AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / ARM / ARMBaseInstrInfo.cpp
blobae54bad0a05543eccf1dd075bb84746e02375fe7
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/CodeGen/DFAPacketizer.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachinePipeliner.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/MachineScheduler.h"
41 #include "llvm/CodeGen/MultiHazardRecognizer.h"
42 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSchedule.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/MC/MCAsmInfo.h"
53 #include "llvm/MC/MCInstrDesc.h"
54 #include "llvm/MC/MCInstrItineraries.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstdint>
66 #include <iterator>
67 #include <new>
68 #include <utility>
69 #include <vector>
71 using namespace llvm;
73 #define DEBUG_TYPE "arm-instrinfo"
75 #define GET_INSTRINFO_CTOR_DTOR
76 #include "ARMGenInstrInfo.inc"
78 static cl::opt<bool>
79 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
80 cl::desc("Enable ARM 2-addr to 3-addr conv"));
82 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
83 struct ARM_MLxEntry {
84 uint16_t MLxOpc; // MLA / MLS opcode
85 uint16_t MulOpc; // Expanded multiplication opcode
86 uint16_t AddSubOpc; // Expanded add / sub opcode
87 bool NegAcc; // True if the acc is negated before the add / sub.
88 bool HasLane; // True if instruction has an extra "lane" operand.
91 static const ARM_MLxEntry ARM_MLxTable[] = {
92 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
93 // fp scalar ops
94 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
95 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
96 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
97 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
98 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
99 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
100 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
101 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
103 // fp SIMD ops
104 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
105 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
106 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
107 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
108 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
109 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
110 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
111 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
114 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
115 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
116 Subtarget(STI) {
117 for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) {
118 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
119 llvm_unreachable("Duplicated entries?");
120 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
121 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
125 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
126 // currently defaults to no prepass hazard recognizer.
127 ScheduleHazardRecognizer *
128 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
129 const ScheduleDAG *DAG) const {
130 if (usePreRAHazardRecognizer()) {
131 const InstrItineraryData *II =
132 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
133 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
135 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
138 // Called during:
139 // - pre-RA scheduling
140 // - post-RA scheduling when FeatureUseMISched is set
141 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
142 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
143 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
145 // We would like to restrict this hazard recognizer to only
146 // post-RA scheduling; we can tell that we're post-RA because we don't
147 // track VRegLiveness.
148 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
149 // banks banked on bit 2. Assume that TCMs are in use.
150 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
151 MHR->AddHazardRecognizer(
152 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
154 // Not inserting ARMHazardRecognizerFPMLx because that would change
155 // legacy behavior
157 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
158 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
159 return MHR;
162 // Called during post-RA scheduling when FeatureUseMISched is not set
163 ScheduleHazardRecognizer *ARMBaseInstrInfo::
164 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
165 const ScheduleDAG *DAG) const {
166 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
168 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
169 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
171 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
172 if (BHR)
173 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
174 return MHR;
177 MachineInstr *
178 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
179 LiveIntervals *LIS) const {
180 // FIXME: Thumb2 support.
182 if (!EnableARM3Addr)
183 return nullptr;
185 MachineFunction &MF = *MI.getParent()->getParent();
186 uint64_t TSFlags = MI.getDesc().TSFlags;
187 bool isPre = false;
188 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
189 default: return nullptr;
190 case ARMII::IndexModePre:
191 isPre = true;
192 break;
193 case ARMII::IndexModePost:
194 break;
197 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
198 // operation.
199 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
200 if (MemOpc == 0)
201 return nullptr;
203 MachineInstr *UpdateMI = nullptr;
204 MachineInstr *MemMI = nullptr;
205 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
206 const MCInstrDesc &MCID = MI.getDesc();
207 unsigned NumOps = MCID.getNumOperands();
208 bool isLoad = !MI.mayStore();
209 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
210 const MachineOperand &Base = MI.getOperand(2);
211 const MachineOperand &Offset = MI.getOperand(NumOps - 3);
212 Register WBReg = WB.getReg();
213 Register BaseReg = Base.getReg();
214 Register OffReg = Offset.getReg();
215 unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
216 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
217 switch (AddrMode) {
218 default: llvm_unreachable("Unknown indexed op!");
219 case ARMII::AddrMode2: {
220 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
221 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
222 if (OffReg == 0) {
223 if (ARM_AM::getSOImmVal(Amt) == -1)
224 // Can't encode it in a so_imm operand. This transformation will
225 // add more than 1 instruction. Abandon!
226 return nullptr;
227 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
228 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
229 .addReg(BaseReg)
230 .addImm(Amt)
231 .add(predOps(Pred))
232 .add(condCodeOp());
233 } else if (Amt != 0) {
234 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
235 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
236 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
237 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
238 .addReg(BaseReg)
239 .addReg(OffReg)
240 .addReg(0)
241 .addImm(SOOpc)
242 .add(predOps(Pred))
243 .add(condCodeOp());
244 } else
245 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
246 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
247 .addReg(BaseReg)
248 .addReg(OffReg)
249 .add(predOps(Pred))
250 .add(condCodeOp());
251 break;
253 case ARMII::AddrMode3 : {
254 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
255 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
256 if (OffReg == 0)
257 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
258 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
259 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
260 .addReg(BaseReg)
261 .addImm(Amt)
262 .add(predOps(Pred))
263 .add(condCodeOp());
264 else
265 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
266 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
267 .addReg(BaseReg)
268 .addReg(OffReg)
269 .add(predOps(Pred))
270 .add(condCodeOp());
271 break;
275 std::vector<MachineInstr*> NewMIs;
276 if (isPre) {
277 if (isLoad)
278 MemMI =
279 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
280 .addReg(WBReg)
281 .addImm(0)
282 .addImm(Pred);
283 else
284 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
285 .addReg(MI.getOperand(1).getReg())
286 .addReg(WBReg)
287 .addReg(0)
288 .addImm(0)
289 .addImm(Pred);
290 NewMIs.push_back(MemMI);
291 NewMIs.push_back(UpdateMI);
292 } else {
293 if (isLoad)
294 MemMI =
295 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
296 .addReg(BaseReg)
297 .addImm(0)
298 .addImm(Pred);
299 else
300 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
301 .addReg(MI.getOperand(1).getReg())
302 .addReg(BaseReg)
303 .addReg(0)
304 .addImm(0)
305 .addImm(Pred);
306 if (WB.isDead())
307 UpdateMI->getOperand(0).setIsDead();
308 NewMIs.push_back(UpdateMI);
309 NewMIs.push_back(MemMI);
312 // Transfer LiveVariables states, kill / dead info.
313 if (LV) {
314 for (const MachineOperand &MO : MI.operands()) {
315 if (MO.isReg() && MO.getReg().isVirtual()) {
316 Register Reg = MO.getReg();
318 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
319 if (MO.isDef()) {
320 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
321 if (MO.isDead())
322 LV->addVirtualRegisterDead(Reg, *NewMI);
324 if (MO.isUse() && MO.isKill()) {
325 for (unsigned j = 0; j < 2; ++j) {
326 // Look at the two new MI's in reverse order.
327 MachineInstr *NewMI = NewMIs[j];
328 if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr))
329 continue;
330 LV->addVirtualRegisterKilled(Reg, *NewMI);
331 if (VI.removeKill(MI))
332 VI.Kills.push_back(NewMI);
333 break;
340 MachineBasicBlock &MBB = *MI.getParent();
341 MBB.insert(MI, NewMIs[1]);
342 MBB.insert(MI, NewMIs[0]);
343 return NewMIs[0];
346 // Branch analysis.
347 // Cond vector output format:
348 // 0 elements indicates an unconditional branch
349 // 2 elements indicates a conditional branch; the elements are
350 // the condition to check and the CPSR.
351 // 3 elements indicates a hardware loop end; the elements
352 // are the opcode, the operand value to test, and a dummy
353 // operand used to pad out to 3 operands.
354 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
355 MachineBasicBlock *&TBB,
356 MachineBasicBlock *&FBB,
357 SmallVectorImpl<MachineOperand> &Cond,
358 bool AllowModify) const {
359 TBB = nullptr;
360 FBB = nullptr;
362 MachineBasicBlock::instr_iterator I = MBB.instr_end();
363 if (I == MBB.instr_begin())
364 return false; // Empty blocks are easy.
365 --I;
367 // Walk backwards from the end of the basic block until the branch is
368 // analyzed or we give up.
369 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
370 // Flag to be raised on unanalyzeable instructions. This is useful in cases
371 // where we want to clean up on the end of the basic block before we bail
372 // out.
373 bool CantAnalyze = false;
375 // Skip over DEBUG values, predicated nonterminators and speculation
376 // barrier terminators.
377 while (I->isDebugInstr() || !I->isTerminator() ||
378 isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
379 I->getOpcode() == ARM::t2DoLoopStartTP){
380 if (I == MBB.instr_begin())
381 return false;
382 --I;
385 if (isIndirectBranchOpcode(I->getOpcode()) ||
386 isJumpTableBranchOpcode(I->getOpcode())) {
387 // Indirect branches and jump tables can't be analyzed, but we still want
388 // to clean up any instructions at the tail of the basic block.
389 CantAnalyze = true;
390 } else if (isUncondBranchOpcode(I->getOpcode())) {
391 TBB = I->getOperand(0).getMBB();
392 } else if (isCondBranchOpcode(I->getOpcode())) {
393 // Bail out if we encounter multiple conditional branches.
394 if (!Cond.empty())
395 return true;
397 assert(!FBB && "FBB should have been null.");
398 FBB = TBB;
399 TBB = I->getOperand(0).getMBB();
400 Cond.push_back(I->getOperand(1));
401 Cond.push_back(I->getOperand(2));
402 } else if (I->isReturn()) {
403 // Returns can't be analyzed, but we should run cleanup.
404 CantAnalyze = true;
405 } else if (I->getOpcode() == ARM::t2LoopEnd &&
406 MBB.getParent()
407 ->getSubtarget<ARMSubtarget>()
408 .enableMachinePipeliner()) {
409 if (!Cond.empty())
410 return true;
411 FBB = TBB;
412 TBB = I->getOperand(1).getMBB();
413 Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
414 Cond.push_back(I->getOperand(0));
415 Cond.push_back(MachineOperand::CreateImm(0));
416 } else {
417 // We encountered other unrecognized terminator. Bail out immediately.
418 return true;
421 // Cleanup code - to be run for unpredicated unconditional branches and
422 // returns.
423 if (!isPredicated(*I) &&
424 (isUncondBranchOpcode(I->getOpcode()) ||
425 isIndirectBranchOpcode(I->getOpcode()) ||
426 isJumpTableBranchOpcode(I->getOpcode()) ||
427 I->isReturn())) {
428 // Forget any previous condition branch information - it no longer applies.
429 Cond.clear();
430 FBB = nullptr;
432 // If we can modify the function, delete everything below this
433 // unconditional branch.
434 if (AllowModify) {
435 MachineBasicBlock::iterator DI = std::next(I);
436 while (DI != MBB.instr_end()) {
437 MachineInstr &InstToDelete = *DI;
438 ++DI;
439 // Speculation barriers must not be deleted.
440 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
441 continue;
442 InstToDelete.eraseFromParent();
447 if (CantAnalyze) {
448 // We may not be able to analyze the block, but we could still have
449 // an unconditional branch as the last instruction in the block, which
450 // just branches to layout successor. If this is the case, then just
451 // remove it if we're allowed to make modifications.
452 if (AllowModify && !isPredicated(MBB.back()) &&
453 isUncondBranchOpcode(MBB.back().getOpcode()) &&
454 TBB && MBB.isLayoutSuccessor(TBB))
455 removeBranch(MBB);
456 return true;
459 if (I == MBB.instr_begin())
460 return false;
462 --I;
465 // We made it past the terminators without bailing out - we must have
466 // analyzed this branch successfully.
467 return false;
470 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
471 int *BytesRemoved) const {
472 assert(!BytesRemoved && "code size not handled");
474 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
475 if (I == MBB.end())
476 return 0;
478 if (!isUncondBranchOpcode(I->getOpcode()) &&
479 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
480 return 0;
482 // Remove the branch.
483 I->eraseFromParent();
485 I = MBB.end();
487 if (I == MBB.begin()) return 1;
488 --I;
489 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
490 return 1;
492 // Remove the branch.
493 I->eraseFromParent();
494 return 2;
497 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
498 MachineBasicBlock *TBB,
499 MachineBasicBlock *FBB,
500 ArrayRef<MachineOperand> Cond,
501 const DebugLoc &DL,
502 int *BytesAdded) const {
503 assert(!BytesAdded && "code size not handled");
504 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
505 int BOpc = !AFI->isThumbFunction()
506 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
507 int BccOpc = !AFI->isThumbFunction()
508 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
509 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
511 // Shouldn't be a fall through.
512 assert(TBB && "insertBranch must not be told to insert a fallthrough");
513 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
514 "ARM branch conditions have two or three components!");
516 // For conditional branches, we use addOperand to preserve CPSR flags.
518 if (!FBB) {
519 if (Cond.empty()) { // Unconditional branch?
520 if (isThumb)
521 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
522 else
523 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
524 } else if (Cond.size() == 2) {
525 BuildMI(&MBB, DL, get(BccOpc))
526 .addMBB(TBB)
527 .addImm(Cond[0].getImm())
528 .add(Cond[1]);
529 } else
530 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
531 return 1;
534 // Two-way conditional branch.
535 if (Cond.size() == 2)
536 BuildMI(&MBB, DL, get(BccOpc))
537 .addMBB(TBB)
538 .addImm(Cond[0].getImm())
539 .add(Cond[1]);
540 else if (Cond.size() == 3)
541 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
542 if (isThumb)
543 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
544 else
545 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
546 return 2;
549 bool ARMBaseInstrInfo::
550 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
551 if (Cond.size() == 2) {
552 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
553 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
554 return false;
556 return true;
559 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
560 if (MI.isBundle()) {
561 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
562 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
563 while (++I != E && I->isInsideBundle()) {
564 int PIdx = I->findFirstPredOperandIdx();
565 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
566 return true;
568 return false;
571 int PIdx = MI.findFirstPredOperandIdx();
572 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
575 std::string ARMBaseInstrInfo::createMIROperandComment(
576 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
577 const TargetRegisterInfo *TRI) const {
579 // First, let's see if there is a generic comment for this operand
580 std::string GenericComment =
581 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
582 if (!GenericComment.empty())
583 return GenericComment;
585 // If not, check if we have an immediate operand.
586 if (!Op.isImm())
587 return std::string();
589 // And print its corresponding condition code if the immediate is a
590 // predicate.
591 int FirstPredOp = MI.findFirstPredOperandIdx();
592 if (FirstPredOp != (int) OpIdx)
593 return std::string();
595 std::string CC = "CC::";
596 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
597 return CC;
600 bool ARMBaseInstrInfo::PredicateInstruction(
601 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
602 unsigned Opc = MI.getOpcode();
603 if (isUncondBranchOpcode(Opc)) {
604 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
605 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
606 .addImm(Pred[0].getImm())
607 .addReg(Pred[1].getReg());
608 return true;
611 int PIdx = MI.findFirstPredOperandIdx();
612 if (PIdx != -1) {
613 MachineOperand &PMO = MI.getOperand(PIdx);
614 PMO.setImm(Pred[0].getImm());
615 MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
617 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
618 // IT block. This affects how they are printed.
619 const MCInstrDesc &MCID = MI.getDesc();
620 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
621 assert(MCID.operands()[1].isOptionalDef() &&
622 "CPSR def isn't expected operand");
623 assert((MI.getOperand(1).isDead() ||
624 MI.getOperand(1).getReg() != ARM::CPSR) &&
625 "if conversion tried to stop defining used CPSR");
626 MI.getOperand(1).setReg(ARM::NoRegister);
629 return true;
631 return false;
634 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
635 ArrayRef<MachineOperand> Pred2) const {
636 if (Pred1.size() > 2 || Pred2.size() > 2)
637 return false;
639 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
640 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
641 if (CC1 == CC2)
642 return true;
644 switch (CC1) {
645 default:
646 return false;
647 case ARMCC::AL:
648 return true;
649 case ARMCC::HS:
650 return CC2 == ARMCC::HI;
651 case ARMCC::LS:
652 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
653 case ARMCC::GE:
654 return CC2 == ARMCC::GT;
655 case ARMCC::LE:
656 return CC2 == ARMCC::LT;
660 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
661 std::vector<MachineOperand> &Pred,
662 bool SkipDead) const {
663 bool Found = false;
664 for (const MachineOperand &MO : MI.operands()) {
665 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
666 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
667 if (ClobbersCPSR || IsCPSR) {
669 // Filter out T1 instructions that have a dead CPSR,
670 // allowing IT blocks to be generated containing T1 instructions
671 const MCInstrDesc &MCID = MI.getDesc();
672 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
673 SkipDead)
674 continue;
676 Pred.push_back(MO);
677 Found = true;
681 return Found;
684 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
685 for (const auto &MO : MI.operands())
686 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
687 return true;
688 return false;
691 static bool isEligibleForITBlock(const MachineInstr *MI) {
692 switch (MI->getOpcode()) {
693 default: return true;
694 case ARM::tADC: // ADC (register) T1
695 case ARM::tADDi3: // ADD (immediate) T1
696 case ARM::tADDi8: // ADD (immediate) T2
697 case ARM::tADDrr: // ADD (register) T1
698 case ARM::tAND: // AND (register) T1
699 case ARM::tASRri: // ASR (immediate) T1
700 case ARM::tASRrr: // ASR (register) T1
701 case ARM::tBIC: // BIC (register) T1
702 case ARM::tEOR: // EOR (register) T1
703 case ARM::tLSLri: // LSL (immediate) T1
704 case ARM::tLSLrr: // LSL (register) T1
705 case ARM::tLSRri: // LSR (immediate) T1
706 case ARM::tLSRrr: // LSR (register) T1
707 case ARM::tMUL: // MUL T1
708 case ARM::tMVN: // MVN (register) T1
709 case ARM::tORR: // ORR (register) T1
710 case ARM::tROR: // ROR (register) T1
711 case ARM::tRSB: // RSB (immediate) T1
712 case ARM::tSBC: // SBC (register) T1
713 case ARM::tSUBi3: // SUB (immediate) T1
714 case ARM::tSUBi8: // SUB (immediate) T2
715 case ARM::tSUBrr: // SUB (register) T1
716 return !ARMBaseInstrInfo::isCPSRDefined(*MI);
720 /// isPredicable - Return true if the specified instruction can be predicated.
721 /// By default, this returns true for every instruction with a
722 /// PredicateOperand.
723 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
724 if (!MI.isPredicable())
725 return false;
727 if (MI.isBundle())
728 return false;
730 if (!isEligibleForITBlock(&MI))
731 return false;
733 const MachineFunction *MF = MI.getParent()->getParent();
734 const ARMFunctionInfo *AFI =
735 MF->getInfo<ARMFunctionInfo>();
737 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
738 // In their ARM encoding, they can't be encoded in a conditional form.
739 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
740 return false;
742 // Make indirect control flow changes unpredicable when SLS mitigation is
743 // enabled.
744 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
745 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
746 return false;
747 if (ST.hardenSlsBlr() && isIndirectCall(MI))
748 return false;
750 if (AFI->isThumb2Function()) {
751 if (getSubtarget().restrictIT())
752 return isV8EligibleForIT(&MI);
755 return true;
758 namespace llvm {
760 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
761 for (const MachineOperand &MO : MI->operands()) {
762 if (!MO.isReg() || MO.isUndef() || MO.isUse())
763 continue;
764 if (MO.getReg() != ARM::CPSR)
765 continue;
766 if (!MO.isDead())
767 return false;
769 // all definitions of CPSR are dead
770 return true;
773 } // end namespace llvm
775 /// GetInstSize - Return the size of the specified MachineInstr.
777 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
778 const MachineBasicBlock &MBB = *MI.getParent();
779 const MachineFunction *MF = MBB.getParent();
780 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
782 const MCInstrDesc &MCID = MI.getDesc();
784 switch (MI.getOpcode()) {
785 default:
786 // Return the size specified in .td file. If there's none, return 0, as we
787 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
788 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
789 // contrast to AArch64 instructions which have a default size of 4 bytes for
790 // example.
791 return MCID.getSize();
792 case TargetOpcode::BUNDLE:
793 return getInstBundleLength(MI);
794 case ARM::CONSTPOOL_ENTRY:
795 case ARM::JUMPTABLE_INSTS:
796 case ARM::JUMPTABLE_ADDRS:
797 case ARM::JUMPTABLE_TBB:
798 case ARM::JUMPTABLE_TBH:
799 // If this machine instr is a constant pool entry, its size is recorded as
800 // operand #2.
801 return MI.getOperand(2).getImm();
802 case ARM::SPACE:
803 return MI.getOperand(1).getImm();
804 case ARM::INLINEASM:
805 case ARM::INLINEASM_BR: {
806 // If this machine instr is an inline asm, measure it.
807 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
808 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
809 Size = alignTo(Size, 4);
810 return Size;
815 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
816 unsigned Size = 0;
817 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
818 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
819 while (++I != E && I->isInsideBundle()) {
820 assert(!I->isBundle() && "No nested bundle!");
821 Size += getInstSizeInBytes(*I);
823 return Size;
826 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
827 MachineBasicBlock::iterator I,
828 unsigned DestReg, bool KillSrc,
829 const ARMSubtarget &Subtarget) const {
830 unsigned Opc = Subtarget.isThumb()
831 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
832 : ARM::MRS;
834 MachineInstrBuilder MIB =
835 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
837 // There is only 1 A/R class MRS instruction, and it always refers to
838 // APSR. However, there are lots of other possibilities on M-class cores.
839 if (Subtarget.isMClass())
840 MIB.addImm(0x800);
842 MIB.add(predOps(ARMCC::AL))
843 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
846 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
847 MachineBasicBlock::iterator I,
848 unsigned SrcReg, bool KillSrc,
849 const ARMSubtarget &Subtarget) const {
850 unsigned Opc = Subtarget.isThumb()
851 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
852 : ARM::MSR;
854 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
856 if (Subtarget.isMClass())
857 MIB.addImm(0x800);
858 else
859 MIB.addImm(8);
861 MIB.addReg(SrcReg, getKillRegState(KillSrc))
862 .add(predOps(ARMCC::AL))
863 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
866 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
867 MIB.addImm(ARMVCC::None);
868 MIB.addReg(0);
869 MIB.addReg(0); // tp_reg
872 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
873 Register DestReg) {
874 addUnpredicatedMveVpredNOp(MIB);
875 MIB.addReg(DestReg, RegState::Undef);
878 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
879 MIB.addImm(Cond);
880 MIB.addReg(ARM::VPR, RegState::Implicit);
881 MIB.addReg(0); // tp_reg
884 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
885 unsigned Cond, unsigned Inactive) {
886 addPredicatedMveVpredNOp(MIB, Cond);
887 MIB.addReg(Inactive);
890 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
891 MachineBasicBlock::iterator I,
892 const DebugLoc &DL, MCRegister DestReg,
893 MCRegister SrcReg, bool KillSrc,
894 bool RenamableDest,
895 bool RenamableSrc) const {
896 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
897 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
899 if (GPRDest && GPRSrc) {
900 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
901 .addReg(SrcReg, getKillRegState(KillSrc))
902 .add(predOps(ARMCC::AL))
903 .add(condCodeOp());
904 return;
907 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
908 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
910 unsigned Opc = 0;
911 if (SPRDest && SPRSrc)
912 Opc = ARM::VMOVS;
913 else if (GPRDest && SPRSrc)
914 Opc = ARM::VMOVRS;
915 else if (SPRDest && GPRSrc)
916 Opc = ARM::VMOVSR;
917 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
918 Opc = ARM::VMOVD;
919 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
920 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
922 if (Opc) {
923 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
924 MIB.addReg(SrcReg, getKillRegState(KillSrc));
925 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
926 MIB.addReg(SrcReg, getKillRegState(KillSrc));
927 if (Opc == ARM::MVE_VORR)
928 addUnpredicatedMveVpredROp(MIB, DestReg);
929 else if (Opc != ARM::MQPRCopy)
930 MIB.add(predOps(ARMCC::AL));
931 return;
934 // Handle register classes that require multiple instructions.
935 unsigned BeginIdx = 0;
936 unsigned SubRegs = 0;
937 int Spacing = 1;
939 // Use VORRq when possible.
940 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
941 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
942 BeginIdx = ARM::qsub_0;
943 SubRegs = 2;
944 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
945 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
946 BeginIdx = ARM::qsub_0;
947 SubRegs = 4;
948 // Fall back to VMOVD.
949 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
950 Opc = ARM::VMOVD;
951 BeginIdx = ARM::dsub_0;
952 SubRegs = 2;
953 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
954 Opc = ARM::VMOVD;
955 BeginIdx = ARM::dsub_0;
956 SubRegs = 3;
957 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
958 Opc = ARM::VMOVD;
959 BeginIdx = ARM::dsub_0;
960 SubRegs = 4;
961 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
962 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
963 BeginIdx = ARM::gsub_0;
964 SubRegs = 2;
965 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
966 Opc = ARM::VMOVD;
967 BeginIdx = ARM::dsub_0;
968 SubRegs = 2;
969 Spacing = 2;
970 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
971 Opc = ARM::VMOVD;
972 BeginIdx = ARM::dsub_0;
973 SubRegs = 3;
974 Spacing = 2;
975 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
976 Opc = ARM::VMOVD;
977 BeginIdx = ARM::dsub_0;
978 SubRegs = 4;
979 Spacing = 2;
980 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
981 !Subtarget.hasFP64()) {
982 Opc = ARM::VMOVS;
983 BeginIdx = ARM::ssub_0;
984 SubRegs = 2;
985 } else if (SrcReg == ARM::CPSR) {
986 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
987 return;
988 } else if (DestReg == ARM::CPSR) {
989 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
990 return;
991 } else if (DestReg == ARM::VPR) {
992 assert(ARM::GPRRegClass.contains(SrcReg));
993 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
994 .addReg(SrcReg, getKillRegState(KillSrc))
995 .add(predOps(ARMCC::AL));
996 return;
997 } else if (SrcReg == ARM::VPR) {
998 assert(ARM::GPRRegClass.contains(DestReg));
999 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
1000 .addReg(SrcReg, getKillRegState(KillSrc))
1001 .add(predOps(ARMCC::AL));
1002 return;
1003 } else if (DestReg == ARM::FPSCR_NZCV) {
1004 assert(ARM::GPRRegClass.contains(SrcReg));
1005 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1006 .addReg(SrcReg, getKillRegState(KillSrc))
1007 .add(predOps(ARMCC::AL));
1008 return;
1009 } else if (SrcReg == ARM::FPSCR_NZCV) {
1010 assert(ARM::GPRRegClass.contains(DestReg));
1011 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1012 .addReg(SrcReg, getKillRegState(KillSrc))
1013 .add(predOps(ARMCC::AL));
1014 return;
1017 assert(Opc && "Impossible reg-to-reg copy");
1019 const TargetRegisterInfo *TRI = &getRegisterInfo();
1020 MachineInstrBuilder Mov;
1022 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1023 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1024 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1025 Spacing = -Spacing;
1027 #ifndef NDEBUG
1028 SmallSet<unsigned, 4> DstRegs;
1029 #endif
1030 for (unsigned i = 0; i != SubRegs; ++i) {
1031 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1032 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1033 assert(Dst && Src && "Bad sub-register");
1034 #ifndef NDEBUG
1035 assert(!DstRegs.count(Src) && "destructive vector copy");
1036 DstRegs.insert(Dst);
1037 #endif
1038 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1039 // VORR (NEON or MVE) takes two source operands.
1040 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1041 Mov.addReg(Src);
1043 // MVE VORR takes predicate operands in place of an ordinary condition.
1044 if (Opc == ARM::MVE_VORR)
1045 addUnpredicatedMveVpredROp(Mov, Dst);
1046 else
1047 Mov = Mov.add(predOps(ARMCC::AL));
1048 // MOVr can set CC.
1049 if (Opc == ARM::MOVr)
1050 Mov = Mov.add(condCodeOp());
1052 // Add implicit super-register defs and kills to the last instruction.
1053 Mov->addRegisterDefined(DestReg, TRI);
1054 if (KillSrc)
1055 Mov->addRegisterKilled(SrcReg, TRI);
1058 std::optional<DestSourcePair>
1059 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1060 // VMOVRRD is also a copy instruction but it requires
1061 // special way of handling. It is more complex copy version
1062 // and since that we are not considering it. For recognition
1063 // of such instruction isExtractSubregLike MI interface fuction
1064 // could be used.
1065 // VORRq is considered as a move only if two inputs are
1066 // the same register.
1067 if (!MI.isMoveReg() ||
1068 (MI.getOpcode() == ARM::VORRq &&
1069 MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1070 return std::nullopt;
1071 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1074 std::optional<ParamLoadedValue>
1075 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1076 Register Reg) const {
1077 if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1078 Register DstReg = DstSrcPair->Destination->getReg();
1080 // TODO: We don't handle cases where the forwarding reg is narrower/wider
1081 // than the copy registers. Consider for example:
1083 // s16 = VMOVS s0
1084 // s17 = VMOVS s1
1085 // call @callee(d0)
1087 // We'd like to describe the call site value of d0 as d8, but this requires
1088 // gathering and merging the descriptions for the two VMOVS instructions.
1090 // We also don't handle the reverse situation, where the forwarding reg is
1091 // narrower than the copy destination:
1093 // d8 = VMOVD d0
1094 // call @callee(s1)
1096 // We need to produce a fragment description (the call site value of s1 is
1097 // /not/ just d8).
1098 if (DstReg != Reg)
1099 return std::nullopt;
1101 return TargetInstrInfo::describeLoadedValue(MI, Reg);
1104 const MachineInstrBuilder &
1105 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1106 unsigned SubIdx, unsigned State,
1107 const TargetRegisterInfo *TRI) const {
1108 if (!SubIdx)
1109 return MIB.addReg(Reg, State);
1111 if (Register::isPhysicalRegister(Reg))
1112 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1113 return MIB.addReg(Reg, State, SubIdx);
1116 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1117 MachineBasicBlock::iterator I,
1118 Register SrcReg, bool isKill, int FI,
1119 const TargetRegisterClass *RC,
1120 const TargetRegisterInfo *TRI,
1121 Register VReg) const {
1122 MachineFunction &MF = *MBB.getParent();
1123 MachineFrameInfo &MFI = MF.getFrameInfo();
1124 Align Alignment = MFI.getObjectAlign(FI);
1126 MachineMemOperand *MMO = MF.getMachineMemOperand(
1127 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1128 MFI.getObjectSize(FI), Alignment);
1130 switch (TRI->getSpillSize(*RC)) {
1131 case 2:
1132 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1133 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1134 .addReg(SrcReg, getKillRegState(isKill))
1135 .addFrameIndex(FI)
1136 .addImm(0)
1137 .addMemOperand(MMO)
1138 .add(predOps(ARMCC::AL));
1139 } else
1140 llvm_unreachable("Unknown reg class!");
1141 break;
1142 case 4:
1143 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1144 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1145 .addReg(SrcReg, getKillRegState(isKill))
1146 .addFrameIndex(FI)
1147 .addImm(0)
1148 .addMemOperand(MMO)
1149 .add(predOps(ARMCC::AL));
1150 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1151 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1152 .addReg(SrcReg, getKillRegState(isKill))
1153 .addFrameIndex(FI)
1154 .addImm(0)
1155 .addMemOperand(MMO)
1156 .add(predOps(ARMCC::AL));
1157 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1158 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1159 .addReg(SrcReg, getKillRegState(isKill))
1160 .addFrameIndex(FI)
1161 .addImm(0)
1162 .addMemOperand(MMO)
1163 .add(predOps(ARMCC::AL));
1164 } else if (ARM::cl_FPSCR_NZCVRegClass.hasSubClassEq(RC)) {
1165 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_FPSCR_NZCVQC_off))
1166 .addReg(SrcReg, getKillRegState(isKill))
1167 .addFrameIndex(FI)
1168 .addImm(0)
1169 .addMemOperand(MMO)
1170 .add(predOps(ARMCC::AL));
1171 } else
1172 llvm_unreachable("Unknown reg class!");
1173 break;
1174 case 8:
1175 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1176 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1177 .addReg(SrcReg, getKillRegState(isKill))
1178 .addFrameIndex(FI)
1179 .addImm(0)
1180 .addMemOperand(MMO)
1181 .add(predOps(ARMCC::AL));
1182 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1183 if (Subtarget.hasV5TEOps()) {
1184 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1185 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1186 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1187 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1188 .add(predOps(ARMCC::AL));
1189 } else {
1190 // Fallback to STM instruction, which has existed since the dawn of
1191 // time.
1192 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1193 .addFrameIndex(FI)
1194 .addMemOperand(MMO)
1195 .add(predOps(ARMCC::AL));
1196 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1197 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1199 } else
1200 llvm_unreachable("Unknown reg class!");
1201 break;
1202 case 16:
1203 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1204 // Use aligned spills if the stack can be realigned.
1205 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1206 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1207 .addFrameIndex(FI)
1208 .addImm(16)
1209 .addReg(SrcReg, getKillRegState(isKill))
1210 .addMemOperand(MMO)
1211 .add(predOps(ARMCC::AL));
1212 } else {
1213 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1214 .addReg(SrcReg, getKillRegState(isKill))
1215 .addFrameIndex(FI)
1216 .addMemOperand(MMO)
1217 .add(predOps(ARMCC::AL));
1219 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1220 Subtarget.hasMVEIntegerOps()) {
1221 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1222 MIB.addReg(SrcReg, getKillRegState(isKill))
1223 .addFrameIndex(FI)
1224 .addImm(0)
1225 .addMemOperand(MMO);
1226 addUnpredicatedMveVpredNOp(MIB);
1227 } else
1228 llvm_unreachable("Unknown reg class!");
1229 break;
1230 case 24:
1231 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1232 // Use aligned spills if the stack can be realigned.
1233 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1234 Subtarget.hasNEON()) {
1235 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1236 .addFrameIndex(FI)
1237 .addImm(16)
1238 .addReg(SrcReg, getKillRegState(isKill))
1239 .addMemOperand(MMO)
1240 .add(predOps(ARMCC::AL));
1241 } else {
1242 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1243 get(ARM::VSTMDIA))
1244 .addFrameIndex(FI)
1245 .add(predOps(ARMCC::AL))
1246 .addMemOperand(MMO);
1247 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1248 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1249 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1251 } else
1252 llvm_unreachable("Unknown reg class!");
1253 break;
1254 case 32:
1255 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1256 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1257 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1258 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1259 Subtarget.hasNEON()) {
1260 // FIXME: It's possible to only store part of the QQ register if the
1261 // spilled def has a sub-register index.
1262 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1263 .addFrameIndex(FI)
1264 .addImm(16)
1265 .addReg(SrcReg, getKillRegState(isKill))
1266 .addMemOperand(MMO)
1267 .add(predOps(ARMCC::AL));
1268 } else if (Subtarget.hasMVEIntegerOps()) {
1269 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1270 .addReg(SrcReg, getKillRegState(isKill))
1271 .addFrameIndex(FI)
1272 .addMemOperand(MMO);
1273 } else {
1274 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1275 get(ARM::VSTMDIA))
1276 .addFrameIndex(FI)
1277 .add(predOps(ARMCC::AL))
1278 .addMemOperand(MMO);
1279 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1280 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1281 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1282 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1284 } else
1285 llvm_unreachable("Unknown reg class!");
1286 break;
1287 case 64:
1288 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1289 Subtarget.hasMVEIntegerOps()) {
1290 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1291 .addReg(SrcReg, getKillRegState(isKill))
1292 .addFrameIndex(FI)
1293 .addMemOperand(MMO);
1294 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1295 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1296 .addFrameIndex(FI)
1297 .add(predOps(ARMCC::AL))
1298 .addMemOperand(MMO);
1299 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1300 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1301 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1302 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1303 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1304 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1305 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1306 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1307 } else
1308 llvm_unreachable("Unknown reg class!");
1309 break;
1310 default:
1311 llvm_unreachable("Unknown reg class!");
1315 Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1316 int &FrameIndex) const {
1317 switch (MI.getOpcode()) {
1318 default: break;
1319 case ARM::STRrs:
1320 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1321 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1322 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1323 MI.getOperand(3).getImm() == 0) {
1324 FrameIndex = MI.getOperand(1).getIndex();
1325 return MI.getOperand(0).getReg();
1327 break;
1328 case ARM::STRi12:
1329 case ARM::t2STRi12:
1330 case ARM::tSTRspi:
1331 case ARM::VSTRD:
1332 case ARM::VSTRS:
1333 case ARM::VSTRH:
1334 case ARM::VSTR_P0_off:
1335 case ARM::VSTR_FPSCR_NZCVQC_off:
1336 case ARM::MVE_VSTRWU32:
1337 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1338 MI.getOperand(2).getImm() == 0) {
1339 FrameIndex = MI.getOperand(1).getIndex();
1340 return MI.getOperand(0).getReg();
1342 break;
1343 case ARM::VST1q64:
1344 case ARM::VST1d64TPseudo:
1345 case ARM::VST1d64QPseudo:
1346 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1347 FrameIndex = MI.getOperand(0).getIndex();
1348 return MI.getOperand(2).getReg();
1350 break;
1351 case ARM::VSTMQIA:
1352 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1353 FrameIndex = MI.getOperand(1).getIndex();
1354 return MI.getOperand(0).getReg();
1356 break;
1357 case ARM::MQQPRStore:
1358 case ARM::MQQQQPRStore:
1359 if (MI.getOperand(1).isFI()) {
1360 FrameIndex = MI.getOperand(1).getIndex();
1361 return MI.getOperand(0).getReg();
1363 break;
1366 return 0;
1369 Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1370 int &FrameIndex) const {
1371 SmallVector<const MachineMemOperand *, 1> Accesses;
1372 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1373 Accesses.size() == 1) {
1374 FrameIndex =
1375 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1376 ->getFrameIndex();
1377 return true;
1379 return false;
1382 void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1383 MachineBasicBlock::iterator I,
1384 Register DestReg, int FI,
1385 const TargetRegisterClass *RC,
1386 const TargetRegisterInfo *TRI,
1387 Register VReg) const {
1388 DebugLoc DL;
1389 if (I != MBB.end()) DL = I->getDebugLoc();
1390 MachineFunction &MF = *MBB.getParent();
1391 MachineFrameInfo &MFI = MF.getFrameInfo();
1392 const Align Alignment = MFI.getObjectAlign(FI);
1393 MachineMemOperand *MMO = MF.getMachineMemOperand(
1394 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1395 MFI.getObjectSize(FI), Alignment);
1397 switch (TRI->getSpillSize(*RC)) {
1398 case 2:
1399 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1400 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1401 .addFrameIndex(FI)
1402 .addImm(0)
1403 .addMemOperand(MMO)
1404 .add(predOps(ARMCC::AL));
1405 } else
1406 llvm_unreachable("Unknown reg class!");
1407 break;
1408 case 4:
1409 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1410 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1411 .addFrameIndex(FI)
1412 .addImm(0)
1413 .addMemOperand(MMO)
1414 .add(predOps(ARMCC::AL));
1415 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1416 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1417 .addFrameIndex(FI)
1418 .addImm(0)
1419 .addMemOperand(MMO)
1420 .add(predOps(ARMCC::AL));
1421 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1422 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1423 .addFrameIndex(FI)
1424 .addImm(0)
1425 .addMemOperand(MMO)
1426 .add(predOps(ARMCC::AL));
1427 } else if (ARM::cl_FPSCR_NZCVRegClass.hasSubClassEq(RC)) {
1428 BuildMI(MBB, I, DL, get(ARM::VLDR_FPSCR_NZCVQC_off), DestReg)
1429 .addFrameIndex(FI)
1430 .addImm(0)
1431 .addMemOperand(MMO)
1432 .add(predOps(ARMCC::AL));
1433 } else
1434 llvm_unreachable("Unknown reg class!");
1435 break;
1436 case 8:
1437 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1438 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1439 .addFrameIndex(FI)
1440 .addImm(0)
1441 .addMemOperand(MMO)
1442 .add(predOps(ARMCC::AL));
1443 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1444 MachineInstrBuilder MIB;
1446 if (Subtarget.hasV5TEOps()) {
1447 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1448 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1449 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1450 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1451 .add(predOps(ARMCC::AL));
1452 } else {
1453 // Fallback to LDM instruction, which has existed since the dawn of
1454 // time.
1455 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1456 .addFrameIndex(FI)
1457 .addMemOperand(MMO)
1458 .add(predOps(ARMCC::AL));
1459 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1460 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1463 if (DestReg.isPhysical())
1464 MIB.addReg(DestReg, RegState::ImplicitDefine);
1465 } else
1466 llvm_unreachable("Unknown reg class!");
1467 break;
1468 case 16:
1469 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1470 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1471 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1472 .addFrameIndex(FI)
1473 .addImm(16)
1474 .addMemOperand(MMO)
1475 .add(predOps(ARMCC::AL));
1476 } else {
1477 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1478 .addFrameIndex(FI)
1479 .addMemOperand(MMO)
1480 .add(predOps(ARMCC::AL));
1482 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1483 Subtarget.hasMVEIntegerOps()) {
1484 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1485 MIB.addFrameIndex(FI)
1486 .addImm(0)
1487 .addMemOperand(MMO);
1488 addUnpredicatedMveVpredNOp(MIB);
1489 } else
1490 llvm_unreachable("Unknown reg class!");
1491 break;
1492 case 24:
1493 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1494 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1495 Subtarget.hasNEON()) {
1496 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1497 .addFrameIndex(FI)
1498 .addImm(16)
1499 .addMemOperand(MMO)
1500 .add(predOps(ARMCC::AL));
1501 } else {
1502 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1503 .addFrameIndex(FI)
1504 .addMemOperand(MMO)
1505 .add(predOps(ARMCC::AL));
1506 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1507 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1508 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1509 if (DestReg.isPhysical())
1510 MIB.addReg(DestReg, RegState::ImplicitDefine);
1512 } else
1513 llvm_unreachable("Unknown reg class!");
1514 break;
1515 case 32:
1516 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1517 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1518 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1519 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1520 Subtarget.hasNEON()) {
1521 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1522 .addFrameIndex(FI)
1523 .addImm(16)
1524 .addMemOperand(MMO)
1525 .add(predOps(ARMCC::AL));
1526 } else if (Subtarget.hasMVEIntegerOps()) {
1527 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1528 .addFrameIndex(FI)
1529 .addMemOperand(MMO);
1530 } else {
1531 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1532 .addFrameIndex(FI)
1533 .add(predOps(ARMCC::AL))
1534 .addMemOperand(MMO);
1535 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1536 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1537 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1538 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1539 if (DestReg.isPhysical())
1540 MIB.addReg(DestReg, RegState::ImplicitDefine);
1542 } else
1543 llvm_unreachable("Unknown reg class!");
1544 break;
1545 case 64:
1546 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1547 Subtarget.hasMVEIntegerOps()) {
1548 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1549 .addFrameIndex(FI)
1550 .addMemOperand(MMO);
1551 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1552 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1553 .addFrameIndex(FI)
1554 .add(predOps(ARMCC::AL))
1555 .addMemOperand(MMO);
1556 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1557 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1558 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1559 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1560 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1561 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1562 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1563 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1564 if (DestReg.isPhysical())
1565 MIB.addReg(DestReg, RegState::ImplicitDefine);
1566 } else
1567 llvm_unreachable("Unknown reg class!");
1568 break;
1569 default:
1570 llvm_unreachable("Unknown regclass!");
1574 Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1575 int &FrameIndex) const {
1576 switch (MI.getOpcode()) {
1577 default: break;
1578 case ARM::LDRrs:
1579 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1580 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1581 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1582 MI.getOperand(3).getImm() == 0) {
1583 FrameIndex = MI.getOperand(1).getIndex();
1584 return MI.getOperand(0).getReg();
1586 break;
1587 case ARM::LDRi12:
1588 case ARM::t2LDRi12:
1589 case ARM::tLDRspi:
1590 case ARM::VLDRD:
1591 case ARM::VLDRS:
1592 case ARM::VLDRH:
1593 case ARM::VLDR_P0_off:
1594 case ARM::VLDR_FPSCR_NZCVQC_off:
1595 case ARM::MVE_VLDRWU32:
1596 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1597 MI.getOperand(2).getImm() == 0) {
1598 FrameIndex = MI.getOperand(1).getIndex();
1599 return MI.getOperand(0).getReg();
1601 break;
1602 case ARM::VLD1q64:
1603 case ARM::VLD1d8TPseudo:
1604 case ARM::VLD1d16TPseudo:
1605 case ARM::VLD1d32TPseudo:
1606 case ARM::VLD1d64TPseudo:
1607 case ARM::VLD1d8QPseudo:
1608 case ARM::VLD1d16QPseudo:
1609 case ARM::VLD1d32QPseudo:
1610 case ARM::VLD1d64QPseudo:
1611 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1612 FrameIndex = MI.getOperand(1).getIndex();
1613 return MI.getOperand(0).getReg();
1615 break;
1616 case ARM::VLDMQIA:
1617 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1618 FrameIndex = MI.getOperand(1).getIndex();
1619 return MI.getOperand(0).getReg();
1621 break;
1622 case ARM::MQQPRLoad:
1623 case ARM::MQQQQPRLoad:
1624 if (MI.getOperand(1).isFI()) {
1625 FrameIndex = MI.getOperand(1).getIndex();
1626 return MI.getOperand(0).getReg();
1628 break;
1631 return 0;
1634 Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1635 int &FrameIndex) const {
1636 SmallVector<const MachineMemOperand *, 1> Accesses;
1637 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1638 Accesses.size() == 1) {
1639 FrameIndex =
1640 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1641 ->getFrameIndex();
1642 return true;
1644 return false;
1647 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1648 /// depending on whether the result is used.
1649 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1650 bool isThumb1 = Subtarget.isThumb1Only();
1651 bool isThumb2 = Subtarget.isThumb2();
1652 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1654 DebugLoc dl = MI->getDebugLoc();
1655 MachineBasicBlock *BB = MI->getParent();
1657 MachineInstrBuilder LDM, STM;
1658 if (isThumb1 || !MI->getOperand(1).isDead()) {
1659 MachineOperand LDWb(MI->getOperand(1));
1660 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1661 : isThumb1 ? ARM::tLDMIA_UPD
1662 : ARM::LDMIA_UPD))
1663 .add(LDWb);
1664 } else {
1665 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1668 if (isThumb1 || !MI->getOperand(0).isDead()) {
1669 MachineOperand STWb(MI->getOperand(0));
1670 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1671 : isThumb1 ? ARM::tSTMIA_UPD
1672 : ARM::STMIA_UPD))
1673 .add(STWb);
1674 } else {
1675 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1678 MachineOperand LDBase(MI->getOperand(3));
1679 LDM.add(LDBase).add(predOps(ARMCC::AL));
1681 MachineOperand STBase(MI->getOperand(2));
1682 STM.add(STBase).add(predOps(ARMCC::AL));
1684 // Sort the scratch registers into ascending order.
1685 const TargetRegisterInfo &TRI = getRegisterInfo();
1686 SmallVector<unsigned, 6> ScratchRegs;
1687 for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5))
1688 ScratchRegs.push_back(MO.getReg());
1689 llvm::sort(ScratchRegs,
1690 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1691 return TRI.getEncodingValue(Reg1) <
1692 TRI.getEncodingValue(Reg2);
1695 for (const auto &Reg : ScratchRegs) {
1696 LDM.addReg(Reg, RegState::Define);
1697 STM.addReg(Reg, RegState::Kill);
1700 BB->erase(MI);
1703 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1704 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1705 expandLoadStackGuard(MI);
1706 MI.getParent()->erase(MI);
1707 return true;
1710 if (MI.getOpcode() == ARM::MEMCPY) {
1711 expandMEMCPY(MI);
1712 return true;
1715 // This hook gets to expand COPY instructions before they become
1716 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1717 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1718 // changed into a VORR that can go down the NEON pipeline.
1719 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1720 return false;
1722 // Look for a copy between even S-registers. That is where we keep floats
1723 // when using NEON v2f32 instructions for f32 arithmetic.
1724 Register DstRegS = MI.getOperand(0).getReg();
1725 Register SrcRegS = MI.getOperand(1).getReg();
1726 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1727 return false;
1729 const TargetRegisterInfo *TRI = &getRegisterInfo();
1730 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1731 &ARM::DPRRegClass);
1732 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1733 &ARM::DPRRegClass);
1734 if (!DstRegD || !SrcRegD)
1735 return false;
1737 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1738 // legal if the COPY already defines the full DstRegD, and it isn't a
1739 // sub-register insertion.
1740 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1741 return false;
1743 // A dead copy shouldn't show up here, but reject it just in case.
1744 if (MI.getOperand(0).isDead())
1745 return false;
1747 // All clear, widen the COPY.
1748 LLVM_DEBUG(dbgs() << "widening: " << MI);
1749 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1751 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1752 // or some other super-register.
1753 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD, /*TRI=*/nullptr);
1754 if (ImpDefIdx != -1)
1755 MI.removeOperand(ImpDefIdx);
1757 // Change the opcode and operands.
1758 MI.setDesc(get(ARM::VMOVD));
1759 MI.getOperand(0).setReg(DstRegD);
1760 MI.getOperand(1).setReg(SrcRegD);
1761 MIB.add(predOps(ARMCC::AL));
1763 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1764 // register scavenger and machine verifier, so we need to indicate that we
1765 // are reading an undefined value from SrcRegD, but a proper value from
1766 // SrcRegS.
1767 MI.getOperand(1).setIsUndef();
1768 MIB.addReg(SrcRegS, RegState::Implicit);
1770 // SrcRegD may actually contain an unrelated value in the ssub_1
1771 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1772 if (MI.getOperand(1).isKill()) {
1773 MI.getOperand(1).setIsKill(false);
1774 MI.addRegisterKilled(SrcRegS, TRI, true);
1777 LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1778 return true;
1781 /// Create a copy of a const pool value. Update CPI to the new index and return
1782 /// the label UID.
1783 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1784 MachineConstantPool *MCP = MF.getConstantPool();
1785 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1787 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1788 assert(MCPE.isMachineConstantPoolEntry() &&
1789 "Expecting a machine constantpool entry!");
1790 ARMConstantPoolValue *ACPV =
1791 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1793 unsigned PCLabelId = AFI->createPICLabelUId();
1794 ARMConstantPoolValue *NewCPV = nullptr;
1796 // FIXME: The below assumes PIC relocation model and that the function
1797 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1798 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1799 // instructions, so that's probably OK, but is PIC always correct when
1800 // we get here?
1801 if (ACPV->isGlobalValue())
1802 NewCPV = ARMConstantPoolConstant::Create(
1803 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1804 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1805 else if (ACPV->isExtSymbol())
1806 NewCPV = ARMConstantPoolSymbol::
1807 Create(MF.getFunction().getContext(),
1808 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1809 else if (ACPV->isBlockAddress())
1810 NewCPV = ARMConstantPoolConstant::
1811 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1812 ARMCP::CPBlockAddress, 4);
1813 else if (ACPV->isLSDA())
1814 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1815 ARMCP::CPLSDA, 4);
1816 else if (ACPV->isMachineBasicBlock())
1817 NewCPV = ARMConstantPoolMBB::
1818 Create(MF.getFunction().getContext(),
1819 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1820 else
1821 llvm_unreachable("Unexpected ARM constantpool value type!!");
1822 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1823 return PCLabelId;
1826 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1827 MachineBasicBlock::iterator I,
1828 Register DestReg, unsigned SubIdx,
1829 const MachineInstr &Orig,
1830 const TargetRegisterInfo &TRI) const {
1831 unsigned Opcode = Orig.getOpcode();
1832 switch (Opcode) {
1833 default: {
1834 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1835 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1836 MBB.insert(I, MI);
1837 break;
1839 case ARM::tLDRpci_pic:
1840 case ARM::t2LDRpci_pic: {
1841 MachineFunction &MF = *MBB.getParent();
1842 unsigned CPI = Orig.getOperand(1).getIndex();
1843 unsigned PCLabelId = duplicateCPV(MF, CPI);
1844 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1845 .addConstantPoolIndex(CPI)
1846 .addImm(PCLabelId)
1847 .cloneMemRefs(Orig);
1848 break;
1853 MachineInstr &
1854 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1855 MachineBasicBlock::iterator InsertBefore,
1856 const MachineInstr &Orig) const {
1857 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1858 MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1859 for (;;) {
1860 switch (I->getOpcode()) {
1861 case ARM::tLDRpci_pic:
1862 case ARM::t2LDRpci_pic: {
1863 MachineFunction &MF = *MBB.getParent();
1864 unsigned CPI = I->getOperand(1).getIndex();
1865 unsigned PCLabelId = duplicateCPV(MF, CPI);
1866 I->getOperand(1).setIndex(CPI);
1867 I->getOperand(2).setImm(PCLabelId);
1868 break;
1871 if (!I->isBundledWithSucc())
1872 break;
1873 ++I;
1875 return Cloned;
1878 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1879 const MachineInstr &MI1,
1880 const MachineRegisterInfo *MRI) const {
1881 unsigned Opcode = MI0.getOpcode();
1882 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1883 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1884 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1885 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1886 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1887 Opcode == ARM::t2MOV_ga_pcrel) {
1888 if (MI1.getOpcode() != Opcode)
1889 return false;
1890 if (MI0.getNumOperands() != MI1.getNumOperands())
1891 return false;
1893 const MachineOperand &MO0 = MI0.getOperand(1);
1894 const MachineOperand &MO1 = MI1.getOperand(1);
1895 if (MO0.getOffset() != MO1.getOffset())
1896 return false;
1898 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1899 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1900 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1901 Opcode == ARM::t2MOV_ga_pcrel)
1902 // Ignore the PC labels.
1903 return MO0.getGlobal() == MO1.getGlobal();
1905 const MachineFunction *MF = MI0.getParent()->getParent();
1906 const MachineConstantPool *MCP = MF->getConstantPool();
1907 int CPI0 = MO0.getIndex();
1908 int CPI1 = MO1.getIndex();
1909 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1910 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1911 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1912 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1913 if (isARMCP0 && isARMCP1) {
1914 ARMConstantPoolValue *ACPV0 =
1915 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1916 ARMConstantPoolValue *ACPV1 =
1917 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1918 return ACPV0->hasSameValue(ACPV1);
1919 } else if (!isARMCP0 && !isARMCP1) {
1920 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1922 return false;
1923 } else if (Opcode == ARM::PICLDR) {
1924 if (MI1.getOpcode() != Opcode)
1925 return false;
1926 if (MI0.getNumOperands() != MI1.getNumOperands())
1927 return false;
1929 Register Addr0 = MI0.getOperand(1).getReg();
1930 Register Addr1 = MI1.getOperand(1).getReg();
1931 if (Addr0 != Addr1) {
1932 if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual())
1933 return false;
1935 // This assumes SSA form.
1936 MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1937 MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1938 // Check if the loaded value, e.g. a constantpool of a global address, are
1939 // the same.
1940 if (!produceSameValue(*Def0, *Def1, MRI))
1941 return false;
1944 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1945 // %12 = PICLDR %11, 0, 14, %noreg
1946 const MachineOperand &MO0 = MI0.getOperand(i);
1947 const MachineOperand &MO1 = MI1.getOperand(i);
1948 if (!MO0.isIdenticalTo(MO1))
1949 return false;
1951 return true;
1954 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1957 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1958 /// determine if two loads are loading from the same base address. It should
1959 /// only return true if the base pointers are the same and the only differences
1960 /// between the two addresses is the offset. It also returns the offsets by
1961 /// reference.
1963 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1964 /// is permanently disabled.
1965 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1966 int64_t &Offset1,
1967 int64_t &Offset2) const {
1968 // Don't worry about Thumb: just ARM and Thumb2.
1969 if (Subtarget.isThumb1Only()) return false;
1971 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1972 return false;
1974 auto IsLoadOpcode = [&](unsigned Opcode) {
1975 switch (Opcode) {
1976 default:
1977 return false;
1978 case ARM::LDRi12:
1979 case ARM::LDRBi12:
1980 case ARM::LDRD:
1981 case ARM::LDRH:
1982 case ARM::LDRSB:
1983 case ARM::LDRSH:
1984 case ARM::VLDRD:
1985 case ARM::VLDRS:
1986 case ARM::t2LDRi8:
1987 case ARM::t2LDRBi8:
1988 case ARM::t2LDRDi8:
1989 case ARM::t2LDRSHi8:
1990 case ARM::t2LDRi12:
1991 case ARM::t2LDRBi12:
1992 case ARM::t2LDRSHi12:
1993 return true;
1997 if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
1998 !IsLoadOpcode(Load2->getMachineOpcode()))
1999 return false;
2001 // Check if base addresses and chain operands match.
2002 if (Load1->getOperand(0) != Load2->getOperand(0) ||
2003 Load1->getOperand(4) != Load2->getOperand(4))
2004 return false;
2006 // Index should be Reg0.
2007 if (Load1->getOperand(3) != Load2->getOperand(3))
2008 return false;
2010 // Determine the offsets.
2011 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
2012 isa<ConstantSDNode>(Load2->getOperand(1))) {
2013 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
2014 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
2015 return true;
2018 return false;
2021 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2022 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2023 /// be scheduled togther. On some targets if two loads are loading from
2024 /// addresses in the same cache line, it's better if they are scheduled
2025 /// together. This function takes two integers that represent the load offsets
2026 /// from the common base address. It returns true if it decides it's desirable
2027 /// to schedule the two loads together. "NumLoads" is the number of loads that
2028 /// have already been scheduled after Load1.
2030 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2031 /// is permanently disabled.
2032 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2033 int64_t Offset1, int64_t Offset2,
2034 unsigned NumLoads) const {
2035 // Don't worry about Thumb: just ARM and Thumb2.
2036 if (Subtarget.isThumb1Only()) return false;
2038 assert(Offset2 > Offset1);
2040 if ((Offset2 - Offset1) / 8 > 64)
2041 return false;
2043 // Check if the machine opcodes are different. If they are different
2044 // then we consider them to not be of the same base address,
2045 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2046 // In this case, they are considered to be the same because they are different
2047 // encoding forms of the same basic instruction.
2048 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2049 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2050 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2051 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2052 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2053 return false; // FIXME: overly conservative?
2055 // Four loads in a row should be sufficient.
2056 if (NumLoads >= 3)
2057 return false;
2059 return true;
2062 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2063 const MachineBasicBlock *MBB,
2064 const MachineFunction &MF) const {
2065 // Debug info is never a scheduling boundary. It's necessary to be explicit
2066 // due to the special treatment of IT instructions below, otherwise a
2067 // dbg_value followed by an IT will result in the IT instruction being
2068 // considered a scheduling hazard, which is wrong. It should be the actual
2069 // instruction preceding the dbg_value instruction(s), just like it is
2070 // when debug info is not present.
2071 if (MI.isDebugInstr())
2072 return false;
2074 // Terminators and labels can't be scheduled around.
2075 if (MI.isTerminator() || MI.isPosition())
2076 return true;
2078 // INLINEASM_BR can jump to another block
2079 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2080 return true;
2082 if (isSEHInstruction(MI))
2083 return true;
2085 // Treat the start of the IT block as a scheduling boundary, but schedule
2086 // t2IT along with all instructions following it.
2087 // FIXME: This is a big hammer. But the alternative is to add all potential
2088 // true and anti dependencies to IT block instructions as implicit operands
2089 // to the t2IT instruction. The added compile time and complexity does not
2090 // seem worth it.
2091 MachineBasicBlock::const_iterator I = MI;
2092 // Make sure to skip any debug instructions
2093 while (++I != MBB->end() && I->isDebugInstr())
2095 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2096 return true;
2098 // Don't attempt to schedule around any instruction that defines
2099 // a stack-oriented pointer, as it's unlikely to be profitable. This
2100 // saves compile time, because it doesn't require every single
2101 // stack slot reference to depend on the instruction that does the
2102 // modification.
2103 // Calls don't actually change the stack pointer, even if they have imp-defs.
2104 // No ARM calling conventions change the stack pointer. (X86 calling
2105 // conventions sometimes do).
2106 if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr))
2107 return true;
2109 return false;
2112 bool ARMBaseInstrInfo::
2113 isProfitableToIfCvt(MachineBasicBlock &MBB,
2114 unsigned NumCycles, unsigned ExtraPredCycles,
2115 BranchProbability Probability) const {
2116 if (!NumCycles)
2117 return false;
2119 // If we are optimizing for size, see if the branch in the predecessor can be
2120 // lowered to cbn?z by the constant island lowering pass, and return false if
2121 // so. This results in a shorter instruction sequence.
2122 if (MBB.getParent()->getFunction().hasOptSize()) {
2123 MachineBasicBlock *Pred = *MBB.pred_begin();
2124 if (!Pred->empty()) {
2125 MachineInstr *LastMI = &*Pred->rbegin();
2126 if (LastMI->getOpcode() == ARM::t2Bcc) {
2127 const TargetRegisterInfo *TRI = &getRegisterInfo();
2128 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2129 if (CmpMI)
2130 return false;
2134 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2135 MBB, 0, 0, Probability);
2138 bool ARMBaseInstrInfo::
2139 isProfitableToIfCvt(MachineBasicBlock &TBB,
2140 unsigned TCycles, unsigned TExtra,
2141 MachineBasicBlock &FBB,
2142 unsigned FCycles, unsigned FExtra,
2143 BranchProbability Probability) const {
2144 if (!TCycles)
2145 return false;
2147 // In thumb code we often end up trading one branch for a IT block, and
2148 // if we are cloning the instruction can increase code size. Prevent
2149 // blocks with multiple predecesors from being ifcvted to prevent this
2150 // cloning.
2151 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2152 if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2153 return false;
2156 // Attempt to estimate the relative costs of predication versus branching.
2157 // Here we scale up each component of UnpredCost to avoid precision issue when
2158 // scaling TCycles/FCycles by Probability.
2159 const unsigned ScalingUpFactor = 1024;
2161 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2162 unsigned UnpredCost;
2163 if (!Subtarget.hasBranchPredictor()) {
2164 // When we don't have a branch predictor it's always cheaper to not take a
2165 // branch than take it, so we have to take that into account.
2166 unsigned NotTakenBranchCost = 1;
2167 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2168 unsigned TUnpredCycles, FUnpredCycles;
2169 if (!FCycles) {
2170 // Triangle: TBB is the fallthrough
2171 TUnpredCycles = TCycles + NotTakenBranchCost;
2172 FUnpredCycles = TakenBranchCost;
2173 } else {
2174 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2175 TUnpredCycles = TCycles + TakenBranchCost;
2176 FUnpredCycles = FCycles + NotTakenBranchCost;
2177 // The branch at the end of FBB will disappear when it's predicated, so
2178 // discount it from PredCost.
2179 PredCost -= 1 * ScalingUpFactor;
2181 // The total cost is the cost of each path scaled by their probabilites
2182 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2183 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2184 UnpredCost = TUnpredCost + FUnpredCost;
2185 // When predicating assume that the first IT can be folded away but later
2186 // ones cost one cycle each
2187 if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2188 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2190 } else {
2191 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2192 unsigned FUnpredCost =
2193 Probability.getCompl().scale(FCycles * ScalingUpFactor);
2194 UnpredCost = TUnpredCost + FUnpredCost;
2195 UnpredCost += 1 * ScalingUpFactor; // The branch itself
2196 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2199 return PredCost <= UnpredCost;
2202 unsigned
2203 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2204 unsigned NumInsts) const {
2205 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2206 // ARM has a condition code field in every predicable instruction, using it
2207 // doesn't change code size.
2208 if (!Subtarget.isThumb2())
2209 return 0;
2211 // It's possible that the size of the IT is restricted to a single block.
2212 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2213 return divideCeil(NumInsts, MaxInsts) * 2;
2216 unsigned
2217 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2218 // If this branch is likely to be folded into the comparison to form a
2219 // CB(N)Z, then removing it won't reduce code size at all, because that will
2220 // just replace the CB(N)Z with a CMP.
2221 if (MI.getOpcode() == ARM::t2Bcc &&
2222 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2223 return 0;
2225 unsigned Size = getInstSizeInBytes(MI);
2227 // For Thumb2, all branches are 32-bit instructions during the if conversion
2228 // pass, but may be replaced with 16-bit instructions during size reduction.
2229 // Since the branches considered by if conversion tend to be forward branches
2230 // over small basic blocks, they are very likely to be in range for the
2231 // narrow instructions, so we assume the final code size will be half what it
2232 // currently is.
2233 if (Subtarget.isThumb2())
2234 Size /= 2;
2236 return Size;
2239 bool
2240 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2241 MachineBasicBlock &FMBB) const {
2242 // Reduce false anti-dependencies to let the target's out-of-order execution
2243 // engine do its thing.
2244 return Subtarget.isProfitableToUnpredicate();
2247 /// getInstrPredicate - If instruction is predicated, returns its predicate
2248 /// condition, otherwise returns AL. It also returns the condition code
2249 /// register by reference.
2250 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2251 Register &PredReg) {
2252 int PIdx = MI.findFirstPredOperandIdx();
2253 if (PIdx == -1) {
2254 PredReg = 0;
2255 return ARMCC::AL;
2258 PredReg = MI.getOperand(PIdx+1).getReg();
2259 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2262 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2263 if (Opc == ARM::B)
2264 return ARM::Bcc;
2265 if (Opc == ARM::tB)
2266 return ARM::tBcc;
2267 if (Opc == ARM::t2B)
2268 return ARM::t2Bcc;
2270 llvm_unreachable("Unknown unconditional branch opcode!");
2273 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2274 bool NewMI,
2275 unsigned OpIdx1,
2276 unsigned OpIdx2) const {
2277 switch (MI.getOpcode()) {
2278 case ARM::MOVCCr:
2279 case ARM::t2MOVCCr: {
2280 // MOVCC can be commuted by inverting the condition.
2281 Register PredReg;
2282 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2283 // MOVCC AL can't be inverted. Shouldn't happen.
2284 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2285 return nullptr;
2286 MachineInstr *CommutedMI =
2287 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2288 if (!CommutedMI)
2289 return nullptr;
2290 // After swapping the MOVCC operands, also invert the condition.
2291 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2292 .setImm(ARMCC::getOppositeCondition(CC));
2293 return CommutedMI;
2296 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2299 /// Identify instructions that can be folded into a MOVCC instruction, and
2300 /// return the defining instruction.
2301 MachineInstr *
2302 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2303 const TargetInstrInfo *TII) const {
2304 if (!Reg.isVirtual())
2305 return nullptr;
2306 if (!MRI.hasOneNonDBGUse(Reg))
2307 return nullptr;
2308 MachineInstr *MI = MRI.getVRegDef(Reg);
2309 if (!MI)
2310 return nullptr;
2311 // Check if MI can be predicated and folded into the MOVCC.
2312 if (!isPredicable(*MI))
2313 return nullptr;
2314 // Check if MI has any non-dead defs or physreg uses. This also detects
2315 // predicated instructions which will be reading CPSR.
2316 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
2317 // Reject frame index operands, PEI can't handle the predicated pseudos.
2318 if (MO.isFI() || MO.isCPI() || MO.isJTI())
2319 return nullptr;
2320 if (!MO.isReg())
2321 continue;
2322 // MI can't have any tied operands, that would conflict with predication.
2323 if (MO.isTied())
2324 return nullptr;
2325 if (MO.getReg().isPhysical())
2326 return nullptr;
2327 if (MO.isDef() && !MO.isDead())
2328 return nullptr;
2330 bool DontMoveAcrossStores = true;
2331 if (!MI->isSafeToMove(DontMoveAcrossStores))
2332 return nullptr;
2333 return MI;
2336 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2337 SmallVectorImpl<MachineOperand> &Cond,
2338 unsigned &TrueOp, unsigned &FalseOp,
2339 bool &Optimizable) const {
2340 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2341 "Unknown select instruction");
2342 // MOVCC operands:
2343 // 0: Def.
2344 // 1: True use.
2345 // 2: False use.
2346 // 3: Condition code.
2347 // 4: CPSR use.
2348 TrueOp = 1;
2349 FalseOp = 2;
2350 Cond.push_back(MI.getOperand(3));
2351 Cond.push_back(MI.getOperand(4));
2352 // We can always fold a def.
2353 Optimizable = true;
2354 return false;
2357 MachineInstr *
2358 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2359 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2360 bool PreferFalse) const {
2361 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2362 "Unknown select instruction");
2363 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2364 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2365 bool Invert = !DefMI;
2366 if (!DefMI)
2367 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2368 if (!DefMI)
2369 return nullptr;
2371 // Find new register class to use.
2372 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2373 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2374 Register DestReg = MI.getOperand(0).getReg();
2375 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2376 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2377 if (!MRI.constrainRegClass(DestReg, FalseClass))
2378 return nullptr;
2379 if (!MRI.constrainRegClass(DestReg, TrueClass))
2380 return nullptr;
2382 // Create a new predicated version of DefMI.
2383 // Rfalse is the first use.
2384 MachineInstrBuilder NewMI =
2385 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2387 // Copy all the DefMI operands, excluding its (null) predicate.
2388 const MCInstrDesc &DefDesc = DefMI->getDesc();
2389 for (unsigned i = 1, e = DefDesc.getNumOperands();
2390 i != e && !DefDesc.operands()[i].isPredicate(); ++i)
2391 NewMI.add(DefMI->getOperand(i));
2393 unsigned CondCode = MI.getOperand(3).getImm();
2394 if (Invert)
2395 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2396 else
2397 NewMI.addImm(CondCode);
2398 NewMI.add(MI.getOperand(4));
2400 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2401 if (NewMI->hasOptionalDef())
2402 NewMI.add(condCodeOp());
2404 // The output register value when the predicate is false is an implicit
2405 // register operand tied to the first def.
2406 // The tie makes the register allocator ensure the FalseReg is allocated the
2407 // same register as operand 0.
2408 FalseReg.setImplicit();
2409 NewMI.add(FalseReg);
2410 NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2412 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2413 SeenMIs.insert(NewMI);
2414 SeenMIs.erase(DefMI);
2416 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2417 // DefMI would be invalid when tranferred inside the loop. Checking for a
2418 // loop is expensive, but at least remove kill flags if they are in different
2419 // BBs.
2420 if (DefMI->getParent() != MI.getParent())
2421 NewMI->clearKillInfo();
2423 // The caller will erase MI, but not DefMI.
2424 DefMI->eraseFromParent();
2425 return NewMI;
2428 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2429 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2430 /// def operand.
2432 /// This will go away once we can teach tblgen how to set the optional CPSR def
2433 /// operand itself.
2434 struct AddSubFlagsOpcodePair {
2435 uint16_t PseudoOpc;
2436 uint16_t MachineOpc;
2439 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2440 {ARM::ADDSri, ARM::ADDri},
2441 {ARM::ADDSrr, ARM::ADDrr},
2442 {ARM::ADDSrsi, ARM::ADDrsi},
2443 {ARM::ADDSrsr, ARM::ADDrsr},
2445 {ARM::SUBSri, ARM::SUBri},
2446 {ARM::SUBSrr, ARM::SUBrr},
2447 {ARM::SUBSrsi, ARM::SUBrsi},
2448 {ARM::SUBSrsr, ARM::SUBrsr},
2450 {ARM::RSBSri, ARM::RSBri},
2451 {ARM::RSBSrsi, ARM::RSBrsi},
2452 {ARM::RSBSrsr, ARM::RSBrsr},
2454 {ARM::tADDSi3, ARM::tADDi3},
2455 {ARM::tADDSi8, ARM::tADDi8},
2456 {ARM::tADDSrr, ARM::tADDrr},
2457 {ARM::tADCS, ARM::tADC},
2459 {ARM::tSUBSi3, ARM::tSUBi3},
2460 {ARM::tSUBSi8, ARM::tSUBi8},
2461 {ARM::tSUBSrr, ARM::tSUBrr},
2462 {ARM::tSBCS, ARM::tSBC},
2463 {ARM::tRSBS, ARM::tRSB},
2464 {ARM::tLSLSri, ARM::tLSLri},
2466 {ARM::t2ADDSri, ARM::t2ADDri},
2467 {ARM::t2ADDSrr, ARM::t2ADDrr},
2468 {ARM::t2ADDSrs, ARM::t2ADDrs},
2470 {ARM::t2SUBSri, ARM::t2SUBri},
2471 {ARM::t2SUBSrr, ARM::t2SUBrr},
2472 {ARM::t2SUBSrs, ARM::t2SUBrs},
2474 {ARM::t2RSBSri, ARM::t2RSBri},
2475 {ARM::t2RSBSrs, ARM::t2RSBrs},
2478 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2479 for (const auto &Entry : AddSubFlagsOpcodeMap)
2480 if (OldOpc == Entry.PseudoOpc)
2481 return Entry.MachineOpc;
2482 return 0;
2485 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2486 MachineBasicBlock::iterator &MBBI,
2487 const DebugLoc &dl, Register DestReg,
2488 Register BaseReg, int NumBytes,
2489 ARMCC::CondCodes Pred, Register PredReg,
2490 const ARMBaseInstrInfo &TII,
2491 unsigned MIFlags) {
2492 if (NumBytes == 0 && DestReg != BaseReg) {
2493 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2494 .addReg(BaseReg, RegState::Kill)
2495 .add(predOps(Pred, PredReg))
2496 .add(condCodeOp())
2497 .setMIFlags(MIFlags);
2498 return;
2501 bool isSub = NumBytes < 0;
2502 if (isSub) NumBytes = -NumBytes;
2504 while (NumBytes) {
2505 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2506 unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt);
2507 assert(ThisVal && "Didn't extract field correctly");
2509 // We will handle these bits from offset, clear them.
2510 NumBytes &= ~ThisVal;
2512 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2514 // Build the new ADD / SUB.
2515 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2516 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2517 .addReg(BaseReg, RegState::Kill)
2518 .addImm(ThisVal)
2519 .add(predOps(Pred, PredReg))
2520 .add(condCodeOp())
2521 .setMIFlags(MIFlags);
2522 BaseReg = DestReg;
2526 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2527 MachineFunction &MF, MachineInstr *MI,
2528 unsigned NumBytes) {
2529 // This optimisation potentially adds lots of load and store
2530 // micro-operations, it's only really a great benefit to code-size.
2531 if (!Subtarget.hasMinSize())
2532 return false;
2534 // If only one register is pushed/popped, LLVM can use an LDR/STR
2535 // instead. We can't modify those so make sure we're dealing with an
2536 // instruction we understand.
2537 bool IsPop = isPopOpcode(MI->getOpcode());
2538 bool IsPush = isPushOpcode(MI->getOpcode());
2539 if (!IsPush && !IsPop)
2540 return false;
2542 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2543 MI->getOpcode() == ARM::VLDMDIA_UPD;
2544 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2545 MI->getOpcode() == ARM::tPOP ||
2546 MI->getOpcode() == ARM::tPOP_RET;
2548 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2549 MI->getOperand(1).getReg() == ARM::SP)) &&
2550 "trying to fold sp update into non-sp-updating push/pop");
2552 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2553 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2554 // if this is violated.
2555 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2556 return false;
2558 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2559 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2560 int RegListIdx = IsT1PushPop ? 2 : 4;
2562 // Calculate the space we'll need in terms of registers.
2563 unsigned RegsNeeded;
2564 const TargetRegisterClass *RegClass;
2565 if (IsVFPPushPop) {
2566 RegsNeeded = NumBytes / 8;
2567 RegClass = &ARM::DPRRegClass;
2568 } else {
2569 RegsNeeded = NumBytes / 4;
2570 RegClass = &ARM::GPRRegClass;
2573 // We're going to have to strip all list operands off before
2574 // re-adding them since the order matters, so save the existing ones
2575 // for later.
2576 SmallVector<MachineOperand, 4> RegList;
2578 // We're also going to need the first register transferred by this
2579 // instruction, which won't necessarily be the first register in the list.
2580 unsigned FirstRegEnc = -1;
2582 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2583 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2584 MachineOperand &MO = MI->getOperand(i);
2585 RegList.push_back(MO);
2587 if (MO.isReg() && !MO.isImplicit() &&
2588 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2589 FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2592 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2594 // Now try to find enough space in the reglist to allocate NumBytes.
2595 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2596 --CurRegEnc) {
2597 unsigned CurReg = RegClass->getRegister(CurRegEnc);
2598 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2599 continue;
2600 if (!IsPop) {
2601 // Pushing any register is completely harmless, mark the register involved
2602 // as undef since we don't care about its value and must not restore it
2603 // during stack unwinding.
2604 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2605 false, false, true));
2606 --RegsNeeded;
2607 continue;
2610 // However, we can only pop an extra register if it's not live. For
2611 // registers live within the function we might clobber a return value
2612 // register; the other way a register can be live here is if it's
2613 // callee-saved.
2614 if (isCalleeSavedRegister(CurReg, CSRegs) ||
2615 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2616 MachineBasicBlock::LQR_Dead) {
2617 // VFP pops don't allow holes in the register list, so any skip is fatal
2618 // for our transformation. GPR pops do, so we should just keep looking.
2619 if (IsVFPPushPop)
2620 return false;
2621 else
2622 continue;
2625 // Mark the unimportant registers as <def,dead> in the POP.
2626 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2627 true));
2628 --RegsNeeded;
2631 if (RegsNeeded > 0)
2632 return false;
2634 // Finally we know we can profitably perform the optimisation so go
2635 // ahead: strip all existing registers off and add them back again
2636 // in the right order.
2637 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2638 MI->removeOperand(i);
2640 // Add the complete list back in.
2641 MachineInstrBuilder MIB(MF, &*MI);
2642 for (const MachineOperand &MO : llvm::reverse(RegList))
2643 MIB.add(MO);
2645 return true;
2648 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2649 Register FrameReg, int &Offset,
2650 const ARMBaseInstrInfo &TII) {
2651 unsigned Opcode = MI.getOpcode();
2652 const MCInstrDesc &Desc = MI.getDesc();
2653 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2654 bool isSub = false;
2656 // Memory operands in inline assembly always use AddrMode2.
2657 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2658 AddrMode = ARMII::AddrMode2;
2660 if (Opcode == ARM::ADDri) {
2661 Offset += MI.getOperand(FrameRegIdx+1).getImm();
2662 if (Offset == 0) {
2663 // Turn it into a move.
2664 MI.setDesc(TII.get(ARM::MOVr));
2665 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2666 MI.removeOperand(FrameRegIdx+1);
2667 Offset = 0;
2668 return true;
2669 } else if (Offset < 0) {
2670 Offset = -Offset;
2671 isSub = true;
2672 MI.setDesc(TII.get(ARM::SUBri));
2675 // Common case: small offset, fits into instruction.
2676 if (ARM_AM::getSOImmVal(Offset) != -1) {
2677 // Replace the FrameIndex with sp / fp
2678 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2679 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2680 Offset = 0;
2681 return true;
2684 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2685 // as possible.
2686 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2687 unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt);
2689 // We will handle these bits from offset, clear them.
2690 Offset &= ~ThisImmVal;
2692 // Get the properly encoded SOImmVal field.
2693 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2694 "Bit extraction didn't work?");
2695 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2696 } else {
2697 unsigned ImmIdx = 0;
2698 int InstrOffs = 0;
2699 unsigned NumBits = 0;
2700 unsigned Scale = 1;
2701 switch (AddrMode) {
2702 case ARMII::AddrMode_i12:
2703 ImmIdx = FrameRegIdx + 1;
2704 InstrOffs = MI.getOperand(ImmIdx).getImm();
2705 NumBits = 12;
2706 break;
2707 case ARMII::AddrMode2:
2708 ImmIdx = FrameRegIdx+2;
2709 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2710 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2711 InstrOffs *= -1;
2712 NumBits = 12;
2713 break;
2714 case ARMII::AddrMode3:
2715 ImmIdx = FrameRegIdx+2;
2716 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2717 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2718 InstrOffs *= -1;
2719 NumBits = 8;
2720 break;
2721 case ARMII::AddrMode4:
2722 case ARMII::AddrMode6:
2723 // Can't fold any offset even if it's zero.
2724 return false;
2725 case ARMII::AddrMode5:
2726 ImmIdx = FrameRegIdx+1;
2727 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2728 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2729 InstrOffs *= -1;
2730 NumBits = 8;
2731 Scale = 4;
2732 break;
2733 case ARMII::AddrMode5FP16:
2734 ImmIdx = FrameRegIdx+1;
2735 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2736 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2737 InstrOffs *= -1;
2738 NumBits = 8;
2739 Scale = 2;
2740 break;
2741 case ARMII::AddrModeT2_i7:
2742 case ARMII::AddrModeT2_i7s2:
2743 case ARMII::AddrModeT2_i7s4:
2744 ImmIdx = FrameRegIdx+1;
2745 InstrOffs = MI.getOperand(ImmIdx).getImm();
2746 NumBits = 7;
2747 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2748 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2749 break;
2750 default:
2751 llvm_unreachable("Unsupported addressing mode!");
2754 Offset += InstrOffs * Scale;
2755 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2756 if (Offset < 0) {
2757 Offset = -Offset;
2758 isSub = true;
2761 // Attempt to fold address comp. if opcode has offset bits
2762 if (NumBits > 0) {
2763 // Common case: small offset, fits into instruction.
2764 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2765 int ImmedOffset = Offset / Scale;
2766 unsigned Mask = (1 << NumBits) - 1;
2767 if ((unsigned)Offset <= Mask * Scale) {
2768 // Replace the FrameIndex with sp
2769 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2770 // FIXME: When addrmode2 goes away, this will simplify (like the
2771 // T2 version), as the LDR.i12 versions don't need the encoding
2772 // tricks for the offset value.
2773 if (isSub) {
2774 if (AddrMode == ARMII::AddrMode_i12)
2775 ImmedOffset = -ImmedOffset;
2776 else
2777 ImmedOffset |= 1 << NumBits;
2779 ImmOp.ChangeToImmediate(ImmedOffset);
2780 Offset = 0;
2781 return true;
2784 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2785 ImmedOffset = ImmedOffset & Mask;
2786 if (isSub) {
2787 if (AddrMode == ARMII::AddrMode_i12)
2788 ImmedOffset = -ImmedOffset;
2789 else
2790 ImmedOffset |= 1 << NumBits;
2792 ImmOp.ChangeToImmediate(ImmedOffset);
2793 Offset &= ~(Mask*Scale);
2797 Offset = (isSub) ? -Offset : Offset;
2798 return Offset == 0;
2801 /// analyzeCompare - For a comparison instruction, return the source registers
2802 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2803 /// compares against in CmpValue. Return true if the comparison instruction
2804 /// can be analyzed.
2805 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2806 Register &SrcReg2, int64_t &CmpMask,
2807 int64_t &CmpValue) const {
2808 switch (MI.getOpcode()) {
2809 default: break;
2810 case ARM::CMPri:
2811 case ARM::t2CMPri:
2812 case ARM::tCMPi8:
2813 SrcReg = MI.getOperand(0).getReg();
2814 SrcReg2 = 0;
2815 CmpMask = ~0;
2816 CmpValue = MI.getOperand(1).getImm();
2817 return true;
2818 case ARM::CMPrr:
2819 case ARM::t2CMPrr:
2820 case ARM::tCMPr:
2821 SrcReg = MI.getOperand(0).getReg();
2822 SrcReg2 = MI.getOperand(1).getReg();
2823 CmpMask = ~0;
2824 CmpValue = 0;
2825 return true;
2826 case ARM::TSTri:
2827 case ARM::t2TSTri:
2828 SrcReg = MI.getOperand(0).getReg();
2829 SrcReg2 = 0;
2830 CmpMask = MI.getOperand(1).getImm();
2831 CmpValue = 0;
2832 return true;
2835 return false;
2838 /// isSuitableForMask - Identify a suitable 'and' instruction that
2839 /// operates on the given source register and applies the same mask
2840 /// as a 'tst' instruction. Provide a limited look-through for copies.
2841 /// When successful, MI will hold the found instruction.
2842 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2843 int CmpMask, bool CommonUse) {
2844 switch (MI->getOpcode()) {
2845 case ARM::ANDri:
2846 case ARM::t2ANDri:
2847 if (CmpMask != MI->getOperand(2).getImm())
2848 return false;
2849 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2850 return true;
2851 break;
2854 return false;
2857 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2858 /// the condition code if we modify the instructions such that flags are
2859 /// set by ADD(a,b,X).
2860 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2861 switch (CC) {
2862 default: return ARMCC::AL;
2863 case ARMCC::HS: return ARMCC::LO;
2864 case ARMCC::LO: return ARMCC::HS;
2865 case ARMCC::VS: return ARMCC::VS;
2866 case ARMCC::VC: return ARMCC::VC;
2870 /// isRedundantFlagInstr - check whether the first instruction, whose only
2871 /// purpose is to update flags, can be made redundant.
2872 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2873 /// CMPri can be made redundant by SUBri if the operands are the same.
2874 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2875 /// This function can be extended later on.
2876 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2877 Register SrcReg, Register SrcReg2,
2878 int64_t ImmValue,
2879 const MachineInstr *OI,
2880 bool &IsThumb1) {
2881 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2882 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2883 ((OI->getOperand(1).getReg() == SrcReg &&
2884 OI->getOperand(2).getReg() == SrcReg2) ||
2885 (OI->getOperand(1).getReg() == SrcReg2 &&
2886 OI->getOperand(2).getReg() == SrcReg))) {
2887 IsThumb1 = false;
2888 return true;
2891 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2892 ((OI->getOperand(2).getReg() == SrcReg &&
2893 OI->getOperand(3).getReg() == SrcReg2) ||
2894 (OI->getOperand(2).getReg() == SrcReg2 &&
2895 OI->getOperand(3).getReg() == SrcReg))) {
2896 IsThumb1 = true;
2897 return true;
2900 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2901 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2902 OI->getOperand(1).getReg() == SrcReg &&
2903 OI->getOperand(2).getImm() == ImmValue) {
2904 IsThumb1 = false;
2905 return true;
2908 if (CmpI->getOpcode() == ARM::tCMPi8 &&
2909 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2910 OI->getOperand(2).getReg() == SrcReg &&
2911 OI->getOperand(3).getImm() == ImmValue) {
2912 IsThumb1 = true;
2913 return true;
2916 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2917 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2918 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2919 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2920 OI->getOperand(0).getReg() == SrcReg &&
2921 OI->getOperand(1).getReg() == SrcReg2) {
2922 IsThumb1 = false;
2923 return true;
2926 if (CmpI->getOpcode() == ARM::tCMPr &&
2927 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2928 OI->getOpcode() == ARM::tADDrr) &&
2929 OI->getOperand(0).getReg() == SrcReg &&
2930 OI->getOperand(2).getReg() == SrcReg2) {
2931 IsThumb1 = true;
2932 return true;
2935 return false;
2938 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2939 switch (MI->getOpcode()) {
2940 default: return false;
2941 case ARM::tLSLri:
2942 case ARM::tLSRri:
2943 case ARM::tLSLrr:
2944 case ARM::tLSRrr:
2945 case ARM::tSUBrr:
2946 case ARM::tADDrr:
2947 case ARM::tADDi3:
2948 case ARM::tADDi8:
2949 case ARM::tSUBi3:
2950 case ARM::tSUBi8:
2951 case ARM::tMUL:
2952 case ARM::tADC:
2953 case ARM::tSBC:
2954 case ARM::tRSB:
2955 case ARM::tAND:
2956 case ARM::tORR:
2957 case ARM::tEOR:
2958 case ARM::tBIC:
2959 case ARM::tMVN:
2960 case ARM::tASRri:
2961 case ARM::tASRrr:
2962 case ARM::tROR:
2963 IsThumb1 = true;
2964 [[fallthrough]];
2965 case ARM::RSBrr:
2966 case ARM::RSBri:
2967 case ARM::RSCrr:
2968 case ARM::RSCri:
2969 case ARM::ADDrr:
2970 case ARM::ADDri:
2971 case ARM::ADCrr:
2972 case ARM::ADCri:
2973 case ARM::SUBrr:
2974 case ARM::SUBri:
2975 case ARM::SBCrr:
2976 case ARM::SBCri:
2977 case ARM::t2RSBri:
2978 case ARM::t2ADDrr:
2979 case ARM::t2ADDri:
2980 case ARM::t2ADCrr:
2981 case ARM::t2ADCri:
2982 case ARM::t2SUBrr:
2983 case ARM::t2SUBri:
2984 case ARM::t2SBCrr:
2985 case ARM::t2SBCri:
2986 case ARM::ANDrr:
2987 case ARM::ANDri:
2988 case ARM::ANDrsr:
2989 case ARM::ANDrsi:
2990 case ARM::t2ANDrr:
2991 case ARM::t2ANDri:
2992 case ARM::t2ANDrs:
2993 case ARM::ORRrr:
2994 case ARM::ORRri:
2995 case ARM::ORRrsr:
2996 case ARM::ORRrsi:
2997 case ARM::t2ORRrr:
2998 case ARM::t2ORRri:
2999 case ARM::t2ORRrs:
3000 case ARM::EORrr:
3001 case ARM::EORri:
3002 case ARM::EORrsr:
3003 case ARM::EORrsi:
3004 case ARM::t2EORrr:
3005 case ARM::t2EORri:
3006 case ARM::t2EORrs:
3007 case ARM::BICri:
3008 case ARM::BICrr:
3009 case ARM::BICrsi:
3010 case ARM::BICrsr:
3011 case ARM::t2BICri:
3012 case ARM::t2BICrr:
3013 case ARM::t2BICrs:
3014 case ARM::t2LSRri:
3015 case ARM::t2LSRrr:
3016 case ARM::t2LSLri:
3017 case ARM::t2LSLrr:
3018 case ARM::MOVsr:
3019 case ARM::MOVsi:
3020 return true;
3024 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
3025 /// comparison into one that sets the zero bit in the flags register;
3026 /// Remove a redundant Compare instruction if an earlier instruction can set the
3027 /// flags in the same way as Compare.
3028 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3029 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3030 /// condition code of instructions which use the flags.
3031 bool ARMBaseInstrInfo::optimizeCompareInstr(
3032 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3033 int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3034 // Get the unique definition of SrcReg.
3035 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3036 if (!MI) return false;
3038 // Masked compares sometimes use the same register as the corresponding 'and'.
3039 if (CmpMask != ~0) {
3040 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3041 MI = nullptr;
3042 for (MachineRegisterInfo::use_instr_iterator
3043 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3044 UI != UE; ++UI) {
3045 if (UI->getParent() != CmpInstr.getParent())
3046 continue;
3047 MachineInstr *PotentialAND = &*UI;
3048 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3049 isPredicated(*PotentialAND))
3050 continue;
3051 MI = PotentialAND;
3052 break;
3054 if (!MI) return false;
3058 // Get ready to iterate backward from CmpInstr.
3059 MachineBasicBlock::iterator I = CmpInstr, E = MI,
3060 B = CmpInstr.getParent()->begin();
3062 // Early exit if CmpInstr is at the beginning of the BB.
3063 if (I == B) return false;
3065 // There are two possible candidates which can be changed to set CPSR:
3066 // One is MI, the other is a SUB or ADD instruction.
3067 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3068 // ADDr[ri](r1, r2, X).
3069 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3070 MachineInstr *SubAdd = nullptr;
3071 if (SrcReg2 != 0)
3072 // MI is not a candidate for CMPrr.
3073 MI = nullptr;
3074 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3075 // Conservatively refuse to convert an instruction which isn't in the same
3076 // BB as the comparison.
3077 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3078 // Thus we cannot return here.
3079 if (CmpInstr.getOpcode() == ARM::CMPri ||
3080 CmpInstr.getOpcode() == ARM::t2CMPri ||
3081 CmpInstr.getOpcode() == ARM::tCMPi8)
3082 MI = nullptr;
3083 else
3084 return false;
3087 bool IsThumb1 = false;
3088 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3089 return false;
3091 // We also want to do this peephole for cases like this: if (a*b == 0),
3092 // and optimise away the CMP instruction from the generated code sequence:
3093 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3094 // resulting from the select instruction, but these MOVS instructions for
3095 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3096 // However, if we only have MOVS instructions in between the CMP and the
3097 // other instruction (the MULS in this example), then the CPSR is dead so we
3098 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3099 // reordering and then continue the analysis hoping we can eliminate the
3100 // CMP. This peephole works on the vregs, so is still in SSA form. As a
3101 // consequence, the movs won't redefine/kill the MUL operands which would
3102 // make this reordering illegal.
3103 const TargetRegisterInfo *TRI = &getRegisterInfo();
3104 if (MI && IsThumb1) {
3105 --I;
3106 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3107 bool CanReorder = true;
3108 for (; I != E; --I) {
3109 if (I->getOpcode() != ARM::tMOVi8) {
3110 CanReorder = false;
3111 break;
3114 if (CanReorder) {
3115 MI = MI->removeFromParent();
3116 E = CmpInstr;
3117 CmpInstr.getParent()->insert(E, MI);
3120 I = CmpInstr;
3121 E = MI;
3124 // Check that CPSR isn't set between the comparison instruction and the one we
3125 // want to change. At the same time, search for SubAdd.
3126 bool SubAddIsThumb1 = false;
3127 do {
3128 const MachineInstr &Instr = *--I;
3130 // Check whether CmpInstr can be made redundant by the current instruction.
3131 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3132 SubAddIsThumb1)) {
3133 SubAdd = &*I;
3134 break;
3137 // Allow E (which was initially MI) to be SubAdd but do not search before E.
3138 if (I == E)
3139 break;
3141 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3142 Instr.readsRegister(ARM::CPSR, TRI))
3143 // This instruction modifies or uses CPSR after the one we want to
3144 // change. We can't do this transformation.
3145 return false;
3147 if (I == B) {
3148 // In some cases, we scan the use-list of an instruction for an AND;
3149 // that AND is in the same BB, but may not be scheduled before the
3150 // corresponding TST. In that case, bail out.
3152 // FIXME: We could try to reschedule the AND.
3153 return false;
3155 } while (true);
3157 // Return false if no candidates exist.
3158 if (!MI && !SubAdd)
3159 return false;
3161 // If we found a SubAdd, use it as it will be closer to the CMP
3162 if (SubAdd) {
3163 MI = SubAdd;
3164 IsThumb1 = SubAddIsThumb1;
3167 // We can't use a predicated instruction - it doesn't always write the flags.
3168 if (isPredicated(*MI))
3169 return false;
3171 // Scan forward for the use of CPSR
3172 // When checking against MI: if it's a conditional code that requires
3173 // checking of the V bit or C bit, then this is not safe to do.
3174 // It is safe to remove CmpInstr if CPSR is redefined or killed.
3175 // If we are done with the basic block, we need to check whether CPSR is
3176 // live-out.
3177 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3178 OperandsToUpdate;
3179 bool isSafe = false;
3180 I = CmpInstr;
3181 E = CmpInstr.getParent()->end();
3182 while (!isSafe && ++I != E) {
3183 const MachineInstr &Instr = *I;
3184 for (unsigned IO = 0, EO = Instr.getNumOperands();
3185 !isSafe && IO != EO; ++IO) {
3186 const MachineOperand &MO = Instr.getOperand(IO);
3187 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3188 isSafe = true;
3189 break;
3191 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3192 continue;
3193 if (MO.isDef()) {
3194 isSafe = true;
3195 break;
3197 // Condition code is after the operand before CPSR except for VSELs.
3198 ARMCC::CondCodes CC;
3199 bool IsInstrVSel = true;
3200 switch (Instr.getOpcode()) {
3201 default:
3202 IsInstrVSel = false;
3203 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3204 break;
3205 case ARM::VSELEQD:
3206 case ARM::VSELEQS:
3207 case ARM::VSELEQH:
3208 CC = ARMCC::EQ;
3209 break;
3210 case ARM::VSELGTD:
3211 case ARM::VSELGTS:
3212 case ARM::VSELGTH:
3213 CC = ARMCC::GT;
3214 break;
3215 case ARM::VSELGED:
3216 case ARM::VSELGES:
3217 case ARM::VSELGEH:
3218 CC = ARMCC::GE;
3219 break;
3220 case ARM::VSELVSD:
3221 case ARM::VSELVSS:
3222 case ARM::VSELVSH:
3223 CC = ARMCC::VS;
3224 break;
3227 if (SubAdd) {
3228 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3229 // on CMP needs to be updated to be based on SUB.
3230 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3231 // needs to be modified.
3232 // Push the condition code operands to OperandsToUpdate.
3233 // If it is safe to remove CmpInstr, the condition code of these
3234 // operands will be modified.
3235 unsigned Opc = SubAdd->getOpcode();
3236 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3237 Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3238 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3239 Opc == ARM::tSUBi8;
3240 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3241 if (!IsSub ||
3242 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3243 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3244 // VSel doesn't support condition code update.
3245 if (IsInstrVSel)
3246 return false;
3247 // Ensure we can swap the condition.
3248 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3249 if (NewCC == ARMCC::AL)
3250 return false;
3251 OperandsToUpdate.push_back(
3252 std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3254 } else {
3255 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3256 switch (CC) {
3257 case ARMCC::EQ: // Z
3258 case ARMCC::NE: // Z
3259 case ARMCC::MI: // N
3260 case ARMCC::PL: // N
3261 case ARMCC::AL: // none
3262 // CPSR can be used multiple times, we should continue.
3263 break;
3264 case ARMCC::HS: // C
3265 case ARMCC::LO: // C
3266 case ARMCC::VS: // V
3267 case ARMCC::VC: // V
3268 case ARMCC::HI: // C Z
3269 case ARMCC::LS: // C Z
3270 case ARMCC::GE: // N V
3271 case ARMCC::LT: // N V
3272 case ARMCC::GT: // Z N V
3273 case ARMCC::LE: // Z N V
3274 // The instruction uses the V bit or C bit which is not safe.
3275 return false;
3281 // If CPSR is not killed nor re-defined, we should check whether it is
3282 // live-out. If it is live-out, do not optimize.
3283 if (!isSafe) {
3284 MachineBasicBlock *MBB = CmpInstr.getParent();
3285 for (MachineBasicBlock *Succ : MBB->successors())
3286 if (Succ->isLiveIn(ARM::CPSR))
3287 return false;
3290 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3291 // set CPSR so this is represented as an explicit output)
3292 if (!IsThumb1) {
3293 unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1;
3294 MI->getOperand(CPSRRegNum).setReg(ARM::CPSR);
3295 MI->getOperand(CPSRRegNum).setIsDef(true);
3297 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3298 CmpInstr.eraseFromParent();
3300 // Modify the condition code of operands in OperandsToUpdate.
3301 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3302 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3303 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3304 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3306 MI->clearRegisterDeads(ARM::CPSR);
3308 return true;
3311 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3312 // Do not sink MI if it might be used to optimize a redundant compare.
3313 // We heuristically only look at the instruction immediately following MI to
3314 // avoid potentially searching the entire basic block.
3315 if (isPredicated(MI))
3316 return true;
3317 MachineBasicBlock::const_iterator Next = &MI;
3318 ++Next;
3319 Register SrcReg, SrcReg2;
3320 int64_t CmpMask, CmpValue;
3321 bool IsThumb1;
3322 if (Next != MI.getParent()->end() &&
3323 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3324 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3325 return false;
3326 return true;
3329 bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3330 Register Reg,
3331 MachineRegisterInfo *MRI) const {
3332 // Fold large immediates into add, sub, or, xor.
3333 unsigned DefOpc = DefMI.getOpcode();
3334 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm &&
3335 DefOpc != ARM::tMOVi32imm)
3336 return false;
3337 if (!DefMI.getOperand(1).isImm())
3338 // Could be t2MOVi32imm @xx
3339 return false;
3341 if (!MRI->hasOneNonDBGUse(Reg))
3342 return false;
3344 const MCInstrDesc &DefMCID = DefMI.getDesc();
3345 if (DefMCID.hasOptionalDef()) {
3346 unsigned NumOps = DefMCID.getNumOperands();
3347 const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3348 if (MO.getReg() == ARM::CPSR && !MO.isDead())
3349 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3350 // to delete DefMI.
3351 return false;
3354 const MCInstrDesc &UseMCID = UseMI.getDesc();
3355 if (UseMCID.hasOptionalDef()) {
3356 unsigned NumOps = UseMCID.getNumOperands();
3357 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3358 // If the instruction sets the flag, do not attempt this optimization
3359 // since it may change the semantics of the code.
3360 return false;
3363 unsigned UseOpc = UseMI.getOpcode();
3364 unsigned NewUseOpc = 0;
3365 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3366 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3367 bool Commute = false;
3368 switch (UseOpc) {
3369 default: return false;
3370 case ARM::SUBrr:
3371 case ARM::ADDrr:
3372 case ARM::ORRrr:
3373 case ARM::EORrr:
3374 case ARM::t2SUBrr:
3375 case ARM::t2ADDrr:
3376 case ARM::t2ORRrr:
3377 case ARM::t2EORrr: {
3378 Commute = UseMI.getOperand(2).getReg() != Reg;
3379 switch (UseOpc) {
3380 default: break;
3381 case ARM::ADDrr:
3382 case ARM::SUBrr:
3383 if (UseOpc == ARM::SUBrr && Commute)
3384 return false;
3386 // ADD/SUB are special because they're essentially the same operation, so
3387 // we can handle a larger range of immediates.
3388 if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3389 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3390 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3391 ImmVal = -ImmVal;
3392 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3393 } else
3394 return false;
3395 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3396 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3397 break;
3398 case ARM::ORRrr:
3399 case ARM::EORrr:
3400 if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3401 return false;
3402 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3403 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3404 switch (UseOpc) {
3405 default: break;
3406 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3407 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3409 break;
3410 case ARM::t2ADDrr:
3411 case ARM::t2SUBrr: {
3412 if (UseOpc == ARM::t2SUBrr && Commute)
3413 return false;
3415 // ADD/SUB are special because they're essentially the same operation, so
3416 // we can handle a larger range of immediates.
3417 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3418 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3419 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3420 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3421 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3422 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3423 ImmVal = -ImmVal;
3424 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3425 } else
3426 return false;
3427 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3428 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3429 break;
3431 case ARM::t2ORRrr:
3432 case ARM::t2EORrr:
3433 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3434 return false;
3435 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3436 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3437 switch (UseOpc) {
3438 default: break;
3439 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3440 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3442 break;
3447 unsigned OpIdx = Commute ? 2 : 1;
3448 Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3449 bool isKill = UseMI.getOperand(OpIdx).isKill();
3450 const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3451 Register NewReg = MRI->createVirtualRegister(TRC);
3452 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3453 NewReg)
3454 .addReg(Reg1, getKillRegState(isKill))
3455 .addImm(SOImmValV1)
3456 .add(predOps(ARMCC::AL))
3457 .add(condCodeOp());
3458 UseMI.setDesc(get(NewUseOpc));
3459 UseMI.getOperand(1).setReg(NewReg);
3460 UseMI.getOperand(1).setIsKill();
3461 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3462 DefMI.eraseFromParent();
3463 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3464 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3465 // Then the below code will not be needed, as the input/output register
3466 // classes will be rgpr or gprSP.
3467 // For now, we fix the UseMI operand explicitly here:
3468 switch(NewUseOpc){
3469 case ARM::t2ADDspImm:
3470 case ARM::t2SUBspImm:
3471 case ARM::t2ADDri:
3472 case ARM::t2SUBri:
3473 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3475 return true;
3478 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3479 const MachineInstr &MI) {
3480 switch (MI.getOpcode()) {
3481 default: {
3482 const MCInstrDesc &Desc = MI.getDesc();
3483 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3484 assert(UOps >= 0 && "bad # UOps");
3485 return UOps;
3488 case ARM::LDRrs:
3489 case ARM::LDRBrs:
3490 case ARM::STRrs:
3491 case ARM::STRBrs: {
3492 unsigned ShOpVal = MI.getOperand(3).getImm();
3493 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3494 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3495 if (!isSub &&
3496 (ShImm == 0 ||
3497 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3498 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3499 return 1;
3500 return 2;
3503 case ARM::LDRH:
3504 case ARM::STRH: {
3505 if (!MI.getOperand(2).getReg())
3506 return 1;
3508 unsigned ShOpVal = MI.getOperand(3).getImm();
3509 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3510 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3511 if (!isSub &&
3512 (ShImm == 0 ||
3513 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3514 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3515 return 1;
3516 return 2;
3519 case ARM::LDRSB:
3520 case ARM::LDRSH:
3521 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3523 case ARM::LDRSB_POST:
3524 case ARM::LDRSH_POST: {
3525 Register Rt = MI.getOperand(0).getReg();
3526 Register Rm = MI.getOperand(3).getReg();
3527 return (Rt == Rm) ? 4 : 3;
3530 case ARM::LDR_PRE_REG:
3531 case ARM::LDRB_PRE_REG: {
3532 Register Rt = MI.getOperand(0).getReg();
3533 Register Rm = MI.getOperand(3).getReg();
3534 if (Rt == Rm)
3535 return 3;
3536 unsigned ShOpVal = MI.getOperand(4).getImm();
3537 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3538 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3539 if (!isSub &&
3540 (ShImm == 0 ||
3541 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3542 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3543 return 2;
3544 return 3;
3547 case ARM::STR_PRE_REG:
3548 case ARM::STRB_PRE_REG: {
3549 unsigned ShOpVal = MI.getOperand(4).getImm();
3550 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3551 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3552 if (!isSub &&
3553 (ShImm == 0 ||
3554 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3555 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3556 return 2;
3557 return 3;
3560 case ARM::LDRH_PRE:
3561 case ARM::STRH_PRE: {
3562 Register Rt = MI.getOperand(0).getReg();
3563 Register Rm = MI.getOperand(3).getReg();
3564 if (!Rm)
3565 return 2;
3566 if (Rt == Rm)
3567 return 3;
3568 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3571 case ARM::LDR_POST_REG:
3572 case ARM::LDRB_POST_REG:
3573 case ARM::LDRH_POST: {
3574 Register Rt = MI.getOperand(0).getReg();
3575 Register Rm = MI.getOperand(3).getReg();
3576 return (Rt == Rm) ? 3 : 2;
3579 case ARM::LDR_PRE_IMM:
3580 case ARM::LDRB_PRE_IMM:
3581 case ARM::LDR_POST_IMM:
3582 case ARM::LDRB_POST_IMM:
3583 case ARM::STRB_POST_IMM:
3584 case ARM::STRB_POST_REG:
3585 case ARM::STRB_PRE_IMM:
3586 case ARM::STRH_POST:
3587 case ARM::STR_POST_IMM:
3588 case ARM::STR_POST_REG:
3589 case ARM::STR_PRE_IMM:
3590 return 2;
3592 case ARM::LDRSB_PRE:
3593 case ARM::LDRSH_PRE: {
3594 Register Rm = MI.getOperand(3).getReg();
3595 if (Rm == 0)
3596 return 3;
3597 Register Rt = MI.getOperand(0).getReg();
3598 if (Rt == Rm)
3599 return 4;
3600 unsigned ShOpVal = MI.getOperand(4).getImm();
3601 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3602 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3603 if (!isSub &&
3604 (ShImm == 0 ||
3605 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3606 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3607 return 3;
3608 return 4;
3611 case ARM::LDRD: {
3612 Register Rt = MI.getOperand(0).getReg();
3613 Register Rn = MI.getOperand(2).getReg();
3614 Register Rm = MI.getOperand(3).getReg();
3615 if (Rm)
3616 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3617 : 3;
3618 return (Rt == Rn) ? 3 : 2;
3621 case ARM::STRD: {
3622 Register Rm = MI.getOperand(3).getReg();
3623 if (Rm)
3624 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3625 : 3;
3626 return 2;
3629 case ARM::LDRD_POST:
3630 case ARM::t2LDRD_POST:
3631 return 3;
3633 case ARM::STRD_POST:
3634 case ARM::t2STRD_POST:
3635 return 4;
3637 case ARM::LDRD_PRE: {
3638 Register Rt = MI.getOperand(0).getReg();
3639 Register Rn = MI.getOperand(3).getReg();
3640 Register Rm = MI.getOperand(4).getReg();
3641 if (Rm)
3642 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3643 : 4;
3644 return (Rt == Rn) ? 4 : 3;
3647 case ARM::t2LDRD_PRE: {
3648 Register Rt = MI.getOperand(0).getReg();
3649 Register Rn = MI.getOperand(3).getReg();
3650 return (Rt == Rn) ? 4 : 3;
3653 case ARM::STRD_PRE: {
3654 Register Rm = MI.getOperand(4).getReg();
3655 if (Rm)
3656 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3657 : 4;
3658 return 3;
3661 case ARM::t2STRD_PRE:
3662 return 3;
3664 case ARM::t2LDR_POST:
3665 case ARM::t2LDRB_POST:
3666 case ARM::t2LDRB_PRE:
3667 case ARM::t2LDRSBi12:
3668 case ARM::t2LDRSBi8:
3669 case ARM::t2LDRSBpci:
3670 case ARM::t2LDRSBs:
3671 case ARM::t2LDRH_POST:
3672 case ARM::t2LDRH_PRE:
3673 case ARM::t2LDRSBT:
3674 case ARM::t2LDRSB_POST:
3675 case ARM::t2LDRSB_PRE:
3676 case ARM::t2LDRSH_POST:
3677 case ARM::t2LDRSH_PRE:
3678 case ARM::t2LDRSHi12:
3679 case ARM::t2LDRSHi8:
3680 case ARM::t2LDRSHpci:
3681 case ARM::t2LDRSHs:
3682 return 2;
3684 case ARM::t2LDRDi8: {
3685 Register Rt = MI.getOperand(0).getReg();
3686 Register Rn = MI.getOperand(2).getReg();
3687 return (Rt == Rn) ? 3 : 2;
3690 case ARM::t2STRB_POST:
3691 case ARM::t2STRB_PRE:
3692 case ARM::t2STRBs:
3693 case ARM::t2STRDi8:
3694 case ARM::t2STRH_POST:
3695 case ARM::t2STRH_PRE:
3696 case ARM::t2STRHs:
3697 case ARM::t2STR_POST:
3698 case ARM::t2STR_PRE:
3699 case ARM::t2STRs:
3700 return 2;
3704 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3705 // can't be easily determined return 0 (missing MachineMemOperand).
3707 // FIXME: The current MachineInstr design does not support relying on machine
3708 // mem operands to determine the width of a memory access. Instead, we expect
3709 // the target to provide this information based on the instruction opcode and
3710 // operands. However, using MachineMemOperand is the best solution now for
3711 // two reasons:
3713 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3714 // operands. This is much more dangerous than using the MachineMemOperand
3715 // sizes because CodeGen passes can insert/remove optional machine operands. In
3716 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3717 // postRA passes as well.
3719 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3720 // machine model that calls this should handle the unknown (zero size) case.
3722 // Long term, we should require a target hook that verifies MachineMemOperand
3723 // sizes during MC lowering. That target hook should be local to MC lowering
3724 // because we can't ensure that it is aware of other MI forms. Doing this will
3725 // ensure that MachineMemOperands are correctly propagated through all passes.
3726 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3727 unsigned Size = 0;
3728 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3729 E = MI.memoperands_end();
3730 I != E; ++I) {
3731 Size += (*I)->getSize().getValue();
3733 // FIXME: The scheduler currently can't handle values larger than 16. But
3734 // the values can actually go up to 32 for floating-point load/store
3735 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3736 // operations isn't right; we could end up with "extra" memory operands for
3737 // various reasons, like tail merge merging two memory operations.
3738 return std::min(Size / 4, 16U);
3741 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3742 unsigned NumRegs) {
3743 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3744 switch (Opc) {
3745 default:
3746 break;
3747 case ARM::VLDMDIA_UPD:
3748 case ARM::VLDMDDB_UPD:
3749 case ARM::VLDMSIA_UPD:
3750 case ARM::VLDMSDB_UPD:
3751 case ARM::VSTMDIA_UPD:
3752 case ARM::VSTMDDB_UPD:
3753 case ARM::VSTMSIA_UPD:
3754 case ARM::VSTMSDB_UPD:
3755 case ARM::LDMIA_UPD:
3756 case ARM::LDMDA_UPD:
3757 case ARM::LDMDB_UPD:
3758 case ARM::LDMIB_UPD:
3759 case ARM::STMIA_UPD:
3760 case ARM::STMDA_UPD:
3761 case ARM::STMDB_UPD:
3762 case ARM::STMIB_UPD:
3763 case ARM::tLDMIA_UPD:
3764 case ARM::tSTMIA_UPD:
3765 case ARM::t2LDMIA_UPD:
3766 case ARM::t2LDMDB_UPD:
3767 case ARM::t2STMIA_UPD:
3768 case ARM::t2STMDB_UPD:
3769 ++UOps; // One for base register writeback.
3770 break;
3771 case ARM::LDMIA_RET:
3772 case ARM::tPOP_RET:
3773 case ARM::t2LDMIA_RET:
3774 UOps += 2; // One for base reg wb, one for write to pc.
3775 break;
3777 return UOps;
3780 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3781 const MachineInstr &MI) const {
3782 if (!ItinData || ItinData->isEmpty())
3783 return 1;
3785 const MCInstrDesc &Desc = MI.getDesc();
3786 unsigned Class = Desc.getSchedClass();
3787 int ItinUOps = ItinData->getNumMicroOps(Class);
3788 if (ItinUOps >= 0) {
3789 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3790 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3792 return ItinUOps;
3795 unsigned Opc = MI.getOpcode();
3796 switch (Opc) {
3797 default:
3798 llvm_unreachable("Unexpected multi-uops instruction!");
3799 case ARM::VLDMQIA:
3800 case ARM::VSTMQIA:
3801 return 2;
3803 // The number of uOps for load / store multiple are determined by the number
3804 // registers.
3806 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3807 // same cycle. The scheduling for the first load / store must be done
3808 // separately by assuming the address is not 64-bit aligned.
3810 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3811 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3812 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3813 case ARM::VLDMDIA:
3814 case ARM::VLDMDIA_UPD:
3815 case ARM::VLDMDDB_UPD:
3816 case ARM::VLDMSIA:
3817 case ARM::VLDMSIA_UPD:
3818 case ARM::VLDMSDB_UPD:
3819 case ARM::VSTMDIA:
3820 case ARM::VSTMDIA_UPD:
3821 case ARM::VSTMDDB_UPD:
3822 case ARM::VSTMSIA:
3823 case ARM::VSTMSIA_UPD:
3824 case ARM::VSTMSDB_UPD: {
3825 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3826 return (NumRegs / 2) + (NumRegs % 2) + 1;
3829 case ARM::LDMIA_RET:
3830 case ARM::LDMIA:
3831 case ARM::LDMDA:
3832 case ARM::LDMDB:
3833 case ARM::LDMIB:
3834 case ARM::LDMIA_UPD:
3835 case ARM::LDMDA_UPD:
3836 case ARM::LDMDB_UPD:
3837 case ARM::LDMIB_UPD:
3838 case ARM::STMIA:
3839 case ARM::STMDA:
3840 case ARM::STMDB:
3841 case ARM::STMIB:
3842 case ARM::STMIA_UPD:
3843 case ARM::STMDA_UPD:
3844 case ARM::STMDB_UPD:
3845 case ARM::STMIB_UPD:
3846 case ARM::tLDMIA:
3847 case ARM::tLDMIA_UPD:
3848 case ARM::tSTMIA_UPD:
3849 case ARM::tPOP_RET:
3850 case ARM::tPOP:
3851 case ARM::tPUSH:
3852 case ARM::t2LDMIA_RET:
3853 case ARM::t2LDMIA:
3854 case ARM::t2LDMDB:
3855 case ARM::t2LDMIA_UPD:
3856 case ARM::t2LDMDB_UPD:
3857 case ARM::t2STMIA:
3858 case ARM::t2STMDB:
3859 case ARM::t2STMIA_UPD:
3860 case ARM::t2STMDB_UPD: {
3861 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3862 switch (Subtarget.getLdStMultipleTiming()) {
3863 case ARMSubtarget::SingleIssuePlusExtras:
3864 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3865 case ARMSubtarget::SingleIssue:
3866 // Assume the worst.
3867 return NumRegs;
3868 case ARMSubtarget::DoubleIssue: {
3869 if (NumRegs < 4)
3870 return 2;
3871 // 4 registers would be issued: 2, 2.
3872 // 5 registers would be issued: 2, 2, 1.
3873 unsigned UOps = (NumRegs / 2);
3874 if (NumRegs % 2)
3875 ++UOps;
3876 return UOps;
3878 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3879 unsigned UOps = (NumRegs / 2);
3880 // If there are odd number of registers or if it's not 64-bit aligned,
3881 // then it takes an extra AGU (Address Generation Unit) cycle.
3882 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3883 (*MI.memoperands_begin())->getAlign() < Align(8))
3884 ++UOps;
3885 return UOps;
3890 llvm_unreachable("Didn't find the number of microops");
3893 std::optional<unsigned>
3894 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3895 const MCInstrDesc &DefMCID, unsigned DefClass,
3896 unsigned DefIdx, unsigned DefAlign) const {
3897 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3898 if (RegNo <= 0)
3899 // Def is the address writeback.
3900 return ItinData->getOperandCycle(DefClass, DefIdx);
3902 unsigned DefCycle;
3903 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3904 // (regno / 2) + (regno % 2) + 1
3905 DefCycle = RegNo / 2 + 1;
3906 if (RegNo % 2)
3907 ++DefCycle;
3908 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3909 DefCycle = RegNo;
3910 bool isSLoad = false;
3912 switch (DefMCID.getOpcode()) {
3913 default: break;
3914 case ARM::VLDMSIA:
3915 case ARM::VLDMSIA_UPD:
3916 case ARM::VLDMSDB_UPD:
3917 isSLoad = true;
3918 break;
3921 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3922 // then it takes an extra cycle.
3923 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3924 ++DefCycle;
3925 } else {
3926 // Assume the worst.
3927 DefCycle = RegNo + 2;
3930 return DefCycle;
3933 std::optional<unsigned>
3934 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3935 const MCInstrDesc &DefMCID, unsigned DefClass,
3936 unsigned DefIdx, unsigned DefAlign) const {
3937 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3938 if (RegNo <= 0)
3939 // Def is the address writeback.
3940 return ItinData->getOperandCycle(DefClass, DefIdx);
3942 unsigned DefCycle;
3943 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3944 // 4 registers would be issued: 1, 2, 1.
3945 // 5 registers would be issued: 1, 2, 2.
3946 DefCycle = RegNo / 2;
3947 if (DefCycle < 1)
3948 DefCycle = 1;
3949 // Result latency is issue cycle + 2: E2.
3950 DefCycle += 2;
3951 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3952 DefCycle = (RegNo / 2);
3953 // If there are odd number of registers or if it's not 64-bit aligned,
3954 // then it takes an extra AGU (Address Generation Unit) cycle.
3955 if ((RegNo % 2) || DefAlign < 8)
3956 ++DefCycle;
3957 // Result latency is AGU cycles + 2.
3958 DefCycle += 2;
3959 } else {
3960 // Assume the worst.
3961 DefCycle = RegNo + 2;
3964 return DefCycle;
3967 std::optional<unsigned>
3968 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3969 const MCInstrDesc &UseMCID, unsigned UseClass,
3970 unsigned UseIdx, unsigned UseAlign) const {
3971 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3972 if (RegNo <= 0)
3973 return ItinData->getOperandCycle(UseClass, UseIdx);
3975 unsigned UseCycle;
3976 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3977 // (regno / 2) + (regno % 2) + 1
3978 UseCycle = RegNo / 2 + 1;
3979 if (RegNo % 2)
3980 ++UseCycle;
3981 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3982 UseCycle = RegNo;
3983 bool isSStore = false;
3985 switch (UseMCID.getOpcode()) {
3986 default: break;
3987 case ARM::VSTMSIA:
3988 case ARM::VSTMSIA_UPD:
3989 case ARM::VSTMSDB_UPD:
3990 isSStore = true;
3991 break;
3994 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3995 // then it takes an extra cycle.
3996 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3997 ++UseCycle;
3998 } else {
3999 // Assume the worst.
4000 UseCycle = RegNo + 2;
4003 return UseCycle;
4006 std::optional<unsigned>
4007 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
4008 const MCInstrDesc &UseMCID, unsigned UseClass,
4009 unsigned UseIdx, unsigned UseAlign) const {
4010 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
4011 if (RegNo <= 0)
4012 return ItinData->getOperandCycle(UseClass, UseIdx);
4014 unsigned UseCycle;
4015 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
4016 UseCycle = RegNo / 2;
4017 if (UseCycle < 2)
4018 UseCycle = 2;
4019 // Read in E3.
4020 UseCycle += 2;
4021 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4022 UseCycle = (RegNo / 2);
4023 // If there are odd number of registers or if it's not 64-bit aligned,
4024 // then it takes an extra AGU (Address Generation Unit) cycle.
4025 if ((RegNo % 2) || UseAlign < 8)
4026 ++UseCycle;
4027 } else {
4028 // Assume the worst.
4029 UseCycle = 1;
4031 return UseCycle;
4034 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4035 const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID,
4036 unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID,
4037 unsigned UseIdx, unsigned UseAlign) const {
4038 unsigned DefClass = DefMCID.getSchedClass();
4039 unsigned UseClass = UseMCID.getSchedClass();
4041 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4042 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4044 // This may be a def / use of a variable_ops instruction, the operand
4045 // latency might be determinable dynamically. Let the target try to
4046 // figure it out.
4047 std::optional<unsigned> DefCycle;
4048 bool LdmBypass = false;
4049 switch (DefMCID.getOpcode()) {
4050 default:
4051 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4052 break;
4054 case ARM::VLDMDIA:
4055 case ARM::VLDMDIA_UPD:
4056 case ARM::VLDMDDB_UPD:
4057 case ARM::VLDMSIA:
4058 case ARM::VLDMSIA_UPD:
4059 case ARM::VLDMSDB_UPD:
4060 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4061 break;
4063 case ARM::LDMIA_RET:
4064 case ARM::LDMIA:
4065 case ARM::LDMDA:
4066 case ARM::LDMDB:
4067 case ARM::LDMIB:
4068 case ARM::LDMIA_UPD:
4069 case ARM::LDMDA_UPD:
4070 case ARM::LDMDB_UPD:
4071 case ARM::LDMIB_UPD:
4072 case ARM::tLDMIA:
4073 case ARM::tLDMIA_UPD:
4074 case ARM::tPUSH:
4075 case ARM::t2LDMIA_RET:
4076 case ARM::t2LDMIA:
4077 case ARM::t2LDMDB:
4078 case ARM::t2LDMIA_UPD:
4079 case ARM::t2LDMDB_UPD:
4080 LdmBypass = true;
4081 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4082 break;
4085 if (!DefCycle)
4086 // We can't seem to determine the result latency of the def, assume it's 2.
4087 DefCycle = 2;
4089 std::optional<unsigned> UseCycle;
4090 switch (UseMCID.getOpcode()) {
4091 default:
4092 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4093 break;
4095 case ARM::VSTMDIA:
4096 case ARM::VSTMDIA_UPD:
4097 case ARM::VSTMDDB_UPD:
4098 case ARM::VSTMSIA:
4099 case ARM::VSTMSIA_UPD:
4100 case ARM::VSTMSDB_UPD:
4101 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4102 break;
4104 case ARM::STMIA:
4105 case ARM::STMDA:
4106 case ARM::STMDB:
4107 case ARM::STMIB:
4108 case ARM::STMIA_UPD:
4109 case ARM::STMDA_UPD:
4110 case ARM::STMDB_UPD:
4111 case ARM::STMIB_UPD:
4112 case ARM::tSTMIA_UPD:
4113 case ARM::tPOP_RET:
4114 case ARM::tPOP:
4115 case ARM::t2STMIA:
4116 case ARM::t2STMDB:
4117 case ARM::t2STMIA_UPD:
4118 case ARM::t2STMDB_UPD:
4119 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4120 break;
4123 if (!UseCycle)
4124 // Assume it's read in the first stage.
4125 UseCycle = 1;
4127 if (UseCycle > *DefCycle + 1)
4128 return std::nullopt;
4130 UseCycle = *DefCycle - *UseCycle + 1;
4131 if (UseCycle > 0u) {
4132 if (LdmBypass) {
4133 // It's a variable_ops instruction so we can't use DefIdx here. Just use
4134 // first def operand.
4135 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4136 UseClass, UseIdx))
4137 UseCycle = *UseCycle - 1;
4138 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4139 UseClass, UseIdx)) {
4140 UseCycle = *UseCycle - 1;
4144 return UseCycle;
4147 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4148 const MachineInstr *MI, unsigned Reg,
4149 unsigned &DefIdx, unsigned &Dist) {
4150 Dist = 0;
4152 MachineBasicBlock::const_iterator I = MI; ++I;
4153 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4154 assert(II->isInsideBundle() && "Empty bundle?");
4156 int Idx = -1;
4157 while (II->isInsideBundle()) {
4158 Idx = II->findRegisterDefOperandIdx(Reg, TRI, false, true);
4159 if (Idx != -1)
4160 break;
4161 --II;
4162 ++Dist;
4165 assert(Idx != -1 && "Cannot find bundled definition!");
4166 DefIdx = Idx;
4167 return &*II;
4170 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4171 const MachineInstr &MI, unsigned Reg,
4172 unsigned &UseIdx, unsigned &Dist) {
4173 Dist = 0;
4175 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4176 assert(II->isInsideBundle() && "Empty bundle?");
4177 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4179 // FIXME: This doesn't properly handle multiple uses.
4180 int Idx = -1;
4181 while (II != E && II->isInsideBundle()) {
4182 Idx = II->findRegisterUseOperandIdx(Reg, TRI, false);
4183 if (Idx != -1)
4184 break;
4185 if (II->getOpcode() != ARM::t2IT)
4186 ++Dist;
4187 ++II;
4190 if (Idx == -1) {
4191 Dist = 0;
4192 return nullptr;
4195 UseIdx = Idx;
4196 return &*II;
4199 /// Return the number of cycles to add to (or subtract from) the static
4200 /// itinerary based on the def opcode and alignment. The caller will ensure that
4201 /// adjusted latency is at least one cycle.
4202 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4203 const MachineInstr &DefMI,
4204 const MCInstrDesc &DefMCID, unsigned DefAlign) {
4205 int Adjust = 0;
4206 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4207 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4208 // variants are one cycle cheaper.
4209 switch (DefMCID.getOpcode()) {
4210 default: break;
4211 case ARM::LDRrs:
4212 case ARM::LDRBrs: {
4213 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4214 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4215 if (ShImm == 0 ||
4216 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4217 --Adjust;
4218 break;
4220 case ARM::t2LDRs:
4221 case ARM::t2LDRBs:
4222 case ARM::t2LDRHs:
4223 case ARM::t2LDRSHs: {
4224 // Thumb2 mode: lsl only.
4225 unsigned ShAmt = DefMI.getOperand(3).getImm();
4226 if (ShAmt == 0 || ShAmt == 2)
4227 --Adjust;
4228 break;
4231 } else if (Subtarget.isSwift()) {
4232 // FIXME: Properly handle all of the latency adjustments for address
4233 // writeback.
4234 switch (DefMCID.getOpcode()) {
4235 default: break;
4236 case ARM::LDRrs:
4237 case ARM::LDRBrs: {
4238 unsigned ShOpVal = DefMI.getOperand(3).getImm();
4239 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4240 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4241 if (!isSub &&
4242 (ShImm == 0 ||
4243 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4244 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4245 Adjust -= 2;
4246 else if (!isSub &&
4247 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4248 --Adjust;
4249 break;
4251 case ARM::t2LDRs:
4252 case ARM::t2LDRBs:
4253 case ARM::t2LDRHs:
4254 case ARM::t2LDRSHs: {
4255 // Thumb2 mode: lsl only.
4256 unsigned ShAmt = DefMI.getOperand(3).getImm();
4257 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4258 Adjust -= 2;
4259 break;
4264 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4265 switch (DefMCID.getOpcode()) {
4266 default: break;
4267 case ARM::VLD1q8:
4268 case ARM::VLD1q16:
4269 case ARM::VLD1q32:
4270 case ARM::VLD1q64:
4271 case ARM::VLD1q8wb_fixed:
4272 case ARM::VLD1q16wb_fixed:
4273 case ARM::VLD1q32wb_fixed:
4274 case ARM::VLD1q64wb_fixed:
4275 case ARM::VLD1q8wb_register:
4276 case ARM::VLD1q16wb_register:
4277 case ARM::VLD1q32wb_register:
4278 case ARM::VLD1q64wb_register:
4279 case ARM::VLD2d8:
4280 case ARM::VLD2d16:
4281 case ARM::VLD2d32:
4282 case ARM::VLD2q8:
4283 case ARM::VLD2q16:
4284 case ARM::VLD2q32:
4285 case ARM::VLD2d8wb_fixed:
4286 case ARM::VLD2d16wb_fixed:
4287 case ARM::VLD2d32wb_fixed:
4288 case ARM::VLD2q8wb_fixed:
4289 case ARM::VLD2q16wb_fixed:
4290 case ARM::VLD2q32wb_fixed:
4291 case ARM::VLD2d8wb_register:
4292 case ARM::VLD2d16wb_register:
4293 case ARM::VLD2d32wb_register:
4294 case ARM::VLD2q8wb_register:
4295 case ARM::VLD2q16wb_register:
4296 case ARM::VLD2q32wb_register:
4297 case ARM::VLD3d8:
4298 case ARM::VLD3d16:
4299 case ARM::VLD3d32:
4300 case ARM::VLD1d64T:
4301 case ARM::VLD3d8_UPD:
4302 case ARM::VLD3d16_UPD:
4303 case ARM::VLD3d32_UPD:
4304 case ARM::VLD1d64Twb_fixed:
4305 case ARM::VLD1d64Twb_register:
4306 case ARM::VLD3q8_UPD:
4307 case ARM::VLD3q16_UPD:
4308 case ARM::VLD3q32_UPD:
4309 case ARM::VLD4d8:
4310 case ARM::VLD4d16:
4311 case ARM::VLD4d32:
4312 case ARM::VLD1d64Q:
4313 case ARM::VLD4d8_UPD:
4314 case ARM::VLD4d16_UPD:
4315 case ARM::VLD4d32_UPD:
4316 case ARM::VLD1d64Qwb_fixed:
4317 case ARM::VLD1d64Qwb_register:
4318 case ARM::VLD4q8_UPD:
4319 case ARM::VLD4q16_UPD:
4320 case ARM::VLD4q32_UPD:
4321 case ARM::VLD1DUPq8:
4322 case ARM::VLD1DUPq16:
4323 case ARM::VLD1DUPq32:
4324 case ARM::VLD1DUPq8wb_fixed:
4325 case ARM::VLD1DUPq16wb_fixed:
4326 case ARM::VLD1DUPq32wb_fixed:
4327 case ARM::VLD1DUPq8wb_register:
4328 case ARM::VLD1DUPq16wb_register:
4329 case ARM::VLD1DUPq32wb_register:
4330 case ARM::VLD2DUPd8:
4331 case ARM::VLD2DUPd16:
4332 case ARM::VLD2DUPd32:
4333 case ARM::VLD2DUPd8wb_fixed:
4334 case ARM::VLD2DUPd16wb_fixed:
4335 case ARM::VLD2DUPd32wb_fixed:
4336 case ARM::VLD2DUPd8wb_register:
4337 case ARM::VLD2DUPd16wb_register:
4338 case ARM::VLD2DUPd32wb_register:
4339 case ARM::VLD4DUPd8:
4340 case ARM::VLD4DUPd16:
4341 case ARM::VLD4DUPd32:
4342 case ARM::VLD4DUPd8_UPD:
4343 case ARM::VLD4DUPd16_UPD:
4344 case ARM::VLD4DUPd32_UPD:
4345 case ARM::VLD1LNd8:
4346 case ARM::VLD1LNd16:
4347 case ARM::VLD1LNd32:
4348 case ARM::VLD1LNd8_UPD:
4349 case ARM::VLD1LNd16_UPD:
4350 case ARM::VLD1LNd32_UPD:
4351 case ARM::VLD2LNd8:
4352 case ARM::VLD2LNd16:
4353 case ARM::VLD2LNd32:
4354 case ARM::VLD2LNq16:
4355 case ARM::VLD2LNq32:
4356 case ARM::VLD2LNd8_UPD:
4357 case ARM::VLD2LNd16_UPD:
4358 case ARM::VLD2LNd32_UPD:
4359 case ARM::VLD2LNq16_UPD:
4360 case ARM::VLD2LNq32_UPD:
4361 case ARM::VLD4LNd8:
4362 case ARM::VLD4LNd16:
4363 case ARM::VLD4LNd32:
4364 case ARM::VLD4LNq16:
4365 case ARM::VLD4LNq32:
4366 case ARM::VLD4LNd8_UPD:
4367 case ARM::VLD4LNd16_UPD:
4368 case ARM::VLD4LNd32_UPD:
4369 case ARM::VLD4LNq16_UPD:
4370 case ARM::VLD4LNq32_UPD:
4371 // If the address is not 64-bit aligned, the latencies of these
4372 // instructions increases by one.
4373 ++Adjust;
4374 break;
4377 return Adjust;
4380 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4381 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4382 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4383 // No operand latency. The caller may fall back to getInstrLatency.
4384 if (!ItinData || ItinData->isEmpty())
4385 return std::nullopt;
4387 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4388 Register Reg = DefMO.getReg();
4390 const MachineInstr *ResolvedDefMI = &DefMI;
4391 unsigned DefAdj = 0;
4392 if (DefMI.isBundle())
4393 ResolvedDefMI =
4394 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4395 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4396 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4397 return 1;
4400 const MachineInstr *ResolvedUseMI = &UseMI;
4401 unsigned UseAdj = 0;
4402 if (UseMI.isBundle()) {
4403 ResolvedUseMI =
4404 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4405 if (!ResolvedUseMI)
4406 return std::nullopt;
4409 return getOperandLatencyImpl(
4410 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4411 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4414 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl(
4415 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4416 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4417 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4418 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4419 if (Reg == ARM::CPSR) {
4420 if (DefMI.getOpcode() == ARM::FMSTAT) {
4421 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4422 return Subtarget.isLikeA9() ? 1 : 20;
4425 // CPSR set and branch can be paired in the same cycle.
4426 if (UseMI.isBranch())
4427 return 0;
4429 // Otherwise it takes the instruction latency (generally one).
4430 unsigned Latency = getInstrLatency(ItinData, DefMI);
4432 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4433 // its uses. Instructions which are otherwise scheduled between them may
4434 // incur a code size penalty (not able to use the CPSR setting 16-bit
4435 // instructions).
4436 if (Latency > 0 && Subtarget.isThumb2()) {
4437 const MachineFunction *MF = DefMI.getParent()->getParent();
4438 // FIXME: Use Function::hasOptSize().
4439 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4440 --Latency;
4442 return Latency;
4445 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4446 return std::nullopt;
4448 unsigned DefAlign = DefMI.hasOneMemOperand()
4449 ? (*DefMI.memoperands_begin())->getAlign().value()
4450 : 0;
4451 unsigned UseAlign = UseMI.hasOneMemOperand()
4452 ? (*UseMI.memoperands_begin())->getAlign().value()
4453 : 0;
4455 // Get the itinerary's latency if possible, and handle variable_ops.
4456 std::optional<unsigned> Latency = getOperandLatency(
4457 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4458 // Unable to find operand latency. The caller may resort to getInstrLatency.
4459 if (!Latency)
4460 return std::nullopt;
4462 // Adjust for IT block position.
4463 int Adj = DefAdj + UseAdj;
4465 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4466 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4467 if (Adj >= 0 || (int)*Latency > -Adj) {
4468 return *Latency + Adj;
4470 // Return the itinerary latency, which may be zero but not less than zero.
4471 return Latency;
4474 std::optional<unsigned>
4475 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4476 SDNode *DefNode, unsigned DefIdx,
4477 SDNode *UseNode, unsigned UseIdx) const {
4478 if (!DefNode->isMachineOpcode())
4479 return 1;
4481 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4483 if (isZeroCost(DefMCID.Opcode))
4484 return 0;
4486 if (!ItinData || ItinData->isEmpty())
4487 return DefMCID.mayLoad() ? 3 : 1;
4489 if (!UseNode->isMachineOpcode()) {
4490 std::optional<unsigned> Latency =
4491 ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4492 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4493 int Threshold = 1 + Adj;
4494 return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj;
4497 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4498 auto *DefMN = cast<MachineSDNode>(DefNode);
4499 unsigned DefAlign = !DefMN->memoperands_empty()
4500 ? (*DefMN->memoperands_begin())->getAlign().value()
4501 : 0;
4502 auto *UseMN = cast<MachineSDNode>(UseNode);
4503 unsigned UseAlign = !UseMN->memoperands_empty()
4504 ? (*UseMN->memoperands_begin())->getAlign().value()
4505 : 0;
4506 std::optional<unsigned> Latency = getOperandLatency(
4507 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4508 if (!Latency)
4509 return std::nullopt;
4511 if (Latency > 1U &&
4512 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4513 Subtarget.isCortexA7())) {
4514 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4515 // variants are one cycle cheaper.
4516 switch (DefMCID.getOpcode()) {
4517 default: break;
4518 case ARM::LDRrs:
4519 case ARM::LDRBrs: {
4520 unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4521 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4522 if (ShImm == 0 ||
4523 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4524 Latency = *Latency - 1;
4525 break;
4527 case ARM::t2LDRs:
4528 case ARM::t2LDRBs:
4529 case ARM::t2LDRHs:
4530 case ARM::t2LDRSHs: {
4531 // Thumb2 mode: lsl only.
4532 unsigned ShAmt = DefNode->getConstantOperandVal(2);
4533 if (ShAmt == 0 || ShAmt == 2)
4534 Latency = *Latency - 1;
4535 break;
4538 } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) {
4539 // FIXME: Properly handle all of the latency adjustments for address
4540 // writeback.
4541 switch (DefMCID.getOpcode()) {
4542 default: break;
4543 case ARM::LDRrs:
4544 case ARM::LDRBrs: {
4545 unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4546 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4547 if (ShImm == 0 ||
4548 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4549 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4550 Latency = *Latency - 2;
4551 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4552 Latency = *Latency - 1;
4553 break;
4555 case ARM::t2LDRs:
4556 case ARM::t2LDRBs:
4557 case ARM::t2LDRHs:
4558 case ARM::t2LDRSHs:
4559 // Thumb2 mode: lsl 0-3 only.
4560 Latency = *Latency - 2;
4561 break;
4565 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4566 switch (DefMCID.getOpcode()) {
4567 default: break;
4568 case ARM::VLD1q8:
4569 case ARM::VLD1q16:
4570 case ARM::VLD1q32:
4571 case ARM::VLD1q64:
4572 case ARM::VLD1q8wb_register:
4573 case ARM::VLD1q16wb_register:
4574 case ARM::VLD1q32wb_register:
4575 case ARM::VLD1q64wb_register:
4576 case ARM::VLD1q8wb_fixed:
4577 case ARM::VLD1q16wb_fixed:
4578 case ARM::VLD1q32wb_fixed:
4579 case ARM::VLD1q64wb_fixed:
4580 case ARM::VLD2d8:
4581 case ARM::VLD2d16:
4582 case ARM::VLD2d32:
4583 case ARM::VLD2q8Pseudo:
4584 case ARM::VLD2q16Pseudo:
4585 case ARM::VLD2q32Pseudo:
4586 case ARM::VLD2d8wb_fixed:
4587 case ARM::VLD2d16wb_fixed:
4588 case ARM::VLD2d32wb_fixed:
4589 case ARM::VLD2q8PseudoWB_fixed:
4590 case ARM::VLD2q16PseudoWB_fixed:
4591 case ARM::VLD2q32PseudoWB_fixed:
4592 case ARM::VLD2d8wb_register:
4593 case ARM::VLD2d16wb_register:
4594 case ARM::VLD2d32wb_register:
4595 case ARM::VLD2q8PseudoWB_register:
4596 case ARM::VLD2q16PseudoWB_register:
4597 case ARM::VLD2q32PseudoWB_register:
4598 case ARM::VLD3d8Pseudo:
4599 case ARM::VLD3d16Pseudo:
4600 case ARM::VLD3d32Pseudo:
4601 case ARM::VLD1d8TPseudo:
4602 case ARM::VLD1d16TPseudo:
4603 case ARM::VLD1d32TPseudo:
4604 case ARM::VLD1d64TPseudo:
4605 case ARM::VLD1d64TPseudoWB_fixed:
4606 case ARM::VLD1d64TPseudoWB_register:
4607 case ARM::VLD3d8Pseudo_UPD:
4608 case ARM::VLD3d16Pseudo_UPD:
4609 case ARM::VLD3d32Pseudo_UPD:
4610 case ARM::VLD3q8Pseudo_UPD:
4611 case ARM::VLD3q16Pseudo_UPD:
4612 case ARM::VLD3q32Pseudo_UPD:
4613 case ARM::VLD3q8oddPseudo:
4614 case ARM::VLD3q16oddPseudo:
4615 case ARM::VLD3q32oddPseudo:
4616 case ARM::VLD3q8oddPseudo_UPD:
4617 case ARM::VLD3q16oddPseudo_UPD:
4618 case ARM::VLD3q32oddPseudo_UPD:
4619 case ARM::VLD4d8Pseudo:
4620 case ARM::VLD4d16Pseudo:
4621 case ARM::VLD4d32Pseudo:
4622 case ARM::VLD1d8QPseudo:
4623 case ARM::VLD1d16QPseudo:
4624 case ARM::VLD1d32QPseudo:
4625 case ARM::VLD1d64QPseudo:
4626 case ARM::VLD1d64QPseudoWB_fixed:
4627 case ARM::VLD1d64QPseudoWB_register:
4628 case ARM::VLD1q8HighQPseudo:
4629 case ARM::VLD1q8LowQPseudo_UPD:
4630 case ARM::VLD1q8HighTPseudo:
4631 case ARM::VLD1q8LowTPseudo_UPD:
4632 case ARM::VLD1q16HighQPseudo:
4633 case ARM::VLD1q16LowQPseudo_UPD:
4634 case ARM::VLD1q16HighTPseudo:
4635 case ARM::VLD1q16LowTPseudo_UPD:
4636 case ARM::VLD1q32HighQPseudo:
4637 case ARM::VLD1q32LowQPseudo_UPD:
4638 case ARM::VLD1q32HighTPseudo:
4639 case ARM::VLD1q32LowTPseudo_UPD:
4640 case ARM::VLD1q64HighQPseudo:
4641 case ARM::VLD1q64LowQPseudo_UPD:
4642 case ARM::VLD1q64HighTPseudo:
4643 case ARM::VLD1q64LowTPseudo_UPD:
4644 case ARM::VLD4d8Pseudo_UPD:
4645 case ARM::VLD4d16Pseudo_UPD:
4646 case ARM::VLD4d32Pseudo_UPD:
4647 case ARM::VLD4q8Pseudo_UPD:
4648 case ARM::VLD4q16Pseudo_UPD:
4649 case ARM::VLD4q32Pseudo_UPD:
4650 case ARM::VLD4q8oddPseudo:
4651 case ARM::VLD4q16oddPseudo:
4652 case ARM::VLD4q32oddPseudo:
4653 case ARM::VLD4q8oddPseudo_UPD:
4654 case ARM::VLD4q16oddPseudo_UPD:
4655 case ARM::VLD4q32oddPseudo_UPD:
4656 case ARM::VLD1DUPq8:
4657 case ARM::VLD1DUPq16:
4658 case ARM::VLD1DUPq32:
4659 case ARM::VLD1DUPq8wb_fixed:
4660 case ARM::VLD1DUPq16wb_fixed:
4661 case ARM::VLD1DUPq32wb_fixed:
4662 case ARM::VLD1DUPq8wb_register:
4663 case ARM::VLD1DUPq16wb_register:
4664 case ARM::VLD1DUPq32wb_register:
4665 case ARM::VLD2DUPd8:
4666 case ARM::VLD2DUPd16:
4667 case ARM::VLD2DUPd32:
4668 case ARM::VLD2DUPd8wb_fixed:
4669 case ARM::VLD2DUPd16wb_fixed:
4670 case ARM::VLD2DUPd32wb_fixed:
4671 case ARM::VLD2DUPd8wb_register:
4672 case ARM::VLD2DUPd16wb_register:
4673 case ARM::VLD2DUPd32wb_register:
4674 case ARM::VLD2DUPq8EvenPseudo:
4675 case ARM::VLD2DUPq8OddPseudo:
4676 case ARM::VLD2DUPq16EvenPseudo:
4677 case ARM::VLD2DUPq16OddPseudo:
4678 case ARM::VLD2DUPq32EvenPseudo:
4679 case ARM::VLD2DUPq32OddPseudo:
4680 case ARM::VLD3DUPq8EvenPseudo:
4681 case ARM::VLD3DUPq8OddPseudo:
4682 case ARM::VLD3DUPq16EvenPseudo:
4683 case ARM::VLD3DUPq16OddPseudo:
4684 case ARM::VLD3DUPq32EvenPseudo:
4685 case ARM::VLD3DUPq32OddPseudo:
4686 case ARM::VLD4DUPd8Pseudo:
4687 case ARM::VLD4DUPd16Pseudo:
4688 case ARM::VLD4DUPd32Pseudo:
4689 case ARM::VLD4DUPd8Pseudo_UPD:
4690 case ARM::VLD4DUPd16Pseudo_UPD:
4691 case ARM::VLD4DUPd32Pseudo_UPD:
4692 case ARM::VLD4DUPq8EvenPseudo:
4693 case ARM::VLD4DUPq8OddPseudo:
4694 case ARM::VLD4DUPq16EvenPseudo:
4695 case ARM::VLD4DUPq16OddPseudo:
4696 case ARM::VLD4DUPq32EvenPseudo:
4697 case ARM::VLD4DUPq32OddPseudo:
4698 case ARM::VLD1LNq8Pseudo:
4699 case ARM::VLD1LNq16Pseudo:
4700 case ARM::VLD1LNq32Pseudo:
4701 case ARM::VLD1LNq8Pseudo_UPD:
4702 case ARM::VLD1LNq16Pseudo_UPD:
4703 case ARM::VLD1LNq32Pseudo_UPD:
4704 case ARM::VLD2LNd8Pseudo:
4705 case ARM::VLD2LNd16Pseudo:
4706 case ARM::VLD2LNd32Pseudo:
4707 case ARM::VLD2LNq16Pseudo:
4708 case ARM::VLD2LNq32Pseudo:
4709 case ARM::VLD2LNd8Pseudo_UPD:
4710 case ARM::VLD2LNd16Pseudo_UPD:
4711 case ARM::VLD2LNd32Pseudo_UPD:
4712 case ARM::VLD2LNq16Pseudo_UPD:
4713 case ARM::VLD2LNq32Pseudo_UPD:
4714 case ARM::VLD4LNd8Pseudo:
4715 case ARM::VLD4LNd16Pseudo:
4716 case ARM::VLD4LNd32Pseudo:
4717 case ARM::VLD4LNq16Pseudo:
4718 case ARM::VLD4LNq32Pseudo:
4719 case ARM::VLD4LNd8Pseudo_UPD:
4720 case ARM::VLD4LNd16Pseudo_UPD:
4721 case ARM::VLD4LNd32Pseudo_UPD:
4722 case ARM::VLD4LNq16Pseudo_UPD:
4723 case ARM::VLD4LNq32Pseudo_UPD:
4724 // If the address is not 64-bit aligned, the latencies of these
4725 // instructions increases by one.
4726 Latency = *Latency + 1;
4727 break;
4730 return Latency;
4733 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4734 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4735 MI.isImplicitDef())
4736 return 0;
4738 if (MI.isBundle())
4739 return 0;
4741 const MCInstrDesc &MCID = MI.getDesc();
4743 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4744 !Subtarget.cheapPredicableCPSRDef())) {
4745 // When predicated, CPSR is an additional source operand for CPSR updating
4746 // instructions, this apparently increases their latencies.
4747 return 1;
4749 return 0;
4752 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4753 const MachineInstr &MI,
4754 unsigned *PredCost) const {
4755 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4756 MI.isImplicitDef())
4757 return 1;
4759 // An instruction scheduler typically runs on unbundled instructions, however
4760 // other passes may query the latency of a bundled instruction.
4761 if (MI.isBundle()) {
4762 unsigned Latency = 0;
4763 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4764 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4765 while (++I != E && I->isInsideBundle()) {
4766 if (I->getOpcode() != ARM::t2IT)
4767 Latency += getInstrLatency(ItinData, *I, PredCost);
4769 return Latency;
4772 const MCInstrDesc &MCID = MI.getDesc();
4773 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4774 !Subtarget.cheapPredicableCPSRDef()))) {
4775 // When predicated, CPSR is an additional source operand for CPSR updating
4776 // instructions, this apparently increases their latencies.
4777 *PredCost = 1;
4779 // Be sure to call getStageLatency for an empty itinerary in case it has a
4780 // valid MinLatency property.
4781 if (!ItinData)
4782 return MI.mayLoad() ? 3 : 1;
4784 unsigned Class = MCID.getSchedClass();
4786 // For instructions with variable uops, use uops as latency.
4787 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4788 return getNumMicroOps(ItinData, MI);
4790 // For the common case, fall back on the itinerary's latency.
4791 unsigned Latency = ItinData->getStageLatency(Class);
4793 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4794 unsigned DefAlign =
4795 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4796 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4797 if (Adj >= 0 || (int)Latency > -Adj) {
4798 return Latency + Adj;
4800 return Latency;
4803 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4804 SDNode *Node) const {
4805 if (!Node->isMachineOpcode())
4806 return 1;
4808 if (!ItinData || ItinData->isEmpty())
4809 return 1;
4811 unsigned Opcode = Node->getMachineOpcode();
4812 switch (Opcode) {
4813 default:
4814 return ItinData->getStageLatency(get(Opcode).getSchedClass());
4815 case ARM::VLDMQIA:
4816 case ARM::VSTMQIA:
4817 return 2;
4821 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4822 const MachineRegisterInfo *MRI,
4823 const MachineInstr &DefMI,
4824 unsigned DefIdx,
4825 const MachineInstr &UseMI,
4826 unsigned UseIdx) const {
4827 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4828 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4829 if (Subtarget.nonpipelinedVFP() &&
4830 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4831 return true;
4833 // Hoist VFP / NEON instructions with 4 or higher latency.
4834 unsigned Latency =
4835 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4836 if (Latency <= 3)
4837 return false;
4838 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4839 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4842 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4843 const MachineInstr &DefMI,
4844 unsigned DefIdx) const {
4845 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4846 if (!ItinData || ItinData->isEmpty())
4847 return false;
4849 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4850 if (DDomain == ARMII::DomainGeneral) {
4851 unsigned DefClass = DefMI.getDesc().getSchedClass();
4852 std::optional<unsigned> DefCycle =
4853 ItinData->getOperandCycle(DefClass, DefIdx);
4854 return DefCycle && DefCycle <= 2U;
4856 return false;
4859 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4860 StringRef &ErrInfo) const {
4861 if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4862 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4863 return false;
4865 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4866 // Make sure we don't generate a lo-lo mov that isn't supported.
4867 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4868 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4869 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4870 return false;
4873 if (MI.getOpcode() == ARM::tPUSH ||
4874 MI.getOpcode() == ARM::tPOP ||
4875 MI.getOpcode() == ARM::tPOP_RET) {
4876 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
4877 if (MO.isImplicit() || !MO.isReg())
4878 continue;
4879 Register Reg = MO.getReg();
4880 if (Reg < ARM::R0 || Reg > ARM::R7) {
4881 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4882 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4883 ErrInfo = "Unsupported register in Thumb1 push/pop";
4884 return false;
4889 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4890 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4891 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4892 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4893 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4894 return false;
4898 // Check the address model by taking the first Imm operand and checking it is
4899 // legal for that addressing mode.
4900 ARMII::AddrMode AddrMode =
4901 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
4902 switch (AddrMode) {
4903 default:
4904 break;
4905 case ARMII::AddrModeT2_i7:
4906 case ARMII::AddrModeT2_i7s2:
4907 case ARMII::AddrModeT2_i7s4:
4908 case ARMII::AddrModeT2_i8:
4909 case ARMII::AddrModeT2_i8pos:
4910 case ARMII::AddrModeT2_i8neg:
4911 case ARMII::AddrModeT2_i8s4:
4912 case ARMII::AddrModeT2_i12: {
4913 uint32_t Imm = 0;
4914 for (auto Op : MI.operands()) {
4915 if (Op.isImm()) {
4916 Imm = Op.getImm();
4917 break;
4920 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
4921 ErrInfo = "Incorrect AddrMode Imm for instruction";
4922 return false;
4924 break;
4927 return true;
4930 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4931 unsigned LoadImmOpc,
4932 unsigned LoadOpc) const {
4933 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4934 "ROPI/RWPI not currently supported with stack guard");
4936 MachineBasicBlock &MBB = *MI->getParent();
4937 DebugLoc DL = MI->getDebugLoc();
4938 Register Reg = MI->getOperand(0).getReg();
4939 MachineInstrBuilder MIB;
4940 unsigned int Offset = 0;
4942 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4943 assert(!Subtarget.isReadTPSoft() &&
4944 "TLS stack protector requires hardware TLS register");
4946 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4947 .addImm(15)
4948 .addImm(0)
4949 .addImm(13)
4950 .addImm(0)
4951 .addImm(3)
4952 .add(predOps(ARMCC::AL));
4954 Module &M = *MBB.getParent()->getFunction().getParent();
4955 Offset = M.getStackProtectorGuardOffset();
4956 if (Offset & ~0xfffU) {
4957 // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4958 // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4959 // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4960 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4961 BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4962 .addReg(Reg, RegState::Kill)
4963 .addImm(Offset & ~0xfffU)
4964 .add(predOps(ARMCC::AL))
4965 .addReg(0);
4966 Offset &= 0xfffU;
4968 } else {
4969 const GlobalValue *GV =
4970 cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4971 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4973 unsigned TargetFlags = ARMII::MO_NO_FLAG;
4974 if (Subtarget.isTargetMachO()) {
4975 TargetFlags |= ARMII::MO_NONLAZY;
4976 } else if (Subtarget.isTargetCOFF()) {
4977 if (GV->hasDLLImportStorageClass())
4978 TargetFlags |= ARMII::MO_DLLIMPORT;
4979 else if (IsIndirect)
4980 TargetFlags |= ARMII::MO_COFFSTUB;
4981 } else if (IsIndirect) {
4982 TargetFlags |= ARMII::MO_GOT;
4985 if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only
4986 Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register
4987 auto APSREncoding =
4988 ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding;
4989 BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg)
4990 .addImm(APSREncoding)
4991 .add(predOps(ARMCC::AL));
4992 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4993 .addGlobalAddress(GV, 0, TargetFlags);
4994 BuildMI(MBB, MI, DL, get(ARM::t2MSR_M))
4995 .addImm(APSREncoding)
4996 .addReg(CPSRSaveReg, RegState::Kill)
4997 .add(predOps(ARMCC::AL));
4998 } else {
4999 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
5000 .addGlobalAddress(GV, 0, TargetFlags);
5003 if (IsIndirect) {
5004 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
5005 MIB.addReg(Reg, RegState::Kill).addImm(0);
5006 auto Flags = MachineMemOperand::MOLoad |
5007 MachineMemOperand::MODereferenceable |
5008 MachineMemOperand::MOInvariant;
5009 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
5010 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
5011 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
5015 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
5016 MIB.addReg(Reg, RegState::Kill)
5017 .addImm(Offset)
5018 .cloneMemRefs(*MI)
5019 .add(predOps(ARMCC::AL));
5022 bool
5023 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
5024 unsigned &AddSubOpc,
5025 bool &NegAcc, bool &HasLane) const {
5026 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
5027 if (I == MLxEntryMap.end())
5028 return false;
5030 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
5031 MulOpc = Entry.MulOpc;
5032 AddSubOpc = Entry.AddSubOpc;
5033 NegAcc = Entry.NegAcc;
5034 HasLane = Entry.HasLane;
5035 return true;
5038 //===----------------------------------------------------------------------===//
5039 // Execution domains.
5040 //===----------------------------------------------------------------------===//
5042 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
5043 // and some can go down both. The vmov instructions go down the VFP pipeline,
5044 // but they can be changed to vorr equivalents that are executed by the NEON
5045 // pipeline.
5047 // We use the following execution domain numbering:
5049 enum ARMExeDomain {
5050 ExeGeneric = 0,
5051 ExeVFP = 1,
5052 ExeNEON = 2
5056 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
5058 std::pair<uint16_t, uint16_t>
5059 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5060 // If we don't have access to NEON instructions then we won't be able
5061 // to swizzle anything to the NEON domain. Check to make sure.
5062 if (Subtarget.hasNEON()) {
5063 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5064 // if they are not predicated.
5065 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5066 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5068 // CortexA9 is particularly picky about mixing the two and wants these
5069 // converted.
5070 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5071 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5072 MI.getOpcode() == ARM::VMOVS))
5073 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5075 // No other instructions can be swizzled, so just determine their domain.
5076 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5078 if (Domain & ARMII::DomainNEON)
5079 return std::make_pair(ExeNEON, 0);
5081 // Certain instructions can go either way on Cortex-A8.
5082 // Treat them as NEON instructions.
5083 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5084 return std::make_pair(ExeNEON, 0);
5086 if (Domain & ARMII::DomainVFP)
5087 return std::make_pair(ExeVFP, 0);
5089 return std::make_pair(ExeGeneric, 0);
5092 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5093 unsigned SReg, unsigned &Lane) {
5094 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5095 Lane = 0;
5097 if (DReg != ARM::NoRegister)
5098 return DReg;
5100 Lane = 1;
5101 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5103 assert(DReg && "S-register with no D super-register?");
5104 return DReg;
5107 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5108 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5109 /// zero if no register needs to be defined as implicit-use.
5111 /// If the function cannot determine if an SPR should be marked implicit use or
5112 /// not, it returns false.
5114 /// This function handles cases where an instruction is being modified from taking
5115 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5116 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5117 /// lane of the DPR).
5119 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5120 /// (including the case where the DPR itself is defined), it should not.
5122 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5123 MachineInstr &MI, unsigned DReg,
5124 unsigned Lane, unsigned &ImplicitSReg) {
5125 // If the DPR is defined or used already, the other SPR lane will be chained
5126 // correctly, so there is nothing to be done.
5127 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5128 ImplicitSReg = 0;
5129 return true;
5132 // Otherwise we need to go searching to see if the SPR is set explicitly.
5133 ImplicitSReg = TRI->getSubReg(DReg,
5134 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5135 MachineBasicBlock::LivenessQueryResult LQR =
5136 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5138 if (LQR == MachineBasicBlock::LQR_Live)
5139 return true;
5140 else if (LQR == MachineBasicBlock::LQR_Unknown)
5141 return false;
5143 // If the register is known not to be live, there is no need to add an
5144 // implicit-use.
5145 ImplicitSReg = 0;
5146 return true;
5149 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5150 unsigned Domain) const {
5151 unsigned DstReg, SrcReg, DReg;
5152 unsigned Lane;
5153 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5154 const TargetRegisterInfo *TRI = &getRegisterInfo();
5155 switch (MI.getOpcode()) {
5156 default:
5157 llvm_unreachable("cannot handle opcode!");
5158 break;
5159 case ARM::VMOVD:
5160 if (Domain != ExeNEON)
5161 break;
5163 // Zap the predicate operands.
5164 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5166 // Make sure we've got NEON instructions.
5167 assert(Subtarget.hasNEON() && "VORRd requires NEON");
5169 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5170 DstReg = MI.getOperand(0).getReg();
5171 SrcReg = MI.getOperand(1).getReg();
5173 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5174 MI.removeOperand(i - 1);
5176 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5177 MI.setDesc(get(ARM::VORRd));
5178 MIB.addReg(DstReg, RegState::Define)
5179 .addReg(SrcReg)
5180 .addReg(SrcReg)
5181 .add(predOps(ARMCC::AL));
5182 break;
5183 case ARM::VMOVRS:
5184 if (Domain != ExeNEON)
5185 break;
5186 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5188 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5189 DstReg = MI.getOperand(0).getReg();
5190 SrcReg = MI.getOperand(1).getReg();
5192 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5193 MI.removeOperand(i - 1);
5195 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5197 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5198 // Note that DSrc has been widened and the other lane may be undef, which
5199 // contaminates the entire register.
5200 MI.setDesc(get(ARM::VGETLNi32));
5201 MIB.addReg(DstReg, RegState::Define)
5202 .addReg(DReg, RegState::Undef)
5203 .addImm(Lane)
5204 .add(predOps(ARMCC::AL));
5206 // The old source should be an implicit use, otherwise we might think it
5207 // was dead before here.
5208 MIB.addReg(SrcReg, RegState::Implicit);
5209 break;
5210 case ARM::VMOVSR: {
5211 if (Domain != ExeNEON)
5212 break;
5213 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5215 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5216 DstReg = MI.getOperand(0).getReg();
5217 SrcReg = MI.getOperand(1).getReg();
5219 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5221 unsigned ImplicitSReg;
5222 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5223 break;
5225 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5226 MI.removeOperand(i - 1);
5228 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5229 // Again DDst may be undefined at the beginning of this instruction.
5230 MI.setDesc(get(ARM::VSETLNi32));
5231 MIB.addReg(DReg, RegState::Define)
5232 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5233 .addReg(SrcReg)
5234 .addImm(Lane)
5235 .add(predOps(ARMCC::AL));
5237 // The narrower destination must be marked as set to keep previous chains
5238 // in place.
5239 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5240 if (ImplicitSReg != 0)
5241 MIB.addReg(ImplicitSReg, RegState::Implicit);
5242 break;
5244 case ARM::VMOVS: {
5245 if (Domain != ExeNEON)
5246 break;
5248 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5249 DstReg = MI.getOperand(0).getReg();
5250 SrcReg = MI.getOperand(1).getReg();
5252 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5253 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5254 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5256 unsigned ImplicitSReg;
5257 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5258 break;
5260 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5261 MI.removeOperand(i - 1);
5263 if (DSrc == DDst) {
5264 // Destination can be:
5265 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5266 MI.setDesc(get(ARM::VDUPLN32d));
5267 MIB.addReg(DDst, RegState::Define)
5268 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5269 .addImm(SrcLane)
5270 .add(predOps(ARMCC::AL));
5272 // Neither the source or the destination are naturally represented any
5273 // more, so add them in manually.
5274 MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5275 MIB.addReg(SrcReg, RegState::Implicit);
5276 if (ImplicitSReg != 0)
5277 MIB.addReg(ImplicitSReg, RegState::Implicit);
5278 break;
5281 // In general there's no single instruction that can perform an S <-> S
5282 // move in NEON space, but a pair of VEXT instructions *can* do the
5283 // job. It turns out that the VEXTs needed will only use DSrc once, with
5284 // the position based purely on the combination of lane-0 and lane-1
5285 // involved. For example
5286 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5287 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5288 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5289 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5291 // Pattern of the MachineInstrs is:
5292 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5293 MachineInstrBuilder NewMIB;
5294 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5295 DDst);
5297 // On the first instruction, both DSrc and DDst may be undef if present.
5298 // Specifically when the original instruction didn't have them as an
5299 // <imp-use>.
5300 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5301 bool CurUndef = !MI.readsRegister(CurReg, TRI);
5302 NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5304 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5305 CurUndef = !MI.readsRegister(CurReg, TRI);
5306 NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5307 .addImm(1)
5308 .add(predOps(ARMCC::AL));
5310 if (SrcLane == DstLane)
5311 NewMIB.addReg(SrcReg, RegState::Implicit);
5313 MI.setDesc(get(ARM::VEXTd32));
5314 MIB.addReg(DDst, RegState::Define);
5316 // On the second instruction, DDst has definitely been defined above, so
5317 // it is not undef. DSrc, if present, can be undef as above.
5318 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5319 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5320 MIB.addReg(CurReg, getUndefRegState(CurUndef));
5322 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5323 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5324 MIB.addReg(CurReg, getUndefRegState(CurUndef))
5325 .addImm(1)
5326 .add(predOps(ARMCC::AL));
5328 if (SrcLane != DstLane)
5329 MIB.addReg(SrcReg, RegState::Implicit);
5331 // As before, the original destination is no longer represented, add it
5332 // implicitly.
5333 MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5334 if (ImplicitSReg != 0)
5335 MIB.addReg(ImplicitSReg, RegState::Implicit);
5336 break;
5341 //===----------------------------------------------------------------------===//
5342 // Partial register updates
5343 //===----------------------------------------------------------------------===//
5345 // Swift renames NEON registers with 64-bit granularity. That means any
5346 // instruction writing an S-reg implicitly reads the containing D-reg. The
5347 // problem is mostly avoided by translating f32 operations to v2f32 operations
5348 // on D-registers, but f32 loads are still a problem.
5350 // These instructions can load an f32 into a NEON register:
5352 // VLDRS - Only writes S, partial D update.
5353 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5354 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5356 // FCONSTD can be used as a dependency-breaking instruction.
5357 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5358 const MachineInstr &MI, unsigned OpNum,
5359 const TargetRegisterInfo *TRI) const {
5360 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5361 if (!PartialUpdateClearance)
5362 return 0;
5364 assert(TRI && "Need TRI instance");
5366 const MachineOperand &MO = MI.getOperand(OpNum);
5367 if (MO.readsReg())
5368 return 0;
5369 Register Reg = MO.getReg();
5370 int UseOp = -1;
5372 switch (MI.getOpcode()) {
5373 // Normal instructions writing only an S-register.
5374 case ARM::VLDRS:
5375 case ARM::FCONSTS:
5376 case ARM::VMOVSR:
5377 case ARM::VMOVv8i8:
5378 case ARM::VMOVv4i16:
5379 case ARM::VMOVv2i32:
5380 case ARM::VMOVv2f32:
5381 case ARM::VMOVv1i64:
5382 UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, false);
5383 break;
5385 // Explicitly reads the dependency.
5386 case ARM::VLD1LNd32:
5387 UseOp = 3;
5388 break;
5389 default:
5390 return 0;
5393 // If this instruction actually reads a value from Reg, there is no unwanted
5394 // dependency.
5395 if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5396 return 0;
5398 // We must be able to clobber the whole D-reg.
5399 if (Reg.isVirtual()) {
5400 // Virtual register must be a def undef foo:ssub_0 operand.
5401 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5402 return 0;
5403 } else if (ARM::SPRRegClass.contains(Reg)) {
5404 // Physical register: MI must define the full D-reg.
5405 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5406 &ARM::DPRRegClass);
5407 if (!DReg || !MI.definesRegister(DReg, TRI))
5408 return 0;
5411 // MI has an unwanted D-register dependency.
5412 // Avoid defs in the previous N instructrions.
5413 return PartialUpdateClearance;
5416 // Break a partial register dependency after getPartialRegUpdateClearance
5417 // returned non-zero.
5418 void ARMBaseInstrInfo::breakPartialRegDependency(
5419 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5420 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5421 assert(TRI && "Need TRI instance");
5423 const MachineOperand &MO = MI.getOperand(OpNum);
5424 Register Reg = MO.getReg();
5425 assert(Reg.isPhysical() && "Can't break virtual register dependencies.");
5426 unsigned DReg = Reg;
5428 // If MI defines an S-reg, find the corresponding D super-register.
5429 if (ARM::SPRRegClass.contains(Reg)) {
5430 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5431 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5434 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5435 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5437 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5438 // the full D-register by loading the same value to both lanes. The
5439 // instruction is micro-coded with 2 uops, so don't do this until we can
5440 // properly schedule micro-coded instructions. The dispatcher stalls cause
5441 // too big regressions.
5443 // Insert the dependency-breaking FCONSTD before MI.
5444 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5445 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5446 .addImm(96)
5447 .add(predOps(ARMCC::AL));
5448 MI.addRegisterKilled(DReg, TRI, true);
5451 bool ARMBaseInstrInfo::hasNOP() const {
5452 return Subtarget.hasFeature(ARM::HasV6KOps);
5455 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5456 if (MI->getNumOperands() < 4)
5457 return true;
5458 unsigned ShOpVal = MI->getOperand(3).getImm();
5459 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5460 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5461 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5462 ((ShImm == 1 || ShImm == 2) &&
5463 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5464 return true;
5466 return false;
5469 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5470 const MachineInstr &MI, unsigned DefIdx,
5471 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5472 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5473 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5475 switch (MI.getOpcode()) {
5476 case ARM::VMOVDRR:
5477 // dX = VMOVDRR rY, rZ
5478 // is the same as:
5479 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5480 // Populate the InputRegs accordingly.
5481 // rY
5482 const MachineOperand *MOReg = &MI.getOperand(1);
5483 if (!MOReg->isUndef())
5484 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5485 MOReg->getSubReg(), ARM::ssub_0));
5486 // rZ
5487 MOReg = &MI.getOperand(2);
5488 if (!MOReg->isUndef())
5489 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5490 MOReg->getSubReg(), ARM::ssub_1));
5491 return true;
5493 llvm_unreachable("Target dependent opcode missing");
5496 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5497 const MachineInstr &MI, unsigned DefIdx,
5498 RegSubRegPairAndIdx &InputReg) const {
5499 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5500 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5502 switch (MI.getOpcode()) {
5503 case ARM::VMOVRRD:
5504 // rX, rY = VMOVRRD dZ
5505 // is the same as:
5506 // rX = EXTRACT_SUBREG dZ, ssub_0
5507 // rY = EXTRACT_SUBREG dZ, ssub_1
5508 const MachineOperand &MOReg = MI.getOperand(2);
5509 if (MOReg.isUndef())
5510 return false;
5511 InputReg.Reg = MOReg.getReg();
5512 InputReg.SubReg = MOReg.getSubReg();
5513 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5514 return true;
5516 llvm_unreachable("Target dependent opcode missing");
5519 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5520 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5521 RegSubRegPairAndIdx &InsertedReg) const {
5522 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5523 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5525 switch (MI.getOpcode()) {
5526 case ARM::VSETLNi32:
5527 case ARM::MVE_VMOV_to_lane_32:
5528 // dX = VSETLNi32 dY, rZ, imm
5529 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5530 const MachineOperand &MOBaseReg = MI.getOperand(1);
5531 const MachineOperand &MOInsertedReg = MI.getOperand(2);
5532 if (MOInsertedReg.isUndef())
5533 return false;
5534 const MachineOperand &MOIndex = MI.getOperand(3);
5535 BaseReg.Reg = MOBaseReg.getReg();
5536 BaseReg.SubReg = MOBaseReg.getSubReg();
5538 InsertedReg.Reg = MOInsertedReg.getReg();
5539 InsertedReg.SubReg = MOInsertedReg.getSubReg();
5540 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5541 return true;
5543 llvm_unreachable("Target dependent opcode missing");
5546 std::pair<unsigned, unsigned>
5547 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5548 const unsigned Mask = ARMII::MO_OPTION_MASK;
5549 return std::make_pair(TF & Mask, TF & ~Mask);
5552 ArrayRef<std::pair<unsigned, const char *>>
5553 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5554 using namespace ARMII;
5556 static const std::pair<unsigned, const char *> TargetFlags[] = {
5557 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"},
5558 {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"},
5559 {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"},
5561 return ArrayRef(TargetFlags);
5564 ArrayRef<std::pair<unsigned, const char *>>
5565 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5566 using namespace ARMII;
5568 static const std::pair<unsigned, const char *> TargetFlags[] = {
5569 {MO_COFFSTUB, "arm-coffstub"},
5570 {MO_GOT, "arm-got"},
5571 {MO_SBREL, "arm-sbrel"},
5572 {MO_DLLIMPORT, "arm-dllimport"},
5573 {MO_SECREL, "arm-secrel"},
5574 {MO_NONLAZY, "arm-nonlazy"}};
5575 return ArrayRef(TargetFlags);
5578 std::optional<RegImmPair>
5579 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
5580 int Sign = 1;
5581 unsigned Opcode = MI.getOpcode();
5582 int64_t Offset = 0;
5584 // TODO: Handle cases where Reg is a super- or sub-register of the
5585 // destination register.
5586 const MachineOperand &Op0 = MI.getOperand(0);
5587 if (!Op0.isReg() || Reg != Op0.getReg())
5588 return std::nullopt;
5590 // We describe SUBri or ADDri instructions.
5591 if (Opcode == ARM::SUBri)
5592 Sign = -1;
5593 else if (Opcode != ARM::ADDri)
5594 return std::nullopt;
5596 // TODO: Third operand can be global address (usually some string). Since
5597 // strings can be relocated we cannot calculate their offsets for
5598 // now.
5599 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5600 return std::nullopt;
5602 Offset = MI.getOperand(2).getImm() * Sign;
5603 return RegImmPair{MI.getOperand(1).getReg(), Offset};
5606 bool llvm::registerDefinedBetween(unsigned Reg,
5607 MachineBasicBlock::iterator From,
5608 MachineBasicBlock::iterator To,
5609 const TargetRegisterInfo *TRI) {
5610 for (auto I = From; I != To; ++I)
5611 if (I->modifiesRegister(Reg, TRI))
5612 return true;
5613 return false;
5616 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5617 const TargetRegisterInfo *TRI) {
5618 // Search backwards to the instruction that defines CSPR. This may or not
5619 // be a CMP, we check that after this loop. If we find another instruction
5620 // that reads cpsr, we return nullptr.
5621 MachineBasicBlock::iterator CmpMI = Br;
5622 while (CmpMI != Br->getParent()->begin()) {
5623 --CmpMI;
5624 if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5625 break;
5626 if (CmpMI->readsRegister(ARM::CPSR, TRI))
5627 break;
5630 // Check that this inst is a CMP r[0-7], #0 and that the register
5631 // is not redefined between the cmp and the br.
5632 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5633 return nullptr;
5634 Register Reg = CmpMI->getOperand(0).getReg();
5635 Register PredReg;
5636 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5637 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5638 return nullptr;
5639 if (!isARMLowRegister(Reg))
5640 return nullptr;
5641 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5642 return nullptr;
5644 return &*CmpMI;
5647 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5648 const ARMSubtarget *Subtarget,
5649 bool ForCodesize) {
5650 if (Subtarget->isThumb()) {
5651 if (Val <= 255) // MOV
5652 return ForCodesize ? 2 : 1;
5653 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV
5654 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5655 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5656 return ForCodesize ? 4 : 1;
5657 if (Val <= 510) // MOV + ADDi8
5658 return ForCodesize ? 4 : 2;
5659 if (~Val <= 255) // MOV + MVN
5660 return ForCodesize ? 4 : 2;
5661 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5662 return ForCodesize ? 4 : 2;
5663 } else {
5664 if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5665 return ForCodesize ? 4 : 1;
5666 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5667 return ForCodesize ? 4 : 1;
5668 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5669 return ForCodesize ? 4 : 1;
5670 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5671 return ForCodesize ? 8 : 2;
5672 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5673 return ForCodesize ? 8 : 2;
5675 if (Subtarget->useMovt()) // MOVW + MOVT
5676 return ForCodesize ? 8 : 2;
5677 return ForCodesize ? 8 : 3; // Literal pool load
5680 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5681 const ARMSubtarget *Subtarget,
5682 bool ForCodesize) {
5683 // Check with ForCodesize
5684 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5685 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5686 if (Cost1 < Cost2)
5687 return true;
5688 if (Cost1 > Cost2)
5689 return false;
5691 // If they are equal, try with !ForCodesize
5692 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5693 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5696 /// Constants defining how certain sequences should be outlined.
5697 /// This encompasses how an outlined function should be called, and what kind of
5698 /// frame should be emitted for that outlined function.
5700 /// \p MachineOutlinerTailCall implies that the function is being created from
5701 /// a sequence of instructions ending in a return.
5703 /// That is,
5705 /// I1 OUTLINED_FUNCTION:
5706 /// I2 --> B OUTLINED_FUNCTION I1
5707 /// BX LR I2
5708 /// BX LR
5710 /// +-------------------------+--------+-----+
5711 /// | | Thumb2 | ARM |
5712 /// +-------------------------+--------+-----+
5713 /// | Call overhead in Bytes | 4 | 4 |
5714 /// | Frame overhead in Bytes | 0 | 0 |
5715 /// | Stack fixup required | No | No |
5716 /// +-------------------------+--------+-----+
5718 /// \p MachineOutlinerThunk implies that the function is being created from
5719 /// a sequence of instructions ending in a call. The outlined function is
5720 /// called with a BL instruction, and the outlined function tail-calls the
5721 /// original call destination.
5723 /// That is,
5725 /// I1 OUTLINED_FUNCTION:
5726 /// I2 --> BL OUTLINED_FUNCTION I1
5727 /// BL f I2
5728 /// B f
5730 /// +-------------------------+--------+-----+
5731 /// | | Thumb2 | ARM |
5732 /// +-------------------------+--------+-----+
5733 /// | Call overhead in Bytes | 4 | 4 |
5734 /// | Frame overhead in Bytes | 0 | 0 |
5735 /// | Stack fixup required | No | No |
5736 /// +-------------------------+--------+-----+
5738 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5739 /// a BL instruction, but doesn't require LR to be saved and restored. This
5740 /// happens when LR is known to be dead.
5742 /// That is,
5744 /// I1 OUTLINED_FUNCTION:
5745 /// I2 --> BL OUTLINED_FUNCTION I1
5746 /// I3 I2
5747 /// I3
5748 /// BX LR
5750 /// +-------------------------+--------+-----+
5751 /// | | Thumb2 | ARM |
5752 /// +-------------------------+--------+-----+
5753 /// | Call overhead in Bytes | 4 | 4 |
5754 /// | Frame overhead in Bytes | 2 | 4 |
5755 /// | Stack fixup required | No | No |
5756 /// +-------------------------+--------+-----+
5758 /// \p MachineOutlinerRegSave implies that the function should be called with a
5759 /// save and restore of LR to an available register. This allows us to avoid
5760 /// stack fixups. Note that this outlining variant is compatible with the
5761 /// NoLRSave case.
5763 /// That is,
5765 /// I1 Save LR OUTLINED_FUNCTION:
5766 /// I2 --> BL OUTLINED_FUNCTION I1
5767 /// I3 Restore LR I2
5768 /// I3
5769 /// BX LR
5771 /// +-------------------------+--------+-----+
5772 /// | | Thumb2 | ARM |
5773 /// +-------------------------+--------+-----+
5774 /// | Call overhead in Bytes | 8 | 12 |
5775 /// | Frame overhead in Bytes | 2 | 4 |
5776 /// | Stack fixup required | No | No |
5777 /// +-------------------------+--------+-----+
5779 /// \p MachineOutlinerDefault implies that the function should be called with
5780 /// a save and restore of LR to the stack.
5782 /// That is,
5784 /// I1 Save LR OUTLINED_FUNCTION:
5785 /// I2 --> BL OUTLINED_FUNCTION I1
5786 /// I3 Restore LR I2
5787 /// I3
5788 /// BX LR
5790 /// +-------------------------+--------+-----+
5791 /// | | Thumb2 | ARM |
5792 /// +-------------------------+--------+-----+
5793 /// | Call overhead in Bytes | 8 | 12 |
5794 /// | Frame overhead in Bytes | 2 | 4 |
5795 /// | Stack fixup required | Yes | Yes |
5796 /// +-------------------------+--------+-----+
5798 enum MachineOutlinerClass {
5799 MachineOutlinerTailCall,
5800 MachineOutlinerThunk,
5801 MachineOutlinerNoLRSave,
5802 MachineOutlinerRegSave,
5803 MachineOutlinerDefault
5806 enum MachineOutlinerMBBFlags {
5807 LRUnavailableSomewhere = 0x2,
5808 HasCalls = 0x4,
5809 UnsafeRegsDead = 0x8
5812 struct OutlinerCosts {
5813 int CallTailCall;
5814 int FrameTailCall;
5815 int CallThunk;
5816 int FrameThunk;
5817 int CallNoLRSave;
5818 int FrameNoLRSave;
5819 int CallRegSave;
5820 int FrameRegSave;
5821 int CallDefault;
5822 int FrameDefault;
5823 int SaveRestoreLROnStack;
5825 OutlinerCosts(const ARMSubtarget &target)
5826 : CallTailCall(target.isThumb() ? 4 : 4),
5827 FrameTailCall(target.isThumb() ? 0 : 0),
5828 CallThunk(target.isThumb() ? 4 : 4),
5829 FrameThunk(target.isThumb() ? 0 : 0),
5830 CallNoLRSave(target.isThumb() ? 4 : 4),
5831 FrameNoLRSave(target.isThumb() ? 2 : 4),
5832 CallRegSave(target.isThumb() ? 8 : 12),
5833 FrameRegSave(target.isThumb() ? 2 : 4),
5834 CallDefault(target.isThumb() ? 8 : 12),
5835 FrameDefault(target.isThumb() ? 2 : 4),
5836 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5839 Register
5840 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
5841 MachineFunction *MF = C.getMF();
5842 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
5843 const ARMBaseRegisterInfo *ARI =
5844 static_cast<const ARMBaseRegisterInfo *>(&TRI);
5846 BitVector regsReserved = ARI->getReservedRegs(*MF);
5847 // Check if there is an available register across the sequence that we can
5848 // use.
5849 for (Register Reg : ARM::rGPRRegClass) {
5850 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5851 Reg != ARM::LR && // LR is not reserved, but don't use it.
5852 Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5853 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
5854 C.isAvailableInsideSeq(Reg, TRI))
5855 return Reg;
5857 return Register();
5860 // Compute liveness of LR at the point after the interval [I, E), which
5861 // denotes a *backward* iteration through instructions. Used only for return
5862 // basic blocks, which do not end with a tail call.
5863 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5864 MachineBasicBlock::reverse_iterator I,
5865 MachineBasicBlock::reverse_iterator E) {
5866 // At the end of the function LR dead.
5867 bool Live = false;
5868 for (; I != E; ++I) {
5869 const MachineInstr &MI = *I;
5871 // Check defs of LR.
5872 if (MI.modifiesRegister(ARM::LR, &TRI))
5873 Live = false;
5875 // Check uses of LR.
5876 unsigned Opcode = MI.getOpcode();
5877 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5878 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5879 Opcode == ARM::tBXNS_RET) {
5880 // These instructions use LR, but it's not an (explicit or implicit)
5881 // operand.
5882 Live = true;
5883 continue;
5885 if (MI.readsRegister(ARM::LR, &TRI))
5886 Live = true;
5888 return !Live;
5891 std::optional<std::unique_ptr<outliner::OutlinedFunction>>
5892 ARMBaseInstrInfo::getOutliningCandidateInfo(
5893 const MachineModuleInfo &MMI,
5894 std::vector<outliner::Candidate> &RepeatedSequenceLocs,
5895 unsigned MinRepeats) const {
5896 unsigned SequenceSize = 0;
5897 for (auto &MI : RepeatedSequenceLocs[0])
5898 SequenceSize += getInstSizeInBytes(MI);
5900 // Properties about candidate MBBs that hold for all of them.
5901 unsigned FlagsSetInAll = 0xF;
5903 // Compute liveness information for each candidate, and set FlagsSetInAll.
5904 const TargetRegisterInfo &TRI = getRegisterInfo();
5905 for (outliner::Candidate &C : RepeatedSequenceLocs)
5906 FlagsSetInAll &= C.Flags;
5908 // According to the ARM Procedure Call Standard, the following are
5909 // undefined on entry/exit from a function call:
5911 // * Register R12(IP),
5912 // * Condition codes (and thus the CPSR register)
5914 // Since we control the instructions which are part of the outlined regions
5915 // we don't need to be fully compliant with the AAPCS, but we have to
5916 // guarantee that if a veneer is inserted at link time the code is still
5917 // correct. Because of this, we can't outline any sequence of instructions
5918 // where one of these registers is live into/across it. Thus, we need to
5919 // delete those candidates.
5920 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5921 // If the unsafe registers in this block are all dead, then we don't need
5922 // to compute liveness here.
5923 if (C.Flags & UnsafeRegsDead)
5924 return false;
5925 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
5928 // Are there any candidates where those registers are live?
5929 if (!(FlagsSetInAll & UnsafeRegsDead)) {
5930 // Erase every candidate that violates the restrictions above. (It could be
5931 // true that we have viable candidates, so it's not worth bailing out in
5932 // the case that, say, 1 out of 20 candidates violate the restructions.)
5933 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5935 // If the sequence doesn't have enough candidates left, then we're done.
5936 if (RepeatedSequenceLocs.size() < MinRepeats)
5937 return std::nullopt;
5940 // We expect the majority of the outlining candidates to be in consensus with
5941 // regard to return address sign and authentication, and branch target
5942 // enforcement, in other words, partitioning according to all the four
5943 // possible combinations of PAC-RET and BTI is going to yield one big subset
5944 // and three small (likely empty) subsets. That allows us to cull incompatible
5945 // candidates separately for PAC-RET and BTI.
5947 // Partition the candidates in two sets: one with BTI enabled and one with BTI
5948 // disabled. Remove the candidates from the smaller set. If they are the same
5949 // number prefer the non-BTI ones for outlining, since they have less
5950 // overhead.
5951 auto NoBTI =
5952 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5953 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5954 return AFI.branchTargetEnforcement();
5956 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
5957 std::distance(NoBTI, RepeatedSequenceLocs.end()))
5958 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
5959 else
5960 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
5962 if (RepeatedSequenceLocs.size() < MinRepeats)
5963 return std::nullopt;
5965 // Likewise, partition the candidates according to PAC-RET enablement.
5966 auto NoPAC =
5967 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5968 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5969 // If the function happens to not spill the LR, do not disqualify it
5970 // from the outlining.
5971 return AFI.shouldSignReturnAddress(true);
5973 if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) >
5974 std::distance(NoPAC, RepeatedSequenceLocs.end()))
5975 RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end());
5976 else
5977 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC);
5979 if (RepeatedSequenceLocs.size() < MinRepeats)
5980 return std::nullopt;
5982 // At this point, we have only "safe" candidates to outline. Figure out
5983 // frame + call instruction information.
5985 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode();
5987 // Helper lambda which sets call information for every candidate.
5988 auto SetCandidateCallInfo =
5989 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5990 for (outliner::Candidate &C : RepeatedSequenceLocs)
5991 C.setCallInfo(CallID, NumBytesForCall);
5994 OutlinerCosts Costs(Subtarget);
5996 const auto &SomeMFI =
5997 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5998 // Adjust costs to account for the BTI instructions.
5999 if (SomeMFI.branchTargetEnforcement()) {
6000 Costs.FrameDefault += 4;
6001 Costs.FrameNoLRSave += 4;
6002 Costs.FrameRegSave += 4;
6003 Costs.FrameTailCall += 4;
6004 Costs.FrameThunk += 4;
6007 // Adjust costs to account for sign and authentication instructions.
6008 if (SomeMFI.shouldSignReturnAddress(true)) {
6009 Costs.CallDefault += 8; // +PAC instr, +AUT instr
6010 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
6013 unsigned FrameID = MachineOutlinerDefault;
6014 unsigned NumBytesToCreateFrame = Costs.FrameDefault;
6016 // If the last instruction in any candidate is a terminator, then we should
6017 // tail call all of the candidates.
6018 if (RepeatedSequenceLocs[0].back().isTerminator()) {
6019 FrameID = MachineOutlinerTailCall;
6020 NumBytesToCreateFrame = Costs.FrameTailCall;
6021 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
6022 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
6023 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
6024 LastInstrOpcode == ARM::tBLXr ||
6025 LastInstrOpcode == ARM::tBLXr_noip ||
6026 LastInstrOpcode == ARM::tBLXi) {
6027 FrameID = MachineOutlinerThunk;
6028 NumBytesToCreateFrame = Costs.FrameThunk;
6029 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
6030 } else {
6031 // We need to decide how to emit calls + frames. We can always emit the same
6032 // frame if we don't need to save to the stack. If we have to save to the
6033 // stack, then we need a different frame.
6034 unsigned NumBytesNoStackCalls = 0;
6035 std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
6037 for (outliner::Candidate &C : RepeatedSequenceLocs) {
6038 // LR liveness is overestimated in return blocks, unless they end with a
6039 // tail call.
6040 const auto Last = C.getMBB()->rbegin();
6041 const bool LRIsAvailable =
6042 C.getMBB()->isReturnBlock() && !Last->isCall()
6043 ? isLRAvailable(TRI, Last,
6044 (MachineBasicBlock::reverse_iterator)C.begin())
6045 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
6046 if (LRIsAvailable) {
6047 FrameID = MachineOutlinerNoLRSave;
6048 NumBytesNoStackCalls += Costs.CallNoLRSave;
6049 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
6050 CandidatesWithoutStackFixups.push_back(C);
6053 // Is an unused register available? If so, we won't modify the stack, so
6054 // we can outline with the same frame type as those that don't save LR.
6055 else if (findRegisterToSaveLRTo(C)) {
6056 FrameID = MachineOutlinerRegSave;
6057 NumBytesNoStackCalls += Costs.CallRegSave;
6058 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
6059 CandidatesWithoutStackFixups.push_back(C);
6062 // Is SP used in the sequence at all? If not, we don't have to modify
6063 // the stack, so we are guaranteed to get the same frame.
6064 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
6065 NumBytesNoStackCalls += Costs.CallDefault;
6066 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6067 CandidatesWithoutStackFixups.push_back(C);
6070 // If we outline this, we need to modify the stack. Pretend we don't
6071 // outline this by saving all of its bytes.
6072 else
6073 NumBytesNoStackCalls += SequenceSize;
6076 // If there are no places where we have to save LR, then note that we don't
6077 // have to update the stack. Otherwise, give every candidate the default
6078 // call type
6079 if (NumBytesNoStackCalls <=
6080 RepeatedSequenceLocs.size() * Costs.CallDefault) {
6081 RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6082 FrameID = MachineOutlinerNoLRSave;
6083 if (RepeatedSequenceLocs.size() < MinRepeats)
6084 return std::nullopt;
6085 } else
6086 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6089 // Does every candidate's MBB contain a call? If so, then we might have a
6090 // call in the range.
6091 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6092 // check if the range contains a call. These require a save + restore of
6093 // the link register.
6094 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
6095 if (any_of(drop_end(FirstCand),
6096 [](const MachineInstr &MI) { return MI.isCall(); }))
6097 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6099 // Handle the last instruction separately. If it is tail call, then the
6100 // last instruction is a call, we don't want to save + restore in this
6101 // case. However, it could be possible that the last instruction is a
6102 // call without it being valid to tail call this sequence. We should
6103 // consider this as well.
6104 else if (FrameID != MachineOutlinerThunk &&
6105 FrameID != MachineOutlinerTailCall && FirstCand.back().isCall())
6106 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6109 return std::make_unique<outliner::OutlinedFunction>(
6110 RepeatedSequenceLocs, SequenceSize, NumBytesToCreateFrame, FrameID);
6113 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6114 int64_t Fixup,
6115 bool Updt) const {
6116 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr);
6117 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6118 if (SPIdx < 0)
6119 // No SP operand
6120 return true;
6121 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6122 // If SP is not the base register we can't do much
6123 return false;
6125 // Stack might be involved but addressing mode doesn't handle any offset.
6126 // Rq: AddrModeT1_[1|2|4] don't operate on SP
6127 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions
6128 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple
6129 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple
6130 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register
6131 AddrMode == ARMII::AddrModeT2_pc || // PCrel access
6132 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST
6133 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE
6134 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6135 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6136 AddrMode == ARMII::AddrModeNone ||
6137 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions
6138 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm
6139 return false;
6141 unsigned NumOps = MI->getDesc().getNumOperands();
6142 unsigned ImmIdx = NumOps - 3;
6144 const MachineOperand &Offset = MI->getOperand(ImmIdx);
6145 assert(Offset.isImm() && "Is not an immediate");
6146 int64_t OffVal = Offset.getImm();
6148 if (OffVal < 0)
6149 // Don't override data if the are below SP.
6150 return false;
6152 unsigned NumBits = 0;
6153 unsigned Scale = 1;
6155 switch (AddrMode) {
6156 case ARMII::AddrMode3:
6157 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6158 return false;
6159 OffVal = ARM_AM::getAM3Offset(OffVal);
6160 NumBits = 8;
6161 break;
6162 case ARMII::AddrMode5:
6163 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6164 return false;
6165 OffVal = ARM_AM::getAM5Offset(OffVal);
6166 NumBits = 8;
6167 Scale = 4;
6168 break;
6169 case ARMII::AddrMode5FP16:
6170 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6171 return false;
6172 OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6173 NumBits = 8;
6174 Scale = 2;
6175 break;
6176 case ARMII::AddrModeT2_i8pos:
6177 NumBits = 8;
6178 break;
6179 case ARMII::AddrModeT2_i8s4:
6180 // FIXME: Values are already scaled in this addressing mode.
6181 assert((Fixup & 3) == 0 && "Can't encode this offset!");
6182 NumBits = 10;
6183 break;
6184 case ARMII::AddrModeT2_ldrex:
6185 NumBits = 8;
6186 Scale = 4;
6187 break;
6188 case ARMII::AddrModeT2_i12:
6189 case ARMII::AddrMode_i12:
6190 NumBits = 12;
6191 break;
6192 case ARMII::AddrModeT1_s: // SP-relative LD/ST
6193 NumBits = 8;
6194 Scale = 4;
6195 break;
6196 default:
6197 llvm_unreachable("Unsupported addressing mode!");
6199 // Make sure the offset is encodable for instructions that scale the
6200 // immediate.
6201 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6202 "Can't encode this offset!");
6203 OffVal += Fixup / Scale;
6205 unsigned Mask = (1 << NumBits) - 1;
6207 if (OffVal <= Mask) {
6208 if (Updt)
6209 MI->getOperand(ImmIdx).setImm(OffVal);
6210 return true;
6213 return false;
6216 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6217 Function &F, std::vector<outliner::Candidate> &Candidates) const {
6218 outliner::Candidate &C = Candidates.front();
6219 // branch-target-enforcement is guaranteed to be consistent between all
6220 // candidates, so we only need to look at one.
6221 const Function &CFn = C.getMF()->getFunction();
6222 if (CFn.hasFnAttribute("branch-target-enforcement"))
6223 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
6225 if (CFn.hasFnAttribute("sign-return-address"))
6226 F.addFnAttr(CFn.getFnAttribute("sign-return-address"));
6228 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6231 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6232 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6233 const Function &F = MF.getFunction();
6235 // Can F be deduplicated by the linker? If it can, don't outline from it.
6236 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6237 return false;
6239 // Don't outline from functions with section markings; the program could
6240 // expect that all the code is in the named section.
6241 // FIXME: Allow outlining from multiple functions with the same section
6242 // marking.
6243 if (F.hasSection())
6244 return false;
6246 // FIXME: Thumb1 outlining is not handled
6247 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6248 return false;
6250 // It's safe to outline from MF.
6251 return true;
6254 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6255 unsigned &Flags) const {
6256 // Check if LR is available through all of the MBB. If it's not, then set
6257 // a flag.
6258 assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6259 "Suitable Machine Function for outlining must track liveness");
6261 LiveRegUnits LRU(getRegisterInfo());
6263 for (MachineInstr &MI : llvm::reverse(MBB))
6264 LRU.accumulate(MI);
6266 // Check if each of the unsafe registers are available...
6267 bool R12AvailableInBlock = LRU.available(ARM::R12);
6268 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6270 // If all of these are dead (and not live out), we know we don't have to check
6271 // them later.
6272 if (R12AvailableInBlock && CPSRAvailableInBlock)
6273 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6275 // Now, add the live outs to the set.
6276 LRU.addLiveOuts(MBB);
6278 // If any of these registers is available in the MBB, but also a live out of
6279 // the block, then we know outlining is unsafe.
6280 if (R12AvailableInBlock && !LRU.available(ARM::R12))
6281 return false;
6282 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6283 return false;
6285 // Check if there's a call inside this MachineBasicBlock. If there is, then
6286 // set a flag.
6287 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6288 Flags |= MachineOutlinerMBBFlags::HasCalls;
6290 // LR liveness is overestimated in return blocks.
6292 bool LRIsAvailable =
6293 MBB.isReturnBlock() && !MBB.back().isCall()
6294 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6295 : LRU.available(ARM::LR);
6296 if (!LRIsAvailable)
6297 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6299 return true;
6302 outliner::InstrType
6303 ARMBaseInstrInfo::getOutliningTypeImpl(const MachineModuleInfo &MMI,
6304 MachineBasicBlock::iterator &MIT,
6305 unsigned Flags) const {
6306 MachineInstr &MI = *MIT;
6307 const TargetRegisterInfo *TRI = &getRegisterInfo();
6309 // PIC instructions contain labels, outlining them would break offset
6310 // computing. unsigned Opc = MI.getOpcode();
6311 unsigned Opc = MI.getOpcode();
6312 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6313 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6314 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6315 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6316 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6317 Opc == ARM::t2MOV_ga_pcrel)
6318 return outliner::InstrType::Illegal;
6320 // Be conservative with ARMv8.1 MVE instructions.
6321 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6322 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6323 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6324 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6325 Opc == ARM::t2LoopEndDec)
6326 return outliner::InstrType::Illegal;
6328 const MCInstrDesc &MCID = MI.getDesc();
6329 uint64_t MIFlags = MCID.TSFlags;
6330 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6331 return outliner::InstrType::Illegal;
6333 // Is this a terminator for a basic block?
6334 if (MI.isTerminator())
6335 // TargetInstrInfo::getOutliningType has already filtered out anything
6336 // that would break this, so we can allow it here.
6337 return outliner::InstrType::Legal;
6339 // Don't outline if link register or program counter value are used.
6340 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6341 return outliner::InstrType::Illegal;
6343 if (MI.isCall()) {
6344 // Get the function associated with the call. Look at each operand and find
6345 // the one that represents the calle and get its name.
6346 const Function *Callee = nullptr;
6347 for (const MachineOperand &MOP : MI.operands()) {
6348 if (MOP.isGlobal()) {
6349 Callee = dyn_cast<Function>(MOP.getGlobal());
6350 break;
6354 // Dont't outline calls to "mcount" like functions, in particular Linux
6355 // kernel function tracing relies on it.
6356 if (Callee &&
6357 (Callee->getName() == "\01__gnu_mcount_nc" ||
6358 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6359 return outliner::InstrType::Illegal;
6361 // If we don't know anything about the callee, assume it depends on the
6362 // stack layout of the caller. In that case, it's only legal to outline
6363 // as a tail-call. Explicitly list the call instructions we know about so
6364 // we don't get unexpected results with call pseudo-instructions.
6365 auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6366 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6367 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6368 Opc == ARM::tBLXi)
6369 UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6371 if (!Callee)
6372 return UnknownCallOutlineType;
6374 // We have a function we have information about. Check if it's something we
6375 // can safely outline.
6376 MachineFunction *CalleeMF = MMI.getMachineFunction(*Callee);
6378 // We don't know what's going on with the callee at all. Don't touch it.
6379 if (!CalleeMF)
6380 return UnknownCallOutlineType;
6382 // Check if we know anything about the callee saves on the function. If we
6383 // don't, then don't touch it, since that implies that we haven't computed
6384 // anything about its stack frame yet.
6385 MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6386 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6387 MFI.getNumObjects() > 0)
6388 return UnknownCallOutlineType;
6390 // At this point, we can say that CalleeMF ought to not pass anything on the
6391 // stack. Therefore, we can outline it.
6392 return outliner::InstrType::Legal;
6395 // Since calls are handled, don't touch LR or PC
6396 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6397 return outliner::InstrType::Illegal;
6399 // Does this use the stack?
6400 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6401 // True if there is no chance that any outlined candidate from this range
6402 // could require stack fixups. That is, both
6403 // * LR is available in the range (No save/restore around call)
6404 // * The range doesn't include calls (No save/restore in outlined frame)
6405 // are true.
6406 // These conditions also ensure correctness of the return address
6407 // authentication - we insert sign and authentication instructions only if
6408 // we save/restore LR on stack, but then this condition ensures that the
6409 // outlined range does not modify the SP, therefore the SP value used for
6410 // signing is the same as the one used for authentication.
6411 // FIXME: This is very restrictive; the flags check the whole block,
6412 // not just the bit we will try to outline.
6413 bool MightNeedStackFixUp =
6414 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6415 MachineOutlinerMBBFlags::HasCalls));
6417 if (!MightNeedStackFixUp)
6418 return outliner::InstrType::Legal;
6420 // Any modification of SP will break our code to save/restore LR.
6421 // FIXME: We could handle some instructions which add a constant offset to
6422 // SP, with a bit more work.
6423 if (MI.modifiesRegister(ARM::SP, TRI))
6424 return outliner::InstrType::Illegal;
6426 // At this point, we have a stack instruction that we might need to fix up.
6427 // up. We'll handle it if it's a load or store.
6428 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6429 false))
6430 return outliner::InstrType::Legal;
6432 // We can't fix it up, so don't outline it.
6433 return outliner::InstrType::Illegal;
6436 // Be conservative with IT blocks.
6437 if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6438 MI.modifiesRegister(ARM::ITSTATE, TRI))
6439 return outliner::InstrType::Illegal;
6441 // Don't outline CFI instructions.
6442 if (MI.isCFIInstruction())
6443 return outliner::InstrType::Illegal;
6445 return outliner::InstrType::Legal;
6448 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6449 for (MachineInstr &MI : MBB) {
6450 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6454 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6455 MachineBasicBlock::iterator It, bool CFI,
6456 bool Auth) const {
6457 int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8));
6458 unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0;
6459 assert(Align >= 8 && Align <= 256);
6460 if (Auth) {
6461 assert(Subtarget.isThumb2());
6462 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined
6463 // sequence.
6464 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags);
6465 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
6466 .addReg(ARM::R12, RegState::Kill)
6467 .addReg(ARM::LR, RegState::Kill)
6468 .addReg(ARM::SP)
6469 .addImm(-Align)
6470 .add(predOps(ARMCC::AL))
6471 .setMIFlags(MIFlags);
6472 } else {
6473 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6474 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6475 .addReg(ARM::LR, RegState::Kill)
6476 .addReg(ARM::SP)
6477 .addImm(-Align)
6478 .add(predOps(ARMCC::AL))
6479 .setMIFlags(MIFlags);
6482 if (!CFI)
6483 return;
6485 MachineFunction &MF = *MBB.getParent();
6487 // Add a CFI, saying CFA is offset by Align bytes from SP.
6488 int64_t StackPosEntry =
6489 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6490 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6491 .addCFIIndex(StackPosEntry)
6492 .setMIFlags(MachineInstr::FrameSetup);
6494 // Add a CFI saying that the LR that we want to find is now higher than
6495 // before.
6496 int LROffset = Auth ? Align - 4 : Align;
6497 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6498 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6499 int64_t LRPosEntry = MF.addFrameInst(
6500 MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset));
6501 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6502 .addCFIIndex(LRPosEntry)
6503 .setMIFlags(MachineInstr::FrameSetup);
6504 if (Auth) {
6505 // Add a CFI for the location of the return adddress PAC.
6506 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6507 int64_t RACPosEntry = MF.addFrameInst(
6508 MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align));
6509 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6510 .addCFIIndex(RACPosEntry)
6511 .setMIFlags(MachineInstr::FrameSetup);
6515 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6516 MachineBasicBlock::iterator It,
6517 Register Reg) const {
6518 MachineFunction &MF = *MBB.getParent();
6519 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6520 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6521 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6523 int64_t LRPosEntry = MF.addFrameInst(
6524 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6525 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6526 .addCFIIndex(LRPosEntry)
6527 .setMIFlags(MachineInstr::FrameSetup);
6530 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
6531 MachineBasicBlock::iterator It,
6532 bool CFI, bool Auth) const {
6533 int Align = Subtarget.getStackAlignment().value();
6534 unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0;
6535 if (Auth) {
6536 assert(Subtarget.isThumb2());
6537 // Restore return address PAC and LR.
6538 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
6539 .addReg(ARM::R12, RegState::Define)
6540 .addReg(ARM::LR, RegState::Define)
6541 .addReg(ARM::SP, RegState::Define)
6542 .addReg(ARM::SP)
6543 .addImm(Align)
6544 .add(predOps(ARMCC::AL))
6545 .setMIFlags(MIFlags);
6546 // LR authentication is after the CFI instructions, below.
6547 } else {
6548 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6549 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6550 .addReg(ARM::SP, RegState::Define)
6551 .addReg(ARM::SP);
6552 if (!Subtarget.isThumb())
6553 MIB.addReg(0);
6554 MIB.addImm(Subtarget.getStackAlignment().value())
6555 .add(predOps(ARMCC::AL))
6556 .setMIFlags(MIFlags);
6559 if (CFI) {
6560 // Now stack has moved back up...
6561 MachineFunction &MF = *MBB.getParent();
6562 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6563 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6564 int64_t StackPosEntry =
6565 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6566 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6567 .addCFIIndex(StackPosEntry)
6568 .setMIFlags(MachineInstr::FrameDestroy);
6570 // ... and we have restored LR.
6571 int64_t LRPosEntry =
6572 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6573 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6574 .addCFIIndex(LRPosEntry)
6575 .setMIFlags(MachineInstr::FrameDestroy);
6577 if (Auth) {
6578 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6579 int64_t Entry =
6580 MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC));
6581 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6582 .addCFIIndex(Entry)
6583 .setMIFlags(MachineInstr::FrameDestroy);
6587 if (Auth)
6588 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
6591 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6592 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6593 MachineFunction &MF = *MBB.getParent();
6594 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6595 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6597 int64_t LRPosEntry =
6598 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6599 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6600 .addCFIIndex(LRPosEntry)
6601 .setMIFlags(MachineInstr::FrameDestroy);
6604 void ARMBaseInstrInfo::buildOutlinedFrame(
6605 MachineBasicBlock &MBB, MachineFunction &MF,
6606 const outliner::OutlinedFunction &OF) const {
6607 // For thunk outlining, rewrite the last instruction from a call to a
6608 // tail-call.
6609 if (OF.FrameConstructionID == MachineOutlinerThunk) {
6610 MachineInstr *Call = &*--MBB.instr_end();
6611 bool isThumb = Subtarget.isThumb();
6612 unsigned FuncOp = isThumb ? 2 : 0;
6613 unsigned Opc = Call->getOperand(FuncOp).isReg()
6614 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6615 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6616 : ARM::tTAILJMPdND
6617 : ARM::TAILJMPd;
6618 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6619 .add(Call->getOperand(FuncOp));
6620 if (isThumb && !Call->getOperand(FuncOp).isReg())
6621 MIB.add(predOps(ARMCC::AL));
6622 Call->eraseFromParent();
6625 // Is there a call in the outlined range?
6626 auto IsNonTailCall = [](MachineInstr &MI) {
6627 return MI.isCall() && !MI.isReturn();
6629 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6630 MachineBasicBlock::iterator It = MBB.begin();
6631 MachineBasicBlock::iterator Et = MBB.end();
6633 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6634 OF.FrameConstructionID == MachineOutlinerThunk)
6635 Et = std::prev(MBB.end());
6637 // We have to save and restore LR, we need to add it to the liveins if it
6638 // is not already part of the set. This is suffient since outlined
6639 // functions only have one block.
6640 if (!MBB.isLiveIn(ARM::LR))
6641 MBB.addLiveIn(ARM::LR);
6643 // Insert a save before the outlined region
6644 bool Auth = MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true);
6645 saveLROnStack(MBB, It, true, Auth);
6647 // Fix up the instructions in the range, since we're going to modify the
6648 // stack.
6649 assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6650 "Can only fix up stack references once");
6651 fixupPostOutline(MBB);
6653 // Insert a restore before the terminator for the function. Restore LR.
6654 restoreLRFromStack(MBB, Et, true, Auth);
6657 // If this is a tail call outlined function, then there's already a return.
6658 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6659 OF.FrameConstructionID == MachineOutlinerThunk)
6660 return;
6662 // Here we have to insert the return ourselves. Get the correct opcode from
6663 // current feature set.
6664 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6665 .add(predOps(ARMCC::AL));
6667 // Did we have to modify the stack by saving the link register?
6668 if (OF.FrameConstructionID != MachineOutlinerDefault &&
6669 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6670 return;
6672 // We modified the stack.
6673 // Walk over the basic block and fix up all the stack accesses.
6674 fixupPostOutline(MBB);
6677 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6678 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6679 MachineFunction &MF, outliner::Candidate &C) const {
6680 MachineInstrBuilder MIB;
6681 MachineBasicBlock::iterator CallPt;
6682 unsigned Opc;
6683 bool isThumb = Subtarget.isThumb();
6685 // Are we tail calling?
6686 if (C.CallConstructionID == MachineOutlinerTailCall) {
6687 // If yes, then we can just branch to the label.
6688 Opc = isThumb
6689 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6690 : ARM::TAILJMPd;
6691 MIB = BuildMI(MF, DebugLoc(), get(Opc))
6692 .addGlobalAddress(M.getNamedValue(MF.getName()));
6693 if (isThumb)
6694 MIB.add(predOps(ARMCC::AL));
6695 It = MBB.insert(It, MIB);
6696 return It;
6699 // Create the call instruction.
6700 Opc = isThumb ? ARM::tBL : ARM::BL;
6701 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6702 if (isThumb)
6703 CallMIB.add(predOps(ARMCC::AL));
6704 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6706 if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6707 C.CallConstructionID == MachineOutlinerThunk) {
6708 // No, so just insert the call.
6709 It = MBB.insert(It, CallMIB);
6710 return It;
6713 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6714 // Can we save to a register?
6715 if (C.CallConstructionID == MachineOutlinerRegSave) {
6716 Register Reg = findRegisterToSaveLRTo(C);
6717 assert(Reg != 0 && "No callee-saved register available?");
6719 // Save and restore LR from that register.
6720 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6721 if (!AFI.isLRSpilled())
6722 emitCFIForLRSaveToReg(MBB, It, Reg);
6723 CallPt = MBB.insert(It, CallMIB);
6724 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6725 if (!AFI.isLRSpilled())
6726 emitCFIForLRRestoreFromReg(MBB, It);
6727 It--;
6728 return CallPt;
6730 // We have the default case. Save and restore from SP.
6731 if (!MBB.isLiveIn(ARM::LR))
6732 MBB.addLiveIn(ARM::LR);
6733 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true);
6734 saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth);
6735 CallPt = MBB.insert(It, CallMIB);
6736 restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth);
6737 It--;
6738 return CallPt;
6741 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6742 MachineFunction &MF) const {
6743 return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6746 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
6747 const MachineInstr &MI) const {
6748 // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6749 // the tail predication conversion. This means that the element count
6750 // register has to be live for longer, but that has to be better than
6751 // spill/restore and VPT predication.
6752 return (isVCTP(&MI) && !isPredicated(MI)) ||
6753 TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
6756 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6757 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6758 : ARM::BLX;
6761 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6762 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6763 : ARM::tBLXr;
6766 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6767 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6768 : ARM::BLX_pred;
6771 namespace {
6772 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
6773 MachineInstr *EndLoop, *LoopCount;
6774 MachineFunction *MF;
6775 const TargetInstrInfo *TII;
6777 // Bitset[0 .. MAX_STAGES-1] ... iterations needed
6778 // [LAST_IS_USE] : last reference to register in schedule is a use
6779 // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live
6780 static int constexpr MAX_STAGES = 30;
6781 static int constexpr LAST_IS_USE = MAX_STAGES;
6782 static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1;
6783 typedef std::bitset<MAX_STAGES + 2> IterNeed;
6784 typedef std::map<unsigned, IterNeed> IterNeeds;
6786 void bumpCrossIterationPressure(RegPressureTracker &RPT,
6787 const IterNeeds &CIN);
6788 bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS);
6790 // Meanings of the various stuff with loop types:
6791 // t2Bcc:
6792 // EndLoop = branch at end of original BB that will become a kernel
6793 // LoopCount = CC setter live into branch
6794 // t2LoopEnd:
6795 // EndLoop = branch at end of original BB
6796 // LoopCount = t2LoopDec
6797 public:
6798 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
6799 : EndLoop(EndLoop), LoopCount(LoopCount),
6800 MF(EndLoop->getParent()->getParent()),
6801 TII(MF->getSubtarget().getInstrInfo()) {}
6803 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
6804 // Only ignore the terminator.
6805 return MI == EndLoop || MI == LoopCount;
6808 bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override {
6809 if (tooMuchRegisterPressure(SSD, SMS))
6810 return false;
6812 return true;
6815 std::optional<bool> createTripCountGreaterCondition(
6816 int TC, MachineBasicBlock &MBB,
6817 SmallVectorImpl<MachineOperand> &Cond) override {
6819 if (isCondBranchOpcode(EndLoop->getOpcode())) {
6820 Cond.push_back(EndLoop->getOperand(1));
6821 Cond.push_back(EndLoop->getOperand(2));
6822 if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) {
6823 TII->reverseBranchCondition(Cond);
6825 return {};
6826 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
6827 // General case just lets the unrolled t2LoopDec do the subtraction and
6828 // therefore just needs to check if zero has been reached.
6829 MachineInstr *LoopDec = nullptr;
6830 for (auto &I : MBB.instrs())
6831 if (I.getOpcode() == ARM::t2LoopDec)
6832 LoopDec = &I;
6833 assert(LoopDec && "Unable to find copied LoopDec");
6834 // Check if we're done with the loop.
6835 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
6836 .addReg(LoopDec->getOperand(0).getReg())
6837 .addImm(0)
6838 .addImm(ARMCC::AL)
6839 .addReg(ARM::NoRegister);
6840 Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ));
6841 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
6842 return {};
6843 } else
6844 llvm_unreachable("Unknown EndLoop");
6847 void setPreheader(MachineBasicBlock *NewPreheader) override {}
6849 void adjustTripCount(int TripCountAdjust) override {}
6851 void disposed() override {}
6854 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT,
6855 const IterNeeds &CIN) {
6856 // Increase pressure by the amounts in CrossIterationNeeds
6857 for (const auto &N : CIN) {
6858 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6859 for (int I = 0; I < Cnt; ++I)
6860 RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(),
6861 LaneBitmask::getAll());
6863 // Decrease pressure by the amounts in CrossIterationNeeds
6864 for (const auto &N : CIN) {
6865 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6866 for (int I = 0; I < Cnt; ++I)
6867 RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(),
6868 LaneBitmask::getNone());
6872 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD,
6873 SMSchedule &SMS) {
6874 IterNeeds CrossIterationNeeds;
6876 // Determine which values will be loop-carried after the schedule is
6877 // applied
6879 for (auto &SU : SSD.SUnits) {
6880 const MachineInstr *MI = SU.getInstr();
6881 int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU));
6882 for (auto &S : SU.Succs)
6883 if (MI->isPHI() && S.getKind() == SDep::Anti) {
6884 Register Reg = S.getReg();
6885 if (Reg.isVirtual())
6886 CrossIterationNeeds[Reg.id()].set(0);
6887 } else if (S.isAssignedRegDep()) {
6888 int OStg = SMS.stageScheduled(S.getSUnit());
6889 if (OStg >= 0 && OStg != Stg) {
6890 Register Reg = S.getReg();
6891 if (Reg.isVirtual())
6892 CrossIterationNeeds[Reg.id()] |= ((1 << (OStg - Stg)) - 1);
6897 // Determine more-or-less what the proposed schedule (reversed) is going to
6898 // be; it might not be quite the same because the within-cycle ordering
6899 // created by SMSchedule depends upon changes to help with address offsets and
6900 // the like.
6901 std::vector<SUnit *> ProposedSchedule;
6902 for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle)
6903 for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd;
6904 ++Stage) {
6905 std::deque<SUnit *> Instrs =
6906 SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval());
6907 std::sort(Instrs.begin(), Instrs.end(),
6908 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; });
6909 for (SUnit *SU : Instrs)
6910 ProposedSchedule.push_back(SU);
6913 // Learn whether the last use/def of each cross-iteration register is a use or
6914 // def. If it is a def, RegisterPressure will implicitly increase max pressure
6915 // and we do not have to add the pressure.
6916 for (auto *SU : ProposedSchedule)
6917 for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid();
6918 ++OperI) {
6919 auto MO = *OperI;
6920 if (!MO.isReg() || !MO.getReg())
6921 continue;
6922 Register Reg = MO.getReg();
6923 auto CIter = CrossIterationNeeds.find(Reg.id());
6924 if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] ||
6925 CIter->second[SEEN_AS_LIVE])
6926 continue;
6927 if (MO.isDef() && !MO.isDead())
6928 CIter->second.set(SEEN_AS_LIVE);
6929 else if (MO.isUse())
6930 CIter->second.set(LAST_IS_USE);
6932 for (auto &CI : CrossIterationNeeds)
6933 CI.second.reset(LAST_IS_USE);
6935 RegionPressure RecRegPressure;
6936 RegPressureTracker RPTracker(RecRegPressure);
6937 RegisterClassInfo RegClassInfo;
6938 RegClassInfo.runOnMachineFunction(*MF);
6939 RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(),
6940 EndLoop->getParent()->end(), false, false);
6942 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6944 for (auto *SU : ProposedSchedule) {
6945 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
6946 RPTracker.setPos(std::next(CurInstI));
6947 RPTracker.recede();
6949 // Track what cross-iteration registers would be seen as live
6950 for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) {
6951 auto MO = *OperI;
6952 if (!MO.isReg() || !MO.getReg())
6953 continue;
6954 Register Reg = MO.getReg();
6955 if (MO.isDef() && !MO.isDead()) {
6956 auto CIter = CrossIterationNeeds.find(Reg.id());
6957 if (CIter != CrossIterationNeeds.end()) {
6958 CIter->second.reset(0);
6959 CIter->second.reset(SEEN_AS_LIVE);
6963 for (auto &S : SU->Preds) {
6964 auto Stg = SMS.stageScheduled(SU);
6965 if (S.isAssignedRegDep()) {
6966 Register Reg = S.getReg();
6967 auto CIter = CrossIterationNeeds.find(Reg.id());
6968 if (CIter != CrossIterationNeeds.end()) {
6969 auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit()));
6970 assert(Stg2 <= Stg && "Data dependence upon earlier stage");
6971 if (Stg - Stg2 < MAX_STAGES)
6972 CIter->second.set(Stg - Stg2);
6973 CIter->second.set(SEEN_AS_LIVE);
6978 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6981 auto &P = RPTracker.getPressure().MaxSetPressure;
6982 for (unsigned I = 0, E = P.size(); I < E; ++I) {
6983 // Exclude some Neon register classes.
6984 if (I == ARM::DQuad_with_ssub_0 || I == ARM::DTripleSpc_with_ssub_0 ||
6985 I == ARM::DTriple_with_qsub_0_in_QPR)
6986 continue;
6988 if (P[I] > RegClassInfo.getRegPressureSetLimit(I)) {
6989 return true;
6992 return false;
6995 } // namespace
6997 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
6998 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
6999 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
7000 MachineBasicBlock *Preheader = *LoopBB->pred_begin();
7001 if (Preheader == LoopBB)
7002 Preheader = *std::next(LoopBB->pred_begin());
7004 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
7005 // If the branch is a Bcc, then the CPSR should be set somewhere within the
7006 // block. We need to determine the reaching definition of CPSR so that
7007 // it can be marked as non-pipelineable, allowing the pipeliner to force
7008 // it into stage 0 or give up if it cannot or will not do so.
7009 MachineInstr *CCSetter = nullptr;
7010 for (auto &L : LoopBB->instrs()) {
7011 if (L.isCall())
7012 return nullptr;
7013 if (isCPSRDefined(L))
7014 CCSetter = &L;
7016 if (CCSetter)
7017 return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter);
7018 else
7019 return nullptr; // Unable to find the CC setter, so unable to guarantee
7020 // that pipeline will work
7023 // Recognize:
7024 // preheader:
7025 // %1 = t2DoopLoopStart %0
7026 // loop:
7027 // %2 = phi %1, <not loop>, %..., %loop
7028 // %3 = t2LoopDec %2, <imm>
7029 // t2LoopEnd %3, %loop
7031 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
7032 for (auto &L : LoopBB->instrs())
7033 if (L.isCall())
7034 return nullptr;
7035 else if (isVCTP(&L))
7036 return nullptr;
7037 Register LoopDecResult = I->getOperand(0).getReg();
7038 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
7039 MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult);
7040 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
7041 return nullptr;
7042 MachineInstr *LoopStart = nullptr;
7043 for (auto &J : Preheader->instrs())
7044 if (J.getOpcode() == ARM::t2DoLoopStart)
7045 LoopStart = &J;
7046 if (!LoopStart)
7047 return nullptr;
7048 return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec);
7050 return nullptr;