valid if the def is in the same block?
4449 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
4450 Src->setIsKill(false);
4452 auto [LoopBB, RemainderBB] = splitBlockForLoop(MI, *BB, true);
4454 MachineBasicBlock::iterator I = LoopBB->end();
4456 const unsigned EncodedReg = AMDGPU::Hwreg::HwregEncoding::encode(
4457 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
4459 // Clear TRAP_STS.MEM_VIOL
4460 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
4461 .addImm(0)
4462 .addImm(EncodedReg);
4464 bundleInstWithWaitcnt(MI);
4466 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
4468 // Load and check TRAP_STS.MEM_VIOL
4469 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
4470 .addImm(EncodedReg);
4472 // FIXME: Do we need to use an isel pseudo that may clobber scc?
4473 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
4474 .addReg(Reg, RegState::Kill)
4475 .addImm(0);
4476 // clang-format off
4477 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4478 .addMBB(LoopBB);
4479 // clang-format on
4481 return RemainderBB;
4484 // Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
4485 // wavefront. If the value is uniform and just happens to be in a VGPR, this
4486 // will only do one iteration. In the worst case, this will loop 64 times.
4488 // TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
4489 static MachineBasicBlock::iterator
4490 emitLoadM0FromVGPRLoop(const SIInstrInfo *TII, MachineRegisterInfo &MRI,
4491 MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
4492 const DebugLoc &DL, const MachineOperand &Idx,
4493 unsigned InitReg, unsigned ResultReg, unsigned PhiReg,
4494 unsigned InitSaveExecReg, int Offset, bool UseGPRIdxMode,
4495 Register &SGPRIdxReg) {
4497 MachineFunction *MF = OrigBB.getParent();
4498 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4499 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4500 MachineBasicBlock::iterator I = LoopBB.begin();
4502 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
4503 Register PhiExec = MRI.createVirtualRegister(BoolRC);
4504 Register NewExec = MRI.createVirtualRegister(BoolRC);
4505 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4506 Register CondReg = MRI.createVirtualRegister(BoolRC);
4508 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
4509 .addReg(InitReg)
4510 .addMBB(&OrigBB)
4511 .addReg(ResultReg)
4512 .addMBB(&LoopBB);
4514 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
4515 .addReg(InitSaveExecReg)
4516 .addMBB(&OrigBB)
4517 .addReg(NewExec)
4518 .addMBB(&LoopBB);
4520 // Read the next variant <- also loop target.
4521 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
4522 .addReg(Idx.getReg(), getUndefRegState(Idx.isUndef()));
4524 // Compare the just read M0 value to all possible Idx values.
4525 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
4526 .addReg(CurrentIdxReg)
4527 .addReg(Idx.getReg(), 0, Idx.getSubReg());
4529 // Update EXEC, save the original EXEC value to VCC.
4530 BuildMI(LoopBB, I, DL,
4531 TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
4532 : AMDGPU::S_AND_SAVEEXEC_B64),
4533 NewExec)
4534 .addReg(CondReg, RegState::Kill);
4536 MRI.setSimpleHint(NewExec, CondReg);
4538 if (UseGPRIdxMode) {
4539 if (Offset == 0) {
4540 SGPRIdxReg = CurrentIdxReg;
4541 } else {
4542 SGPRIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
4543 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), SGPRIdxReg)
4544 .addReg(CurrentIdxReg, RegState::Kill)
4545 .addImm(Offset);
4547 } else {
4548 // Move index from VCC into M0
4549 if (Offset == 0) {
4550 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4551 .addReg(CurrentIdxReg, RegState::Kill);
4552 } else {
4553 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
4554 .addReg(CurrentIdxReg, RegState::Kill)
4555 .addImm(Offset);
4559 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
4560 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4561 MachineInstr *InsertPt =
4562 BuildMI(LoopBB, I, DL,
4563 TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
4564 : AMDGPU::S_XOR_B64_term),
4565 Exec)
4566 .addReg(Exec)
4567 .addReg(NewExec);
4569 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
4570 // s_cbranch_scc0?
4572 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
4573 // clang-format off
4574 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
4575 .addMBB(&LoopBB);
4576 // clang-format on
4578 return InsertPt->getIterator();
4581 // This has slightly sub-optimal regalloc when the source vector is killed by
4582 // the read. The register allocator does not understand that the kill is
4583 // per-workitem, so is kept alive for the whole loop so we end up not re-using a
4584 // subregister from it, using 1 more VGPR than necessary. This was saved when
4585 // this was expanded after register allocation.
4586 static MachineBasicBlock::iterator
4587 loadM0FromVGPR(const SIInstrInfo *TII, MachineBasicBlock &MBB, MachineInstr &MI,
4588 unsigned InitResultReg, unsigned PhiReg, int Offset,
4589 bool UseGPRIdxMode, Register &SGPRIdxReg) {
4590 MachineFunction *MF = MBB.getParent();
4591 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
4592 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4593 MachineRegisterInfo &MRI = MF->getRegInfo();
4594 const DebugLoc &DL = MI.getDebugLoc();
4595 MachineBasicBlock::iterator I(&MI);
4597 const auto *BoolXExecRC = TRI->getWaveMaskRegClass();
4598 Register DstReg = MI.getOperand(0).getReg();
4599 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
4600 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
4601 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4602 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
4604 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
4606 // Save the EXEC mask
4607 // clang-format off
4608 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
4609 .addReg(Exec);
4610 // clang-format on
4612 auto [LoopBB, RemainderBB] = splitBlockForLoop(MI, MBB, false);
4614 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4616 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
4617 InitResultReg, DstReg, PhiReg, TmpExec,
4618 Offset, UseGPRIdxMode, SGPRIdxReg);
4620 MachineBasicBlock *LandingPad = MF->CreateMachineBasicBlock();
4621 MachineFunction::iterator MBBI(LoopBB);
4622 ++MBBI;
4623 MF->insert(MBBI, LandingPad);
4624 LoopBB->removeSuccessor(RemainderBB);
4625 LandingPad->addSuccessor(RemainderBB);
4626 LoopBB->addSuccessor(LandingPad);
4627 MachineBasicBlock::iterator First = LandingPad->begin();
4628 // clang-format off
4629 BuildMI(*LandingPad, First, DL, TII->get(MovExecOpc), Exec)
4630 .addReg(SaveExec);
4631 // clang-format on
4633 return InsPt;
4636 // Returns subreg index, offset
4637 static std::pair<unsigned, int>
4638 computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
4639 const TargetRegisterClass *SuperRC, unsigned VecReg,
4640 int Offset) {
4641 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
4643 // Skip out of bounds offsets, or else we would end up using an undefined
4644 // register.
4645 if (Offset >= NumElts || Offset < 0)
4646 return std::pair(AMDGPU::sub0, Offset);
4648 return std::pair(SIRegisterInfo::getSubRegFromChannel(Offset), 0);
4651 static void setM0ToIndexFromSGPR(const SIInstrInfo *TII,
4652 MachineRegisterInfo &MRI, MachineInstr &MI,
4653 int Offset) {
4654 MachineBasicBlock *MBB = MI.getParent();
4655 const DebugLoc &DL = MI.getDebugLoc();
4656 MachineBasicBlock::iterator I(&MI);
4658 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4660 assert(Idx->getReg() != AMDGPU::NoRegister);
4662 if (Offset == 0) {
4663 // clang-format off
4664 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
4665 .add(*Idx);
4666 // clang-format on
4667 } else {
4668 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
4669 .add(*Idx)
4670 .addImm(Offset);
4674 static Register getIndirectSGPRIdx(const SIInstrInfo *TII,
4675 MachineRegisterInfo &MRI, MachineInstr &MI,
4676 int Offset) {
4677 MachineBasicBlock *MBB = MI.getParent();
4678 const DebugLoc &DL = MI.getDebugLoc();
4679 MachineBasicBlock::iterator I(&MI);
4681 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4683 if (Offset == 0)
4684 return Idx->getReg();
4686 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
4687 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
4688 .add(*Idx)
4689 .addImm(Offset);
4690 return Tmp;
4693 static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
4694 MachineBasicBlock &MBB,
4695 const GCNSubtarget &ST) {
4696 const SIInstrInfo *TII = ST.getInstrInfo();
4697 const SIRegisterInfo &TRI = TII->getRegisterInfo();
4698 MachineFunction *MF = MBB.getParent();
4699 MachineRegisterInfo &MRI = MF->getRegInfo();
4701 Register Dst = MI.getOperand(0).getReg();
4702 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4703 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
4704 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
4706 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
4707 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
4709 unsigned SubReg;
4710 std::tie(SubReg, Offset) =
4711 computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
4713 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
4715 // Check for a SGPR index.
4716 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
4717 MachineBasicBlock::iterator I(&MI);
4718 const DebugLoc &DL = MI.getDebugLoc();
4720 if (UseGPRIdxMode) {
4721 // TODO: Look at the uses to avoid the copy. This may require rescheduling
4722 // to avoid interfering with other uses, so probably requires a new
4723 // optimization pass.
4724 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
4726 const MCInstrDesc &GPRIDXDesc =
4727 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
4728 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
4729 .addReg(SrcReg)
4730 .addReg(Idx)
4731 .addImm(SubReg);
4732 } else {
4733 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
4735 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
4736 .addReg(SrcReg, 0, SubReg)
4737 .addReg(SrcReg, RegState::Implicit);
4740 MI.eraseFromParent();
4742 return &MBB;
4745 // Control flow needs to be inserted if indexing with a VGPR.
4746 const DebugLoc &DL = MI.getDebugLoc();
4747 MachineBasicBlock::iterator I(&MI);
4749 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4750 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
4752 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
4754 Register SGPRIdxReg;
4755 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset,
4756 UseGPRIdxMode, SGPRIdxReg);
4758 MachineBasicBlock *LoopBB = InsPt->getParent();
4760 if (UseGPRIdxMode) {
4761 const MCInstrDesc &GPRIDXDesc =
4762 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), true);
4764 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
4765 .addReg(SrcReg)
4766 .addReg(SGPRIdxReg)
4767 .addImm(SubReg);
4768 } else {
4769 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
4770 .addReg(SrcReg, 0, SubReg)
4771 .addReg(SrcReg, RegState::Implicit);
4774 MI.eraseFromParent();
4776 return LoopBB;
4779 static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
4780 MachineBasicBlock &MBB,
4781 const GCNSubtarget &ST) {
4782 const SIInstrInfo *TII = ST.getInstrInfo();
4783 const SIRegisterInfo &TRI = TII->getRegisterInfo();
4784 MachineFunction *MF = MBB.getParent();
4785 MachineRegisterInfo &MRI = MF->getRegInfo();
4787 Register Dst = MI.getOperand(0).getReg();
4788 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
4789 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
4790 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
4791 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
4792 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
4793 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
4795 // This can be an immediate, but will be folded later.
4796 assert(Val->getReg());
4798 unsigned SubReg;
4799 std::tie(SubReg, Offset) =
4800 computeIndirectRegAndOffset(TRI, VecRC, SrcVec->getReg(), Offset);
4801 const bool UseGPRIdxMode = ST.useVGPRIndexMode();
4803 if (Idx->getReg() == AMDGPU::NoRegister) {
4804 MachineBasicBlock::iterator I(&MI);
4805 const DebugLoc &DL = MI.getDebugLoc();
4807 assert(Offset == 0);
4809 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
4810 .add(*SrcVec)
4811 .add(*Val)
4812 .addImm(SubReg);
4814 MI.eraseFromParent();
4815 return &MBB;
4818 // Check for a SGPR index.
4819 if (TII->getRegisterInfo().isSGPRClass(IdxRC)) {
4820 MachineBasicBlock::iterator I(&MI);
4821 const DebugLoc &DL = MI.getDebugLoc();
4823 if (UseGPRIdxMode) {
4824 Register Idx = getIndirectSGPRIdx(TII, MRI, MI, Offset);
4826 const MCInstrDesc &GPRIDXDesc =
4827 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
4828 BuildMI(MBB, I, DL, GPRIDXDesc, Dst)
4829 .addReg(SrcVec->getReg())
4830 .add(*Val)
4831 .addReg(Idx)
4832 .addImm(SubReg);
4833 } else {
4834 setM0ToIndexFromSGPR(TII, MRI, MI, Offset);
4836 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
4837 TRI.getRegSizeInBits(*VecRC), 32, false);
4838 BuildMI(MBB, I, DL, MovRelDesc, Dst)
4839 .addReg(SrcVec->getReg())
4840 .add(*Val)
4841 .addImm(SubReg);
4843 MI.eraseFromParent();
4844 return &MBB;
4847 // Control flow needs to be inserted if indexing with a VGPR.
4848 if (Val->isReg())
4849 MRI.clearKillFlags(Val->getReg());
4851 const DebugLoc &DL = MI.getDebugLoc();
4853 Register PhiReg = MRI.createVirtualRegister(VecRC);
4855 Register SGPRIdxReg;
4856 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg, Offset,
4857 UseGPRIdxMode, SGPRIdxReg);
4858 MachineBasicBlock *LoopBB = InsPt->getParent();
4860 if (UseGPRIdxMode) {
4861 const MCInstrDesc &GPRIDXDesc =
4862 TII->getIndirectGPRIDXPseudo(TRI.getRegSizeInBits(*VecRC), false);
4864 BuildMI(*LoopBB, InsPt, DL, GPRIDXDesc, Dst)
4865 .addReg(PhiReg)
4866 .add(*Val)
4867 .addReg(SGPRIdxReg)
4868 .addImm(SubReg);
4869 } else {
4870 const MCInstrDesc &MovRelDesc = TII->getIndirectRegWriteMovRelPseudo(
4871 TRI.getRegSizeInBits(*VecRC), 32, false);
4872 BuildMI(*LoopBB, InsPt, DL, MovRelDesc, Dst)
4873 .addReg(PhiReg)
4874 .add(*Val)
4875 .addImm(SubReg);
4878 MI.eraseFromParent();
4879 return LoopBB;
4882 static MachineBasicBlock *lowerWaveReduce(MachineInstr &MI,
4883 MachineBasicBlock &BB,
4884 const GCNSubtarget &ST,
4885 unsigned Opc) {
4886 MachineRegisterInfo &MRI = BB.getParent()->getRegInfo();
4887 const SIRegisterInfo *TRI = ST.getRegisterInfo();
4888 const DebugLoc &DL = MI.getDebugLoc();
4889 const SIInstrInfo *TII = ST.getInstrInfo();
4891 // Reduction operations depend on whether the input operand is SGPR or VGPR.
4892 Register SrcReg = MI.getOperand(1).getReg();
4893 bool isSGPR = TRI->isSGPRClass(MRI.getRegClass(SrcReg));
4894 Register DstReg = MI.getOperand(0).getReg();
4895 MachineBasicBlock *RetBB = nullptr;
4896 if (isSGPR) {
4897 // These operations with a uniform value i.e. SGPR are idempotent.
4898 // Reduced value will be same as given sgpr.
4899 // clang-format off
4900 BuildMI(BB, MI, DL, TII->get(AMDGPU::S_MOV_B32), DstReg)
4901 .addReg(SrcReg);
4902 // clang-format on
4903 RetBB = &BB;
4904 } else {
4905 // TODO: Implement DPP Strategy and switch based on immediate strategy
4906 // operand. For now, for all the cases (default, Iterative and DPP we use
4907 // iterative approach by default.)
4909 // To reduce the VGPR using iterative approach, we need to iterate
4910 // over all the active lanes. Lowering consists of ComputeLoop,
4911 // which iterate over only active lanes. We use copy of EXEC register
4912 // as induction variable and every active lane modifies it using bitset0
4913 // so that we will get the next active lane for next iteration.
4914 MachineBasicBlock::iterator I = BB.end();
4915 Register SrcReg = MI.getOperand(1).getReg();
4917 // Create Control flow for loop
4918 // Split MI's Machine Basic block into For loop
4919 auto [ComputeLoop, ComputeEnd] = splitBlockForLoop(MI, BB, true);
4921 // Create virtual registers required for lowering.
4922 const TargetRegisterClass *WaveMaskRegClass = TRI->getWaveMaskRegClass();
4923 const TargetRegisterClass *DstRegClass = MRI.getRegClass(DstReg);
4924 Register LoopIterator = MRI.createVirtualRegister(WaveMaskRegClass);
4925 Register InitalValReg = MRI.createVirtualRegister(DstRegClass);
4927 Register AccumulatorReg = MRI.createVirtualRegister(DstRegClass);
4928 Register ActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
4929 Register NewActiveBitsReg = MRI.createVirtualRegister(WaveMaskRegClass);
4931 Register FF1Reg = MRI.createVirtualRegister(DstRegClass);
4932 Register LaneValueReg = MRI.createVirtualRegister(DstRegClass);
4934 bool IsWave32 = ST.isWave32();
4935 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
4936 unsigned ExecReg = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
4938 // Create initail values of induction variable from Exec, Accumulator and
4939 // insert branch instr to newly created ComputeBlockk
4940 uint32_t InitalValue =
4941 (Opc == AMDGPU::S_MIN_U32) ? std::numeric_limits<uint32_t>::max() : 0;
4942 auto TmpSReg =
4943 BuildMI(BB, I, DL, TII->get(MovOpc), LoopIterator).addReg(ExecReg);
4944 BuildMI(BB, I, DL, TII->get(AMDGPU::S_MOV_B32), InitalValReg)
4945 .addImm(InitalValue);
4946 // clang-format off
4947 BuildMI(BB, I, DL, TII->get(AMDGPU::S_BRANCH))
4948 .addMBB(ComputeLoop);
4949 // clang-format on
4951 // Start constructing ComputeLoop
4952 I = ComputeLoop->end();
4953 auto Accumulator =
4954 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), AccumulatorReg)
4955 .addReg(InitalValReg)
4956 .addMBB(&BB);
4957 auto ActiveBits =
4958 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::PHI), ActiveBitsReg)
4959 .addReg(TmpSReg->getOperand(0).getReg())
4960 .addMBB(&BB);
4962 // Perform the computations
4963 unsigned SFFOpc = IsWave32 ? AMDGPU::S_FF1_I32_B32 : AMDGPU::S_FF1_I32_B64;
4964 auto FF1 = BuildMI(*ComputeLoop, I, DL, TII->get(SFFOpc), FF1Reg)
4965 .addReg(ActiveBits->getOperand(0).getReg());
4966 auto LaneValue = BuildMI(*ComputeLoop, I, DL,
4967 TII->get(AMDGPU::V_READLANE_B32), LaneValueReg)
4968 .addReg(SrcReg)
4969 .addReg(FF1->getOperand(0).getReg());
4970 auto NewAccumulator = BuildMI(*ComputeLoop, I, DL, TII->get(Opc), DstReg)
4971 .addReg(Accumulator->getOperand(0).getReg())
4972 .addReg(LaneValue->getOperand(0).getReg());
4974 // Manipulate the iterator to get the next active lane
4975 unsigned BITSETOpc =
4976 IsWave32 ? AMDGPU::S_BITSET0_B32 : AMDGPU::S_BITSET0_B64;
4977 auto NewActiveBits =
4978 BuildMI(*ComputeLoop, I, DL, TII->get(BITSETOpc), NewActiveBitsReg)
4979 .addReg(FF1->getOperand(0).getReg())
4980 .addReg(ActiveBits->getOperand(0).getReg());
4982 // Add phi nodes
4983 Accumulator.addReg(NewAccumulator->getOperand(0).getReg())
4984 .addMBB(ComputeLoop);
4985 ActiveBits.addReg(NewActiveBits->getOperand(0).getReg())
4986 .addMBB(ComputeLoop);
4988 // Creating branching
4989 unsigned CMPOpc = IsWave32 ? AMDGPU::S_CMP_LG_U32 : AMDGPU::S_CMP_LG_U64;
4990 BuildMI(*ComputeLoop, I, DL, TII->get(CMPOpc))
4991 .addReg(NewActiveBits->getOperand(0).getReg())
4992 .addImm(0);
4993 BuildMI(*ComputeLoop, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
4994 .addMBB(ComputeLoop);
4996 RetBB = ComputeEnd;
4998 MI.eraseFromParent();
4999 return RetBB;
5002 MachineBasicBlock *
5003 SITargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
5004 MachineBasicBlock *BB) const {
5006 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5007 MachineFunction *MF = BB->getParent();
5008 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
5010 switch (MI.getOpcode()) {
5011 case AMDGPU::WAVE_REDUCE_UMIN_PSEUDO_U32:
5012 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MIN_U32);
5013 case AMDGPU::WAVE_REDUCE_UMAX_PSEUDO_U32:
5014 return lowerWaveReduce(MI, *BB, *getSubtarget(), AMDGPU::S_MAX_U32);
5015 case AMDGPU::S_UADDO_PSEUDO:
5016 case AMDGPU::S_USUBO_PSEUDO: {
5017 const DebugLoc &DL = MI.getDebugLoc();
5018 MachineOperand &Dest0 = MI.getOperand(0);
5019 MachineOperand &Dest1 = MI.getOperand(1);
5020 MachineOperand &Src0 = MI.getOperand(2);
5021 MachineOperand &Src1 = MI.getOperand(3);
5023 unsigned Opc = (MI.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
5024 ? AMDGPU::S_ADD_I32
5025 : AMDGPU::S_SUB_I32;
5026 // clang-format off
5027 BuildMI(*BB, MI, DL, TII->get(Opc), Dest0.getReg())
5028 .add(Src0)
5029 .add(Src1);
5030 // clang-format on
5032 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B64), Dest1.getReg())
5033 .addImm(1)
5034 .addImm(0);
5036 MI.eraseFromParent();
5037 return BB;
5039 case AMDGPU::S_ADD_U64_PSEUDO:
5040 case AMDGPU::S_SUB_U64_PSEUDO: {
5041 // For targets older than GFX12, we emit a sequence of 32-bit operations.
5042 // For GFX12, we emit s_add_u64 and s_sub_u64.
5043 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5044 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5045 const DebugLoc &DL = MI.getDebugLoc();
5046 MachineOperand &Dest = MI.getOperand(0);
5047 MachineOperand &Src0 = MI.getOperand(1);
5048 MachineOperand &Src1 = MI.getOperand(2);
5049 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
5050 if (Subtarget->hasScalarAddSub64()) {
5051 unsigned Opc = IsAdd ? AMDGPU::S_ADD_U64 : AMDGPU::S_SUB_U64;
5052 // clang-format off
5053 BuildMI(*BB, MI, DL, TII->get(Opc), Dest.getReg())
5054 .add(Src0)
5055 .add(Src1);
5056 // clang-format on
5057 } else {
5058 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5059 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
5061 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5062 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5064 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
5065 MI, MRI, Src0, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5066 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
5067 MI, MRI, Src0, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5069 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
5070 MI, MRI, Src1, BoolRC, AMDGPU::sub0, &AMDGPU::SReg_32RegClass);
5071 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
5072 MI, MRI, Src1, BoolRC, AMDGPU::sub1, &AMDGPU::SReg_32RegClass);
5074 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
5075 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
5076 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
5077 .add(Src0Sub0)
5078 .add(Src1Sub0);
5079 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
5080 .add(Src0Sub1)
5081 .add(Src1Sub1);
5082 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
5083 .addReg(DestSub0)
5084 .addImm(AMDGPU::sub0)
5085 .addReg(DestSub1)
5086 .addImm(AMDGPU::sub1);
5088 MI.eraseFromParent();
5089 return BB;
5091 case AMDGPU::V_ADD_U64_PSEUDO:
5092 case AMDGPU::V_SUB_U64_PSEUDO: {
5093 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5094 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5095 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5096 const DebugLoc &DL = MI.getDebugLoc();
5098 bool IsAdd = (MI.getOpcode() == AMDGPU::V_ADD_U64_PSEUDO);
5100 MachineOperand &Dest = MI.getOperand(0);
5101 MachineOperand &Src0 = MI.getOperand(1);
5102 MachineOperand &Src1 = MI.getOperand(2);
5104 if (IsAdd && ST.hasLshlAddB64()) {
5105 auto Add = BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_LSHL_ADD_U64_e64),
5106 Dest.getReg())
5107 .add(Src0)
5108 .addImm(0)
5109 .add(Src1);
5110 TII->legalizeOperands(*Add);
5111 MI.eraseFromParent();
5112 return BB;
5115 const auto *CarryRC = TRI->getWaveMaskRegClass();
5117 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5118 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5120 Register CarryReg = MRI.createVirtualRegister(CarryRC);
5121 Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
5123 const TargetRegisterClass *Src0RC = Src0.isReg()
5124 ? MRI.getRegClass(Src0.getReg())
5125 : &AMDGPU::VReg_64RegClass;
5126 const TargetRegisterClass *Src1RC = Src1.isReg()
5127 ? MRI.getRegClass(Src1.getReg())
5128 : &AMDGPU::VReg_64RegClass;
5130 const TargetRegisterClass *Src0SubRC =
5131 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
5132 const TargetRegisterClass *Src1SubRC =
5133 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
5135 MachineOperand SrcReg0Sub0 = TII->buildExtractSubRegOrImm(
5136 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
5137 MachineOperand SrcReg1Sub0 = TII->buildExtractSubRegOrImm(
5138 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
5140 MachineOperand SrcReg0Sub1 = TII->buildExtractSubRegOrImm(
5141 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
5142 MachineOperand SrcReg1Sub1 = TII->buildExtractSubRegOrImm(
5143 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
5145 unsigned LoOpc =
5146 IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
5147 MachineInstr *LoHalf = BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
5148 .addReg(CarryReg, RegState::Define)
5149 .add(SrcReg0Sub0)
5150 .add(SrcReg1Sub0)
5151 .addImm(0); // clamp bit
5153 unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
5154 MachineInstr *HiHalf =
5155 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
5156 .addReg(DeadCarryReg, RegState::Define | RegState::Dead)
5157 .add(SrcReg0Sub1)
5158 .add(SrcReg1Sub1)
5159 .addReg(CarryReg, RegState::Kill)
5160 .addImm(0); // clamp bit
5162 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
5163 .addReg(DestSub0)
5164 .addImm(AMDGPU::sub0)
5165 .addReg(DestSub1)
5166 .addImm(AMDGPU::sub1);
5167 TII->legalizeOperands(*LoHalf);
5168 TII->legalizeOperands(*HiHalf);
5169 MI.eraseFromParent();
5170 return BB;
5172 case AMDGPU::S_ADD_CO_PSEUDO:
5173 case AMDGPU::S_SUB_CO_PSEUDO: {
5174 // This pseudo has a chance to be selected
5175 // only from uniform add/subcarry node. All the VGPR operands
5176 // therefore assumed to be splat vectors.
5177 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5178 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5179 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5180 MachineBasicBlock::iterator MII = MI;
5181 const DebugLoc &DL = MI.getDebugLoc();
5182 MachineOperand &Dest = MI.getOperand(0);
5183 MachineOperand &CarryDest = MI.getOperand(1);
5184 MachineOperand &Src0 = MI.getOperand(2);
5185 MachineOperand &Src1 = MI.getOperand(3);
5186 MachineOperand &Src2 = MI.getOperand(4);
5187 unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
5188 ? AMDGPU::S_ADDC_U32
5189 : AMDGPU::S_SUBB_U32;
5190 if (Src0.isReg() && TRI->isVectorRegister(MRI, Src0.getReg())) {
5191 Register RegOp0 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5192 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp0)
5193 .addReg(Src0.getReg());
5194 Src0.setReg(RegOp0);
5196 if (Src1.isReg() && TRI->isVectorRegister(MRI, Src1.getReg())) {
5197 Register RegOp1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5198 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp1)
5199 .addReg(Src1.getReg());
5200 Src1.setReg(RegOp1);
5202 Register RegOp2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5203 if (TRI->isVectorRegister(MRI, Src2.getReg())) {
5204 BuildMI(*BB, MII, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), RegOp2)
5205 .addReg(Src2.getReg());
5206 Src2.setReg(RegOp2);
5209 const TargetRegisterClass *Src2RC = MRI.getRegClass(Src2.getReg());
5210 unsigned WaveSize = TRI->getRegSizeInBits(*Src2RC);
5211 assert(WaveSize == 64 || WaveSize == 32);
5213 if (WaveSize == 64) {
5214 if (ST.hasScalarCompareEq64()) {
5215 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U64))
5216 .addReg(Src2.getReg())
5217 .addImm(0);
5218 } else {
5219 const TargetRegisterClass *SubRC =
5220 TRI->getSubRegisterClass(Src2RC, AMDGPU::sub0);
5221 MachineOperand Src2Sub0 = TII->buildExtractSubRegOrImm(
5222 MII, MRI, Src2, Src2RC, AMDGPU::sub0, SubRC);
5223 MachineOperand Src2Sub1 = TII->buildExtractSubRegOrImm(
5224 MII, MRI, Src2, Src2RC, AMDGPU::sub1, SubRC);
5225 Register Src2_32 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5227 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_OR_B32), Src2_32)
5228 .add(Src2Sub0)
5229 .add(Src2Sub1);
5231 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
5232 .addReg(Src2_32, RegState::Kill)
5233 .addImm(0);
5235 } else {
5236 BuildMI(*BB, MII, DL, TII->get(AMDGPU::S_CMP_LG_U32))
5237 .addReg(Src2.getReg())
5238 .addImm(0);
5241 // clang-format off
5242 BuildMI(*BB, MII, DL, TII->get(Opc), Dest.getReg())
5243 .add(Src0)
5244 .add(Src1);
5245 // clang-format on
5247 unsigned SelOpc =
5248 (WaveSize == 64) ? AMDGPU::S_CSELECT_B64 : AMDGPU::S_CSELECT_B32;
5250 BuildMI(*BB, MII, DL, TII->get(SelOpc), CarryDest.getReg())
5251 .addImm(-1)
5252 .addImm(0);
5254 MI.eraseFromParent();
5255 return BB;
5257 case AMDGPU::SI_INIT_M0: {
5258 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
5259 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
5260 .add(MI.getOperand(0));
5261 MI.eraseFromParent();
5262 return BB;
5264 case AMDGPU::GET_GROUPSTATICSIZE: {
5265 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
5266 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL);
5267 DebugLoc DL = MI.getDebugLoc();
5268 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
5269 .add(MI.getOperand(0))
5270 .addImm(MFI->getLDSSize());
5271 MI.eraseFromParent();
5272 return BB;
5274 case AMDGPU::GET_SHADERCYCLESHILO: {
5275 assert(MF->getSubtarget<GCNSubtarget>().hasShaderCyclesHiLoRegisters());
5276 MachineRegisterInfo &MRI = MF->getRegInfo();
5277 const DebugLoc &DL = MI.getDebugLoc();
5278 // The algorithm is:
5280 // hi1 = getreg(SHADER_CYCLES_HI)
5281 // lo1 = getreg(SHADER_CYCLES_LO)
5282 // hi2 = getreg(SHADER_CYCLES_HI)
5284 // If hi1 == hi2 then there was no overflow and the result is hi2:lo1.
5285 // Otherwise there was overflow and the result is hi2:0. In both cases the
5286 // result should represent the actual time at some point during the sequence
5287 // of three getregs.
5288 using namespace AMDGPU::Hwreg;
5289 Register RegHi1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5290 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi1)
5291 .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
5292 Register RegLo1 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5293 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegLo1)
5294 .addImm(HwregEncoding::encode(ID_SHADER_CYCLES, 0, 32));
5295 Register RegHi2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5296 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_GETREG_B32), RegHi2)
5297 .addImm(HwregEncoding::encode(ID_SHADER_CYCLES_HI, 0, 32));
5298 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CMP_EQ_U32))
5299 .addReg(RegHi1)
5300 .addReg(RegHi2);
5301 Register RegLo = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
5302 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CSELECT_B32), RegLo)
5303 .addReg(RegLo1)
5304 .addImm(0);
5305 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE))
5306 .add(MI.getOperand(0))
5307 .addReg(RegLo)
5308 .addImm(AMDGPU::sub0)
5309 .addReg(RegHi2)
5310 .addImm(AMDGPU::sub1);
5311 MI.eraseFromParent();
5312 return BB;
5314 case AMDGPU::SI_INDIRECT_SRC_V1:
5315 case AMDGPU::SI_INDIRECT_SRC_V2:
5316 case AMDGPU::SI_INDIRECT_SRC_V4:
5317 case AMDGPU::SI_INDIRECT_SRC_V8:
5318 case AMDGPU::SI_INDIRECT_SRC_V9:
5319 case AMDGPU::SI_INDIRECT_SRC_V10:
5320 case AMDGPU::SI_INDIRECT_SRC_V11:
5321 case AMDGPU::SI_INDIRECT_SRC_V12:
5322 case AMDGPU::SI_INDIRECT_SRC_V16:
5323 case AMDGPU::SI_INDIRECT_SRC_V32:
5324 return emitIndirectSrc(MI, *BB, *getSubtarget());
5325 case AMDGPU::SI_INDIRECT_DST_V1:
5326 case AMDGPU::SI_INDIRECT_DST_V2:
5327 case AMDGPU::SI_INDIRECT_DST_V4:
5328 case AMDGPU::SI_INDIRECT_DST_V8:
5329 case AMDGPU::SI_INDIRECT_DST_V9:
5330 case AMDGPU::SI_INDIRECT_DST_V10:
5331 case AMDGPU::SI_INDIRECT_DST_V11:
5332 case AMDGPU::SI_INDIRECT_DST_V12:
5333 case AMDGPU::SI_INDIRECT_DST_V16:
5334 case AMDGPU::SI_INDIRECT_DST_V32:
5335 return emitIndirectDst(MI, *BB, *getSubtarget());
5336 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
5337 case AMDGPU::SI_KILL_I1_PSEUDO:
5338 return splitKillBlock(MI, BB);
5339 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
5340 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5341 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5342 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5344 Register Dst = MI.getOperand(0).getReg();
5345 const MachineOperand &Src0 = MI.getOperand(1);
5346 const MachineOperand &Src1 = MI.getOperand(2);
5347 const DebugLoc &DL = MI.getDebugLoc();
5348 Register SrcCond = MI.getOperand(3).getReg();
5350 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5351 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
5352 const auto *CondRC = TRI->getWaveMaskRegClass();
5353 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
5355 const TargetRegisterClass *Src0RC = Src0.isReg()
5356 ? MRI.getRegClass(Src0.getReg())
5357 : &AMDGPU::VReg_64RegClass;
5358 const TargetRegisterClass *Src1RC = Src1.isReg()
5359 ? MRI.getRegClass(Src1.getReg())
5360 : &AMDGPU::VReg_64RegClass;
5362 const TargetRegisterClass *Src0SubRC =
5363 TRI->getSubRegisterClass(Src0RC, AMDGPU::sub0);
5364 const TargetRegisterClass *Src1SubRC =
5365 TRI->getSubRegisterClass(Src1RC, AMDGPU::sub1);
5367 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(
5368 MI, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
5369 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(
5370 MI, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
5372 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(
5373 MI, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
5374 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(
5375 MI, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
5377 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy).addReg(SrcCond);
5378 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
5379 .addImm(0)
5380 .add(Src0Sub0)
5381 .addImm(0)
5382 .add(Src1Sub0)
5383 .addReg(SrcCondCopy);
5384 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
5385 .addImm(0)
5386 .add(Src0Sub1)
5387 .addImm(0)
5388 .add(Src1Sub1)
5389 .addReg(SrcCondCopy);
5391 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
5392 .addReg(DstLo)
5393 .addImm(AMDGPU::sub0)
5394 .addReg(DstHi)
5395 .addImm(AMDGPU::sub1);
5396 MI.eraseFromParent();
5397 return BB;
5399 case AMDGPU::SI_BR_UNDEF: {
5400 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5401 const DebugLoc &DL = MI.getDebugLoc();
5402 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
5403 .add(MI.getOperand(0));
5404 Br->getOperand(1).setIsUndef(); // read undef SCC
5405 MI.eraseFromParent();
5406 return BB;
5408 case AMDGPU::ADJCALLSTACKUP:
5409 case AMDGPU::ADJCALLSTACKDOWN: {
5410 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
5411 MachineInstrBuilder MIB(*MF, &MI);
5412 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
5413 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit);
5414 return BB;
5416 case AMDGPU::SI_CALL_ISEL: {
5417 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
5418 const DebugLoc &DL = MI.getDebugLoc();
5420 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
5422 MachineInstrBuilder MIB;
5423 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
5425 for (const MachineOperand &MO : MI.operands())
5426 MIB.add(MO);
5428 MIB.cloneMemRefs(MI);
5429 MI.eraseFromParent();
5430 return BB;
5432 case AMDGPU::V_ADD_CO_U32_e32:
5433 case AMDGPU::V_SUB_CO_U32_e32:
5434 case AMDGPU::V_SUBREV_CO_U32_e32: {
5435 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
5436 const DebugLoc &DL = MI.getDebugLoc();
5437 unsigned Opc = MI.getOpcode();
5439 bool NeedClampOperand = false;
5440 if (TII->pseudoToMCOpcode(Opc) == -1) {
5441 Opc = AMDGPU::getVOPe64(Opc);
5442 NeedClampOperand = true;
5445 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
5446 if (TII->isVOP3(*I)) {
5447 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
5448 const SIRegisterInfo *TRI = ST.getRegisterInfo();
5449 I.addReg(TRI->getVCC(), RegState::Define);
5451 I.add(MI.getOperand(1)).add(MI.getOperand(2));
5452 if (NeedClampOperand)
5453 I.addImm(0); // clamp bit for e64 encoding
5455 TII->legalizeOperands(*I);
5457 MI.eraseFromParent();
5458 return BB;
5460 case AMDGPU::V_ADDC_U32_e32:
5461 case AMDGPU::V_SUBB_U32_e32:
5462 case AMDGPU::V_SUBBREV_U32_e32:
5463 // These instructions have an implicit use of vcc which counts towards the
5464 // constant bus limit.
5465 TII->legalizeOperands(MI);
5466 return BB;
5467 case AMDGPU::DS_GWS_INIT:
5468 case AMDGPU::DS_GWS_SEMA_BR:
5469 case AMDGPU::DS_GWS_BARRIER:
5470 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::data0);
5471 [[fallthrough]];
5472 case AMDGPU::DS_GWS_SEMA_V:
5473 case AMDGPU::DS_GWS_SEMA_P:
5474 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
5475 // A s_waitcnt 0 is required to be the instruction immediately following.
5476 if (getSubtarget()->hasGWSAutoReplay()) {
5477 bundleInstWithWaitcnt(MI);
5478 return BB;
5481 return emitGWSMemViolTestLoop(MI, BB);
5482 case AMDGPU::S_SETREG_B32: {
5483 // Try to optimize cases that only set the denormal mode or rounding mode.
5485 // If the s_setreg_b32 fully sets all of the bits in the rounding mode or
5486 // denormal mode to a constant, we can use s_round_mode or s_denorm_mode
5487 // instead.
5489 // FIXME: This could be predicates on the immediate, but tablegen doesn't
5490 // allow you to have a no side effect instruction in the output of a
5491 // sideeffecting pattern.
5492 auto [ID, Offset, Width] =
5493 AMDGPU::Hwreg::HwregEncoding::decode(MI.getOperand(1).getImm());
5494 if (ID != AMDGPU::Hwreg::ID_MODE)
5495 return BB;
5497 const unsigned WidthMask = maskTrailingOnes<unsigned>(Width);
5498 const unsigned SetMask = WidthMask << Offset;
5500 if (getSubtarget()->hasDenormModeInst()) {
5501 unsigned SetDenormOp = 0;
5502 unsigned SetRoundOp = 0;
5504 // The dedicated instructions can only set the whole denorm or round mode
5505 // at once, not a subset of bits in either.
5506 if (SetMask ==
5507 (AMDGPU::Hwreg::FP_ROUND_MASK | AMDGPU::Hwreg::FP_DENORM_MASK)) {
5508 // If this fully sets both the round and denorm mode, emit the two
5509 // dedicated instructions for these.
5510 SetRoundOp = AMDGPU::S_ROUND_MODE;
5511 SetDenormOp = AMDGPU::S_DENORM_MODE;
5512 } else if (SetMask == AMDGPU::Hwreg::FP_ROUND_MASK) {
5513 SetRoundOp = AMDGPU::S_ROUND_MODE;
5514 } else if (SetMask == AMDGPU::Hwreg::FP_DENORM_MASK) {
5515 SetDenormOp = AMDGPU::S_DENORM_MODE;
5518 if (SetRoundOp || SetDenormOp) {
5519 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5520 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(0).getReg());
5521 if (Def && Def->isMoveImmediate() && Def->getOperand(1).isImm()) {
5522 unsigned ImmVal = Def->getOperand(1).getImm();
5523 if (SetRoundOp) {
5524 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetRoundOp))
5525 .addImm(ImmVal & 0xf);
5527 // If we also have the denorm mode, get just the denorm mode bits.
5528 ImmVal >>= 4;
5531 if (SetDenormOp) {
5532 BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(SetDenormOp))
5533 .addImm(ImmVal & 0xf);
5536 MI.eraseFromParent();
5537 return BB;
5542 // If only FP bits are touched, used the no side effects pseudo.
5543 if ((SetMask & (AMDGPU::Hwreg::FP_ROUND_MASK |
5544 AMDGPU::Hwreg::FP_DENORM_MASK)) == SetMask)
5545 MI.setDesc(TII->get(AMDGPU::S_SETREG_B32_mode));
5547 return BB;
5549 case AMDGPU::S_INVERSE_BALLOT_U32:
5550 case AMDGPU::S_INVERSE_BALLOT_U64:
5551 // These opcodes only exist to let SIFixSGPRCopies insert a readfirstlane if
5552 // necessary. After that they are equivalent to a COPY.
5553 MI.setDesc(TII->get(AMDGPU::COPY));
5554 return BB;
5555 case AMDGPU::ENDPGM_TRAP: {
5556 const DebugLoc &DL = MI.getDebugLoc();
5557 if (BB->succ_empty() && std::next(MI.getIterator()) == BB->end()) {
5558 MI.setDesc(TII->get(AMDGPU::S_ENDPGM));
5559 MI.addOperand(MachineOperand::CreateImm(0));
5560 return BB;
5563 // We need a block split to make the real endpgm a terminator. We also don't
5564 // want to break phis in successor blocks, so we can't just delete to the
5565 // end of the block.
5567 MachineBasicBlock *SplitBB = BB->splitAt(MI, false /*UpdateLiveIns*/);
5568 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
5569 MF->push_back(TrapBB);
5570 // clang-format off
5571 BuildMI(*TrapBB, TrapBB->end(), DL, TII->get(AMDGPU::S_ENDPGM))
5572 .addImm(0);
5573 BuildMI(*BB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
5574 .addMBB(TrapBB);
5575 // clang-format on
5577 BB->addSuccessor(TrapBB);
5578 MI.eraseFromParent();
5579 return SplitBB;
5581 case AMDGPU::SIMULATED_TRAP: {
5582 assert(Subtarget->hasPrivEnabledTrap2NopBug());
5583 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
5584 MachineBasicBlock *SplitBB =
5585 TII->insertSimulatedTrap(MRI, *BB, MI, MI.getDebugLoc());
5586 MI.eraseFromParent();
5587 return SplitBB;
5589 default:
5590 if (TII->isImage(MI) || TII->isMUBUF(MI)) {
5591 if (!MI.mayStore())
5592 AddMemOpInit(MI);
5593 return BB;
5595 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
5599 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
5600 // This currently forces unfolding various combinations of fsub into fma with
5601 // free fneg'd operands. As long as we have fast FMA (controlled by
5602 // isFMAFasterThanFMulAndFAdd), we should perform these.
5604 // When fma is quarter rate, for f64 where add / sub are at best half rate,
5605 // most of these combines appear to be cycle neutral but save on instruction
5606 // count / code size.
5607 return true;
5610 bool SITargetLowering::enableAggressiveFMAFusion(LLT Ty) const { return true; }
5612 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
5613 EVT VT) const {
5614 if (!VT.isVector()) {
5615 return MVT::i1;
5617 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
5620 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
5621 // TODO: Should i16 be used always if legal? For now it would force VALU
5622 // shifts.
5623 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
5626 LLT SITargetLowering::getPreferredShiftAmountTy(LLT Ty) const {
5627 return (Ty.getScalarSizeInBits() <= 16 && Subtarget->has16BitInsts())
5628 ? Ty.changeElementSize(16)
5629 : Ty.changeElementSize(32);
5632 // Answering this is somewhat tricky and depends on the specific device which
5633 // have different rates for fma or all f64 operations.
5635 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
5636 // regardless of which device (although the number of cycles differs between
5637 // devices), so it is always profitable for f64.
5639 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
5640 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
5641 // which we can always do even without fused FP ops since it returns the same
5642 // result as the separate operations and since it is always full
5643 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
5644 // however does not support denormals, so we do report fma as faster if we have
5645 // a fast fma device and require denormals.
5647 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
5648 EVT VT) const {
5649 VT = VT.getScalarType();
5651 switch (VT.getSimpleVT().SimpleTy) {
5652 case MVT::f32: {
5653 // If mad is not available this depends only on if f32 fma is full rate.
5654 if (!Subtarget->hasMadMacF32Insts())
5655 return Subtarget->hasFastFMAF32();
5657 // Otherwise f32 mad is always full rate and returns the same result as
5658 // the separate operations so should be preferred over fma.
5659 // However does not support denormals.
5660 if (!denormalModeIsFlushAllF32(MF))
5661 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
5663 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
5664 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
5666 case MVT::f64:
5667 return true;
5668 case MVT::f16:
5669 return Subtarget->has16BitInsts() && !denormalModeIsFlushAllF64F16(MF);
5670 default:
5671 break;
5674 return false;
5677 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
5678 LLT Ty) const {
5679 switch (Ty.getScalarSizeInBits()) {
5680 case 16:
5681 return isFMAFasterThanFMulAndFAdd(MF, MVT::f16);
5682 case 32:
5683 return isFMAFasterThanFMulAndFAdd(MF, MVT::f32);
5684 case 64:
5685 return isFMAFasterThanFMulAndFAdd(MF, MVT::f64);
5686 default:
5687 break;
5690 return false;
5693 bool SITargetLowering::isFMADLegal(const MachineInstr &MI, LLT Ty) const {
5694 if (!Ty.isScalar())
5695 return false;
5697 if (Ty.getScalarSizeInBits() == 16)
5698 return Subtarget->hasMadF16() && denormalModeIsFlushAllF64F16(*MI.getMF());
5699 if (Ty.getScalarSizeInBits() == 32)
5700 return Subtarget->hasMadMacF32Insts() &&
5701 denormalModeIsFlushAllF32(*MI.getMF());
5703 return false;
5706 bool SITargetLowering::isFMADLegal(const SelectionDAG &DAG,
5707 const SDNode *N) const {
5708 // TODO: Check future ftz flag
5709 // v_mad_f32/v_mac_f32 do not support denormals.
5710 EVT VT = N->getValueType(0);
5711 if (VT == MVT::f32)
5712 return Subtarget->hasMadMacF32Insts() &&
5713 denormalModeIsFlushAllF32(DAG.getMachineFunction());
5714 if (VT == MVT::f16) {
5715 return Subtarget->hasMadF16() &&
5716 denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
5719 return false;
5722 //===----------------------------------------------------------------------===//
5723 // Custom DAG Lowering Operations
5724 //===----------------------------------------------------------------------===//
5726 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
5727 // wider vector type is legal.
5728 SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
5729 SelectionDAG &DAG) const {
5730 unsigned Opc = Op.getOpcode();
5731 EVT VT = Op.getValueType();
5732 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
5733 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
5734 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5735 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
5737 auto [Lo, Hi] = DAG.SplitVectorOperand(Op.getNode(), 0);
5739 SDLoc SL(Op);
5740 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo, Op->getFlags());
5741 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi, Op->getFlags());
5743 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
5746 // Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
5747 // wider vector type is legal.
5748 SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
5749 SelectionDAG &DAG) const {
5750 unsigned Opc = Op.getOpcode();
5751 EVT VT = Op.getValueType();
5752 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4f32 ||
5753 VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i16 ||
5754 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5755 VT == MVT::v32f32 || VT == MVT::v32i16 || VT == MVT::v32f16);
5757 auto [Lo0, Hi0] = DAG.SplitVectorOperand(Op.getNode(), 0);
5758 auto [Lo1, Hi1] = DAG.SplitVectorOperand(Op.getNode(), 1);
5760 SDLoc SL(Op);
5762 SDValue OpLo =
5763 DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Op->getFlags());
5764 SDValue OpHi =
5765 DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Op->getFlags());
5767 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
5770 SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
5771 SelectionDAG &DAG) const {
5772 unsigned Opc = Op.getOpcode();
5773 EVT VT = Op.getValueType();
5774 assert(VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v8i16 ||
5775 VT == MVT::v8f16 || VT == MVT::v4f32 || VT == MVT::v16i16 ||
5776 VT == MVT::v16f16 || VT == MVT::v8f32 || VT == MVT::v16f32 ||
5777 VT == MVT::v32f32 || VT == MVT::v32f16 || VT == MVT::v32i16 ||
5778 VT == MVT::v4bf16 || VT == MVT::v8bf16 || VT == MVT::v16bf16 ||
5779 VT == MVT::v32bf16);
5781 SDValue Op0 = Op.getOperand(0);
5782 auto [Lo0, Hi0] = Op0.getValueType().isVector()
5783 ? DAG.SplitVectorOperand(Op.getNode(), 0)
5784 : std::pair(Op0, Op0);
5786 auto [Lo1, Hi1] = DAG.SplitVectorOperand(Op.getNode(), 1);
5787 auto [Lo2, Hi2] = DAG.SplitVectorOperand(Op.getNode(), 2);
5789 SDLoc SL(Op);
5790 auto ResVT = DAG.GetSplitDestVTs(VT);
5792 SDValue OpLo =
5793 DAG.getNode(Opc, SL, ResVT.first, Lo0, Lo1, Lo2, Op->getFlags());
5794 SDValue OpHi =
5795 DAG.getNode(Opc, SL, ResVT.second, Hi0, Hi1, Hi2, Op->getFlags());
5797 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
5800 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5801 switch (Op.getOpcode()) {
5802 default:
5803 return AMDGPUTargetLowering::LowerOperation(Op, DAG);
5804 case ISD::BRCOND:
5805 return LowerBRCOND(Op, DAG);
5806 case ISD::RETURNADDR:
5807 return LowerRETURNADDR(Op, DAG);
5808 case ISD::LOAD: {
5809 SDValue Result = LowerLOAD(Op, DAG);
5810 assert((!Result.getNode() || Result.getNode()->getNumValues() == 2) &&
5811 "Load should return a value and a chain");
5812 return Result;
5814 case ISD::FSQRT: {
5815 EVT VT = Op.getValueType();
5816 if (VT == MVT::f32)
5817 return lowerFSQRTF32(Op, DAG);
5818 if (VT == MVT::f64)
5819 return lowerFSQRTF64(Op, DAG);
5820 return SDValue();
5822 case ISD::FSIN:
5823 case ISD::FCOS:
5824 return LowerTrig(Op, DAG);
5825 case ISD::SELECT:
5826 return LowerSELECT(Op, DAG);
5827 case ISD::FDIV:
5828 return LowerFDIV(Op, DAG);
5829 case ISD::FFREXP:
5830 return LowerFFREXP(Op, DAG);
5831 case ISD::ATOMIC_CMP_SWAP:
5832 return LowerATOMIC_CMP_SWAP(Op, DAG);
5833 case ISD::STORE:
5834 return LowerSTORE(Op, DAG);
5835 case ISD::GlobalAddress: {
5836 MachineFunction &MF = DAG.getMachineFunction();
5837 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
5838 return LowerGlobalAddress(MFI, Op, DAG);
5840 case ISD::INTRINSIC_WO_CHAIN:
5841 return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5842 case ISD::INTRINSIC_W_CHAIN:
5843 return LowerINTRINSIC_W_CHAIN(Op, DAG);
5844 case ISD::INTRINSIC_VOID:
5845 return LowerINTRINSIC_VOID(Op, DAG);
5846 case ISD::ADDRSPACECAST:
5847 return lowerADDRSPACECAST(Op, DAG);
5848 case ISD::INSERT_SUBVECTOR:
5849 return lowerINSERT_SUBVECTOR(Op, DAG);
5850 case ISD::INSERT_VECTOR_ELT:
5851 return lowerINSERT_VECTOR_ELT(Op, DAG);
5852 case ISD::EXTRACT_VECTOR_ELT:
5853 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5854 case ISD::VECTOR_SHUFFLE:
5855 return lowerVECTOR_SHUFFLE(Op, DAG);
5856 case ISD::SCALAR_TO_VECTOR:
5857 return lowerSCALAR_TO_VECTOR(Op, DAG);
5858 case ISD::BUILD_VECTOR:
5859 return lowerBUILD_VECTOR(Op, DAG);
5860 case ISD::FP_ROUND:
5861 case ISD::STRICT_FP_ROUND:
5862 return lowerFP_ROUND(Op, DAG);
5863 case ISD::TRAP:
5864 return lowerTRAP(Op, DAG);
5865 case ISD::DEBUGTRAP:
5866 return lowerDEBUGTRAP(Op, DAG);
5867 case ISD::ABS:
5868 case ISD::FABS:
5869 case ISD::FNEG:
5870 case ISD::FCANONICALIZE:
5871 case ISD::BSWAP:
5872 return splitUnaryVectorOp(Op, DAG);
5873 case ISD::FMINNUM:
5874 case ISD::FMAXNUM:
5875 return lowerFMINNUM_FMAXNUM(Op, DAG);
5876 case ISD::FLDEXP:
5877 case ISD::STRICT_FLDEXP:
5878 return lowerFLDEXP(Op, DAG);
5879 case ISD::FMA:
5880 return splitTernaryVectorOp(Op, DAG);
5881 case ISD::FP_TO_SINT:
5882 case ISD::FP_TO_UINT:
5883 return LowerFP_TO_INT(Op, DAG);
5884 case ISD::SHL:
5885 case ISD::SRA:
5886 case ISD::SRL:
5887 case ISD::ADD:
5888 case ISD::SUB:
5889 case ISD::SMIN:
5890 case ISD::SMAX:
5891 case ISD::UMIN:
5892 case ISD::UMAX:
5893 case ISD::FADD:
5894 case ISD::FMUL:
5895 case ISD::FMINNUM_IEEE:
5896 case ISD::FMAXNUM_IEEE:
5897 case ISD::FMINIMUM:
5898 case ISD::FMAXIMUM:
5899 case ISD::FMINIMUMNUM:
5900 case ISD::FMAXIMUMNUM:
5901 case ISD::UADDSAT:
5902 case ISD::USUBSAT:
5903 case ISD::SADDSAT:
5904 case ISD::SSUBSAT:
5905 return splitBinaryVectorOp(Op, DAG);
5906 case ISD::MUL:
5907 return lowerMUL(Op, DAG);
5908 case ISD::SMULO:
5909 case ISD::UMULO:
5910 return lowerXMULO(Op, DAG);
5911 case ISD::SMUL_LOHI:
5912 case ISD::UMUL_LOHI:
5913 return lowerXMUL_LOHI(Op, DAG);
5914 case ISD::DYNAMIC_STACKALLOC:
5915 return LowerDYNAMIC_STACKALLOC(Op, DAG);
5916 case ISD::STACKSAVE:
5917 return LowerSTACKSAVE(Op, DAG);
5918 case ISD::GET_ROUNDING:
5919 return lowerGET_ROUNDING(Op, DAG);
5920 case ISD::SET_ROUNDING:
5921 return lowerSET_ROUNDING(Op, DAG);
5922 case ISD::PREFETCH:
5923 return lowerPREFETCH(Op, DAG);
5924 case ISD::FP_EXTEND:
5925 case ISD::STRICT_FP_EXTEND:
5926 return lowerFP_EXTEND(Op, DAG);
5927 case ISD::GET_FPENV:
5928 return lowerGET_FPENV(Op, DAG);
5929 case ISD::SET_FPENV:
5930 return lowerSET_FPENV(Op, DAG);
5932 return SDValue();
5935 // Used for D16: Casts the result of an instruction into the right vector,
5936 // packs values if loads return unpacked values.
5937 static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
5938 const SDLoc &DL, SelectionDAG &DAG,
5939 bool Unpacked) {
5940 if (!LoadVT.isVector())
5941 return Result;
5943 // Cast back to the original packed type or to a larger type that is a
5944 // multiple of 32 bit for D16. Widening the return type is a required for
5945 // legalization.
5946 EVT FittingLoadVT = LoadVT;
5947 if ((LoadVT.getVectorNumElements() % 2) == 1) {
5948 FittingLoadVT =
5949 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
5950 LoadVT.getVectorNumElements() + 1);
5953 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
5954 // Truncate to v2i16/v4i16.
5955 EVT IntLoadVT = FittingLoadVT.changeTypeToInteger();
5957 // Workaround legalizer not scalarizing truncate after vector op
5958 // legalization but not creating intermediate vector trunc.
5959 SmallVector<SDValue, 4> Elts;
5960 DAG.ExtractVectorElements(Result, Elts);
5961 for (SDValue &Elt : Elts)
5962 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
5964 // Pad illegal v1i16/v3fi6 to v4i16
5965 if ((LoadVT.getVectorNumElements() % 2) == 1)
5966 Elts.push_back(DAG.getUNDEF(MVT::i16));
5968 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
5970 // Bitcast to original type (v2f16/v4f16).
5971 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
5974 // Cast back to the original packed type.
5975 return DAG.getNode(ISD::BITCAST, DL, FittingLoadVT, Result);
5978 SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode, MemSDNode *M,
5979 SelectionDAG &DAG,
5980 ArrayRef<SDValue> Ops,
5981 bool IsIntrinsic) const {
5982 SDLoc DL(M);
5984 bool Unpacked = Subtarget->hasUnpackedD16VMem();
5985 EVT LoadVT = M->getValueType(0);
5987 EVT EquivLoadVT = LoadVT;
5988 if (LoadVT.isVector()) {
5989 if (Unpacked) {
5990 EquivLoadVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
5991 LoadVT.getVectorNumElements());
5992 } else if ((LoadVT.getVectorNumElements() % 2) == 1) {
5993 // Widen v3f16 to legal type
5994 EquivLoadVT =
5995 EVT::getVectorVT(*DAG.getContext(), LoadVT.getVectorElementType(),
5996 LoadVT.getVectorNumElements() + 1);
6000 // Change from v4f16/v2f16 to EquivLoadVT.
6001 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
6003 SDValue Load = DAG.getMemIntrinsicNode(
6004 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL, VTList, Ops,
6005 M->getMemoryVT(), M->getMemOperand());
6007 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
6009 return DAG.getMergeValues({Adjusted, Load.getValue(1)}, DL);
6012 SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
6013 SelectionDAG &DAG,
6014 ArrayRef<SDValue> Ops) const {
6015 SDLoc DL(M);
6016 EVT LoadVT = M->getValueType(0);
6017 EVT EltType = LoadVT.getScalarType();
6018 EVT IntVT = LoadVT.changeTypeToInteger();
6020 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
6022 assert(M->getNumValues() == 2 || M->getNumValues() == 3);
6023 bool IsTFE = M->getNumValues() == 3;
6025 unsigned Opc = IsFormat ? (IsTFE ? AMDGPUISD::BUFFER_LOAD_FORMAT_TFE
6026 : AMDGPUISD::BUFFER_LOAD_FORMAT)
6027 : IsTFE ? AMDGPUISD::BUFFER_LOAD_TFE
6028 : AMDGPUISD::BUFFER_LOAD;
6030 if (IsD16) {
6031 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
6034 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
6035 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
6036 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M->getMemOperand(),
6037 IsTFE);
6039 if (isTypeLegal(LoadVT)) {
6040 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
6041 M->getMemOperand(), DAG);
6044 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
6045 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
6046 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
6047 M->getMemOperand(), DAG);
6048 return DAG.getMergeValues(
6049 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
6050 DL);
6053 static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI, SDNode *N,
6054 SelectionDAG &DAG) {
6055 EVT VT = N->getValueType(0);
6056 unsigned CondCode = N->getConstantOperandVal(3);
6057 if (!ICmpInst::isIntPredicate(static_cast<ICmpInst::Predicate>(CondCode)))
6058 return DAG.getUNDEF(VT);
6060 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
6062 SDValue LHS = N->getOperand(1);
6063 SDValue RHS = N->getOperand(2);
6065 SDLoc DL(N);
6067 EVT CmpVT = LHS.getValueType();
6068 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
6069 unsigned PromoteOp =
6070 ICmpInst::isSigned(IcInput) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6071 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
6072 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
6075 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
6077 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
6078 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
6080 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
6081 DAG.getCondCode(CCOpcode));
6082 if (VT.bitsEq(CCVT))
6083 return SetCC;
6084 return DAG.getZExtOrTrunc(SetCC, DL, VT);
6087 static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI, SDNode *N,
6088 SelectionDAG &DAG) {
6089 EVT VT = N->getValueType(0);
6091 unsigned CondCode = N->getConstantOperandVal(3);
6092 if (!FCmpInst::isFPPredicate(static_cast<FCmpInst::Predicate>(CondCode)))
6093 return DAG.getUNDEF(VT);
6095 SDValue Src0 = N->getOperand(1);
6096 SDValue Src1 = N->getOperand(2);
6097 EVT CmpVT = Src0.getValueType();
6098 SDLoc SL(N);
6100 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
6101 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
6102 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
6105 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
6106 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
6107 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
6108 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
6109 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0, Src1,
6110 DAG.getCondCode(CCOpcode));
6111 if (VT.bitsEq(CCVT))
6112 return SetCC;
6113 return DAG.getZExtOrTrunc(SetCC, SL, VT);
6116 static SDValue lowerBALLOTIntrinsic(const SITargetLowering &TLI, SDNode *N,
6117 SelectionDAG &DAG) {
6118 EVT VT = N->getValueType(0);
6119 SDValue Src = N->getOperand(1);
6120 SDLoc SL(N);
6122 if (Src.getOpcode() == ISD::SETCC) {
6123 // (ballot (ISD::SETCC ...)) -> (AMDGPUISD::SETCC ...)
6124 return DAG.getNode(AMDGPUISD::SETCC, SL, VT, Src.getOperand(0),
6125 Src.getOperand(1), Src.getOperand(2));
6127 if (const ConstantSDNode *Arg = dyn_cast<ConstantSDNode>(Src)) {
6128 // (ballot 0) -> 0
6129 if (Arg->isZero())
6130 return DAG.getConstant(0, SL, VT);
6132 // (ballot 1) -> EXEC/EXEC_LO
6133 if (Arg->isOne()) {
6134 Register Exec;
6135 if (VT.getScalarSizeInBits() == 32)
6136 Exec = AMDGPU::EXEC_LO;
6137 else if (VT.getScalarSizeInBits() == 64)
6138 Exec = AMDGPU::EXEC;
6139 else
6140 return SDValue();
6142 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, Exec, VT);
6146 // (ballot (i1 $src)) -> (AMDGPUISD::SETCC (i32 (zext $src)) (i32 0)
6147 // ISD::SETNE)
6148 return DAG.getNode(
6149 AMDGPUISD::SETCC, SL, VT, DAG.getZExtOrTrunc(Src, SL, MVT::i32),
6150 DAG.getConstant(0, SL, MVT::i32), DAG.getCondCode(ISD::SETNE));
6153 static SDValue lowerLaneOp(const SITargetLowering &TLI, SDNode *N,
6154 SelectionDAG &DAG) {
6155 EVT VT = N->getValueType(0);
6156 unsigned ValSize = VT.getSizeInBits();
6157 unsigned IID = N->getConstantOperandVal(0);
6158 bool IsPermLane16 = IID == Intrinsic::amdgcn_permlane16 ||
6159 IID == Intrinsic::amdgcn_permlanex16;
6160 bool IsSetInactive = IID == Intrinsic::amdgcn_set_inactive ||
6161 IID == Intrinsic::amdgcn_set_inactive_chain_arg;
6162 SDLoc SL(N);
6163 MVT IntVT = MVT::getIntegerVT(ValSize);
6164 const GCNSubtarget *ST = TLI.getSubtarget();
6165 unsigned SplitSize = 32;
6166 if (IID == Intrinsic::amdgcn_update_dpp && (ValSize % 64 == 0) &&
6167 ST->hasDPALU_DPP() &&
6168 AMDGPU::isLegalDPALU_DPPControl(N->getConstantOperandVal(3)))
6169 SplitSize = 64;
6171 auto createLaneOp = [&DAG, &SL, N, IID](SDValue Src0, SDValue Src1,
6172 SDValue Src2, MVT ValT) -> SDValue {
6173 SmallVector<SDValue, 8> Operands;
6174 switch (IID) {
6175 case Intrinsic::amdgcn_permlane16:
6176 case Intrinsic::amdgcn_permlanex16:
6177 case Intrinsic::amdgcn_update_dpp:
6178 Operands.push_back(N->getOperand(6));
6179 Operands.push_back(N->getOperand(5));
6180 Operands.push_back(N->getOperand(4));
6181 [[fallthrough]];
6182 case Intrinsic::amdgcn_writelane:
6183 Operands.push_back(Src2);
6184 [[fallthrough]];
6185 case Intrinsic::amdgcn_readlane:
6186 case Intrinsic::amdgcn_set_inactive:
6187 case Intrinsic::amdgcn_set_inactive_chain_arg:
6188 case Intrinsic::amdgcn_mov_dpp8:
6189 Operands.push_back(Src1);
6190 [[fallthrough]];
6191 case Intrinsic::amdgcn_readfirstlane:
6192 case Intrinsic::amdgcn_permlane64:
6193 Operands.push_back(Src0);
6194 break;
6195 default:
6196 llvm_unreachable("unhandled lane op");
6199 Operands.push_back(DAG.getTargetConstant(IID, SL, MVT::i32));
6200 std::reverse(Operands.begin(), Operands.end());
6202 if (SDNode *GL = N->getGluedNode()) {
6203 assert(GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
6204 GL = GL->getOperand(0).getNode();
6205 Operands.push_back(DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue,
6206 SDValue(GL, 0)));
6209 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, ValT, Operands);
6212 SDValue Src0 = N->getOperand(1);
6213 SDValue Src1, Src2;
6214 if (IID == Intrinsic::amdgcn_readlane || IID == Intrinsic::amdgcn_writelane ||
6215 IID == Intrinsic::amdgcn_mov_dpp8 ||
6216 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
6217 Src1 = N->getOperand(2);
6218 if (IID == Intrinsic::amdgcn_writelane ||
6219 IID == Intrinsic::amdgcn_update_dpp || IsPermLane16)
6220 Src2 = N->getOperand(3);
6223 if (ValSize == SplitSize) {
6224 // Already legal
6225 return SDValue();
6228 if (ValSize < 32) {
6229 bool IsFloat = VT.isFloatingPoint();
6230 Src0 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src0) : Src0,
6231 SL, MVT::i32);
6233 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16) {
6234 Src1 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src1) : Src1,
6235 SL, MVT::i32);
6238 if (IID == Intrinsic::amdgcn_writelane) {
6239 Src2 = DAG.getAnyExtOrTrunc(IsFloat ? DAG.getBitcast(IntVT, Src2) : Src2,
6240 SL, MVT::i32);
6243 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, MVT::i32);
6244 SDValue Trunc = DAG.getAnyExtOrTrunc(LaneOp, SL, IntVT);
6245 return IsFloat ? DAG.getBitcast(VT, Trunc) : Trunc;
6248 if (ValSize % SplitSize != 0)
6249 return SDValue();
6251 auto unrollLaneOp = [&DAG, &SL](SDNode *N) -> SDValue {
6252 EVT VT = N->getValueType(0);
6253 unsigned NE = VT.getVectorNumElements();
6254 EVT EltVT = VT.getVectorElementType();
6255 SmallVector<SDValue, 8> Scalars;
6256 unsigned NumOperands = N->getNumOperands();
6257 SmallVector<SDValue, 4> Operands(NumOperands);
6258 SDNode *GL = N->getGluedNode();
6260 // only handle convergencectrl_glue
6261 assert(!GL || GL->getOpcode() == ISD::CONVERGENCECTRL_GLUE);
6263 for (unsigned i = 0; i != NE; ++i) {
6264 for (unsigned j = 0, e = GL ? NumOperands - 1 : NumOperands; j != e;
6265 ++j) {
6266 SDValue Operand = N->getOperand(j);
6267 EVT OperandVT = Operand.getValueType();
6268 if (OperandVT.isVector()) {
6269 // A vector operand; extract a single element.
6270 EVT OperandEltVT = OperandVT.getVectorElementType();
6271 Operands[j] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, OperandEltVT,
6272 Operand, DAG.getVectorIdxConstant(i, SL));
6273 } else {
6274 // A scalar operand; just use it as is.
6275 Operands[j] = Operand;
6279 if (GL)
6280 Operands[NumOperands - 1] =
6281 DAG.getNode(ISD::CONVERGENCECTRL_GLUE, SL, MVT::Glue,
6282 SDValue(GL->getOperand(0).getNode(), 0));
6284 Scalars.push_back(DAG.getNode(N->getOpcode(), SL, EltVT, Operands));
6287 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NE);
6288 return DAG.getBuildVector(VecVT, SL, Scalars);
6291 if (VT.isVector()) {
6292 switch (MVT::SimpleValueType EltTy =
6293 VT.getVectorElementType().getSimpleVT().SimpleTy) {
6294 case MVT::i32:
6295 case MVT::f32:
6296 if (SplitSize == 32) {
6297 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VT.getSimpleVT());
6298 return unrollLaneOp(LaneOp.getNode());
6300 [[fallthrough]];
6301 case MVT::i16:
6302 case MVT::f16:
6303 case MVT::bf16: {
6304 unsigned SubVecNumElt =
6305 SplitSize / VT.getVectorElementType().getSizeInBits();
6306 MVT SubVecVT = MVT::getVectorVT(EltTy, SubVecNumElt);
6307 SmallVector<SDValue, 4> Pieces;
6308 SDValue Src0SubVec, Src1SubVec, Src2SubVec;
6309 for (unsigned i = 0, EltIdx = 0; i < ValSize / SplitSize; i++) {
6310 Src0SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src0,
6311 DAG.getConstant(EltIdx, SL, MVT::i32));
6313 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive ||
6314 IsPermLane16)
6315 Src1SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src1,
6316 DAG.getConstant(EltIdx, SL, MVT::i32));
6318 if (IID == Intrinsic::amdgcn_writelane)
6319 Src2SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, SubVecVT, Src2,
6320 DAG.getConstant(EltIdx, SL, MVT::i32));
6322 Pieces.push_back(
6323 IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16
6324 ? createLaneOp(Src0SubVec, Src1SubVec, Src2, SubVecVT)
6325 : createLaneOp(Src0SubVec, Src1, Src2SubVec, SubVecVT));
6326 EltIdx += SubVecNumElt;
6328 return DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, Pieces);
6330 default:
6331 // Handle all other cases by bitcasting to i32 vectors
6332 break;
6336 MVT VecVT =
6337 MVT::getVectorVT(MVT::getIntegerVT(SplitSize), ValSize / SplitSize);
6338 Src0 = DAG.getBitcast(VecVT, Src0);
6340 if (IID == Intrinsic::amdgcn_update_dpp || IsSetInactive || IsPermLane16)
6341 Src1 = DAG.getBitcast(VecVT, Src1);
6343 if (IID == Intrinsic::amdgcn_writelane)
6344 Src2 = DAG.getBitcast(VecVT, Src2);
6346 SDValue LaneOp = createLaneOp(Src0, Src1, Src2, VecVT);
6347 SDValue UnrolledLaneOp = unrollLaneOp(LaneOp.getNode());
6348 return DAG.getBitcast(VT, UnrolledLaneOp);
6351 void SITargetLowering::ReplaceNodeResults(SDNode *N,
6352 SmallVectorImpl<SDValue> &Results,
6353 SelectionDAG &DAG) const {
6354 switch (N->getOpcode()) {
6355 case ISD::INSERT_VECTOR_ELT: {
6356 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
6357 Results.push_back(Res);
6358 return;
6360 case ISD::EXTRACT_VECTOR_ELT: {
6361 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
6362 Results.push_back(Res);
6363 return;
6365 case ISD::INTRINSIC_WO_CHAIN: {
6366 unsigned IID = N->getConstantOperandVal(0);
6367 switch (IID) {
6368 case Intrinsic::amdgcn_make_buffer_rsrc:
6369 Results.push_back(lowerPointerAsRsrcIntrin(N, DAG));
6370 return;
6371 case Intrinsic::amdgcn_cvt_pkrtz: {
6372 SDValue Src0 = N->getOperand(1);
6373 SDValue Src1 = N->getOperand(2);
6374 SDLoc SL(N);
6375 SDValue Cvt =
6376 DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32, Src0, Src1);
6377 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
6378 return;
6380 case Intrinsic::amdgcn_cvt_pknorm_i16:
6381 case Intrinsic::amdgcn_cvt_pknorm_u16:
6382 case Intrinsic::amdgcn_cvt_pk_i16:
6383 case Intrinsic::amdgcn_cvt_pk_u16: {
6384 SDValue Src0 = N->getOperand(1);
6385 SDValue Src1 = N->getOperand(2);
6386 SDLoc SL(N);
6387 unsigned Opcode;
6389 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
6390 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6391 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
6392 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6393 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
6394 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6395 else
6396 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6398 EVT VT = N->getValueType(0);
6399 if (isTypeLegal(VT))
6400 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
6401 else {
6402 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
6403 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
6405 return;
6407 case Intrinsic::amdgcn_s_buffer_load: {
6408 // Lower llvm.amdgcn.s.buffer.load.(i8, u8) intrinsics. First, we generate
6409 // s_buffer_load_u8 for signed and unsigned load instructions. Next, DAG
6410 // combiner tries to merge the s_buffer_load_u8 with a sext instruction
6411 // (performSignExtendInRegCombine()) and it replaces s_buffer_load_u8 with
6412 // s_buffer_load_i8.
6413 if (!Subtarget->hasScalarSubwordLoads())
6414 return;
6415 SDValue Op = SDValue(N, 0);
6416 SDValue Rsrc = Op.getOperand(1);
6417 SDValue Offset = Op.getOperand(2);
6418 SDValue CachePolicy = Op.getOperand(3);
6419 EVT VT = Op.getValueType();
6420 assert(VT == MVT::i8 && "Expected 8-bit s_buffer_load intrinsics.\n");
6421 SDLoc DL(Op);
6422 MachineFunction &MF = DAG.getMachineFunction();
6423 const DataLayout &DataLayout = DAG.getDataLayout();
6424 Align Alignment =
6425 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
6426 MachineMemOperand *MMO = MF.getMachineMemOperand(
6427 MachinePointerInfo(),
6428 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
6429 MachineMemOperand::MOInvariant,
6430 VT.getStoreSize(), Alignment);
6431 SDValue LoadVal;
6432 if (!Offset->isDivergent()) {
6433 SDValue Ops[] = {Rsrc, // source register
6434 Offset, CachePolicy};
6435 SDValue BufferLoad =
6436 DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_UBYTE, DL,
6437 DAG.getVTList(MVT::i32), Ops, VT, MMO);
6438 LoadVal = DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
6439 } else {
6440 SDValue Ops[] = {
6441 DAG.getEntryNode(), // Chain
6442 Rsrc, // rsrc
6443 DAG.getConstant(0, DL, MVT::i32), // vindex
6444 {}, // voffset
6445 {}, // soffset
6446 {}, // offset
6447 CachePolicy, // cachepolicy
6448 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
6450 setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
6451 LoadVal = handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
6453 Results.push_back(LoadVal);
6454 return;
6457 break;
6459 case ISD::INTRINSIC_W_CHAIN: {
6460 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
6461 if (Res.getOpcode() == ISD::MERGE_VALUES) {
6462 // FIXME: Hacky
6463 for (unsigned I = 0; I < Res.getNumOperands(); I++) {
6464 Results.push_back(Res.getOperand(I));
6466 } else {
6467 Results.push_back(Res);
6468 Results.push_back(Res.getValue(1));
6470 return;
6473 break;
6475 case ISD::SELECT: {
6476 SDLoc SL(N);
6477 EVT VT = N->getValueType(0);
6478 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
6479 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
6480 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
6482 EVT SelectVT = NewVT;
6483 if (NewVT.bitsLT(MVT::i32)) {
6484 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
6485 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
6486 SelectVT = MVT::i32;
6489 SDValue NewSelect =
6490 DAG.getNode(ISD::SELECT, SL, SelectVT, N->getOperand(0), LHS, RHS);
6492 if (NewVT != SelectVT)
6493 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
6494 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
6495 return;
6497 case ISD::FNEG: {
6498 if (N->getValueType(0) != MVT::v2f16)
6499 break;
6501 SDLoc SL(N);
6502 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
6504 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32, BC,
6505 DAG.getConstant(0x80008000, SL, MVT::i32));
6506 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
6507 return;
6509 case ISD::FABS: {
6510 if (N->getValueType(0) != MVT::v2f16)
6511 break;
6513 SDLoc SL(N);
6514 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
6516 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32, BC,
6517 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
6518 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
6519 return;
6521 case ISD::FSQRT: {
6522 if (N->getValueType(0) != MVT::f16)
6523 break;
6524 Results.push_back(lowerFSQRTF16(SDValue(N, 0), DAG));
6525 break;
6527 default:
6528 AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
6529 break;
6533 /// Helper function for LowerBRCOND
6534 static SDNode *findUser(SDValue Value, unsigned Opcode) {
6536 SDNode *Parent = Value.getNode();
6537 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
6538 I != E; ++I) {
6540 if (I.getUse().get() != Value)
6541 continue;
6543 if (I->getOpcode() == Opcode)
6544 return *I;
6546 return nullptr;
6549 unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
6550 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
6551 switch (Intr->getConstantOperandVal(1)) {
6552 case Intrinsic::amdgcn_if:
6553 return AMDGPUISD::IF;
6554 case Intrinsic::amdgcn_else:
6555 return AMDGPUISD::ELSE;
6556 case Intrinsic::amdgcn_loop:
6557 return AMDGPUISD::LOOP;
6558 case Intrinsic::amdgcn_end_cf:
6559 llvm_unreachable("should not occur");
6560 default:
6561 return 0;
6565 // break, if_break, else_break are all only used as inputs to loop, not
6566 // directly as branch conditions.
6567 return 0;
6570 bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
6571 const Triple &TT = getTargetMachine().getTargetTriple();
6572 return (GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
6573 GV->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
6574 AMDGPU::shouldEmitConstantsToTextSection(TT);
6577 bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
6578 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS())
6579 return false;
6581 // FIXME: Either avoid relying on address space here or change the default
6582 // address space for functions to avoid the explicit check.
6583 return (GV->getValueType()->isFunctionTy() ||
6584 !isNonGlobalAddrSpace(GV->getAddressSpace())) &&
6585 !shouldEmitFixup(GV) && !getTargetMachine().shouldAssumeDSOLocal(GV);
6588 bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
6589 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
6592 bool SITargetLowering::shouldUseLDSConstAddress(const GlobalValue *GV) const {
6593 if (!GV->hasExternalLinkage())
6594 return true;
6596 const auto OS = getTargetMachine().getTargetTriple().getOS();
6597 return OS == Triple::AMDHSA || OS == Triple::AMDPAL;
6600 /// This transforms the control flow intrinsics to get the branch destination as
6601 /// last parameter, also switches branch target with BR if the need arise
6602 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const {
6603 SDLoc DL(BRCOND);
6605 SDNode *Intr = BRCOND.getOperand(1).getNode();
6606 SDValue Target = BRCOND.getOperand(2);
6607 SDNode *BR = nullptr;
6608 SDNode *SetCC = nullptr;
6610 if (Intr->getOpcode() == ISD::SETCC) {
6611 // As long as we negate the condition everything is fine
6612 SetCC = Intr;
6613 Intr = SetCC->getOperand(0).getNode();
6615 } else {
6616 // Get the target from BR if we don't negate the condition
6617 BR = findUser(BRCOND, ISD::BR);
6618 assert(BR && "brcond missing unconditional branch user");
6619 Target = BR->getOperand(1);
6622 unsigned CFNode = isCFIntrinsic(Intr);
6623 if (CFNode == 0) {
6624 // This is a uniform branch so we don't need to legalize.
6625 return BRCOND;
6628 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
6629 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
6631 assert(!SetCC ||
6632 (SetCC->getConstantOperandVal(1) == 1 &&
6633 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
6634 ISD::SETNE));
6636 // operands of the new intrinsic call
6637 SmallVector<SDValue, 4> Ops;
6638 if (HaveChain)
6639 Ops.push_back(BRCOND.getOperand(0));
6641 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
6642 Ops.push_back(Target);
6644 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
6646 // build the new intrinsic call
6647 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
6649 if (!HaveChain) {
6650 SDValue Ops[] = {SDValue(Result, 0), BRCOND.getOperand(0)};
6652 Result = DAG.getMergeValues(Ops, DL).getNode();
6655 if (BR) {
6656 // Give the branch instruction our target
6657 SDValue Ops[] = {BR->getOperand(0), BRCOND.getOperand(2)};
6658 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
6659 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
6662 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
6664 // Copy the intrinsic results to registers
6665 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
6666 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
6667 if (!CopyToReg)
6668 continue;
6670 Chain = DAG.getCopyToReg(Chain, DL, CopyToReg->getOperand(1),
6671 SDValue(Result, i - 1), SDValue());
6673 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
6676 // Remove the old intrinsic from the chain
6677 DAG.ReplaceAllUsesOfValueWith(SDValue(Intr, Intr->getNumValues() - 1),
6678 Intr->getOperand(0));
6680 return Chain;
6683 SDValue SITargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
6684 MVT VT = Op.getSimpleValueType();
6685 SDLoc DL(Op);
6686 // Checking the depth
6687 if (Op.getConstantOperandVal(0) != 0)
6688 return DAG.getConstant(0, DL, VT);
6690 MachineFunction &MF = DAG.getMachineFunction();
6691 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
6692 // Check for kernel and shader functions
6693 if (Info->isEntryFunction())
6694 return DAG.getConstant(0, DL, VT);
6696 MachineFrameInfo &MFI = MF.getFrameInfo();
6697 // There is a call to @llvm.returnaddress in this function
6698 MFI.setReturnAddressIsTaken(true);
6700 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
6701 // Get the return address reg and mark it as an implicit live-in
6702 Register Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF),
6703 getRegClassFor(VT, Op.getNode()->isDivergent()));
6705 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
6708 SDValue SITargetLowering::getFPExtOrFPRound(SelectionDAG &DAG, SDValue Op,
6709 const SDLoc &DL, EVT VT) const {
6710 return Op.getValueType().bitsLE(VT)
6711 ? DAG.getNode(ISD::FP_EXTEND, DL, VT, Op)
6712 : DAG.getNode(ISD::FP_ROUND, DL, VT, Op,
6713 DAG.getTargetConstant(0, DL, MVT::i32));
6716 SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
6717 assert(Op.getValueType() == MVT::f16 &&
6718 "Do not know how to custom lower FP_ROUND for non-f16 type");
6720 SDValue Src = Op.getOperand(0);
6721 EVT SrcVT = Src.getValueType();
6722 if (SrcVT != MVT::f64)
6723 return Op;
6725 // TODO: Handle strictfp
6726 if (Op.getOpcode() != ISD::FP_ROUND)
6727 return Op;
6729 SDLoc DL(Op);
6731 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
6732 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
6733 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
6736 SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
6737 SelectionDAG &DAG) const {
6738 EVT VT = Op.getValueType();
6739 const MachineFunction &MF = DAG.getMachineFunction();
6740 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
6741 bool IsIEEEMode = Info->getMode().IEEE;
6743 // FIXME: Assert during selection that this is only selected for
6744 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
6745 // mode functions, but this happens to be OK since it's only done in cases
6746 // where there is known no sNaN.
6747 if (IsIEEEMode)
6748 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
6750 if (VT == MVT::v4f16 || VT == MVT::v8f16 || VT == MVT::v16f16 ||
6751 VT == MVT::v16bf16)
6752 return splitBinaryVectorOp(Op, DAG);
6753 return Op;
6756 SDValue SITargetLowering::lowerFLDEXP(SDValue Op, SelectionDAG &DAG) const {
6757 bool IsStrict = Op.getOpcode() == ISD::STRICT_FLDEXP;
6758 EVT VT = Op.getValueType();
6759 assert(VT == MVT::f16);
6761 SDValue Exp = Op.getOperand(IsStrict ? 2 : 1);
6762 EVT ExpVT = Exp.getValueType();
6763 if (ExpVT == MVT::i16)
6764 return Op;
6766 SDLoc DL(Op);
6768 // Correct the exponent type for f16 to i16.
6769 // Clamp the range of the exponent to the instruction's range.
6771 // TODO: This should be a generic narrowing legalization, and can easily be
6772 // for GlobalISel.
6774 SDValue MinExp = DAG.getConstant(minIntN(16), DL, ExpVT);
6775 SDValue ClampMin = DAG.getNode(ISD::SMAX, DL, ExpVT, Exp, MinExp);
6777 SDValue MaxExp = DAG.getConstant(maxIntN(16), DL, ExpVT);
6778 SDValue Clamp = DAG.getNode(ISD::SMIN, DL, ExpVT, ClampMin, MaxExp);
6780 SDValue TruncExp = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Clamp);
6782 if (IsStrict) {
6783 return DAG.getNode(ISD::STRICT_FLDEXP, DL, {VT, MVT::Other},
6784 {Op.getOperand(0), Op.getOperand(1), TruncExp});
6787 return DAG.getNode(ISD::FLDEXP, DL, VT, Op.getOperand(0), TruncExp);
6790 static unsigned getExtOpcodeForPromotedOp(SDValue Op) {
6791 switch (Op->getOpcode()) {
6792 case ISD::SRA:
6793 case ISD::SMIN:
6794 case ISD::SMAX:
6795 return ISD::SIGN_EXTEND;
6796 case ISD::SRL:
6797 case ISD::UMIN:
6798 case ISD::UMAX:
6799 return ISD::ZERO_EXTEND;
6800 case ISD::ADD:
6801 case ISD::SUB:
6802 case ISD::AND:
6803 case ISD::OR:
6804 case ISD::XOR:
6805 case ISD::SHL:
6806 case ISD::SELECT:
6807 case ISD::MUL:
6808 // operation result won't be influenced by garbage high bits.
6809 // TODO: are all of those cases correct, and are there more?
6810 return ISD::ANY_EXTEND;
6811 case ISD::SETCC: {
6812 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6813 return ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6815 default:
6816 llvm_unreachable("unexpected opcode!");
6820 SDValue SITargetLowering::promoteUniformOpToI32(SDValue Op,
6821 DAGCombinerInfo &DCI) const {
6822 const unsigned Opc = Op.getOpcode();
6823 assert(Opc == ISD::ADD || Opc == ISD::SUB || Opc == ISD::SHL ||
6824 Opc == ISD::SRL || Opc == ISD::SRA || Opc == ISD::AND ||
6825 Opc == ISD::OR || Opc == ISD::XOR || Opc == ISD::MUL ||
6826 Opc == ISD::SETCC || Opc == ISD::SELECT || Opc == ISD::SMIN ||
6827 Opc == ISD::SMAX || Opc == ISD::UMIN || Opc == ISD::UMAX);
6829 EVT OpTy = (Opc != ISD::SETCC) ? Op.getValueType()
6830 : Op->getOperand(0).getValueType();
6831 auto ExtTy = OpTy.changeElementType(MVT::i32);
6833 if (DCI.isBeforeLegalizeOps() ||
6834 isNarrowingProfitable(Op.getNode(), ExtTy, OpTy))
6835 return SDValue();
6837 auto &DAG = DCI.DAG;
6839 SDLoc DL(Op);
6840 SDValue LHS;
6841 SDValue RHS;
6842 if (Opc == ISD::SELECT) {
6843 LHS = Op->getOperand(1);
6844 RHS = Op->getOperand(2);
6845 } else {
6846 LHS = Op->getOperand(0);
6847 RHS = Op->getOperand(1);
6850 const unsigned ExtOp = getExtOpcodeForPromotedOp(Op);
6851 LHS = DAG.getNode(ExtOp, DL, ExtTy, {LHS});
6853 // Special case: for shifts, the RHS always needs a zext.
6854 if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA)
6855 RHS = DAG.getNode(ISD::ZERO_EXTEND, DL, ExtTy, {RHS});
6856 else
6857 RHS = DAG.getNode(ExtOp, DL, ExtTy, {RHS});
6859 // setcc always return i1/i1 vec so no need to truncate after.
6860 if (Opc == ISD::SETCC) {
6861 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6862 return DAG.getSetCC(DL, Op.getValueType(), LHS, RHS, CC);
6865 // For other ops, we extend the operation's return type as well so we need to
6866 // truncate back to the original type.
6867 SDValue NewVal;
6868 if (Opc == ISD::SELECT)
6869 NewVal = DAG.getNode(ISD::SELECT, DL, ExtTy, {Op->getOperand(0), LHS, RHS});
6870 else
6871 NewVal = DAG.getNode(Opc, DL, ExtTy, {LHS, RHS});
6873 return DAG.getZExtOrTrunc(NewVal, DL, OpTy);
6876 // Custom lowering for vector multiplications and s_mul_u64.
6877 SDValue SITargetLowering::lowerMUL(SDValue Op, SelectionDAG &DAG) const {
6878 EVT VT = Op.getValueType();
6880 // Split vector operands.
6881 if (VT.isVector())
6882 return splitBinaryVectorOp(Op, DAG);
6884 assert(VT == MVT::i64 && "The following code is a special for s_mul_u64");
6886 // There are four ways to lower s_mul_u64:
6888 // 1. If all the operands are uniform, then we lower it as it is.
6890 // 2. If the operands are divergent, then we have to split s_mul_u64 in 32-bit
6891 // multiplications because there is not a vector equivalent of s_mul_u64.
6893 // 3. If the cost model decides that it is more efficient to use vector
6894 // registers, then we have to split s_mul_u64 in 32-bit multiplications.
6895 // This happens in splitScalarSMULU64() in SIInstrInfo.cpp .
6897 // 4. If the cost model decides to use vector registers and both of the
6898 // operands are zero-extended/sign-extended from 32-bits, then we split the
6899 // s_mul_u64 in two 32-bit multiplications. The problem is that it is not
6900 // possible to check if the operands are zero-extended or sign-extended in
6901 // SIInstrInfo.cpp. For this reason, here, we replace s_mul_u64 with
6902 // s_mul_u64_u32_pseudo if both operands are zero-extended and we replace
6903 // s_mul_u64 with s_mul_i64_i32_pseudo if both operands are sign-extended.
6904 // If the cost model decides that we have to use vector registers, then
6905 // splitScalarSMulPseudo() (in SIInstrInfo.cpp) split s_mul_u64_u32/
6906 // s_mul_i64_i32_pseudo in two vector multiplications. If the cost model
6907 // decides that we should use scalar registers, then s_mul_u64_u32_pseudo/
6908 // s_mul_i64_i32_pseudo is lowered as s_mul_u64 in expandPostRAPseudo() in
6909 // SIInstrInfo.cpp .
6911 if (Op->isDivergent())
6912 return SDValue();
6914 SDValue Op0 = Op.getOperand(0);
6915 SDValue Op1 = Op.getOperand(1);
6916 // If all the operands are zero-enteted to 32-bits, then we replace s_mul_u64
6917 // with s_mul_u64_u32_pseudo. If all the operands are sign-extended to
6918 // 32-bits, then we replace s_mul_u64 with s_mul_i64_i32_pseudo.
6919 KnownBits Op0KnownBits = DAG.computeKnownBits(Op0);
6920 unsigned Op0LeadingZeros = Op0KnownBits.countMinLeadingZeros();
6921 KnownBits Op1KnownBits = DAG.computeKnownBits(Op1);
6922 unsigned Op1LeadingZeros = Op1KnownBits.countMinLeadingZeros();
6923 SDLoc SL(Op);
6924 if (Op0LeadingZeros >= 32 && Op1LeadingZeros >= 32)
6925 return SDValue(
6926 DAG.getMachineNode(AMDGPU::S_MUL_U64_U32_PSEUDO, SL, VT, Op0, Op1), 0);
6927 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op0);
6928 unsigned Op1SignBits = DAG.ComputeNumSignBits(Op1);
6929 if (Op0SignBits >= 33 && Op1SignBits >= 33)
6930 return SDValue(
6931 DAG.getMachineNode(AMDGPU::S_MUL_I64_I32_PSEUDO, SL, VT, Op0, Op1), 0);
6932 // If all the operands are uniform, then we lower s_mul_u64 as it is.
6933 return Op;
6936 SDValue SITargetLowering::lowerXMULO(SDValue Op, SelectionDAG &DAG) const {
6937 EVT VT = Op.getValueType();
6938 SDLoc SL(Op);
6939 SDValue LHS = Op.getOperand(0);
6940 SDValue RHS = Op.getOperand(1);
6941 bool isSigned = Op.getOpcode() == ISD::SMULO;
6943 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6944 const APInt &C = RHSC->getAPIntValue();
6945 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6946 if (C.isPowerOf2()) {
6947 // smulo(x, signed_min) is same as umulo(x, signed_min).
6948 bool UseArithShift = isSigned && !C.isMinSignedValue();
6949 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), SL, MVT::i32);
6950 SDValue Result = DAG.getNode(ISD::SHL, SL, VT, LHS, ShiftAmt);
6951 SDValue Overflow =
6952 DAG.getSetCC(SL, MVT::i1,
6953 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, SL, VT,
6954 Result, ShiftAmt),
6955 LHS, ISD::SETNE);
6956 return DAG.getMergeValues({Result, Overflow}, SL);
6960 SDValue Result = DAG.getNode(ISD::MUL, SL, VT, LHS, RHS);
6961 SDValue Top =
6962 DAG.getNode(isSigned ? ISD::MULHS : ISD::MULHU, SL, VT, LHS, RHS);
6964 SDValue Sign = isSigned
6965 ? DAG.getNode(ISD::SRA, SL, VT, Result,
6966 DAG.getConstant(VT.getScalarSizeInBits() - 1,
6967 SL, MVT::i32))
6968 : DAG.getConstant(0, SL, VT);
6969 SDValue Overflow = DAG.getSetCC(SL, MVT::i1, Top, Sign, ISD::SETNE);
6971 return DAG.getMergeValues({Result, Overflow}, SL);
6974 SDValue SITargetLowering::lowerXMUL_LOHI(SDValue Op, SelectionDAG &DAG) const {
6975 if (Op->isDivergent()) {
6976 // Select to V_MAD_[IU]64_[IU]32.
6977 return Op;
6979 if (Subtarget->hasSMulHi()) {
6980 // Expand to S_MUL_I32 + S_MUL_HI_[IU]32.
6981 return SDValue();
6983 // The multiply is uniform but we would have to use V_MUL_HI_[IU]32 to
6984 // calculate the high part, so we might as well do the whole thing with
6985 // V_MAD_[IU]64_[IU]32.
6986 return Op;
6989 SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
6990 if (!Subtarget->isTrapHandlerEnabled() ||
6991 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
6992 return lowerTrapEndpgm(Op, DAG);
6994 return Subtarget->supportsGetDoorbellID() ? lowerTrapHsa(Op, DAG)
6995 : lowerTrapHsaQueuePtr(Op, DAG);
6998 SDValue SITargetLowering::lowerTrapEndpgm(SDValue Op, SelectionDAG &DAG) const {
6999 SDLoc SL(Op);
7000 SDValue Chain = Op.getOperand(0);
7001 return DAG.getNode(AMDGPUISD::ENDPGM_TRAP, SL, MVT::Other, Chain);
7004 SDValue
7005 SITargetLowering::loadImplicitKernelArgument(SelectionDAG &DAG, MVT VT,
7006 const SDLoc &DL, Align Alignment,
7007 ImplicitParameter Param) const {
7008 MachineFunction &MF = DAG.getMachineFunction();
7009 uint64_t Offset = getImplicitParameterOffset(MF, Param);
7010 SDValue Ptr = lowerKernArgParameterPtr(DAG, DL, DAG.getEntryNode(), Offset);
7011 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
7012 return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, PtrInfo, Alignment,
7013 MachineMemOperand::MODereferenceable |
7014 MachineMemOperand::MOInvariant);
7017 SDValue SITargetLowering::lowerTrapHsaQueuePtr(SDValue Op,
7018 SelectionDAG &DAG) const {
7019 SDLoc SL(Op);
7020 SDValue Chain = Op.getOperand(0);
7022 SDValue QueuePtr;
7023 // For code object version 5, QueuePtr is passed through implicit kernarg.
7024 const Module *M = DAG.getMachineFunction().getFunction().getParent();
7025 if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
7026 QueuePtr =
7027 loadImplicitKernelArgument(DAG, MVT::i64, SL, Align(8), QUEUE_PTR);
7028 } else {
7029 MachineFunction &MF = DAG.getMachineFunction();
7030 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7031 Register UserSGPR = Info->getQueuePtrUserSGPR();
7033 if (UserSGPR == AMDGPU::NoRegister) {
7034 // We probably are in a function incorrectly marked with
7035 // amdgpu-no-queue-ptr. This is undefined. We don't want to delete the
7036 // trap, so just use a null pointer.
7037 QueuePtr = DAG.getConstant(0, SL, MVT::i64);
7038 } else {
7039 QueuePtr = CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR,
7040 MVT::i64);
7044 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
7045 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01, QueuePtr, SDValue());
7047 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
7048 SDValue Ops[] = {ToReg, DAG.getTargetConstant(TrapID, SL, MVT::i16), SGPR01,
7049 ToReg.getValue(1)};
7050 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
7053 SDValue SITargetLowering::lowerTrapHsa(SDValue Op, SelectionDAG &DAG) const {
7054 SDLoc SL(Op);
7055 SDValue Chain = Op.getOperand(0);
7057 // We need to simulate the 's_trap 2' instruction on targets that run in
7058 // PRIV=1 (where it is treated as a nop).
7059 if (Subtarget->hasPrivEnabledTrap2NopBug())
7060 return DAG.getNode(AMDGPUISD::SIMULATED_TRAP, SL, MVT::Other, Chain);
7062 uint64_t TrapID = static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSATrap);
7063 SDValue Ops[] = {Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16)};
7064 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
7067 SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
7068 SDLoc SL(Op);
7069 SDValue Chain = Op.getOperand(0);
7070 MachineFunction &MF = DAG.getMachineFunction();
7072 if (!Subtarget->isTrapHandlerEnabled() ||
7073 Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
7074 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
7075 "debugtrap handler not supported",
7076 Op.getDebugLoc(), DS_Warning);
7077 LLVMContext &Ctx = MF.getFunction().getContext();
7078 Ctx.diagnose(NoTrap);
7079 return Chain;
7082 uint64_t TrapID =
7083 static_cast<uint64_t>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap);
7084 SDValue Ops[] = {Chain, DAG.getTargetConstant(TrapID, SL, MVT::i16)};
7085 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
7088 SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
7089 SelectionDAG &DAG) const {
7090 if (Subtarget->hasApertureRegs()) {
7091 const unsigned ApertureRegNo = (AS == AMDGPUAS::LOCAL_ADDRESS)
7092 ? AMDGPU::SRC_SHARED_BASE
7093 : AMDGPU::SRC_PRIVATE_BASE;
7094 // Note: this feature (register) is broken. When used as a 32-bit operand,
7095 // it returns a wrong value (all zeroes?). The real value is in the upper 32
7096 // bits.
7098 // To work around the issue, directly emit a 64 bit mov from this register
7099 // then extract the high bits. Note that this shouldn't even result in a
7100 // shift being emitted and simply become a pair of registers (e.g.):
7101 // s_mov_b64 s[6:7], src_shared_base
7102 // v_mov_b32_e32 v1, s7
7104 // FIXME: It would be more natural to emit a CopyFromReg here, but then copy
7105 // coalescing would kick in and it would think it's okay to use the "HI"
7106 // subregister directly (instead of extracting the HI 32 bits) which is an
7107 // artificial (unusable) register.
7108 // Register TableGen definitions would need an overhaul to get rid of the
7109 // artificial "HI" aperture registers and prevent this kind of issue from
7110 // happening.
7111 SDNode *Mov = DAG.getMachineNode(AMDGPU::S_MOV_B64, DL, MVT::i64,
7112 DAG.getRegister(ApertureRegNo, MVT::i64));
7113 return DAG.getNode(
7114 ISD::TRUNCATE, DL, MVT::i32,
7115 DAG.getNode(ISD::SRL, DL, MVT::i64,
7116 {SDValue(Mov, 0), DAG.getConstant(32, DL, MVT::i64)}));
7119 // For code object version 5, private_base and shared_base are passed through
7120 // implicit kernargs.
7121 const Module *M = DAG.getMachineFunction().getFunction().getParent();
7122 if (AMDGPU::getAMDHSACodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5) {
7123 ImplicitParameter Param =
7124 (AS == AMDGPUAS::LOCAL_ADDRESS) ? SHARED_BASE : PRIVATE_BASE;
7125 return loadImplicitKernelArgument(DAG, MVT::i32, DL, Align(4), Param);
7128 MachineFunction &MF = DAG.getMachineFunction();
7129 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
7130 Register UserSGPR = Info->getQueuePtrUserSGPR();
7131 if (UserSGPR == AMDGPU::NoRegister) {
7132 // We probably are in a function incorrectly marked with
7133 // amdgpu-no-queue-ptr. This is undefined.
7134 return DAG.getUNDEF(MVT::i32);
7137 SDValue QueuePtr =
7138 CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
7140 // Offset into amd_queue_t for group_segment_aperture_base_hi /
7141 // private_segment_aperture_base_hi.
7142 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
7144 SDValue Ptr =
7145 DAG.getObjectPtrOffset(DL, QueuePtr, TypeSize::getFixed(StructOffset));
7147 // TODO: Use custom target PseudoSourceValue.
7148 // TODO: We should use the value from the IR intrinsic call, but it might not
7149 // be available and how do we get it?
7150 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
7151 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
7152 commonAlignment(Align(64), StructOffset),
7153 MachineMemOperand::MODereferenceable |
7154 MachineMemOperand::MOInvariant);
7157 /// Return true if the value is a known valid address, such that a null check is
7158 /// not necessary.
7159 static bool isKnownNonNull(SDValue Val, SelectionDAG &DAG,
7160 const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
7161 if (isa<FrameIndexSDNode>(Val) || isa<GlobalAddressSDNode>(Val) ||
7162 isa<BasicBlockSDNode>(Val))
7163 return true;
7165 if (auto *ConstVal = dyn_cast<ConstantSDNode>(Val))
7166 return ConstVal->getSExtValue() != TM.getNullPointerValue(AddrSpace);
7168 // TODO: Search through arithmetic, handle arguments and loads
7169 // marked nonnull.
7170 return false;
7173 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
7174 SelectionDAG &DAG) const {
7175 SDLoc SL(Op);
7177 const AMDGPUTargetMachine &TM =
7178 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
7180 unsigned DestAS, SrcAS;
7181 SDValue Src;
7182 bool IsNonNull = false;
7183 if (const auto *ASC = dyn_cast<AddrSpaceCastSDNode>(Op)) {
7184 SrcAS = ASC->getSrcAddressSpace();
7185 Src = ASC->getOperand(0);
7186 DestAS = ASC->getDestAddressSpace();
7187 } else {
7188 assert(Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
7189 Op.getConstantOperandVal(0) ==
7190 Intrinsic::amdgcn_addrspacecast_nonnull);
7191 Src = Op->getOperand(1);
7192 SrcAS = Op->getConstantOperandVal(2);
7193 DestAS = Op->getConstantOperandVal(3);
7194 IsNonNull = true;
7197 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
7199 // flat -> local/private
7200 if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
7201 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
7202 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
7203 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
7205 if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS))
7206 return Ptr;
7208 unsigned NullVal = TM.getNullPointerValue(DestAS);
7209 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
7210 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
7212 return DAG.getNode(ISD::SELECT, SL, MVT::i32, NonNull, Ptr,
7213 SegmentNullPtr);
7217 // local/private -> flat
7218 if (DestAS == AMDGPUAS::FLAT_ADDRESS) {
7219 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
7220 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
7222 SDValue Aperture = getSegmentAperture(SrcAS, SL, DAG);
7223 SDValue CvtPtr =
7224 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
7225 CvtPtr = DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr);
7227 if (IsNonNull || isKnownNonNull(Op, DAG, TM, SrcAS))
7228 return CvtPtr;
7230 unsigned NullVal = TM.getNullPointerValue(SrcAS);
7231 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
7233 SDValue NonNull =
7234 DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
7236 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull, CvtPtr,
7237 FlatNullPtr);
7241 if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7242 Op.getValueType() == MVT::i64) {
7243 const SIMachineFunctionInfo *Info =
7244 DAG.getMachineFunction().getInfo<SIMachineFunctionInfo>();
7245 SDValue Hi = DAG.getConstant(Info->get32BitAddressHighBits(), SL, MVT::i32);
7246 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Hi);
7247 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
7250 if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
7251 Src.getValueType() == MVT::i64)
7252 return DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
7254 // global <-> flat are no-ops and never emitted.
7256 const MachineFunction &MF = DAG.getMachineFunction();
7257 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
7258 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
7259 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
7261 return DAG.getUNDEF(Op->getValueType(0));
7264 // This lowers an INSERT_SUBVECTOR by extracting the individual elements from
7265 // the small vector and inserting them into the big vector. That is better than
7266 // the default expansion of doing it via a stack slot. Even though the use of
7267 // the stack slot would be optimized away afterwards, the stack slot itself
7268 // remains.
7269 SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
7270 SelectionDAG &DAG) const {
7271 SDValue Vec = Op.getOperand(0);
7272 SDValue Ins = Op.getOperand(1);
7273 SDValue Idx = Op.getOperand(2);
7274 EVT VecVT = Vec.getValueType();
7275 EVT InsVT = Ins.getValueType();
7276 EVT EltVT = VecVT.getVectorElementType();
7277 unsigned InsNumElts = InsVT.getVectorNumElements();
7278 unsigned IdxVal = Idx->getAsZExtVal();
7279 SDLoc SL(Op);
7281 if (EltVT.getScalarSizeInBits() == 16 && IdxVal % 2 == 0) {
7282 // Insert 32-bit registers at a time.
7283 assert(InsNumElts % 2 == 0 && "expect legal vector types");
7285 unsigned VecNumElts = VecVT.getVectorNumElements();
7286 EVT NewVecVT =
7287 EVT::getVectorVT(*DAG.getContext(), MVT::i32, VecNumElts / 2);
7288 EVT NewInsVT = InsNumElts == 2 ? MVT::i32
7289 : EVT::getVectorVT(*DAG.getContext(),
7290 MVT::i32, InsNumElts / 2);
7292 Vec = DAG.getNode(ISD::BITCAST, SL, NewVecVT, Vec);
7293 Ins = DAG.getNode(ISD::BITCAST, SL, NewInsVT, Ins);
7295 for (unsigned I = 0; I != InsNumElts / 2; ++I) {
7296 SDValue Elt;
7297 if (InsNumElts == 2) {
7298 Elt = Ins;
7299 } else {
7300 Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Ins,
7301 DAG.getConstant(I, SL, MVT::i32));
7303 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NewVecVT, Vec, Elt,
7304 DAG.getConstant(IdxVal / 2 + I, SL, MVT::i32));
7307 return DAG.getNode(ISD::BITCAST, SL, VecVT, Vec);
7310 for (unsigned I = 0; I != InsNumElts; ++I) {
7311 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
7312 DAG.getConstant(I, SL, MVT::i32));
7313 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
7314 DAG.getConstant(IdxVal + I, SL, MVT::i32));
7316 return Vec;
7319 SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
7320 SelectionDAG &DAG) const {
7321 SDValue Vec = Op.getOperand(0);
7322 SDValue InsVal = Op.getOperand(1);
7323 SDValue Idx = Op.getOperand(2);
7324 EVT VecVT = Vec.getValueType();
7325 EVT EltVT = VecVT.getVectorElementType();
7326 unsigned VecSize = VecVT.getSizeInBits();
7327 unsigned EltSize = EltVT.getSizeInBits();
7328 SDLoc SL(Op);
7330 // Specially handle the case of v4i16 with static indexing.
7331 unsigned NumElts = VecVT.getVectorNumElements();
7332 auto *KIdx = dyn_cast<ConstantSDNode>(Idx);
7333 if (NumElts == 4 && EltSize == 16 && KIdx) {
7334 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
7336 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
7337 DAG.getConstant(0, SL, MVT::i32));
7338 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
7339 DAG.getConstant(1, SL, MVT::i32));
7341 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
7342 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
7344 unsigned Idx = KIdx->getZExtValue();
7345 bool InsertLo = Idx < 2;
7346 SDValue InsHalf = DAG.getNode(
7347 ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16, InsertLo ? LoVec : HiVec,
7348 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
7349 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
7351 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
7353 SDValue Concat =
7354 InsertLo ? DAG.getBuildVector(MVT::v2i32, SL, {InsHalf, HiHalf})
7355 : DAG.getBuildVector(MVT::v2i32, SL, {LoHalf, InsHalf});
7357 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
7360 // Static indexing does not lower to stack access, and hence there is no need
7361 // for special custom lowering to avoid stack access.
7362 if (isa<ConstantSDNode>(Idx))
7363 return SDValue();
7365 // Avoid stack access for dynamic indexing by custom lowering to
7366 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
7368 assert(VecSize <= 64 && "Expected target vector size to be <= 64 bits");
7370 MVT IntVT = MVT::getIntegerVT(VecSize);
7372 // Convert vector index to bit-index and get the required bit mask.
7373 assert(isPowerOf2_32(EltSize));
7374 const auto EltMask = maskTrailingOnes<uint64_t>(EltSize);
7375 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
7376 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
7377 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
7378 DAG.getConstant(EltMask, SL, IntVT), ScaledIdx);
7380 // 1. Create a congruent vector with the target value in each element.
7381 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
7382 DAG.getSplatBuildVector(VecVT, SL, InsVal));
7384 // 2. Mask off all other indices except the required index within (1).
7385 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
7387 // 3. Mask off the required index within the target vector.
7388 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
7389 SDValue RHS =
7390 DAG.getNode(ISD::AND, SL, IntVT, DAG.getNOT(SL, BFM, IntVT), BCVec);
7392 // 4. Get (2) and (3) ORed into the target vector.
7393 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
7395 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
7398 SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
7399 SelectionDAG &DAG) const {
7400 SDLoc SL(Op);
7402 EVT ResultVT = Op.getValueType();
7403 SDValue Vec = Op.getOperand(0);
7404 SDValue Idx = Op.getOperand(1);
7405 EVT VecVT = Vec.getValueType();
7406 unsigned VecSize = VecVT.getSizeInBits();
7407 EVT EltVT = VecVT.getVectorElementType();
7409 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
7411 // Make sure we do any optimizations that will make it easier to fold
7412 // source modifiers before obscuring it with bit operations.
7414 // XXX - Why doesn't this get called when vector_shuffle is expanded?
7415 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
7416 return Combined;
7418 if (VecSize == 128 || VecSize == 256 || VecSize == 512) {
7419 SDValue Lo, Hi;
7420 auto [LoVT, HiVT] = DAG.GetSplitDestVTs(VecVT);
7422 if (VecSize == 128) {
7423 SDValue V2 = DAG.getBitcast(MVT::v2i64, Vec);
7424 Lo = DAG.getBitcast(LoVT,
7425 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
7426 DAG.getConstant(0, SL, MVT::i32)));
7427 Hi = DAG.getBitcast(HiVT,
7428 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
7429 DAG.getConstant(1, SL, MVT::i32)));
7430 } else if (VecSize == 256) {
7431 SDValue V2 = DAG.getBitcast(MVT::v4i64, Vec);
7432 SDValue Parts[4];
7433 for (unsigned P = 0; P < 4; ++P) {
7434 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
7435 DAG.getConstant(P, SL, MVT::i32));
7438 Lo = DAG.getBitcast(LoVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
7439 Parts[0], Parts[1]));
7440 Hi = DAG.getBitcast(HiVT, DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i64,
7441 Parts[2], Parts[3]));
7442 } else {
7443 assert(VecSize == 512);
7445 SDValue V2 = DAG.getBitcast(MVT::v8i64, Vec);
7446 SDValue Parts[8];
7447 for (unsigned P = 0; P < 8; ++P) {
7448 Parts[P] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i64, V2,
7449 DAG.getConstant(P, SL, MVT::i32));
7452 Lo = DAG.getBitcast(LoVT,
7453 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
7454 Parts[0], Parts[1], Parts[2], Parts[3]));
7455 Hi = DAG.getBitcast(HiVT,
7456 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v4i64,
7457 Parts[4], Parts[5], Parts[6], Parts[7]));
7460 EVT IdxVT = Idx.getValueType();
7461 unsigned NElem = VecVT.getVectorNumElements();
7462 assert(isPowerOf2_32(NElem));
7463 SDValue IdxMask = DAG.getConstant(NElem / 2 - 1, SL, IdxVT);
7464 SDValue NewIdx = DAG.getNode(ISD::AND, SL, IdxVT, Idx, IdxMask);
7465 SDValue Half = DAG.getSelectCC(SL, Idx, IdxMask, Hi, Lo, ISD::SETUGT);
7466 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Half, NewIdx);
7469 assert(VecSize <= 64);
7471 MVT IntVT = MVT::getIntegerVT(VecSize);
7473 // If Vec is just a SCALAR_TO_VECTOR, then use the scalar integer directly.
7474 SDValue VecBC = peekThroughBitcasts(Vec);
7475 if (VecBC.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7476 SDValue Src = VecBC.getOperand(0);
7477 Src = DAG.getBitcast(Src.getValueType().changeTypeToInteger(), Src);
7478 Vec = DAG.getAnyExtOrTrunc(Src, SL, IntVT);
7481 unsigned EltSize = EltVT.getSizeInBits();
7482 assert(isPowerOf2_32(EltSize));
7484 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
7486 // Convert vector index to bit-index (* EltSize)
7487 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
7489 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
7490 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
7492 if (ResultVT == MVT::f16 || ResultVT == MVT::bf16) {
7493 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
7494 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
7497 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
7500 static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
7501 assert(Elt % 2 == 0);
7502 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
7505 SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
7506 SelectionDAG &DAG) const {
7507 SDLoc SL(Op);
7508 EVT ResultVT = Op.getValueType();
7509 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
7511 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
7512 EVT EltVT = PackVT.getVectorElementType();
7513 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
7515 // vector_shuffle <0,1,6,7> lhs, rhs
7516 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
7518 // vector_shuffle <6,7,2,3> lhs, rhs
7519 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
7521 // vector_shuffle <6,7,0,1> lhs, rhs
7522 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
7524 // Avoid scalarizing when both halves are reading from consecutive elements.
7525 SmallVector<SDValue, 4> Pieces;
7526 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
7527 if (elementPairIsContiguous(SVN->getMask(), I)) {
7528 const int Idx = SVN->getMaskElt(I);
7529 int VecIdx = Idx < SrcNumElts ? 0 : 1;
7530 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
7531 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, PackVT,
7532 SVN->getOperand(VecIdx),
7533 DAG.getConstant(EltIdx, SL, MVT::i32));
7534 Pieces.push_back(SubVec);
7535 } else {
7536 const int Idx0 = SVN->getMaskElt(I);
7537 const int Idx1 = SVN->getMaskElt(I + 1);
7538 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
7539 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
7540 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
7541 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
7543 SDValue Vec0 = SVN->getOperand(VecIdx0);
7544 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec0,
7545 DAG.getConstant(EltIdx0, SL, MVT::i32));
7547 SDValue Vec1 = SVN->getOperand(VecIdx1);
7548 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec1,
7549 DAG.getConstant(EltIdx1, SL, MVT::i32));
7550 Pieces.push_back(DAG.getBuildVector(PackVT, SL, {Elt0, Elt1}));
7554 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
7557 SDValue SITargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
7558 SelectionDAG &DAG) const {
7559 SDValue SVal = Op.getOperand(0);
7560 EVT ResultVT = Op.getValueType();
7561 EVT SValVT = SVal.getValueType();
7562 SDValue UndefVal = DAG.getUNDEF(SValVT);
7563 SDLoc SL(Op);
7565 SmallVector<SDValue, 8> VElts;
7566 VElts.push_back(SVal);
7567 for (int I = 1, E = ResultVT.getVectorNumElements(); I < E; ++I)
7568 VElts.push_back(UndefVal);
7570 return DAG.getBuildVector(ResultVT, SL, VElts);
7573 SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
7574 SelectionDAG &DAG) const {
7575 SDLoc SL(Op);
7576 EVT VT = Op.getValueType();
7578 if (VT == MVT::v2f16 || VT == MVT::v2i16 || VT == MVT::v2bf16) {
7579 assert(!Subtarget->hasVOP3PInsts() && "this should be legal");
7581 SDValue Lo = Op.getOperand(0);
7582 SDValue Hi = Op.getOperand(1);
7584 // Avoid adding defined bits with the zero_extend.
7585 if (Hi.isUndef()) {
7586 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
7587 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
7588 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
7591 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
7592 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
7594 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
7595 DAG.getConstant(16, SL, MVT::i32));
7596 if (Lo.isUndef())
7597 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
7599 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
7600 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
7602 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
7603 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
7606 // Split into 2-element chunks.
7607 const unsigned NumParts = VT.getVectorNumElements() / 2;
7608 EVT PartVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
7609 MVT PartIntVT = MVT::getIntegerVT(PartVT.getSizeInBits());
7611 SmallVector<SDValue> Casts;
7612 for (unsigned P = 0; P < NumParts; ++P) {
7613 SDValue Vec = DAG.getBuildVector(
7614 PartVT, SL, {Op.getOperand(P * 2), Op.getOperand(P * 2 + 1)});
7615 Casts.push_back(DAG.getNode(ISD::BITCAST, SL, PartIntVT, Vec));
7618 SDValue Blend =
7619 DAG.getBuildVector(MVT::getVectorVT(PartIntVT, NumParts), SL, Casts);
7620 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
7623 bool SITargetLowering::isOffsetFoldingLegal(
7624 const GlobalAddressSDNode *GA) const {
7625 // OSes that use ELF REL relocations (instead of RELA) can only store a
7626 // 32-bit addend in the instruction, so it is not safe to allow offset folding
7627 // which can create arbitrary 64-bit addends. (This is only a problem for
7628 // R_AMDGPU_*32_HI relocations since other relocation types are unaffected by
7629 // the high 32 bits of the addend.)
7631 // This should be kept in sync with how HasRelocationAddend is initialized in
7632 // the constructor of ELFAMDGPUAsmBackend.
7633 if (!Subtarget->isAmdHsaOS())
7634 return false;
7636 // We can fold offsets for anything that doesn't require a GOT relocation.
7637 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
7638 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
7639 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
7640 !shouldEmitGOTReloc(GA->getGlobal());
7643 static SDValue
7644 buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
7645 const SDLoc &DL, int64_t Offset, EVT PtrVT,
7646 unsigned GAFlags = SIInstrInfo::MO_NONE) {
7647 assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
7648 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
7649 // lowered to the following code sequence:
7651 // For constant address space:
7652 // s_getpc_b64 s[0:1]
7653 // s_add_u32 s0, s0, $symbol
7654 // s_addc_u32 s1, s1, 0
7656 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
7657 // a fixup or relocation is emitted to replace $symbol with a literal
7658 // constant, which is a pc-relative offset from the encoding of the $symbol
7659 // operand to the global variable.
7661 // For global address space:
7662 // s_getpc_b64 s[0:1]
7663 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
7664 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
7666 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
7667 // fixups or relocations are emitted to replace $symbol@*@lo and
7668 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
7669 // which is a 64-bit pc-relative offset from the encoding of the $symbol
7670 // operand to the global variable.
7671 SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags);
7672 SDValue PtrHi;
7673 if (GAFlags == SIInstrInfo::MO_NONE)
7674 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
7675 else
7676 PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset, GAFlags + 1);
7677 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
7680 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
7681 SDValue Op,
7682 SelectionDAG &DAG) const {
7683 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
7684 SDLoc DL(GSD);
7685 EVT PtrVT = Op.getValueType();
7687 const GlobalValue *GV = GSD->getGlobal();
7688 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
7689 shouldUseLDSConstAddress(GV)) ||
7690 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
7691 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
7692 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
7693 GV->hasExternalLinkage()) {
7694 Type *Ty = GV->getValueType();
7695 // HIP uses an unsized array `extern __shared__ T s[]` or similar
7696 // zero-sized type in other languages to declare the dynamic shared
7697 // memory which size is not known at the compile time. They will be
7698 // allocated by the runtime and placed directly after the static
7699 // allocated ones. They all share the same offset.
7700 if (DAG.getDataLayout().getTypeAllocSize(Ty).isZero()) {
7701 assert(PtrVT == MVT::i32 && "32-bit pointer is expected.");
7702 // Adjust alignment for that dynamic shared memory array.
7703 Function &F = DAG.getMachineFunction().getFunction();
7704 MFI->setDynLDSAlign(F, *cast<GlobalVariable>(GV));
7705 MFI->setUsesDynamicLDS(true);
7706 return SDValue(
7707 DAG.getMachineNode(AMDGPU::GET_GROUPSTATICSIZE, DL, PtrVT), 0);
7710 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
7713 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
7714 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
7715 SIInstrInfo::MO_ABS32_LO);
7716 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
7719 if (Subtarget->isAmdPalOS() || Subtarget->isMesa3DOS()) {
7720 SDValue AddrLo = DAG.getTargetGlobalAddress(
7721 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_LO);
7722 AddrLo = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrLo), 0};
7724 SDValue AddrHi = DAG.getTargetGlobalAddress(
7725 GV, DL, MVT::i32, GSD->getOffset(), SIInstrInfo::MO_ABS32_HI);
7726 AddrHi = {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, AddrHi), 0};
7728 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, AddrLo, AddrHi);
7731 if (shouldEmitFixup(GV))
7732 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
7734 if (shouldEmitPCReloc(GV))
7735 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
7736 SIInstrInfo::MO_REL32);
7738 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
7739 SIInstrInfo::MO_GOTPCREL32);
7741 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
7742 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
7743 const DataLayout &DataLayout = DAG.getDataLayout();
7744 Align Alignment = DataLayout.getABITypeAlign(PtrTy);
7745 MachinePointerInfo PtrInfo =
7746 MachinePointerInfo::getGOT(DAG.getMachineFunction());
7748 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Alignment,
7749 MachineMemOperand::MODereferenceable |
7750 MachineMemOperand::MOInvariant);
7753 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
7754 const SDLoc &DL, SDValue V) const {
7755 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
7756 // the destination register.
7758 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
7759 // so we will end up with redundant moves to m0.
7761 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
7763 // A Null SDValue creates a glue result.
7764 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
7765 V, Chain);
7766 return SDValue(M0, 0);
7769 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG, SDValue Op,
7770 MVT VT,
7771 unsigned Offset) const {
7772 SDLoc SL(Op);
7773 SDValue Param = lowerKernargMemParameter(
7774 DAG, MVT::i32, MVT::i32, SL, DAG.getEntryNode(), Offset, Align(4), false);
7775 // The local size values will have the hi 16-bits as zero.
7776 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
7777 DAG.getValueType(VT));
7780 static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
7781 EVT VT) {
7782 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
7783 "non-hsa intrinsic with hsa target",
7784 DL.getDebugLoc());
7785 DAG.getContext()->diagnose(BadIntrin);
7786 return DAG.getUNDEF(VT);
7789 static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
7790 EVT VT) {
7791 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
7792 "intrinsic not supported on subtarget",
7793 DL.getDebugLoc());
7794 DAG.getContext()->diagnose(BadIntrin);
7795 return DAG.getUNDEF(VT);
7798 static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
7799 ArrayRef<SDValue> Elts) {
7800 assert(!Elts.empty());
7801 MVT Type;
7802 unsigned NumElts = Elts.size();
7804 if (NumElts <= 12) {
7805 Type = MVT::getVectorVT(MVT::f32, NumElts);
7806 } else {
7807 assert(Elts.size() <= 16);
7808 Type = MVT::v16f32;
7809 NumElts = 16;
7812 SmallVector<SDValue, 16> VecElts(NumElts);
7813 for (unsigned i = 0; i < Elts.size(); ++i) {
7814 SDValue Elt = Elts[i];
7815 if (Elt.getValueType() != MVT::f32)
7816 Elt = DAG.getBitcast(MVT::f32, Elt);
7817 VecElts[i] = Elt;
7819 for (unsigned i = Elts.size(); i < NumElts; ++i)
7820 VecElts[i] = DAG.getUNDEF(MVT::f32);
7822 if (NumElts == 1)
7823 return VecElts[0];
7824 return DAG.getBuildVector(Type, DL, VecElts);
7827 static SDValue padEltsToUndef(SelectionDAG &DAG, const SDLoc &DL, EVT CastVT,
7828 SDValue Src, int ExtraElts) {
7829 EVT SrcVT = Src.getValueType();
7831 SmallVector<SDValue, 8> Elts;
7833 if (SrcVT.isVector())
7834 DAG.ExtractVectorElements(Src, Elts);
7835 else
7836 Elts.push_back(Src);
7838 SDValue Undef = DAG.getUNDEF(SrcVT.getScalarType());
7839 while (ExtraElts--)
7840 Elts.push_back(Undef);
7842 return DAG.getBuildVector(CastVT, DL, Elts);
7845 // Re-construct the required return value for a image load intrinsic.
7846 // This is more complicated due to the optional use TexFailCtrl which means the
7847 // required return type is an aggregate
7848 static SDValue constructRetValue(SelectionDAG &DAG, MachineSDNode *Result,
7849 ArrayRef<EVT> ResultTypes, bool IsTexFail,
7850 bool Unpacked, bool IsD16, int DMaskPop,
7851 int NumVDataDwords, bool IsAtomicPacked16Bit,
7852 const SDLoc &DL) {
7853 // Determine the required return type. This is the same regardless of
7854 // IsTexFail flag
7855 EVT ReqRetVT = ResultTypes[0];
7856 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
7857 int NumDataDwords = ((IsD16 && !Unpacked) || IsAtomicPacked16Bit)
7858 ? (ReqRetNumElts + 1) / 2
7859 : ReqRetNumElts;
7861 int MaskPopDwords = (!IsD16 || Unpacked) ? DMaskPop : (DMaskPop + 1) / 2;
7863 MVT DataDwordVT =
7864 NumDataDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, NumDataDwords);
7866 MVT MaskPopVT =
7867 MaskPopDwords == 1 ? MVT::i32 : MVT::getVectorVT(MVT::i32, MaskPopDwords);
7869 SDValue Data(Result, 0);
7870 SDValue TexFail;
7872 if (DMaskPop > 0 && Data.getValueType() != MaskPopVT) {
7873 SDValue ZeroIdx = DAG.getConstant(0, DL, MVT::i32);
7874 if (MaskPopVT.isVector()) {
7875 Data = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MaskPopVT,
7876 SDValue(Result, 0), ZeroIdx);
7877 } else {
7878 Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MaskPopVT,
7879 SDValue(Result, 0), ZeroIdx);
7883 if (DataDwordVT.isVector() && !IsAtomicPacked16Bit)
7884 Data = padEltsToUndef(DAG, DL, DataDwordVT, Data,
7885 NumDataDwords - MaskPopDwords);
7887 if (IsD16)
7888 Data = adjustLoadValueTypeImpl(Data, ReqRetVT, DL, DAG, Unpacked);
7890 EVT LegalReqRetVT = ReqRetVT;
7891 if (!ReqRetVT.isVector()) {
7892 if (!Data.getValueType().isInteger())
7893 Data = DAG.getNode(ISD::BITCAST, DL,
7894 Data.getValueType().changeTypeToInteger(), Data);
7895 Data = DAG.getNode(ISD::TRUNCATE, DL, ReqRetVT.changeTypeToInteger(), Data);
7896 } else {
7897 // We need to widen the return vector to a legal type
7898 if ((ReqRetVT.getVectorNumElements() % 2) == 1 &&
7899 ReqRetVT.getVectorElementType().getSizeInBits() == 16) {
7900 LegalReqRetVT =
7901 EVT::getVectorVT(*DAG.getContext(), ReqRetVT.getVectorElementType(),
7902 ReqRetVT.getVectorNumElements() + 1);
7905 Data = DAG.getNode(ISD::BITCAST, DL, LegalReqRetVT, Data);
7907 if (IsTexFail) {
7908 TexFail =
7909 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, SDValue(Result, 0),
7910 DAG.getConstant(MaskPopDwords, DL, MVT::i32));
7912 return DAG.getMergeValues({Data, TexFail, SDValue(Result, 1)}, DL);
7915 if (Result->getNumValues() == 1)
7916 return Data;
7918 return DAG.getMergeValues({Data, SDValue(Result, 1)}, DL);
7921 static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
7922 SDValue *LWE, bool &IsTexFail) {
7923 auto *TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
7925 uint64_t Value = TexFailCtrlConst->getZExtValue();
7926 if (Value) {
7927 IsTexFail = true;
7930 SDLoc DL(TexFailCtrlConst);
7931 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
7932 Value &= ~(uint64_t)0x1;
7933 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
7934 Value &= ~(uint64_t)0x2;
7936 return Value == 0;
7939 static void packImage16bitOpsToDwords(SelectionDAG &DAG, SDValue Op,
7940 MVT PackVectorVT,
7941 SmallVectorImpl<SDValue> &PackedAddrs,
7942 unsigned DimIdx, unsigned EndIdx,
7943 unsigned NumGradients) {
7944 SDLoc DL(Op);
7945 for (unsigned I = DimIdx; I < EndIdx; I++) {
7946 SDValue Addr = Op.getOperand(I);
7948 // Gradients are packed with undef for each coordinate.
7949 // In <hi 16 bit>,<lo 16 bit> notation, the registers look like this:
7950 // 1D: undef,dx/dh; undef,dx/dv
7951 // 2D: dy/dh,dx/dh; dy/dv,dx/dv
7952 // 3D: dy/dh,dx/dh; undef,dz/dh; dy/dv,dx/dv; undef,dz/dv
7953 if (((I + 1) >= EndIdx) ||
7954 ((NumGradients / 2) % 2 == 1 && (I == DimIdx + (NumGradients / 2) - 1 ||
7955 I == DimIdx + NumGradients - 1))) {
7956 if (Addr.getValueType() != MVT::i16)
7957 Addr = DAG.getBitcast(MVT::i16, Addr);
7958 Addr = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Addr);
7959 } else {
7960 Addr = DAG.getBuildVector(PackVectorVT, DL, {Addr, Op.getOperand(I + 1)});
7961 I++;
7963 Addr = DAG.getBitcast(MVT::f32, Addr);
7964 PackedAddrs.push_back(Addr);
7968 SDValue SITargetLowering::lowerImage(SDValue Op,
7969 const AMDGPU::ImageDimIntrinsicInfo *Intr,
7970 SelectionDAG &DAG, bool WithChain) const {
7971 SDLoc DL(Op);
7972 MachineFunction &MF = DAG.getMachineFunction();
7973 const GCNSubtarget *ST = &MF.getSubtarget<GCNSubtarget>();
7974 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
7975 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
7976 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
7977 unsigned IntrOpcode = Intr->BaseOpcode;
7978 bool IsGFX10Plus = AMDGPU::isGFX10Plus(*Subtarget);
7979 bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
7980 bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
7982 SmallVector<EVT, 3> ResultTypes(Op->values());
7983 SmallVector<EVT, 3> OrigResultTypes(Op->values());
7984 bool IsD16 = false;
7985 bool IsG16 = false;
7986 bool IsA16 = false;
7987 SDValue VData;
7988 int NumVDataDwords = 0;
7989 bool AdjustRetType = false;
7990 bool IsAtomicPacked16Bit = false;
7992 // Offset of intrinsic arguments
7993 const unsigned ArgOffset = WithChain ? 2 : 1;
7995 unsigned DMask;
7996 unsigned DMaskLanes = 0;
7998 if (BaseOpcode->Atomic) {
7999 VData = Op.getOperand(2);
8001 IsAtomicPacked16Bit =
8002 (Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_F16 ||
8003 Intr->BaseOpcode == AMDGPU::IMAGE_ATOMIC_PK_ADD_BF16);
8005 bool Is64Bit = VData.getValueSizeInBits() == 64;
8006 if (BaseOpcode->AtomicX2) {
8007 SDValue VData2 = Op.getOperand(3);
8008 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
8009 {VData, VData2});
8010 if (Is64Bit)
8011 VData = DAG.getBitcast(MVT::v4i32, VData);
8013 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
8014 DMask = Is64Bit ? 0xf : 0x3;
8015 NumVDataDwords = Is64Bit ? 4 : 2;
8016 } else {
8017 DMask = Is64Bit ? 0x3 : 0x1;
8018 NumVDataDwords = Is64Bit ? 2 : 1;
8020 } else {
8021 DMask = Op->getConstantOperandVal(ArgOffset + Intr->DMaskIndex);
8022 DMaskLanes = BaseOpcode->Gather4 ? 4 : llvm::popcount(DMask);
8024 if (BaseOpcode->Store) {
8025 VData = Op.getOperand(2);
8027 MVT StoreVT = VData.getSimpleValueType();
8028 if (StoreVT.getScalarType() == MVT::f16) {
8029 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
8030 return Op; // D16 is unsupported for this instruction
8032 IsD16 = true;
8033 VData = handleD16VData(VData, DAG, true);
8036 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
8037 } else if (!BaseOpcode->NoReturn) {
8038 // Work out the num dwords based on the dmask popcount and underlying type
8039 // and whether packing is supported.
8040 MVT LoadVT = ResultTypes[0].getSimpleVT();
8041 if (LoadVT.getScalarType() == MVT::f16) {
8042 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
8043 return Op; // D16 is unsupported for this instruction
8045 IsD16 = true;
8048 // Confirm that the return type is large enough for the dmask specified
8049 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
8050 (!LoadVT.isVector() && DMaskLanes > 1))
8051 return Op;
8053 // The sq block of gfx8 and gfx9 do not estimate register use correctly
8054 // for d16 image_gather4, image_gather4_l, and image_gather4_lz
8055 // instructions.
8056 if (IsD16 && !Subtarget->hasUnpackedD16VMem() &&
8057 !(BaseOpcode->Gather4 && Subtarget->hasImageGather4D16Bug()))
8058 NumVDataDwords = (DMaskLanes + 1) / 2;
8059 else
8060 NumVDataDwords = DMaskLanes;
8062 AdjustRetType = true;
8066 unsigned VAddrEnd = ArgOffset + Intr->VAddrEnd;
8067 SmallVector<SDValue, 4> VAddrs;
8069 // Check for 16 bit addresses or derivatives and pack if true.
8070 MVT VAddrVT =
8071 Op.getOperand(ArgOffset + Intr->GradientStart).getSimpleValueType();
8072 MVT VAddrScalarVT = VAddrVT.getScalarType();
8073 MVT GradPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
8074 IsG16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
8076 VAddrVT = Op.getOperand(ArgOffset + Intr->CoordStart).getSimpleValueType();
8077 VAddrScalarVT = VAddrVT.getScalarType();
8078 MVT AddrPackVectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
8079 IsA16 = VAddrScalarVT == MVT::f16 || VAddrScalarVT == MVT::i16;
8081 // Push back extra arguments.
8082 for (unsigned I = Intr->VAddrStart; I < Intr->GradientStart; I++) {
8083 if (IsA16 && (Op.getOperand(ArgOffset + I).getValueType() == MVT::f16)) {
8084 assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
8085 // Special handling of bias when A16 is on. Bias is of type half but
8086 // occupies full 32-bit.
8087 SDValue Bias = DAG.getBuildVector(
8088 MVT::v2f16, DL,
8089 {Op.getOperand(ArgOffset + I), DAG.getUNDEF(MVT::f16)});
8090 VAddrs.push_back(Bias);
8091 } else {
8092 assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
8093 "Bias needs to be converted to 16 bit in A16 mode");
8094 VAddrs.push_back(Op.getOperand(ArgOffset + I));
8098 if (BaseOpcode->Gradients && !ST->hasG16() && (IsA16 != IsG16)) {
8099 // 16 bit gradients are supported, but are tied to the A16 control
8100 // so both gradients and addresses must be 16 bit
8101 LLVM_DEBUG(
8102 dbgs() << "Failed to lower image intrinsic: 16 bit addresses "
8103 "require 16 bit args for both gradients and addresses");
8104 return Op;
8107 if (IsA16) {
8108 if (!ST->hasA16()) {
8109 LLVM_DEBUG(dbgs() << "Failed to lower image intrinsic: Target does not "
8110 "support 16 bit addresses\n");
8111 return Op;
8115 // We've dealt with incorrect input so we know that if IsA16, IsG16
8116 // are set then we have to compress/pack operands (either address,
8117 // gradient or both)
8118 // In the case where a16 and gradients are tied (no G16 support) then we
8119 // have already verified that both IsA16 and IsG16 are true
8120 if (BaseOpcode->Gradients && IsG16 && ST->hasG16()) {
8121 // Activate g16
8122 const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
8123 AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
8124 IntrOpcode = G16MappingInfo->G16; // set new opcode to variant with _g16
8127 // Add gradients (packed or unpacked)
8128 if (IsG16) {
8129 // Pack the gradients
8130 // const int PackEndIdx = IsA16 ? VAddrEnd : (ArgOffset + Intr->CoordStart);
8131 packImage16bitOpsToDwords(DAG, Op, GradPackVectorVT, VAddrs,
8132 ArgOffset + Intr->GradientStart,
8133 ArgOffset + Intr->CoordStart, Intr->NumGradients);
8134 } else {
8135 for (unsigned I = ArgOffset + Intr->GradientStart;
8136 I < ArgOffset + Intr->CoordStart; I++)
8137 VAddrs.push_back(Op.getOperand(I));
8140 // Add addresses (packed or unpacked)
8141 if (IsA16) {
8142 packImage16bitOpsToDwords(DAG, Op, AddrPackVectorVT, VAddrs,
8143 ArgOffset + Intr->CoordStart, VAddrEnd,
8144 0 /* No gradients */);
8145 } else {
8146 // Add uncompressed address
8147 for (unsigned I = ArgOffset + Intr->CoordStart; I < VAddrEnd; I++)
8148 VAddrs.push_back(Op.getOperand(I));
8151 // If the register allocator cannot place the address registers contiguously
8152 // without introducing moves, then using the non-sequential address encoding
8153 // is always preferable, since it saves VALU instructions and is usually a
8154 // wash in terms of code size or even better.
8156 // However, we currently have no way of hinting to the register allocator that
8157 // MIMG addresses should be placed contiguously when it is possible to do so,
8158 // so force non-NSA for the common 2-address case as a heuristic.
8160 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
8161 // allocation when possible.
8163 // Partial NSA is allowed on GFX11+ where the final register is a contiguous
8164 // set of the remaining addresses.
8165 const unsigned NSAMaxSize = ST->getNSAMaxSize(BaseOpcode->Sampler);
8166 const bool HasPartialNSAEncoding = ST->hasPartialNSAEncoding();
8167 const bool UseNSA = ST->hasNSAEncoding() &&
8168 VAddrs.size() >= ST->getNSAThreshold(MF) &&
8169 (VAddrs.size() <= NSAMaxSize || HasPartialNSAEncoding);
8170 const bool UsePartialNSA =
8171 UseNSA && HasPartialNSAEncoding && VAddrs.size() > NSAMaxSize;
8173 SDValue VAddr;
8174 if (UsePartialNSA) {
8175 VAddr = getBuildDwordsVector(DAG, DL,
8176 ArrayRef(VAddrs).drop_front(NSAMaxSize - 1));
8177 } else if (!UseNSA) {
8178 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
8181 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
8182 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
8183 SDValue Unorm;
8184 if (!BaseOpcode->Sampler) {
8185 Unorm = True;
8186 } else {
8187 uint64_t UnormConst =
8188 Op.getConstantOperandVal(ArgOffset + Intr->UnormIndex);
8190 Unorm = UnormConst ? True : False;
8193 SDValue TFE;
8194 SDValue LWE;
8195 SDValue TexFail = Op.getOperand(ArgOffset + Intr->TexFailCtrlIndex);
8196 bool IsTexFail = false;
8197 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
8198 return Op;
8200 if (IsTexFail) {
8201 if (!DMaskLanes) {
8202 // Expecting to get an error flag since TFC is on - and dmask is 0
8203 // Force dmask to be at least 1 otherwise the instruction will fail
8204 DMask = 0x1;
8205 DMaskLanes = 1;
8206 NumVDataDwords = 1;
8208 NumVDataDwords += 1;
8209 AdjustRetType = true;
8212 // Has something earlier tagged that the return type needs adjusting
8213 // This happens if the instruction is a load or has set TexFailCtrl flags
8214 if (AdjustRetType) {
8215 // NumVDataDwords reflects the true number of dwords required in the return
8216 // type
8217 if (DMaskLanes == 0 && !BaseOpcode->Store) {
8218 // This is a no-op load. This can be eliminated
8219 SDValue Undef = DAG.getUNDEF(Op.getValueType());
8220 if (isa<MemSDNode>(Op))
8221 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
8222 return Undef;
8225 EVT NewVT = NumVDataDwords > 1 ? EVT::getVectorVT(*DAG.getContext(),
8226 MVT::i32, NumVDataDwords)
8227 : MVT::i32;
8229 ResultTypes[0] = NewVT;
8230 if (ResultTypes.size() == 3) {
8231 // Original result was aggregate type used for TexFailCtrl results
8232 // The actual instruction returns as a vector type which has now been
8233 // created. Remove the aggregate result.
8234 ResultTypes.erase(&ResultTypes[1]);
8238 unsigned CPol = Op.getConstantOperandVal(ArgOffset + Intr->CachePolicyIndex);
8239 if (BaseOpcode->Atomic)
8240 CPol |= AMDGPU::CPol::GLC; // TODO no-return optimization
8241 if (CPol & ~((IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12) |
8242 AMDGPU::CPol::VOLATILE))
8243 return Op;
8245 SmallVector<SDValue, 26> Ops;
8246 if (BaseOpcode->Store || BaseOpcode->Atomic)
8247 Ops.push_back(VData); // vdata
8248 if (UsePartialNSA) {
8249 append_range(Ops, ArrayRef(VAddrs).take_front(NSAMaxSize - 1));
8250 Ops.push_back(VAddr);
8251 } else if (UseNSA)
8252 append_range(Ops, VAddrs);
8253 else
8254 Ops.push_back(VAddr);
8255 SDValue Rsrc = Op.getOperand(ArgOffset + Intr->RsrcIndex);
8256 EVT RsrcVT = Rsrc.getValueType();
8257 if (RsrcVT != MVT::v4i32 && RsrcVT != MVT::v8i32)
8258 return Op;
8259 Ops.push_back(Rsrc);
8260 if (BaseOpcode->Sampler) {
8261 SDValue Samp = Op.getOperand(ArgOffset + Intr->SampIndex);
8262 if (Samp.getValueType() != MVT::v4i32)
8263 return Op;
8264 Ops.push_back(Samp);
8266 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
8267 if (IsGFX10Plus)
8268 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
8269 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
8270 Ops.push_back(Unorm);
8271 Ops.push_back(DAG.getTargetConstant(CPol, DL, MVT::i32));
8272 Ops.push_back(IsA16 && // r128, a16 for gfx9
8273 ST->hasFeature(AMDGPU::FeatureR128A16)
8274 ? True
8275 : False);
8276 if (IsGFX10Plus)
8277 Ops.push_back(IsA16 ? True : False);
8278 if (!Subtarget->hasGFX90AInsts()) {
8279 Ops.push_back(TFE); // tfe
8280 } else if (TFE->getAsZExtVal()) {
8281 report_fatal_error("TFE is not supported on this GPU");
8283 if (!IsGFX12Plus || BaseOpcode->Sampler || BaseOpcode->MSAA)
8284 Ops.push_back(LWE); // lwe
8285 if (!IsGFX10Plus)
8286 Ops.push_back(DimInfo->DA ? True : False);
8287 if (BaseOpcode->HasD16)
8288 Ops.push_back(IsD16 ? True : False);
8289 if (isa<MemSDNode>(Op))
8290 Ops.push_back(Op.getOperand(0)); // chain
8292 int NumVAddrDwords =
8293 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
8294 int Opcode = -1;
8296 if (IsGFX12Plus) {
8297 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx12,
8298 NumVDataDwords, NumVAddrDwords);
8299 } else if (IsGFX11Plus) {
8300 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
8301 UseNSA ? AMDGPU::MIMGEncGfx11NSA
8302 : AMDGPU::MIMGEncGfx11Default,
8303 NumVDataDwords, NumVAddrDwords);
8304 } else if (IsGFX10Plus) {
8305 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
8306 UseNSA ? AMDGPU::MIMGEncGfx10NSA
8307 : AMDGPU::MIMGEncGfx10Default,
8308 NumVDataDwords, NumVAddrDwords);
8309 } else {
8310 if (Subtarget->hasGFX90AInsts()) {
8311 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx90a,
8312 NumVDataDwords, NumVAddrDwords);
8313 if (Opcode == -1)
8314 report_fatal_error(
8315 "requested image instruction is not supported on this GPU");
8317 if (Opcode == -1 &&
8318 Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
8319 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
8320 NumVDataDwords, NumVAddrDwords);
8321 if (Opcode == -1)
8322 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
8323 NumVDataDwords, NumVAddrDwords);
8325 if (Opcode == -1)
8326 return Op;
8328 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
8329 if (auto *MemOp = dyn_cast<MemSDNode>(Op)) {
8330 MachineMemOperand *MemRef = MemOp->getMemOperand();
8331 DAG.setNodeMemRefs(NewNode, {MemRef});
8334 if (BaseOpcode->AtomicX2) {
8335 SmallVector<SDValue, 1> Elt;
8336 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
8337 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
8339 if (BaseOpcode->NoReturn)
8340 return SDValue(NewNode, 0);
8341 return constructRetValue(DAG, NewNode, OrigResultTypes, IsTexFail,
8342 Subtarget->hasUnpackedD16VMem(), IsD16, DMaskLanes,
8343 NumVDataDwords, IsAtomicPacked16Bit, DL);
8346 SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
8347 SDValue Offset, SDValue CachePolicy,
8348 SelectionDAG &DAG) const {
8349 MachineFunction &MF = DAG.getMachineFunction();
8351 const DataLayout &DataLayout = DAG.getDataLayout();
8352 Align Alignment =
8353 DataLayout.getABITypeAlign(VT.getTypeForEVT(*DAG.getContext()));
8355 MachineMemOperand *MMO = MF.getMachineMemOperand(
8356 MachinePointerInfo(),
8357 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
8358 MachineMemOperand::MOInvariant,
8359 VT.getStoreSize(), Alignment);
8361 if (!Offset->isDivergent()) {
8362 SDValue Ops[] = {Rsrc, Offset, CachePolicy};
8364 // Lower llvm.amdgcn.s.buffer.load.{i16, u16} intrinsics. Initially, the
8365 // s_buffer_load_u16 instruction is emitted for both signed and unsigned
8366 // loads. Later, DAG combiner tries to combine s_buffer_load_u16 with sext
8367 // and generates s_buffer_load_i16 (performSignExtendInRegCombine).
8368 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
8369 SDValue BufferLoad =
8370 DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD_USHORT, DL,
8371 DAG.getVTList(MVT::i32), Ops, VT, MMO);
8372 return DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
8375 // Widen vec3 load to vec4.
8376 if (VT.isVector() && VT.getVectorNumElements() == 3 &&
8377 !Subtarget->hasScalarDwordx3Loads()) {
8378 EVT WidenedVT =
8379 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
8380 auto WidenedOp = DAG.getMemIntrinsicNode(
8381 AMDGPUISD::SBUFFER_LOAD, DL, DAG.getVTList(WidenedVT), Ops, WidenedVT,
8382 MF.getMachineMemOperand(MMO, 0, WidenedVT.getStoreSize()));
8383 auto Subvector = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, WidenedOp,
8384 DAG.getVectorIdxConstant(0, DL));
8385 return Subvector;
8388 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
8389 DAG.getVTList(VT), Ops, VT, MMO);
8392 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
8393 // assume that the buffer is unswizzled.
8394 SDValue Ops[] = {
8395 DAG.getEntryNode(), // Chain
8396 Rsrc, // rsrc
8397 DAG.getConstant(0, DL, MVT::i32), // vindex
8398 {}, // voffset
8399 {}, // soffset
8400 {}, // offset
8401 CachePolicy, // cachepolicy
8402 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8404 if (VT == MVT::i16 && Subtarget->hasScalarSubwordLoads()) {
8405 setBufferOffsets(Offset, DAG, &Ops[3], Align(4));
8406 return handleByteShortBufferLoads(DAG, VT, DL, Ops, MMO);
8409 SmallVector<SDValue, 4> Loads;
8410 unsigned NumLoads = 1;
8411 MVT LoadVT = VT.getSimpleVT();
8412 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
8413 assert((LoadVT.getScalarType() == MVT::i32 ||
8414 LoadVT.getScalarType() == MVT::f32));
8416 if (NumElts == 8 || NumElts == 16) {
8417 NumLoads = NumElts / 4;
8418 LoadVT = MVT::getVectorVT(LoadVT.getScalarType(), 4);
8421 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
8423 // Use the alignment to ensure that the required offsets will fit into the
8424 // immediate offsets.
8425 setBufferOffsets(Offset, DAG, &Ops[3],
8426 NumLoads > 1 ? Align(16 * NumLoads) : Align(4));
8428 uint64_t InstOffset = Ops[5]->getAsZExtVal();
8429 for (unsigned i = 0; i < NumLoads; ++i) {
8430 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
8431 Loads.push_back(getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList, Ops,
8432 LoadVT, MMO, DAG));
8435 if (NumElts == 8 || NumElts == 16)
8436 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
8438 return Loads[0];
8441 SDValue SITargetLowering::lowerWaveID(SelectionDAG &DAG, SDValue Op) const {
8442 // With architected SGPRs, waveIDinGroup is in TTMP8[29:25].
8443 if (!Subtarget->hasArchitectedSGPRs())
8444 return {};
8445 SDLoc SL(Op);
8446 MVT VT = MVT::i32;
8447 SDValue TTMP8 = DAG.getCopyFromReg(DAG.getEntryNode(), SL, AMDGPU::TTMP8, VT);
8448 return DAG.getNode(AMDGPUISD::BFE_U32, SL, VT, TTMP8,
8449 DAG.getConstant(25, SL, VT), DAG.getConstant(5, SL, VT));
8452 SDValue SITargetLowering::lowerWorkitemID(SelectionDAG &DAG, SDValue Op,
8453 unsigned Dim,
8454 const ArgDescriptor &Arg) const {
8455 SDLoc SL(Op);
8456 MachineFunction &MF = DAG.getMachineFunction();
8457 unsigned MaxID = Subtarget->getMaxWorkitemID(MF.getFunction(), Dim);
8458 if (MaxID == 0)
8459 return DAG.getConstant(0, SL, MVT::i32);
8461 SDValue Val = loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
8462 SDLoc(DAG.getEntryNode()), Arg);
8464 // Don't bother inserting AssertZext for packed IDs since we're emitting the
8465 // masking operations anyway.
8467 // TODO: We could assert the top bit is 0 for the source copy.
8468 if (Arg.isMasked())
8469 return Val;
8471 // Preserve the known bits after expansion to a copy.
8472 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), llvm::bit_width(MaxID));
8473 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Val,
8474 DAG.getValueType(SmallVT));
8477 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8478 SelectionDAG &DAG) const {
8479 MachineFunction &MF = DAG.getMachineFunction();
8480 auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
8482 EVT VT = Op.getValueType();
8483 SDLoc DL(Op);
8484 unsigned IntrinsicID = Op.getConstantOperandVal(0);
8486 // TODO: Should this propagate fast-math-flags?
8488 switch (IntrinsicID) {
8489 case Intrinsic::amdgcn_implicit_buffer_ptr: {
8490 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
8491 return emitNonHSAIntrinsicError(DAG, DL, VT);
8492 return getPreloadedValue(DAG, *MFI, VT,
8493 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
8495 case Intrinsic::amdgcn_dispatch_ptr:
8496 case Intrinsic::amdgcn_queue_ptr: {
8497 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
8498 DiagnosticInfoUnsupported BadIntrin(
8499 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
8500 DL.getDebugLoc());
8501 DAG.getContext()->diagnose(BadIntrin);
8502 return DAG.getUNDEF(VT);
8505 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr
8506 ? AMDGPUFunctionArgInfo::DISPATCH_PTR
8507 : AMDGPUFunctionArgInfo::QUEUE_PTR;
8508 return getPreloadedValue(DAG, *MFI, VT, RegID);
8510 case Intrinsic::amdgcn_implicitarg_ptr: {
8511 if (MFI->isEntryFunction())
8512 return getImplicitArgPtr(DAG, DL);
8513 return getPreloadedValue(DAG, *MFI, VT,
8514 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
8516 case Intrinsic::amdgcn_kernarg_segment_ptr: {
8517 if (!AMDGPU::isKernel(MF.getFunction().getCallingConv())) {
8518 // This only makes sense to call in a kernel, so just lower to null.
8519 return DAG.getConstant(0, DL, VT);
8522 return getPreloadedValue(DAG, *MFI, VT,
8523 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
8525 case Intrinsic::amdgcn_dispatch_id: {
8526 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
8528 case Intrinsic::amdgcn_rcp:
8529 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
8530 case Intrinsic::amdgcn_rsq:
8531 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
8532 case Intrinsic::amdgcn_rsq_legacy:
8533 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
8534 return emitRemovedIntrinsicError(DAG, DL, VT);
8535 return SDValue();
8536 case Intrinsic::amdgcn_rcp_legacy:
8537 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
8538 return emitRemovedIntrinsicError(DAG, DL, VT);
8539 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
8540 case Intrinsic::amdgcn_rsq_clamp: {
8541 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
8542 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
8544 Type *Type = VT.getTypeForEVT(*DAG.getContext());
8545 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
8546 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
8548 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
8549 SDValue Tmp =
8550 DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, DAG.getConstantFP(Max, DL, VT));
8551 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
8552 DAG.getConstantFP(Min, DL, VT));
8554 case Intrinsic::r600_read_ngroups_x:
8555 if (Subtarget->isAmdHsaOS())
8556 return emitNonHSAIntrinsicError(DAG, DL, VT);
8558 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8559 SI::KernelInputOffsets::NGROUPS_X, Align(4),
8560 false);
8561 case Intrinsic::r600_read_ngroups_y:
8562 if (Subtarget->isAmdHsaOS())
8563 return emitNonHSAIntrinsicError(DAG, DL, VT);
8565 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8566 SI::KernelInputOffsets::NGROUPS_Y, Align(4),
8567 false);
8568 case Intrinsic::r600_read_ngroups_z:
8569 if (Subtarget->isAmdHsaOS())
8570 return emitNonHSAIntrinsicError(DAG, DL, VT);
8572 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8573 SI::KernelInputOffsets::NGROUPS_Z, Align(4),
8574 false);
8575 case Intrinsic::r600_read_global_size_x:
8576 if (Subtarget->isAmdHsaOS())
8577 return emitNonHSAIntrinsicError(DAG, DL, VT);
8579 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8580 SI::KernelInputOffsets::GLOBAL_SIZE_X,
8581 Align(4), false);
8582 case Intrinsic::r600_read_global_size_y:
8583 if (Subtarget->isAmdHsaOS())
8584 return emitNonHSAIntrinsicError(DAG, DL, VT);
8586 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8587 SI::KernelInputOffsets::GLOBAL_SIZE_Y,
8588 Align(4), false);
8589 case Intrinsic::r600_read_global_size_z:
8590 if (Subtarget->isAmdHsaOS())
8591 return emitNonHSAIntrinsicError(DAG, DL, VT);
8593 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
8594 SI::KernelInputOffsets::GLOBAL_SIZE_Z,
8595 Align(4), false);
8596 case Intrinsic::r600_read_local_size_x:
8597 if (Subtarget->isAmdHsaOS())
8598 return emitNonHSAIntrinsicError(DAG, DL, VT);
8600 return lowerImplicitZextParam(DAG, Op, MVT::i16,
8601 SI::KernelInputOffsets::LOCAL_SIZE_X);
8602 case Intrinsic::r600_read_local_size_y:
8603 if (Subtarget->isAmdHsaOS())
8604 return emitNonHSAIntrinsicError(DAG, DL, VT);
8606 return lowerImplicitZextParam(DAG, Op, MVT::i16,
8607 SI::KernelInputOffsets::LOCAL_SIZE_Y);
8608 case Intrinsic::r600_read_local_size_z:
8609 if (Subtarget->isAmdHsaOS())
8610 return emitNonHSAIntrinsicError(DAG, DL, VT);
8612 return lowerImplicitZextParam(DAG, Op, MVT::i16,
8613 SI::KernelInputOffsets::LOCAL_SIZE_Z);
8614 case Intrinsic::amdgcn_workgroup_id_x:
8615 return getPreloadedValue(DAG, *MFI, VT,
8616 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
8617 case Intrinsic::amdgcn_workgroup_id_y:
8618 return getPreloadedValue(DAG, *MFI, VT,
8619 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
8620 case Intrinsic::amdgcn_workgroup_id_z:
8621 return getPreloadedValue(DAG, *MFI, VT,
8622 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
8623 case Intrinsic::amdgcn_wave_id:
8624 return lowerWaveID(DAG, Op);
8625 case Intrinsic::amdgcn_lds_kernel_id: {
8626 if (MFI->isEntryFunction())
8627 return getLDSKernelId(DAG, DL);
8628 return getPreloadedValue(DAG, *MFI, VT,
8629 AMDGPUFunctionArgInfo::LDS_KERNEL_ID);
8631 case Intrinsic::amdgcn_workitem_id_x:
8632 return lowerWorkitemID(DAG, Op, 0, MFI->getArgInfo().WorkItemIDX);
8633 case Intrinsic::amdgcn_workitem_id_y:
8634 return lowerWorkitemID(DAG, Op, 1, MFI->getArgInfo().WorkItemIDY);
8635 case Intrinsic::amdgcn_workitem_id_z:
8636 return lowerWorkitemID(DAG, Op, 2, MFI->getArgInfo().WorkItemIDZ);
8637 case Intrinsic::amdgcn_wavefrontsize:
8638 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
8639 SDLoc(Op), MVT::i32);
8640 case Intrinsic::amdgcn_s_buffer_load: {
8641 unsigned CPol = Op.getConstantOperandVal(3);
8642 // s_buffer_load, because of how it's optimized, can't be volatile
8643 // so reject ones with the volatile bit set.
8644 if (CPol & ~((Subtarget->getGeneration() >= AMDGPUSubtarget::GFX12)
8645 ? AMDGPU::CPol::ALL
8646 : AMDGPU::CPol::ALL_pregfx12))
8647 return Op;
8648 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2),
8649 Op.getOperand(3), DAG);
8651 case Intrinsic::amdgcn_fdiv_fast:
8652 return lowerFDIV_FAST(Op, DAG);
8653 case Intrinsic::amdgcn_sin:
8654 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
8656 case Intrinsic::amdgcn_cos:
8657 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
8659 case Intrinsic::amdgcn_mul_u24:
8660 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1),
8661 Op.getOperand(2));
8662 case Intrinsic::amdgcn_mul_i24:
8663 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1),
8664 Op.getOperand(2));
8666 case Intrinsic::amdgcn_log_clamp: {
8667 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
8668 return SDValue();
8670 return emitRemovedIntrinsicError(DAG, DL, VT);
8672 case Intrinsic::amdgcn_fract:
8673 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
8675 case Intrinsic::amdgcn_class:
8676 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, Op.getOperand(1),
8677 Op.getOperand(2));
8678 case Intrinsic::amdgcn_div_fmas:
8679 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, Op.getOperand(1),
8680 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
8682 case Intrinsic::amdgcn_div_fixup:
8683 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, Op.getOperand(1),
8684 Op.getOperand(2), Op.getOperand(3));
8686 case Intrinsic::amdgcn_div_scale: {
8687 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
8689 // Translate to the operands expected by the machine instruction. The
8690 // first parameter must be the same as the first instruction.
8691 SDValue Numerator = Op.getOperand(1);
8692 SDValue Denominator = Op.getOperand(2);
8694 // Note this order is opposite of the machine instruction's operations,
8695 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
8696 // intrinsic has the numerator as the first operand to match a normal
8697 // division operation.
8699 SDValue Src0 = Param->isAllOnes() ? Numerator : Denominator;
8701 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
8702 Denominator, Numerator);
8704 case Intrinsic::amdgcn_icmp: {
8705 // There is a Pat that handles this variant, so return it as-is.
8706 if (Op.getOperand(1).getValueType() == MVT::i1 &&
8707 Op.getConstantOperandVal(2) == 0 &&
8708 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
8709 return Op;
8710 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
8712 case Intrinsic::amdgcn_fcmp: {
8713 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
8715 case Intrinsic::amdgcn_ballot:
8716 return lowerBALLOTIntrinsic(*this, Op.getNode(), DAG);
8717 case Intrinsic::amdgcn_fmed3:
8718 return DAG.getNode(AMDGPUISD::FMED3, DL, VT, Op.getOperand(1),
8719 Op.getOperand(2), Op.getOperand(3));
8720 case Intrinsic::amdgcn_fdot2:
8721 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT, Op.getOperand(1),
8722 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
8723 case Intrinsic::amdgcn_fmul_legacy:
8724 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT, Op.getOperand(1),
8725 Op.getOperand(2));
8726 case Intrinsic::amdgcn_sffbh:
8727 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
8728 case Intrinsic::amdgcn_sbfe:
8729 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, Op.getOperand(1),
8730 Op.getOperand(2), Op.getOperand(3));
8731 case Intrinsic::amdgcn_ubfe:
8732 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, Op.getOperand(1),
8733 Op.getOperand(2), Op.getOperand(3));
8734 case Intrinsic::amdgcn_cvt_pkrtz:
8735 case Intrinsic::amdgcn_cvt_pknorm_i16:
8736 case Intrinsic::amdgcn_cvt_pknorm_u16:
8737 case Intrinsic::amdgcn_cvt_pk_i16:
8738 case Intrinsic::amdgcn_cvt_pk_u16: {
8739 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
8740 EVT VT = Op.getValueType();
8741 unsigned Opcode;
8743 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
8744 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
8745 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
8746 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
8747 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
8748 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
8749 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
8750 Opcode = AMDGPUISD::CVT_PK_I16_I32;
8751 else
8752 Opcode = AMDGPUISD::CVT_PK_U16_U32;
8754 if (isTypeLegal(VT))
8755 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
8757 SDValue Node =
8758 DAG.getNode(Opcode, DL, MVT::i32, Op.getOperand(1), Op.getOperand(2));
8759 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
8761 case Intrinsic::amdgcn_fmad_ftz:
8762 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
8763 Op.getOperand(2), Op.getOperand(3));
8765 case Intrinsic::amdgcn_if_break:
8766 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
8767 Op->getOperand(1), Op->getOperand(2)),
8770 case Intrinsic::amdgcn_groupstaticsize: {
8771 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
8772 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
8773 return Op;
8775 const Module *M = MF.getFunction().getParent();
8776 const GlobalValue *GV =
8777 Intrinsic::getDeclarationIfExists(M, Intrinsic::amdgcn_groupstaticsize);
8778 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
8779 SIInstrInfo::MO_ABS32_LO);
8780 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
8782 case Intrinsic::amdgcn_is_shared:
8783 case Intrinsic::amdgcn_is_private: {
8784 SDLoc SL(Op);
8785 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared)
8786 ? AMDGPUAS::LOCAL_ADDRESS
8787 : AMDGPUAS::PRIVATE_ADDRESS;
8788 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
8789 SDValue SrcVec =
8790 DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
8792 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
8793 DAG.getConstant(1, SL, MVT::i32));
8794 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
8796 case Intrinsic::amdgcn_perm:
8797 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op.getOperand(1),
8798 Op.getOperand(2), Op.getOperand(3));
8799 case Intrinsic::amdgcn_reloc_constant: {
8800 Module *M = const_cast<Module *>(MF.getFunction().getParent());
8801 const MDNode *Metadata = cast<MDNodeSDNode>(Op.getOperand(1))->getMD();
8802 auto SymbolName = cast<MDString>(Metadata->getOperand(0))->getString();
8803 auto *RelocSymbol = cast<GlobalVariable>(
8804 M->getOrInsertGlobal(SymbolName, Type::getInt32Ty(M->getContext())));
8805 SDValue GA = DAG.getTargetGlobalAddress(RelocSymbol, DL, MVT::i32, 0,
8806 SIInstrInfo::MO_ABS32_LO);
8807 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
8809 case Intrinsic::amdgcn_swmmac_f16_16x16x32_f16:
8810 case Intrinsic::amdgcn_swmmac_bf16_16x16x32_bf16:
8811 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf16:
8812 case Intrinsic::amdgcn_swmmac_f32_16x16x32_f16:
8813 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_fp8:
8814 case Intrinsic::amdgcn_swmmac_f32_16x16x32_fp8_bf8:
8815 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_fp8:
8816 case Intrinsic::amdgcn_swmmac_f32_16x16x32_bf8_bf8: {
8817 if (Op.getOperand(4).getValueType() == MVT::i32)
8818 return SDValue();
8820 SDLoc SL(Op);
8821 auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(4), SL, MVT::i32);
8822 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
8823 Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
8824 Op.getOperand(3), IndexKeyi32);
8826 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu4:
8827 case Intrinsic::amdgcn_swmmac_i32_16x16x32_iu8:
8828 case Intrinsic::amdgcn_swmmac_i32_16x16x64_iu4: {
8829 if (Op.getOperand(6).getValueType() == MVT::i32)
8830 return SDValue();
8832 SDLoc SL(Op);
8833 auto IndexKeyi32 = DAG.getAnyExtOrTrunc(Op.getOperand(6), SL, MVT::i32);
8834 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, Op.getValueType(),
8835 {Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
8836 Op.getOperand(3), Op.getOperand(4), Op.getOperand(5),
8837 IndexKeyi32, Op.getOperand(7)});
8839 case Intrinsic::amdgcn_addrspacecast_nonnull:
8840 return lowerADDRSPACECAST(Op, DAG);
8841 case Intrinsic::amdgcn_readlane:
8842 case Intrinsic::amdgcn_readfirstlane:
8843 case Intrinsic::amdgcn_writelane:
8844 case Intrinsic::amdgcn_permlane16:
8845 case Intrinsic::amdgcn_permlanex16:
8846 case Intrinsic::amdgcn_permlane64:
8847 case Intrinsic::amdgcn_set_inactive:
8848 case Intrinsic::amdgcn_set_inactive_chain_arg:
8849 case Intrinsic::amdgcn_mov_dpp8:
8850 case Intrinsic::amdgcn_update_dpp:
8851 return lowerLaneOp(*this, Op.getNode(), DAG);
8852 default:
8853 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
8854 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
8855 return lowerImage(Op, ImageDimIntr, DAG, false);
8857 return Op;
8861 // On targets not supporting constant in soffset field, turn zero to
8862 // SGPR_NULL to avoid generating an extra s_mov with zero.
8863 static SDValue selectSOffset(SDValue SOffset, SelectionDAG &DAG,
8864 const GCNSubtarget *Subtarget) {
8865 if (Subtarget->hasRestrictedSOffset() && isNullConstant(SOffset))
8866 return DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32);
8867 return SOffset;
8870 SDValue SITargetLowering::lowerRawBufferAtomicIntrin(SDValue Op,
8871 SelectionDAG &DAG,
8872 unsigned NewOpcode) const {
8873 SDLoc DL(Op);
8875 SDValue VData = Op.getOperand(2);
8876 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8877 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
8878 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
8879 SDValue Ops[] = {
8880 Op.getOperand(0), // Chain
8881 VData, // vdata
8882 Rsrc, // rsrc
8883 DAG.getConstant(0, DL, MVT::i32), // vindex
8884 VOffset, // voffset
8885 SOffset, // soffset
8886 Offset, // offset
8887 Op.getOperand(6), // cachepolicy
8888 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
8891 auto *M = cast<MemSDNode>(Op);
8893 EVT MemVT = VData.getValueType();
8894 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
8895 M->getMemOperand());
8898 SDValue
8899 SITargetLowering::lowerStructBufferAtomicIntrin(SDValue Op, SelectionDAG &DAG,
8900 unsigned NewOpcode) const {
8901 SDLoc DL(Op);
8903 SDValue VData = Op.getOperand(2);
8904 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
8905 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
8906 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
8907 SDValue Ops[] = {
8908 Op.getOperand(0), // Chain
8909 VData, // vdata
8910 Rsrc, // rsrc
8911 Op.getOperand(4), // vindex
8912 VOffset, // voffset
8913 SOffset, // soffset
8914 Offset, // offset
8915 Op.getOperand(7), // cachepolicy
8916 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
8919 auto *M = cast<MemSDNode>(Op);
8921 EVT MemVT = VData.getValueType();
8922 return DAG.getMemIntrinsicNode(NewOpcode, DL, Op->getVTList(), Ops, MemVT,
8923 M->getMemOperand());
8926 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
8927 SelectionDAG &DAG) const {
8928 unsigned IntrID = Op.getConstantOperandVal(1);
8929 SDLoc DL(Op);
8931 switch (IntrID) {
8932 case Intrinsic::amdgcn_ds_ordered_add:
8933 case Intrinsic::amdgcn_ds_ordered_swap: {
8934 MemSDNode *M = cast<MemSDNode>(Op);
8935 SDValue Chain = M->getOperand(0);
8936 SDValue M0 = M->getOperand(2);
8937 SDValue Value = M->getOperand(3);
8938 unsigned IndexOperand = M->getConstantOperandVal(7);
8939 unsigned WaveRelease = M->getConstantOperandVal(8);
8940 unsigned WaveDone = M->getConstantOperandVal(9);
8942 unsigned OrderedCountIndex = IndexOperand & 0x3f;
8943 IndexOperand &= ~0x3f;
8944 unsigned CountDw = 0;
8946 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
8947 CountDw = (IndexOperand >> 24) & 0xf;
8948 IndexOperand &= ~(0xf << 24);
8950 if (CountDw < 1 || CountDw > 4) {
8951 report_fatal_error(
8952 "ds_ordered_count: dword count must be between 1 and 4");
8956 if (IndexOperand)
8957 report_fatal_error("ds_ordered_count: bad index operand");
8959 if (WaveDone && !WaveRelease)
8960 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
8962 unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
8963 unsigned ShaderType =
8964 SIInstrInfo::getDSShaderTypeValue(DAG.getMachineFunction());
8965 unsigned Offset0 = OrderedCountIndex << 2;
8966 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (Instruction << 4);
8968 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
8969 Offset1 |= (CountDw - 1) << 6;
8971 if (Subtarget->getGeneration() < AMDGPUSubtarget::GFX11)
8972 Offset1 |= ShaderType << 2;
8974 unsigned Offset = Offset0 | (Offset1 << 8);
8976 SDValue Ops[] = {
8977 Chain, Value, DAG.getTargetConstant(Offset, DL, MVT::i16),
8978 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
8980 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
8981 M->getVTList(), Ops, M->getMemoryVT(),
8982 M->getMemOperand());
8984 case Intrinsic::amdgcn_raw_buffer_load:
8985 case Intrinsic::amdgcn_raw_ptr_buffer_load:
8986 case Intrinsic::amdgcn_raw_atomic_buffer_load:
8987 case Intrinsic::amdgcn_raw_ptr_atomic_buffer_load:
8988 case Intrinsic::amdgcn_raw_buffer_load_format:
8989 case Intrinsic::amdgcn_raw_ptr_buffer_load_format: {
8990 const bool IsFormat =
8991 IntrID == Intrinsic::amdgcn_raw_buffer_load_format ||
8992 IntrID == Intrinsic::amdgcn_raw_ptr_buffer_load_format;
8994 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
8995 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(3), DAG);
8996 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
8997 SDValue Ops[] = {
8998 Op.getOperand(0), // Chain
8999 Rsrc, // rsrc
9000 DAG.getConstant(0, DL, MVT::i32), // vindex
9001 VOffset, // voffset
9002 SOffset, // soffset
9003 Offset, // offset
9004 Op.getOperand(5), // cachepolicy, swizzled buffer
9005 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9008 auto *M = cast<MemSDNode>(Op);
9009 return lowerIntrinsicLoad(M, IsFormat, DAG, Ops);
9011 case Intrinsic::amdgcn_struct_buffer_load:
9012 case Intrinsic::amdgcn_struct_ptr_buffer_load:
9013 case Intrinsic::amdgcn_struct_buffer_load_format:
9014 case Intrinsic::amdgcn_struct_ptr_buffer_load_format:
9015 case Intrinsic::amdgcn_struct_atomic_buffer_load:
9016 case Intrinsic::amdgcn_struct_ptr_atomic_buffer_load: {
9017 const bool IsFormat =
9018 IntrID == Intrinsic::amdgcn_struct_buffer_load_format ||
9019 IntrID == Intrinsic::amdgcn_struct_ptr_buffer_load_format;
9021 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
9022 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
9023 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
9024 SDValue Ops[] = {
9025 Op.getOperand(0), // Chain
9026 Rsrc, // rsrc
9027 Op.getOperand(3), // vindex
9028 VOffset, // voffset
9029 SOffset, // soffset
9030 Offset, // offset
9031 Op.getOperand(6), // cachepolicy, swizzled buffer
9032 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
9035 return lowerIntrinsicLoad(cast<MemSDNode>(Op), IsFormat, DAG, Ops);
9037 case Intrinsic::amdgcn_raw_tbuffer_load:
9038 case Intrinsic::amdgcn_raw_ptr_tbuffer_load: {
9039 MemSDNode *M = cast<MemSDNode>(Op);
9040 EVT LoadVT = Op.getValueType();
9041 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
9042 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(3), DAG);
9043 auto SOffset = selectSOffset(Op.getOperand(4), DAG, Subtarget);
9045 SDValue Ops[] = {
9046 Op.getOperand(0), // Chain
9047 Rsrc, // rsrc
9048 DAG.getConstant(0, DL, MVT::i32), // vindex
9049 VOffset, // voffset
9050 SOffset, // soffset
9051 Offset, // offset
9052 Op.getOperand(5), // format
9053 Op.getOperand(6), // cachepolicy, swizzled buffer
9054 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9057 if (LoadVT.getScalarType() == MVT::f16)
9058 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG,
9059 Ops);
9060 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
9061 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
9062 DAG);
9064 case Intrinsic::amdgcn_struct_tbuffer_load:
9065 case Intrinsic::amdgcn_struct_ptr_tbuffer_load: {
9066 MemSDNode *M = cast<MemSDNode>(Op);
9067 EVT LoadVT = Op.getValueType();
9068 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
9069 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
9070 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
9072 SDValue Ops[] = {
9073 Op.getOperand(0), // Chain
9074 Rsrc, // rsrc
9075 Op.getOperand(3), // vindex
9076 VOffset, // voffset
9077 SOffset, // soffset
9078 Offset, // offset
9079 Op.getOperand(6), // format
9080 Op.getOperand(7), // cachepolicy, swizzled buffer
9081 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
9084 if (LoadVT.getScalarType() == MVT::f16)
9085 return adjustLoadValueType(AMDGPUISD::TBUFFER_LOAD_FORMAT_D16, M, DAG,
9086 Ops);
9087 return getMemIntrinsicNode(AMDGPUISD::TBUFFER_LOAD_FORMAT, DL,
9088 Op->getVTList(), Ops, LoadVT, M->getMemOperand(),
9089 DAG);
9091 case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
9092 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fadd:
9093 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FADD);
9094 case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
9095 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fadd:
9096 return lowerStructBufferAtomicIntrin(Op, DAG,
9097 AMDGPUISD::BUFFER_ATOMIC_FADD);
9098 case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
9099 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmin:
9100 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMIN);
9101 case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
9102 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmin:
9103 return lowerStructBufferAtomicIntrin(Op, DAG,
9104 AMDGPUISD::BUFFER_ATOMIC_FMIN);
9105 case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
9106 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_fmax:
9107 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_FMAX);
9108 case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
9109 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_fmax:
9110 return lowerStructBufferAtomicIntrin(Op, DAG,
9111 AMDGPUISD::BUFFER_ATOMIC_FMAX);
9112 case Intrinsic::amdgcn_raw_buffer_atomic_swap:
9113 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_swap:
9114 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SWAP);
9115 case Intrinsic::amdgcn_raw_buffer_atomic_add:
9116 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_add:
9117 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
9118 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
9119 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_sub:
9120 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
9121 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
9122 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smin:
9123 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMIN);
9124 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
9125 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umin:
9126 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMIN);
9127 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
9128 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_smax:
9129 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SMAX);
9130 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
9131 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_umax:
9132 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_UMAX);
9133 case Intrinsic::amdgcn_raw_buffer_atomic_and:
9134 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_and:
9135 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
9136 case Intrinsic::amdgcn_raw_buffer_atomic_or:
9137 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_or:
9138 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
9139 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
9140 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_xor:
9141 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
9142 case Intrinsic::amdgcn_raw_buffer_atomic_inc:
9143 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_inc:
9144 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
9145 case Intrinsic::amdgcn_raw_buffer_atomic_dec:
9146 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_dec:
9147 return lowerRawBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
9148 case Intrinsic::amdgcn_raw_buffer_atomic_cond_sub_u32:
9149 return lowerRawBufferAtomicIntrin(Op, DAG,
9150 AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32);
9151 case Intrinsic::amdgcn_struct_buffer_atomic_swap:
9152 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_swap:
9153 return lowerStructBufferAtomicIntrin(Op, DAG,
9154 AMDGPUISD::BUFFER_ATOMIC_SWAP);
9155 case Intrinsic::amdgcn_struct_buffer_atomic_add:
9156 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_add:
9157 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_ADD);
9158 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
9159 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_sub:
9160 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_SUB);
9161 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
9162 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smin:
9163 return lowerStructBufferAtomicIntrin(Op, DAG,
9164 AMDGPUISD::BUFFER_ATOMIC_SMIN);
9165 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
9166 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umin:
9167 return lowerStructBufferAtomicIntrin(Op, DAG,
9168 AMDGPUISD::BUFFER_ATOMIC_UMIN);
9169 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
9170 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_smax:
9171 return lowerStructBufferAtomicIntrin(Op, DAG,
9172 AMDGPUISD::BUFFER_ATOMIC_SMAX);
9173 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
9174 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_umax:
9175 return lowerStructBufferAtomicIntrin(Op, DAG,
9176 AMDGPUISD::BUFFER_ATOMIC_UMAX);
9177 case Intrinsic::amdgcn_struct_buffer_atomic_and:
9178 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_and:
9179 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_AND);
9180 case Intrinsic::amdgcn_struct_buffer_atomic_or:
9181 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_or:
9182 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_OR);
9183 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
9184 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_xor:
9185 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_XOR);
9186 case Intrinsic::amdgcn_struct_buffer_atomic_inc:
9187 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_inc:
9188 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_INC);
9189 case Intrinsic::amdgcn_struct_buffer_atomic_dec:
9190 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_dec:
9191 return lowerStructBufferAtomicIntrin(Op, DAG, AMDGPUISD::BUFFER_ATOMIC_DEC);
9192 case Intrinsic::amdgcn_struct_buffer_atomic_cond_sub_u32:
9193 return lowerStructBufferAtomicIntrin(Op, DAG,
9194 AMDGPUISD::BUFFER_ATOMIC_COND_SUB_U32);
9196 case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
9197 case Intrinsic::amdgcn_raw_ptr_buffer_atomic_cmpswap: {
9198 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(4), DAG);
9199 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
9200 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
9201 SDValue Ops[] = {
9202 Op.getOperand(0), // Chain
9203 Op.getOperand(2), // src
9204 Op.getOperand(3), // cmp
9205 Rsrc, // rsrc
9206 DAG.getConstant(0, DL, MVT::i32), // vindex
9207 VOffset, // voffset
9208 SOffset, // soffset
9209 Offset, // offset
9210 Op.getOperand(7), // cachepolicy
9211 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9213 EVT VT = Op.getValueType();
9214 auto *M = cast<MemSDNode>(Op);
9216 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
9217 Op->getVTList(), Ops, VT,
9218 M->getMemOperand());
9220 case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
9221 case Intrinsic::amdgcn_struct_ptr_buffer_atomic_cmpswap: {
9222 SDValue Rsrc = bufferRsrcPtrToVector(Op->getOperand(4), DAG);
9223 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(6), DAG);
9224 auto SOffset = selectSOffset(Op.getOperand(7), DAG, Subtarget);
9225 SDValue Ops[] = {
9226 Op.getOperand(0), // Chain
9227 Op.getOperand(2), // src
9228 Op.getOperand(3), // cmp
9229 Rsrc, // rsrc
9230 Op.getOperand(5), // vindex
9231 VOffset, // voffset
9232 SOffset, // soffset
9233 Offset, // offset
9234 Op.getOperand(8), // cachepolicy
9235 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
9237 EVT VT = Op.getValueType();
9238 auto *M = cast<MemSDNode>(Op);
9240 return DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_ATOMIC_CMPSWAP, DL,
9241 Op->getVTList(), Ops, VT,
9242 M->getMemOperand());
9244 case Intrinsic::amdgcn_image_bvh_intersect_ray: {
9245 MemSDNode *M = cast<MemSDNode>(Op);
9246 SDValue NodePtr = M->getOperand(2);
9247 SDValue RayExtent = M->getOperand(3);
9248 SDValue RayOrigin = M->getOperand(4);
9249 SDValue RayDir = M->getOperand(5);
9250 SDValue RayInvDir = M->getOperand(6);
9251 SDValue TDescr = M->getOperand(7);
9253 assert(NodePtr.getValueType() == MVT::i32 ||
9254 NodePtr.getValueType() == MVT::i64);
9255 assert(RayDir.getValueType() == MVT::v3f16 ||
9256 RayDir.getValueType() == MVT::v3f32);
9258 if (!Subtarget->hasGFX10_AEncoding()) {
9259 emitRemovedIntrinsicError(DAG, DL, Op.getValueType());
9260 return SDValue();
9263 const bool IsGFX11 = AMDGPU::isGFX11(*Subtarget);
9264 const bool IsGFX11Plus = AMDGPU::isGFX11Plus(*Subtarget);
9265 const bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
9266 const bool IsA16 = RayDir.getValueType().getVectorElementType() == MVT::f16;
9267 const bool Is64 = NodePtr.getValueType() == MVT::i64;
9268 const unsigned NumVDataDwords = 4;
9269 const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
9270 const unsigned NumVAddrs = IsGFX11Plus ? (IsA16 ? 4 : 5) : NumVAddrDwords;
9271 const bool UseNSA = (Subtarget->hasNSAEncoding() &&
9272 NumVAddrs <= Subtarget->getNSAMaxSize()) ||
9273 IsGFX12Plus;
9274 const unsigned BaseOpcodes[2][2] = {
9275 {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
9276 {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
9277 AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
9278 int Opcode;
9279 if (UseNSA) {
9280 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
9281 IsGFX12Plus ? AMDGPU::MIMGEncGfx12
9282 : IsGFX11 ? AMDGPU::MIMGEncGfx11NSA
9283 : AMDGPU::MIMGEncGfx10NSA,
9284 NumVDataDwords, NumVAddrDwords);
9285 } else {
9286 assert(!IsGFX12Plus);
9287 Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
9288 IsGFX11 ? AMDGPU::MIMGEncGfx11Default
9289 : AMDGPU::MIMGEncGfx10Default,
9290 NumVDataDwords, NumVAddrDwords);
9292 assert(Opcode != -1);
9294 SmallVector<SDValue, 16> Ops;
9296 auto packLanes = [&DAG, &Ops, &DL](SDValue Op, bool IsAligned) {
9297 SmallVector<SDValue, 3> Lanes;
9298 DAG.ExtractVectorElements(Op, Lanes, 0, 3);
9299 if (Lanes[0].getValueSizeInBits() == 32) {
9300 for (unsigned I = 0; I < 3; ++I)
9301 Ops.push_back(DAG.getBitcast(MVT::i32, Lanes[I]));
9302 } else {
9303 if (IsAligned) {
9304 Ops.push_back(DAG.getBitcast(
9305 MVT::i32,
9306 DAG.getBuildVector(MVT::v2f16, DL, {Lanes[0], Lanes[1]})));
9307 Ops.push_back(Lanes[2]);
9308 } else {
9309 SDValue Elt0 = Ops.pop_back_val();
9310 Ops.push_back(DAG.getBitcast(
9311 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL, {Elt0, Lanes[0]})));
9312 Ops.push_back(DAG.getBitcast(
9313 MVT::i32,
9314 DAG.getBuildVector(MVT::v2f16, DL, {Lanes[1], Lanes[2]})));
9319 if (UseNSA && IsGFX11Plus) {
9320 Ops.push_back(NodePtr);
9321 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
9322 Ops.push_back(RayOrigin);
9323 if (IsA16) {
9324 SmallVector<SDValue, 3> DirLanes, InvDirLanes, MergedLanes;
9325 DAG.ExtractVectorElements(RayDir, DirLanes, 0, 3);
9326 DAG.ExtractVectorElements(RayInvDir, InvDirLanes, 0, 3);
9327 for (unsigned I = 0; I < 3; ++I) {
9328 MergedLanes.push_back(DAG.getBitcast(
9329 MVT::i32, DAG.getBuildVector(MVT::v2f16, DL,
9330 {DirLanes[I], InvDirLanes[I]})));
9332 Ops.push_back(DAG.getBuildVector(MVT::v3i32, DL, MergedLanes));
9333 } else {
9334 Ops.push_back(RayDir);
9335 Ops.push_back(RayInvDir);
9337 } else {
9338 if (Is64)
9339 DAG.ExtractVectorElements(DAG.getBitcast(MVT::v2i32, NodePtr), Ops, 0,
9341 else
9342 Ops.push_back(NodePtr);
9344 Ops.push_back(DAG.getBitcast(MVT::i32, RayExtent));
9345 packLanes(RayOrigin, true);
9346 packLanes(RayDir, true);
9347 packLanes(RayInvDir, false);
9350 if (!UseNSA) {
9351 // Build a single vector containing all the operands so far prepared.
9352 if (NumVAddrDwords > 12) {
9353 SDValue Undef = DAG.getUNDEF(MVT::i32);
9354 Ops.append(16 - Ops.size(), Undef);
9356 assert(Ops.size() >= 8 && Ops.size() <= 12);
9357 SDValue MergedOps =
9358 DAG.getBuildVector(MVT::getVectorVT(MVT::i32, Ops.size()), DL, Ops);
9359 Ops.clear();
9360 Ops.push_back(MergedOps);
9363 Ops.push_back(TDescr);
9364 Ops.push_back(DAG.getTargetConstant(IsA16, DL, MVT::i1));
9365 Ops.push_back(M->getChain());
9367 auto *NewNode = DAG.getMachineNode(Opcode, DL, M->getVTList(), Ops);
9368 MachineMemOperand *MemRef = M->getMemOperand();
9369 DAG.setNodeMemRefs(NewNode, {MemRef});
9370 return SDValue(NewNode, 0);
9372 case Intrinsic::amdgcn_global_atomic_fmin_num:
9373 case Intrinsic::amdgcn_global_atomic_fmax_num:
9374 case Intrinsic::amdgcn_flat_atomic_fmin_num:
9375 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
9376 MemSDNode *M = cast<MemSDNode>(Op);
9377 SDValue Ops[] = {
9378 M->getOperand(0), // Chain
9379 M->getOperand(2), // Ptr
9380 M->getOperand(3) // Value
9382 unsigned Opcode = 0;
9383 switch (IntrID) {
9384 case Intrinsic::amdgcn_global_atomic_fmin_num:
9385 case Intrinsic::amdgcn_flat_atomic_fmin_num: {
9386 Opcode = ISD::ATOMIC_LOAD_FMIN;
9387 break;
9389 case Intrinsic::amdgcn_global_atomic_fmax_num:
9390 case Intrinsic::amdgcn_flat_atomic_fmax_num: {
9391 Opcode = ISD::ATOMIC_LOAD_FMAX;
9392 break;
9394 default:
9395 llvm_unreachable("unhandled atomic opcode");
9397 return DAG.getAtomic(Opcode, SDLoc(Op), M->getMemoryVT(), M->getVTList(),
9398 Ops, M->getMemOperand());
9400 case Intrinsic::amdgcn_s_get_barrier_state:
9401 case Intrinsic::amdgcn_s_get_named_barrier_state: {
9402 SDValue Chain = Op->getOperand(0);
9403 SmallVector<SDValue, 2> Ops;
9404 unsigned Opc;
9406 if (isa<ConstantSDNode>(Op->getOperand(2))) {
9407 uint64_t BarID = cast<ConstantSDNode>(Op->getOperand(2))->getZExtValue();
9408 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state)
9409 BarID = (BarID >> 4) & 0x3F;
9410 Opc = AMDGPU::S_GET_BARRIER_STATE_IMM;
9411 SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32);
9412 Ops.push_back(K);
9413 Ops.push_back(Chain);
9414 } else {
9415 Opc = AMDGPU::S_GET_BARRIER_STATE_M0;
9416 if (IntrID == Intrinsic::amdgcn_s_get_named_barrier_state) {
9417 SDValue M0Val;
9418 M0Val = DAG.getNode(ISD::SRL, DL, MVT::i32, Op->getOperand(2),
9419 DAG.getShiftAmountConstant(4, MVT::i32, DL));
9420 M0Val = SDValue(
9421 DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, M0Val,
9422 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
9424 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
9425 } else
9426 Ops.push_back(copyToM0(DAG, Chain, DL, Op->getOperand(2)).getValue(0));
9429 auto *NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
9430 return SDValue(NewMI, 0);
9432 default:
9434 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
9435 AMDGPU::getImageDimIntrinsicInfo(IntrID))
9436 return lowerImage(Op, ImageDimIntr, DAG, true);
9438 return SDValue();
9442 // Call DAG.getMemIntrinsicNode for a load, but first widen a dwordx3 type to
9443 // dwordx4 if on SI and handle TFE loads.
9444 SDValue SITargetLowering::getMemIntrinsicNode(unsigned Opcode, const SDLoc &DL,
9445 SDVTList VTList,
9446 ArrayRef<SDValue> Ops, EVT MemVT,
9447 MachineMemOperand *MMO,
9448 SelectionDAG &DAG) const {
9449 LLVMContext &C = *DAG.getContext();
9450 MachineFunction &MF = DAG.getMachineFunction();
9451 EVT VT = VTList.VTs[0];
9453 assert(VTList.NumVTs == 2 || VTList.NumVTs == 3);
9454 bool IsTFE = VTList.NumVTs == 3;
9455 if (IsTFE) {
9456 unsigned NumValueDWords = divideCeil(VT.getSizeInBits(), 32);
9457 unsigned NumOpDWords = NumValueDWords + 1;
9458 EVT OpDWordsVT = EVT::getVectorVT(C, MVT::i32, NumOpDWords);
9459 SDVTList OpDWordsVTList = DAG.getVTList(OpDWordsVT, VTList.VTs[2]);
9460 MachineMemOperand *OpDWordsMMO =
9461 MF.getMachineMemOperand(MMO, 0, NumOpDWords * 4);
9462 SDValue Op = getMemIntrinsicNode(Opcode, DL, OpDWordsVTList, Ops,
9463 OpDWordsVT, OpDWordsMMO, DAG);
9464 SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
9465 DAG.getVectorIdxConstant(NumValueDWords, DL));
9466 SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
9467 SDValue ValueDWords =
9468 NumValueDWords == 1
9469 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op, ZeroIdx)
9470 : DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
9471 EVT::getVectorVT(C, MVT::i32, NumValueDWords), Op,
9472 ZeroIdx);
9473 SDValue Value = DAG.getNode(ISD::BITCAST, DL, VT, ValueDWords);
9474 return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
9477 if (!Subtarget->hasDwordx3LoadStores() &&
9478 (VT == MVT::v3i32 || VT == MVT::v3f32)) {
9479 EVT WidenedVT = EVT::getVectorVT(C, VT.getVectorElementType(), 4);
9480 EVT WidenedMemVT = EVT::getVectorVT(C, MemVT.getVectorElementType(), 4);
9481 MachineMemOperand *WidenedMMO = MF.getMachineMemOperand(MMO, 0, 16);
9482 SDVTList WidenedVTList = DAG.getVTList(WidenedVT, VTList.VTs[1]);
9483 SDValue Op = DAG.getMemIntrinsicNode(Opcode, DL, WidenedVTList, Ops,
9484 WidenedMemVT, WidenedMMO);
9485 SDValue Value = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Op,
9486 DAG.getVectorIdxConstant(0, DL));
9487 return DAG.getMergeValues({Value, SDValue(Op.getNode(), 1)}, DL);
9490 return DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, MemVT, MMO);
9493 SDValue SITargetLowering::handleD16VData(SDValue VData, SelectionDAG &DAG,
9494 bool ImageStore) const {
9495 EVT StoreVT = VData.getValueType();
9497 // No change for f16 and legal vector D16 types.
9498 if (!StoreVT.isVector())
9499 return VData;
9501 SDLoc DL(VData);
9502 unsigned NumElements = StoreVT.getVectorNumElements();
9504 if (Subtarget->hasUnpackedD16VMem()) {
9505 // We need to unpack the packed data to store.
9506 EVT IntStoreVT = StoreVT.changeTypeToInteger();
9507 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
9509 EVT EquivStoreVT =
9510 EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElements);
9511 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, EquivStoreVT, IntVData);
9512 return DAG.UnrollVectorOp(ZExt.getNode());
9515 // The sq block of gfx8.1 does not estimate register use correctly for d16
9516 // image store instructions. The data operand is computed as if it were not a
9517 // d16 image instruction.
9518 if (ImageStore && Subtarget->hasImageStoreD16Bug()) {
9519 // Bitcast to i16
9520 EVT IntStoreVT = StoreVT.changeTypeToInteger();
9521 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
9523 // Decompose into scalars
9524 SmallVector<SDValue, 4> Elts;
9525 DAG.ExtractVectorElements(IntVData, Elts);
9527 // Group pairs of i16 into v2i16 and bitcast to i32
9528 SmallVector<SDValue, 4> PackedElts;
9529 for (unsigned I = 0; I < Elts.size() / 2; I += 1) {
9530 SDValue Pair =
9531 DAG.getBuildVector(MVT::v2i16, DL, {Elts[I * 2], Elts[I * 2 + 1]});
9532 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
9533 PackedElts.push_back(IntPair);
9535 if ((NumElements % 2) == 1) {
9536 // Handle v3i16
9537 unsigned I = Elts.size() / 2;
9538 SDValue Pair = DAG.getBuildVector(MVT::v2i16, DL,
9539 {Elts[I * 2], DAG.getUNDEF(MVT::i16)});
9540 SDValue IntPair = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Pair);
9541 PackedElts.push_back(IntPair);
9544 // Pad using UNDEF
9545 PackedElts.resize(Elts.size(), DAG.getUNDEF(MVT::i32));
9547 // Build final vector
9548 EVT VecVT =
9549 EVT::getVectorVT(*DAG.getContext(), MVT::i32, PackedElts.size());
9550 return DAG.getBuildVector(VecVT, DL, PackedElts);
9553 if (NumElements == 3) {
9554 EVT IntStoreVT =
9555 EVT::getIntegerVT(*DAG.getContext(), StoreVT.getStoreSizeInBits());
9556 SDValue IntVData = DAG.getNode(ISD::BITCAST, DL, IntStoreVT, VData);
9558 EVT WidenedStoreVT = EVT::getVectorVT(
9559 *DAG.getContext(), StoreVT.getVectorElementType(), NumElements + 1);
9560 EVT WidenedIntVT = EVT::getIntegerVT(*DAG.getContext(),
9561 WidenedStoreVT.getStoreSizeInBits());
9562 SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, WidenedIntVT, IntVData);
9563 return DAG.getNode(ISD::BITCAST, DL, WidenedStoreVT, ZExt);
9566 assert(isTypeLegal(StoreVT));
9567 return VData;
9570 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9571 SelectionDAG &DAG) const {
9572 SDLoc DL(Op);
9573 SDValue Chain = Op.getOperand(0);
9574 unsigned IntrinsicID = Op.getConstantOperandVal(1);
9575 MachineFunction &MF = DAG.getMachineFunction();
9577 switch (IntrinsicID) {
9578 case Intrinsic::amdgcn_exp_compr: {
9579 if (!Subtarget->hasCompressedExport()) {
9580 DiagnosticInfoUnsupported BadIntrin(
9581 DAG.getMachineFunction().getFunction(),
9582 "intrinsic not supported on subtarget", DL.getDebugLoc());
9583 DAG.getContext()->diagnose(BadIntrin);
9585 SDValue Src0 = Op.getOperand(4);
9586 SDValue Src1 = Op.getOperand(5);
9587 // Hack around illegal type on SI by directly selecting it.
9588 if (isTypeLegal(Src0.getValueType()))
9589 return SDValue();
9591 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(6));
9592 SDValue Undef = DAG.getUNDEF(MVT::f32);
9593 const SDValue Ops[] = {
9594 Op.getOperand(2), // tgt
9595 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src0), // src0
9596 DAG.getNode(ISD::BITCAST, DL, MVT::f32, Src1), // src1
9597 Undef, // src2
9598 Undef, // src3
9599 Op.getOperand(7), // vm
9600 DAG.getTargetConstant(1, DL, MVT::i1), // compr
9601 Op.getOperand(3), // en
9602 Op.getOperand(0) // Chain
9605 unsigned Opc = Done->isZero() ? AMDGPU::EXP : AMDGPU::EXP_DONE;
9606 return SDValue(DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops), 0);
9608 case Intrinsic::amdgcn_s_barrier: {
9609 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
9610 if (getTargetMachine().getOptLevel() > CodeGenOptLevel::None) {
9611 unsigned WGSize = ST.getFlatWorkGroupSizes(MF.getFunction()).second;
9612 if (WGSize <= ST.getWavefrontSize())
9613 return SDValue(DAG.getMachineNode(AMDGPU::WAVE_BARRIER, DL, MVT::Other,
9614 Op.getOperand(0)),
9618 // On GFX12 lower s_barrier into s_barrier_signal_imm and s_barrier_wait
9619 if (ST.hasSplitBarriers()) {
9620 SDValue K =
9621 DAG.getTargetConstant(AMDGPU::Barrier::WORKGROUP, DL, MVT::i32);
9622 SDValue BarSignal =
9623 SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_SIGNAL_IMM, DL,
9624 MVT::Other, K, Op.getOperand(0)),
9626 SDValue BarWait =
9627 SDValue(DAG.getMachineNode(AMDGPU::S_BARRIER_WAIT, DL, MVT::Other, K,
9628 BarSignal.getValue(0)),
9630 return BarWait;
9633 return SDValue();
9636 case Intrinsic::amdgcn_struct_tbuffer_store:
9637 case Intrinsic::amdgcn_struct_ptr_tbuffer_store: {
9638 SDValue VData = Op.getOperand(2);
9639 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
9640 if (IsD16)
9641 VData = handleD16VData(VData, DAG);
9642 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9643 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
9644 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
9645 SDValue Ops[] = {
9646 Chain,
9647 VData, // vdata
9648 Rsrc, // rsrc
9649 Op.getOperand(4), // vindex
9650 VOffset, // voffset
9651 SOffset, // soffset
9652 Offset, // offset
9653 Op.getOperand(7), // format
9654 Op.getOperand(8), // cachepolicy, swizzled buffer
9655 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
9657 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16
9658 : AMDGPUISD::TBUFFER_STORE_FORMAT;
9659 MemSDNode *M = cast<MemSDNode>(Op);
9660 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9661 M->getMemoryVT(), M->getMemOperand());
9664 case Intrinsic::amdgcn_raw_tbuffer_store:
9665 case Intrinsic::amdgcn_raw_ptr_tbuffer_store: {
9666 SDValue VData = Op.getOperand(2);
9667 bool IsD16 = (VData.getValueType().getScalarType() == MVT::f16);
9668 if (IsD16)
9669 VData = handleD16VData(VData, DAG);
9670 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9671 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
9672 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
9673 SDValue Ops[] = {
9674 Chain,
9675 VData, // vdata
9676 Rsrc, // rsrc
9677 DAG.getConstant(0, DL, MVT::i32), // vindex
9678 VOffset, // voffset
9679 SOffset, // soffset
9680 Offset, // offset
9681 Op.getOperand(6), // format
9682 Op.getOperand(7), // cachepolicy, swizzled buffer
9683 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9685 unsigned Opc = IsD16 ? AMDGPUISD::TBUFFER_STORE_FORMAT_D16
9686 : AMDGPUISD::TBUFFER_STORE_FORMAT;
9687 MemSDNode *M = cast<MemSDNode>(Op);
9688 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9689 M->getMemoryVT(), M->getMemOperand());
9692 case Intrinsic::amdgcn_raw_buffer_store:
9693 case Intrinsic::amdgcn_raw_ptr_buffer_store:
9694 case Intrinsic::amdgcn_raw_buffer_store_format:
9695 case Intrinsic::amdgcn_raw_ptr_buffer_store_format: {
9696 const bool IsFormat =
9697 IntrinsicID == Intrinsic::amdgcn_raw_buffer_store_format ||
9698 IntrinsicID == Intrinsic::amdgcn_raw_ptr_buffer_store_format;
9700 SDValue VData = Op.getOperand(2);
9701 EVT VDataVT = VData.getValueType();
9702 EVT EltType = VDataVT.getScalarType();
9703 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
9704 if (IsD16) {
9705 VData = handleD16VData(VData, DAG);
9706 VDataVT = VData.getValueType();
9709 if (!isTypeLegal(VDataVT)) {
9710 VData =
9711 DAG.getNode(ISD::BITCAST, DL,
9712 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
9715 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9716 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(4), DAG);
9717 auto SOffset = selectSOffset(Op.getOperand(5), DAG, Subtarget);
9718 SDValue Ops[] = {
9719 Chain,
9720 VData,
9721 Rsrc,
9722 DAG.getConstant(0, DL, MVT::i32), // vindex
9723 VOffset, // voffset
9724 SOffset, // soffset
9725 Offset, // offset
9726 Op.getOperand(6), // cachepolicy, swizzled buffer
9727 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
9729 unsigned Opc =
9730 IsFormat ? AMDGPUISD::BUFFER_STORE_FORMAT : AMDGPUISD::BUFFER_STORE;
9731 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
9732 MemSDNode *M = cast<MemSDNode>(Op);
9734 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
9735 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
9736 return handleByteShortBufferStores(DAG, VDataVT, DL, Ops, M);
9738 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9739 M->getMemoryVT(), M->getMemOperand());
9742 case Intrinsic::amdgcn_struct_buffer_store:
9743 case Intrinsic::amdgcn_struct_ptr_buffer_store:
9744 case Intrinsic::amdgcn_struct_buffer_store_format:
9745 case Intrinsic::amdgcn_struct_ptr_buffer_store_format: {
9746 const bool IsFormat =
9747 IntrinsicID == Intrinsic::amdgcn_struct_buffer_store_format ||
9748 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_store_format;
9750 SDValue VData = Op.getOperand(2);
9751 EVT VDataVT = VData.getValueType();
9752 EVT EltType = VDataVT.getScalarType();
9753 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
9755 if (IsD16) {
9756 VData = handleD16VData(VData, DAG);
9757 VDataVT = VData.getValueType();
9760 if (!isTypeLegal(VDataVT)) {
9761 VData =
9762 DAG.getNode(ISD::BITCAST, DL,
9763 getEquivalentMemType(*DAG.getContext(), VDataVT), VData);
9766 auto Rsrc = bufferRsrcPtrToVector(Op.getOperand(3), DAG);
9767 auto [VOffset, Offset] = splitBufferOffsets(Op.getOperand(5), DAG);
9768 auto SOffset = selectSOffset(Op.getOperand(6), DAG, Subtarget);
9769 SDValue Ops[] = {
9770 Chain,
9771 VData,
9772 Rsrc,
9773 Op.getOperand(4), // vindex
9774 VOffset, // voffset
9775 SOffset, // soffset
9776 Offset, // offset
9777 Op.getOperand(7), // cachepolicy, swizzled buffer
9778 DAG.getTargetConstant(1, DL, MVT::i1), // idxen
9780 unsigned Opc =
9781 !IsFormat ? AMDGPUISD::BUFFER_STORE : AMDGPUISD::BUFFER_STORE_FORMAT;
9782 Opc = IsD16 ? AMDGPUISD::BUFFER_STORE_FORMAT_D16 : Opc;
9783 MemSDNode *M = cast<MemSDNode>(Op);
9785 // Handle BUFFER_STORE_BYTE/SHORT overloaded intrinsics
9786 EVT VDataType = VData.getValueType().getScalarType();
9787 if (!IsD16 && !VDataVT.isVector() && EltType.getSizeInBits() < 32)
9788 return handleByteShortBufferStores(DAG, VDataType, DL, Ops, M);
9790 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops,
9791 M->getMemoryVT(), M->getMemOperand());
9793 case Intrinsic::amdgcn_raw_buffer_load_lds:
9794 case Intrinsic::amdgcn_raw_ptr_buffer_load_lds:
9795 case Intrinsic::amdgcn_struct_buffer_load_lds:
9796 case Intrinsic::amdgcn_struct_ptr_buffer_load_lds: {
9797 assert(!AMDGPU::isGFX12Plus(*Subtarget));
9798 unsigned Opc;
9799 bool HasVIndex =
9800 IntrinsicID == Intrinsic::amdgcn_struct_buffer_load_lds ||
9801 IntrinsicID == Intrinsic::amdgcn_struct_ptr_buffer_load_lds;
9802 unsigned OpOffset = HasVIndex ? 1 : 0;
9803 SDValue VOffset = Op.getOperand(5 + OpOffset);
9804 bool HasVOffset = !isNullConstant(VOffset);
9805 unsigned Size = Op->getConstantOperandVal(4);
9807 switch (Size) {
9808 default:
9809 return SDValue();
9810 case 1:
9811 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_BOTHEN
9812 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_IDXEN
9813 : HasVOffset ? AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFEN
9814 : AMDGPU::BUFFER_LOAD_UBYTE_LDS_OFFSET;
9815 break;
9816 case 2:
9817 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_BOTHEN
9818 : AMDGPU::BUFFER_LOAD_USHORT_LDS_IDXEN
9819 : HasVOffset ? AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFEN
9820 : AMDGPU::BUFFER_LOAD_USHORT_LDS_OFFSET;
9821 break;
9822 case 4:
9823 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_BOTHEN
9824 : AMDGPU::BUFFER_LOAD_DWORD_LDS_IDXEN
9825 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFEN
9826 : AMDGPU::BUFFER_LOAD_DWORD_LDS_OFFSET;
9827 break;
9828 case 12:
9829 if (!Subtarget->hasLDSLoadB96_B128())
9830 return SDValue();
9831 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_BOTHEN
9832 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_IDXEN
9833 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFEN
9834 : AMDGPU::BUFFER_LOAD_DWORDX3_LDS_OFFSET;
9835 break;
9836 case 16:
9837 if (!Subtarget->hasLDSLoadB96_B128())
9838 return SDValue();
9839 Opc = HasVIndex ? HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_BOTHEN
9840 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_IDXEN
9841 : HasVOffset ? AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFEN
9842 : AMDGPU::BUFFER_LOAD_DWORDX4_LDS_OFFSET;
9843 break;
9846 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
9848 SmallVector<SDValue, 8> Ops;
9850 if (HasVIndex && HasVOffset)
9851 Ops.push_back(DAG.getBuildVector(MVT::v2i32, DL,
9852 {Op.getOperand(5), // VIndex
9853 VOffset}));
9854 else if (HasVIndex)
9855 Ops.push_back(Op.getOperand(5));
9856 else if (HasVOffset)
9857 Ops.push_back(VOffset);
9859 SDValue Rsrc = bufferRsrcPtrToVector(Op.getOperand(2), DAG);
9860 Ops.push_back(Rsrc);
9861 Ops.push_back(Op.getOperand(6 + OpOffset)); // soffset
9862 Ops.push_back(Op.getOperand(7 + OpOffset)); // imm offset
9863 bool IsGFX12Plus = AMDGPU::isGFX12Plus(*Subtarget);
9864 unsigned Aux = Op.getConstantOperandVal(8 + OpOffset);
9865 Ops.push_back(DAG.getTargetConstant(
9866 Aux & (IsGFX12Plus ? AMDGPU::CPol::ALL : AMDGPU::CPol::ALL_pregfx12),
9867 DL, MVT::i8)); // cpol
9868 Ops.push_back(DAG.getTargetConstant(
9869 Aux & (IsGFX12Plus ? AMDGPU::CPol::SWZ : AMDGPU::CPol::SWZ_pregfx12)
9871 : 0,
9872 DL, MVT::i8)); // swz
9873 Ops.push_back(M0Val.getValue(0)); // Chain
9874 Ops.push_back(M0Val.getValue(1)); // Glue
9876 auto *M = cast<MemSDNode>(Op);
9877 MachineMemOperand *LoadMMO = M->getMemOperand();
9878 // Don't set the offset value here because the pointer points to the base of
9879 // the buffer.
9880 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
9882 MachinePointerInfo StorePtrI = LoadPtrI;
9883 LoadPtrI.V = PoisonValue::get(
9884 PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS));
9885 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
9886 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
9888 auto F = LoadMMO->getFlags() &
9889 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
9890 LoadMMO =
9891 MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size,
9892 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
9894 MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
9895 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t),
9896 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
9898 auto *Load = DAG.getMachineNode(Opc, DL, M->getVTList(), Ops);
9899 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
9901 return SDValue(Load, 0);
9903 case Intrinsic::amdgcn_global_load_lds: {
9904 unsigned Opc;
9905 unsigned Size = Op->getConstantOperandVal(4);
9906 switch (Size) {
9907 default:
9908 return SDValue();
9909 case 1:
9910 Opc = AMDGPU::GLOBAL_LOAD_LDS_UBYTE;
9911 break;
9912 case 2:
9913 Opc = AMDGPU::GLOBAL_LOAD_LDS_USHORT;
9914 break;
9915 case 4:
9916 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORD;
9917 break;
9918 case 12:
9919 if (!Subtarget->hasLDSLoadB96_B128())
9920 return SDValue();
9921 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX3;
9922 break;
9923 case 16:
9924 if (!Subtarget->hasLDSLoadB96_B128())
9925 return SDValue();
9926 Opc = AMDGPU::GLOBAL_LOAD_LDS_DWORDX4;
9927 break;
9930 auto *M = cast<MemSDNode>(Op);
9931 SDValue M0Val = copyToM0(DAG, Chain, DL, Op.getOperand(3));
9933 SmallVector<SDValue, 6> Ops;
9935 SDValue Addr = Op.getOperand(2); // Global ptr
9936 SDValue VOffset;
9937 // Try to split SAddr and VOffset. Global and LDS pointers share the same
9938 // immediate offset, so we cannot use a regular SelectGlobalSAddr().
9939 if (Addr->isDivergent() && Addr.getOpcode() == ISD::ADD) {
9940 SDValue LHS = Addr.getOperand(0);
9941 SDValue RHS = Addr.getOperand(1);
9943 if (LHS->isDivergent())
9944 std::swap(LHS, RHS);
9946 if (!LHS->isDivergent() && RHS.getOpcode() == ISD::ZERO_EXTEND &&
9947 RHS.getOperand(0).getValueType() == MVT::i32) {
9948 // add (i64 sgpr), (zero_extend (i32 vgpr))
9949 Addr = LHS;
9950 VOffset = RHS.getOperand(0);
9954 Ops.push_back(Addr);
9955 if (!Addr->isDivergent()) {
9956 Opc = AMDGPU::getGlobalSaddrOp(Opc);
9957 if (!VOffset)
9958 VOffset =
9959 SDValue(DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32,
9960 DAG.getTargetConstant(0, DL, MVT::i32)),
9962 Ops.push_back(VOffset);
9965 Ops.push_back(Op.getOperand(5)); // Offset
9966 Ops.push_back(Op.getOperand(6)); // CPol
9967 Ops.push_back(M0Val.getValue(0)); // Chain
9968 Ops.push_back(M0Val.getValue(1)); // Glue
9970 MachineMemOperand *LoadMMO = M->getMemOperand();
9971 MachinePointerInfo LoadPtrI = LoadMMO->getPointerInfo();
9972 LoadPtrI.Offset = Op->getConstantOperandVal(5);
9973 MachinePointerInfo StorePtrI = LoadPtrI;
9974 LoadPtrI.V = PoisonValue::get(
9975 PointerType::get(*DAG.getContext(), AMDGPUAS::GLOBAL_ADDRESS));
9976 LoadPtrI.AddrSpace = AMDGPUAS::GLOBAL_ADDRESS;
9977 StorePtrI.AddrSpace = AMDGPUAS::LOCAL_ADDRESS;
9978 auto F = LoadMMO->getFlags() &
9979 ~(MachineMemOperand::MOStore | MachineMemOperand::MOLoad);
9980 LoadMMO =
9981 MF.getMachineMemOperand(LoadPtrI, F | MachineMemOperand::MOLoad, Size,
9982 LoadMMO->getBaseAlign(), LoadMMO->getAAInfo());
9983 MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
9984 StorePtrI, F | MachineMemOperand::MOStore, sizeof(int32_t), Align(4),
9985 LoadMMO->getAAInfo());
9987 auto *Load = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
9988 DAG.setNodeMemRefs(Load, {LoadMMO, StoreMMO});
9990 return SDValue(Load, 0);
9992 case Intrinsic::amdgcn_end_cf:
9993 return SDValue(DAG.getMachineNode(AMDGPU::SI_END_CF, DL, MVT::Other,
9994 Op->getOperand(2), Chain),
9996 case Intrinsic::amdgcn_s_barrier_init:
9997 case Intrinsic::amdgcn_s_barrier_signal_var: {
9998 // these two intrinsics have two operands: barrier pointer and member count
9999 SDValue Chain = Op->getOperand(0);
10000 SmallVector<SDValue, 2> Ops;
10001 SDValue BarOp = Op->getOperand(2);
10002 SDValue CntOp = Op->getOperand(3);
10003 SDValue M0Val;
10004 unsigned Opc = IntrinsicID == Intrinsic::amdgcn_s_barrier_init
10005 ? AMDGPU::S_BARRIER_INIT_M0
10006 : AMDGPU::S_BARRIER_SIGNAL_M0;
10007 // extract the BarrierID from bits 4-9 of BarOp
10008 SDValue BarID;
10009 BarID = DAG.getNode(ISD::SRL, DL, MVT::i32, BarOp,
10010 DAG.getShiftAmountConstant(4, MVT::i32, DL));
10011 BarID =
10012 SDValue(DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, BarID,
10013 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
10015 // Member count should be put into M0[ShAmt:+6]
10016 // Barrier ID should be put into M0[5:0]
10017 M0Val =
10018 SDValue(DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, CntOp,
10019 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
10021 constexpr unsigned ShAmt = 16;
10022 M0Val = DAG.getNode(ISD::SHL, DL, MVT::i32, CntOp,
10023 DAG.getShiftAmountConstant(ShAmt, MVT::i32, DL));
10025 M0Val = SDValue(
10026 DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, M0Val, BarID), 0);
10028 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
10030 auto *NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
10031 return SDValue(NewMI, 0);
10033 case Intrinsic::amdgcn_s_barrier_join:
10034 case Intrinsic::amdgcn_s_wakeup_barrier: {
10035 // these three intrinsics have one operand: barrier pointer
10036 SDValue Chain = Op->getOperand(0);
10037 SmallVector<SDValue, 2> Ops;
10038 SDValue BarOp = Op->getOperand(2);
10039 unsigned Opc;
10041 if (isa<ConstantSDNode>(BarOp)) {
10042 uint64_t BarVal = cast<ConstantSDNode>(BarOp)->getZExtValue();
10043 switch (IntrinsicID) {
10044 default:
10045 return SDValue();
10046 case Intrinsic::amdgcn_s_barrier_join:
10047 Opc = AMDGPU::S_BARRIER_JOIN_IMM;
10048 break;
10049 case Intrinsic::amdgcn_s_wakeup_barrier:
10050 Opc = AMDGPU::S_WAKEUP_BARRIER_IMM;
10051 break;
10053 // extract the BarrierID from bits 4-9 of the immediate
10054 unsigned BarID = (BarVal >> 4) & 0x3F;
10055 SDValue K = DAG.getTargetConstant(BarID, DL, MVT::i32);
10056 Ops.push_back(K);
10057 Ops.push_back(Chain);
10058 } else {
10059 switch (IntrinsicID) {
10060 default:
10061 return SDValue();
10062 case Intrinsic::amdgcn_s_barrier_join:
10063 Opc = AMDGPU::S_BARRIER_JOIN_M0;
10064 break;
10065 case Intrinsic::amdgcn_s_wakeup_barrier:
10066 Opc = AMDGPU::S_WAKEUP_BARRIER_M0;
10067 break;
10069 // extract the BarrierID from bits 4-9 of BarOp, copy to M0[5:0]
10070 SDValue M0Val;
10071 M0Val = DAG.getNode(ISD::SRL, DL, MVT::i32, BarOp,
10072 DAG.getShiftAmountConstant(4, MVT::i32, DL));
10073 M0Val =
10074 SDValue(DAG.getMachineNode(AMDGPU::S_AND_B32, DL, MVT::i32, M0Val,
10075 DAG.getTargetConstant(0x3F, DL, MVT::i32)),
10077 Ops.push_back(copyToM0(DAG, Chain, DL, M0Val).getValue(0));
10080 auto *NewMI = DAG.getMachineNode(Opc, DL, Op->getVTList(), Ops);
10081 return SDValue(NewMI, 0);
10083 case Intrinsic::amdgcn_s_prefetch_data: {
10084 // For non-global address space preserve the chain and remove the call.
10085 if (!AMDGPU::isFlatGlobalAddrSpace(cast<MemSDNode>(Op)->getAddressSpace()))
10086 return Op.getOperand(0);
10087 return Op;
10089 case Intrinsic::amdgcn_s_buffer_prefetch_data: {
10090 SDValue Ops[] = {
10091 Chain, bufferRsrcPtrToVector(Op.getOperand(2), DAG),
10092 Op.getOperand(3), // offset
10093 Op.getOperand(4), // length
10096 MemSDNode *M = cast<MemSDNode>(Op);
10097 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_PREFETCH_DATA, DL,
10098 Op->getVTList(), Ops, M->getMemoryVT(),
10099 M->getMemOperand());
10101 default: {
10102 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
10103 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
10104 return lowerImage(Op, ImageDimIntr, DAG, true);
10106 return Op;
10111 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
10112 // offset (the offset that is included in bounds checking and swizzling, to be
10113 // split between the instruction's voffset and immoffset fields) and soffset
10114 // (the offset that is excluded from bounds checking and swizzling, to go in
10115 // the instruction's soffset field). This function takes the first kind of
10116 // offset and figures out how to split it between voffset and immoffset.
10117 std::pair<SDValue, SDValue>
10118 SITargetLowering::splitBufferOffsets(SDValue Offset, SelectionDAG &DAG) const {
10119 SDLoc DL(Offset);
10120 const unsigned MaxImm = SIInstrInfo::getMaxMUBUFImmOffset(*Subtarget);
10121 SDValue N0 = Offset;
10122 ConstantSDNode *C1 = nullptr;
10124 if ((C1 = dyn_cast<ConstantSDNode>(N0)))
10125 N0 = SDValue();
10126 else if (DAG.isBaseWithConstantOffset(N0)) {
10127 C1 = cast<ConstantSDNode>(N0.getOperand(1));
10128 N0 = N0.getOperand(0);
10131 if (C1) {
10132 unsigned ImmOffset = C1->getZExtValue();
10133 // If the immediate value is too big for the immoffset field, put only bits
10134 // that would normally fit in the immoffset field. The remaining value that
10135 // is copied/added for the voffset field is a large power of 2, and it
10136 // stands more chance of being CSEd with the copy/add for another similar
10137 // load/store.
10138 // However, do not do that rounding down if that is a negative
10139 // number, as it appears to be illegal to have a negative offset in the
10140 // vgpr, even if adding the immediate offset makes it positive.
10141 unsigned Overflow = ImmOffset & ~MaxImm;
10142 ImmOffset -= Overflow;
10143 if ((int32_t)Overflow < 0) {
10144 Overflow += ImmOffset;
10145 ImmOffset = 0;
10147 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(ImmOffset, DL, MVT::i32));
10148 if (Overflow) {
10149 auto OverflowVal = DAG.getConstant(Overflow, DL, MVT::i32);
10150 if (!N0)
10151 N0 = OverflowVal;
10152 else {
10153 SDValue Ops[] = {N0, OverflowVal};
10154 N0 = DAG.getNode(ISD::ADD, DL, MVT::i32, Ops);
10158 if (!N0)
10159 N0 = DAG.getConstant(0, DL, MVT::i32);
10160 if (!C1)
10161 C1 = cast<ConstantSDNode>(DAG.getTargetConstant(0, DL, MVT::i32));
10162 return {N0, SDValue(C1, 0)};
10165 // Analyze a combined offset from an amdgcn_s_buffer_load intrinsic and store
10166 // the three offsets (voffset, soffset and instoffset) into the SDValue[3] array
10167 // pointed to by Offsets.
10168 void SITargetLowering::setBufferOffsets(SDValue CombinedOffset,
10169 SelectionDAG &DAG, SDValue *Offsets,
10170 Align Alignment) const {
10171 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
10172 SDLoc DL(CombinedOffset);
10173 if (auto *C = dyn_cast<ConstantSDNode>(CombinedOffset)) {
10174 uint32_t Imm = C->getZExtValue();
10175 uint32_t SOffset, ImmOffset;
10176 if (TII->splitMUBUFOffset(Imm, SOffset, ImmOffset, Alignment)) {
10177 Offsets[0] = DAG.getConstant(0, DL, MVT::i32);
10178 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
10179 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
10180 return;
10183 if (DAG.isBaseWithConstantOffset(CombinedOffset)) {
10184 SDValue N0 = CombinedOffset.getOperand(0);
10185 SDValue N1 = CombinedOffset.getOperand(1);
10186 uint32_t SOffset, ImmOffset;
10187 int Offset = cast<ConstantSDNode>(N1)->getSExtValue();
10188 if (Offset >= 0 &&
10189 TII->splitMUBUFOffset(Offset, SOffset, ImmOffset, Alignment)) {
10190 Offsets[0] = N0;
10191 Offsets[1] = DAG.getConstant(SOffset, DL, MVT::i32);
10192 Offsets[2] = DAG.getTargetConstant(ImmOffset, DL, MVT::i32);
10193 return;
10197 SDValue SOffsetZero = Subtarget->hasRestrictedSOffset()
10198 ? DAG.getRegister(AMDGPU::SGPR_NULL, MVT::i32)
10199 : DAG.getConstant(0, DL, MVT::i32);
10201 Offsets[0] = CombinedOffset;
10202 Offsets[1] = SOffsetZero;
10203 Offsets[2] = DAG.getTargetConstant(0, DL, MVT::i32);
10206 SDValue SITargetLowering::bufferRsrcPtrToVector(SDValue MaybePointer,
10207 SelectionDAG &DAG) const {
10208 if (!MaybePointer.getValueType().isScalarInteger())
10209 return MaybePointer;
10211 SDValue Rsrc = DAG.getBitcast(MVT::v4i32, MaybePointer);
10212 return Rsrc;
10215 // Wrap a global or flat pointer into a buffer intrinsic using the flags
10216 // specified in the intrinsic.
10217 SDValue SITargetLowering::lowerPointerAsRsrcIntrin(SDNode *Op,
10218 SelectionDAG &DAG) const {
10219 SDLoc Loc(Op);
10221 SDValue Pointer = Op->getOperand(1);
10222 SDValue Stride = Op->getOperand(2);
10223 SDValue NumRecords = Op->getOperand(3);
10224 SDValue Flags = Op->getOperand(4);
10226 auto [LowHalf, HighHalf] = DAG.SplitScalar(Pointer, Loc, MVT::i32, MVT::i32);
10227 SDValue Mask = DAG.getConstant(0x0000ffff, Loc, MVT::i32);
10228 SDValue Masked = DAG.getNode(ISD::AND, Loc, MVT::i32, HighHalf, Mask);
10229 std::optional<uint32_t> ConstStride = std::nullopt;
10230 if (auto *ConstNode = dyn_cast<ConstantSDNode>(Stride))
10231 ConstStride = ConstNode->getZExtValue();
10233 SDValue NewHighHalf = Masked;
10234 if (!ConstStride || *ConstStride != 0) {
10235 SDValue ShiftedStride;
10236 if (ConstStride) {
10237 ShiftedStride = DAG.getConstant(*ConstStride << 16, Loc, MVT::i32);
10238 } else {
10239 SDValue ExtStride = DAG.getAnyExtOrTrunc(Stride, Loc, MVT::i32);
10240 ShiftedStride =
10241 DAG.getNode(ISD::SHL, Loc, MVT::i32, ExtStride,
10242 DAG.getShiftAmountConstant(16, MVT::i32, Loc));
10244 NewHighHalf = DAG.getNode(ISD::OR, Loc, MVT::i32, Masked, ShiftedStride);
10247 SDValue Rsrc = DAG.getNode(ISD::BUILD_VECTOR, Loc, MVT::v4i32, LowHalf,
10248 NewHighHalf, NumRecords, Flags);
10249 SDValue RsrcPtr = DAG.getNode(ISD::BITCAST, Loc, MVT::i128, Rsrc);
10250 return RsrcPtr;
10253 // Handle 8 bit and 16 bit buffer loads
10254 SDValue SITargetLowering::handleByteShortBufferLoads(SelectionDAG &DAG,
10255 EVT LoadVT, SDLoc DL,
10256 ArrayRef<SDValue> Ops,
10257 MachineMemOperand *MMO,
10258 bool IsTFE) const {
10259 EVT IntVT = LoadVT.changeTypeToInteger();
10261 if (IsTFE) {
10262 unsigned Opc = (LoadVT.getScalarType() == MVT::i8)
10263 ? AMDGPUISD::BUFFER_LOAD_UBYTE_TFE
10264 : AMDGPUISD::BUFFER_LOAD_USHORT_TFE;
10265 MachineFunction &MF = DAG.getMachineFunction();
10266 MachineMemOperand *OpMMO = MF.getMachineMemOperand(MMO, 0, 8);
10267 SDVTList VTs = DAG.getVTList(MVT::v2i32, MVT::Other);
10268 SDValue Op = getMemIntrinsicNode(Opc, DL, VTs, Ops, MVT::v2i32, OpMMO, DAG);
10269 SDValue Status = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
10270 DAG.getConstant(1, DL, MVT::i32));
10271 SDValue Data = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Op,
10272 DAG.getConstant(0, DL, MVT::i32));
10273 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, IntVT, Data);
10274 SDValue Value = DAG.getNode(ISD::BITCAST, DL, LoadVT, Trunc);
10275 return DAG.getMergeValues({Value, Status, SDValue(Op.getNode(), 1)}, DL);
10278 unsigned Opc = LoadVT.getScalarType() == MVT::i8
10279 ? AMDGPUISD::BUFFER_LOAD_UBYTE
10280 : AMDGPUISD::BUFFER_LOAD_USHORT;
10282 SDVTList ResList = DAG.getVTList(MVT::i32, MVT::Other);
10283 SDValue BufferLoad =
10284 DAG.getMemIntrinsicNode(Opc, DL, ResList, Ops, IntVT, MMO);
10285 SDValue LoadVal = DAG.getNode(ISD::TRUNCATE, DL, IntVT, BufferLoad);
10286 LoadVal = DAG.getNode(ISD::BITCAST, DL, LoadVT, LoadVal);
10288 return DAG.getMergeValues({LoadVal, BufferLoad.getValue(1)}, DL);
10291 // Handle 8 bit and 16 bit buffer stores
10292 SDValue SITargetLowering::handleByteShortBufferStores(SelectionDAG &DAG,
10293 EVT VDataType, SDLoc DL,
10294 SDValue Ops[],
10295 MemSDNode *M) const {
10296 if (VDataType == MVT::f16 || VDataType == MVT::bf16)
10297 Ops[1] = DAG.getNode(ISD::BITCAST, DL, MVT::i16, Ops[1]);
10299 SDValue BufferStoreExt = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Ops[1]);
10300 Ops[1] = BufferStoreExt;
10301 unsigned Opc = (VDataType == MVT::i8) ? AMDGPUISD::BUFFER_STORE_BYTE
10302 : AMDGPUISD::BUFFER_STORE_SHORT;
10303 ArrayRef<SDValue> OpsRef = ArrayRef(&Ops[0], 9);
10304 return DAG.getMemIntrinsicNode(Opc, DL, M->getVTList(), OpsRef, VDataType,
10305 M->getMemOperand());
10308 static SDValue getLoadExtOrTrunc(SelectionDAG &DAG, ISD::LoadExtType ExtType,
10309 SDValue Op, const SDLoc &SL, EVT VT) {
10310 if (VT.bitsLT(Op.getValueType()))
10311 return DAG.getNode(ISD::TRUNCATE, SL, VT, Op);
10313 switch (ExtType) {
10314 case ISD::SEXTLOAD:
10315 return DAG.getNode(ISD::SIGN_EXTEND, SL, VT, Op);
10316 case ISD::ZEXTLOAD:
10317 return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, Op);
10318 case ISD::EXTLOAD:
10319 return DAG.getNode(ISD::ANY_EXTEND, SL, VT, Op);
10320 case ISD::NON_EXTLOAD:
10321 return Op;
10324 llvm_unreachable("invalid ext type");
10327 // Try to turn 8 and 16-bit scalar loads into SMEM eligible 32-bit loads.
10328 // TODO: Skip this on GFX12 which does have scalar sub-dword loads.
10329 SDValue SITargetLowering::widenLoad(LoadSDNode *Ld,
10330 DAGCombinerInfo &DCI) const {
10331 SelectionDAG &DAG = DCI.DAG;
10332 if (Ld->getAlign() < Align(4) || Ld->isDivergent())
10333 return SDValue();
10335 // FIXME: Constant loads should all be marked invariant.
10336 unsigned AS = Ld->getAddressSpace();
10337 if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
10338 AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
10339 (AS != AMDGPUAS::GLOBAL_ADDRESS || !Ld->isInvariant()))
10340 return SDValue();
10342 // Don't do this early, since it may interfere with adjacent load merging for
10343 // illegal types. We can avoid losing alignment information for exotic types
10344 // pre-legalize.
10345 EVT MemVT = Ld->getMemoryVT();
10346 if ((MemVT.isSimple() && !DCI.isAfterLegalizeDAG()) ||
10347 MemVT.getSizeInBits() >= 32)
10348 return SDValue();
10350 SDLoc SL(Ld);
10352 assert((!MemVT.isVector() || Ld->getExtensionType() == ISD::NON_EXTLOAD) &&
10353 "unexpected vector extload");
10355 // TODO: Drop only high part of range.
10356 SDValue Ptr = Ld->getBasePtr();
10357 SDValue NewLoad = DAG.getLoad(
10358 ISD::UNINDEXED, ISD::NON_EXTLOAD, MVT::i32, SL, Ld->getChain(), Ptr,
10359 Ld->getOffset(), Ld->getPointerInfo(), MVT::i32, Ld->getAlign(),
10360 Ld->getMemOperand()->getFlags(), Ld->getAAInfo(),
10361 nullptr); // Drop ranges
10363 EVT TruncVT = EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
10364 if (MemVT.isFloatingPoint()) {
10365 assert(Ld->getExtensionType() == ISD::NON_EXTLOAD &&
10366 "unexpected fp extload");
10367 TruncVT = MemVT.changeTypeToInteger();
10370 SDValue Cvt = NewLoad;
10371 if (Ld->getExtensionType() == ISD::SEXTLOAD) {
10372 Cvt = DAG.getNode(ISD::SIGN_EXTEND_INREG, SL, MVT::i32, NewLoad,
10373 DAG.getValueType(TruncVT));
10374 } else if (Ld->getExtensionType() == ISD::ZEXTLOAD ||
10375 Ld->getExtensionType() == ISD::NON_EXTLOAD) {
10376 Cvt = DAG.getZeroExtendInReg(NewLoad, SL, TruncVT);
10377 } else {
10378 assert(Ld->getExtensionType() == ISD::EXTLOAD);
10381 EVT VT = Ld->getValueType(0);
10382 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
10384 DCI.AddToWorklist(Cvt.getNode());
10386 // We may need to handle exotic cases, such as i16->i64 extloads, so insert
10387 // the appropriate extension from the 32-bit load.
10388 Cvt = getLoadExtOrTrunc(DAG, Ld->getExtensionType(), Cvt, SL, IntVT);
10389 DCI.AddToWorklist(Cvt.getNode());
10391 // Handle conversion back to floating point if necessary.
10392 Cvt = DAG.getNode(ISD::BITCAST, SL, VT, Cvt);
10394 return DAG.getMergeValues({Cvt, NewLoad.getValue(1)}, SL);
10397 static bool addressMayBeAccessedAsPrivate(const MachineMemOperand *MMO,
10398 const SIMachineFunctionInfo &Info) {
10399 // TODO: Should check if the address can definitely not access stack.
10400 if (Info.isEntryFunction())
10401 return Info.getUserSGPRInfo().hasFlatScratchInit();
10402 return true;
10405 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
10406 SDLoc DL(Op);
10407 LoadSDNode *Load = cast<LoadSDNode>(Op);
10408 ISD::LoadExtType ExtType = Load->getExtensionType();
10409 EVT MemVT = Load->getMemoryVT();
10410 MachineMemOperand *MMO = Load->getMemOperand();
10412 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
10413 if (MemVT == MVT::i16 && isTypeLegal(MVT::i16))
10414 return SDValue();
10416 // FIXME: Copied from PPC
10417 // First, load into 32 bits, then truncate to 1 bit.
10419 SDValue Chain = Load->getChain();
10420 SDValue BasePtr = Load->getBasePtr();
10422 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
10424 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, BasePtr,
10425 RealMemVT, MMO);
10427 if (!MemVT.isVector()) {
10428 SDValue Ops[] = {DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
10429 NewLD.getValue(1)};
10431 return DAG.getMergeValues(Ops, DL);
10434 SmallVector<SDValue, 3> Elts;
10435 for (unsigned I = 0, N = MemVT.getVectorNumElements(); I != N; ++I) {
10436 SDValue Elt = DAG.getNode(ISD::SRL, DL, MVT::i32, NewLD,
10437 DAG.getConstant(I, DL, MVT::i32));
10439 Elts.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Elt));
10442 SDValue Ops[] = {DAG.getBuildVector(MemVT, DL, Elts), NewLD.getValue(1)};
10444 return DAG.getMergeValues(Ops, DL);
10447 if (!MemVT.isVector())
10448 return SDValue();
10450 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
10451 "Custom lowering for non-i32 vectors hasn't been implemented.");
10453 Align Alignment = Load->getAlign();
10454 unsigned AS = Load->getAddressSpace();
10455 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
10456 Alignment.value() < MemVT.getStoreSize() && MemVT.getSizeInBits() > 32) {
10457 return SplitVectorLoad(Op, DAG);
10460 MachineFunction &MF = DAG.getMachineFunction();
10461 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
10462 // If there is a possibility that flat instruction access scratch memory
10463 // then we need to use the same legalization rules we use for private.
10464 if (AS == AMDGPUAS::FLAT_ADDRESS &&
10465 !Subtarget->hasMultiDwordFlatScratchAddressing())
10466 AS = addressMayBeAccessedAsPrivate(Load->getMemOperand(), *MFI)
10467 ? AMDGPUAS::PRIVATE_ADDRESS
10468 : AMDGPUAS::GLOBAL_ADDRESS;
10470 unsigned NumElements = MemVT.getVectorNumElements();
10472 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
10473 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
10474 (AS == AMDGPUAS::GLOBAL_ADDRESS &&
10475 Subtarget->getScalarizeGlobalBehavior() && Load->isSimple() &&
10476 isMemOpHasNoClobberedMemOperand(Load))) {
10477 if ((!Op->isDivergent() || AMDGPUInstrInfo::isUniformMMO(MMO)) &&
10478 Alignment >= Align(4) && NumElements < 32) {
10479 if (MemVT.isPow2VectorType() ||
10480 (Subtarget->hasScalarDwordx3Loads() && NumElements == 3))
10481 return SDValue();
10482 return WidenOrSplitVectorLoad(Op, DAG);
10484 // Non-uniform loads will be selected to MUBUF instructions, so they
10485 // have the same legalization requirements as global and private
10486 // loads.
10489 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
10490 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
10491 AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
10492 if (NumElements > 4)
10493 return SplitVectorLoad(Op, DAG);
10494 // v3 loads not supported on SI.
10495 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
10496 return WidenOrSplitVectorLoad(Op, DAG);
10498 // v3 and v4 loads are supported for private and global memory.
10499 return SDValue();
10501 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
10502 // Depending on the setting of the private_element_size field in the
10503 // resource descriptor, we can only make private accesses up to a certain
10504 // size.
10505 switch (Subtarget->getMaxPrivateElementSize()) {
10506 case 4: {
10507 auto [Op0, Op1] = scalarizeVectorLoad(Load, DAG);
10508 return DAG.getMergeValues({Op0, Op1}, DL);
10510 case 8:
10511 if (NumElements > 2)
10512 return SplitVectorLoad(Op, DAG);
10513 return SDValue();
10514 case 16:
10515 // Same as global/flat
10516 if (NumElements > 4)
10517 return SplitVectorLoad(Op, DAG);
10518 // v3 loads not supported on SI.
10519 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
10520 return WidenOrSplitVectorLoad(Op, DAG);
10522 return SDValue();
10523 default:
10524 llvm_unreachable("unsupported private_element_size");
10526 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
10527 unsigned Fast = 0;
10528 auto Flags = Load->getMemOperand()->getFlags();
10529 if (allowsMisalignedMemoryAccessesImpl(MemVT.getSizeInBits(), AS,
10530 Load->getAlign(), Flags, &Fast) &&
10531 Fast > 1)
10532 return SDValue();
10534 if (MemVT.isVector())
10535 return SplitVectorLoad(Op, DAG);
10538 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
10539 MemVT, *Load->getMemOperand())) {
10540 auto [Op0, Op1] = expandUnalignedLoad(Load, DAG);
10541 return DAG.getMergeValues({Op0, Op1}, DL);
10544 return SDValue();
10547 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
10548 EVT VT = Op.getValueType();
10549 if (VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256 ||
10550 VT.getSizeInBits() == 512)
10551 return splitTernaryVectorOp(Op, DAG);
10553 assert(VT.getSizeInBits() == 64);
10555 SDLoc DL(Op);
10556 SDValue Cond = Op.getOperand(0);
10558 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
10559 SDValue One = DAG.getConstant(1, DL, MVT::i32);
10561 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
10562 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
10564 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
10565 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
10567 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
10569 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
10570 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
10572 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
10574 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
10575 return DAG.getNode(ISD::BITCAST, DL, VT, Res);
10578 // Catch division cases where we can use shortcuts with rcp and rsq
10579 // instructions.
10580 SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
10581 SelectionDAG &DAG) const {
10582 SDLoc SL(Op);
10583 SDValue LHS = Op.getOperand(0);
10584 SDValue RHS = Op.getOperand(1);
10585 EVT VT = Op.getValueType();
10586 const SDNodeFlags Flags = Op->getFlags();
10588 bool AllowInaccurateRcp =
10589 Flags.hasApproximateFuncs() || DAG.getTarget().Options.UnsafeFPMath;
10591 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
10592 // Without !fpmath accuracy information, we can't do more because we don't
10593 // know exactly whether rcp is accurate enough to meet !fpmath requirement.
10594 // f16 is always accurate enough
10595 if (!AllowInaccurateRcp && VT != MVT::f16)
10596 return SDValue();
10598 if (CLHS->isExactlyValue(1.0)) {
10599 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
10600 // the CI documentation has a worst case error of 1 ulp.
10601 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
10602 // use it as long as we aren't trying to use denormals.
10604 // v_rcp_f16 and v_rsq_f16 DO support denormals and 0.51ulp.
10606 // 1.0 / sqrt(x) -> rsq(x)
10608 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
10609 // error seems really high at 2^29 ULP.
10610 // 1.0 / x -> rcp(x)
10611 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
10614 // Same as for 1.0, but expand the sign out of the constant.
10615 if (CLHS->isExactlyValue(-1.0)) {
10616 // -1.0 / x -> rcp (fneg x)
10617 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
10618 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
10622 // For f16 require afn or arcp.
10623 // For f32 require afn.
10624 if (!AllowInaccurateRcp && (VT != MVT::f16 || !Flags.hasAllowReciprocal()))
10625 return SDValue();
10627 // Turn into multiply by the reciprocal.
10628 // x / y -> x * (1.0 / y)
10629 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
10630 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, Flags);
10633 SDValue SITargetLowering::lowerFastUnsafeFDIV64(SDValue Op,
10634 SelectionDAG &DAG) const {
10635 SDLoc SL(Op);
10636 SDValue X = Op.getOperand(0);
10637 SDValue Y = Op.getOperand(1);
10638 EVT VT = Op.getValueType();
10639 const SDNodeFlags Flags = Op->getFlags();
10641 bool AllowInaccurateDiv =
10642 Flags.hasApproximateFuncs() || DAG.getTarget().Options.UnsafeFPMath;
10643 if (!AllowInaccurateDiv)
10644 return SDValue();
10646 SDValue NegY = DAG.getNode(ISD::FNEG, SL, VT, Y);
10647 SDValue One = DAG.getConstantFP(1.0, SL, VT);
10649 SDValue R = DAG.getNode(AMDGPUISD::RCP, SL, VT, Y);
10650 SDValue Tmp0 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
10652 R = DAG.getNode(ISD::FMA, SL, VT, Tmp0, R, R);
10653 SDValue Tmp1 = DAG.getNode(ISD::FMA, SL, VT, NegY, R, One);
10654 R = DAG.getNode(ISD::FMA, SL, VT, Tmp1, R, R);
10655 SDValue Ret = DAG.getNode(ISD::FMUL, SL, VT, X, R);
10656 SDValue Tmp2 = DAG.getNode(ISD::FMA, SL, VT, NegY, Ret, X);
10657 return DAG.getNode(ISD::FMA, SL, VT, Tmp2, R, Ret);
10660 static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
10661 EVT VT, SDValue A, SDValue B, SDValue GlueChain,
10662 SDNodeFlags Flags) {
10663 if (GlueChain->getNumValues() <= 1) {
10664 return DAG.getNode(Opcode, SL, VT, A, B, Flags);
10667 assert(GlueChain->getNumValues() == 3);
10669 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
10670 switch (Opcode) {
10671 default:
10672 llvm_unreachable("no chain equivalent for opcode");
10673 case ISD::FMUL:
10674 Opcode = AMDGPUISD::FMUL_W_CHAIN;
10675 break;
10678 return DAG.getNode(Opcode, SL, VTList,
10679 {GlueChain.getValue(1), A, B, GlueChain.getValue(2)},
10680 Flags);
10683 static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
10684 EVT VT, SDValue A, SDValue B, SDValue C,
10685 SDValue GlueChain, SDNodeFlags Flags) {
10686 if (GlueChain->getNumValues() <= 1) {
10687 return DAG.getNode(Opcode, SL, VT, {A, B, C}, Flags);
10690 assert(GlueChain->getNumValues() == 3);
10692 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
10693 switch (Opcode) {
10694 default:
10695 llvm_unreachable("no chain equivalent for opcode");
10696 case ISD::FMA:
10697 Opcode = AMDGPUISD::FMA_W_CHAIN;
10698 break;
10701 return DAG.getNode(Opcode, SL, VTList,
10702 {GlueChain.getValue(1), A, B, C, GlueChain.getValue(2)},
10703 Flags);
10706 SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
10707 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
10708 return FastLowered;
10710 SDLoc SL(Op);
10711 SDValue LHS = Op.getOperand(0);
10712 SDValue RHS = Op.getOperand(1);
10714 // a32.u = opx(V_CVT_F32_F16, a.u); // CVT to F32
10715 // b32.u = opx(V_CVT_F32_F16, b.u); // CVT to F32
10716 // r32.u = opx(V_RCP_F32, b32.u); // rcp = 1 / d
10717 // q32.u = opx(V_MUL_F32, a32.u, r32.u); // q = n * rcp
10718 // e32.u = opx(V_MAD_F32, (b32.u^_neg32), q32.u, a32.u); // err = -d * q + n
10719 // q32.u = opx(V_MAD_F32, e32.u, r32.u, q32.u); // q = n * rcp
10720 // e32.u = opx(V_MAD_F32, (b32.u^_neg32), q32.u, a32.u); // err = -d * q + n
10721 // tmp.u = opx(V_MUL_F32, e32.u, r32.u);
10722 // tmp.u = opx(V_AND_B32, tmp.u, 0xff800000)
10723 // q32.u = opx(V_ADD_F32, tmp.u, q32.u);
10724 // q16.u = opx(V_CVT_F16_F32, q32.u);
10725 // q16.u = opx(V_DIV_FIXUP_F16, q16.u, b.u, a.u); // q = touchup(q, d, n)
10727 // We will use ISD::FMA on targets that don't support ISD::FMAD.
10728 unsigned FMADOpCode =
10729 isOperationLegal(ISD::FMAD, MVT::f32) ? ISD::FMAD : ISD::FMA;
10731 SDValue LHSExt = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, LHS);
10732 SDValue RHSExt = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, RHS);
10733 SDValue NegRHSExt = DAG.getNode(ISD::FNEG, SL, MVT::f32, RHSExt);
10734 SDValue Rcp =
10735 DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, RHSExt, Op->getFlags());
10736 SDValue Quot =
10737 DAG.getNode(ISD::FMUL, SL, MVT::f32, LHSExt, Rcp, Op->getFlags());
10738 SDValue Err = DAG.getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
10739 Op->getFlags());
10740 Quot = DAG.getNode(FMADOpCode, SL, MVT::f32, Err, Rcp, Quot, Op->getFlags());
10741 Err = DAG.getNode(FMADOpCode, SL, MVT::f32, NegRHSExt, Quot, LHSExt,
10742 Op->getFlags());
10743 SDValue Tmp = DAG.getNode(ISD::FMUL, SL, MVT::f32, Err, Rcp, Op->getFlags());
10744 SDValue TmpCast = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Tmp);
10745 TmpCast = DAG.getNode(ISD::AND, SL, MVT::i32, TmpCast,
10746 DAG.getConstant(0xff800000, SL, MVT::i32));
10747 Tmp = DAG.getNode(ISD::BITCAST, SL, MVT::f32, TmpCast);
10748 Quot = DAG.getNode(ISD::FADD, SL, MVT::f32, Tmp, Quot, Op->getFlags());
10749 SDValue RDst = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot,
10750 DAG.getConstant(0, SL, MVT::i32));
10751 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, RDst, RHS, LHS,
10752 Op->getFlags());
10755 // Faster 2.5 ULP division that does not support denormals.
10756 SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
10757 SDNodeFlags Flags = Op->getFlags();
10758 SDLoc SL(Op);
10759 SDValue LHS = Op.getOperand(1);
10760 SDValue RHS = Op.getOperand(2);
10762 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS, Flags);
10764 const APFloat K0Val(0x1p+96f);
10765 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
10767 const APFloat K1Val(0x1p-32f);
10768 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
10770 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
10772 EVT SetCCVT =
10773 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
10775 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
10777 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One, Flags);
10779 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3, Flags);
10781 // rcp does not support denormals.
10782 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1, Flags);
10784 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0, Flags);
10786 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul, Flags);
10789 // Returns immediate value for setting the F32 denorm mode when using the
10790 // S_DENORM_MODE instruction.
10791 static SDValue getSPDenormModeValue(uint32_t SPDenormMode, SelectionDAG &DAG,
10792 const SIMachineFunctionInfo *Info,
10793 const GCNSubtarget *ST) {
10794 assert(ST->hasDenormModeInst() && "Requires S_DENORM_MODE");
10795 uint32_t DPDenormModeDefault = Info->getMode().fpDenormModeDPValue();
10796 uint32_t Mode = SPDenormMode | (DPDenormModeDefault << 2);
10797 return DAG.getTargetConstant(Mode, SDLoc(), MVT::i32);
10800 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
10801 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
10802 return FastLowered;
10804 // The selection matcher assumes anything with a chain selecting to a
10805 // mayRaiseFPException machine instruction. Since we're introducing a chain
10806 // here, we need to explicitly report nofpexcept for the regular fdiv
10807 // lowering.
10808 SDNodeFlags Flags = Op->getFlags();
10809 Flags.setNoFPExcept(true);
10811 SDLoc SL(Op);
10812 SDValue LHS = Op.getOperand(0);
10813 SDValue RHS = Op.getOperand(1);
10815 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
10817 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
10819 SDValue DenominatorScaled =
10820 DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {RHS, RHS, LHS}, Flags);
10821 SDValue NumeratorScaled =
10822 DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, {LHS, RHS, LHS}, Flags);
10824 // Denominator is scaled to not be denormal, so using rcp is ok.
10825 SDValue ApproxRcp =
10826 DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled, Flags);
10827 SDValue NegDivScale0 =
10828 DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled, Flags);
10830 using namespace AMDGPU::Hwreg;
10831 const unsigned Denorm32Reg = HwregEncoding::encode(ID_MODE, 4, 2);
10832 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i32);
10834 const MachineFunction &MF = DAG.getMachineFunction();
10835 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
10836 const DenormalMode DenormMode = Info->getMode().FP32Denormals;
10838 const bool PreservesDenormals = DenormMode == DenormalMode::getIEEE();
10839 const bool HasDynamicDenormals =
10840 (DenormMode.Input == DenormalMode::Dynamic) ||
10841 (DenormMode.Output == DenormalMode::Dynamic);
10843 SDValue SavedDenormMode;
10845 if (!PreservesDenormals) {
10846 // Note we can't use the STRICT_FMA/STRICT_FMUL for the non-strict FDIV
10847 // lowering. The chain dependence is insufficient, and we need glue. We do
10848 // not need the glue variants in a strictfp function.
10850 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
10852 SDValue Glue = DAG.getEntryNode();
10853 if (HasDynamicDenormals) {
10854 SDNode *GetReg = DAG.getMachineNode(AMDGPU::S_GETREG_B32, SL,
10855 DAG.getVTList(MVT::i32, MVT::Glue),
10856 {BitField, Glue});
10857 SavedDenormMode = SDValue(GetReg, 0);
10859 Glue = DAG.getMergeValues(
10860 {DAG.getEntryNode(), SDValue(GetReg, 0), SDValue(GetReg, 1)}, SL);
10863 SDNode *EnableDenorm;
10864 if (Subtarget->hasDenormModeInst()) {
10865 const SDValue EnableDenormValue =
10866 getSPDenormModeValue(FP_DENORM_FLUSH_NONE, DAG, Info, Subtarget);
10868 EnableDenorm = DAG.getNode(AMDGPUISD::DENORM_MODE, SL, BindParamVTs, Glue,
10869 EnableDenormValue)
10870 .getNode();
10871 } else {
10872 const SDValue EnableDenormValue =
10873 DAG.getConstant(FP_DENORM_FLUSH_NONE, SL, MVT::i32);
10874 EnableDenorm = DAG.getMachineNode(AMDGPU::S_SETREG_B32, SL, BindParamVTs,
10875 {EnableDenormValue, BitField, Glue});
10878 SDValue Ops[3] = {NegDivScale0, SDValue(EnableDenorm, 0),
10879 SDValue(EnableDenorm, 1)};
10881 NegDivScale0 = DAG.getMergeValues(Ops, SL);
10884 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
10885 ApproxRcp, One, NegDivScale0, Flags);
10887 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
10888 ApproxRcp, Fma0, Flags);
10890 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1,
10891 Fma1, Flags);
10893 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
10894 NumeratorScaled, Mul, Flags);
10896 SDValue Fma3 =
10897 getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul, Fma2, Flags);
10899 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
10900 NumeratorScaled, Fma3, Flags);
10902 if (!PreservesDenormals) {
10903 SDNode *DisableDenorm;
10904 if (!HasDynamicDenormals && Subtarget->hasDenormModeInst()) {
10905 const SDValue DisableDenormValue = getSPDenormModeValue(
10906 FP_DENORM_FLUSH_IN_FLUSH_OUT, DAG, Info, Subtarget);
10908 DisableDenorm =
10909 DAG.getNode(AMDGPUISD::DENORM_MODE, SL, MVT::Other, Fma4.getValue(1),
10910 DisableDenormValue, Fma4.getValue(2))
10911 .getNode();
10912 } else {
10913 assert(HasDynamicDenormals == (bool)SavedDenormMode);
10914 const SDValue DisableDenormValue =
10915 HasDynamicDenormals
10916 ? SavedDenormMode
10917 : DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT, SL, MVT::i32);
10919 DisableDenorm = DAG.getMachineNode(
10920 AMDGPU::S_SETREG_B32, SL, MVT::Other,
10921 {DisableDenormValue, BitField, Fma4.getValue(1), Fma4.getValue(2)});
10924 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
10925 SDValue(DisableDenorm, 0), DAG.getRoot());
10926 DAG.setRoot(OutputChain);
10929 SDValue Scale = NumeratorScaled.getValue(1);
10930 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
10931 {Fma4, Fma1, Fma3, Scale}, Flags);
10933 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS, Flags);
10936 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
10937 if (SDValue FastLowered = lowerFastUnsafeFDIV64(Op, DAG))
10938 return FastLowered;
10940 SDLoc SL(Op);
10941 SDValue X = Op.getOperand(0);
10942 SDValue Y = Op.getOperand(1);
10944 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
10946 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
10948 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
10950 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
10952 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
10954 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
10956 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
10958 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
10960 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
10962 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
10963 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
10965 SDValue Fma4 =
10966 DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Mul, DivScale1);
10968 SDValue Scale;
10970 if (!Subtarget->hasUsableDivScaleConditionOutput()) {
10971 // Workaround a hardware bug on SI where the condition output from div_scale
10972 // is not usable.
10974 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
10976 // Figure out if the scale to use for div_fmas.
10977 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
10978 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
10979 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
10980 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
10982 SDValue NumHi =
10983 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
10984 SDValue DenHi =
10985 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
10987 SDValue Scale0Hi =
10988 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
10989 SDValue Scale1Hi =
10990 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
10992 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
10993 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
10994 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
10995 } else {
10996 Scale = DivScale1.getValue(1);
10999 SDValue Fmas =
11000 DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, Fma4, Fma3, Mul, Scale);
11002 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
11005 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
11006 EVT VT = Op.getValueType();
11008 if (VT == MVT::f32)
11009 return LowerFDIV32(Op, DAG);
11011 if (VT == MVT::f64)
11012 return LowerFDIV64(Op, DAG);
11014 if (VT == MVT::f16)
11015 return LowerFDIV16(Op, DAG);
11017 llvm_unreachable("Unexpected type for fdiv");
11020 SDValue SITargetLowering::LowerFFREXP(SDValue Op, SelectionDAG &DAG) const {
11021 SDLoc dl(Op);
11022 SDValue Val = Op.getOperand(0);
11023 EVT VT = Val.getValueType();
11024 EVT ResultExpVT = Op->getValueType(1);
11025 EVT InstrExpVT = VT == MVT::f16 ? MVT::i16 : MVT::i32;
11027 SDValue Mant = DAG.getNode(
11028 ISD::INTRINSIC_WO_CHAIN, dl, VT,
11029 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_mant, dl, MVT::i32), Val);
11031 SDValue Exp = DAG.getNode(
11032 ISD::INTRINSIC_WO_CHAIN, dl, InstrExpVT,
11033 DAG.getTargetConstant(Intrinsic::amdgcn_frexp_exp, dl, MVT::i32), Val);
11035 if (Subtarget->hasFractBug()) {
11036 SDValue Fabs = DAG.getNode(ISD::FABS, dl, VT, Val);
11037 SDValue Inf =
11038 DAG.getConstantFP(APFloat::getInf(VT.getFltSemantics()), dl, VT);
11040 SDValue IsFinite = DAG.getSetCC(dl, MVT::i1, Fabs, Inf, ISD::SETOLT);
11041 SDValue Zero = DAG.getConstant(0, dl, InstrExpVT);
11042 Exp = DAG.getNode(ISD::SELECT, dl, InstrExpVT, IsFinite, Exp, Zero);
11043 Mant = DAG.getNode(ISD::SELECT, dl, VT, IsFinite, Mant, Val);
11046 SDValue CastExp = DAG.getSExtOrTrunc(Exp, dl, ResultExpVT);
11047 return DAG.getMergeValues({Mant, CastExp}, dl);
11050 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
11051 SDLoc DL(Op);
11052 StoreSDNode *Store = cast<StoreSDNode>(Op);
11053 EVT VT = Store->getMemoryVT();
11055 if (VT == MVT::i1) {
11056 return DAG.getTruncStore(
11057 Store->getChain(), DL,
11058 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
11059 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
11062 assert(VT.isVector() &&
11063 Store->getValue().getValueType().getScalarType() == MVT::i32);
11065 unsigned AS = Store->getAddressSpace();
11066 if (Subtarget->hasLDSMisalignedBug() && AS == AMDGPUAS::FLAT_ADDRESS &&
11067 Store->getAlign().value() < VT.getStoreSize() &&
11068 VT.getSizeInBits() > 32) {
11069 return SplitVectorStore(Op, DAG);
11072 MachineFunction &MF = DAG.getMachineFunction();
11073 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
11074 // If there is a possibility that flat instruction access scratch memory
11075 // then we need to use the same legalization rules we use for private.
11076 if (AS == AMDGPUAS::FLAT_ADDRESS &&
11077 !Subtarget->hasMultiDwordFlatScratchAddressing())
11078 AS = addressMayBeAccessedAsPrivate(Store->getMemOperand(), *MFI)
11079 ? AMDGPUAS::PRIVATE_ADDRESS
11080 : AMDGPUAS::GLOBAL_ADDRESS;
11082 unsigned NumElements = VT.getVectorNumElements();
11083 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
11084 if (NumElements > 4)
11085 return SplitVectorStore(Op, DAG);
11086 // v3 stores not supported on SI.
11087 if (NumElements == 3 && !Subtarget->hasDwordx3LoadStores())
11088 return SplitVectorStore(Op, DAG);
11090 if (!allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
11091 VT, *Store->getMemOperand()))
11092 return expandUnalignedStore(Store, DAG);
11094 return SDValue();
11096 if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
11097 switch (Subtarget->getMaxPrivateElementSize()) {
11098 case 4:
11099 return scalarizeVectorStore(Store, DAG);
11100 case 8:
11101 if (NumElements > 2)
11102 return SplitVectorStore(Op, DAG);
11103 return SDValue();
11104 case 16:
11105 if (NumElements > 4 ||
11106 (NumElements == 3 && !Subtarget->enableFlatScratch()))
11107 return SplitVectorStore(Op, DAG);
11108 return SDValue();
11109 default:
11110 llvm_unreachable("unsupported private_element_size");
11112 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
11113 unsigned Fast = 0;
11114 auto Flags = Store->getMemOperand()->getFlags();
11115 if (allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AS,
11116 Store->getAlign(), Flags, &Fast) &&
11117 Fast > 1)
11118 return SDValue();
11120 if (VT.isVector())
11121 return SplitVectorStore(Op, DAG);
11123 return expandUnalignedStore(Store, DAG);
11126 // Probably an invalid store. If so we'll end up emitting a selection error.
11127 return SDValue();
11130 // Avoid the full correct expansion for f32 sqrt when promoting from f16.
11131 SDValue SITargetLowering::lowerFSQRTF16(SDValue Op, SelectionDAG &DAG) const {
11132 SDLoc SL(Op);
11133 assert(!Subtarget->has16BitInsts());
11134 SDNodeFlags Flags = Op->getFlags();
11135 SDValue Ext =
11136 DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Op.getOperand(0), Flags);
11138 SDValue SqrtID = DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, SL, MVT::i32);
11139 SDValue Sqrt =
11140 DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::f32, SqrtID, Ext, Flags);
11142 return DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Sqrt,
11143 DAG.getTargetConstant(0, SL, MVT::i32), Flags);
11146 SDValue SITargetLowering::lowerFSQRTF32(SDValue Op, SelectionDAG &DAG) const {
11147 SDLoc DL(Op);
11148 SDNodeFlags Flags = Op->getFlags();
11149 MVT VT = Op.getValueType().getSimpleVT();
11150 const SDValue X = Op.getOperand(0);
11152 if (allowApproxFunc(DAG, Flags)) {
11153 // Instruction is 1ulp but ignores denormals.
11154 return DAG.getNode(
11155 ISD::INTRINSIC_WO_CHAIN, DL, VT,
11156 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32), X, Flags);
11159 SDValue ScaleThreshold = DAG.getConstantFP(0x1.0p-96f, DL, VT);
11160 SDValue NeedScale = DAG.getSetCC(DL, MVT::i1, X, ScaleThreshold, ISD::SETOLT);
11162 SDValue ScaleUpFactor = DAG.getConstantFP(0x1.0p+32f, DL, VT);
11164 SDValue ScaledX = DAG.getNode(ISD::FMUL, DL, VT, X, ScaleUpFactor, Flags);
11166 SDValue SqrtX =
11167 DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledX, X, Flags);
11169 SDValue SqrtS;
11170 if (needsDenormHandlingF32(DAG, X, Flags)) {
11171 SDValue SqrtID =
11172 DAG.getTargetConstant(Intrinsic::amdgcn_sqrt, DL, MVT::i32);
11173 SqrtS = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, SqrtID, SqrtX, Flags);
11175 SDValue SqrtSAsInt = DAG.getNode(ISD::BITCAST, DL, MVT::i32, SqrtS);
11176 SDValue SqrtSNextDownInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
11177 DAG.getConstant(-1, DL, MVT::i32));
11178 SDValue SqrtSNextDown = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextDownInt);
11180 SDValue NegSqrtSNextDown =
11181 DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextDown, Flags);
11183 SDValue SqrtVP =
11184 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextDown, SqrtS, SqrtX, Flags);
11186 SDValue SqrtSNextUpInt = DAG.getNode(ISD::ADD, DL, MVT::i32, SqrtSAsInt,
11187 DAG.getConstant(1, DL, MVT::i32));
11188 SDValue SqrtSNextUp = DAG.getNode(ISD::BITCAST, DL, VT, SqrtSNextUpInt);
11190 SDValue NegSqrtSNextUp = DAG.getNode(ISD::FNEG, DL, VT, SqrtSNextUp, Flags);
11191 SDValue SqrtVS =
11192 DAG.getNode(ISD::FMA, DL, VT, NegSqrtSNextUp, SqrtS, SqrtX, Flags);
11194 SDValue Zero = DAG.getConstantFP(0.0f, DL, VT);
11195 SDValue SqrtVPLE0 = DAG.getSetCC(DL, MVT::i1, SqrtVP, Zero, ISD::SETOLE);
11197 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPLE0, SqrtSNextDown, SqrtS,
11198 Flags);
11200 SDValue SqrtVPVSGT0 = DAG.getSetCC(DL, MVT::i1, SqrtVS, Zero, ISD::SETOGT);
11201 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, SqrtVPVSGT0, SqrtSNextUp, SqrtS,
11202 Flags);
11203 } else {
11204 SDValue SqrtR = DAG.getNode(AMDGPUISD::RSQ, DL, VT, SqrtX, Flags);
11206 SqrtS = DAG.getNode(ISD::FMUL, DL, VT, SqrtX, SqrtR, Flags);
11208 SDValue Half = DAG.getConstantFP(0.5f, DL, VT);
11209 SDValue SqrtH = DAG.getNode(ISD::FMUL, DL, VT, SqrtR, Half, Flags);
11210 SDValue NegSqrtH = DAG.getNode(ISD::FNEG, DL, VT, SqrtH, Flags);
11212 SDValue SqrtE = DAG.getNode(ISD::FMA, DL, VT, NegSqrtH, SqrtS, Half, Flags);
11213 SqrtH = DAG.getNode(ISD::FMA, DL, VT, SqrtH, SqrtE, SqrtH, Flags);
11214 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtS, SqrtE, SqrtS, Flags);
11216 SDValue NegSqrtS = DAG.getNode(ISD::FNEG, DL, VT, SqrtS, Flags);
11217 SDValue SqrtD =
11218 DAG.getNode(ISD::FMA, DL, VT, NegSqrtS, SqrtS, SqrtX, Flags);
11219 SqrtS = DAG.getNode(ISD::FMA, DL, VT, SqrtD, SqrtH, SqrtS, Flags);
11222 SDValue ScaleDownFactor = DAG.getConstantFP(0x1.0p-16f, DL, VT);
11224 SDValue ScaledDown =
11225 DAG.getNode(ISD::FMUL, DL, VT, SqrtS, ScaleDownFactor, Flags);
11227 SqrtS = DAG.getNode(ISD::SELECT, DL, VT, NeedScale, ScaledDown, SqrtS, Flags);
11228 SDValue IsZeroOrInf =
11229 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
11230 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
11232 return DAG.getNode(ISD::SELECT, DL, VT, IsZeroOrInf, SqrtX, SqrtS, Flags);
11235 SDValue SITargetLowering::lowerFSQRTF64(SDValue Op, SelectionDAG &DAG) const {
11236 // For double type, the SQRT and RSQ instructions don't have required
11237 // precision, we apply Goldschmidt's algorithm to improve the result:
11239 // y0 = rsq(x)
11240 // g0 = x * y0
11241 // h0 = 0.5 * y0
11243 // r0 = 0.5 - h0 * g0
11244 // g1 = g0 * r0 + g0
11245 // h1 = h0 * r0 + h0
11247 // r1 = 0.5 - h1 * g1 => d0 = x - g1 * g1
11248 // g2 = g1 * r1 + g1 g2 = d0 * h1 + g1
11249 // h2 = h1 * r1 + h1
11251 // r2 = 0.5 - h2 * g2 => d1 = x - g2 * g2
11252 // g3 = g2 * r2 + g2 g3 = d1 * h1 + g2
11254 // sqrt(x) = g3
11256 SDNodeFlags Flags = Op->getFlags();
11258 SDLoc DL(Op);
11260 SDValue X = Op.getOperand(0);
11261 SDValue ScaleConstant = DAG.getConstantFP(0x1.0p-767, DL, MVT::f64);
11263 SDValue Scaling = DAG.getSetCC(DL, MVT::i1, X, ScaleConstant, ISD::SETOLT);
11265 SDValue ZeroInt = DAG.getConstant(0, DL, MVT::i32);
11267 // Scale up input if it is too small.
11268 SDValue ScaleUpFactor = DAG.getConstant(256, DL, MVT::i32);
11269 SDValue ScaleUp =
11270 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleUpFactor, ZeroInt);
11271 SDValue SqrtX = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, X, ScaleUp, Flags);
11273 SDValue SqrtY = DAG.getNode(AMDGPUISD::RSQ, DL, MVT::f64, SqrtX);
11275 SDValue SqrtS0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtX, SqrtY);
11277 SDValue Half = DAG.getConstantFP(0.5, DL, MVT::f64);
11278 SDValue SqrtH0 = DAG.getNode(ISD::FMUL, DL, MVT::f64, SqrtY, Half);
11280 SDValue NegSqrtH0 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtH0);
11281 SDValue SqrtR0 = DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtH0, SqrtS0, Half);
11283 SDValue SqrtH1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtH0, SqrtR0, SqrtH0);
11285 SDValue SqrtS1 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtS0, SqrtR0, SqrtS0);
11287 SDValue NegSqrtS1 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS1);
11288 SDValue SqrtD0 =
11289 DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS1, SqrtS1, SqrtX);
11291 SDValue SqrtS2 = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD0, SqrtH1, SqrtS1);
11293 SDValue NegSqrtS2 = DAG.getNode(ISD::FNEG, DL, MVT::f64, SqrtS2);
11294 SDValue SqrtD1 =
11295 DAG.getNode(ISD::FMA, DL, MVT::f64, NegSqrtS2, SqrtS2, SqrtX);
11297 SDValue SqrtRet = DAG.getNode(ISD::FMA, DL, MVT::f64, SqrtD1, SqrtH1, SqrtS2);
11299 SDValue ScaleDownFactor = DAG.getConstant(-128, DL, MVT::i32);
11300 SDValue ScaleDown =
11301 DAG.getNode(ISD::SELECT, DL, MVT::i32, Scaling, ScaleDownFactor, ZeroInt);
11302 SqrtRet = DAG.getNode(ISD::FLDEXP, DL, MVT::f64, SqrtRet, ScaleDown, Flags);
11304 // TODO: Switch to fcmp oeq 0 for finite only. Can't fully remove this check
11305 // with finite only or nsz because rsq(+/-0) = +/-inf
11307 // TODO: Check for DAZ and expand to subnormals
11308 SDValue IsZeroOrInf =
11309 DAG.getNode(ISD::IS_FPCLASS, DL, MVT::i1, SqrtX,
11310 DAG.getTargetConstant(fcZero | fcPosInf, DL, MVT::i32));
11312 // If x is +INF, +0, or -0, use its original value
11313 return DAG.getNode(ISD::SELECT, DL, MVT::f64, IsZeroOrInf, SqrtX, SqrtRet,
11314 Flags);
11317 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
11318 SDLoc DL(Op);
11319 EVT VT = Op.getValueType();
11320 SDValue Arg = Op.getOperand(0);
11321 SDValue TrigVal;
11323 // Propagate fast-math flags so that the multiply we introduce can be folded
11324 // if Arg is already the result of a multiply by constant.
11325 auto Flags = Op->getFlags();
11327 SDValue OneOver2Pi = DAG.getConstantFP(0.5 * numbers::inv_pi, DL, VT);
11329 if (Subtarget->hasTrigReducedRange()) {
11330 SDValue MulVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
11331 TrigVal = DAG.getNode(AMDGPUISD::FRACT, DL, VT, MulVal, Flags);
11332 } else {
11333 TrigVal = DAG.getNode(ISD::FMUL, DL, VT, Arg, OneOver2Pi, Flags);
11336 switch (Op.getOpcode()) {
11337 case ISD::FCOS:
11338 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, TrigVal, Flags);
11339 case ISD::FSIN:
11340 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, TrigVal, Flags);
11341 default:
11342 llvm_unreachable("Wrong trig opcode");
11346 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
11347 SelectionDAG &DAG) const {
11348 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
11349 assert(AtomicNode->isCompareAndSwap());
11350 unsigned AS = AtomicNode->getAddressSpace();
11352 // No custom lowering required for local address space
11353 if (!AMDGPU::isFlatGlobalAddrSpace(AS))
11354 return Op;
11356 // Non-local address space requires custom lowering for atomic compare
11357 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
11358 SDLoc DL(Op);
11359 SDValue ChainIn = Op.getOperand(0);
11360 SDValue Addr = Op.getOperand(1);
11361 SDValue Old = Op.getOperand(2);
11362 SDValue New = Op.getOperand(3);
11363 EVT VT = Op.getValueType();
11364 MVT SimpleVT = VT.getSimpleVT();
11365 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
11367 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
11368 SDValue Ops[] = {ChainIn, Addr, NewOld};
11370 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL,
11371 Op->getVTList(), Ops, VT,
11372 AtomicNode->getMemOperand());
11375 //===----------------------------------------------------------------------===//
11376 // Custom DAG optimizations
11377 //===----------------------------------------------------------------------===//
11379 SDValue
11380 SITargetLowering::performUCharToFloatCombine(SDNode *N,
11381 DAGCombinerInfo &DCI) const {
11382 EVT VT = N->getValueType(0);
11383 EVT ScalarVT = VT.getScalarType();
11384 if (ScalarVT != MVT::f32 && ScalarVT != MVT::f16)
11385 return SDValue();
11387 SelectionDAG &DAG = DCI.DAG;
11388 SDLoc DL(N);
11390 SDValue Src = N->getOperand(0);
11391 EVT SrcVT = Src.getValueType();
11393 // TODO: We could try to match extracting the higher bytes, which would be
11394 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
11395 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
11396 // about in practice.
11397 if (DCI.isAfterLegalizeDAG() && SrcVT == MVT::i32) {
11398 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
11399 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, MVT::f32, Src);
11400 DCI.AddToWorklist(Cvt.getNode());
11402 // For the f16 case, fold to a cast to f32 and then cast back to f16.
11403 if (ScalarVT != MVT::f32) {
11404 Cvt = DAG.getNode(ISD::FP_ROUND, DL, VT, Cvt,
11405 DAG.getTargetConstant(0, DL, MVT::i32));
11407 return Cvt;
11411 return SDValue();
11414 SDValue SITargetLowering::performFCopySignCombine(SDNode *N,
11415 DAGCombinerInfo &DCI) const {
11416 SDValue MagnitudeOp = N->getOperand(0);
11417 SDValue SignOp = N->getOperand(1);
11418 SelectionDAG &DAG = DCI.DAG;
11419 SDLoc DL(N);
11421 // f64 fcopysign is really an f32 copysign on the high bits, so replace the
11422 // lower half with a copy.
11423 // fcopysign f64:x, _:y -> x.lo32, (fcopysign (f32 x.hi32), _:y)
11424 if (MagnitudeOp.getValueType() == MVT::f64) {
11425 SDValue MagAsVector =
11426 DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, MagnitudeOp);
11427 SDValue MagLo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
11428 MagAsVector, DAG.getConstant(0, DL, MVT::i32));
11429 SDValue MagHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
11430 MagAsVector, DAG.getConstant(1, DL, MVT::i32));
11432 SDValue HiOp = DAG.getNode(ISD::FCOPYSIGN, DL, MVT::f32, MagHi, SignOp);
11434 SDValue Vector =
11435 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2f32, MagLo, HiOp);
11437 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Vector);
11440 if (SignOp.getValueType() != MVT::f64)
11441 return SDValue();
11443 // Reduce width of sign operand, we only need the highest bit.
11445 // fcopysign f64:x, f64:y ->
11446 // fcopysign f64:x, (extract_vector_elt (bitcast f64:y to v2f32), 1)
11447 // TODO: In some cases it might make sense to go all the way to f16.
11448 SDValue SignAsVector = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, SignOp);
11449 SDValue SignAsF32 =
11450 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, SignAsVector,
11451 DAG.getConstant(1, DL, MVT::i32));
11453 return DAG.getNode(ISD::FCOPYSIGN, DL, N->getValueType(0), N->getOperand(0),
11454 SignAsF32);
11457 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
11458 // (shl (or x, c1), c2) -> add (shl x, c2), (shl c1, c2) iff x and c1 share no
11459 // bits
11461 // This is a variant of
11462 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
11464 // The normal DAG combiner will do this, but only if the add has one use since
11465 // that would increase the number of instructions.
11467 // This prevents us from seeing a constant offset that can be folded into a
11468 // memory instruction's addressing mode. If we know the resulting add offset of
11469 // a pointer can be folded into an addressing offset, we can replace the pointer
11470 // operand with the add of new constant offset. This eliminates one of the uses,
11471 // and may allow the remaining use to also be simplified.
11473 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, unsigned AddrSpace,
11474 EVT MemVT,
11475 DAGCombinerInfo &DCI) const {
11476 SDValue N0 = N->getOperand(0);
11477 SDValue N1 = N->getOperand(1);
11479 // We only do this to handle cases where it's profitable when there are
11480 // multiple uses of the add, so defer to the standard combine.
11481 if ((N0.getOpcode() != ISD::ADD && N0.getOpcode() != ISD::OR) ||
11482 N0->hasOneUse())
11483 return SDValue();
11485 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
11486 if (!CN1)
11487 return SDValue();
11489 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
11490 if (!CAdd)
11491 return SDValue();
11493 SelectionDAG &DAG = DCI.DAG;
11495 if (N0->getOpcode() == ISD::OR &&
11496 !DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1)))
11497 return SDValue();
11499 // If the resulting offset is too large, we can't fold it into the
11500 // addressing mode offset.
11501 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
11502 Type *Ty = MemVT.getTypeForEVT(*DCI.DAG.getContext());
11504 AddrMode AM;
11505 AM.HasBaseReg = true;
11506 AM.BaseOffs = Offset.getSExtValue();
11507 if (!isLegalAddressingMode(DCI.DAG.getDataLayout(), AM, Ty, AddrSpace))
11508 return SDValue();
11510 SDLoc SL(N);
11511 EVT VT = N->getValueType(0);
11513 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
11514 SDValue COffset = DAG.getConstant(Offset, SL, VT);
11516 SDNodeFlags Flags;
11517 Flags.setNoUnsignedWrap(
11518 N->getFlags().hasNoUnsignedWrap() &&
11519 (N0.getOpcode() == ISD::OR || N0->getFlags().hasNoUnsignedWrap()));
11521 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset, Flags);
11524 /// MemSDNode::getBasePtr() does not work for intrinsics, which needs to offset
11525 /// by the chain and intrinsic ID. Theoretically we would also need to check the
11526 /// specific intrinsic, but they all place the pointer operand first.
11527 static unsigned getBasePtrIndex(const MemSDNode *N) {
11528 switch (N->getOpcode()) {
11529 case ISD::STORE:
11530 case ISD::INTRINSIC_W_CHAIN:
11531 case ISD::INTRINSIC_VOID:
11532 return 2;
11533 default:
11534 return 1;
11538 SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
11539 DAGCombinerInfo &DCI) const {
11540 SelectionDAG &DAG = DCI.DAG;
11541 SDLoc SL(N);
11543 unsigned PtrIdx = getBasePtrIndex(N);
11544 SDValue Ptr = N->getOperand(PtrIdx);
11546 // TODO: We could also do this for multiplies.
11547 if (Ptr.getOpcode() == ISD::SHL) {
11548 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), N->getAddressSpace(),
11549 N->getMemoryVT(), DCI);
11550 if (NewPtr) {
11551 SmallVector<SDValue, 8> NewOps(N->ops());
11553 NewOps[PtrIdx] = NewPtr;
11554 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
11558 return SDValue();
11561 static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
11562 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
11563 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
11564 (Opc == ISD::XOR && Val == 0);
11567 // Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
11568 // will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
11569 // integer combine opportunities since most 64-bit operations are decomposed
11570 // this way. TODO: We won't want this for SALU especially if it is an inline
11571 // immediate.
11572 SDValue SITargetLowering::splitBinaryBitConstantOp(
11573 DAGCombinerInfo &DCI, const SDLoc &SL, unsigned Opc, SDValue LHS,
11574 const ConstantSDNode *CRHS) const {
11575 uint64_t Val = CRHS->getZExtValue();
11576 uint32_t ValLo = Lo_32(Val);
11577 uint32_t ValHi = Hi_32(Val);
11578 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11580 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
11581 bitOpWithConstantIsReducible(Opc, ValHi)) ||
11582 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
11583 // If we need to materialize a 64-bit immediate, it will be split up later
11584 // anyway. Avoid creating the harder to understand 64-bit immediate
11585 // materialization.
11586 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
11589 return SDValue();
11592 bool llvm::isBoolSGPR(SDValue V) {
11593 if (V.getValueType() != MVT::i1)
11594 return false;
11595 switch (V.getOpcode()) {
11596 default:
11597 break;
11598 case ISD::SETCC:
11599 case AMDGPUISD::FP_CLASS:
11600 return true;
11601 case ISD::AND:
11602 case ISD::OR:
11603 case ISD::XOR:
11604 return isBoolSGPR(V.getOperand(0)) && isBoolSGPR(V.getOperand(1));
11606 return false;
11609 // If a constant has all zeroes or all ones within each byte return it.
11610 // Otherwise return 0.
11611 static uint32_t getConstantPermuteMask(uint32_t C) {
11612 // 0xff for any zero byte in the mask
11613 uint32_t ZeroByteMask = 0;
11614 if (!(C & 0x000000ff))
11615 ZeroByteMask |= 0x000000ff;
11616 if (!(C & 0x0000ff00))
11617 ZeroByteMask |= 0x0000ff00;
11618 if (!(C & 0x00ff0000))
11619 ZeroByteMask |= 0x00ff0000;
11620 if (!(C & 0xff000000))
11621 ZeroByteMask |= 0xff000000;
11622 uint32_t NonZeroByteMask = ~ZeroByteMask; // 0xff for any non-zero byte
11623 if ((NonZeroByteMask & C) != NonZeroByteMask)
11624 return 0; // Partial bytes selected.
11625 return C;
11628 // Check if a node selects whole bytes from its operand 0 starting at a byte
11629 // boundary while masking the rest. Returns select mask as in the v_perm_b32
11630 // or -1 if not succeeded.
11631 // Note byte select encoding:
11632 // value 0-3 selects corresponding source byte;
11633 // value 0xc selects zero;
11634 // value 0xff selects 0xff.
11635 static uint32_t getPermuteMask(SDValue V) {
11636 assert(V.getValueSizeInBits() == 32);
11638 if (V.getNumOperands() != 2)
11639 return ~0;
11641 ConstantSDNode *N1 = dyn_cast<ConstantSDNode>(V.getOperand(1));
11642 if (!N1)
11643 return ~0;
11645 uint32_t C = N1->getZExtValue();
11647 switch (V.getOpcode()) {
11648 default:
11649 break;
11650 case ISD::AND:
11651 if (uint32_t ConstMask = getConstantPermuteMask(C))
11652 return (0x03020100 & ConstMask) | (0x0c0c0c0c & ~ConstMask);
11653 break;
11655 case ISD::OR:
11656 if (uint32_t ConstMask = getConstantPermuteMask(C))
11657 return (0x03020100 & ~ConstMask) | ConstMask;
11658 break;
11660 case ISD::SHL:
11661 if (C % 8)
11662 return ~0;
11664 return uint32_t((0x030201000c0c0c0cull << C) >> 32);
11666 case ISD::SRL:
11667 if (C % 8)
11668 return ~0;
11670 return uint32_t(0x0c0c0c0c03020100ull >> C);
11673 return ~0;
11676 SDValue SITargetLowering::performAndCombine(SDNode *N,
11677 DAGCombinerInfo &DCI) const {
11678 if (DCI.isBeforeLegalize())
11679 return SDValue();
11681 SelectionDAG &DAG = DCI.DAG;
11682 EVT VT = N->getValueType(0);
11683 SDValue LHS = N->getOperand(0);
11684 SDValue RHS = N->getOperand(1);
11686 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
11687 if (VT == MVT::i64 && CRHS) {
11688 if (SDValue Split =
11689 splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
11690 return Split;
11693 if (CRHS && VT == MVT::i32) {
11694 // and (srl x, c), mask => shl (bfe x, nb + c, mask >> nb), nb
11695 // nb = number of trailing zeroes in mask
11696 // It can be optimized out using SDWA for GFX8+ in the SDWA peephole pass,
11697 // given that we are selecting 8 or 16 bit fields starting at byte boundary.
11698 uint64_t Mask = CRHS->getZExtValue();
11699 unsigned Bits = llvm::popcount(Mask);
11700 if (getSubtarget()->hasSDWA() && LHS->getOpcode() == ISD::SRL &&
11701 (Bits == 8 || Bits == 16) && isShiftedMask_64(Mask) && !(Mask & 1)) {
11702 if (auto *CShift = dyn_cast<ConstantSDNode>(LHS->getOperand(1))) {
11703 unsigned Shift = CShift->getZExtValue();
11704 unsigned NB = CRHS->getAPIntValue().countr_zero();
11705 unsigned Offset = NB + Shift;
11706 if ((Offset & (Bits - 1)) == 0) { // Starts at a byte or word boundary.
11707 SDLoc SL(N);
11708 SDValue BFE =
11709 DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, LHS->getOperand(0),
11710 DAG.getConstant(Offset, SL, MVT::i32),
11711 DAG.getConstant(Bits, SL, MVT::i32));
11712 EVT NarrowVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
11713 SDValue Ext = DAG.getNode(ISD::AssertZext, SL, VT, BFE,
11714 DAG.getValueType(NarrowVT));
11715 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(LHS), VT, Ext,
11716 DAG.getConstant(NB, SDLoc(CRHS), MVT::i32));
11717 return Shl;
11722 // and (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
11723 if (LHS.hasOneUse() && LHS.getOpcode() == AMDGPUISD::PERM &&
11724 isa<ConstantSDNode>(LHS.getOperand(2))) {
11725 uint32_t Sel = getConstantPermuteMask(Mask);
11726 if (!Sel)
11727 return SDValue();
11729 // Select 0xc for all zero bytes
11730 Sel = (LHS.getConstantOperandVal(2) & Sel) | (~Sel & 0x0c0c0c0c);
11731 SDLoc DL(N);
11732 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
11733 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
11737 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
11738 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
11739 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
11740 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
11741 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
11743 SDValue X = LHS.getOperand(0);
11744 SDValue Y = RHS.getOperand(0);
11745 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X ||
11746 !isTypeLegal(X.getValueType()))
11747 return SDValue();
11749 if (LCC == ISD::SETO) {
11750 if (X != LHS.getOperand(1))
11751 return SDValue();
11753 if (RCC == ISD::SETUNE) {
11754 const ConstantFPSDNode *C1 =
11755 dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
11756 if (!C1 || !C1->isInfinity() || C1->isNegative())
11757 return SDValue();
11759 const uint32_t Mask = SIInstrFlags::N_NORMAL |
11760 SIInstrFlags::N_SUBNORMAL | SIInstrFlags::N_ZERO |
11761 SIInstrFlags::P_ZERO | SIInstrFlags::P_SUBNORMAL |
11762 SIInstrFlags::P_NORMAL;
11764 static_assert(
11765 ((~(SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN |
11766 SIInstrFlags::N_INFINITY | SIInstrFlags::P_INFINITY)) &
11767 0x3ff) == Mask,
11768 "mask not equal");
11770 SDLoc DL(N);
11771 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, X,
11772 DAG.getConstant(Mask, DL, MVT::i32));
11777 if (RHS.getOpcode() == ISD::SETCC && LHS.getOpcode() == AMDGPUISD::FP_CLASS)
11778 std::swap(LHS, RHS);
11780 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == AMDGPUISD::FP_CLASS &&
11781 RHS.hasOneUse()) {
11782 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
11783 // and (fcmp seto), (fp_class x, mask) -> fp_class x, mask & ~(p_nan |
11784 // n_nan) and (fcmp setuo), (fp_class x, mask) -> fp_class x, mask & (p_nan
11785 // | n_nan)
11786 const ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
11787 if ((LCC == ISD::SETO || LCC == ISD::SETUO) && Mask &&
11788 (RHS.getOperand(0) == LHS.getOperand(0) &&
11789 LHS.getOperand(0) == LHS.getOperand(1))) {
11790 const unsigned OrdMask = SIInstrFlags::S_NAN | SIInstrFlags::Q_NAN;
11791 unsigned NewMask = LCC == ISD::SETO ? Mask->getZExtValue() & ~OrdMask
11792 : Mask->getZExtValue() & OrdMask;
11794 SDLoc DL(N);
11795 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, RHS.getOperand(0),
11796 DAG.getConstant(NewMask, DL, MVT::i32));
11800 if (VT == MVT::i32 && (RHS.getOpcode() == ISD::SIGN_EXTEND ||
11801 LHS.getOpcode() == ISD::SIGN_EXTEND)) {
11802 // and x, (sext cc from i1) => select cc, x, 0
11803 if (RHS.getOpcode() != ISD::SIGN_EXTEND)
11804 std::swap(LHS, RHS);
11805 if (isBoolSGPR(RHS.getOperand(0)))
11806 return DAG.getSelect(SDLoc(N), MVT::i32, RHS.getOperand(0), LHS,
11807 DAG.getConstant(0, SDLoc(N), MVT::i32));
11810 // and (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
11811 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
11812 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
11813 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
11814 uint32_t LHSMask = getPermuteMask(LHS);
11815 uint32_t RHSMask = getPermuteMask(RHS);
11816 if (LHSMask != ~0u && RHSMask != ~0u) {
11817 // Canonicalize the expression in an attempt to have fewer unique masks
11818 // and therefore fewer registers used to hold the masks.
11819 if (LHSMask > RHSMask) {
11820 std::swap(LHSMask, RHSMask);
11821 std::swap(LHS, RHS);
11824 // Select 0xc for each lane used from source operand. Zero has 0xc mask
11825 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
11826 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
11827 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
11829 // Check of we need to combine values from two sources within a byte.
11830 if (!(LHSUsedLanes & RHSUsedLanes) &&
11831 // If we select high and lower word keep it for SDWA.
11832 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
11833 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
11834 // Each byte in each mask is either selector mask 0-3, or has higher
11835 // bits set in either of masks, which can be 0xff for 0xff or 0x0c for
11836 // zero. If 0x0c is in either mask it shall always be 0x0c. Otherwise
11837 // mask which is not 0xff wins. By anding both masks we have a correct
11838 // result except that 0x0c shall be corrected to give 0x0c only.
11839 uint32_t Mask = LHSMask & RHSMask;
11840 for (unsigned I = 0; I < 32; I += 8) {
11841 uint32_t ByteSel = 0xff << I;
11842 if ((LHSMask & ByteSel) == 0x0c || (RHSMask & ByteSel) == 0x0c)
11843 Mask &= (0x0c << I) & 0xffffffff;
11846 // Add 4 to each active LHS lane. It will not affect any existing 0xff
11847 // or 0x0c.
11848 uint32_t Sel = Mask | (LHSUsedLanes & 0x04040404);
11849 SDLoc DL(N);
11851 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
11852 RHS.getOperand(0),
11853 DAG.getConstant(Sel, DL, MVT::i32));
11858 return SDValue();
11861 // A key component of v_perm is a mapping between byte position of the src
11862 // operands, and the byte position of the dest. To provide such, we need: 1. the
11863 // node that provides x byte of the dest of the OR, and 2. the byte of the node
11864 // used to provide that x byte. calculateByteProvider finds which node provides
11865 // a certain byte of the dest of the OR, and calculateSrcByte takes that node,
11866 // and finds an ultimate src and byte position For example: The supported
11867 // LoadCombine pattern for vector loads is as follows
11868 // t1
11869 // or
11870 // / \
11871 // t2 t3
11872 // zext shl
11873 // | | \
11874 // t4 t5 16
11875 // or anyext
11876 // / \ |
11877 // t6 t7 t8
11878 // srl shl or
11879 // / | / \ / \
11880 // t9 t10 t11 t12 t13 t14
11881 // trunc* 8 trunc* 8 and and
11882 // | | / | | \
11883 // t15 t16 t17 t18 t19 t20
11884 // trunc* 255 srl -256
11885 // | / \
11886 // t15 t15 16
11888 // *In this example, the truncs are from i32->i16
11890 // calculateByteProvider would find t6, t7, t13, and t14 for bytes 0-3
11891 // respectively. calculateSrcByte would find (given node) -> ultimate src &
11892 // byteposition: t6 -> t15 & 1, t7 -> t16 & 0, t13 -> t15 & 0, t14 -> t15 & 3.
11893 // After finding the mapping, we can combine the tree into vperm t15, t16,
11894 // 0x05000407
11896 // Find the source and byte position from a node.
11897 // \p DestByte is the byte position of the dest of the or that the src
11898 // ultimately provides. \p SrcIndex is the byte of the src that maps to this
11899 // dest of the or byte. \p Depth tracks how many recursive iterations we have
11900 // performed.
11901 static const std::optional<ByteProvider<SDValue>>
11902 calculateSrcByte(const SDValue Op, uint64_t DestByte, uint64_t SrcIndex = 0,
11903 unsigned Depth = 0) {
11904 // We may need to recursively traverse a series of SRLs
11905 if (Depth >= 6)
11906 return std::nullopt;
11908 if (Op.getValueSizeInBits() < 8)
11909 return std::nullopt;
11911 if (Op.getValueType().isVector())
11912 return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
11914 switch (Op->getOpcode()) {
11915 case ISD::TRUNCATE: {
11916 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
11919 case ISD::SIGN_EXTEND:
11920 case ISD::ZERO_EXTEND:
11921 case ISD::SIGN_EXTEND_INREG: {
11922 SDValue NarrowOp = Op->getOperand(0);
11923 auto NarrowVT = NarrowOp.getValueType();
11924 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG) {
11925 auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
11926 NarrowVT = VTSign->getVT();
11928 if (!NarrowVT.isByteSized())
11929 return std::nullopt;
11930 uint64_t NarrowByteWidth = NarrowVT.getStoreSize();
11932 if (SrcIndex >= NarrowByteWidth)
11933 return std::nullopt;
11934 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
11937 case ISD::SRA:
11938 case ISD::SRL: {
11939 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
11940 if (!ShiftOp)
11941 return std::nullopt;
11943 uint64_t BitShift = ShiftOp->getZExtValue();
11945 if (BitShift % 8 != 0)
11946 return std::nullopt;
11948 SrcIndex += BitShift / 8;
11950 return calculateSrcByte(Op->getOperand(0), DestByte, SrcIndex, Depth + 1);
11953 default: {
11954 return ByteProvider<SDValue>::getSrc(Op, DestByte, SrcIndex);
11957 llvm_unreachable("fully handled switch");
11960 // For a byte position in the result of an Or, traverse the tree and find the
11961 // node (and the byte of the node) which ultimately provides this {Or,
11962 // BytePosition}. \p Op is the operand we are currently examining. \p Index is
11963 // the byte position of the Op that corresponds with the originally requested
11964 // byte of the Or \p Depth tracks how many recursive iterations we have
11965 // performed. \p StartingIndex is the originally requested byte of the Or
11966 static const std::optional<ByteProvider<SDValue>>
11967 calculateByteProvider(const SDValue &Op, unsigned Index, unsigned Depth,
11968 unsigned StartingIndex = 0) {
11969 // Finding Src tree of RHS of or typically requires at least 1 additional
11970 // depth
11971 if (Depth > 6)
11972 return std::nullopt;
11974 unsigned BitWidth = Op.getScalarValueSizeInBits();
11975 if (BitWidth % 8 != 0)
11976 return std::nullopt;
11977 if (Index > BitWidth / 8 - 1)
11978 return std::nullopt;
11980 bool IsVec = Op.getValueType().isVector();
11981 switch (Op.getOpcode()) {
11982 case ISD::OR: {
11983 if (IsVec)
11984 return std::nullopt;
11986 auto RHS = calculateByteProvider(Op.getOperand(1), Index, Depth + 1,
11987 StartingIndex);
11988 if (!RHS)
11989 return std::nullopt;
11990 auto LHS = calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
11991 StartingIndex);
11992 if (!LHS)
11993 return std::nullopt;
11994 // A well formed Or will have two ByteProviders for each byte, one of which
11995 // is constant zero
11996 if (!LHS->isConstantZero() && !RHS->isConstantZero())
11997 return std::nullopt;
11998 if (!LHS || LHS->isConstantZero())
11999 return RHS;
12000 if (!RHS || RHS->isConstantZero())
12001 return LHS;
12002 return std::nullopt;
12005 case ISD::AND: {
12006 if (IsVec)
12007 return std::nullopt;
12009 auto *BitMaskOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
12010 if (!BitMaskOp)
12011 return std::nullopt;
12013 uint32_t BitMask = BitMaskOp->getZExtValue();
12014 // Bits we expect for our StartingIndex
12015 uint32_t IndexMask = 0xFF << (Index * 8);
12017 if ((IndexMask & BitMask) != IndexMask) {
12018 // If the result of the and partially provides the byte, then it
12019 // is not well formatted
12020 if (IndexMask & BitMask)
12021 return std::nullopt;
12022 return ByteProvider<SDValue>::getConstantZero();
12025 return calculateSrcByte(Op->getOperand(0), StartingIndex, Index);
12028 case ISD::FSHR: {
12029 if (IsVec)
12030 return std::nullopt;
12032 // fshr(X,Y,Z): (X << (BW - (Z % BW))) | (Y >> (Z % BW))
12033 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(2));
12034 if (!ShiftOp || Op.getValueType().isVector())
12035 return std::nullopt;
12037 uint64_t BitsProvided = Op.getValueSizeInBits();
12038 if (BitsProvided % 8 != 0)
12039 return std::nullopt;
12041 uint64_t BitShift = ShiftOp->getAPIntValue().urem(BitsProvided);
12042 if (BitShift % 8)
12043 return std::nullopt;
12045 uint64_t ConcatSizeInBytes = BitsProvided / 4;
12046 uint64_t ByteShift = BitShift / 8;
12048 uint64_t NewIndex = (Index + ByteShift) % ConcatSizeInBytes;
12049 uint64_t BytesProvided = BitsProvided / 8;
12050 SDValue NextOp = Op.getOperand(NewIndex >= BytesProvided ? 0 : 1);
12051 NewIndex %= BytesProvided;
12052 return calculateByteProvider(NextOp, NewIndex, Depth + 1, StartingIndex);
12055 case ISD::SRA:
12056 case ISD::SRL: {
12057 if (IsVec)
12058 return std::nullopt;
12060 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
12061 if (!ShiftOp)
12062 return std::nullopt;
12064 uint64_t BitShift = ShiftOp->getZExtValue();
12065 if (BitShift % 8)
12066 return std::nullopt;
12068 auto BitsProvided = Op.getScalarValueSizeInBits();
12069 if (BitsProvided % 8 != 0)
12070 return std::nullopt;
12072 uint64_t BytesProvided = BitsProvided / 8;
12073 uint64_t ByteShift = BitShift / 8;
12074 // The dest of shift will have good [0 : (BytesProvided - ByteShift)] bytes.
12075 // If the byte we are trying to provide (as tracked by index) falls in this
12076 // range, then the SRL provides the byte. The byte of interest of the src of
12077 // the SRL is Index + ByteShift
12078 return BytesProvided - ByteShift > Index
12079 ? calculateSrcByte(Op->getOperand(0), StartingIndex,
12080 Index + ByteShift)
12081 : ByteProvider<SDValue>::getConstantZero();
12084 case ISD::SHL: {
12085 if (IsVec)
12086 return std::nullopt;
12088 auto *ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
12089 if (!ShiftOp)
12090 return std::nullopt;
12092 uint64_t BitShift = ShiftOp->getZExtValue();
12093 if (BitShift % 8 != 0)
12094 return std::nullopt;
12095 uint64_t ByteShift = BitShift / 8;
12097 // If we are shifting by an amount greater than (or equal to)
12098 // the index we are trying to provide, then it provides 0s. If not,
12099 // then this bytes are not definitively 0s, and the corresponding byte
12100 // of interest is Index - ByteShift of the src
12101 return Index < ByteShift
12102 ? ByteProvider<SDValue>::getConstantZero()
12103 : calculateByteProvider(Op.getOperand(0), Index - ByteShift,
12104 Depth + 1, StartingIndex);
12106 case ISD::ANY_EXTEND:
12107 case ISD::SIGN_EXTEND:
12108 case ISD::ZERO_EXTEND:
12109 case ISD::SIGN_EXTEND_INREG:
12110 case ISD::AssertZext:
12111 case ISD::AssertSext: {
12112 if (IsVec)
12113 return std::nullopt;
12115 SDValue NarrowOp = Op->getOperand(0);
12116 unsigned NarrowBitWidth = NarrowOp.getValueSizeInBits();
12117 if (Op->getOpcode() == ISD::SIGN_EXTEND_INREG ||
12118 Op->getOpcode() == ISD::AssertZext ||
12119 Op->getOpcode() == ISD::AssertSext) {
12120 auto *VTSign = cast<VTSDNode>(Op->getOperand(1));
12121 NarrowBitWidth = VTSign->getVT().getSizeInBits();
12123 if (NarrowBitWidth % 8 != 0)
12124 return std::nullopt;
12125 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
12127 if (Index >= NarrowByteWidth)
12128 return Op.getOpcode() == ISD::ZERO_EXTEND
12129 ? std::optional<ByteProvider<SDValue>>(
12130 ByteProvider<SDValue>::getConstantZero())
12131 : std::nullopt;
12132 return calculateByteProvider(NarrowOp, Index, Depth + 1, StartingIndex);
12135 case ISD::TRUNCATE: {
12136 if (IsVec)
12137 return std::nullopt;
12139 uint64_t NarrowByteWidth = BitWidth / 8;
12141 if (NarrowByteWidth >= Index) {
12142 return calculateByteProvider(Op.getOperand(0), Index, Depth + 1,
12143 StartingIndex);
12146 return std::nullopt;
12149 case ISD::CopyFromReg: {
12150 if (BitWidth / 8 > Index)
12151 return calculateSrcByte(Op, StartingIndex, Index);
12153 return std::nullopt;
12156 case ISD::LOAD: {
12157 auto *L = cast<LoadSDNode>(Op.getNode());
12159 unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
12160 if (NarrowBitWidth % 8 != 0)
12161 return std::nullopt;
12162 uint64_t NarrowByteWidth = NarrowBitWidth / 8;
12164 // If the width of the load does not reach byte we are trying to provide for
12165 // and it is not a ZEXTLOAD, then the load does not provide for the byte in
12166 // question
12167 if (Index >= NarrowByteWidth) {
12168 return L->getExtensionType() == ISD::ZEXTLOAD
12169 ? std::optional<ByteProvider<SDValue>>(
12170 ByteProvider<SDValue>::getConstantZero())
12171 : std::nullopt;
12174 if (NarrowByteWidth > Index) {
12175 return calculateSrcByte(Op, StartingIndex, Index);
12178 return std::nullopt;
12181 case ISD::BSWAP: {
12182 if (IsVec)
12183 return std::nullopt;
12185 return calculateByteProvider(Op->getOperand(0), BitWidth / 8 - Index - 1,
12186 Depth + 1, StartingIndex);
12189 case ISD::EXTRACT_VECTOR_ELT: {
12190 auto *IdxOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
12191 if (!IdxOp)
12192 return std::nullopt;
12193 auto VecIdx = IdxOp->getZExtValue();
12194 auto ScalarSize = Op.getScalarValueSizeInBits();
12195 if (ScalarSize < 32)
12196 Index = ScalarSize == 8 ? VecIdx : VecIdx * 2 + Index;
12197 return calculateSrcByte(ScalarSize >= 32 ? Op : Op.getOperand(0),
12198 StartingIndex, Index);
12201 case AMDGPUISD::PERM: {
12202 if (IsVec)
12203 return std::nullopt;
12205 auto *PermMask = dyn_cast<ConstantSDNode>(Op->getOperand(2));
12206 if (!PermMask)
12207 return std::nullopt;
12209 auto IdxMask =
12210 (PermMask->getZExtValue() & (0xFF << (Index * 8))) >> (Index * 8);
12211 if (IdxMask > 0x07 && IdxMask != 0x0c)
12212 return std::nullopt;
12214 auto NextOp = Op.getOperand(IdxMask > 0x03 ? 0 : 1);
12215 auto NextIndex = IdxMask > 0x03 ? IdxMask % 4 : IdxMask;
12217 return IdxMask != 0x0c ? calculateSrcByte(NextOp, StartingIndex, NextIndex)
12218 : ByteProvider<SDValue>(
12219 ByteProvider<SDValue>::getConstantZero());
12222 default: {
12223 return std::nullopt;
12227 llvm_unreachable("fully handled switch");
12230 // Returns true if the Operand is a scalar and is 16 bits
12231 static bool isExtendedFrom16Bits(SDValue &Operand) {
12233 switch (Operand.getOpcode()) {
12234 case ISD::ANY_EXTEND:
12235 case ISD::SIGN_EXTEND:
12236 case ISD::ZERO_EXTEND: {
12237 auto OpVT = Operand.getOperand(0).getValueType();
12238 return !OpVT.isVector() && OpVT.getSizeInBits() == 16;
12240 case ISD::LOAD: {
12241 LoadSDNode *L = cast<LoadSDNode>(Operand.getNode());
12242 auto ExtType = cast<LoadSDNode>(L)->getExtensionType();
12243 if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::SEXTLOAD ||
12244 ExtType == ISD::EXTLOAD) {
12245 auto MemVT = L->getMemoryVT();
12246 return !MemVT.isVector() && MemVT.getSizeInBits() == 16;
12248 return L->getMemoryVT().getSizeInBits() == 16;
12250 default:
12251 return false;
12255 // Returns true if the mask matches consecutive bytes, and the first byte
12256 // begins at a power of 2 byte offset from 0th byte
12257 static bool addresses16Bits(int Mask) {
12258 int Low8 = Mask & 0xff;
12259 int Hi8 = (Mask & 0xff00) >> 8;
12261 assert(Low8 < 8 && Hi8 < 8);
12262 // Are the bytes contiguous in the order of increasing addresses.
12263 bool IsConsecutive = (Hi8 - Low8 == 1);
12264 // Is the first byte at location that is aligned for 16 bit instructions.
12265 // A counter example is taking 2 consecutive bytes starting at the 8th bit.
12266 // In this case, we still need code to extract the 16 bit operand, so it
12267 // is better to use i8 v_perm
12268 bool Is16Aligned = !(Low8 % 2);
12270 return IsConsecutive && Is16Aligned;
12273 // Do not lower into v_perm if the operands are actually 16 bit
12274 // and the selected bits (based on PermMask) correspond with two
12275 // easily addressable 16 bit operands.
12276 static bool hasNon16BitAccesses(uint64_t PermMask, SDValue &Op,
12277 SDValue &OtherOp) {
12278 int Low16 = PermMask & 0xffff;
12279 int Hi16 = (PermMask & 0xffff0000) >> 16;
12281 auto TempOp = peekThroughBitcasts(Op);
12282 auto TempOtherOp = peekThroughBitcasts(OtherOp);
12284 auto OpIs16Bit =
12285 TempOtherOp.getValueSizeInBits() == 16 || isExtendedFrom16Bits(TempOp);
12286 if (!OpIs16Bit)
12287 return true;
12289 auto OtherOpIs16Bit = TempOtherOp.getValueSizeInBits() == 16 ||
12290 isExtendedFrom16Bits(TempOtherOp);
12291 if (!OtherOpIs16Bit)
12292 return true;
12294 // Do we cleanly address both
12295 return !addresses16Bits(Low16) || !addresses16Bits(Hi16);
12298 static SDValue getDWordFromOffset(SelectionDAG &DAG, SDLoc SL, SDValue Src,
12299 unsigned DWordOffset) {
12300 SDValue Ret;
12302 auto TypeSize = Src.getValueSizeInBits().getFixedValue();
12303 // ByteProvider must be at least 8 bits
12304 assert(Src.getValueSizeInBits().isKnownMultipleOf(8));
12306 if (TypeSize <= 32)
12307 return DAG.getBitcastedAnyExtOrTrunc(Src, SL, MVT::i32);
12309 if (Src.getValueType().isVector()) {
12310 auto ScalarTySize = Src.getScalarValueSizeInBits();
12311 auto ScalarTy = Src.getValueType().getScalarType();
12312 if (ScalarTySize == 32) {
12313 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Src,
12314 DAG.getConstant(DWordOffset, SL, MVT::i32));
12316 if (ScalarTySize > 32) {
12317 Ret = DAG.getNode(
12318 ISD::EXTRACT_VECTOR_ELT, SL, ScalarTy, Src,
12319 DAG.getConstant(DWordOffset / (ScalarTySize / 32), SL, MVT::i32));
12320 auto ShiftVal = 32 * (DWordOffset % (ScalarTySize / 32));
12321 if (ShiftVal)
12322 Ret = DAG.getNode(ISD::SRL, SL, Ret.getValueType(), Ret,
12323 DAG.getConstant(ShiftVal, SL, MVT::i32));
12324 return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
12327 assert(ScalarTySize < 32);
12328 auto NumElements = TypeSize / ScalarTySize;
12329 auto Trunc32Elements = (ScalarTySize * NumElements) / 32;
12330 auto NormalizedTrunc = Trunc32Elements * 32 / ScalarTySize;
12331 auto NumElementsIn32 = 32 / ScalarTySize;
12332 auto NumAvailElements = DWordOffset < Trunc32Elements
12333 ? NumElementsIn32
12334 : NumElements - NormalizedTrunc;
12336 SmallVector<SDValue, 4> VecSrcs;
12337 DAG.ExtractVectorElements(Src, VecSrcs, DWordOffset * NumElementsIn32,
12338 NumAvailElements);
12340 Ret = DAG.getBuildVector(
12341 MVT::getVectorVT(MVT::getIntegerVT(ScalarTySize), NumAvailElements), SL,
12342 VecSrcs);
12343 return Ret = DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
12346 /// Scalar Type
12347 auto ShiftVal = 32 * DWordOffset;
12348 Ret = DAG.getNode(ISD::SRL, SL, Src.getValueType(), Src,
12349 DAG.getConstant(ShiftVal, SL, MVT::i32));
12350 return DAG.getBitcastedAnyExtOrTrunc(Ret, SL, MVT::i32);
12353 static SDValue matchPERM(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12354 SelectionDAG &DAG = DCI.DAG;
12355 [[maybe_unused]] EVT VT = N->getValueType(0);
12356 SmallVector<ByteProvider<SDValue>, 8> PermNodes;
12358 // VT is known to be MVT::i32, so we need to provide 4 bytes.
12359 assert(VT == MVT::i32);
12360 for (int i = 0; i < 4; i++) {
12361 // Find the ByteProvider that provides the ith byte of the result of OR
12362 std::optional<ByteProvider<SDValue>> P =
12363 calculateByteProvider(SDValue(N, 0), i, 0, /*StartingIndex = */ i);
12364 // TODO support constantZero
12365 if (!P || P->isConstantZero())
12366 return SDValue();
12368 PermNodes.push_back(*P);
12370 if (PermNodes.size() != 4)
12371 return SDValue();
12373 std::pair<unsigned, unsigned> FirstSrc(0, PermNodes[0].SrcOffset / 4);
12374 std::optional<std::pair<unsigned, unsigned>> SecondSrc;
12375 uint64_t PermMask = 0x00000000;
12376 for (size_t i = 0; i < PermNodes.size(); i++) {
12377 auto PermOp = PermNodes[i];
12378 // Since the mask is applied to Src1:Src2, Src1 bytes must be offset
12379 // by sizeof(Src2) = 4
12380 int SrcByteAdjust = 4;
12382 // If the Src uses a byte from a different DWORD, then it corresponds
12383 // with a difference source
12384 if (!PermOp.hasSameSrc(PermNodes[FirstSrc.first]) ||
12385 ((PermOp.SrcOffset / 4) != FirstSrc.second)) {
12386 if (SecondSrc)
12387 if (!PermOp.hasSameSrc(PermNodes[SecondSrc->first]) ||
12388 ((PermOp.SrcOffset / 4) != SecondSrc->second))
12389 return SDValue();
12391 // Set the index of the second distinct Src node
12392 SecondSrc = {i, PermNodes[i].SrcOffset / 4};
12393 assert(!(PermNodes[SecondSrc->first].Src->getValueSizeInBits() % 8));
12394 SrcByteAdjust = 0;
12396 assert((PermOp.SrcOffset % 4) + SrcByteAdjust < 8);
12397 assert(!DAG.getDataLayout().isBigEndian());
12398 PermMask |= ((PermOp.SrcOffset % 4) + SrcByteAdjust) << (i * 8);
12400 SDLoc DL(N);
12401 SDValue Op = *PermNodes[FirstSrc.first].Src;
12402 Op = getDWordFromOffset(DAG, DL, Op, FirstSrc.second);
12403 assert(Op.getValueSizeInBits() == 32);
12405 // Check that we are not just extracting the bytes in order from an op
12406 if (!SecondSrc) {
12407 int Low16 = PermMask & 0xffff;
12408 int Hi16 = (PermMask & 0xffff0000) >> 16;
12410 bool WellFormedLow = (Low16 == 0x0504) || (Low16 == 0x0100);
12411 bool WellFormedHi = (Hi16 == 0x0706) || (Hi16 == 0x0302);
12413 // The perm op would really just produce Op. So combine into Op
12414 if (WellFormedLow && WellFormedHi)
12415 return DAG.getBitcast(MVT::getIntegerVT(32), Op);
12418 SDValue OtherOp = SecondSrc ? *PermNodes[SecondSrc->first].Src : Op;
12420 if (SecondSrc) {
12421 OtherOp = getDWordFromOffset(DAG, DL, OtherOp, SecondSrc->second);
12422 assert(OtherOp.getValueSizeInBits() == 32);
12425 if (hasNon16BitAccesses(PermMask, Op, OtherOp)) {
12427 assert(Op.getValueType().isByteSized() &&
12428 OtherOp.getValueType().isByteSized());
12430 // If the ultimate src is less than 32 bits, then we will only be
12431 // using bytes 0: Op.getValueSizeInBytes() - 1 in the or.
12432 // CalculateByteProvider would not have returned Op as source if we
12433 // used a byte that is outside its ValueType. Thus, we are free to
12434 // ANY_EXTEND as the extended bits are dont-cares.
12435 Op = DAG.getBitcastedAnyExtOrTrunc(Op, DL, MVT::i32);
12436 OtherOp = DAG.getBitcastedAnyExtOrTrunc(OtherOp, DL, MVT::i32);
12438 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, Op, OtherOp,
12439 DAG.getConstant(PermMask, DL, MVT::i32));
12441 return SDValue();
12444 SDValue SITargetLowering::performOrCombine(SDNode *N,
12445 DAGCombinerInfo &DCI) const {
12446 SelectionDAG &DAG = DCI.DAG;
12447 SDValue LHS = N->getOperand(0);
12448 SDValue RHS = N->getOperand(1);
12450 EVT VT = N->getValueType(0);
12451 if (VT == MVT::i1) {
12452 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
12453 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
12454 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
12455 SDValue Src = LHS.getOperand(0);
12456 if (Src != RHS.getOperand(0))
12457 return SDValue();
12459 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
12460 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
12461 if (!CLHS || !CRHS)
12462 return SDValue();
12464 // Only 10 bits are used.
12465 static const uint32_t MaxMask = 0x3ff;
12467 uint32_t NewMask =
12468 (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
12469 SDLoc DL(N);
12470 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, Src,
12471 DAG.getConstant(NewMask, DL, MVT::i32));
12474 return SDValue();
12477 // or (perm x, y, c1), c2 -> perm x, y, permute_mask(c1, c2)
12478 if (isa<ConstantSDNode>(RHS) && LHS.hasOneUse() &&
12479 LHS.getOpcode() == AMDGPUISD::PERM &&
12480 isa<ConstantSDNode>(LHS.getOperand(2))) {
12481 uint32_t Sel = getConstantPermuteMask(N->getConstantOperandVal(1));
12482 if (!Sel)
12483 return SDValue();
12485 Sel |= LHS.getConstantOperandVal(2);
12486 SDLoc DL(N);
12487 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
12488 LHS.getOperand(1), DAG.getConstant(Sel, DL, MVT::i32));
12491 // or (op x, c1), (op y, c2) -> perm x, y, permute_mask(c1, c2)
12492 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
12493 if (VT == MVT::i32 && LHS.hasOneUse() && RHS.hasOneUse() &&
12494 N->isDivergent() && TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
12496 // If all the uses of an or need to extract the individual elements, do not
12497 // attempt to lower into v_perm
12498 auto usesCombinedOperand = [](SDNode *OrUse) {
12499 // If we have any non-vectorized use, then it is a candidate for v_perm
12500 if (OrUse->getOpcode() != ISD::BITCAST ||
12501 !OrUse->getValueType(0).isVector())
12502 return true;
12504 // If we have any non-vectorized use, then it is a candidate for v_perm
12505 for (auto *VUse : OrUse->uses()) {
12506 if (!VUse->getValueType(0).isVector())
12507 return true;
12509 // If the use of a vector is a store, then combining via a v_perm
12510 // is beneficial.
12511 // TODO -- whitelist more uses
12512 for (auto VectorwiseOp : {ISD::STORE, ISD::CopyToReg, ISD::CopyFromReg})
12513 if (VUse->getOpcode() == VectorwiseOp)
12514 return true;
12516 return false;
12519 if (!any_of(N->uses(), usesCombinedOperand))
12520 return SDValue();
12522 uint32_t LHSMask = getPermuteMask(LHS);
12523 uint32_t RHSMask = getPermuteMask(RHS);
12525 if (LHSMask != ~0u && RHSMask != ~0u) {
12526 // Canonicalize the expression in an attempt to have fewer unique masks
12527 // and therefore fewer registers used to hold the masks.
12528 if (LHSMask > RHSMask) {
12529 std::swap(LHSMask, RHSMask);
12530 std::swap(LHS, RHS);
12533 // Select 0xc for each lane used from source operand. Zero has 0xc mask
12534 // set, 0xff have 0xff in the mask, actual lanes are in the 0-3 range.
12535 uint32_t LHSUsedLanes = ~(LHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
12536 uint32_t RHSUsedLanes = ~(RHSMask & 0x0c0c0c0c) & 0x0c0c0c0c;
12538 // Check of we need to combine values from two sources within a byte.
12539 if (!(LHSUsedLanes & RHSUsedLanes) &&
12540 // If we select high and lower word keep it for SDWA.
12541 // TODO: teach SDWA to work with v_perm_b32 and remove the check.
12542 !(LHSUsedLanes == 0x0c0c0000 && RHSUsedLanes == 0x00000c0c)) {
12543 // Kill zero bytes selected by other mask. Zero value is 0xc.
12544 LHSMask &= ~RHSUsedLanes;
12545 RHSMask &= ~LHSUsedLanes;
12546 // Add 4 to each active LHS lane
12547 LHSMask |= LHSUsedLanes & 0x04040404;
12548 // Combine masks
12549 uint32_t Sel = LHSMask | RHSMask;
12550 SDLoc DL(N);
12552 return DAG.getNode(AMDGPUISD::PERM, DL, MVT::i32, LHS.getOperand(0),
12553 RHS.getOperand(0),
12554 DAG.getConstant(Sel, DL, MVT::i32));
12557 if (LHSMask == ~0u || RHSMask == ~0u) {
12558 if (SDValue Perm = matchPERM(N, DCI))
12559 return Perm;
12563 if (VT != MVT::i64 || DCI.isBeforeLegalizeOps())
12564 return SDValue();
12566 // TODO: This could be a generic combine with a predicate for extracting the
12567 // high half of an integer being free.
12569 // (or i64:x, (zero_extend i32:y)) ->
12570 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
12571 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
12572 RHS.getOpcode() != ISD::ZERO_EXTEND)
12573 std::swap(LHS, RHS);
12575 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
12576 SDValue ExtSrc = RHS.getOperand(0);
12577 EVT SrcVT = ExtSrc.getValueType();
12578 if (SrcVT == MVT::i32) {
12579 SDLoc SL(N);
12580 auto [LowLHS, HiBits] = split64BitValue(LHS, DAG);
12581 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
12583 DCI.AddToWorklist(LowOr.getNode());
12584 DCI.AddToWorklist(HiBits.getNode());
12586 SDValue Vec =
12587 DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, LowOr, HiBits);
12588 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
12592 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
12593 if (CRHS) {
12594 if (SDValue Split = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR,
12595 N->getOperand(0), CRHS))
12596 return Split;
12599 return SDValue();
12602 SDValue SITargetLowering::performXorCombine(SDNode *N,
12603 DAGCombinerInfo &DCI) const {
12604 if (SDValue RV = reassociateScalarOps(N, DCI.DAG))
12605 return RV;
12607 SDValue LHS = N->getOperand(0);
12608 SDValue RHS = N->getOperand(1);
12610 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
12611 SelectionDAG &DAG = DCI.DAG;
12613 EVT VT = N->getValueType(0);
12614 if (CRHS && VT == MVT::i64) {
12615 if (SDValue Split =
12616 splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
12617 return Split;
12620 // Make sure to apply the 64-bit constant splitting fold before trying to fold
12621 // fneg-like xors into 64-bit select.
12622 if (LHS.getOpcode() == ISD::SELECT && VT == MVT::i32) {
12623 // This looks like an fneg, try to fold as a source modifier.
12624 if (CRHS && CRHS->getAPIntValue().isSignMask() &&
12625 shouldFoldFNegIntoSrc(N, LHS)) {
12626 // xor (select c, a, b), 0x80000000 ->
12627 // bitcast (select c, (fneg (bitcast a)), (fneg (bitcast b)))
12628 SDLoc DL(N);
12629 SDValue CastLHS =
12630 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(1));
12631 SDValue CastRHS =
12632 DAG.getNode(ISD::BITCAST, DL, MVT::f32, LHS->getOperand(2));
12633 SDValue FNegLHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastLHS);
12634 SDValue FNegRHS = DAG.getNode(ISD::FNEG, DL, MVT::f32, CastRHS);
12635 SDValue NewSelect = DAG.getNode(ISD::SELECT, DL, MVT::f32,
12636 LHS->getOperand(0), FNegLHS, FNegRHS);
12637 return DAG.getNode(ISD::BITCAST, DL, VT, NewSelect);
12641 return SDValue();
12644 SDValue SITargetLowering::performZeroExtendCombine(SDNode *N,
12645 DAGCombinerInfo &DCI) const {
12646 if (!Subtarget->has16BitInsts() ||
12647 DCI.getDAGCombineLevel() < AfterLegalizeDAG)
12648 return SDValue();
12650 EVT VT = N->getValueType(0);
12651 if (VT != MVT::i32)
12652 return SDValue();
12654 SDValue Src = N->getOperand(0);
12655 if (Src.getValueType() != MVT::i16)
12656 return SDValue();
12658 return SDValue();
12661 SDValue
12662 SITargetLowering::performSignExtendInRegCombine(SDNode *N,
12663 DAGCombinerInfo &DCI) const {
12664 SDValue Src = N->getOperand(0);
12665 auto *VTSign = cast<VTSDNode>(N->getOperand(1));
12667 // Combine s_buffer_load_u8 or s_buffer_load_u16 with sext and replace them
12668 // with s_buffer_load_i8 and s_buffer_load_i16 respectively.
12669 if (((Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE &&
12670 VTSign->getVT() == MVT::i8) ||
12671 (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_USHORT &&
12672 VTSign->getVT() == MVT::i16))) {
12673 assert(Subtarget->hasScalarSubwordLoads() &&
12674 "s_buffer_load_{u8, i8} are supported "
12675 "in GFX12 (or newer) architectures.");
12676 EVT VT = Src.getValueType();
12677 unsigned Opc = (Src.getOpcode() == AMDGPUISD::SBUFFER_LOAD_UBYTE)
12678 ? AMDGPUISD::SBUFFER_LOAD_BYTE
12679 : AMDGPUISD::SBUFFER_LOAD_SHORT;
12680 SDLoc DL(N);
12681 SDVTList ResList = DCI.DAG.getVTList(MVT::i32);
12682 SDValue Ops[] = {
12683 Src.getOperand(0), // source register
12684 Src.getOperand(1), // offset
12685 Src.getOperand(2) // cachePolicy
12687 auto *M = cast<MemSDNode>(Src);
12688 SDValue BufferLoad = DCI.DAG.getMemIntrinsicNode(
12689 Opc, DL, ResList, Ops, M->getMemoryVT(), M->getMemOperand());
12690 SDValue LoadVal = DCI.DAG.getNode(ISD::TRUNCATE, DL, VT, BufferLoad);
12691 return LoadVal;
12693 if (((Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE &&
12694 VTSign->getVT() == MVT::i8) ||
12695 (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_USHORT &&
12696 VTSign->getVT() == MVT::i16)) &&
12697 Src.hasOneUse()) {
12698 auto *M = cast<MemSDNode>(Src);
12699 SDValue Ops[] = {Src.getOperand(0), // Chain
12700 Src.getOperand(1), // rsrc
12701 Src.getOperand(2), // vindex
12702 Src.getOperand(3), // voffset
12703 Src.getOperand(4), // soffset
12704 Src.getOperand(5), // offset
12705 Src.getOperand(6), Src.getOperand(7)};
12706 // replace with BUFFER_LOAD_BYTE/SHORT
12707 SDVTList ResList =
12708 DCI.DAG.getVTList(MVT::i32, Src.getOperand(0).getValueType());
12709 unsigned Opc = (Src.getOpcode() == AMDGPUISD::BUFFER_LOAD_UBYTE)
12710 ? AMDGPUISD::BUFFER_LOAD_BYTE
12711 : AMDGPUISD::BUFFER_LOAD_SHORT;
12712 SDValue BufferLoadSignExt = DCI.DAG.getMemIntrinsicNode(
12713 Opc, SDLoc(N), ResList, Ops, M->getMemoryVT(), M->getMemOperand());
12714 return DCI.DAG.getMergeValues(
12715 {BufferLoadSignExt, BufferLoadSignExt.getValue(1)}, SDLoc(N));
12717 return SDValue();
12720 SDValue SITargetLowering::performClassCombine(SDNode *N,
12721 DAGCombinerInfo &DCI) const {
12722 SelectionDAG &DAG = DCI.DAG;
12723 SDValue Mask = N->getOperand(1);
12725 // fp_class x, 0 -> false
12726 if (isNullConstant(Mask))
12727 return DAG.getConstant(0, SDLoc(N), MVT::i1);
12729 if (N->getOperand(0).isUndef())
12730 return DAG.getUNDEF(MVT::i1);
12732 return SDValue();
12735 SDValue SITargetLowering::performRcpCombine(SDNode *N,
12736 DAGCombinerInfo &DCI) const {
12737 EVT VT = N->getValueType(0);
12738 SDValue N0 = N->getOperand(0);
12740 if (N0.isUndef()) {
12741 return DCI.DAG.getConstantFP(APFloat::getQNaN(VT.getFltSemantics()),
12742 SDLoc(N), VT);
12745 if (VT == MVT::f32 && (N0.getOpcode() == ISD::UINT_TO_FP ||
12746 N0.getOpcode() == ISD::SINT_TO_FP)) {
12747 return DCI.DAG.getNode(AMDGPUISD::RCP_IFLAG, SDLoc(N), VT, N0,
12748 N->getFlags());
12751 // TODO: Could handle f32 + amdgcn.sqrt but probably never reaches here.
12752 if ((VT == MVT::f16 && N0.getOpcode() == ISD::FSQRT) &&
12753 N->getFlags().hasAllowContract() && N0->getFlags().hasAllowContract()) {
12754 return DCI.DAG.getNode(AMDGPUISD::RSQ, SDLoc(N), VT, N0.getOperand(0),
12755 N->getFlags());
12758 return AMDGPUTargetLowering::performRcpCombine(N, DCI);
12761 bool SITargetLowering::isCanonicalized(SelectionDAG &DAG, SDValue Op,
12762 unsigned MaxDepth) const {
12763 unsigned Opcode = Op.getOpcode();
12764 if (Opcode == ISD::FCANONICALIZE)
12765 return true;
12767 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
12768 const auto &F = CFP->getValueAPF();
12769 if (F.isNaN() && F.isSignaling())
12770 return false;
12771 if (!F.isDenormal())
12772 return true;
12774 DenormalMode Mode =
12775 DAG.getMachineFunction().getDenormalMode(F.getSemantics());
12776 return Mode == DenormalMode::getIEEE();
12779 // If source is a result of another standard FP operation it is already in
12780 // canonical form.
12781 if (MaxDepth == 0)
12782 return false;
12784 switch (Opcode) {
12785 // These will flush denorms if required.
12786 case ISD::FADD:
12787 case ISD::FSUB:
12788 case ISD::FMUL:
12789 case ISD::FCEIL:
12790 case ISD::FFLOOR:
12791 case ISD::FMA:
12792 case ISD::FMAD:
12793 case ISD::FSQRT:
12794 case ISD::FDIV:
12795 case ISD::FREM:
12796 case ISD::FP_ROUND:
12797 case ISD::FP_EXTEND:
12798 case ISD::FP16_TO_FP:
12799 case ISD::FP_TO_FP16:
12800 case ISD::BF16_TO_FP:
12801 case ISD::FP_TO_BF16:
12802 case ISD::FLDEXP:
12803 case AMDGPUISD::FMUL_LEGACY:
12804 case AMDGPUISD::FMAD_FTZ:
12805 case AMDGPUISD::RCP:
12806 case AMDGPUISD::RSQ:
12807 case AMDGPUISD::RSQ_CLAMP:
12808 case AMDGPUISD::RCP_LEGACY:
12809 case AMDGPUISD::RCP_IFLAG:
12810 case AMDGPUISD::LOG:
12811 case AMDGPUISD::EXP:
12812 case AMDGPUISD::DIV_SCALE:
12813 case AMDGPUISD::DIV_FMAS:
12814 case AMDGPUISD::DIV_FIXUP:
12815 case AMDGPUISD::FRACT:
12816 case AMDGPUISD::CVT_PKRTZ_F16_F32:
12817 case AMDGPUISD::CVT_F32_UBYTE0:
12818 case AMDGPUISD::CVT_F32_UBYTE1:
12819 case AMDGPUISD::CVT_F32_UBYTE2:
12820 case AMDGPUISD::CVT_F32_UBYTE3:
12821 case AMDGPUISD::FP_TO_FP16:
12822 case AMDGPUISD::SIN_HW:
12823 case AMDGPUISD::COS_HW:
12824 return true;
12826 // It can/will be lowered or combined as a bit operation.
12827 // Need to check their input recursively to handle.
12828 case ISD::FNEG:
12829 case ISD::FABS:
12830 case ISD::FCOPYSIGN:
12831 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
12833 case ISD::AND:
12834 if (Op.getValueType() == MVT::i32) {
12835 // Be careful as we only know it is a bitcast floating point type. It
12836 // could be f32, v2f16, we have no way of knowing. Luckily the constant
12837 // value that we optimize for, which comes up in fp32 to bf16 conversions,
12838 // is valid to optimize for all types.
12839 if (auto *RHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
12840 if (RHS->getZExtValue() == 0xffff0000) {
12841 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
12845 break;
12847 case ISD::FSIN:
12848 case ISD::FCOS:
12849 case ISD::FSINCOS:
12850 return Op.getValueType().getScalarType() != MVT::f16;
12852 case ISD::FMINNUM:
12853 case ISD::FMAXNUM:
12854 case ISD::FMINNUM_IEEE:
12855 case ISD::FMAXNUM_IEEE:
12856 case ISD::FMINIMUM:
12857 case ISD::FMAXIMUM:
12858 case AMDGPUISD::CLAMP:
12859 case AMDGPUISD::FMED3:
12860 case AMDGPUISD::FMAX3:
12861 case AMDGPUISD::FMIN3:
12862 case AMDGPUISD::FMAXIMUM3:
12863 case AMDGPUISD::FMINIMUM3: {
12864 // FIXME: Shouldn't treat the generic operations different based these.
12865 // However, we aren't really required to flush the result from
12866 // minnum/maxnum..
12868 // snans will be quieted, so we only need to worry about denormals.
12869 if (Subtarget->supportsMinMaxDenormModes() ||
12870 // FIXME: denormalsEnabledForType is broken for dynamic
12871 denormalsEnabledForType(DAG, Op.getValueType()))
12872 return true;
12874 // Flushing may be required.
12875 // In pre-GFX9 targets V_MIN_F32 and others do not flush denorms. For such
12876 // targets need to check their input recursively.
12878 // FIXME: Does this apply with clamp? It's implemented with max.
12879 for (unsigned I = 0, E = Op.getNumOperands(); I != E; ++I) {
12880 if (!isCanonicalized(DAG, Op.getOperand(I), MaxDepth - 1))
12881 return false;
12884 return true;
12886 case ISD::SELECT: {
12887 return isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1) &&
12888 isCanonicalized(DAG, Op.getOperand(2), MaxDepth - 1);
12890 case ISD::BUILD_VECTOR: {
12891 for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) {
12892 SDValue SrcOp = Op.getOperand(i);
12893 if (!isCanonicalized(DAG, SrcOp, MaxDepth - 1))
12894 return false;
12897 return true;
12899 case ISD::EXTRACT_VECTOR_ELT:
12900 case ISD::EXTRACT_SUBVECTOR: {
12901 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
12903 case ISD::INSERT_VECTOR_ELT: {
12904 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1) &&
12905 isCanonicalized(DAG, Op.getOperand(1), MaxDepth - 1);
12907 case ISD::UNDEF:
12908 // Could be anything.
12909 return false;
12911 case ISD::BITCAST:
12912 // TODO: This is incorrect as it loses track of the operand's type. We may
12913 // end up effectively bitcasting from f32 to v2f16 or vice versa, and the
12914 // same bits that are canonicalized in one type need not be in the other.
12915 return isCanonicalized(DAG, Op.getOperand(0), MaxDepth - 1);
12916 case ISD::TRUNCATE: {
12917 // Hack round the mess we make when legalizing extract_vector_elt
12918 if (Op.getValueType() == MVT::i16) {
12919 SDValue TruncSrc = Op.getOperand(0);
12920 if (TruncSrc.getValueType() == MVT::i32 &&
12921 TruncSrc.getOpcode() == ISD::BITCAST &&
12922 TruncSrc.getOperand(0).getValueType() == MVT::v2f16) {
12923 return isCanonicalized(DAG, TruncSrc.getOperand(0), MaxDepth - 1);
12926 return false;
12928 case ISD::INTRINSIC_WO_CHAIN: {
12929 unsigned IntrinsicID = Op.getConstantOperandVal(0);
12930 // TODO: Handle more intrinsics
12931 switch (IntrinsicID) {
12932 case Intrinsic::amdgcn_cvt_pkrtz:
12933 case Intrinsic::amdgcn_cubeid:
12934 case Intrinsic::amdgcn_frexp_mant:
12935 case Intrinsic::amdgcn_fdot2:
12936 case Intrinsic::amdgcn_rcp:
12937 case Intrinsic::amdgcn_rsq:
12938 case Intrinsic::amdgcn_rsq_clamp:
12939 case Intrinsic::amdgcn_rcp_legacy:
12940 case Intrinsic::amdgcn_rsq_legacy:
12941 case Intrinsic::amdgcn_trig_preop:
12942 case Intrinsic::amdgcn_log:
12943 case Intrinsic::amdgcn_exp2:
12944 case Intrinsic::amdgcn_sqrt:
12945 return true;
12946 default:
12947 break;
12950 break;
12952 default:
12953 break;
12956 // FIXME: denormalsEnabledForType is broken for dynamic
12957 return denormalsEnabledForType(DAG, Op.getValueType()) &&
12958 DAG.isKnownNeverSNaN(Op);
12961 bool SITargetLowering::isCanonicalized(Register Reg, const MachineFunction &MF,
12962 unsigned MaxDepth) const {
12963 const MachineRegisterInfo &MRI = MF.getRegInfo();
12964 MachineInstr *MI = MRI.getVRegDef(Reg);
12965 unsigned Opcode = MI->getOpcode();
12967 if (Opcode == AMDGPU::G_FCANONICALIZE)
12968 return true;
12970 std::optional<FPValueAndVReg> FCR;
12971 // Constant splat (can be padded with undef) or scalar constant.
12972 if (mi_match(Reg, MRI, MIPatternMatch::m_GFCstOrSplat(FCR))) {
12973 if (FCR->Value.isSignaling())
12974 return false;
12975 if (!FCR->Value.isDenormal())
12976 return true;
12978 DenormalMode Mode = MF.getDenormalMode(FCR->Value.getSemantics());
12979 return Mode == DenormalMode::getIEEE();
12982 if (MaxDepth == 0)
12983 return false;
12985 switch (Opcode) {
12986 case AMDGPU::G_FADD:
12987 case AMDGPU::G_FSUB:
12988 case AMDGPU::G_FMUL:
12989 case AMDGPU::G_FCEIL:
12990 case AMDGPU::G_FFLOOR:
12991 case AMDGPU::G_FRINT:
12992 case AMDGPU::G_FNEARBYINT:
12993 case AMDGPU::G_INTRINSIC_FPTRUNC_ROUND:
12994 case AMDGPU::G_INTRINSIC_TRUNC:
12995 case AMDGPU::G_INTRINSIC_ROUNDEVEN:
12996 case AMDGPU::G_FMA:
12997 case AMDGPU::G_FMAD:
12998 case AMDGPU::G_FSQRT:
12999 case AMDGPU::G_FDIV:
13000 case AMDGPU::G_FREM:
13001 case AMDGPU::G_FPOW:
13002 case AMDGPU::G_FPEXT:
13003 case AMDGPU::G_FLOG:
13004 case AMDGPU::G_FLOG2:
13005 case AMDGPU::G_FLOG10:
13006 case AMDGPU::G_FPTRUNC:
13007 case AMDGPU::G_AMDGPU_RCP_IFLAG:
13008 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
13009 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
13010 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
13011 case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
13012 return true;
13013 case AMDGPU::G_FNEG:
13014 case AMDGPU::G_FABS:
13015 case AMDGPU::G_FCOPYSIGN:
13016 return isCanonicalized(MI->getOperand(1).getReg(), MF, MaxDepth - 1);
13017 case AMDGPU::G_FMINNUM:
13018 case AMDGPU::G_FMAXNUM:
13019 case AMDGPU::G_FMINNUM_IEEE:
13020 case AMDGPU::G_FMAXNUM_IEEE:
13021 case AMDGPU::G_FMINIMUM:
13022 case AMDGPU::G_FMAXIMUM: {
13023 if (Subtarget->supportsMinMaxDenormModes() ||
13024 // FIXME: denormalsEnabledForType is broken for dynamic
13025 denormalsEnabledForType(MRI.getType(Reg), MF))
13026 return true;
13028 [[fallthrough]];
13030 case AMDGPU::G_BUILD_VECTOR:
13031 for (const MachineOperand &MO : llvm::drop_begin(MI->operands()))
13032 if (!isCanonicalized(MO.getReg(), MF, MaxDepth - 1))
13033 return false;
13034 return true;
13035 case AMDGPU::G_INTRINSIC:
13036 case AMDGPU::G_INTRINSIC_CONVERGENT:
13037 switch (cast<GIntrinsic>(MI)->getIntrinsicID()) {
13038 case Intrinsic::amdgcn_fmul_legacy:
13039 case Intrinsic::amdgcn_fmad_ftz:
13040 case Intrinsic::amdgcn_sqrt:
13041 case Intrinsic::amdgcn_fmed3:
13042 case Intrinsic::amdgcn_sin:
13043 case Intrinsic::amdgcn_cos:
13044 case Intrinsic::amdgcn_log:
13045 case Intrinsic::amdgcn_exp2:
13046 case Intrinsic::amdgcn_log_clamp:
13047 case Intrinsic::amdgcn_rcp:
13048 case Intrinsic::amdgcn_rcp_legacy:
13049 case Intrinsic::amdgcn_rsq:
13050 case Intrinsic::amdgcn_rsq_clamp:
13051 case Intrinsic::amdgcn_rsq_legacy:
13052 case Intrinsic::amdgcn_div_scale:
13053 case Intrinsic::amdgcn_div_fmas:
13054 case Intrinsic::amdgcn_div_fixup:
13055 case Intrinsic::amdgcn_fract:
13056 case Intrinsic::amdgcn_cvt_pkrtz:
13057 case Intrinsic::amdgcn_cubeid:
13058 case Intrinsic::amdgcn_cubema:
13059 case Intrinsic::amdgcn_cubesc:
13060 case Intrinsic::amdgcn_cubetc:
13061 case Intrinsic::amdgcn_frexp_mant:
13062 case Intrinsic::amdgcn_fdot2:
13063 case Intrinsic::amdgcn_trig_preop:
13064 return true;
13065 default:
13066 break;
13069 [[fallthrough]];
13070 default:
13071 return false;
13074 llvm_unreachable("invalid operation");
13077 // Constant fold canonicalize.
13078 SDValue SITargetLowering::getCanonicalConstantFP(SelectionDAG &DAG,
13079 const SDLoc &SL, EVT VT,
13080 const APFloat &C) const {
13081 // Flush denormals to 0 if not enabled.
13082 if (C.isDenormal()) {
13083 DenormalMode Mode =
13084 DAG.getMachineFunction().getDenormalMode(C.getSemantics());
13085 if (Mode == DenormalMode::getPreserveSign()) {
13086 return DAG.getConstantFP(
13087 APFloat::getZero(C.getSemantics(), C.isNegative()), SL, VT);
13090 if (Mode != DenormalMode::getIEEE())
13091 return SDValue();
13094 if (C.isNaN()) {
13095 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
13096 if (C.isSignaling()) {
13097 // Quiet a signaling NaN.
13098 // FIXME: Is this supposed to preserve payload bits?
13099 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
13102 // Make sure it is the canonical NaN bitpattern.
13104 // TODO: Can we use -1 as the canonical NaN value since it's an inline
13105 // immediate?
13106 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
13107 return DAG.getConstantFP(CanonicalQNaN, SL, VT);
13110 // Already canonical.
13111 return DAG.getConstantFP(C, SL, VT);
13114 static bool vectorEltWillFoldAway(SDValue Op) {
13115 return Op.isUndef() || isa<ConstantFPSDNode>(Op);
13118 SDValue
13119 SITargetLowering::performFCanonicalizeCombine(SDNode *N,
13120 DAGCombinerInfo &DCI) const {
13121 SelectionDAG &DAG = DCI.DAG;
13122 SDValue N0 = N->getOperand(0);
13123 EVT VT = N->getValueType(0);
13125 // fcanonicalize undef -> qnan
13126 if (N0.isUndef()) {
13127 APFloat QNaN = APFloat::getQNaN(VT.getFltSemantics());
13128 return DAG.getConstantFP(QNaN, SDLoc(N), VT);
13131 if (ConstantFPSDNode *CFP = isConstOrConstSplatFP(N0)) {
13132 EVT VT = N->getValueType(0);
13133 return getCanonicalConstantFP(DAG, SDLoc(N), VT, CFP->getValueAPF());
13136 // fcanonicalize (build_vector x, k) -> build_vector (fcanonicalize x),
13137 // (fcanonicalize k)
13139 // fcanonicalize (build_vector x, undef) -> build_vector (fcanonicalize x), 0
13141 // TODO: This could be better with wider vectors that will be split to v2f16,
13142 // and to consider uses since there aren't that many packed operations.
13143 if (N0.getOpcode() == ISD::BUILD_VECTOR && VT == MVT::v2f16 &&
13144 isTypeLegal(MVT::v2f16)) {
13145 SDLoc SL(N);
13146 SDValue NewElts[2];
13147 SDValue Lo = N0.getOperand(0);
13148 SDValue Hi = N0.getOperand(1);
13149 EVT EltVT = Lo.getValueType();
13151 if (vectorEltWillFoldAway(Lo) || vectorEltWillFoldAway(Hi)) {
13152 for (unsigned I = 0; I != 2; ++I) {
13153 SDValue Op = N0.getOperand(I);
13154 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) {
13155 NewElts[I] =
13156 getCanonicalConstantFP(DAG, SL, EltVT, CFP->getValueAPF());
13157 } else if (Op.isUndef()) {
13158 // Handled below based on what the other operand is.
13159 NewElts[I] = Op;
13160 } else {
13161 NewElts[I] = DAG.getNode(ISD::FCANONICALIZE, SL, EltVT, Op);
13165 // If one half is undef, and one is constant, prefer a splat vector rather
13166 // than the normal qNaN. If it's a register, prefer 0.0 since that's
13167 // cheaper to use and may be free with a packed operation.
13168 if (NewElts[0].isUndef()) {
13169 if (isa<ConstantFPSDNode>(NewElts[1]))
13170 NewElts[0] = isa<ConstantFPSDNode>(NewElts[1])
13171 ? NewElts[1]
13172 : DAG.getConstantFP(0.0f, SL, EltVT);
13175 if (NewElts[1].isUndef()) {
13176 NewElts[1] = isa<ConstantFPSDNode>(NewElts[0])
13177 ? NewElts[0]
13178 : DAG.getConstantFP(0.0f, SL, EltVT);
13181 return DAG.getBuildVector(VT, SL, NewElts);
13185 return SDValue();
13188 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
13189 switch (Opc) {
13190 case ISD::FMAXNUM:
13191 case ISD::FMAXNUM_IEEE:
13192 return AMDGPUISD::FMAX3;
13193 case ISD::FMAXIMUM:
13194 return AMDGPUISD::FMAXIMUM3;
13195 case ISD::SMAX:
13196 return AMDGPUISD::SMAX3;
13197 case ISD::UMAX:
13198 return AMDGPUISD::UMAX3;
13199 case ISD::FMINNUM:
13200 case ISD::FMINNUM_IEEE:
13201 return AMDGPUISD::FMIN3;
13202 case ISD::FMINIMUM:
13203 return AMDGPUISD::FMINIMUM3;
13204 case ISD::SMIN:
13205 return AMDGPUISD::SMIN3;
13206 case ISD::UMIN:
13207 return AMDGPUISD::UMIN3;
13208 default:
13209 llvm_unreachable("Not a min/max opcode");
13213 SDValue SITargetLowering::performIntMed3ImmCombine(SelectionDAG &DAG,
13214 const SDLoc &SL, SDValue Src,
13215 SDValue MinVal,
13216 SDValue MaxVal,
13217 bool Signed) const {
13219 // med3 comes from
13220 // min(max(x, K0), K1), K0 < K1
13221 // max(min(x, K0), K1), K1 < K0
13223 // "MinVal" and "MaxVal" respectively refer to the rhs of the
13224 // min/max op.
13225 ConstantSDNode *MinK = dyn_cast<ConstantSDNode>(MinVal);
13226 ConstantSDNode *MaxK = dyn_cast<ConstantSDNode>(MaxVal);
13228 if (!MinK || !MaxK)
13229 return SDValue();
13231 if (Signed) {
13232 if (MaxK->getAPIntValue().sge(MinK->getAPIntValue()))
13233 return SDValue();
13234 } else {
13235 if (MaxK->getAPIntValue().uge(MinK->getAPIntValue()))
13236 return SDValue();
13239 EVT VT = MinK->getValueType(0);
13240 unsigned Med3Opc = Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3;
13241 if (VT == MVT::i32 || (VT == MVT::i16 && Subtarget->hasMed3_16()))
13242 return DAG.getNode(Med3Opc, SL, VT, Src, MaxVal, MinVal);
13244 // Note: we could also extend to i32 and use i32 med3 if i16 med3 is
13245 // not available, but this is unlikely to be profitable as constants
13246 // will often need to be materialized & extended, especially on
13247 // pre-GFX10 where VOP3 instructions couldn't take literal operands.
13248 return SDValue();
13251 static ConstantFPSDNode *getSplatConstantFP(SDValue Op) {
13252 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
13253 return C;
13255 if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op)) {
13256 if (ConstantFPSDNode *C = BV->getConstantFPSplatNode())
13257 return C;
13260 return nullptr;
13263 SDValue SITargetLowering::performFPMed3ImmCombine(SelectionDAG &DAG,
13264 const SDLoc &SL, SDValue Op0,
13265 SDValue Op1) const {
13266 ConstantFPSDNode *K1 = getSplatConstantFP(Op1);
13267 if (!K1)
13268 return SDValue();
13270 ConstantFPSDNode *K0 = getSplatConstantFP(Op0.getOperand(1));
13271 if (!K0)
13272 return SDValue();
13274 // Ordered >= (although NaN inputs should have folded away by now).
13275 if (K0->getValueAPF() > K1->getValueAPF())
13276 return SDValue();
13278 const MachineFunction &MF = DAG.getMachineFunction();
13279 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
13281 // TODO: Check IEEE bit enabled?
13282 EVT VT = Op0.getValueType();
13283 if (Info->getMode().DX10Clamp) {
13284 // If dx10_clamp is enabled, NaNs clamp to 0.0. This is the same as the
13285 // hardware fmed3 behavior converting to a min.
13286 // FIXME: Should this be allowing -0.0?
13287 if (K1->isExactlyValue(1.0) && K0->isExactlyValue(0.0))
13288 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Op0.getOperand(0));
13291 // med3 for f16 is only available on gfx9+, and not available for v2f16.
13292 if (VT == MVT::f32 || (VT == MVT::f16 && Subtarget->hasMed3_16())) {
13293 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
13294 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would
13295 // then give the other result, which is different from med3 with a NaN
13296 // input.
13297 SDValue Var = Op0.getOperand(0);
13298 if (!DAG.isKnownNeverSNaN(Var))
13299 return SDValue();
13301 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
13303 if ((!K0->hasOneUse() || TII->isInlineConstant(K0->getValueAPF())) &&
13304 (!K1->hasOneUse() || TII->isInlineConstant(K1->getValueAPF()))) {
13305 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0), Var,
13306 SDValue(K0, 0), SDValue(K1, 0));
13310 return SDValue();
13313 /// \return true if the subtarget supports minimum3 and maximum3 with the given
13314 /// base min/max opcode \p Opc for type \p VT.
13315 static bool supportsMin3Max3(const GCNSubtarget &Subtarget, unsigned Opc,
13316 EVT VT) {
13317 switch (Opc) {
13318 case ISD::FMINNUM:
13319 case ISD::FMAXNUM:
13320 case ISD::FMINNUM_IEEE:
13321 case ISD::FMAXNUM_IEEE:
13322 case AMDGPUISD::FMIN_LEGACY:
13323 case AMDGPUISD::FMAX_LEGACY:
13324 return (VT == MVT::f32) || (VT == MVT::f16 && Subtarget.hasMin3Max3_16());
13325 case ISD::FMINIMUM:
13326 case ISD::FMAXIMUM:
13327 return (VT == MVT::f32 || VT == MVT::f16) && Subtarget.hasIEEEMinMax3();
13328 case ISD::SMAX:
13329 case ISD::SMIN:
13330 case ISD::UMAX:
13331 case ISD::UMIN:
13332 return (VT == MVT::i32) || (VT == MVT::i16 && Subtarget.hasMin3Max3_16());
13333 default:
13334 return false;
13337 llvm_unreachable("not a min/max opcode");
13340 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
13341 DAGCombinerInfo &DCI) const {
13342 SelectionDAG &DAG = DCI.DAG;
13344 EVT VT = N->getValueType(0);
13345 unsigned Opc = N->getOpcode();
13346 SDValue Op0 = N->getOperand(0);
13347 SDValue Op1 = N->getOperand(1);
13349 // Only do this if the inner op has one use since this will just increases
13350 // register pressure for no benefit.
13352 if (supportsMin3Max3(*Subtarget, Opc, VT)) {
13353 // max(max(a, b), c) -> max3(a, b, c)
13354 // min(min(a, b), c) -> min3(a, b, c)
13355 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
13356 SDLoc DL(N);
13357 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0),
13358 Op0.getOperand(0), Op0.getOperand(1), Op1);
13361 // Try commuted.
13362 // max(a, max(b, c)) -> max3(a, b, c)
13363 // min(a, min(b, c)) -> min3(a, b, c)
13364 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
13365 SDLoc DL(N);
13366 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), DL, N->getValueType(0),
13367 Op0, Op1.getOperand(0), Op1.getOperand(1));
13371 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
13372 // max(min(x, K0), K1), K1 < K0 -> med3(x, K1, K0)
13373 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
13374 if (SDValue Med3 = performIntMed3ImmCombine(
13375 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), true))
13376 return Med3;
13378 if (Opc == ISD::SMAX && Op0.getOpcode() == ISD::SMIN && Op0.hasOneUse()) {
13379 if (SDValue Med3 = performIntMed3ImmCombine(
13380 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, true))
13381 return Med3;
13384 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
13385 if (SDValue Med3 = performIntMed3ImmCombine(
13386 DAG, SDLoc(N), Op0->getOperand(0), Op1, Op0->getOperand(1), false))
13387 return Med3;
13389 if (Opc == ISD::UMAX && Op0.getOpcode() == ISD::UMIN && Op0.hasOneUse()) {
13390 if (SDValue Med3 = performIntMed3ImmCombine(
13391 DAG, SDLoc(N), Op0->getOperand(0), Op0->getOperand(1), Op1, false))
13392 return Med3;
13395 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
13396 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
13397 (Opc == ISD::FMINNUM_IEEE && Op0.getOpcode() == ISD::FMAXNUM_IEEE) ||
13398 (Opc == AMDGPUISD::FMIN_LEGACY &&
13399 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
13400 (VT == MVT::f32 || VT == MVT::f64 ||
13401 (VT == MVT::f16 && Subtarget->has16BitInsts()) ||
13402 (VT == MVT::v2f16 && Subtarget->hasVOP3PInsts())) &&
13403 Op0.hasOneUse()) {
13404 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
13405 return Res;
13408 return SDValue();
13411 static bool isClampZeroToOne(SDValue A, SDValue B) {
13412 if (ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A)) {
13413 if (ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B)) {
13414 // FIXME: Should this be allowing -0.0?
13415 return (CA->isExactlyValue(0.0) && CB->isExactlyValue(1.0)) ||
13416 (CA->isExactlyValue(1.0) && CB->isExactlyValue(0.0));
13420 return false;
13423 // FIXME: Should only worry about snans for version with chain.
13424 SDValue SITargetLowering::performFMed3Combine(SDNode *N,
13425 DAGCombinerInfo &DCI) const {
13426 EVT VT = N->getValueType(0);
13427 // v_med3_f32 and v_max_f32 behave identically wrt denorms, exceptions and
13428 // NaNs. With a NaN input, the order of the operands may change the result.
13430 SelectionDAG &DAG = DCI.DAG;
13431 SDLoc SL(N);
13433 SDValue Src0 = N->getOperand(0);
13434 SDValue Src1 = N->getOperand(1);
13435 SDValue Src2 = N->getOperand(2);
13437 if (isClampZeroToOne(Src0, Src1)) {
13438 // const_a, const_b, x -> clamp is safe in all cases including signaling
13439 // nans.
13440 // FIXME: Should this be allowing -0.0?
13441 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src2);
13444 const MachineFunction &MF = DAG.getMachineFunction();
13445 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
13447 // FIXME: dx10_clamp behavior assumed in instcombine. Should we really bother
13448 // handling no dx10-clamp?
13449 if (Info->getMode().DX10Clamp) {
13450 // If NaNs is clamped to 0, we are free to reorder the inputs.
13452 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
13453 std::swap(Src0, Src1);
13455 if (isa<ConstantFPSDNode>(Src1) && !isa<ConstantFPSDNode>(Src2))
13456 std::swap(Src1, Src2);
13458 if (isa<ConstantFPSDNode>(Src0) && !isa<ConstantFPSDNode>(Src1))
13459 std::swap(Src0, Src1);
13461 if (isClampZeroToOne(Src1, Src2))
13462 return DAG.getNode(AMDGPUISD::CLAMP, SL, VT, Src0);
13465 return SDValue();
13468 SDValue SITargetLowering::performCvtPkRTZCombine(SDNode *N,
13469 DAGCombinerInfo &DCI) const {
13470 SDValue Src0 = N->getOperand(0);
13471 SDValue Src1 = N->getOperand(1);
13472 if (Src0.isUndef() && Src1.isUndef())
13473 return DCI.DAG.getUNDEF(N->getValueType(0));
13474 return SDValue();
13477 // Check if EXTRACT_VECTOR_ELT/INSERT_VECTOR_ELT (<n x e>, var-idx) should be
13478 // expanded into a set of cmp/select instructions.
13479 bool SITargetLowering::shouldExpandVectorDynExt(unsigned EltSize,
13480 unsigned NumElem,
13481 bool IsDivergentIdx,
13482 const GCNSubtarget *Subtarget) {
13483 if (UseDivergentRegisterIndexing)
13484 return false;
13486 unsigned VecSize = EltSize * NumElem;
13488 // Sub-dword vectors of size 2 dword or less have better implementation.
13489 if (VecSize <= 64 && EltSize < 32)
13490 return false;
13492 // Always expand the rest of sub-dword instructions, otherwise it will be
13493 // lowered via memory.
13494 if (EltSize < 32)
13495 return true;
13497 // Always do this if var-idx is divergent, otherwise it will become a loop.
13498 if (IsDivergentIdx)
13499 return true;
13501 // Large vectors would yield too many compares and v_cndmask_b32 instructions.
13502 unsigned NumInsts = NumElem /* Number of compares */ +
13503 ((EltSize + 31) / 32) * NumElem /* Number of cndmasks */;
13505 // On some architectures (GFX9) movrel is not available and it's better
13506 // to expand.
13507 if (Subtarget->useVGPRIndexMode())
13508 return NumInsts <= 16;
13510 // If movrel is available, use it instead of expanding for vector of 8
13511 // elements.
13512 if (Subtarget->hasMovrel())
13513 return NumInsts <= 15;
13515 return true;
13518 bool SITargetLowering::shouldExpandVectorDynExt(SDNode *N) const {
13519 SDValue Idx = N->getOperand(N->getNumOperands() - 1);
13520 if (isa<ConstantSDNode>(Idx))
13521 return false;
13523 SDValue Vec = N->getOperand(0);
13524 EVT VecVT = Vec.getValueType();
13525 EVT EltVT = VecVT.getVectorElementType();
13526 unsigned EltSize = EltVT.getSizeInBits();
13527 unsigned NumElem = VecVT.getVectorNumElements();
13529 return SITargetLowering::shouldExpandVectorDynExt(
13530 EltSize, NumElem, Idx->isDivergent(), getSubtarget());
13533 SDValue
13534 SITargetLowering::performExtractVectorEltCombine(SDNode *N,
13535 DAGCombinerInfo &DCI) const {
13536 SDValue Vec = N->getOperand(0);
13537 SelectionDAG &DAG = DCI.DAG;
13539 EVT VecVT = Vec.getValueType();
13540 EVT VecEltVT = VecVT.getVectorElementType();
13541 EVT ResVT = N->getValueType(0);
13543 unsigned VecSize = VecVT.getSizeInBits();
13544 unsigned VecEltSize = VecEltVT.getSizeInBits();
13546 if ((Vec.getOpcode() == ISD::FNEG || Vec.getOpcode() == ISD::FABS) &&
13547 allUsesHaveSourceMods(N)) {
13548 SDLoc SL(N);
13549 SDValue Idx = N->getOperand(1);
13550 SDValue Elt =
13551 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec.getOperand(0), Idx);
13552 return DAG.getNode(Vec.getOpcode(), SL, ResVT, Elt);
13555 // ScalarRes = EXTRACT_VECTOR_ELT ((vector-BINOP Vec1, Vec2), Idx)
13556 // =>
13557 // Vec1Elt = EXTRACT_VECTOR_ELT(Vec1, Idx)
13558 // Vec2Elt = EXTRACT_VECTOR_ELT(Vec2, Idx)
13559 // ScalarRes = scalar-BINOP Vec1Elt, Vec2Elt
13560 if (Vec.hasOneUse() && DCI.isBeforeLegalize() && VecEltVT == ResVT) {
13561 SDLoc SL(N);
13562 SDValue Idx = N->getOperand(1);
13563 unsigned Opc = Vec.getOpcode();
13565 switch (Opc) {
13566 default:
13567 break;
13568 // TODO: Support other binary operations.
13569 case ISD::FADD:
13570 case ISD::FSUB:
13571 case ISD::FMUL:
13572 case ISD::ADD:
13573 case ISD::UMIN:
13574 case ISD::UMAX:
13575 case ISD::SMIN:
13576 case ISD::SMAX:
13577 case ISD::FMAXNUM:
13578 case ISD::FMINNUM:
13579 case ISD::FMAXNUM_IEEE:
13580 case ISD::FMINNUM_IEEE:
13581 case ISD::FMAXIMUM:
13582 case ISD::FMINIMUM: {
13583 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
13584 Vec.getOperand(0), Idx);
13585 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT,
13586 Vec.getOperand(1), Idx);
13588 DCI.AddToWorklist(Elt0.getNode());
13589 DCI.AddToWorklist(Elt1.getNode());
13590 return DAG.getNode(Opc, SL, ResVT, Elt0, Elt1, Vec->getFlags());
13595 // EXTRACT_VECTOR_ELT (<n x e>, var-idx) => n x select (e, const-idx)
13596 if (shouldExpandVectorDynExt(N)) {
13597 SDLoc SL(N);
13598 SDValue Idx = N->getOperand(1);
13599 SDValue V;
13600 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
13601 SDValue IC = DAG.getVectorIdxConstant(I, SL);
13602 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, ResVT, Vec, IC);
13603 if (I == 0)
13604 V = Elt;
13605 else
13606 V = DAG.getSelectCC(SL, Idx, IC, Elt, V, ISD::SETEQ);
13608 return V;
13611 if (!DCI.isBeforeLegalize())
13612 return SDValue();
13614 // Try to turn sub-dword accesses of vectors into accesses of the same 32-bit
13615 // elements. This exposes more load reduction opportunities by replacing
13616 // multiple small extract_vector_elements with a single 32-bit extract.
13617 auto *Idx = dyn_cast<ConstantSDNode>(N->getOperand(1));
13618 if (isa<MemSDNode>(Vec) && VecEltSize <= 16 && VecEltVT.isByteSized() &&
13619 VecSize > 32 && VecSize % 32 == 0 && Idx) {
13620 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VecVT);
13622 unsigned BitIndex = Idx->getZExtValue() * VecEltSize;
13623 unsigned EltIdx = BitIndex / 32;
13624 unsigned LeftoverBitIdx = BitIndex % 32;
13625 SDLoc SL(N);
13627 SDValue Cast = DAG.getNode(ISD::BITCAST, SL, NewVT, Vec);
13628 DCI.AddToWorklist(Cast.getNode());
13630 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Cast,
13631 DAG.getConstant(EltIdx, SL, MVT::i32));
13632 DCI.AddToWorklist(Elt.getNode());
13633 SDValue Srl = DAG.getNode(ISD::SRL, SL, MVT::i32, Elt,
13634 DAG.getConstant(LeftoverBitIdx, SL, MVT::i32));
13635 DCI.AddToWorklist(Srl.getNode());
13637 EVT VecEltAsIntVT = VecEltVT.changeTypeToInteger();
13638 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VecEltAsIntVT, Srl);
13639 DCI.AddToWorklist(Trunc.getNode());
13641 if (VecEltVT == ResVT) {
13642 return DAG.getNode(ISD::BITCAST, SL, VecEltVT, Trunc);
13645 assert(ResVT.isScalarInteger());
13646 return DAG.getAnyExtOrTrunc(Trunc, SL, ResVT);
13649 return SDValue();
13652 SDValue
13653 SITargetLowering::performInsertVectorEltCombine(SDNode *N,
13654 DAGCombinerInfo &DCI) const {
13655 SDValue Vec = N->getOperand(0);
13656 SDValue Idx = N->getOperand(2);
13657 EVT VecVT = Vec.getValueType();
13658 EVT EltVT = VecVT.getVectorElementType();
13660 // INSERT_VECTOR_ELT (<n x e>, var-idx)
13661 // => BUILD_VECTOR n x select (e, const-idx)
13662 if (!shouldExpandVectorDynExt(N))
13663 return SDValue();
13665 SelectionDAG &DAG = DCI.DAG;
13666 SDLoc SL(N);
13667 SDValue Ins = N->getOperand(1);
13668 EVT IdxVT = Idx.getValueType();
13670 SmallVector<SDValue, 16> Ops;
13671 for (unsigned I = 0, E = VecVT.getVectorNumElements(); I < E; ++I) {
13672 SDValue IC = DAG.getConstant(I, SL, IdxVT);
13673 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Vec, IC);
13674 SDValue V = DAG.getSelectCC(SL, Idx, IC, Ins, Elt, ISD::SETEQ);
13675 Ops.push_back(V);
13678 return DAG.getBuildVector(VecVT, SL, Ops);
13681 /// Return the source of an fp_extend from f16 to f32, or a converted FP
13682 /// constant.
13683 static SDValue strictFPExtFromF16(SelectionDAG &DAG, SDValue Src) {
13684 if (Src.getOpcode() == ISD::FP_EXTEND &&
13685 Src.getOperand(0).getValueType() == MVT::f16) {
13686 return Src.getOperand(0);
13689 if (auto *CFP = dyn_cast<ConstantFPSDNode>(Src)) {
13690 APFloat Val = CFP->getValueAPF();
13691 bool LosesInfo = true;
13692 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &LosesInfo);
13693 if (!LosesInfo)
13694 return DAG.getConstantFP(Val, SDLoc(Src), MVT::f16);
13697 return SDValue();
13700 SDValue SITargetLowering::performFPRoundCombine(SDNode *N,
13701 DAGCombinerInfo &DCI) const {
13702 assert(Subtarget->has16BitInsts() && !Subtarget->hasMed3_16() &&
13703 "combine only useful on gfx8");
13705 SDValue TruncSrc = N->getOperand(0);
13706 EVT VT = N->getValueType(0);
13707 if (VT != MVT::f16)
13708 return SDValue();
13710 if (TruncSrc.getOpcode() != AMDGPUISD::FMED3 ||
13711 TruncSrc.getValueType() != MVT::f32 || !TruncSrc.hasOneUse())
13712 return SDValue();
13714 SelectionDAG &DAG = DCI.DAG;
13715 SDLoc SL(N);
13717 // Optimize f16 fmed3 pattern performed on f32. On gfx8 there is no f16 fmed3,
13718 // and expanding it with min/max saves 1 instruction vs. casting to f32 and
13719 // casting back.
13721 // fptrunc (f32 (fmed3 (fpext f16:a, fpext f16:b, fpext f16:c))) =>
13722 // fmin(fmax(a, b), fmax(fmin(a, b), c))
13723 SDValue A = strictFPExtFromF16(DAG, TruncSrc.getOperand(0));
13724 if (!A)
13725 return SDValue();
13727 SDValue B = strictFPExtFromF16(DAG, TruncSrc.getOperand(1));
13728 if (!B)
13729 return SDValue();
13731 SDValue C = strictFPExtFromF16(DAG, TruncSrc.getOperand(2));
13732 if (!C)
13733 return SDValue();
13735 // This changes signaling nan behavior. If an input is a signaling nan, it
13736 // would have been quieted by the fpext originally. We don't care because
13737 // these are unconstrained ops. If we needed to insert quieting canonicalizes
13738 // we would be worse off than just doing the promotion.
13739 SDValue A1 = DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, A, B);
13740 SDValue B1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A, B);
13741 SDValue C1 = DAG.getNode(ISD::FMAXNUM_IEEE, SL, VT, A1, C);
13742 return DAG.getNode(ISD::FMINNUM_IEEE, SL, VT, B1, C1);
13745 unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
13746 const SDNode *N0,
13747 const SDNode *N1) const {
13748 EVT VT = N0->getValueType(0);
13750 // Only do this if we are not trying to support denormals. v_mad_f32 does not
13751 // support denormals ever.
13752 if (((VT == MVT::f32 &&
13753 denormalModeIsFlushAllF32(DAG.getMachineFunction())) ||
13754 (VT == MVT::f16 && Subtarget->hasMadF16() &&
13755 denormalModeIsFlushAllF64F16(DAG.getMachineFunction()))) &&
13756 isOperationLegal(ISD::FMAD, VT))
13757 return ISD::FMAD;
13759 const TargetOptions &Options = DAG.getTarget().Options;
13760 if ((Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
13761 (N0->getFlags().hasAllowContract() &&
13762 N1->getFlags().hasAllowContract())) &&
13763 isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
13764 return ISD::FMA;
13767 return 0;
13770 // For a reassociatable opcode perform:
13771 // op x, (op y, z) -> op (op x, z), y, if x and z are uniform
13772 SDValue SITargetLowering::reassociateScalarOps(SDNode *N,
13773 SelectionDAG &DAG) const {
13774 EVT VT = N->getValueType(0);
13775 if (VT != MVT::i32 && VT != MVT::i64)
13776 return SDValue();
13778 if (DAG.isBaseWithConstantOffset(SDValue(N, 0)))
13779 return SDValue();
13781 unsigned Opc = N->getOpcode();
13782 SDValue Op0 = N->getOperand(0);
13783 SDValue Op1 = N->getOperand(1);
13785 if (!(Op0->isDivergent() ^ Op1->isDivergent()))
13786 return SDValue();
13788 if (Op0->isDivergent())
13789 std::swap(Op0, Op1);
13791 if (Op1.getOpcode() != Opc || !Op1.hasOneUse())
13792 return SDValue();
13794 SDValue Op2 = Op1.getOperand(1);
13795 Op1 = Op1.getOperand(0);
13796 if (!(Op1->isDivergent() ^ Op2->isDivergent()))
13797 return SDValue();
13799 if (Op1->isDivergent())
13800 std::swap(Op1, Op2);
13802 SDLoc SL(N);
13803 SDValue Add1 = DAG.getNode(Opc, SL, VT, Op0, Op1);
13804 return DAG.getNode(Opc, SL, VT, Add1, Op2);
13807 static SDValue getMad64_32(SelectionDAG &DAG, const SDLoc &SL, EVT VT,
13808 SDValue N0, SDValue N1, SDValue N2, bool Signed) {
13809 unsigned MadOpc = Signed ? AMDGPUISD::MAD_I64_I32 : AMDGPUISD::MAD_U64_U32;
13810 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i1);
13811 SDValue Mad = DAG.getNode(MadOpc, SL, VTs, N0, N1, N2);
13812 return DAG.getNode(ISD::TRUNCATE, SL, VT, Mad);
13815 // Fold (add (mul x, y), z) --> (mad_[iu]64_[iu]32 x, y, z) plus high
13816 // multiplies, if any.
13818 // Full 64-bit multiplies that feed into an addition are lowered here instead
13819 // of using the generic expansion. The generic expansion ends up with
13820 // a tree of ADD nodes that prevents us from using the "add" part of the
13821 // MAD instruction. The expansion produced here results in a chain of ADDs
13822 // instead of a tree.
13823 SDValue SITargetLowering::tryFoldToMad64_32(SDNode *N,
13824 DAGCombinerInfo &DCI) const {
13825 assert(N->getOpcode() == ISD::ADD);
13827 SelectionDAG &DAG = DCI.DAG;
13828 EVT VT = N->getValueType(0);
13829 SDLoc SL(N);
13830 SDValue LHS = N->getOperand(0);
13831 SDValue RHS = N->getOperand(1);
13833 if (VT.isVector())
13834 return SDValue();
13836 // S_MUL_HI_[IU]32 was added in gfx9, which allows us to keep the overall
13837 // result in scalar registers for uniform values.
13838 if (!N->isDivergent() && Subtarget->hasSMulHi())
13839 return SDValue();
13841 unsigned NumBits = VT.getScalarSizeInBits();
13842 if (NumBits <= 32 || NumBits > 64)
13843 return SDValue();
13845 if (LHS.getOpcode() != ISD::MUL) {
13846 assert(RHS.getOpcode() == ISD::MUL);
13847 std::swap(LHS, RHS);
13850 // Avoid the fold if it would unduly increase the number of multiplies due to
13851 // multiple uses, except on hardware with full-rate multiply-add (which is
13852 // part of full-rate 64-bit ops).
13853 if (!Subtarget->hasFullRate64Ops()) {
13854 unsigned NumUsers = 0;
13855 for (SDNode *Use : LHS->uses()) {
13856 // There is a use that does not feed into addition, so the multiply can't
13857 // be removed. We prefer MUL + ADD + ADDC over MAD + MUL.
13858 if (Use->getOpcode() != ISD::ADD)
13859 return SDValue();
13861 // We prefer 2xMAD over MUL + 2xADD + 2xADDC (code density), and prefer
13862 // MUL + 3xADD + 3xADDC over 3xMAD.
13863 ++NumUsers;
13864 if (NumUsers >= 3)
13865 return SDValue();
13869 SDValue MulLHS = LHS.getOperand(0);
13870 SDValue MulRHS = LHS.getOperand(1);
13871 SDValue AddRHS = RHS;
13873 // Always check whether operands are small unsigned values, since that
13874 // knowledge is useful in more cases. Check for small signed values only if
13875 // doing so can unlock a shorter code sequence.
13876 bool MulLHSUnsigned32 = numBitsUnsigned(MulLHS, DAG) <= 32;
13877 bool MulRHSUnsigned32 = numBitsUnsigned(MulRHS, DAG) <= 32;
13879 bool MulSignedLo = false;
13880 if (!MulLHSUnsigned32 || !MulRHSUnsigned32) {
13881 MulSignedLo =
13882 numBitsSigned(MulLHS, DAG) <= 32 && numBitsSigned(MulRHS, DAG) <= 32;
13885 // The operands and final result all have the same number of bits. If
13886 // operands need to be extended, they can be extended with garbage. The
13887 // resulting garbage in the high bits of the mad_[iu]64_[iu]32 result is
13888 // truncated away in the end.
13889 if (VT != MVT::i64) {
13890 MulLHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulLHS);
13891 MulRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, MulRHS);
13892 AddRHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i64, AddRHS);
13895 // The basic code generated is conceptually straightforward. Pseudo code:
13897 // accum = mad_64_32 lhs.lo, rhs.lo, accum
13898 // accum.hi = add (mul lhs.hi, rhs.lo), accum.hi
13899 // accum.hi = add (mul lhs.lo, rhs.hi), accum.hi
13901 // The second and third lines are optional, depending on whether the factors
13902 // are {sign,zero}-extended or not.
13904 // The actual DAG is noisier than the pseudo code, but only due to
13905 // instructions that disassemble values into low and high parts, and
13906 // assemble the final result.
13907 SDValue One = DAG.getConstant(1, SL, MVT::i32);
13909 auto MulLHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulLHS);
13910 auto MulRHSLo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, MulRHS);
13911 SDValue Accum =
13912 getMad64_32(DAG, SL, MVT::i64, MulLHSLo, MulRHSLo, AddRHS, MulSignedLo);
13914 if (!MulSignedLo && (!MulLHSUnsigned32 || !MulRHSUnsigned32)) {
13915 auto [AccumLo, AccumHi] = DAG.SplitScalar(Accum, SL, MVT::i32, MVT::i32);
13917 if (!MulLHSUnsigned32) {
13918 auto MulLHSHi =
13919 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulLHS, One);
13920 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSHi, MulRHSLo);
13921 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
13924 if (!MulRHSUnsigned32) {
13925 auto MulRHSHi =
13926 DAG.getNode(ISD::EXTRACT_ELEMENT, SL, MVT::i32, MulRHS, One);
13927 SDValue MulHi = DAG.getNode(ISD::MUL, SL, MVT::i32, MulLHSLo, MulRHSHi);
13928 AccumHi = DAG.getNode(ISD::ADD, SL, MVT::i32, MulHi, AccumHi);
13931 Accum = DAG.getBuildVector(MVT::v2i32, SL, {AccumLo, AccumHi});
13932 Accum = DAG.getBitcast(MVT::i64, Accum);
13935 if (VT != MVT::i64)
13936 Accum = DAG.getNode(ISD::TRUNCATE, SL, VT, Accum);
13937 return Accum;
13940 // Collect the ultimate src of each of the mul node's operands, and confirm
13941 // each operand is 8 bytes.
13942 static std::optional<ByteProvider<SDValue>>
13943 handleMulOperand(const SDValue &MulOperand) {
13944 auto Byte0 = calculateByteProvider(MulOperand, 0, 0);
13945 if (!Byte0 || Byte0->isConstantZero()) {
13946 return std::nullopt;
13948 auto Byte1 = calculateByteProvider(MulOperand, 1, 0);
13949 if (Byte1 && !Byte1->isConstantZero()) {
13950 return std::nullopt;
13952 return Byte0;
13955 static unsigned addPermMasks(unsigned First, unsigned Second) {
13956 unsigned FirstCs = First & 0x0c0c0c0c;
13957 unsigned SecondCs = Second & 0x0c0c0c0c;
13958 unsigned FirstNoCs = First & ~0x0c0c0c0c;
13959 unsigned SecondNoCs = Second & ~0x0c0c0c0c;
13961 assert((FirstCs & 0xFF) | (SecondCs & 0xFF));
13962 assert((FirstCs & 0xFF00) | (SecondCs & 0xFF00));
13963 assert((FirstCs & 0xFF0000) | (SecondCs & 0xFF0000));
13964 assert((FirstCs & 0xFF000000) | (SecondCs & 0xFF000000));
13966 return (FirstNoCs | SecondNoCs) | (FirstCs & SecondCs);
13969 struct DotSrc {
13970 SDValue SrcOp;
13971 int64_t PermMask;
13972 int64_t DWordOffset;
13975 static void placeSources(ByteProvider<SDValue> &Src0,
13976 ByteProvider<SDValue> &Src1,
13977 SmallVectorImpl<DotSrc> &Src0s,
13978 SmallVectorImpl<DotSrc> &Src1s, int Step) {
13980 assert(Src0.Src.has_value() && Src1.Src.has_value());
13981 // Src0s and Src1s are empty, just place arbitrarily.
13982 if (Step == 0) {
13983 Src0s.push_back({*Src0.Src, ((Src0.SrcOffset % 4) << 24) + 0x0c0c0c,
13984 Src0.SrcOffset / 4});
13985 Src1s.push_back({*Src1.Src, ((Src1.SrcOffset % 4) << 24) + 0x0c0c0c,
13986 Src1.SrcOffset / 4});
13987 return;
13990 for (int BPI = 0; BPI < 2; BPI++) {
13991 std::pair<ByteProvider<SDValue>, ByteProvider<SDValue>> BPP = {Src0, Src1};
13992 if (BPI == 1) {
13993 BPP = {Src1, Src0};
13995 unsigned ZeroMask = 0x0c0c0c0c;
13996 unsigned FMask = 0xFF << (8 * (3 - Step));
13998 unsigned FirstMask =
13999 (BPP.first.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
14000 unsigned SecondMask =
14001 (BPP.second.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask);
14002 // Attempt to find Src vector which contains our SDValue, if so, add our
14003 // perm mask to the existing one. If we are unable to find a match for the
14004 // first SDValue, attempt to find match for the second.
14005 int FirstGroup = -1;
14006 for (int I = 0; I < 2; I++) {
14007 SmallVectorImpl<DotSrc> &Srcs = I == 0 ? Src0s : Src1s;
14008 auto MatchesFirst = [&BPP](DotSrc &IterElt) {
14009 return IterElt.SrcOp == *BPP.first.Src &&
14010 (IterElt.DWordOffset == (BPP.first.SrcOffset / 4));
14013 auto *Match = llvm::find_if(Srcs, MatchesFirst);
14014 if (Match != Srcs.end()) {
14015 Match->PermMask = addPermMasks(FirstMask, Match->PermMask);
14016 FirstGroup = I;
14017 break;
14020 if (FirstGroup != -1) {
14021 SmallVectorImpl<DotSrc> &Srcs = FirstGroup == 1 ? Src0s : Src1s;
14022 auto MatchesSecond = [&BPP](DotSrc &IterElt) {
14023 return IterElt.SrcOp == *BPP.second.Src &&
14024 (IterElt.DWordOffset == (BPP.second.SrcOffset / 4));
14026 auto *Match = llvm::find_if(Srcs, MatchesSecond);
14027 if (Match != Srcs.end()) {
14028 Match->PermMask = addPermMasks(SecondMask, Match->PermMask);
14029 } else
14030 Srcs.push_back({*BPP.second.Src, SecondMask, BPP.second.SrcOffset / 4});
14031 return;
14035 // If we have made it here, then we could not find a match in Src0s or Src1s
14036 // for either Src0 or Src1, so just place them arbitrarily.
14038 unsigned ZeroMask = 0x0c0c0c0c;
14039 unsigned FMask = 0xFF << (8 * (3 - Step));
14041 Src0s.push_back(
14042 {*Src0.Src,
14043 ((Src0.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
14044 Src0.SrcOffset / 4});
14045 Src1s.push_back(
14046 {*Src1.Src,
14047 ((Src1.SrcOffset % 4) << (8 * (3 - Step)) | (ZeroMask & ~FMask)),
14048 Src1.SrcOffset / 4});
14051 static SDValue resolveSources(SelectionDAG &DAG, SDLoc SL,
14052 SmallVectorImpl<DotSrc> &Srcs, bool IsSigned,
14053 bool IsAny) {
14055 // If we just have one source, just permute it accordingly.
14056 if (Srcs.size() == 1) {
14057 auto *Elt = Srcs.begin();
14058 auto EltOp = getDWordFromOffset(DAG, SL, Elt->SrcOp, Elt->DWordOffset);
14060 // v_perm will produce the original value
14061 if (Elt->PermMask == 0x3020100)
14062 return EltOp;
14064 return DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp,
14065 DAG.getConstant(Elt->PermMask, SL, MVT::i32));
14068 auto *FirstElt = Srcs.begin();
14069 auto *SecondElt = std::next(FirstElt);
14071 SmallVector<SDValue, 2> Perms;
14073 // If we have multiple sources in the chain, combine them via perms (using
14074 // calculated perm mask) and Ors.
14075 while (true) {
14076 auto FirstMask = FirstElt->PermMask;
14077 auto SecondMask = SecondElt->PermMask;
14079 unsigned FirstCs = FirstMask & 0x0c0c0c0c;
14080 unsigned FirstPlusFour = FirstMask | 0x04040404;
14081 // 0x0c + 0x04 = 0x10, so anding with 0x0F will produced 0x00 for any
14082 // original 0x0C.
14083 FirstMask = (FirstPlusFour & 0x0F0F0F0F) | FirstCs;
14085 auto PermMask = addPermMasks(FirstMask, SecondMask);
14086 auto FirstVal =
14087 getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
14088 auto SecondVal =
14089 getDWordFromOffset(DAG, SL, SecondElt->SrcOp, SecondElt->DWordOffset);
14091 Perms.push_back(DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, FirstVal,
14092 SecondVal,
14093 DAG.getConstant(PermMask, SL, MVT::i32)));
14095 FirstElt = std::next(SecondElt);
14096 if (FirstElt == Srcs.end())
14097 break;
14099 SecondElt = std::next(FirstElt);
14100 // If we only have a FirstElt, then just combine that into the cumulative
14101 // source node.
14102 if (SecondElt == Srcs.end()) {
14103 auto EltOp =
14104 getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
14106 Perms.push_back(
14107 DAG.getNode(AMDGPUISD::PERM, SL, MVT::i32, EltOp, EltOp,
14108 DAG.getConstant(FirstElt->PermMask, SL, MVT::i32)));
14109 break;
14113 assert(Perms.size() == 1 || Perms.size() == 2);
14114 return Perms.size() == 2
14115 ? DAG.getNode(ISD::OR, SL, MVT::i32, Perms[0], Perms[1])
14116 : Perms[0];
14119 static void fixMasks(SmallVectorImpl<DotSrc> &Srcs, unsigned ChainLength) {
14120 for (auto &[EntryVal, EntryMask, EntryOffset] : Srcs) {
14121 EntryMask = EntryMask >> ((4 - ChainLength) * 8);
14122 auto ZeroMask = ChainLength == 2 ? 0x0c0c0000 : 0x0c000000;
14123 EntryMask += ZeroMask;
14127 static bool isMul(const SDValue Op) {
14128 auto Opcode = Op.getOpcode();
14130 return (Opcode == ISD::MUL || Opcode == AMDGPUISD::MUL_U24 ||
14131 Opcode == AMDGPUISD::MUL_I24);
14134 static std::optional<bool>
14135 checkDot4MulSignedness(const SDValue &N, ByteProvider<SDValue> &Src0,
14136 ByteProvider<SDValue> &Src1, const SDValue &S0Op,
14137 const SDValue &S1Op, const SelectionDAG &DAG) {
14138 // If we both ops are i8s (pre legalize-dag), then the signedness semantics
14139 // of the dot4 is irrelevant.
14140 if (S0Op.getValueSizeInBits() == 8 && S1Op.getValueSizeInBits() == 8)
14141 return false;
14143 auto Known0 = DAG.computeKnownBits(S0Op, 0);
14144 bool S0IsUnsigned = Known0.countMinLeadingZeros() > 0;
14145 bool S0IsSigned = Known0.countMinLeadingOnes() > 0;
14146 auto Known1 = DAG.computeKnownBits(S1Op, 0);
14147 bool S1IsUnsigned = Known1.countMinLeadingZeros() > 0;
14148 bool S1IsSigned = Known1.countMinLeadingOnes() > 0;
14150 assert(!(S0IsUnsigned && S0IsSigned));
14151 assert(!(S1IsUnsigned && S1IsSigned));
14153 // There are 9 possible permutations of
14154 // {S0IsUnsigned, S0IsSigned, S1IsUnsigned, S1IsSigned}
14156 // In two permutations, the sign bits are known to be the same for both Ops,
14157 // so simply return Signed / Unsigned corresponding to the MSB
14159 if ((S0IsUnsigned && S1IsUnsigned) || (S0IsSigned && S1IsSigned))
14160 return S0IsSigned;
14162 // In another two permutations, the sign bits are known to be opposite. In
14163 // this case return std::nullopt to indicate a bad match.
14165 if ((S0IsUnsigned && S1IsSigned) || (S0IsSigned && S1IsUnsigned))
14166 return std::nullopt;
14168 // In the remaining five permutations, we don't know the value of the sign
14169 // bit for at least one Op. Since we have a valid ByteProvider, we know that
14170 // the upper bits must be extension bits. Thus, the only ways for the sign
14171 // bit to be unknown is if it was sign extended from unknown value, or if it
14172 // was any extended. In either case, it is correct to use the signed
14173 // version of the signedness semantics of dot4
14175 // In two of such permutations, we known the sign bit is set for
14176 // one op, and the other is unknown. It is okay to used signed version of
14177 // dot4.
14178 if ((S0IsSigned && !(S1IsSigned || S1IsUnsigned)) ||
14179 ((S1IsSigned && !(S0IsSigned || S0IsUnsigned))))
14180 return true;
14182 // In one such permutation, we don't know either of the sign bits. It is okay
14183 // to used the signed version of dot4.
14184 if ((!(S1IsSigned || S1IsUnsigned) && !(S0IsSigned || S0IsUnsigned)))
14185 return true;
14187 // In two of such permutations, we known the sign bit is unset for
14188 // one op, and the other is unknown. Return std::nullopt to indicate a
14189 // bad match.
14190 if ((S0IsUnsigned && !(S1IsSigned || S1IsUnsigned)) ||
14191 ((S1IsUnsigned && !(S0IsSigned || S0IsUnsigned))))
14192 return std::nullopt;
14194 llvm_unreachable("Fully covered condition");
14197 SDValue SITargetLowering::performAddCombine(SDNode *N,
14198 DAGCombinerInfo &DCI) const {
14199 SelectionDAG &DAG = DCI.DAG;
14200 EVT VT = N->getValueType(0);
14201 SDLoc SL(N);
14202 SDValue LHS = N->getOperand(0);
14203 SDValue RHS = N->getOperand(1);
14205 if (LHS.getOpcode() == ISD::MUL || RHS.getOpcode() == ISD::MUL) {
14206 if (Subtarget->hasMad64_32()) {
14207 if (SDValue Folded = tryFoldToMad64_32(N, DCI))
14208 return Folded;
14212 if (SDValue V = reassociateScalarOps(N, DAG)) {
14213 return V;
14216 if ((isMul(LHS) || isMul(RHS)) && Subtarget->hasDot7Insts() &&
14217 (Subtarget->hasDot1Insts() || Subtarget->hasDot8Insts())) {
14218 SDValue TempNode(N, 0);
14219 std::optional<bool> IsSigned;
14220 SmallVector<DotSrc, 4> Src0s;
14221 SmallVector<DotSrc, 4> Src1s;
14222 SmallVector<SDValue, 4> Src2s;
14224 // Match the v_dot4 tree, while collecting src nodes.
14225 int ChainLength = 0;
14226 for (int I = 0; I < 4; I++) {
14227 auto MulIdx = isMul(LHS) ? 0 : isMul(RHS) ? 1 : -1;
14228 if (MulIdx == -1)
14229 break;
14230 auto Src0 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(0));
14231 if (!Src0)
14232 break;
14233 auto Src1 = handleMulOperand(TempNode->getOperand(MulIdx)->getOperand(1));
14234 if (!Src1)
14235 break;
14237 auto IterIsSigned = checkDot4MulSignedness(
14238 TempNode->getOperand(MulIdx), *Src0, *Src1,
14239 TempNode->getOperand(MulIdx)->getOperand(0),
14240 TempNode->getOperand(MulIdx)->getOperand(1), DAG);
14241 if (!IterIsSigned)
14242 break;
14243 if (!IsSigned)
14244 IsSigned = *IterIsSigned;
14245 if (*IterIsSigned != *IsSigned)
14246 break;
14247 placeSources(*Src0, *Src1, Src0s, Src1s, I);
14248 auto AddIdx = 1 - MulIdx;
14249 // Allow the special case where add (add (mul24, 0), mul24) became ->
14250 // add (mul24, mul24).
14251 if (I == 2 && isMul(TempNode->getOperand(AddIdx))) {
14252 Src2s.push_back(TempNode->getOperand(AddIdx));
14253 auto Src0 =
14254 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(0));
14255 if (!Src0)
14256 break;
14257 auto Src1 =
14258 handleMulOperand(TempNode->getOperand(AddIdx)->getOperand(1));
14259 if (!Src1)
14260 break;
14261 auto IterIsSigned = checkDot4MulSignedness(
14262 TempNode->getOperand(AddIdx), *Src0, *Src1,
14263 TempNode->getOperand(AddIdx)->getOperand(0),
14264 TempNode->getOperand(AddIdx)->getOperand(1), DAG);
14265 if (!IterIsSigned)
14266 break;
14267 assert(IsSigned);
14268 if (*IterIsSigned != *IsSigned)
14269 break;
14270 placeSources(*Src0, *Src1, Src0s, Src1s, I + 1);
14271 Src2s.push_back(DAG.getConstant(0, SL, MVT::i32));
14272 ChainLength = I + 2;
14273 break;
14276 TempNode = TempNode->getOperand(AddIdx);
14277 Src2s.push_back(TempNode);
14278 ChainLength = I + 1;
14279 if (TempNode->getNumOperands() < 2)
14280 break;
14281 LHS = TempNode->getOperand(0);
14282 RHS = TempNode->getOperand(1);
14285 if (ChainLength < 2)
14286 return SDValue();
14288 // Masks were constructed with assumption that we would find a chain of
14289 // length 4. If not, then we need to 0 out the MSB bits (via perm mask of
14290 // 0x0c) so they do not affect dot calculation.
14291 if (ChainLength < 4) {
14292 fixMasks(Src0s, ChainLength);
14293 fixMasks(Src1s, ChainLength);
14296 SDValue Src0, Src1;
14298 // If we are just using a single source for both, and have permuted the
14299 // bytes consistently, we can just use the sources without permuting
14300 // (commutation).
14301 bool UseOriginalSrc = false;
14302 if (ChainLength == 4 && Src0s.size() == 1 && Src1s.size() == 1 &&
14303 Src0s.begin()->PermMask == Src1s.begin()->PermMask &&
14304 Src0s.begin()->SrcOp.getValueSizeInBits() >= 32 &&
14305 Src1s.begin()->SrcOp.getValueSizeInBits() >= 32) {
14306 SmallVector<unsigned, 4> SrcBytes;
14307 auto Src0Mask = Src0s.begin()->PermMask;
14308 SrcBytes.push_back(Src0Mask & 0xFF000000);
14309 bool UniqueEntries = true;
14310 for (auto I = 1; I < 4; I++) {
14311 auto NextByte = Src0Mask & (0xFF << ((3 - I) * 8));
14313 if (is_contained(SrcBytes, NextByte)) {
14314 UniqueEntries = false;
14315 break;
14317 SrcBytes.push_back(NextByte);
14320 if (UniqueEntries) {
14321 UseOriginalSrc = true;
14323 auto *FirstElt = Src0s.begin();
14324 auto FirstEltOp =
14325 getDWordFromOffset(DAG, SL, FirstElt->SrcOp, FirstElt->DWordOffset);
14327 auto *SecondElt = Src1s.begin();
14328 auto SecondEltOp = getDWordFromOffset(DAG, SL, SecondElt->SrcOp,
14329 SecondElt->DWordOffset);
14331 Src0 = DAG.getBitcastedAnyExtOrTrunc(FirstEltOp, SL,
14332 MVT::getIntegerVT(32));
14333 Src1 = DAG.getBitcastedAnyExtOrTrunc(SecondEltOp, SL,
14334 MVT::getIntegerVT(32));
14338 if (!UseOriginalSrc) {
14339 Src0 = resolveSources(DAG, SL, Src0s, false, true);
14340 Src1 = resolveSources(DAG, SL, Src1s, false, true);
14343 assert(IsSigned);
14344 SDValue Src2 =
14345 DAG.getExtOrTrunc(*IsSigned, Src2s[ChainLength - 1], SL, MVT::i32);
14347 SDValue IID = DAG.getTargetConstant(*IsSigned ? Intrinsic::amdgcn_sdot4
14348 : Intrinsic::amdgcn_udot4,
14349 SL, MVT::i64);
14351 assert(!VT.isVector());
14352 auto Dot = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SL, MVT::i32, IID, Src0,
14353 Src1, Src2, DAG.getTargetConstant(0, SL, MVT::i1));
14355 return DAG.getExtOrTrunc(*IsSigned, Dot, SL, VT);
14358 if (VT != MVT::i32 || !DCI.isAfterLegalizeDAG())
14359 return SDValue();
14361 // add x, zext (setcc) => uaddo_carry x, 0, setcc
14362 // add x, sext (setcc) => usubo_carry x, 0, setcc
14363 unsigned Opc = LHS.getOpcode();
14364 if (Opc == ISD::ZERO_EXTEND || Opc == ISD::SIGN_EXTEND ||
14365 Opc == ISD::ANY_EXTEND || Opc == ISD::UADDO_CARRY)
14366 std::swap(RHS, LHS);
14368 Opc = RHS.getOpcode();
14369 switch (Opc) {
14370 default:
14371 break;
14372 case ISD::ZERO_EXTEND:
14373 case ISD::SIGN_EXTEND:
14374 case ISD::ANY_EXTEND: {
14375 auto Cond = RHS.getOperand(0);
14376 // If this won't be a real VOPC output, we would still need to insert an
14377 // extra instruction anyway.
14378 if (!isBoolSGPR(Cond))
14379 break;
14380 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
14381 SDValue Args[] = {LHS, DAG.getConstant(0, SL, MVT::i32), Cond};
14382 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::USUBO_CARRY : ISD::UADDO_CARRY;
14383 return DAG.getNode(Opc, SL, VTList, Args);
14385 case ISD::UADDO_CARRY: {
14386 // add x, (uaddo_carry y, 0, cc) => uaddo_carry x, y, cc
14387 if (!isNullConstant(RHS.getOperand(1)))
14388 break;
14389 SDValue Args[] = {LHS, RHS.getOperand(0), RHS.getOperand(2)};
14390 return DAG.getNode(ISD::UADDO_CARRY, SDLoc(N), RHS->getVTList(), Args);
14393 return SDValue();
14396 SDValue SITargetLowering::performSubCombine(SDNode *N,
14397 DAGCombinerInfo &DCI) const {
14398 SelectionDAG &DAG = DCI.DAG;
14399 EVT VT = N->getValueType(0);
14401 if (VT != MVT::i32)
14402 return SDValue();
14404 SDLoc SL(N);
14405 SDValue LHS = N->getOperand(0);
14406 SDValue RHS = N->getOperand(1);
14408 // sub x, zext (setcc) => usubo_carry x, 0, setcc
14409 // sub x, sext (setcc) => uaddo_carry x, 0, setcc
14410 unsigned Opc = RHS.getOpcode();
14411 switch (Opc) {
14412 default:
14413 break;
14414 case ISD::ZERO_EXTEND:
14415 case ISD::SIGN_EXTEND:
14416 case ISD::ANY_EXTEND: {
14417 auto Cond = RHS.getOperand(0);
14418 // If this won't be a real VOPC output, we would still need to insert an
14419 // extra instruction anyway.
14420 if (!isBoolSGPR(Cond))
14421 break;
14422 SDVTList VTList = DAG.getVTList(MVT::i32, MVT::i1);
14423 SDValue Args[] = {LHS, DAG.getConstant(0, SL, MVT::i32), Cond};
14424 Opc = (Opc == ISD::SIGN_EXTEND) ? ISD::UADDO_CARRY : ISD::USUBO_CARRY;
14425 return DAG.getNode(Opc, SL, VTList, Args);
14429 if (LHS.getOpcode() == ISD::USUBO_CARRY) {
14430 // sub (usubo_carry x, 0, cc), y => usubo_carry x, y, cc
14431 if (!isNullConstant(LHS.getOperand(1)))
14432 return SDValue();
14433 SDValue Args[] = {LHS.getOperand(0), RHS, LHS.getOperand(2)};
14434 return DAG.getNode(ISD::USUBO_CARRY, SDLoc(N), LHS->getVTList(), Args);
14436 return SDValue();
14439 SDValue
14440 SITargetLowering::performAddCarrySubCarryCombine(SDNode *N,
14441 DAGCombinerInfo &DCI) const {
14443 if (N->getValueType(0) != MVT::i32)
14444 return SDValue();
14446 if (!isNullConstant(N->getOperand(1)))
14447 return SDValue();
14449 SelectionDAG &DAG = DCI.DAG;
14450 SDValue LHS = N->getOperand(0);
14452 // uaddo_carry (add x, y), 0, cc => uaddo_carry x, y, cc
14453 // usubo_carry (sub x, y), 0, cc => usubo_carry x, y, cc
14454 unsigned LHSOpc = LHS.getOpcode();
14455 unsigned Opc = N->getOpcode();
14456 if ((LHSOpc == ISD::ADD && Opc == ISD::UADDO_CARRY) ||
14457 (LHSOpc == ISD::SUB && Opc == ISD::USUBO_CARRY)) {
14458 SDValue Args[] = {LHS.getOperand(0), LHS.getOperand(1), N->getOperand(2)};
14459 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), Args);
14461 return SDValue();
14464 SDValue SITargetLowering::performFAddCombine(SDNode *N,
14465 DAGCombinerInfo &DCI) const {
14466 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
14467 return SDValue();
14469 SelectionDAG &DAG = DCI.DAG;
14470 EVT VT = N->getValueType(0);
14472 SDLoc SL(N);
14473 SDValue LHS = N->getOperand(0);
14474 SDValue RHS = N->getOperand(1);
14476 // These should really be instruction patterns, but writing patterns with
14477 // source modifiers is a pain.
14479 // fadd (fadd (a, a), b) -> mad 2.0, a, b
14480 if (LHS.getOpcode() == ISD::FADD) {
14481 SDValue A = LHS.getOperand(0);
14482 if (A == LHS.getOperand(1)) {
14483 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
14484 if (FusedOp != 0) {
14485 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
14486 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
14491 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
14492 if (RHS.getOpcode() == ISD::FADD) {
14493 SDValue A = RHS.getOperand(0);
14494 if (A == RHS.getOperand(1)) {
14495 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
14496 if (FusedOp != 0) {
14497 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
14498 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
14503 return SDValue();
14506 SDValue SITargetLowering::performFSubCombine(SDNode *N,
14507 DAGCombinerInfo &DCI) const {
14508 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
14509 return SDValue();
14511 SelectionDAG &DAG = DCI.DAG;
14512 SDLoc SL(N);
14513 EVT VT = N->getValueType(0);
14514 assert(!VT.isVector());
14516 // Try to get the fneg to fold into the source modifier. This undoes generic
14517 // DAG combines and folds them into the mad.
14519 // Only do this if we are not trying to support denormals. v_mad_f32 does
14520 // not support denormals ever.
14521 SDValue LHS = N->getOperand(0);
14522 SDValue RHS = N->getOperand(1);
14523 if (LHS.getOpcode() == ISD::FADD) {
14524 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
14525 SDValue A = LHS.getOperand(0);
14526 if (A == LHS.getOperand(1)) {
14527 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
14528 if (FusedOp != 0) {
14529 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
14530 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
14532 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
14537 if (RHS.getOpcode() == ISD::FADD) {
14538 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
14540 SDValue A = RHS.getOperand(0);
14541 if (A == RHS.getOperand(1)) {
14542 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
14543 if (FusedOp != 0) {
14544 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
14545 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
14550 return SDValue();
14553 SDValue SITargetLowering::performFDivCombine(SDNode *N,
14554 DAGCombinerInfo &DCI) const {
14555 SelectionDAG &DAG = DCI.DAG;
14556 SDLoc SL(N);
14557 EVT VT = N->getValueType(0);
14558 if (VT != MVT::f16 || !Subtarget->has16BitInsts())
14559 return SDValue();
14561 SDValue LHS = N->getOperand(0);
14562 SDValue RHS = N->getOperand(1);
14564 SDNodeFlags Flags = N->getFlags();
14565 SDNodeFlags RHSFlags = RHS->getFlags();
14566 if (!Flags.hasAllowContract() || !RHSFlags.hasAllowContract() ||
14567 !RHS->hasOneUse())
14568 return SDValue();
14570 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
14571 bool IsNegative = false;
14572 if (CLHS->isExactlyValue(1.0) ||
14573 (IsNegative = CLHS->isExactlyValue(-1.0))) {
14574 // fdiv contract 1.0, (sqrt contract x) -> rsq for f16
14575 // fdiv contract -1.0, (sqrt contract x) -> fneg(rsq) for f16
14576 if (RHS.getOpcode() == ISD::FSQRT) {
14577 // TODO: Or in RHS flags, somehow missing from SDNodeFlags
14578 SDValue Rsq =
14579 DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0), Flags);
14580 return IsNegative ? DAG.getNode(ISD::FNEG, SL, VT, Rsq, Flags) : Rsq;
14585 return SDValue();
14588 SDValue SITargetLowering::performFMACombine(SDNode *N,
14589 DAGCombinerInfo &DCI) const {
14590 SelectionDAG &DAG = DCI.DAG;
14591 EVT VT = N->getValueType(0);
14592 SDLoc SL(N);
14594 if (!Subtarget->hasDot7Insts() || VT != MVT::f32)
14595 return SDValue();
14597 // FMA((F32)S0.x, (F32)S1. x, FMA((F32)S0.y, (F32)S1.y, (F32)z)) ->
14598 // FDOT2((V2F16)S0, (V2F16)S1, (F32)z))
14599 SDValue Op1 = N->getOperand(0);
14600 SDValue Op2 = N->getOperand(1);
14601 SDValue FMA = N->getOperand(2);
14603 if (FMA.getOpcode() != ISD::FMA || Op1.getOpcode() != ISD::FP_EXTEND ||
14604 Op2.getOpcode() != ISD::FP_EXTEND)
14605 return SDValue();
14607 // fdot2_f32_f16 always flushes fp32 denormal operand and output to zero,
14608 // regardless of the denorm mode setting. Therefore,
14609 // unsafe-fp-math/fp-contract is sufficient to allow generating fdot2.
14610 const TargetOptions &Options = DAG.getTarget().Options;
14611 if (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath ||
14612 (N->getFlags().hasAllowContract() &&
14613 FMA->getFlags().hasAllowContract())) {
14614 Op1 = Op1.getOperand(0);
14615 Op2 = Op2.getOperand(0);
14616 if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14617 Op2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14618 return SDValue();
14620 SDValue Vec1 = Op1.getOperand(0);
14621 SDValue Idx1 = Op1.getOperand(1);
14622 SDValue Vec2 = Op2.getOperand(0);
14624 SDValue FMAOp1 = FMA.getOperand(0);
14625 SDValue FMAOp2 = FMA.getOperand(1);
14626 SDValue FMAAcc = FMA.getOperand(2);
14628 if (FMAOp1.getOpcode() != ISD::FP_EXTEND ||
14629 FMAOp2.getOpcode() != ISD::FP_EXTEND)
14630 return SDValue();
14632 FMAOp1 = FMAOp1.getOperand(0);
14633 FMAOp2 = FMAOp2.getOperand(0);
14634 if (FMAOp1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14635 FMAOp2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14636 return SDValue();
14638 SDValue Vec3 = FMAOp1.getOperand(0);
14639 SDValue Vec4 = FMAOp2.getOperand(0);
14640 SDValue Idx2 = FMAOp1.getOperand(1);
14642 if (Idx1 != Op2.getOperand(1) || Idx2 != FMAOp2.getOperand(1) ||
14643 // Idx1 and Idx2 cannot be the same.
14644 Idx1 == Idx2)
14645 return SDValue();
14647 if (Vec1 == Vec2 || Vec3 == Vec4)
14648 return SDValue();
14650 if (Vec1.getValueType() != MVT::v2f16 || Vec2.getValueType() != MVT::v2f16)
14651 return SDValue();
14653 if ((Vec1 == Vec3 && Vec2 == Vec4) || (Vec1 == Vec4 && Vec2 == Vec3)) {
14654 return DAG.getNode(AMDGPUISD::FDOT2, SL, MVT::f32, Vec1, Vec2, FMAAcc,
14655 DAG.getTargetConstant(0, SL, MVT::i1));
14658 return SDValue();
14661 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
14662 DAGCombinerInfo &DCI) const {
14663 SelectionDAG &DAG = DCI.DAG;
14664 SDLoc SL(N);
14666 SDValue LHS = N->getOperand(0);
14667 SDValue RHS = N->getOperand(1);
14668 EVT VT = LHS.getValueType();
14669 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
14671 auto *CRHS = dyn_cast<ConstantSDNode>(RHS);
14672 if (!CRHS) {
14673 CRHS = dyn_cast<ConstantSDNode>(LHS);
14674 if (CRHS) {
14675 std::swap(LHS, RHS);
14676 CC = getSetCCSwappedOperands(CC);
14680 if (CRHS) {
14681 if (VT == MVT::i32 && LHS.getOpcode() == ISD::SIGN_EXTEND &&
14682 isBoolSGPR(LHS.getOperand(0))) {
14683 // setcc (sext from i1 cc), -1, ne|sgt|ult) => not cc => xor cc, -1
14684 // setcc (sext from i1 cc), -1, eq|sle|uge) => cc
14685 // setcc (sext from i1 cc), 0, eq|sge|ule) => not cc => xor cc, -1
14686 // setcc (sext from i1 cc), 0, ne|ugt|slt) => cc
14687 if ((CRHS->isAllOnes() &&
14688 (CC == ISD::SETNE || CC == ISD::SETGT || CC == ISD::SETULT)) ||
14689 (CRHS->isZero() &&
14690 (CC == ISD::SETEQ || CC == ISD::SETGE || CC == ISD::SETULE)))
14691 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
14692 DAG.getConstant(-1, SL, MVT::i1));
14693 if ((CRHS->isAllOnes() &&
14694 (CC == ISD::SETEQ || CC == ISD::SETLE || CC == ISD::SETUGE)) ||
14695 (CRHS->isZero() &&
14696 (CC == ISD::SETNE || CC == ISD::SETUGT || CC == ISD::SETLT)))
14697 return LHS.getOperand(0);
14700 const APInt &CRHSVal = CRHS->getAPIntValue();
14701 if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14702 LHS.getOpcode() == ISD::SELECT &&
14703 isa<ConstantSDNode>(LHS.getOperand(1)) &&
14704 isa<ConstantSDNode>(LHS.getOperand(2)) &&
14705 LHS.getConstantOperandVal(1) != LHS.getConstantOperandVal(2) &&
14706 isBoolSGPR(LHS.getOperand(0))) {
14707 // Given CT != FT:
14708 // setcc (select cc, CT, CF), CF, eq => xor cc, -1
14709 // setcc (select cc, CT, CF), CF, ne => cc
14710 // setcc (select cc, CT, CF), CT, ne => xor cc, -1
14711 // setcc (select cc, CT, CF), CT, eq => cc
14712 const APInt &CT = LHS.getConstantOperandAPInt(1);
14713 const APInt &CF = LHS.getConstantOperandAPInt(2);
14715 if ((CF == CRHSVal && CC == ISD::SETEQ) ||
14716 (CT == CRHSVal && CC == ISD::SETNE))
14717 return DAG.getNode(ISD::XOR, SL, MVT::i1, LHS.getOperand(0),
14718 DAG.getConstant(-1, SL, MVT::i1));
14719 if ((CF == CRHSVal && CC == ISD::SETNE) ||
14720 (CT == CRHSVal && CC == ISD::SETEQ))
14721 return LHS.getOperand(0);
14725 if (VT != MVT::f32 && VT != MVT::f64 &&
14726 (!Subtarget->has16BitInsts() || VT != MVT::f16))
14727 return SDValue();
14729 // Match isinf/isfinite pattern
14730 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
14731 // (fcmp one (fabs x), inf) -> (fp_class x,
14732 // (p_normal | n_normal | p_subnormal | n_subnormal | p_zero | n_zero)
14733 if ((CC == ISD::SETOEQ || CC == ISD::SETONE) &&
14734 LHS.getOpcode() == ISD::FABS) {
14735 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
14736 if (!CRHS)
14737 return SDValue();
14739 const APFloat &APF = CRHS->getValueAPF();
14740 if (APF.isInfinity() && !APF.isNegative()) {
14741 const unsigned IsInfMask =
14742 SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
14743 const unsigned IsFiniteMask =
14744 SIInstrFlags::N_ZERO | SIInstrFlags::P_ZERO | SIInstrFlags::N_NORMAL |
14745 SIInstrFlags::P_NORMAL | SIInstrFlags::N_SUBNORMAL |
14746 SIInstrFlags::P_SUBNORMAL;
14747 unsigned Mask = CC == ISD::SETOEQ ? IsInfMask : IsFiniteMask;
14748 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
14749 DAG.getConstant(Mask, SL, MVT::i32));
14753 return SDValue();
14756 SDValue
14757 SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
14758 DAGCombinerInfo &DCI) const {
14759 SelectionDAG &DAG = DCI.DAG;
14760 SDLoc SL(N);
14761 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
14763 SDValue Src = N->getOperand(0);
14764 SDValue Shift = N->getOperand(0);
14766 // TODO: Extend type shouldn't matter (assuming legal types).
14767 if (Shift.getOpcode() == ISD::ZERO_EXTEND)
14768 Shift = Shift.getOperand(0);
14770 if (Shift.getOpcode() == ISD::SRL || Shift.getOpcode() == ISD::SHL) {
14771 // cvt_f32_ubyte1 (shl x, 8) -> cvt_f32_ubyte0 x
14772 // cvt_f32_ubyte3 (shl x, 16) -> cvt_f32_ubyte1 x
14773 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
14774 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
14775 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
14776 if (auto *C = dyn_cast<ConstantSDNode>(Shift.getOperand(1))) {
14777 SDValue Shifted = DAG.getZExtOrTrunc(
14778 Shift.getOperand(0), SDLoc(Shift.getOperand(0)), MVT::i32);
14780 unsigned ShiftOffset = 8 * Offset;
14781 if (Shift.getOpcode() == ISD::SHL)
14782 ShiftOffset -= C->getZExtValue();
14783 else
14784 ShiftOffset += C->getZExtValue();
14786 if (ShiftOffset < 32 && (ShiftOffset % 8) == 0) {
14787 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + ShiftOffset / 8, SL,
14788 MVT::f32, Shifted);
14793 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14794 APInt DemandedBits = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
14795 if (TLI.SimplifyDemandedBits(Src, DemandedBits, DCI)) {
14796 // We simplified Src. If this node is not dead, visit it again so it is
14797 // folded properly.
14798 if (N->getOpcode() != ISD::DELETED_NODE)
14799 DCI.AddToWorklist(N);
14800 return SDValue(N, 0);
14803 // Handle (or x, (srl y, 8)) pattern when known bits are zero.
14804 if (SDValue DemandedSrc =
14805 TLI.SimplifyMultipleUseDemandedBits(Src, DemandedBits, DAG))
14806 return DAG.getNode(N->getOpcode(), SL, MVT::f32, DemandedSrc);
14808 return SDValue();
14811 SDValue SITargetLowering::performClampCombine(SDNode *N,
14812 DAGCombinerInfo &DCI) const {
14813 ConstantFPSDNode *CSrc = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
14814 if (!CSrc)
14815 return SDValue();
14817 const MachineFunction &MF = DCI.DAG.getMachineFunction();
14818 const APFloat &F = CSrc->getValueAPF();
14819 APFloat Zero = APFloat::getZero(F.getSemantics());
14820 if (F < Zero ||
14821 (F.isNaN() && MF.getInfo<SIMachineFunctionInfo>()->getMode().DX10Clamp)) {
14822 return DCI.DAG.getConstantFP(Zero, SDLoc(N), N->getValueType(0));
14825 APFloat One(F.getSemantics(), "1.0");
14826 if (F > One)
14827 return DCI.DAG.getConstantFP(One, SDLoc(N), N->getValueType(0));
14829 return SDValue(CSrc, 0);
14832 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
14833 DAGCombinerInfo &DCI) const {
14834 switch (N->getOpcode()) {
14835 case ISD::ADD:
14836 case ISD::SUB:
14837 case ISD::SHL:
14838 case ISD::SRL:
14839 case ISD::SRA:
14840 case ISD::AND:
14841 case ISD::OR:
14842 case ISD::XOR:
14843 case ISD::MUL:
14844 case ISD::SETCC:
14845 case ISD::SELECT:
14846 case ISD::SMIN:
14847 case ISD::SMAX:
14848 case ISD::UMIN:
14849 case ISD::UMAX:
14850 if (auto Res = promoteUniformOpToI32(SDValue(N, 0), DCI))
14851 return Res;
14852 break;
14853 default:
14854 break;
14857 if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
14858 return SDValue();
14860 switch (N->getOpcode()) {
14861 case ISD::ADD:
14862 return performAddCombine(N, DCI);
14863 case ISD::SUB:
14864 return performSubCombine(N, DCI);
14865 case ISD::UADDO_CARRY:
14866 case ISD::USUBO_CARRY:
14867 return performAddCarrySubCarryCombine(N, DCI);
14868 case ISD::FADD:
14869 return performFAddCombine(N, DCI);
14870 case ISD::FSUB:
14871 return performFSubCombine(N, DCI);
14872 case ISD::FDIV:
14873 return performFDivCombine(N, DCI);
14874 case ISD::SETCC:
14875 return performSetCCCombine(N, DCI);
14876 case ISD::FMAXNUM:
14877 case ISD::FMINNUM:
14878 case ISD::FMAXNUM_IEEE:
14879 case ISD::FMINNUM_IEEE:
14880 case ISD::FMAXIMUM:
14881 case ISD::FMINIMUM:
14882 case ISD::SMAX:
14883 case ISD::SMIN:
14884 case ISD::UMAX:
14885 case ISD::UMIN:
14886 case AMDGPUISD::FMIN_LEGACY:
14887 case AMDGPUISD::FMAX_LEGACY:
14888 return performMinMaxCombine(N, DCI);
14889 case ISD::FMA:
14890 return performFMACombine(N, DCI);
14891 case ISD::AND:
14892 return performAndCombine(N, DCI);
14893 case ISD::OR:
14894 return performOrCombine(N, DCI);
14895 case ISD::FSHR: {
14896 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
14897 if (N->getValueType(0) == MVT::i32 && N->isDivergent() &&
14898 TII->pseudoToMCOpcode(AMDGPU::V_PERM_B32_e64) != -1) {
14899 return matchPERM(N, DCI);
14901 break;
14903 case ISD::XOR:
14904 return performXorCombine(N, DCI);
14905 case ISD::ZERO_EXTEND:
14906 return performZeroExtendCombine(N, DCI);
14907 case ISD::SIGN_EXTEND_INREG:
14908 return performSignExtendInRegCombine(N, DCI);
14909 case AMDGPUISD::FP_CLASS:
14910 return performClassCombine(N, DCI);
14911 case ISD::FCANONICALIZE:
14912 return performFCanonicalizeCombine(N, DCI);
14913 case AMDGPUISD::RCP:
14914 return performRcpCombine(N, DCI);
14915 case ISD::FLDEXP:
14916 case AMDGPUISD::FRACT:
14917 case AMDGPUISD::RSQ:
14918 case AMDGPUISD::RCP_LEGACY:
14919 case AMDGPUISD::RCP_IFLAG:
14920 case AMDGPUISD::RSQ_CLAMP: {
14921 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
14922 SDValue Src = N->getOperand(0);
14923 if (Src.isUndef())
14924 return Src;
14925 break;
14927 case ISD::SINT_TO_FP:
14928 case ISD::UINT_TO_FP:
14929 return performUCharToFloatCombine(N, DCI);
14930 case ISD::FCOPYSIGN:
14931 return performFCopySignCombine(N, DCI);
14932 case AMDGPUISD::CVT_F32_UBYTE0:
14933 case AMDGPUISD::CVT_F32_UBYTE1:
14934 case AMDGPUISD::CVT_F32_UBYTE2:
14935 case AMDGPUISD::CVT_F32_UBYTE3:
14936 return performCvtF32UByteNCombine(N, DCI);
14937 case AMDGPUISD::FMED3:
14938 return performFMed3Combine(N, DCI);
14939 case AMDGPUISD::CVT_PKRTZ_F16_F32:
14940 return performCvtPkRTZCombine(N, DCI);
14941 case AMDGPUISD::CLAMP:
14942 return performClampCombine(N, DCI);
14943 case ISD::SCALAR_TO_VECTOR: {
14944 SelectionDAG &DAG = DCI.DAG;
14945 EVT VT = N->getValueType(0);
14947 // v2i16 (scalar_to_vector i16:x) -> v2i16 (bitcast (any_extend i16:x))
14948 if (VT == MVT::v2i16 || VT == MVT::v2f16 || VT == MVT::v2bf16) {
14949 SDLoc SL(N);
14950 SDValue Src = N->getOperand(0);
14951 EVT EltVT = Src.getValueType();
14952 if (EltVT != MVT::i16)
14953 Src = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Src);
14955 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Src);
14956 return DAG.getNode(ISD::BITCAST, SL, VT, Ext);
14959 break;
14961 case ISD::EXTRACT_VECTOR_ELT:
14962 return performExtractVectorEltCombine(N, DCI);
14963 case ISD::INSERT_VECTOR_ELT:
14964 return performInsertVectorEltCombine(N, DCI);
14965 case ISD::FP_ROUND:
14966 return performFPRoundCombine(N, DCI);
14967 case ISD::LOAD: {
14968 if (SDValue Widened = widenLoad(cast<LoadSDNode>(N), DCI))
14969 return Widened;
14970 [[fallthrough]];
14972 default: {
14973 if (!DCI.isBeforeLegalize()) {
14974 if (MemSDNode *MemNode = dyn_cast<MemSDNode>(N))
14975 return performMemSDNodeCombine(MemNode, DCI);
14978 break;
14982 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
14985 /// Helper function for adjustWritemask
14986 static unsigned SubIdx2Lane(unsigned Idx) {
14987 switch (Idx) {
14988 default:
14989 return ~0u;
14990 case AMDGPU::sub0:
14991 return 0;
14992 case AMDGPU::sub1:
14993 return 1;
14994 case AMDGPU::sub2:
14995 return 2;
14996 case AMDGPU::sub3:
14997 return 3;
14998 case AMDGPU::sub4:
14999 return 4; // Possible with TFE/LWE
15003 /// Adjust the writemask of MIMG, VIMAGE or VSAMPLE instructions
15004 SDNode *SITargetLowering::adjustWritemask(MachineSDNode *&Node,
15005 SelectionDAG &DAG) const {
15006 unsigned Opcode = Node->getMachineOpcode();
15008 // Subtract 1 because the vdata output is not a MachineSDNode operand.
15009 int D16Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::d16) - 1;
15010 if (D16Idx >= 0 && Node->getConstantOperandVal(D16Idx))
15011 return Node; // not implemented for D16
15013 SDNode *Users[5] = {nullptr};
15014 unsigned Lane = 0;
15015 unsigned DmaskIdx =
15016 AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::dmask) - 1;
15017 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
15018 unsigned NewDmask = 0;
15019 unsigned TFEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::tfe) - 1;
15020 unsigned LWEIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::lwe) - 1;
15021 bool UsesTFC = ((int(TFEIdx) >= 0 && Node->getConstantOperandVal(TFEIdx)) ||
15022 (int(LWEIdx) >= 0 && Node->getConstantOperandVal(LWEIdx)))
15023 ? true
15024 : false;
15025 unsigned TFCLane = 0;
15026 bool HasChain = Node->getNumValues() > 1;
15028 if (OldDmask == 0) {
15029 // These are folded out, but on the chance it happens don't assert.
15030 return Node;
15033 unsigned OldBitsSet = llvm::popcount(OldDmask);
15034 // Work out which is the TFE/LWE lane if that is enabled.
15035 if (UsesTFC) {
15036 TFCLane = OldBitsSet;
15039 // Try to figure out the used register components
15040 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); I != E;
15041 ++I) {
15043 // Don't look at users of the chain.
15044 if (I.getUse().getResNo() != 0)
15045 continue;
15047 // Abort if we can't understand the usage
15048 if (!I->isMachineOpcode() ||
15049 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
15050 return Node;
15052 // Lane means which subreg of %vgpra_vgprb_vgprc_vgprd is used.
15053 // Note that subregs are packed, i.e. Lane==0 is the first bit set
15054 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
15055 // set, etc.
15056 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
15057 if (Lane == ~0u)
15058 return Node;
15060 // Check if the use is for the TFE/LWE generated result at VGPRn+1.
15061 if (UsesTFC && Lane == TFCLane) {
15062 Users[Lane] = *I;
15063 } else {
15064 // Set which texture component corresponds to the lane.
15065 unsigned Comp;
15066 for (unsigned i = 0, Dmask = OldDmask; (i <= Lane) && (Dmask != 0); i++) {
15067 Comp = llvm::countr_zero(Dmask);
15068 Dmask &= ~(1 << Comp);
15071 // Abort if we have more than one user per component.
15072 if (Users[Lane])
15073 return Node;
15075 Users[Lane] = *I;
15076 NewDmask |= 1 << Comp;
15080 // Don't allow 0 dmask, as hardware assumes one channel enabled.
15081 bool NoChannels = !NewDmask;
15082 if (NoChannels) {
15083 if (!UsesTFC) {
15084 // No uses of the result and not using TFC. Then do nothing.
15085 return Node;
15087 // If the original dmask has one channel - then nothing to do
15088 if (OldBitsSet == 1)
15089 return Node;
15090 // Use an arbitrary dmask - required for the instruction to work
15091 NewDmask = 1;
15093 // Abort if there's no change
15094 if (NewDmask == OldDmask)
15095 return Node;
15097 unsigned BitsSet = llvm::popcount(NewDmask);
15099 // Check for TFE or LWE - increase the number of channels by one to account
15100 // for the extra return value
15101 // This will need adjustment for D16 if this is also included in
15102 // adjustWriteMask (this function) but at present D16 are excluded.
15103 unsigned NewChannels = BitsSet + UsesTFC;
15105 int NewOpcode =
15106 AMDGPU::getMaskedMIMGOp(Node->getMachineOpcode(), NewChannels);
15107 assert(NewOpcode != -1 &&
15108 NewOpcode != static_cast<int>(Node->getMachineOpcode()) &&
15109 "failed to find equivalent MIMG op");
15111 // Adjust the writemask in the node
15112 SmallVector<SDValue, 12> Ops;
15113 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
15114 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
15115 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
15117 MVT SVT = Node->getValueType(0).getVectorElementType().getSimpleVT();
15119 MVT ResultVT = NewChannels == 1
15120 ? SVT
15121 : MVT::getVectorVT(SVT, NewChannels == 3 ? 4
15122 : NewChannels == 5 ? 8
15123 : NewChannels);
15124 SDVTList NewVTList =
15125 HasChain ? DAG.getVTList(ResultVT, MVT::Other) : DAG.getVTList(ResultVT);
15127 MachineSDNode *NewNode =
15128 DAG.getMachineNode(NewOpcode, SDLoc(Node), NewVTList, Ops);
15130 if (HasChain) {
15131 // Update chain.
15132 DAG.setNodeMemRefs(NewNode, Node->memoperands());
15133 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), SDValue(NewNode, 1));
15136 if (NewChannels == 1) {
15137 assert(Node->hasNUsesOfValue(1, 0));
15138 SDNode *Copy =
15139 DAG.getMachineNode(TargetOpcode::COPY, SDLoc(Node),
15140 Users[Lane]->getValueType(0), SDValue(NewNode, 0));
15141 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
15142 return nullptr;
15145 // Update the users of the node with the new indices
15146 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 5; ++i) {
15147 SDNode *User = Users[i];
15148 if (!User) {
15149 // Handle the special case of NoChannels. We set NewDmask to 1 above, but
15150 // Users[0] is still nullptr because channel 0 doesn't really have a use.
15151 if (i || !NoChannels)
15152 continue;
15153 } else {
15154 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
15155 SDNode *NewUser = DAG.UpdateNodeOperands(User, SDValue(NewNode, 0), Op);
15156 if (NewUser != User) {
15157 DAG.ReplaceAllUsesWith(SDValue(User, 0), SDValue(NewUser, 0));
15158 DAG.RemoveDeadNode(User);
15162 switch (Idx) {
15163 default:
15164 break;
15165 case AMDGPU::sub0:
15166 Idx = AMDGPU::sub1;
15167 break;
15168 case AMDGPU::sub1:
15169 Idx = AMDGPU::sub2;
15170 break;
15171 case AMDGPU::sub2:
15172 Idx = AMDGPU::sub3;
15173 break;
15174 case AMDGPU::sub3:
15175 Idx = AMDGPU::sub4;
15176 break;
15180 DAG.RemoveDeadNode(Node);
15181 return nullptr;
15184 static bool isFrameIndexOp(SDValue Op) {
15185 if (Op.getOpcode() == ISD::AssertZext)
15186 Op = Op.getOperand(0);
15188 return isa<FrameIndexSDNode>(Op);
15191 /// Legalize target independent instructions (e.g. INSERT_SUBREG)
15192 /// with frame index operands.
15193 /// LLVM assumes that inputs are to these instructions are registers.
15194 SDNode *
15195 SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
15196 SelectionDAG &DAG) const {
15197 if (Node->getOpcode() == ISD::CopyToReg) {
15198 RegisterSDNode *DestReg = cast<RegisterSDNode>(Node->getOperand(1));
15199 SDValue SrcVal = Node->getOperand(2);
15201 // Insert a copy to a VReg_1 virtual register so LowerI1Copies doesn't have
15202 // to try understanding copies to physical registers.
15203 if (SrcVal.getValueType() == MVT::i1 && DestReg->getReg().isPhysical()) {
15204 SDLoc SL(Node);
15205 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
15206 SDValue VReg = DAG.getRegister(
15207 MRI.createVirtualRegister(&AMDGPU::VReg_1RegClass), MVT::i1);
15209 SDNode *Glued = Node->getGluedNode();
15210 SDValue ToVReg = DAG.getCopyToReg(
15211 Node->getOperand(0), SL, VReg, SrcVal,
15212 SDValue(Glued, Glued ? Glued->getNumValues() - 1 : 0));
15213 SDValue ToResultReg = DAG.getCopyToReg(ToVReg, SL, SDValue(DestReg, 0),
15214 VReg, ToVReg.getValue(1));
15215 DAG.ReplaceAllUsesWith(Node, ToResultReg.getNode());
15216 DAG.RemoveDeadNode(Node);
15217 return ToResultReg.getNode();
15221 SmallVector<SDValue, 8> Ops;
15222 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
15223 if (!isFrameIndexOp(Node->getOperand(i))) {
15224 Ops.push_back(Node->getOperand(i));
15225 continue;
15228 SDLoc DL(Node);
15229 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
15230 Node->getOperand(i).getValueType(),
15231 Node->getOperand(i)),
15232 0));
15235 return DAG.UpdateNodeOperands(Node, Ops);
15238 /// Fold the instructions after selecting them.
15239 /// Returns null if users were already updated.
15240 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
15241 SelectionDAG &DAG) const {
15242 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
15243 unsigned Opcode = Node->getMachineOpcode();
15245 if (TII->isImage(Opcode) && !TII->get(Opcode).mayStore() &&
15246 !TII->isGather4(Opcode) &&
15247 AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::dmask)) {
15248 return adjustWritemask(Node, DAG);
15251 if (Opcode == AMDGPU::INSERT_SUBREG || Opcode == AMDGPU::REG_SEQUENCE) {
15252 legalizeTargetIndependentNode(Node, DAG);
15253 return Node;
15256 switch (Opcode) {
15257 case AMDGPU::V_DIV_SCALE_F32_e64:
15258 case AMDGPU::V_DIV_SCALE_F64_e64: {
15259 // Satisfy the operand register constraint when one of the inputs is
15260 // undefined. Ordinarily each undef value will have its own implicit_def of
15261 // a vreg, so force these to use a single register.
15262 SDValue Src0 = Node->getOperand(1);
15263 SDValue Src1 = Node->getOperand(3);
15264 SDValue Src2 = Node->getOperand(5);
15266 if ((Src0.isMachineOpcode() &&
15267 Src0.getMachineOpcode() != AMDGPU::IMPLICIT_DEF) &&
15268 (Src0 == Src1 || Src0 == Src2))
15269 break;
15271 MVT VT = Src0.getValueType().getSimpleVT();
15272 const TargetRegisterClass *RC =
15273 getRegClassFor(VT, Src0.getNode()->isDivergent());
15275 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
15276 SDValue UndefReg = DAG.getRegister(MRI.createVirtualRegister(RC), VT);
15278 SDValue ImpDef = DAG.getCopyToReg(DAG.getEntryNode(), SDLoc(Node), UndefReg,
15279 Src0, SDValue());
15281 // src0 must be the same register as src1 or src2, even if the value is
15282 // undefined, so make sure we don't violate this constraint.
15283 if (Src0.isMachineOpcode() &&
15284 Src0.getMachineOpcode() == AMDGPU::IMPLICIT_DEF) {
15285 if (Src1.isMachineOpcode() &&
15286 Src1.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
15287 Src0 = Src1;
15288 else if (Src2.isMachineOpcode() &&
15289 Src2.getMachineOpcode() != AMDGPU::IMPLICIT_DEF)
15290 Src0 = Src2;
15291 else {
15292 assert(Src1.getMachineOpcode() == AMDGPU::IMPLICIT_DEF);
15293 Src0 = UndefReg;
15294 Src1 = UndefReg;
15296 } else
15297 break;
15299 SmallVector<SDValue, 9> Ops(Node->ops());
15300 Ops[1] = Src0;
15301 Ops[3] = Src1;
15302 Ops[5] = Src2;
15303 Ops.push_back(ImpDef.getValue(1));
15304 return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
15306 default:
15307 break;
15310 return Node;
15313 // Any MIMG instructions that use tfe or lwe require an initialization of the
15314 // result register that will be written in the case of a memory access failure.
15315 // The required code is also added to tie this init code to the result of the
15316 // img instruction.
15317 void SITargetLowering::AddMemOpInit(MachineInstr &MI) const {
15318 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
15319 const SIRegisterInfo &TRI = TII->getRegisterInfo();
15320 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
15321 MachineBasicBlock &MBB = *MI.getParent();
15323 int DstIdx =
15324 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
15325 unsigned InitIdx = 0;
15327 if (TII->isImage(MI)) {
15328 MachineOperand *TFE = TII->getNamedOperand(MI, AMDGPU::OpName::tfe);
15329 MachineOperand *LWE = TII->getNamedOperand(MI, AMDGPU::OpName::lwe);
15330 MachineOperand *D16 = TII->getNamedOperand(MI, AMDGPU::OpName::d16);
15332 if (!TFE && !LWE) // intersect_ray
15333 return;
15335 unsigned TFEVal = TFE ? TFE->getImm() : 0;
15336 unsigned LWEVal = LWE ? LWE->getImm() : 0;
15337 unsigned D16Val = D16 ? D16->getImm() : 0;
15339 if (!TFEVal && !LWEVal)
15340 return;
15342 // At least one of TFE or LWE are non-zero
15343 // We have to insert a suitable initialization of the result value and
15344 // tie this to the dest of the image instruction.
15346 // Calculate which dword we have to initialize to 0.
15347 MachineOperand *MO_Dmask = TII->getNamedOperand(MI, AMDGPU::OpName::dmask);
15349 // check that dmask operand is found.
15350 assert(MO_Dmask && "Expected dmask operand in instruction");
15352 unsigned dmask = MO_Dmask->getImm();
15353 // Determine the number of active lanes taking into account the
15354 // Gather4 special case
15355 unsigned ActiveLanes = TII->isGather4(MI) ? 4 : llvm::popcount(dmask);
15357 bool Packed = !Subtarget->hasUnpackedD16VMem();
15359 InitIdx = D16Val && Packed ? ((ActiveLanes + 1) >> 1) + 1 : ActiveLanes + 1;
15361 // Abandon attempt if the dst size isn't large enough
15362 // - this is in fact an error but this is picked up elsewhere and
15363 // reported correctly.
15364 uint32_t DstSize =
15365 TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
15366 if (DstSize < InitIdx)
15367 return;
15368 } else if (TII->isMUBUF(MI) && AMDGPU::getMUBUFTfe(MI.getOpcode())) {
15369 InitIdx = TRI.getRegSizeInBits(*TII->getOpRegClass(MI, DstIdx)) / 32;
15370 } else {
15371 return;
15374 const DebugLoc &DL = MI.getDebugLoc();
15376 // Create a register for the initialization value.
15377 Register PrevDst = MRI.cloneVirtualRegister(MI.getOperand(DstIdx).getReg());
15378 unsigned NewDst = 0; // Final initialized value will be in here
15380 // If PRTStrictNull feature is enabled (the default) then initialize
15381 // all the result registers to 0, otherwise just the error indication
15382 // register (VGPRn+1)
15383 unsigned SizeLeft = Subtarget->usePRTStrictNull() ? InitIdx : 1;
15384 unsigned CurrIdx = Subtarget->usePRTStrictNull() ? 0 : (InitIdx - 1);
15386 BuildMI(MBB, MI, DL, TII->get(AMDGPU::IMPLICIT_DEF), PrevDst);
15387 for (; SizeLeft; SizeLeft--, CurrIdx++) {
15388 NewDst = MRI.createVirtualRegister(TII->getOpRegClass(MI, DstIdx));
15389 // Initialize dword
15390 Register SubReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
15391 // clang-format off
15392 BuildMI(MBB, MI, DL, TII->get(AMDGPU::V_MOV_B32_e32), SubReg)
15393 .addImm(0);
15394 // clang-format on
15395 // Insert into the super-reg
15396 BuildMI(MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewDst)
15397 .addReg(PrevDst)
15398 .addReg(SubReg)
15399 .addImm(SIRegisterInfo::getSubRegFromChannel(CurrIdx));
15401 PrevDst = NewDst;
15404 // Add as an implicit operand
15405 MI.addOperand(MachineOperand::CreateReg(NewDst, false, true));
15407 // Tie the just added implicit operand to the dst
15408 MI.tieOperands(DstIdx, MI.getNumOperands() - 1);
15411 /// Assign the register class depending on the number of
15412 /// bits set in the writemask
15413 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
15414 SDNode *Node) const {
15415 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
15417 MachineFunction *MF = MI.getParent()->getParent();
15418 MachineRegisterInfo &MRI = MF->getRegInfo();
15419 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
15421 if (TII->isVOP3(MI.getOpcode())) {
15422 // Make sure constant bus requirements are respected.
15423 TII->legalizeOperandsVOP3(MRI, MI);
15425 // Prefer VGPRs over AGPRs in mAI instructions where possible.
15426 // This saves a chain-copy of registers and better balance register
15427 // use between vgpr and agpr as agpr tuples tend to be big.
15428 if (!MI.getDesc().operands().empty()) {
15429 unsigned Opc = MI.getOpcode();
15430 bool HasAGPRs = Info->mayNeedAGPRs();
15431 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
15432 int16_t Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
15433 for (auto I :
15434 {AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
15435 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), Src2Idx}) {
15436 if (I == -1)
15437 break;
15438 if ((I == Src2Idx) && (HasAGPRs))
15439 break;
15440 MachineOperand &Op = MI.getOperand(I);
15441 if (!Op.isReg() || !Op.getReg().isVirtual())
15442 continue;
15443 auto *RC = TRI->getRegClassForReg(MRI, Op.getReg());
15444 if (!TRI->hasAGPRs(RC))
15445 continue;
15446 auto *Src = MRI.getUniqueVRegDef(Op.getReg());
15447 if (!Src || !Src->isCopy() ||
15448 !TRI->isSGPRReg(MRI, Src->getOperand(1).getReg()))
15449 continue;
15450 auto *NewRC = TRI->getEquivalentVGPRClass(RC);
15451 // All uses of agpr64 and agpr32 can also accept vgpr except for
15452 // v_accvgpr_read, but we do not produce agpr reads during selection,
15453 // so no use checks are needed.
15454 MRI.setRegClass(Op.getReg(), NewRC);
15457 if (TII->isMAI(MI)) {
15458 // The ordinary src0, src1, src2 were legalized above.
15460 // We have to also legalize the appended v_mfma_ld_scale_b32 operands,
15461 // as a separate instruction.
15462 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
15463 AMDGPU::OpName::scale_src0);
15464 if (Src0Idx != -1) {
15465 int Src1Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
15466 AMDGPU::OpName::scale_src1);
15467 if (TII->usesConstantBus(MRI, MI, Src0Idx) &&
15468 TII->usesConstantBus(MRI, MI, Src1Idx))
15469 TII->legalizeOpWithMove(MI, Src1Idx);
15473 if (!HasAGPRs)
15474 return;
15476 // Resolve the rest of AV operands to AGPRs.
15477 if (auto *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2)) {
15478 if (Src2->isReg() && Src2->getReg().isVirtual()) {
15479 auto *RC = TRI->getRegClassForReg(MRI, Src2->getReg());
15480 if (TRI->isVectorSuperClass(RC)) {
15481 auto *NewRC = TRI->getEquivalentAGPRClass(RC);
15482 MRI.setRegClass(Src2->getReg(), NewRC);
15483 if (Src2->isTied())
15484 MRI.setRegClass(MI.getOperand(0).getReg(), NewRC);
15490 return;
15493 if (TII->isImage(MI))
15494 TII->enforceOperandRCAlignment(MI, AMDGPU::OpName::vaddr);
15497 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
15498 uint64_t Val) {
15499 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
15500 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
15503 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
15504 const SDLoc &DL,
15505 SDValue Ptr) const {
15506 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
15508 // Build the half of the subregister with the constants before building the
15509 // full 128-bit register. If we are building multiple resource descriptors,
15510 // this will allow CSEing of the 2-component register.
15511 const SDValue Ops0[] = {
15512 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
15513 buildSMovImm32(DAG, DL, 0),
15514 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
15515 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
15516 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
15518 SDValue SubRegHi = SDValue(
15519 DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v2i32, Ops0), 0);
15521 // Combine the constants and the pointer.
15522 const SDValue Ops1[] = {
15523 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32), Ptr,
15524 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), SubRegHi,
15525 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)};
15527 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
15530 /// Return a resource descriptor with the 'Add TID' bit enabled
15531 /// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
15532 /// of the resource descriptor) to create an offset, which is added to
15533 /// the resource pointer.
15534 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
15535 SDValue Ptr, uint32_t RsrcDword1,
15536 uint64_t RsrcDword2And3) const {
15537 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
15538 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
15539 if (RsrcDword1) {
15540 PtrHi =
15541 SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
15542 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
15546 SDValue DataLo =
15547 buildSMovImm32(DAG, DL, RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
15548 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
15550 const SDValue Ops[] = {
15551 DAG.getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32),
15552 PtrLo,
15553 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
15554 PtrHi,
15555 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
15556 DataLo,
15557 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
15558 DataHi,
15559 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)};
15561 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
15564 //===----------------------------------------------------------------------===//
15565 // SI Inline Assembly Support
15566 //===----------------------------------------------------------------------===//
15568 std::pair<unsigned, const TargetRegisterClass *>
15569 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI_,
15570 StringRef Constraint,
15571 MVT VT) const {
15572 const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(TRI_);
15574 const TargetRegisterClass *RC = nullptr;
15575 if (Constraint.size() == 1) {
15576 const unsigned BitWidth = VT.getSizeInBits();
15577 switch (Constraint[0]) {
15578 default:
15579 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15580 case 's':
15581 case 'r':
15582 switch (BitWidth) {
15583 case 16:
15584 RC = &AMDGPU::SReg_32RegClass;
15585 break;
15586 case 64:
15587 RC = &AMDGPU::SGPR_64RegClass;
15588 break;
15589 default:
15590 RC = SIRegisterInfo::getSGPRClassForBitWidth(BitWidth);
15591 if (!RC)
15592 return std::pair(0U, nullptr);
15593 break;
15595 break;
15596 case 'v':
15597 switch (BitWidth) {
15598 case 16:
15599 RC = &AMDGPU::VGPR_32RegClass;
15600 break;
15601 default:
15602 RC = TRI->getVGPRClassForBitWidth(BitWidth);
15603 if (!RC)
15604 return std::pair(0U, nullptr);
15605 break;
15607 break;
15608 case 'a':
15609 if (!Subtarget->hasMAIInsts())
15610 break;
15611 switch (BitWidth) {
15612 case 16:
15613 RC = &AMDGPU::AGPR_32RegClass;
15614 break;
15615 default:
15616 RC = TRI->getAGPRClassForBitWidth(BitWidth);
15617 if (!RC)
15618 return std::pair(0U, nullptr);
15619 break;
15621 break;
15623 // We actually support i128, i16 and f16 as inline parameters
15624 // even if they are not reported as legal
15625 if (RC && (isTypeLegal(VT) || VT.SimpleTy == MVT::i128 ||
15626 VT.SimpleTy == MVT::i16 || VT.SimpleTy == MVT::f16))
15627 return std::pair(0U, RC);
15630 if (Constraint.starts_with("{") && Constraint.ends_with("}")) {
15631 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
15632 if (RegName.consume_front("v")) {
15633 RC = &AMDGPU::VGPR_32RegClass;
15634 } else if (RegName.consume_front("s")) {
15635 RC = &AMDGPU::SGPR_32RegClass;
15636 } else if (RegName.consume_front("a")) {
15637 RC = &AMDGPU::AGPR_32RegClass;
15640 if (RC) {
15641 uint32_t Idx;
15642 if (RegName.consume_front("[")) {
15643 uint32_t End;
15644 bool Failed = RegName.consumeInteger(10, Idx);
15645 Failed |= !RegName.consume_front(":");
15646 Failed |= RegName.consumeInteger(10, End);
15647 Failed |= !RegName.consume_back("]");
15648 if (!Failed) {
15649 uint32_t Width = (End - Idx + 1) * 32;
15650 // Prohibit constraints for register ranges with a width that does not
15651 // match the required type.
15652 if (VT.SimpleTy != MVT::Other && Width != VT.getSizeInBits())
15653 return std::pair(0U, nullptr);
15654 MCRegister Reg = RC->getRegister(Idx);
15655 if (SIRegisterInfo::isVGPRClass(RC))
15656 RC = TRI->getVGPRClassForBitWidth(Width);
15657 else if (SIRegisterInfo::isSGPRClass(RC))
15658 RC = TRI->getSGPRClassForBitWidth(Width);
15659 else if (SIRegisterInfo::isAGPRClass(RC))
15660 RC = TRI->getAGPRClassForBitWidth(Width);
15661 if (RC) {
15662 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, RC);
15663 return std::pair(Reg, RC);
15666 } else {
15667 // Check for lossy scalar/vector conversions.
15668 if (VT.isVector() && VT.getSizeInBits() != 32)
15669 return std::pair(0U, nullptr);
15670 bool Failed = RegName.getAsInteger(10, Idx);
15671 if (!Failed && Idx < RC->getNumRegs())
15672 return std::pair(RC->getRegister(Idx), RC);
15677 auto Ret = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
15678 if (Ret.first)
15679 Ret.second = TRI->getPhysRegBaseClass(Ret.first);
15681 return Ret;
15684 static bool isImmConstraint(StringRef Constraint) {
15685 if (Constraint.size() == 1) {
15686 switch (Constraint[0]) {
15687 default:
15688 break;
15689 case 'I':
15690 case 'J':
15691 case 'A':
15692 case 'B':
15693 case 'C':
15694 return true;
15696 } else if (Constraint == "DA" || Constraint == "DB") {
15697 return true;
15699 return false;
15702 SITargetLowering::ConstraintType
15703 SITargetLowering::getConstraintType(StringRef Constraint) const {
15704 if (Constraint.size() == 1) {
15705 switch (Constraint[0]) {
15706 default:
15707 break;
15708 case 's':
15709 case 'v':
15710 case 'a':
15711 return C_RegisterClass;
15714 if (isImmConstraint(Constraint)) {
15715 return C_Other;
15717 return TargetLowering::getConstraintType(Constraint);
15720 static uint64_t clearUnusedBits(uint64_t Val, unsigned Size) {
15721 if (!AMDGPU::isInlinableIntLiteral(Val)) {
15722 Val = Val & maskTrailingOnes<uint64_t>(Size);
15724 return Val;
15727 void SITargetLowering::LowerAsmOperandForConstraint(SDValue Op,
15728 StringRef Constraint,
15729 std::vector<SDValue> &Ops,
15730 SelectionDAG &DAG) const {
15731 if (isImmConstraint(Constraint)) {
15732 uint64_t Val;
15733 if (getAsmOperandConstVal(Op, Val) &&
15734 checkAsmConstraintVal(Op, Constraint, Val)) {
15735 Val = clearUnusedBits(Val, Op.getScalarValueSizeInBits());
15736 Ops.push_back(DAG.getTargetConstant(Val, SDLoc(Op), MVT::i64));
15738 } else {
15739 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
15743 bool SITargetLowering::getAsmOperandConstVal(SDValue Op, uint64_t &Val) const {
15744 unsigned Size = Op.getScalarValueSizeInBits();
15745 if (Size > 64)
15746 return false;
15748 if (Size == 16 && !Subtarget->has16BitInsts())
15749 return false;
15751 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
15752 Val = C->getSExtValue();
15753 return true;
15755 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op)) {
15756 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
15757 return true;
15759 if (BuildVectorSDNode *V = dyn_cast<BuildVectorSDNode>(Op)) {
15760 if (Size != 16 || Op.getNumOperands() != 2)
15761 return false;
15762 if (Op.getOperand(0).isUndef() || Op.getOperand(1).isUndef())
15763 return false;
15764 if (ConstantSDNode *C = V->getConstantSplatNode()) {
15765 Val = C->getSExtValue();
15766 return true;
15768 if (ConstantFPSDNode *C = V->getConstantFPSplatNode()) {
15769 Val = C->getValueAPF().bitcastToAPInt().getSExtValue();
15770 return true;
15774 return false;
15777 bool SITargetLowering::checkAsmConstraintVal(SDValue Op, StringRef Constraint,
15778 uint64_t Val) const {
15779 if (Constraint.size() == 1) {
15780 switch (Constraint[0]) {
15781 case 'I':
15782 return AMDGPU::isInlinableIntLiteral(Val);
15783 case 'J':
15784 return isInt<16>(Val);
15785 case 'A':
15786 return checkAsmConstraintValA(Op, Val);
15787 case 'B':
15788 return isInt<32>(Val);
15789 case 'C':
15790 return isUInt<32>(clearUnusedBits(Val, Op.getScalarValueSizeInBits())) ||
15791 AMDGPU::isInlinableIntLiteral(Val);
15792 default:
15793 break;
15795 } else if (Constraint.size() == 2) {
15796 if (Constraint == "DA") {
15797 int64_t HiBits = static_cast<int32_t>(Val >> 32);
15798 int64_t LoBits = static_cast<int32_t>(Val);
15799 return checkAsmConstraintValA(Op, HiBits, 32) &&
15800 checkAsmConstraintValA(Op, LoBits, 32);
15802 if (Constraint == "DB") {
15803 return true;
15806 llvm_unreachable("Invalid asm constraint");
15809 bool SITargetLowering::checkAsmConstraintValA(SDValue Op, uint64_t Val,
15810 unsigned MaxSize) const {
15811 unsigned Size = std::min<unsigned>(Op.getScalarValueSizeInBits(), MaxSize);
15812 bool HasInv2Pi = Subtarget->hasInv2PiInlineImm();
15813 if (Size == 16) {
15814 MVT VT = Op.getSimpleValueType();
15815 switch (VT.SimpleTy) {
15816 default:
15817 return false;
15818 case MVT::i16:
15819 return AMDGPU::isInlinableLiteralI16(Val, HasInv2Pi);
15820 case MVT::f16:
15821 return AMDGPU::isInlinableLiteralFP16(Val, HasInv2Pi);
15822 case MVT::bf16:
15823 return AMDGPU::isInlinableLiteralBF16(Val, HasInv2Pi);
15824 case MVT::v2i16:
15825 return AMDGPU::getInlineEncodingV2I16(Val).has_value();
15826 case MVT::v2f16:
15827 return AMDGPU::getInlineEncodingV2F16(Val).has_value();
15828 case MVT::v2bf16:
15829 return AMDGPU::getInlineEncodingV2BF16(Val).has_value();
15832 if ((Size == 32 && AMDGPU::isInlinableLiteral32(Val, HasInv2Pi)) ||
15833 (Size == 64 && AMDGPU::isInlinableLiteral64(Val, HasInv2Pi)))
15834 return true;
15835 return false;
15838 static int getAlignedAGPRClassID(unsigned UnalignedClassID) {
15839 switch (UnalignedClassID) {
15840 case AMDGPU::VReg_64RegClassID:
15841 return AMDGPU::VReg_64_Align2RegClassID;
15842 case AMDGPU::VReg_96RegClassID:
15843 return AMDGPU::VReg_96_Align2RegClassID;
15844 case AMDGPU::VReg_128RegClassID:
15845 return AMDGPU::VReg_128_Align2RegClassID;
15846 case AMDGPU::VReg_160RegClassID:
15847 return AMDGPU::VReg_160_Align2RegClassID;
15848 case AMDGPU::VReg_192RegClassID:
15849 return AMDGPU::VReg_192_Align2RegClassID;
15850 case AMDGPU::VReg_224RegClassID:
15851 return AMDGPU::VReg_224_Align2RegClassID;
15852 case AMDGPU::VReg_256RegClassID:
15853 return AMDGPU::VReg_256_Align2RegClassID;
15854 case AMDGPU::VReg_288RegClassID:
15855 return AMDGPU::VReg_288_Align2RegClassID;
15856 case AMDGPU::VReg_320RegClassID:
15857 return AMDGPU::VReg_320_Align2RegClassID;
15858 case AMDGPU::VReg_352RegClassID:
15859 return AMDGPU::VReg_352_Align2RegClassID;
15860 case AMDGPU::VReg_384RegClassID:
15861 return AMDGPU::VReg_384_Align2RegClassID;
15862 case AMDGPU::VReg_512RegClassID:
15863 return AMDGPU::VReg_512_Align2RegClassID;
15864 case AMDGPU::VReg_1024RegClassID:
15865 return AMDGPU::VReg_1024_Align2RegClassID;
15866 case AMDGPU::AReg_64RegClassID:
15867 return AMDGPU::AReg_64_Align2RegClassID;
15868 case AMDGPU::AReg_96RegClassID:
15869 return AMDGPU::AReg_96_Align2RegClassID;
15870 case AMDGPU::AReg_128RegClassID:
15871 return AMDGPU::AReg_128_Align2RegClassID;
15872 case AMDGPU::AReg_160RegClassID:
15873 return AMDGPU::AReg_160_Align2RegClassID;
15874 case AMDGPU::AReg_192RegClassID:
15875 return AMDGPU::AReg_192_Align2RegClassID;
15876 case AMDGPU::AReg_256RegClassID:
15877 return AMDGPU::AReg_256_Align2RegClassID;
15878 case AMDGPU::AReg_512RegClassID:
15879 return AMDGPU::AReg_512_Align2RegClassID;
15880 case AMDGPU::AReg_1024RegClassID:
15881 return AMDGPU::AReg_1024_Align2RegClassID;
15882 default:
15883 return -1;
15887 // Figure out which registers should be reserved for stack access. Only after
15888 // the function is legalized do we know all of the non-spill stack objects or if
15889 // calls are present.
15890 void SITargetLowering::finalizeLowering(MachineFunction &MF) const {
15891 MachineRegisterInfo &MRI = MF.getRegInfo();
15892 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
15893 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
15894 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
15895 const SIInstrInfo *TII = ST.getInstrInfo();
15897 if (Info->isEntryFunction()) {
15898 // Callable functions have fixed registers used for stack access.
15899 reservePrivateMemoryRegs(getTargetMachine(), MF, *TRI, *Info);
15902 // TODO: Move this logic to getReservedRegs()
15903 // Reserve the SGPR(s) to save/restore EXEC for WWM spill/copy handling.
15904 unsigned MaxNumSGPRs = ST.getMaxNumSGPRs(MF);
15905 Register SReg = ST.isWave32()
15906 ? AMDGPU::SGPR_32RegClass.getRegister(MaxNumSGPRs - 1)
15907 : TRI->getAlignedHighSGPRForRC(MF, /*Align=*/2,
15908 &AMDGPU::SGPR_64RegClass);
15909 Info->setSGPRForEXECCopy(SReg);
15911 assert(!TRI->isSubRegister(Info->getScratchRSrcReg(),
15912 Info->getStackPtrOffsetReg()));
15913 if (Info->getStackPtrOffsetReg() != AMDGPU::SP_REG)
15914 MRI.replaceRegWith(AMDGPU::SP_REG, Info->getStackPtrOffsetReg());
15916 // We need to worry about replacing the default register with itself in case
15917 // of MIR testcases missing the MFI.
15918 if (Info->getScratchRSrcReg() != AMDGPU::PRIVATE_RSRC_REG)
15919 MRI.replaceRegWith(AMDGPU::PRIVATE_RSRC_REG, Info->getScratchRSrcReg());
15921 if (Info->getFrameOffsetReg() != AMDGPU::FP_REG)
15922 MRI.replaceRegWith(AMDGPU::FP_REG, Info->getFrameOffsetReg());
15924 Info->limitOccupancy(MF);
15926 if (ST.isWave32() && !MF.empty()) {
15927 for (auto &MBB : MF) {
15928 for (auto &MI : MBB) {
15929 TII->fixImplicitOperands(MI);
15934 // FIXME: This is a hack to fixup AGPR classes to use the properly aligned
15935 // classes if required. Ideally the register class constraints would differ
15936 // per-subtarget, but there's no easy way to achieve that right now. This is
15937 // not a problem for VGPRs because the correctly aligned VGPR class is implied
15938 // from using them as the register class for legal types.
15939 if (ST.needsAlignedVGPRs()) {
15940 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
15941 const Register Reg = Register::index2VirtReg(I);
15942 const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
15943 if (!RC)
15944 continue;
15945 int NewClassID = getAlignedAGPRClassID(RC->getID());
15946 if (NewClassID != -1)
15947 MRI.setRegClass(Reg, TRI->getRegClass(NewClassID));
15951 TargetLoweringBase::finalizeLowering(MF);
15954 void SITargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15955 KnownBits &Known,
15956 const APInt &DemandedElts,
15957 const SelectionDAG &DAG,
15958 unsigned Depth) const {
15959 Known.resetAll();
15960 unsigned Opc = Op.getOpcode();
15961 switch (Opc) {
15962 case ISD::INTRINSIC_WO_CHAIN: {
15963 unsigned IID = Op.getConstantOperandVal(0);
15964 switch (IID) {
15965 case Intrinsic::amdgcn_mbcnt_lo:
15966 case Intrinsic::amdgcn_mbcnt_hi: {
15967 const GCNSubtarget &ST =
15968 DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
15969 // Wave64 mbcnt_lo returns at most 32 + src1. Otherwise these return at
15970 // most 31 + src1.
15971 Known.Zero.setBitsFrom(
15972 IID == Intrinsic::amdgcn_mbcnt_lo ? ST.getWavefrontSizeLog2() : 5);
15973 KnownBits Known2 = DAG.computeKnownBits(Op.getOperand(2), Depth + 1);
15974 Known = KnownBits::add(Known, Known2);
15975 return;
15978 break;
15981 return AMDGPUTargetLowering::computeKnownBitsForTargetNode(
15982 Op, Known, DemandedElts, DAG, Depth);
15985 void SITargetLowering::computeKnownBitsForFrameIndex(
15986 const int FI, KnownBits &Known, const MachineFunction &MF) const {
15987 TargetLowering::computeKnownBitsForFrameIndex(FI, Known, MF);
15989 // Set the high bits to zero based on the maximum allowed scratch size per
15990 // wave. We can't use vaddr in MUBUF instructions if we don't know the address
15991 // calculation won't overflow, so assume the sign bit is never set.
15992 Known.Zero.setHighBits(getSubtarget()->getKnownHighZeroBitsForFrameIndex());
15995 static void knownBitsForWorkitemID(const GCNSubtarget &ST, GISelKnownBits &KB,
15996 KnownBits &Known, unsigned Dim) {
15997 unsigned MaxValue =
15998 ST.getMaxWorkitemID(KB.getMachineFunction().getFunction(), Dim);
15999 Known.Zero.setHighBits(llvm::countl_zero(MaxValue));
16002 void SITargetLowering::computeKnownBitsForTargetInstr(
16003 GISelKnownBits &KB, Register R, KnownBits &Known, const APInt &DemandedElts,
16004 const MachineRegisterInfo &MRI, unsigned Depth) const {
16005 const MachineInstr *MI = MRI.getVRegDef(R);
16006 switch (MI->getOpcode()) {
16007 case AMDGPU::G_INTRINSIC:
16008 case AMDGPU::G_INTRINSIC_CONVERGENT: {
16009 Intrinsic::ID IID = cast<GIntrinsic>(MI)->getIntrinsicID();
16010 switch (IID) {
16011 case Intrinsic::amdgcn_workitem_id_x:
16012 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 0);
16013 break;
16014 case Intrinsic::amdgcn_workitem_id_y:
16015 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 1);
16016 break;
16017 case Intrinsic::amdgcn_workitem_id_z:
16018 knownBitsForWorkitemID(*getSubtarget(), KB, Known, 2);
16019 break;
16020 case Intrinsic::amdgcn_mbcnt_lo:
16021 case Intrinsic::amdgcn_mbcnt_hi: {
16022 // Wave64 mbcnt_lo returns at most 32 + src1. Otherwise these return at
16023 // most 31 + src1.
16024 Known.Zero.setBitsFrom(IID == Intrinsic::amdgcn_mbcnt_lo
16025 ? getSubtarget()->getWavefrontSizeLog2()
16026 : 5);
16027 KnownBits Known2;
16028 KB.computeKnownBitsImpl(MI->getOperand(3).getReg(), Known2, DemandedElts,
16029 Depth + 1);
16030 Known = KnownBits::add(Known, Known2);
16031 break;
16033 case Intrinsic::amdgcn_groupstaticsize: {
16034 // We can report everything over the maximum size as 0. We can't report
16035 // based on the actual size because we don't know if it's accurate or not
16036 // at any given point.
16037 Known.Zero.setHighBits(
16038 llvm::countl_zero(getSubtarget()->getAddressableLocalMemorySize()));
16039 break;
16042 break;
16044 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
16045 Known.Zero.setHighBits(24);
16046 break;
16047 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
16048 Known.Zero.setHighBits(16);
16049 break;
16050 case AMDGPU::G_AMDGPU_SMED3:
16051 case AMDGPU::G_AMDGPU_UMED3: {
16052 auto [Dst, Src0, Src1, Src2] = MI->getFirst4Regs();
16054 KnownBits Known2;
16055 KB.computeKnownBitsImpl(Src2, Known2, DemandedElts, Depth + 1);
16056 if (Known2.isUnknown())
16057 break;
16059 KnownBits Known1;
16060 KB.computeKnownBitsImpl(Src1, Known1, DemandedElts, Depth + 1);
16061 if (Known1.isUnknown())
16062 break;
16064 KnownBits Known0;
16065 KB.computeKnownBitsImpl(Src0, Known0, DemandedElts, Depth + 1);
16066 if (Known0.isUnknown())
16067 break;
16069 // TODO: Handle LeadZero/LeadOne from UMIN/UMAX handling.
16070 Known.Zero = Known0.Zero & Known1.Zero & Known2.Zero;
16071 Known.One = Known0.One & Known1.One & Known2.One;
16072 break;
16077 Align SITargetLowering::computeKnownAlignForTargetInstr(
16078 GISelKnownBits &KB, Register R, const MachineRegisterInfo &MRI,
16079 unsigned Depth) const {
16080 const MachineInstr *MI = MRI.getVRegDef(R);
16081 if (auto *GI = dyn_cast<GIntrinsic>(MI)) {
16082 // FIXME: Can this move to generic code? What about the case where the call
16083 // site specifies a lower alignment?
16084 Intrinsic::ID IID = GI->getIntrinsicID();
16085 LLVMContext &Ctx = KB.getMachineFunction().getFunction().getContext();
16086 AttributeList Attrs = Intrinsic::getAttributes(Ctx, IID);
16087 if (MaybeAlign RetAlign = Attrs.getRetAlignment())
16088 return *RetAlign;
16090 return Align(1);
16093 Align SITargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
16094 const Align PrefAlign = TargetLowering::getPrefLoopAlignment(ML);
16095 const Align CacheLineAlign = Align(64);
16097 // Pre-GFX10 target did not benefit from loop alignment
16098 if (!ML || DisableLoopAlignment || !getSubtarget()->hasInstPrefetch() ||
16099 getSubtarget()->hasInstFwdPrefetchBug())
16100 return PrefAlign;
16102 // On GFX10 I$ is 4 x 64 bytes cache lines.
16103 // By default prefetcher keeps one cache line behind and reads two ahead.
16104 // We can modify it with S_INST_PREFETCH for larger loops to have two lines
16105 // behind and one ahead.
16106 // Therefor we can benefit from aligning loop headers if loop fits 192 bytes.
16107 // If loop fits 64 bytes it always spans no more than two cache lines and
16108 // does not need an alignment.
16109 // Else if loop is less or equal 128 bytes we do not need to modify prefetch,
16110 // Else if loop is less or equal 192 bytes we need two lines behind.
16112 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
16113 const MachineBasicBlock *Header = ML->getHeader();
16114 if (Header->getAlignment() != PrefAlign)
16115 return Header->getAlignment(); // Already processed.
16117 unsigned LoopSize = 0;
16118 for (const MachineBasicBlock *MBB : ML->blocks()) {
16119 // If inner loop block is aligned assume in average half of the alignment
16120 // size to be added as nops.
16121 if (MBB != Header)
16122 LoopSize += MBB->getAlignment().value() / 2;
16124 for (const MachineInstr &MI : *MBB) {
16125 LoopSize += TII->getInstSizeInBytes(MI);
16126 if (LoopSize > 192)
16127 return PrefAlign;
16131 if (LoopSize <= 64)
16132 return PrefAlign;
16134 if (LoopSize <= 128)
16135 return CacheLineAlign;
16137 // If any of parent loops is surrounded by prefetch instructions do not
16138 // insert new for inner loop, which would reset parent's settings.
16139 for (MachineLoop *P = ML->getParentLoop(); P; P = P->getParentLoop()) {
16140 if (MachineBasicBlock *Exit = P->getExitBlock()) {
16141 auto I = Exit->getFirstNonDebugInstr();
16142 if (I != Exit->end() && I->getOpcode() == AMDGPU::S_INST_PREFETCH)
16143 return CacheLineAlign;
16147 MachineBasicBlock *Pre = ML->getLoopPreheader();
16148 MachineBasicBlock *Exit = ML->getExitBlock();
16150 if (Pre && Exit) {
16151 auto PreTerm = Pre->getFirstTerminator();
16152 if (PreTerm == Pre->begin() ||
16153 std::prev(PreTerm)->getOpcode() != AMDGPU::S_INST_PREFETCH)
16154 BuildMI(*Pre, PreTerm, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
16155 .addImm(1); // prefetch 2 lines behind PC
16157 auto ExitHead = Exit->getFirstNonDebugInstr();
16158 if (ExitHead == Exit->end() ||
16159 ExitHead->getOpcode() != AMDGPU::S_INST_PREFETCH)
16160 BuildMI(*Exit, ExitHead, DebugLoc(), TII->get(AMDGPU::S_INST_PREFETCH))
16161 .addImm(2); // prefetch 1 line behind PC
16164 return CacheLineAlign;
16167 LLVM_ATTRIBUTE_UNUSED
16168 static bool isCopyFromRegOfInlineAsm(const SDNode *N) {
16169 assert(N->getOpcode() == ISD::CopyFromReg);
16170 do {
16171 // Follow the chain until we find an INLINEASM node.
16172 N = N->getOperand(0).getNode();
16173 if (N->getOpcode() == ISD::INLINEASM || N->getOpcode() == ISD::INLINEASM_BR)
16174 return true;
16175 } while (N->getOpcode() == ISD::CopyFromReg);
16176 return false;
16179 bool SITargetLowering::isSDNodeSourceOfDivergence(const SDNode *N,
16180 FunctionLoweringInfo *FLI,
16181 UniformityInfo *UA) const {
16182 switch (N->getOpcode()) {
16183 case ISD::CopyFromReg: {
16184 const RegisterSDNode *R = cast<RegisterSDNode>(N->getOperand(1));
16185 const MachineRegisterInfo &MRI = FLI->MF->getRegInfo();
16186 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
16187 Register Reg = R->getReg();
16189 // FIXME: Why does this need to consider isLiveIn?
16190 if (Reg.isPhysical() || MRI.isLiveIn(Reg))
16191 return !TRI->isSGPRReg(MRI, Reg);
16193 if (const Value *V = FLI->getValueFromVirtualReg(R->getReg()))
16194 return UA->isDivergent(V);
16196 assert(Reg == FLI->DemoteRegister || isCopyFromRegOfInlineAsm(N));
16197 return !TRI->isSGPRReg(MRI, Reg);
16199 case ISD::LOAD: {
16200 const LoadSDNode *L = cast<LoadSDNode>(N);
16201 unsigned AS = L->getAddressSpace();
16202 // A flat load may access private memory.
16203 return AS == AMDGPUAS::PRIVATE_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS;
16205 case ISD::CALLSEQ_END:
16206 return true;
16207 case ISD::INTRINSIC_WO_CHAIN:
16208 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(0));
16209 case ISD::INTRINSIC_W_CHAIN:
16210 return AMDGPU::isIntrinsicSourceOfDivergence(N->getConstantOperandVal(1));
16211 case AMDGPUISD::ATOMIC_CMP_SWAP:
16212 case AMDGPUISD::BUFFER_ATOMIC_SWAP:
16213 case AMDGPUISD::BUFFER_ATOMIC_ADD:
16214 case AMDGPUISD::BUFFER_ATOMIC_SUB:
16215 case AMDGPUISD::BUFFER_ATOMIC_SMIN:
16216 case AMDGPUISD::BUFFER_ATOMIC_UMIN:
16217 case AMDGPUISD::BUFFER_ATOMIC_SMAX:
16218 case AMDGPUISD::BUFFER_ATOMIC_UMAX:
16219 case AMDGPUISD::BUFFER_ATOMIC_AND:
16220 case AMDGPUISD::BUFFER_ATOMIC_OR:
16221 case AMDGPUISD::BUFFER_ATOMIC_XOR:
16222 case AMDGPUISD::BUFFER_ATOMIC_INC:
16223 case AMDGPUISD::BUFFER_ATOMIC_DEC:
16224 case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP:
16225 case AMDGPUISD::BUFFER_ATOMIC_CSUB:
16226 case AMDGPUISD::BUFFER_ATOMIC_FADD:
16227 case AMDGPUISD::BUFFER_ATOMIC_FMIN:
16228 case AMDGPUISD::BUFFER_ATOMIC_FMAX:
16229 // Target-specific read-modify-write atomics are sources of divergence.
16230 return true;
16231 default:
16232 if (auto *A = dyn_cast<AtomicSDNode>(N)) {
16233 // Generic read-modify-write atomics are sources of divergence.
16234 return A->readMem() && A->writeMem();
16236 return false;
16240 bool SITargetLowering::denormalsEnabledForType(const SelectionDAG &DAG,
16241 EVT VT) const {
16242 switch (VT.getScalarType().getSimpleVT().SimpleTy) {
16243 case MVT::f32:
16244 return !denormalModeIsFlushAllF32(DAG.getMachineFunction());
16245 case MVT::f64:
16246 case MVT::f16:
16247 return !denormalModeIsFlushAllF64F16(DAG.getMachineFunction());
16248 default:
16249 return false;
16253 bool SITargetLowering::denormalsEnabledForType(
16254 LLT Ty, const MachineFunction &MF) const {
16255 switch (Ty.getScalarSizeInBits()) {
16256 case 32:
16257 return !denormalModeIsFlushAllF32(MF);
16258 case 64:
16259 case 16:
16260 return !denormalModeIsFlushAllF64F16(MF);
16261 default:
16262 return false;
16266 bool SITargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
16267 const SelectionDAG &DAG,
16268 bool SNaN,
16269 unsigned Depth) const {
16270 if (Op.getOpcode() == AMDGPUISD::CLAMP) {
16271 const MachineFunction &MF = DAG.getMachineFunction();
16272 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
16274 if (Info->getMode().DX10Clamp)
16275 return true; // Clamped to 0.
16276 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
16279 return AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(Op, DAG, SNaN,
16280 Depth);
16283 // On older subtargets, global FP atomic instructions have a hardcoded FP mode
16284 // and do not support FP32 denormals, and only support v2f16/f64 denormals.
16285 static bool atomicIgnoresDenormalModeOrFPModeIsFTZ(const AtomicRMWInst *RMW) {
16286 if (RMW->hasMetadata("amdgpu.ignore.denormal.mode"))
16287 return true;
16289 const fltSemantics &Flt = RMW->getType()->getScalarType()->getFltSemantics();
16290 auto DenormMode = RMW->getFunction()->getDenormalMode(Flt);
16291 if (DenormMode == DenormalMode::getPreserveSign())
16292 return true;
16294 // TODO: Remove this.
16295 return RMW->getFunction()
16296 ->getFnAttribute("amdgpu-unsafe-fp-atomics")
16297 .getValueAsBool();
16300 static OptimizationRemark emitAtomicRMWLegalRemark(const AtomicRMWInst *RMW) {
16301 LLVMContext &Ctx = RMW->getContext();
16302 StringRef SS = Ctx.getSyncScopeName(RMW->getSyncScopeID()).value_or("");
16303 StringRef MemScope = SS.empty() ? StringRef("system") : SS;
16305 return OptimizationRemark(DEBUG_TYPE, "Passed", RMW)
16306 << "Hardware instruction generated for atomic "
16307 << RMW->getOperationName(RMW->getOperation())
16308 << " operation at memory scope " << MemScope;
16311 static bool isV2F16OrV2BF16(Type *Ty) {
16312 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
16313 Type *EltTy = VT->getElementType();
16314 return VT->getNumElements() == 2 &&
16315 (EltTy->isHalfTy() || EltTy->isBFloatTy());
16318 return false;
16321 static bool isV2F16(Type *Ty) {
16322 FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty);
16323 return VT && VT->getNumElements() == 2 && VT->getElementType()->isHalfTy();
16326 static bool isV2BF16(Type *Ty) {
16327 FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty);
16328 return VT && VT->getNumElements() == 2 && VT->getElementType()->isBFloatTy();
16331 /// \return true if atomicrmw integer ops work for the type.
16332 static bool isAtomicRMWLegalIntTy(Type *Ty) {
16333 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
16334 unsigned BW = IT->getBitWidth();
16335 return BW == 32 || BW == 64;
16338 return false;
16341 /// \return true if this atomicrmw xchg type can be selected.
16342 static bool isAtomicRMWLegalXChgTy(const AtomicRMWInst *RMW) {
16343 Type *Ty = RMW->getType();
16344 if (isAtomicRMWLegalIntTy(Ty))
16345 return true;
16347 if (PointerType *PT = dyn_cast<PointerType>(Ty)) {
16348 const DataLayout &DL = RMW->getFunction()->getParent()->getDataLayout();
16349 unsigned BW = DL.getPointerSizeInBits(PT->getAddressSpace());
16350 return BW == 32 || BW == 64;
16353 if (Ty->isFloatTy() || Ty->isDoubleTy())
16354 return true;
16356 if (FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty)) {
16357 return VT->getNumElements() == 2 &&
16358 VT->getElementType()->getPrimitiveSizeInBits() == 16;
16361 return false;
16364 /// \returns true if it's valid to emit a native instruction for \p RMW, based
16365 /// on the properties of the target memory.
16366 static bool globalMemoryFPAtomicIsLegal(const GCNSubtarget &Subtarget,
16367 const AtomicRMWInst *RMW,
16368 bool HasSystemScope) {
16369 // The remote/fine-grained access logic is different from the integer
16370 // atomics. Without AgentScopeFineGrainedRemoteMemoryAtomics support,
16371 // fine-grained access does not work, even for a device local allocation.
16373 // With AgentScopeFineGrainedRemoteMemoryAtomics, system scoped device local
16374 // allocations work.
16375 if (HasSystemScope) {
16376 if (Subtarget.supportsAgentScopeFineGrainedRemoteMemoryAtomics() &&
16377 RMW->hasMetadata("amdgpu.no.remote.memory"))
16378 return true;
16379 } else if (Subtarget.supportsAgentScopeFineGrainedRemoteMemoryAtomics())
16380 return true;
16382 return RMW->hasMetadata("amdgpu.no.fine.grained.memory");
16385 /// \return Action to perform on AtomicRMWInsts for integer operations.
16386 static TargetLowering::AtomicExpansionKind
16387 atomicSupportedIfLegalIntType(const AtomicRMWInst *RMW) {
16388 return isAtomicRMWLegalIntTy(RMW->getType())
16389 ? TargetLowering::AtomicExpansionKind::None
16390 : TargetLowering::AtomicExpansionKind::CmpXChg;
16393 /// Return if a flat address space atomicrmw can access private memory.
16394 static bool flatInstrMayAccessPrivate(const Instruction *I) {
16395 const MDNode *NoaliasAddrSpaceMD =
16396 I->getMetadata(LLVMContext::MD_noalias_addrspace);
16397 if (!NoaliasAddrSpaceMD)
16398 return true;
16400 for (unsigned I = 0, E = NoaliasAddrSpaceMD->getNumOperands() / 2; I != E;
16401 ++I) {
16402 auto *Low = mdconst::extract<ConstantInt>(
16403 NoaliasAddrSpaceMD->getOperand(2 * I + 0));
16404 if (Low->getValue().uge(AMDGPUAS::PRIVATE_ADDRESS)) {
16405 auto *High = mdconst::extract<ConstantInt>(
16406 NoaliasAddrSpaceMD->getOperand(2 * I + 1));
16407 return High->getValue().ule(AMDGPUAS::PRIVATE_ADDRESS);
16411 return true;
16414 TargetLowering::AtomicExpansionKind
16415 SITargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
16416 unsigned AS = RMW->getPointerAddressSpace();
16417 if (AS == AMDGPUAS::PRIVATE_ADDRESS)
16418 return AtomicExpansionKind::NotAtomic;
16420 // 64-bit flat atomics that dynamically reside in private memory will silently
16421 // be dropped.
16423 // Note that we will emit a new copy of the original atomic in the expansion,
16424 // which will be incrementally relegalized.
16425 const DataLayout &DL = RMW->getFunction()->getDataLayout();
16426 if (AS == AMDGPUAS::FLAT_ADDRESS &&
16427 DL.getTypeSizeInBits(RMW->getType()) == 64 &&
16428 flatInstrMayAccessPrivate(RMW))
16429 return AtomicExpansionKind::Expand;
16431 auto ReportUnsafeHWInst = [=](TargetLowering::AtomicExpansionKind Kind) {
16432 OptimizationRemarkEmitter ORE(RMW->getFunction());
16433 ORE.emit([=]() {
16434 return emitAtomicRMWLegalRemark(RMW) << " due to an unsafe request.";
16436 return Kind;
16439 auto SSID = RMW->getSyncScopeID();
16440 bool HasSystemScope =
16441 SSID == SyncScope::System ||
16442 SSID == RMW->getContext().getOrInsertSyncScopeID("one-as");
16444 auto Op = RMW->getOperation();
16445 switch (Op) {
16446 case AtomicRMWInst::Xchg: {
16447 // PCIe supports add and xchg for system atomics.
16448 return isAtomicRMWLegalXChgTy(RMW)
16449 ? TargetLowering::AtomicExpansionKind::None
16450 : TargetLowering::AtomicExpansionKind::CmpXChg;
16452 case AtomicRMWInst::Add:
16453 case AtomicRMWInst::And:
16454 case AtomicRMWInst::UIncWrap:
16455 case AtomicRMWInst::UDecWrap:
16456 return atomicSupportedIfLegalIntType(RMW);
16457 case AtomicRMWInst::Sub:
16458 case AtomicRMWInst::Or:
16459 case AtomicRMWInst::Xor: {
16460 // Atomic sub/or/xor do not work over PCI express, but atomic add
16461 // does. InstCombine transforms these with 0 to or, so undo that.
16462 if (HasSystemScope && AMDGPU::isFlatGlobalAddrSpace(AS)) {
16463 if (Constant *ConstVal = dyn_cast<Constant>(RMW->getValOperand());
16464 ConstVal && ConstVal->isNullValue())
16465 return AtomicExpansionKind::Expand;
16468 return atomicSupportedIfLegalIntType(RMW);
16470 case AtomicRMWInst::FAdd: {
16471 Type *Ty = RMW->getType();
16473 // TODO: Handle REGION_ADDRESS
16474 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
16475 // DS F32 FP atomics do respect the denormal mode, but the rounding mode
16476 // is fixed to round-to-nearest-even.
16478 // F64 / PK_F16 / PK_BF16 never flush and are also fixed to
16479 // round-to-nearest-even.
16481 // We ignore the rounding mode problem, even in strictfp. The C++ standard
16482 // suggests it is OK if the floating-point mode may not match the calling
16483 // thread.
16484 if (Ty->isFloatTy()) {
16485 return Subtarget->hasLDSFPAtomicAddF32() ? AtomicExpansionKind::None
16486 : AtomicExpansionKind::CmpXChg;
16489 if (Ty->isDoubleTy()) {
16490 // Ignores denormal mode, but we don't consider flushing mandatory.
16491 return Subtarget->hasLDSFPAtomicAddF64() ? AtomicExpansionKind::None
16492 : AtomicExpansionKind::CmpXChg;
16495 if (Subtarget->hasAtomicDsPkAdd16Insts() && isV2F16OrV2BF16(Ty))
16496 return AtomicExpansionKind::None;
16498 return AtomicExpansionKind::CmpXChg;
16501 // LDS atomics respect the denormal mode from the mode register.
16503 // Traditionally f32 global/buffer memory atomics would unconditionally
16504 // flush denormals, but newer targets do not flush. f64/f16/bf16 cases never
16505 // flush.
16507 // On targets with flat atomic fadd, denormals would flush depending on
16508 // whether the target address resides in LDS or global memory. We consider
16509 // this flat-maybe-flush as will-flush.
16510 if (Ty->isFloatTy() &&
16511 !Subtarget->hasMemoryAtomicFaddF32DenormalSupport() &&
16512 !atomicIgnoresDenormalModeOrFPModeIsFTZ(RMW))
16513 return AtomicExpansionKind::CmpXChg;
16515 // FIXME: These ReportUnsafeHWInsts are imprecise. Some of these cases are
16516 // safe. The message phrasing also should be better.
16517 if (globalMemoryFPAtomicIsLegal(*Subtarget, RMW, HasSystemScope)) {
16518 if (AS == AMDGPUAS::FLAT_ADDRESS) {
16519 // gfx940, gfx12
16520 if (Subtarget->hasAtomicFlatPkAdd16Insts() && isV2F16OrV2BF16(Ty))
16521 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16522 } else if (AMDGPU::isExtendedGlobalAddrSpace(AS)) {
16523 // gfx90a, gfx940, gfx12
16524 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isV2F16(Ty))
16525 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16527 // gfx940, gfx12
16528 if (Subtarget->hasAtomicGlobalPkAddBF16Inst() && isV2BF16(Ty))
16529 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16530 } else if (AS == AMDGPUAS::BUFFER_FAT_POINTER) {
16531 // gfx90a, gfx940, gfx12
16532 if (Subtarget->hasAtomicBufferGlobalPkAddF16Insts() && isV2F16(Ty))
16533 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16535 // While gfx90a/gfx940 supports v2bf16 for global/flat, it does not for
16536 // buffer. gfx12 does have the buffer version.
16537 if (Subtarget->hasAtomicBufferPkAddBF16Inst() && isV2BF16(Ty))
16538 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16541 // global and flat atomic fadd f64: gfx90a, gfx940.
16542 if (Subtarget->hasFlatBufferGlobalAtomicFaddF64Inst() && Ty->isDoubleTy())
16543 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16545 if (AS != AMDGPUAS::FLAT_ADDRESS) {
16546 if (Ty->isFloatTy()) {
16547 // global/buffer atomic fadd f32 no-rtn: gfx908, gfx90a, gfx940,
16548 // gfx11+.
16549 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
16550 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16551 // global/buffer atomic fadd f32 rtn: gfx90a, gfx940, gfx11+.
16552 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
16553 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16554 } else {
16555 // gfx908
16556 if (RMW->use_empty() &&
16557 Subtarget->hasAtomicBufferGlobalPkAddF16NoRtnInsts() &&
16558 isV2F16(Ty))
16559 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16563 // flat atomic fadd f32: gfx940, gfx11+.
16564 if (AS == AMDGPUAS::FLAT_ADDRESS && Ty->isFloatTy()) {
16565 if (Subtarget->hasFlatAtomicFaddF32Inst())
16566 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16568 // If it is in flat address space, and the type is float, we will try to
16569 // expand it, if the target supports global and lds atomic fadd. The
16570 // reason we need that is, in the expansion, we emit the check of
16571 // address space. If it is in global address space, we emit the global
16572 // atomic fadd; if it is in shared address space, we emit the LDS atomic
16573 // fadd.
16574 if (Subtarget->hasLDSFPAtomicAddF32()) {
16575 if (RMW->use_empty() && Subtarget->hasAtomicFaddNoRtnInsts())
16576 return AtomicExpansionKind::Expand;
16577 if (!RMW->use_empty() && Subtarget->hasAtomicFaddRtnInsts())
16578 return AtomicExpansionKind::Expand;
16583 return AtomicExpansionKind::CmpXChg;
16585 case AtomicRMWInst::FMin:
16586 case AtomicRMWInst::FMax: {
16587 Type *Ty = RMW->getType();
16589 // LDS float and double fmin/fmax were always supported.
16590 if (AS == AMDGPUAS::LOCAL_ADDRESS) {
16591 return Ty->isFloatTy() || Ty->isDoubleTy() ? AtomicExpansionKind::None
16592 : AtomicExpansionKind::CmpXChg;
16595 if (globalMemoryFPAtomicIsLegal(*Subtarget, RMW, HasSystemScope)) {
16596 // For flat and global cases:
16597 // float, double in gfx7. Manual claims denormal support.
16598 // Removed in gfx8.
16599 // float, double restored in gfx10.
16600 // double removed again in gfx11, so only f32 for gfx11/gfx12.
16602 // For gfx9, gfx90a and gfx940 support f64 for global (same as fadd), but
16603 // no f32.
16604 if (AS == AMDGPUAS::FLAT_ADDRESS) {
16605 if (Subtarget->hasAtomicFMinFMaxF32FlatInsts() && Ty->isFloatTy())
16606 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16607 if (Subtarget->hasAtomicFMinFMaxF64FlatInsts() && Ty->isDoubleTy())
16608 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16609 } else if (AMDGPU::isExtendedGlobalAddrSpace(AS) ||
16610 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
16611 if (Subtarget->hasAtomicFMinFMaxF32GlobalInsts() && Ty->isFloatTy())
16612 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16613 if (Subtarget->hasAtomicFMinFMaxF64GlobalInsts() && Ty->isDoubleTy())
16614 return ReportUnsafeHWInst(AtomicExpansionKind::None);
16618 return AtomicExpansionKind::CmpXChg;
16620 case AtomicRMWInst::Min:
16621 case AtomicRMWInst::Max:
16622 case AtomicRMWInst::UMin:
16623 case AtomicRMWInst::UMax: {
16624 if (AMDGPU::isFlatGlobalAddrSpace(AS) ||
16625 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
16626 // Always expand system scope min/max atomics.
16627 if (HasSystemScope)
16628 return AtomicExpansionKind::CmpXChg;
16631 return atomicSupportedIfLegalIntType(RMW);
16633 case AtomicRMWInst::Nand:
16634 case AtomicRMWInst::FSub:
16635 default:
16636 return AtomicExpansionKind::CmpXChg;
16639 llvm_unreachable("covered atomicrmw op switch");
16642 TargetLowering::AtomicExpansionKind
16643 SITargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
16644 return LI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
16645 ? AtomicExpansionKind::NotAtomic
16646 : AtomicExpansionKind::None;
16649 TargetLowering::AtomicExpansionKind
16650 SITargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
16651 return SI->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
16652 ? AtomicExpansionKind::NotAtomic
16653 : AtomicExpansionKind::None;
16656 TargetLowering::AtomicExpansionKind
16657 SITargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CmpX) const {
16658 unsigned AddrSpace = CmpX->getPointerAddressSpace();
16659 if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
16660 return AtomicExpansionKind::NotAtomic;
16662 if (AddrSpace != AMDGPUAS::FLAT_ADDRESS || !flatInstrMayAccessPrivate(CmpX))
16663 return AtomicExpansionKind::None;
16665 const DataLayout &DL = CmpX->getDataLayout();
16667 Type *ValTy = CmpX->getNewValOperand()->getType();
16669 // If a 64-bit flat atomic may alias private, we need to avoid using the
16670 // atomic in the private case.
16671 return DL.getTypeSizeInBits(ValTy) == 64 ? AtomicExpansionKind::Expand
16672 : AtomicExpansionKind::None;
16675 const TargetRegisterClass *
16676 SITargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
16677 const TargetRegisterClass *RC = TargetLoweringBase::getRegClassFor(VT, false);
16678 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
16679 if (RC == &AMDGPU::VReg_1RegClass && !isDivergent)
16680 return Subtarget->isWave64() ? &AMDGPU::SReg_64RegClass
16681 : &AMDGPU::SReg_32RegClass;
16682 if (!TRI->isSGPRClass(RC) && !isDivergent)
16683 return TRI->getEquivalentSGPRClass(RC);
16684 if (TRI->isSGPRClass(RC) && isDivergent)
16685 return TRI->getEquivalentVGPRClass(RC);
16687 return RC;
16690 // FIXME: This is a workaround for DivergenceAnalysis not understanding always
16691 // uniform values (as produced by the mask results of control flow intrinsics)
16692 // used outside of divergent blocks. The phi users need to also be treated as
16693 // always uniform.
16695 // FIXME: DA is no longer in-use. Does this still apply to UniformityAnalysis?
16696 static bool hasCFUser(const Value *V, SmallPtrSet<const Value *, 16> &Visited,
16697 unsigned WaveSize) {
16698 // FIXME: We assume we never cast the mask results of a control flow
16699 // intrinsic.
16700 // Early exit if the type won't be consistent as a compile time hack.
16701 IntegerType *IT = dyn_cast<IntegerType>(V->getType());
16702 if (!IT || IT->getBitWidth() != WaveSize)
16703 return false;
16705 if (!isa<Instruction>(V))
16706 return false;
16707 if (!Visited.insert(V).second)
16708 return false;
16709 bool Result = false;
16710 for (const auto *U : V->users()) {
16711 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(U)) {
16712 if (V == U->getOperand(1)) {
16713 switch (Intrinsic->getIntrinsicID()) {
16714 default:
16715 Result = false;
16716 break;
16717 case Intrinsic::amdgcn_if_break:
16718 case Intrinsic::amdgcn_if:
16719 case Intrinsic::amdgcn_else:
16720 Result = true;
16721 break;
16724 if (V == U->getOperand(0)) {
16725 switch (Intrinsic->getIntrinsicID()) {
16726 default:
16727 Result = false;
16728 break;
16729 case Intrinsic::amdgcn_end_cf:
16730 case Intrinsic::amdgcn_loop:
16731 Result = true;
16732 break;
16735 } else {
16736 Result = hasCFUser(U, Visited, WaveSize);
16738 if (Result)
16739 break;
16741 return Result;
16744 bool SITargetLowering::requiresUniformRegister(MachineFunction &MF,
16745 const Value *V) const {
16746 if (const CallInst *CI = dyn_cast<CallInst>(V)) {
16747 if (CI->isInlineAsm()) {
16748 // FIXME: This cannot give a correct answer. This should only trigger in
16749 // the case where inline asm returns mixed SGPR and VGPR results, used
16750 // outside the defining block. We don't have a specific result to
16751 // consider, so this assumes if any value is SGPR, the overall register
16752 // also needs to be SGPR.
16753 const SIRegisterInfo *SIRI = Subtarget->getRegisterInfo();
16754 TargetLowering::AsmOperandInfoVector TargetConstraints = ParseConstraints(
16755 MF.getDataLayout(), Subtarget->getRegisterInfo(), *CI);
16756 for (auto &TC : TargetConstraints) {
16757 if (TC.Type == InlineAsm::isOutput) {
16758 ComputeConstraintToUse(TC, SDValue());
16759 const TargetRegisterClass *RC =
16760 getRegForInlineAsmConstraint(SIRI, TC.ConstraintCode,
16761 TC.ConstraintVT)
16762 .second;
16763 if (RC && SIRI->isSGPRClass(RC))
16764 return true;
16769 SmallPtrSet<const Value *, 16> Visited;
16770 return hasCFUser(V, Visited, Subtarget->getWavefrontSize());
16773 bool SITargetLowering::hasMemSDNodeUser(SDNode *N) const {
16774 SDNode::use_iterator I = N->use_begin(), E = N->use_end();
16775 for (; I != E; ++I) {
16776 if (MemSDNode *M = dyn_cast<MemSDNode>(*I)) {
16777 if (getBasePtrIndex(M) == I.getOperandNo())
16778 return true;
16781 return false;
16784 bool SITargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0,
16785 SDValue N1) const {
16786 if (!N0.hasOneUse())
16787 return false;
16788 // Take care of the opportunity to keep N0 uniform
16789 if (N0->isDivergent() || !N1->isDivergent())
16790 return true;
16791 // Check if we have a good chance to form the memory access pattern with the
16792 // base and offset
16793 return (DAG.isBaseWithConstantOffset(N0) &&
16794 hasMemSDNodeUser(*N0->use_begin()));
16797 bool SITargetLowering::isReassocProfitable(MachineRegisterInfo &MRI,
16798 Register N0, Register N1) const {
16799 return MRI.hasOneNonDBGUse(N0); // FIXME: handle regbanks
16802 MachineMemOperand::Flags
16803 SITargetLowering::getTargetMMOFlags(const Instruction &I) const {
16804 // Propagate metadata set by AMDGPUAnnotateUniformValues to the MMO of a load.
16805 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
16806 if (I.getMetadata("amdgpu.noclobber"))
16807 Flags |= MONoClobber;
16808 if (I.getMetadata("amdgpu.last.use"))
16809 Flags |= MOLastUse;
16810 return Flags;
16813 bool SITargetLowering::checkForPhysRegDependency(
16814 SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI,
16815 const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const {
16816 if (User->getOpcode() != ISD::CopyToReg)
16817 return false;
16818 if (!Def->isMachineOpcode())
16819 return false;
16820 MachineSDNode *MDef = dyn_cast<MachineSDNode>(Def);
16821 if (!MDef)
16822 return false;
16824 unsigned ResNo = User->getOperand(Op).getResNo();
16825 if (User->getOperand(Op)->getValueType(ResNo) != MVT::i1)
16826 return false;
16827 const MCInstrDesc &II = TII->get(MDef->getMachineOpcode());
16828 if (II.isCompare() && II.hasImplicitDefOfPhysReg(AMDGPU::SCC)) {
16829 PhysReg = AMDGPU::SCC;
16830 const TargetRegisterClass *RC =
16831 TRI->getMinimalPhysRegClass(PhysReg, Def->getSimpleValueType(ResNo));
16832 Cost = RC->getCopyCost();
16833 return true;
16835 return false;
16838 void SITargetLowering::emitExpandAtomicAddrSpacePredicate(
16839 Instruction *AI) const {
16840 // Given: atomicrmw fadd ptr %addr, float %val ordering
16842 // With this expansion we produce the following code:
16843 // [...]
16844 // %is.shared = call i1 @llvm.amdgcn.is.shared(ptr %addr)
16845 // br i1 %is.shared, label %atomicrmw.shared, label %atomicrmw.check.private
16847 // atomicrmw.shared:
16848 // %cast.shared = addrspacecast ptr %addr to ptr addrspace(3)
16849 // %loaded.shared = atomicrmw fadd ptr addrspace(3) %cast.shared,
16850 // float %val ordering
16851 // br label %atomicrmw.phi
16853 // atomicrmw.check.private:
16854 // %is.private = call i1 @llvm.amdgcn.is.private(ptr %int8ptr)
16855 // br i1 %is.private, label %atomicrmw.private, label %atomicrmw.global
16857 // atomicrmw.private:
16858 // %cast.private = addrspacecast ptr %addr to ptr addrspace(5)
16859 // %loaded.private = load float, ptr addrspace(5) %cast.private
16860 // %val.new = fadd float %loaded.private, %val
16861 // store float %val.new, ptr addrspace(5) %cast.private
16862 // br label %atomicrmw.phi
16864 // atomicrmw.global:
16865 // %cast.global = addrspacecast ptr %addr to ptr addrspace(1)
16866 // %loaded.global = atomicrmw fadd ptr addrspace(1) %cast.global,
16867 // float %val ordering
16868 // br label %atomicrmw.phi
16870 // atomicrmw.phi:
16871 // %loaded.phi = phi float [ %loaded.shared, %atomicrmw.shared ],
16872 // [ %loaded.private, %atomicrmw.private ],
16873 // [ %loaded.global, %atomicrmw.global ]
16874 // br label %atomicrmw.end
16876 // atomicrmw.end:
16877 // [...]
16880 // For 64-bit atomics which may reside in private memory, we perform a simpler
16881 // version that only inserts the private check, and uses the flat operation.
16883 IRBuilder<> Builder(AI);
16884 LLVMContext &Ctx = Builder.getContext();
16886 auto *RMW = dyn_cast<AtomicRMWInst>(AI);
16887 const unsigned PtrOpIdx = RMW ? AtomicRMWInst::getPointerOperandIndex()
16888 : AtomicCmpXchgInst::getPointerOperandIndex();
16889 Value *Addr = AI->getOperand(PtrOpIdx);
16891 /// TODO: Only need to check private, then emit flat-known-not private (no
16892 /// need for shared block, or cast to global).
16893 AtomicCmpXchgInst *CX = dyn_cast<AtomicCmpXchgInst>(AI);
16895 Align Alignment;
16896 if (RMW)
16897 Alignment = RMW->getAlign();
16898 else if (CX)
16899 Alignment = CX->getAlign();
16900 else
16901 llvm_unreachable("unhandled atomic operation");
16903 // FullFlatEmulation is true if we need to issue the private, shared, and
16904 // global cases.
16906 // If this is false, we are only dealing with the flat-targeting-private case,
16907 // where we only insert a check for private and still use the flat instruction
16908 // for global and shared.
16910 bool FullFlatEmulation = RMW && RMW->getOperation() == AtomicRMWInst::FAdd &&
16911 Subtarget->hasAtomicFaddInsts() &&
16912 RMW->getType()->isFloatTy();
16914 // If the return value isn't used, do not introduce a false use in the phi.
16915 bool ReturnValueIsUsed = !AI->use_empty();
16917 BasicBlock *BB = Builder.GetInsertBlock();
16918 Function *F = BB->getParent();
16919 BasicBlock *ExitBB =
16920 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
16921 BasicBlock *SharedBB = nullptr;
16923 BasicBlock *CheckPrivateBB = BB;
16924 if (FullFlatEmulation) {
16925 SharedBB = BasicBlock::Create(Ctx, "atomicrmw.shared", F, ExitBB);
16926 CheckPrivateBB =
16927 BasicBlock::Create(Ctx, "atomicrmw.check.private", F, ExitBB);
16930 BasicBlock *PrivateBB =
16931 BasicBlock::Create(Ctx, "atomicrmw.private", F, ExitBB);
16932 BasicBlock *GlobalBB = BasicBlock::Create(Ctx, "atomicrmw.global", F, ExitBB);
16933 BasicBlock *PhiBB = BasicBlock::Create(Ctx, "atomicrmw.phi", F, ExitBB);
16935 std::prev(BB->end())->eraseFromParent();
16936 Builder.SetInsertPoint(BB);
16938 Value *LoadedShared = nullptr;
16939 if (FullFlatEmulation) {
16940 CallInst *IsShared = Builder.CreateIntrinsic(
16941 Intrinsic::amdgcn_is_shared, {}, {Addr}, nullptr, "is.shared");
16942 Builder.CreateCondBr(IsShared, SharedBB, CheckPrivateBB);
16943 Builder.SetInsertPoint(SharedBB);
16944 Value *CastToLocal = Builder.CreateAddrSpaceCast(
16945 Addr, PointerType::get(Ctx, AMDGPUAS::LOCAL_ADDRESS));
16947 Instruction *Clone = AI->clone();
16948 Clone->insertInto(SharedBB, SharedBB->end());
16949 Clone->getOperandUse(PtrOpIdx).set(CastToLocal);
16950 LoadedShared = Clone;
16952 Builder.CreateBr(PhiBB);
16953 Builder.SetInsertPoint(CheckPrivateBB);
16956 CallInst *IsPrivate = Builder.CreateIntrinsic(
16957 Intrinsic::amdgcn_is_private, {}, {Addr}, nullptr, "is.private");
16958 Builder.CreateCondBr(IsPrivate, PrivateBB, GlobalBB);
16960 Builder.SetInsertPoint(PrivateBB);
16962 Value *CastToPrivate = Builder.CreateAddrSpaceCast(
16963 Addr, PointerType::get(Ctx, AMDGPUAS::PRIVATE_ADDRESS));
16965 Value *LoadedPrivate;
16966 if (RMW) {
16967 LoadedPrivate = Builder.CreateAlignedLoad(
16968 RMW->getType(), CastToPrivate, RMW->getAlign(), "loaded.private");
16970 Value *NewVal = buildAtomicRMWValue(RMW->getOperation(), Builder,
16971 LoadedPrivate, RMW->getValOperand());
16973 Builder.CreateAlignedStore(NewVal, CastToPrivate, RMW->getAlign());
16974 } else {
16975 auto [ResultLoad, Equal] =
16976 buildCmpXchgValue(Builder, CastToPrivate, CX->getCompareOperand(),
16977 CX->getNewValOperand(), CX->getAlign());
16979 Value *Insert = Builder.CreateInsertValue(PoisonValue::get(CX->getType()),
16980 ResultLoad, 0);
16981 LoadedPrivate = Builder.CreateInsertValue(Insert, Equal, 1);
16984 Builder.CreateBr(PhiBB);
16986 Builder.SetInsertPoint(GlobalBB);
16988 // Continue using a flat instruction if we only emitted the check for private.
16989 Instruction *LoadedGlobal = AI;
16990 if (FullFlatEmulation) {
16991 Value *CastToGlobal = Builder.CreateAddrSpaceCast(
16992 Addr, PointerType::get(Ctx, AMDGPUAS::GLOBAL_ADDRESS));
16993 AI->getOperandUse(PtrOpIdx).set(CastToGlobal);
16996 AI->removeFromParent();
16997 AI->insertInto(GlobalBB, GlobalBB->end());
16999 // The new atomicrmw may go through another round of legalization later.
17000 if (!FullFlatEmulation) {
17001 // We inserted the runtime check already, make sure we do not try to
17002 // re-expand this.
17003 // TODO: Should union with any existing metadata.
17004 MDBuilder MDB(F->getContext());
17005 MDNode *RangeNotPrivate =
17006 MDB.createRange(APInt(32, AMDGPUAS::PRIVATE_ADDRESS),
17007 APInt(32, AMDGPUAS::PRIVATE_ADDRESS + 1));
17008 LoadedGlobal->setMetadata(LLVMContext::MD_noalias_addrspace,
17009 RangeNotPrivate);
17012 Builder.CreateBr(PhiBB);
17014 Builder.SetInsertPoint(PhiBB);
17016 if (ReturnValueIsUsed) {
17017 PHINode *Loaded = Builder.CreatePHI(AI->getType(), 3);
17018 AI->replaceAllUsesWith(Loaded);
17019 if (FullFlatEmulation)
17020 Loaded->addIncoming(LoadedShared, SharedBB);
17021 Loaded->addIncoming(LoadedPrivate, PrivateBB);
17022 Loaded->addIncoming(LoadedGlobal, GlobalBB);
17023 Loaded->takeName(AI);
17026 Builder.CreateBr(ExitBB);
17029 void SITargetLowering::emitExpandAtomicRMW(AtomicRMWInst *AI) const {
17030 AtomicRMWInst::BinOp Op = AI->getOperation();
17032 if (Op == AtomicRMWInst::Sub || Op == AtomicRMWInst::Or ||
17033 Op == AtomicRMWInst::Xor) {
17034 if (const auto *ConstVal = dyn_cast<Constant>(AI->getValOperand());
17035 ConstVal && ConstVal->isNullValue()) {
17036 // atomicrmw or %ptr, 0 -> atomicrmw add %ptr, 0
17037 AI->setOperation(AtomicRMWInst::Add);
17039 // We may still need the private-alias-flat handling below.
17041 // TODO: Skip this for cases where we cannot access remote memory.
17045 // The non-flat expansions should only perform the de-canonicalization of
17046 // identity values.
17047 if (AI->getPointerAddressSpace() != AMDGPUAS::FLAT_ADDRESS)
17048 return;
17050 emitExpandAtomicAddrSpacePredicate(AI);
17053 void SITargetLowering::emitExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) const {
17054 emitExpandAtomicAddrSpacePredicate(CI);
17057 LoadInst *
17058 SITargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
17059 IRBuilder<> Builder(AI);
17060 auto Order = AI->getOrdering();
17062 // The optimization removes store aspect of the atomicrmw. Therefore, cache
17063 // must be flushed if the atomic ordering had a release semantics. This is
17064 // not necessary a fence, a release fence just coincides to do that flush.
17065 // Avoid replacing of an atomicrmw with a release semantics.
17066 if (isReleaseOrStronger(Order))
17067 return nullptr;
17069 LoadInst *LI = Builder.CreateAlignedLoad(
17070 AI->getType(), AI->getPointerOperand(), AI->getAlign());
17071 LI->setAtomic(Order, AI->getSyncScopeID());
17072 LI->copyMetadata(*AI);
17073 LI->takeName(AI);
17074 AI->replaceAllUsesWith(LI);
17075 AI->eraseFromParent();
17076 return LI;