1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function. This is required due to the
11 // limited pc-relative displacements that ARM has.
13 //===----------------------------------------------------------------------===//
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "MVETailPredUtils.h"
22 #include "Thumb2InstrInfo.h"
23 #include "Utils/ARMBaseInfo.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/CodeGen/LivePhysRegs.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineConstantPool.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineJumpTableInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/Format.h"
50 #include "llvm/Support/raw_ostream.h"
60 #define DEBUG_TYPE "arm-cp-islands"
62 #define ARM_CP_ISLANDS_OPT_NAME \
63 "ARM constant island placement and branch shortening pass"
64 STATISTIC(NumCPEs
, "Number of constpool entries");
65 STATISTIC(NumSplit
, "Number of uncond branches inserted");
66 STATISTIC(NumCBrFixed
, "Number of cond branches fixed");
67 STATISTIC(NumUBrFixed
, "Number of uncond branches fixed");
68 STATISTIC(NumTBs
, "Number of table branches generated");
69 STATISTIC(NumT2CPShrunk
, "Number of Thumb2 constantpool instructions shrunk");
70 STATISTIC(NumT2BrShrunk
, "Number of Thumb2 immediate branches shrunk");
71 STATISTIC(NumCBZ
, "Number of CBZ / CBNZ formed");
72 STATISTIC(NumJTMoved
, "Number of jump table destination blocks moved");
73 STATISTIC(NumJTInserted
, "Number of jump table intermediate blocks inserted");
74 STATISTIC(NumLEInserted
, "Number of LE backwards branches inserted");
77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden
, cl::init(true),
78 cl::desc("Adjust basic block layout to better use TB[BH]"));
80 static cl::opt
<unsigned>
81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden
, cl::init(30),
82 cl::desc("The max number of iteration for converge"));
84 static cl::opt
<bool> SynthesizeThumb1TBB(
85 "arm-synthesize-thumb-1-tbb", cl::Hidden
, cl::init(true),
86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
87 "equivalent to the TBB/TBH instructions"));
91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
92 /// requires constant pool entries to be scattered among the instructions
93 /// inside a function. To do this, it completely ignores the normal LLVM
94 /// constant pool; instead, it places constants wherever it feels like with
95 /// special instructions.
97 /// The terminology used in this pass includes:
98 /// Islands - Clumps of constants placed in the function.
99 /// Water - Potential places where an island could be formed.
100 /// CPE - A constant pool entry that has been placed somewhere, which
101 /// tracks a list of users.
102 class ARMConstantIslands
: public MachineFunctionPass
{
103 std::unique_ptr
<ARMBasicBlockUtils
> BBUtils
= nullptr;
105 /// WaterList - A sorted list of basic blocks where islands could be placed
106 /// (i.e. blocks that don't fall through to the following block, due
107 /// to a return, unreachable, or unconditional branch).
108 std::vector
<MachineBasicBlock
*> WaterList
;
110 /// NewWaterList - The subset of WaterList that was created since the
111 /// previous iteration by inserting unconditional branches.
112 SmallSet
<MachineBasicBlock
*, 4> NewWaterList
;
114 using water_iterator
= std::vector
<MachineBasicBlock
*>::iterator
;
116 /// CPUser - One user of a constant pool, keeping the machine instruction
117 /// pointer, the constant pool being referenced, and the max displacement
118 /// allowed from the instruction to the CP. The HighWaterMark records the
119 /// highest basic block where a new CPEntry can be placed. To ensure this
120 /// pass terminates, the CP entries are initially placed at the end of the
121 /// function and then move monotonically to lower addresses. The
122 /// exception to this rule is when the current CP entry for a particular
123 /// CPUser is out of range, but there is another CP entry for the same
124 /// constant value in range. We want to use the existing in-range CP
125 /// entry, but if it later moves out of range, the search for new water
126 /// should resume where it left off. The HighWaterMark is used to record
131 MachineBasicBlock
*HighWaterMark
;
135 bool KnownAlignment
= false;
137 CPUser(MachineInstr
*mi
, MachineInstr
*cpemi
, unsigned maxdisp
,
138 bool neg
, bool soimm
)
139 : MI(mi
), CPEMI(cpemi
), MaxDisp(maxdisp
), NegOk(neg
), IsSoImm(soimm
) {
140 HighWaterMark
= CPEMI
->getParent();
143 /// getMaxDisp - Returns the maximum displacement supported by MI.
144 /// Correct for unknown alignment.
145 /// Conservatively subtract 2 bytes to handle weird alignment effects.
146 unsigned getMaxDisp() const {
147 return (KnownAlignment
? MaxDisp
: MaxDisp
- 2) - 2;
151 /// CPUsers - Keep track of all of the machine instructions that use various
152 /// constant pools and their max displacement.
153 std::vector
<CPUser
> CPUsers
;
155 /// CPEntry - One per constant pool entry, keeping the machine instruction
156 /// pointer, the constpool index, and the number of CPUser's which
157 /// reference this entry.
163 CPEntry(MachineInstr
*cpemi
, unsigned cpi
, unsigned rc
= 0)
164 : CPEMI(cpemi
), CPI(cpi
), RefCount(rc
) {}
167 /// CPEntries - Keep track of all of the constant pool entry machine
168 /// instructions. For each original constpool index (i.e. those that existed
169 /// upon entry to this pass), it keeps a vector of entries. Original
170 /// elements are cloned as we go along; the clones are put in the vector of
171 /// the original element, but have distinct CPIs.
173 /// The first half of CPEntries contains generic constants, the second half
174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
175 /// which vector it will be in here.
176 std::vector
<std::vector
<CPEntry
>> CPEntries
;
178 /// Maps a JT index to the offset in CPEntries containing copies of that
179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
180 DenseMap
<int, int> JumpTableEntryIndices
;
182 /// Maps a JT index to the LEA that actually uses the index to calculate its
184 DenseMap
<int, int> JumpTableUserIndices
;
186 // Maps a MachineBasicBlock to the number of jump tables entries.
187 DenseMap
<const MachineBasicBlock
*, int> BlockJumpTableRefCount
;
189 /// ImmBranch - One per immediate branch, keeping the machine instruction
190 /// pointer, conditional or unconditional, the max displacement,
191 /// and (if isCond is true) the corresponding unconditional branch
195 unsigned MaxDisp
: 31;
199 ImmBranch(MachineInstr
*mi
, unsigned maxdisp
, bool cond
, unsigned ubr
)
200 : MI(mi
), MaxDisp(maxdisp
), isCond(cond
), UncondBr(ubr
) {}
203 /// ImmBranches - Keep track of all the immediate branch instructions.
204 std::vector
<ImmBranch
> ImmBranches
;
206 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
207 SmallVector
<MachineInstr
*, 4> PushPopMIs
;
209 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
210 SmallVector
<MachineInstr
*, 4> T2JumpTables
;
213 MachineConstantPool
*MCP
;
214 const ARMBaseInstrInfo
*TII
;
215 const ARMSubtarget
*STI
;
216 ARMFunctionInfo
*AFI
;
217 MachineDominatorTree
*DT
= nullptr;
221 bool isPositionIndependentOrROPI
;
226 ARMConstantIslands() : MachineFunctionPass(ID
) {}
228 bool runOnMachineFunction(MachineFunction
&MF
) override
;
230 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
231 AU
.addRequired
<MachineDominatorTreeWrapperPass
>();
232 MachineFunctionPass::getAnalysisUsage(AU
);
235 MachineFunctionProperties
getRequiredProperties() const override
{
236 return MachineFunctionProperties().set(
237 MachineFunctionProperties::Property::NoVRegs
);
240 StringRef
getPassName() const override
{
241 return ARM_CP_ISLANDS_OPT_NAME
;
245 void doInitialConstPlacement(std::vector
<MachineInstr
*> &CPEMIs
);
246 void doInitialJumpTablePlacement(std::vector
<MachineInstr
*> &CPEMIs
);
247 bool BBHasFallthrough(MachineBasicBlock
*MBB
);
248 CPEntry
*findConstPoolEntry(unsigned CPI
, const MachineInstr
*CPEMI
);
249 Align
getCPEAlign(const MachineInstr
*CPEMI
);
250 void scanFunctionJumpTables();
251 void initializeFunctionInfo(const std::vector
<MachineInstr
*> &CPEMIs
);
252 MachineBasicBlock
*splitBlockBeforeInstr(MachineInstr
*MI
);
253 void updateForInsertedWaterBlock(MachineBasicBlock
*NewBB
);
254 bool decrementCPEReferenceCount(unsigned CPI
, MachineInstr
* CPEMI
);
255 unsigned getCombinedIndex(const MachineInstr
*CPEMI
);
256 int findInRangeCPEntry(CPUser
& U
, unsigned UserOffset
);
257 bool findAvailableWater(CPUser
&U
, unsigned UserOffset
,
258 water_iterator
&WaterIter
, bool CloserWater
);
259 void createNewWater(unsigned CPUserIndex
, unsigned UserOffset
,
260 MachineBasicBlock
*&NewMBB
);
261 bool handleConstantPoolUser(unsigned CPUserIndex
, bool CloserWater
);
262 void removeDeadCPEMI(MachineInstr
*CPEMI
);
263 bool removeUnusedCPEntries();
264 bool isCPEntryInRange(MachineInstr
*MI
, unsigned UserOffset
,
265 MachineInstr
*CPEMI
, unsigned Disp
, bool NegOk
,
266 bool DoDump
= false);
267 bool isWaterInRange(unsigned UserOffset
, MachineBasicBlock
*Water
,
268 CPUser
&U
, unsigned &Growth
);
269 bool fixupImmediateBr(ImmBranch
&Br
);
270 bool fixupConditionalBr(ImmBranch
&Br
);
271 bool fixupUnconditionalBr(ImmBranch
&Br
);
272 bool optimizeThumb2Instructions();
273 bool optimizeThumb2Branches();
274 bool reorderThumb2JumpTables();
275 bool preserveBaseRegister(MachineInstr
*JumpMI
, MachineInstr
*LEAMI
,
276 unsigned &DeadSize
, bool &CanDeleteLEA
,
278 bool optimizeThumb2JumpTables();
279 MachineBasicBlock
*adjustJTTargetBlockForward(unsigned JTI
,
280 MachineBasicBlock
*BB
,
281 MachineBasicBlock
*JTBB
);
283 unsigned getUserOffset(CPUser
&) const;
287 bool isOffsetInRange(unsigned UserOffset
, unsigned TrialOffset
,
288 unsigned Disp
, bool NegativeOK
, bool IsSoImm
= false);
289 bool isOffsetInRange(unsigned UserOffset
, unsigned TrialOffset
,
291 return isOffsetInRange(UserOffset
, TrialOffset
,
292 U
.getMaxDisp(), U
.NegOk
, U
.IsSoImm
);
296 } // end anonymous namespace
298 char ARMConstantIslands::ID
= 0;
300 /// verify - check BBOffsets, BBSizes, alignment of islands
301 void ARMConstantIslands::verify() {
303 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
304 assert(is_sorted(*MF
, [&BBInfo
](const MachineBasicBlock
&LHS
,
305 const MachineBasicBlock
&RHS
) {
306 return BBInfo
[LHS
.getNumber()].postOffset() <
307 BBInfo
[RHS
.getNumber()].postOffset();
309 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers
.size() << " CP users.\n");
310 for (CPUser
&U
: CPUsers
) {
311 unsigned UserOffset
= getUserOffset(U
);
312 // Verify offset using the real max displacement without the safety
314 if (isCPEntryInRange(U
.MI
, UserOffset
, U
.CPEMI
, U
.getMaxDisp()+2, U
.NegOk
,
315 /* DoDump = */ true)) {
316 LLVM_DEBUG(dbgs() << "OK\n");
319 LLVM_DEBUG(dbgs() << "Out of range.\n");
321 LLVM_DEBUG(MF
->dump());
322 llvm_unreachable("Constant pool entry out of range!");
327 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
328 /// print block size and offset information - debugging
329 LLVM_DUMP_METHOD
void ARMConstantIslands::dumpBBs() {
331 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
332 for (unsigned J
= 0, E
= BBInfo
.size(); J
!=E
; ++J
) {
333 const BasicBlockInfo
&BBI
= BBInfo
[J
];
334 dbgs() << format("%08x %bb.%u\t", BBI
.Offset
, J
)
335 << " kb=" << unsigned(BBI
.KnownBits
)
336 << " ua=" << unsigned(BBI
.Unalign
) << " pa=" << Log2(BBI
.PostAlign
)
337 << format(" size=%#x\n", BBInfo
[J
].Size
);
343 // Align blocks where the previous block does not fall through. This may add
344 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a
345 // measure of how much to align, and only runs at CodeGenOptLevel::Aggressive.
346 static bool AlignBlocks(MachineFunction
*MF
, const ARMSubtarget
*STI
) {
347 if (MF
->getTarget().getOptLevel() != CodeGenOptLevel::Aggressive
||
348 MF
->getFunction().hasOptSize())
351 auto *TLI
= STI
->getTargetLowering();
352 const Align Alignment
= TLI
->getPrefLoopAlignment();
356 bool Changed
= false;
357 bool PrevCanFallthough
= true;
358 for (auto &MBB
: *MF
) {
359 if (!PrevCanFallthough
) {
361 MBB
.setAlignment(Alignment
);
364 PrevCanFallthough
= MBB
.canFallThrough();
366 // For LOB's, the ARMLowOverheadLoops pass may remove the unconditional
367 // branch later in the pipeline.
369 for (const auto &MI
: reverse(MBB
.terminators())) {
370 if (MI
.getOpcode() == ARM::t2B
&&
371 MI
.getOperand(0).getMBB() == MBB
.getNextNode())
373 if (isLoopStart(MI
) || MI
.getOpcode() == ARM::t2LoopEnd
||
374 MI
.getOpcode() == ARM::t2LoopEndDec
) {
375 PrevCanFallthough
= true;
378 // Any other terminator - nothing to do
387 bool ARMConstantIslands::runOnMachineFunction(MachineFunction
&mf
) {
389 MCP
= mf
.getConstantPool();
390 BBUtils
= std::make_unique
<ARMBasicBlockUtils
>(mf
);
392 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
393 << MCP
->getConstants().size() << " CP entries, aligned to "
394 << MCP
->getConstantPoolAlign().value() << " bytes *****\n");
396 STI
= &MF
->getSubtarget
<ARMSubtarget
>();
397 TII
= STI
->getInstrInfo();
398 isPositionIndependentOrROPI
=
399 STI
->getTargetLowering()->isPositionIndependent() || STI
->isROPI();
400 AFI
= MF
->getInfo
<ARMFunctionInfo
>();
401 DT
= &getAnalysis
<MachineDominatorTreeWrapperPass
>().getDomTree();
403 isThumb
= AFI
->isThumbFunction();
404 isThumb1
= AFI
->isThumb1OnlyFunction();
405 isThumb2
= AFI
->isThumb2Function();
407 bool GenerateTBB
= isThumb2
|| (isThumb1
&& SynthesizeThumb1TBB
);
408 // TBB generation code in this constant island pass has not been adapted to
409 // deal with speculation barriers.
410 if (STI
->hardenSlsRetBr())
413 // Renumber all of the machine basic blocks in the function, guaranteeing that
414 // the numbers agree with the position of the block in the function.
415 MF
->RenumberBlocks();
416 DT
->updateBlockNumbers();
418 // Try to reorder and otherwise adjust the block layout to make good use
419 // of the TB[BH] instructions.
420 bool MadeChange
= false;
421 if (GenerateTBB
&& AdjustJumpTableBlocks
) {
422 scanFunctionJumpTables();
423 MadeChange
|= reorderThumb2JumpTables();
424 // Data is out of date, so clear it. It'll be re-computed later.
425 T2JumpTables
.clear();
426 // Blocks may have shifted around. Keep the numbering up to date.
427 MF
->RenumberBlocks();
428 DT
->updateBlockNumbers();
431 // Align any non-fallthrough blocks
432 MadeChange
|= AlignBlocks(MF
, STI
);
434 // Perform the initial placement of the constant pool entries. To start with,
435 // we put them all at the end of the function.
436 std::vector
<MachineInstr
*> CPEMIs
;
438 doInitialConstPlacement(CPEMIs
);
440 if (MF
->getJumpTableInfo())
441 doInitialJumpTablePlacement(CPEMIs
);
443 /// The next UID to take is the first unused one.
444 AFI
->initPICLabelUId(CPEMIs
.size());
446 // Do the initial scan of the function, building up information about the
447 // sizes of each block, the location of all the water, and finding all of the
448 // constant pool users.
449 initializeFunctionInfo(CPEMIs
);
451 LLVM_DEBUG(dumpBBs());
453 // Functions with jump tables need an alignment of 4 because they use the ADR
454 // instruction, which aligns the PC to 4 bytes before adding an offset.
455 if (!T2JumpTables
.empty())
456 MF
->ensureAlignment(Align(4));
458 /// Remove dead constant pool entries.
459 MadeChange
|= removeUnusedCPEntries();
461 // Iteratively place constant pool entries and fix up branches until there
463 unsigned NoCPIters
= 0, NoBRIters
= 0;
465 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters
<< '\n');
466 bool CPChange
= false;
467 for (unsigned i
= 0, e
= CPUsers
.size(); i
!= e
; ++i
)
468 // For most inputs, it converges in no more than 5 iterations.
469 // If it doesn't end in 10, the input may have huge BB or many CPEs.
470 // In this case, we will try different heuristics.
471 CPChange
|= handleConstantPoolUser(i
, NoCPIters
>= CPMaxIteration
/ 2);
472 if (CPChange
&& ++NoCPIters
> CPMaxIteration
)
473 report_fatal_error("Constant Island pass failed to converge!");
474 LLVM_DEBUG(dumpBBs());
476 // Clear NewWaterList now. If we split a block for branches, it should
477 // appear as "new water" for the next iteration of constant pool placement.
478 NewWaterList
.clear();
480 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters
<< '\n');
481 bool BRChange
= false;
482 for (unsigned i
= 0, e
= ImmBranches
.size(); i
!= e
; ++i
)
483 BRChange
|= fixupImmediateBr(ImmBranches
[i
]);
484 if (BRChange
&& ++NoBRIters
> 30)
485 report_fatal_error("Branch Fix Up pass failed to converge!");
486 LLVM_DEBUG(dumpBBs());
488 if (!CPChange
&& !BRChange
)
493 // Shrink 32-bit Thumb2 load and store instructions.
494 if (isThumb2
&& !STI
->prefers32BitThumb())
495 MadeChange
|= optimizeThumb2Instructions();
497 // Shrink 32-bit branch instructions.
498 if (isThumb
&& STI
->hasV8MBaselineOps())
499 MadeChange
|= optimizeThumb2Branches();
501 // Optimize jump tables using TBB / TBH.
502 if (GenerateTBB
&& !STI
->genExecuteOnly())
503 MadeChange
|= optimizeThumb2JumpTables();
505 // After a while, this might be made debug-only, but it is not expensive.
508 // Save the mapping between original and cloned constpool entries.
509 for (unsigned i
= 0, e
= CPEntries
.size(); i
!= e
; ++i
) {
510 for (unsigned j
= 0, je
= CPEntries
[i
].size(); j
!= je
; ++j
) {
511 const CPEntry
& CPE
= CPEntries
[i
][j
];
512 if (CPE
.CPEMI
&& CPE
.CPEMI
->getOperand(1).isCPI())
513 AFI
->recordCPEClone(i
, CPE
.CPI
);
517 LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
523 JumpTableEntryIndices
.clear();
524 JumpTableUserIndices
.clear();
525 BlockJumpTableRefCount
.clear();
528 T2JumpTables
.clear();
533 /// Perform the initial placement of the regular constant pool entries.
534 /// To start with, we put them all at the end of the function.
536 ARMConstantIslands::doInitialConstPlacement(std::vector
<MachineInstr
*> &CPEMIs
) {
537 // Create the basic block to hold the CPE's.
538 MachineBasicBlock
*BB
= MF
->CreateMachineBasicBlock();
541 // MachineConstantPool measures alignment in bytes.
542 const Align MaxAlign
= MCP
->getConstantPoolAlign();
543 const unsigned MaxLogAlign
= Log2(MaxAlign
);
545 // Mark the basic block as required by the const-pool.
546 BB
->setAlignment(MaxAlign
);
548 // The function needs to be as aligned as the basic blocks. The linker may
549 // move functions around based on their alignment.
550 // Special case: halfword literals still need word alignment on the function.
551 Align FuncAlign
= MaxAlign
;
553 FuncAlign
= Align(4);
554 MF
->ensureAlignment(FuncAlign
);
556 // Order the entries in BB by descending alignment. That ensures correct
557 // alignment of all entries as long as BB is sufficiently aligned. Keep
558 // track of the insertion point for each alignment. We are going to bucket
559 // sort the entries as they are created.
560 SmallVector
<MachineBasicBlock::iterator
, 8> InsPoint(MaxLogAlign
+ 1,
563 // Add all of the constants from the constant pool to the end block, use an
564 // identity mapping of CPI's to CPE's.
565 const std::vector
<MachineConstantPoolEntry
> &CPs
= MCP
->getConstants();
567 const DataLayout
&TD
= MF
->getDataLayout();
568 for (unsigned i
= 0, e
= CPs
.size(); i
!= e
; ++i
) {
569 unsigned Size
= CPs
[i
].getSizeInBytes(TD
);
570 Align Alignment
= CPs
[i
].getAlign();
571 // Verify that all constant pool entries are a multiple of their alignment.
572 // If not, we would have to pad them out so that instructions stay aligned.
573 assert(isAligned(Alignment
, Size
) && "CP Entry not multiple of 4 bytes!");
575 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
576 unsigned LogAlign
= Log2(Alignment
);
577 MachineBasicBlock::iterator InsAt
= InsPoint
[LogAlign
];
578 MachineInstr
*CPEMI
=
579 BuildMI(*BB
, InsAt
, DebugLoc(), TII
->get(ARM::CONSTPOOL_ENTRY
))
580 .addImm(i
).addConstantPoolIndex(i
).addImm(Size
);
581 CPEMIs
.push_back(CPEMI
);
583 // Ensure that future entries with higher alignment get inserted before
584 // CPEMI. This is bucket sort with iterators.
585 for (unsigned a
= LogAlign
+ 1; a
<= MaxLogAlign
; ++a
)
586 if (InsPoint
[a
] == InsAt
)
589 // Add a new CPEntry, but no corresponding CPUser yet.
590 CPEntries
.emplace_back(1, CPEntry(CPEMI
, i
));
592 LLVM_DEBUG(dbgs() << "Moved CPI#" << i
<< " to end of function, size = "
593 << Size
<< ", align = " << Alignment
.value() << '\n');
595 LLVM_DEBUG(BB
->dump());
598 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
599 /// instructions can be made more efficient if the jump table immediately
600 /// follows the instruction, it's best to place them immediately next to their
601 /// jumps to begin with. In almost all cases they'll never be moved from that
603 void ARMConstantIslands::doInitialJumpTablePlacement(
604 std::vector
<MachineInstr
*> &CPEMIs
) {
605 unsigned i
= CPEntries
.size();
606 auto MJTI
= MF
->getJumpTableInfo();
607 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
609 // Only inline jump tables are placed in the function.
610 if (MJTI
->getEntryKind() != MachineJumpTableInfo::EK_Inline
)
613 MachineBasicBlock
*LastCorrectlyNumberedBB
= nullptr;
614 for (MachineBasicBlock
&MBB
: *MF
) {
615 auto MI
= MBB
.getLastNonDebugInstr();
616 // Look past potential SpeculationBarriers at end of BB.
617 while (MI
!= MBB
.end() &&
618 (isSpeculationBarrierEndBBOpcode(MI
->getOpcode()) ||
626 switch (MI
->getOpcode()) {
632 case ARM::BR_JTm_i12
:
634 // These instructions are emitted only in ARM or Thumb1 modes which do not
635 // support PACBTI. Hence we don't add BTI instructions in the destination
637 assert(!MF
->getInfo
<ARMFunctionInfo
>()->branchTargetEnforcement() &&
638 "Branch protection must not be enabled for Arm or Thumb1 modes");
639 JTOpcode
= ARM::JUMPTABLE_ADDRS
;
642 JTOpcode
= ARM::JUMPTABLE_INSTS
;
646 JTOpcode
= ARM::JUMPTABLE_TBB
;
650 JTOpcode
= ARM::JUMPTABLE_TBH
;
654 unsigned NumOps
= MI
->getDesc().getNumOperands();
655 MachineOperand JTOp
=
656 MI
->getOperand(NumOps
- (MI
->isPredicable() ? 2 : 1));
657 unsigned JTI
= JTOp
.getIndex();
658 unsigned Size
= JT
[JTI
].MBBs
.size() * sizeof(uint32_t);
659 MachineBasicBlock
*JumpTableBB
= MF
->CreateMachineBasicBlock();
660 MF
->insert(std::next(MachineFunction::iterator(MBB
)), JumpTableBB
);
661 MachineInstr
*CPEMI
= BuildMI(*JumpTableBB
, JumpTableBB
->begin(),
662 DebugLoc(), TII
->get(JTOpcode
))
664 .addJumpTableIndex(JTI
)
666 CPEMIs
.push_back(CPEMI
);
667 CPEntries
.emplace_back(1, CPEntry(CPEMI
, JTI
));
668 JumpTableEntryIndices
.insert(std::make_pair(JTI
, CPEntries
.size() - 1));
669 if (!LastCorrectlyNumberedBB
)
670 LastCorrectlyNumberedBB
= &MBB
;
673 // If we did anything then we need to renumber the subsequent blocks.
674 if (LastCorrectlyNumberedBB
) {
675 MF
->RenumberBlocks(LastCorrectlyNumberedBB
);
676 DT
->updateBlockNumbers();
680 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
681 /// into the block immediately after it.
682 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock
*MBB
) {
683 // Get the next machine basic block in the function.
684 MachineFunction::iterator MBBI
= MBB
->getIterator();
685 // Can't fall off end of function.
686 if (std::next(MBBI
) == MBB
->getParent()->end())
689 MachineBasicBlock
*NextBB
= &*std::next(MBBI
);
690 if (!MBB
->isSuccessor(NextBB
))
693 // Try to analyze the end of the block. A potential fallthrough may already
694 // have an unconditional branch for whatever reason.
695 MachineBasicBlock
*TBB
, *FBB
;
696 SmallVector
<MachineOperand
, 4> Cond
;
697 bool TooDifficult
= TII
->analyzeBranch(*MBB
, TBB
, FBB
, Cond
);
698 return TooDifficult
|| FBB
== nullptr;
701 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
702 /// look up the corresponding CPEntry.
703 ARMConstantIslands::CPEntry
*
704 ARMConstantIslands::findConstPoolEntry(unsigned CPI
,
705 const MachineInstr
*CPEMI
) {
706 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
707 // Number of entries per constpool index should be small, just do a
709 for (CPEntry
&CPE
: CPEs
)
710 if (CPE
.CPEMI
== CPEMI
)
715 /// getCPEAlign - Returns the required alignment of the constant pool entry
716 /// represented by CPEMI.
717 Align
ARMConstantIslands::getCPEAlign(const MachineInstr
*CPEMI
) {
718 switch (CPEMI
->getOpcode()) {
719 case ARM::CONSTPOOL_ENTRY
:
721 case ARM::JUMPTABLE_TBB
:
722 return isThumb1
? Align(4) : Align(1);
723 case ARM::JUMPTABLE_TBH
:
724 return isThumb1
? Align(4) : Align(2);
725 case ARM::JUMPTABLE_INSTS
:
727 case ARM::JUMPTABLE_ADDRS
:
730 llvm_unreachable("unknown constpool entry kind");
733 unsigned CPI
= getCombinedIndex(CPEMI
);
734 assert(CPI
< MCP
->getConstants().size() && "Invalid constant pool index.");
735 return MCP
->getConstants()[CPI
].getAlign();
738 // Exception landing pads, blocks that has their adress taken, and function
739 // entry blocks will always be (potential) indirect jump targets, regardless of
740 // whether they are referenced by or not by jump tables.
741 static bool isAlwaysIndirectTarget(const MachineBasicBlock
&MBB
) {
742 return MBB
.isEHPad() || MBB
.hasAddressTaken() ||
743 &MBB
== &MBB
.getParent()->front();
746 /// scanFunctionJumpTables - Do a scan of the function, building up
747 /// information about the sizes of each block and the locations of all
749 void ARMConstantIslands::scanFunctionJumpTables() {
750 for (MachineBasicBlock
&MBB
: *MF
) {
751 for (MachineInstr
&I
: MBB
)
753 (I
.getOpcode() == ARM::t2BR_JT
|| I
.getOpcode() == ARM::tBR_JTr
))
754 T2JumpTables
.push_back(&I
);
757 if (!MF
->getInfo
<ARMFunctionInfo
>()->branchTargetEnforcement())
760 if (const MachineJumpTableInfo
*JTI
= MF
->getJumpTableInfo())
761 for (const MachineJumpTableEntry
&JTE
: JTI
->getJumpTables())
762 for (const MachineBasicBlock
*MBB
: JTE
.MBBs
) {
763 if (isAlwaysIndirectTarget(*MBB
))
764 // Set the reference count essentially to infinity, it will never
765 // reach zero and the BTI Instruction will never be removed.
766 BlockJumpTableRefCount
[MBB
] = std::numeric_limits
<int>::max();
768 ++BlockJumpTableRefCount
[MBB
];
772 /// initializeFunctionInfo - Do the initial scan of the function, building up
773 /// information about the sizes of each block, the location of all the water,
774 /// and finding all of the constant pool users.
775 void ARMConstantIslands::
776 initializeFunctionInfo(const std::vector
<MachineInstr
*> &CPEMIs
) {
778 BBUtils
->computeAllBlockSizes();
779 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
780 // The known bits of the entry block offset are determined by the function
782 BBInfo
.front().KnownBits
= Log2(MF
->getAlignment());
784 // Compute block offsets and known bits.
785 BBUtils
->adjustBBOffsetsAfter(&MF
->front());
787 // We only care about jump table instructions when jump tables are inline.
788 MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
789 bool InlineJumpTables
=
790 MJTI
&& MJTI
->getEntryKind() == MachineJumpTableInfo::EK_Inline
;
792 // Now go back through the instructions and build up our data structures.
793 for (MachineBasicBlock
&MBB
: *MF
) {
794 // If this block doesn't fall through into the next MBB, then this is
795 // 'water' that a constant pool island could be placed.
796 if (!BBHasFallthrough(&MBB
))
797 WaterList
.push_back(&MBB
);
799 for (MachineInstr
&I
: MBB
) {
800 if (I
.isDebugInstr())
803 unsigned Opc
= I
.getOpcode();
811 continue; // Ignore other JT branches
814 if (InlineJumpTables
)
815 T2JumpTables
.push_back(&I
);
816 continue; // Does not get an entry in ImmBranches
847 // Record this immediate branch.
848 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
849 ImmBranches
.push_back(ImmBranch(&I
, MaxOffs
, isCond
, UOpc
));
852 if (Opc
== ARM::tPUSH
|| Opc
== ARM::tPOP_RET
)
853 PushPopMIs
.push_back(&I
);
855 if (Opc
== ARM::CONSTPOOL_ENTRY
|| Opc
== ARM::JUMPTABLE_ADDRS
||
856 Opc
== ARM::JUMPTABLE_INSTS
|| Opc
== ARM::JUMPTABLE_TBB
||
857 Opc
== ARM::JUMPTABLE_TBH
)
860 // Scan the instructions for constant pool operands.
861 for (unsigned op
= 0, e
= I
.getNumOperands(); op
!= e
; ++op
)
862 if (I
.getOperand(op
).isCPI() ||
863 (I
.getOperand(op
).isJTI() && InlineJumpTables
)) {
864 // We found one. The addressing mode tells us the max displacement
865 // from the PC that this instruction permits.
867 // Basic size info comes from the TSFlags field.
871 bool IsSoImm
= false;
875 llvm_unreachable("Unknown addressing mode for CP reference!");
877 // Taking the address of a CP entry.
879 case ARM::LEApcrelJT
: {
880 // This takes a SoImm, which is 8 bit immediate rotated. We'll
881 // pretend the maximum offset is 255 * 4. Since each instruction
882 // 4 byte wide, this is always correct. We'll check for other
883 // displacements that fits in a SoImm as well.
887 unsigned CPI
= I
.getOperand(op
).getIndex();
888 assert(CPI
< CPEMIs
.size());
889 MachineInstr
*CPEMI
= CPEMIs
[CPI
];
890 const Align CPEAlign
= getCPEAlign(CPEMI
);
891 const unsigned LogCPEAlign
= Log2(CPEAlign
);
892 if (LogCPEAlign
>= 2)
895 // For constants with less than 4-byte alignment,
896 // we'll pretend the maximum offset is 255 * 1.
900 case ARM::t2LEApcrel
:
901 case ARM::t2LEApcrelJT
:
906 case ARM::tLEApcrelJT
:
916 case ARM::t2LDRSHpci
:
918 case ARM::t2LDRSBpci
:
919 Bits
= 12; // +-offset_12
925 Scale
= 4; // +(offset_8*4)
931 Scale
= 4; // +-(offset_8*4)
936 Scale
= 2; // +-(offset_8*2)
941 // Remember that this is a user of a CP entry.
942 unsigned CPI
= I
.getOperand(op
).getIndex();
943 if (I
.getOperand(op
).isJTI()) {
944 JumpTableUserIndices
.insert(std::make_pair(CPI
, CPUsers
.size()));
945 CPI
= JumpTableEntryIndices
[CPI
];
948 MachineInstr
*CPEMI
= CPEMIs
[CPI
];
949 unsigned MaxOffs
= ((1 << Bits
)-1) * Scale
;
950 CPUsers
.push_back(CPUser(&I
, CPEMI
, MaxOffs
, NegOk
, IsSoImm
));
952 // Increment corresponding CPEntry reference count.
953 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
954 assert(CPE
&& "Cannot find a corresponding CPEntry!");
957 // Instructions can only use one CP entry, don't bother scanning the
958 // rest of the operands.
965 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
967 static bool CompareMBBNumbers(const MachineBasicBlock
*LHS
,
968 const MachineBasicBlock
*RHS
) {
969 return LHS
->getNumber() < RHS
->getNumber();
972 /// updateForInsertedWaterBlock - When a block is newly inserted into the
973 /// machine function, it upsets all of the block numbers. Renumber the blocks
974 /// and update the arrays that parallel this numbering.
975 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock
*NewBB
) {
976 // Renumber the MBB's to keep them consecutive.
977 NewBB
->getParent()->RenumberBlocks(NewBB
);
978 DT
->updateBlockNumbers();
980 // Insert an entry into BBInfo to align it properly with the (newly
981 // renumbered) block numbers.
982 BBUtils
->insert(NewBB
->getNumber(), BasicBlockInfo());
984 // Next, update WaterList. Specifically, we need to add NewMBB as having
985 // available water after it.
986 water_iterator IP
= llvm::lower_bound(WaterList
, NewBB
, CompareMBBNumbers
);
987 WaterList
.insert(IP
, NewBB
);
990 /// Split the basic block containing MI into two blocks, which are joined by
991 /// an unconditional branch. Update data structures and renumber blocks to
992 /// account for this change and returns the newly created block.
993 MachineBasicBlock
*ARMConstantIslands::splitBlockBeforeInstr(MachineInstr
*MI
) {
994 MachineBasicBlock
*OrigBB
= MI
->getParent();
996 // Collect liveness information at MI.
997 LivePhysRegs
LRs(*MF
->getSubtarget().getRegisterInfo());
998 LRs
.addLiveOuts(*OrigBB
);
999 auto LivenessEnd
= ++MachineBasicBlock::iterator(MI
).getReverse();
1000 for (MachineInstr
&LiveMI
: make_range(OrigBB
->rbegin(), LivenessEnd
))
1001 LRs
.stepBackward(LiveMI
);
1003 // Create a new MBB for the code after the OrigBB.
1004 MachineBasicBlock
*NewBB
=
1005 MF
->CreateMachineBasicBlock(OrigBB
->getBasicBlock());
1006 MachineFunction::iterator MBBI
= ++OrigBB
->getIterator();
1007 MF
->insert(MBBI
, NewBB
);
1009 // Splice the instructions starting with MI over to NewBB.
1010 NewBB
->splice(NewBB
->end(), OrigBB
, MI
, OrigBB
->end());
1012 // Add an unconditional branch from OrigBB to NewBB.
1013 // Note the new unconditional branch is not being recorded.
1014 // There doesn't seem to be meaningful DebugInfo available; this doesn't
1015 // correspond to anything in the source.
1016 unsigned Opc
= isThumb
? (isThumb2
? ARM::t2B
: ARM::tB
) : ARM::B
;
1018 BuildMI(OrigBB
, DebugLoc(), TII
->get(Opc
)).addMBB(NewBB
);
1020 BuildMI(OrigBB
, DebugLoc(), TII
->get(Opc
))
1022 .add(predOps(ARMCC::AL
));
1025 // Update the CFG. All succs of OrigBB are now succs of NewBB.
1026 NewBB
->transferSuccessors(OrigBB
);
1028 // OrigBB branches to NewBB.
1029 OrigBB
->addSuccessor(NewBB
);
1031 // Update live-in information in the new block.
1032 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1033 for (MCPhysReg L
: LRs
)
1034 if (!MRI
.isReserved(L
))
1035 NewBB
->addLiveIn(L
);
1037 // Update internal data structures to account for the newly inserted MBB.
1038 // This is almost the same as updateForInsertedWaterBlock, except that
1039 // the Water goes after OrigBB, not NewBB.
1040 MF
->RenumberBlocks(NewBB
);
1041 DT
->updateBlockNumbers();
1043 // Insert an entry into BBInfo to align it properly with the (newly
1044 // renumbered) block numbers.
1045 BBUtils
->insert(NewBB
->getNumber(), BasicBlockInfo());
1047 // Next, update WaterList. Specifically, we need to add OrigMBB as having
1048 // available water after it (but not if it's already there, which happens
1049 // when splitting before a conditional branch that is followed by an
1050 // unconditional branch - in that case we want to insert NewBB).
1051 water_iterator IP
= llvm::lower_bound(WaterList
, OrigBB
, CompareMBBNumbers
);
1052 MachineBasicBlock
* WaterBB
= *IP
;
1053 if (WaterBB
== OrigBB
)
1054 WaterList
.insert(std::next(IP
), NewBB
);
1056 WaterList
.insert(IP
, OrigBB
);
1057 NewWaterList
.insert(OrigBB
);
1059 // Figure out how large the OrigBB is. As the first half of the original
1060 // block, it cannot contain a tablejump. The size includes
1061 // the new jump we added. (It should be possible to do this without
1062 // recounting everything, but it's very confusing, and this is rarely
1064 BBUtils
->computeBlockSize(OrigBB
);
1066 // Figure out how large the NewMBB is. As the second half of the original
1067 // block, it may contain a tablejump.
1068 BBUtils
->computeBlockSize(NewBB
);
1070 // All BBOffsets following these blocks must be modified.
1071 BBUtils
->adjustBBOffsetsAfter(OrigBB
);
1076 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
1077 /// displacement computation. Update U.KnownAlignment to match its current
1078 /// basic block location.
1079 unsigned ARMConstantIslands::getUserOffset(CPUser
&U
) const {
1080 unsigned UserOffset
= BBUtils
->getOffsetOf(U
.MI
);
1082 SmallVectorImpl
<BasicBlockInfo
> &BBInfo
= BBUtils
->getBBInfo();
1083 const BasicBlockInfo
&BBI
= BBInfo
[U
.MI
->getParent()->getNumber()];
1084 unsigned KnownBits
= BBI
.internalKnownBits();
1086 // The value read from PC is offset from the actual instruction address.
1087 UserOffset
+= (isThumb
? 4 : 8);
1089 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1090 // Make sure U.getMaxDisp() returns a constrained range.
1091 U
.KnownAlignment
= (KnownBits
>= 2);
1093 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1094 // purposes of the displacement computation; compensate for that here.
1095 // For unknown alignments, getMaxDisp() constrains the range instead.
1096 if (isThumb
&& U
.KnownAlignment
)
1102 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1103 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1104 /// constant pool entry).
1105 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1106 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1107 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1108 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset
,
1109 unsigned TrialOffset
, unsigned MaxDisp
,
1110 bool NegativeOK
, bool IsSoImm
) {
1111 if (UserOffset
<= TrialOffset
) {
1112 // User before the Trial.
1113 if (TrialOffset
- UserOffset
<= MaxDisp
)
1115 // FIXME: Make use full range of soimm values.
1116 } else if (NegativeOK
) {
1117 if (UserOffset
- TrialOffset
<= MaxDisp
)
1119 // FIXME: Make use full range of soimm values.
1124 /// isWaterInRange - Returns true if a CPE placed after the specified
1125 /// Water (a basic block) will be in range for the specific MI.
1127 /// Compute how much the function will grow by inserting a CPE after Water.
1128 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset
,
1129 MachineBasicBlock
* Water
, CPUser
&U
,
1131 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1132 const Align CPEAlign
= getCPEAlign(U
.CPEMI
);
1133 const unsigned CPEOffset
= BBInfo
[Water
->getNumber()].postOffset(CPEAlign
);
1134 unsigned NextBlockOffset
;
1135 Align NextBlockAlignment
;
1136 MachineFunction::const_iterator NextBlock
= Water
->getIterator();
1137 if (++NextBlock
== MF
->end()) {
1138 NextBlockOffset
= BBInfo
[Water
->getNumber()].postOffset();
1140 NextBlockOffset
= BBInfo
[NextBlock
->getNumber()].Offset
;
1141 NextBlockAlignment
= NextBlock
->getAlignment();
1143 unsigned Size
= U
.CPEMI
->getOperand(2).getImm();
1144 unsigned CPEEnd
= CPEOffset
+ Size
;
1146 // The CPE may be able to hide in the alignment padding before the next
1147 // block. It may also cause more padding to be required if it is more aligned
1148 // that the next block.
1149 if (CPEEnd
> NextBlockOffset
) {
1150 Growth
= CPEEnd
- NextBlockOffset
;
1151 // Compute the padding that would go at the end of the CPE to align the next
1153 Growth
+= offsetToAlignment(CPEEnd
, NextBlockAlignment
);
1155 // If the CPE is to be inserted before the instruction, that will raise
1156 // the offset of the instruction. Also account for unknown alignment padding
1157 // in blocks between CPE and the user.
1158 if (CPEOffset
< UserOffset
)
1159 UserOffset
+= Growth
+ UnknownPadding(MF
->getAlignment(), Log2(CPEAlign
));
1161 // CPE fits in existing padding.
1164 return isOffsetInRange(UserOffset
, CPEOffset
, U
);
1167 /// isCPEntryInRange - Returns true if the distance between specific MI and
1168 /// specific ConstPool entry instruction can fit in MI's displacement field.
1169 bool ARMConstantIslands::isCPEntryInRange(MachineInstr
*MI
, unsigned UserOffset
,
1170 MachineInstr
*CPEMI
, unsigned MaxDisp
,
1171 bool NegOk
, bool DoDump
) {
1172 unsigned CPEOffset
= BBUtils
->getOffsetOf(CPEMI
);
1176 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1177 unsigned Block
= MI
->getParent()->getNumber();
1178 const BasicBlockInfo
&BBI
= BBInfo
[Block
];
1179 dbgs() << "User of CPE#" << CPEMI
->getOperand(0).getImm()
1180 << " max delta=" << MaxDisp
1181 << format(" insn address=%#x", UserOffset
) << " in "
1182 << printMBBReference(*MI
->getParent()) << ": "
1183 << format("%#x-%x\t", BBI
.Offset
, BBI
.postOffset()) << *MI
1184 << format("CPE address=%#x offset=%+d: ", CPEOffset
,
1185 int(CPEOffset
- UserOffset
));
1189 return isOffsetInRange(UserOffset
, CPEOffset
, MaxDisp
, NegOk
);
1193 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1194 /// unconditionally branches to its only successor.
1195 static bool BBIsJumpedOver(MachineBasicBlock
*MBB
) {
1196 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
1199 MachineBasicBlock
*Succ
= *MBB
->succ_begin();
1200 MachineBasicBlock
*Pred
= *MBB
->pred_begin();
1201 MachineInstr
*PredMI
= &Pred
->back();
1202 if (PredMI
->getOpcode() == ARM::B
|| PredMI
->getOpcode() == ARM::tB
1203 || PredMI
->getOpcode() == ARM::t2B
)
1204 return PredMI
->getOperand(0).getMBB() == Succ
;
1209 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1210 /// and instruction CPEMI, and decrement its refcount. If the refcount
1211 /// becomes 0 remove the entry and instruction. Returns true if we removed
1212 /// the entry, false if we didn't.
1213 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI
,
1214 MachineInstr
*CPEMI
) {
1215 // Find the old entry. Eliminate it if it is no longer used.
1216 CPEntry
*CPE
= findConstPoolEntry(CPI
, CPEMI
);
1217 assert(CPE
&& "Unexpected!");
1218 if (--CPE
->RefCount
== 0) {
1219 removeDeadCPEMI(CPEMI
);
1220 CPE
->CPEMI
= nullptr;
1227 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr
*CPEMI
) {
1228 if (CPEMI
->getOperand(1).isCPI())
1229 return CPEMI
->getOperand(1).getIndex();
1231 return JumpTableEntryIndices
[CPEMI
->getOperand(1).getIndex()];
1234 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1235 /// if not, see if an in-range clone of the CPE is in range, and if so,
1236 /// change the data structures so the user references the clone. Returns:
1237 /// 0 = no existing entry found
1238 /// 1 = entry found, and there were no code insertions or deletions
1239 /// 2 = entry found, and there were code insertions or deletions
1240 int ARMConstantIslands::findInRangeCPEntry(CPUser
& U
, unsigned UserOffset
) {
1241 MachineInstr
*UserMI
= U
.MI
;
1242 MachineInstr
*CPEMI
= U
.CPEMI
;
1244 // Check to see if the CPE is already in-range.
1245 if (isCPEntryInRange(UserMI
, UserOffset
, CPEMI
, U
.getMaxDisp(), U
.NegOk
,
1247 LLVM_DEBUG(dbgs() << "In range\n");
1251 // No. Look for previously created clones of the CPE that are in range.
1252 unsigned CPI
= getCombinedIndex(CPEMI
);
1253 std::vector
<CPEntry
> &CPEs
= CPEntries
[CPI
];
1254 for (CPEntry
&CPE
: CPEs
) {
1255 // We already tried this one
1256 if (CPE
.CPEMI
== CPEMI
)
1258 // Removing CPEs can leave empty entries, skip
1259 if (CPE
.CPEMI
== nullptr)
1261 if (isCPEntryInRange(UserMI
, UserOffset
, CPE
.CPEMI
, U
.getMaxDisp(),
1263 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI
<< " with CPE#" << CPE
.CPI
1265 // Point the CPUser node to the replacement
1266 U
.CPEMI
= CPE
.CPEMI
;
1267 // Change the CPI in the instruction operand to refer to the clone.
1268 for (MachineOperand
&MO
: UserMI
->operands())
1270 MO
.setIndex(CPE
.CPI
);
1273 // Adjust the refcount of the clone...
1275 // ...and the original. If we didn't remove the old entry, none of the
1276 // addresses changed, so we don't need another pass.
1277 return decrementCPEReferenceCount(CPI
, CPEMI
) ? 2 : 1;
1283 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1284 /// the specific unconditional branch instruction.
1285 static inline unsigned getUnconditionalBrDisp(int Opc
) {
1288 return ((1<<10)-1)*2;
1290 return ((1<<23)-1)*2;
1295 return ((1<<23)-1)*4;
1298 /// findAvailableWater - Look for an existing entry in the WaterList in which
1299 /// we can place the CPE referenced from U so it's within range of U's MI.
1300 /// Returns true if found, false if not. If it returns true, WaterIter
1301 /// is set to the WaterList entry. For Thumb, prefer water that will not
1302 /// introduce padding to water that will. To ensure that this pass
1303 /// terminates, the CPE location for a particular CPUser is only allowed to
1304 /// move to a lower address, so search backward from the end of the list and
1305 /// prefer the first water that is in range.
1306 bool ARMConstantIslands::findAvailableWater(CPUser
&U
, unsigned UserOffset
,
1307 water_iterator
&WaterIter
,
1309 if (WaterList
.empty())
1312 unsigned BestGrowth
= ~0u;
1313 // The nearest water without splitting the UserBB is right after it.
1314 // If the distance is still large (we have a big BB), then we need to split it
1315 // if we don't converge after certain iterations. This helps the following
1316 // situation to converge:
1321 // When a CP access is out of range, BB0 may be used as water. However,
1322 // inserting islands between BB0 and BB1 makes other accesses out of range.
1323 MachineBasicBlock
*UserBB
= U
.MI
->getParent();
1324 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1325 const Align CPEAlign
= getCPEAlign(U
.CPEMI
);
1326 unsigned MinNoSplitDisp
=
1327 BBInfo
[UserBB
->getNumber()].postOffset(CPEAlign
) - UserOffset
;
1328 if (CloserWater
&& MinNoSplitDisp
> U
.getMaxDisp() / 2)
1330 for (water_iterator IP
= std::prev(WaterList
.end()), B
= WaterList
.begin();;
1332 MachineBasicBlock
* WaterBB
= *IP
;
1333 // Check if water is in range and is either at a lower address than the
1334 // current "high water mark" or a new water block that was created since
1335 // the previous iteration by inserting an unconditional branch. In the
1336 // latter case, we want to allow resetting the high water mark back to
1337 // this new water since we haven't seen it before. Inserting branches
1338 // should be relatively uncommon and when it does happen, we want to be
1339 // sure to take advantage of it for all the CPEs near that block, so that
1340 // we don't insert more branches than necessary.
1341 // When CloserWater is true, we try to find the lowest address after (or
1342 // equal to) user MI's BB no matter of padding growth.
1344 if (isWaterInRange(UserOffset
, WaterBB
, U
, Growth
) &&
1345 (WaterBB
->getNumber() < U
.HighWaterMark
->getNumber() ||
1346 NewWaterList
.count(WaterBB
) || WaterBB
== U
.MI
->getParent()) &&
1347 Growth
< BestGrowth
) {
1348 // This is the least amount of required padding seen so far.
1349 BestGrowth
= Growth
;
1351 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB
)
1352 << " Growth=" << Growth
<< '\n');
1354 if (CloserWater
&& WaterBB
== U
.MI
->getParent())
1356 // Keep looking unless it is perfect and we're not looking for the lowest
1357 // possible address.
1358 if (!CloserWater
&& BestGrowth
== 0)
1364 return BestGrowth
!= ~0u;
1367 /// createNewWater - No existing WaterList entry will work for
1368 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1369 /// block is used if in range, and the conditional branch munged so control
1370 /// flow is correct. Otherwise the block is split to create a hole with an
1371 /// unconditional branch around it. In either case NewMBB is set to a
1372 /// block following which the new island can be inserted (the WaterList
1373 /// is not adjusted).
1374 void ARMConstantIslands::createNewWater(unsigned CPUserIndex
,
1375 unsigned UserOffset
,
1376 MachineBasicBlock
*&NewMBB
) {
1377 CPUser
&U
= CPUsers
[CPUserIndex
];
1378 MachineInstr
*UserMI
= U
.MI
;
1379 MachineInstr
*CPEMI
= U
.CPEMI
;
1380 const Align CPEAlign
= getCPEAlign(CPEMI
);
1381 MachineBasicBlock
*UserMBB
= UserMI
->getParent();
1382 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1383 const BasicBlockInfo
&UserBBI
= BBInfo
[UserMBB
->getNumber()];
1385 // If the block does not end in an unconditional branch already, and if the
1386 // end of the block is within range, make new water there. (The addition
1387 // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1388 // Thumb2, 2 on Thumb1.
1389 if (BBHasFallthrough(UserMBB
)) {
1390 // Size of branch to insert.
1391 unsigned Delta
= isThumb1
? 2 : 4;
1392 // Compute the offset where the CPE will begin.
1393 unsigned CPEOffset
= UserBBI
.postOffset(CPEAlign
) + Delta
;
1395 if (isOffsetInRange(UserOffset
, CPEOffset
, U
)) {
1396 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB
)
1397 << format(", expected CPE offset %#x\n", CPEOffset
));
1398 NewMBB
= &*++UserMBB
->getIterator();
1399 // Add an unconditional branch from UserMBB to fallthrough block. Record
1400 // it for branch lengthening; this new branch will not get out of range,
1401 // but if the preceding conditional branch is out of range, the targets
1402 // will be exchanged, and the altered branch may be out of range, so the
1403 // machinery has to know about it.
1404 int UncondBr
= isThumb
? ((isThumb2
) ? ARM::t2B
: ARM::tB
) : ARM::B
;
1406 BuildMI(UserMBB
, DebugLoc(), TII
->get(UncondBr
)).addMBB(NewMBB
);
1408 BuildMI(UserMBB
, DebugLoc(), TII
->get(UncondBr
))
1410 .add(predOps(ARMCC::AL
));
1411 unsigned MaxDisp
= getUnconditionalBrDisp(UncondBr
);
1412 ImmBranches
.push_back(ImmBranch(&UserMBB
->back(),
1413 MaxDisp
, false, UncondBr
));
1414 BBUtils
->computeBlockSize(UserMBB
);
1415 BBUtils
->adjustBBOffsetsAfter(UserMBB
);
1420 // What a big block. Find a place within the block to split it. This is a
1421 // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1422 // entries are 4 bytes: if instruction I references island CPE, and
1423 // instruction I+1 references CPE', it will not work well to put CPE as far
1424 // forward as possible, since then CPE' cannot immediately follow it (that
1425 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1426 // need to create a new island. So, we make a first guess, then walk through
1427 // the instructions between the one currently being looked at and the
1428 // possible insertion point, and make sure any other instructions that
1429 // reference CPEs will be able to use the same island area; if not, we back
1430 // up the insertion point.
1432 // Try to split the block so it's fully aligned. Compute the latest split
1433 // point where we can add a 4-byte branch instruction, and then align to
1434 // Align which is the largest possible alignment in the function.
1435 const Align Align
= MF
->getAlignment();
1436 assert(Align
>= CPEAlign
&& "Over-aligned constant pool entry");
1437 unsigned KnownBits
= UserBBI
.internalKnownBits();
1438 unsigned UPad
= UnknownPadding(Align
, KnownBits
);
1439 unsigned BaseInsertOffset
= UserOffset
+ U
.getMaxDisp() - UPad
;
1440 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1443 // The 4 in the following is for the unconditional branch we'll be inserting
1444 // (allows for long branch on Thumb1). Alignment of the island is handled
1445 // inside isOffsetInRange.
1446 BaseInsertOffset
-= 4;
1448 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset
)
1449 << " la=" << Log2(Align
) << " kb=" << KnownBits
1450 << " up=" << UPad
<< '\n');
1452 // This could point off the end of the block if we've already got constant
1453 // pool entries following this block; only the last one is in the water list.
1454 // Back past any possible branches (allow for a conditional and a maximally
1455 // long unconditional).
1456 if (BaseInsertOffset
+ 8 >= UserBBI
.postOffset()) {
1457 // Ensure BaseInsertOffset is larger than the offset of the instruction
1458 // following UserMI so that the loop which searches for the split point
1459 // iterates at least once.
1461 std::max(UserBBI
.postOffset() - UPad
- 8,
1462 UserOffset
+ TII
->getInstSizeInBytes(*UserMI
) + 1);
1463 // If the CP is referenced(ie, UserOffset) is in first four instructions
1464 // after IT, this recalculated BaseInsertOffset could be in the middle of
1465 // an IT block. If it is, change the BaseInsertOffset to just after the
1466 // IT block. This still make the CP Entry is in range becuase of the
1467 // following reasons.
1468 // 1. The initial BaseseInsertOffset calculated is (UserOffset +
1469 // U.getMaxDisp() - UPad).
1470 // 2. An IT block is only at most 4 instructions plus the "it" itself (18
1472 // 3. All the relevant instructions support much larger Maximum
1474 MachineBasicBlock::iterator I
= UserMI
;
1477 for (unsigned Offset
= UserOffset
+ TII
->getInstSizeInBytes(*UserMI
);
1478 I
->getOpcode() != ARM::t2IT
&&
1479 getITInstrPredicate(*I
, PredReg
) != ARMCC::AL
;
1480 Offset
+= TII
->getInstSizeInBytes(*I
), I
= std::next(I
)) {
1482 std::max(BaseInsertOffset
, Offset
+ TII
->getInstSizeInBytes(*I
) + 1);
1483 assert(I
!= UserMBB
->end() && "Fell off end of block");
1485 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset
));
1487 unsigned EndInsertOffset
= BaseInsertOffset
+ 4 + UPad
+
1488 CPEMI
->getOperand(2).getImm();
1489 MachineBasicBlock::iterator MI
= UserMI
;
1491 unsigned CPUIndex
= CPUserIndex
+1;
1492 unsigned NumCPUsers
= CPUsers
.size();
1493 MachineInstr
*LastIT
= nullptr;
1494 for (unsigned Offset
= UserOffset
+ TII
->getInstSizeInBytes(*UserMI
);
1495 Offset
< BaseInsertOffset
;
1496 Offset
+= TII
->getInstSizeInBytes(*MI
), MI
= std::next(MI
)) {
1497 assert(MI
!= UserMBB
->end() && "Fell off end of block");
1498 if (CPUIndex
< NumCPUsers
&& CPUsers
[CPUIndex
].MI
== &*MI
) {
1499 CPUser
&U
= CPUsers
[CPUIndex
];
1500 if (!isOffsetInRange(Offset
, EndInsertOffset
, U
)) {
1501 // Shift intertion point by one unit of alignment so it is within reach.
1502 BaseInsertOffset
-= Align
.value();
1503 EndInsertOffset
-= Align
.value();
1505 // This is overly conservative, as we don't account for CPEMIs being
1506 // reused within the block, but it doesn't matter much. Also assume CPEs
1507 // are added in order with alignment padding. We may eventually be able
1508 // to pack the aligned CPEs better.
1509 EndInsertOffset
+= U
.CPEMI
->getOperand(2).getImm();
1513 // Remember the last IT instruction.
1514 if (MI
->getOpcode() == ARM::t2IT
)
1520 // Avoid splitting an IT block.
1523 ARMCC::CondCodes CC
= getITInstrPredicate(*MI
, PredReg
);
1524 if (CC
!= ARMCC::AL
)
1528 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1529 // On Windows, this instruction pair is covered by one single
1530 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1531 // constant island is injected inbetween them, the relocation will clobber
1532 // the instruction and fail to update the MOVT instruction.
1533 // (These instructions are bundled up until right before the ConstantIslands
1535 if (STI
->isTargetWindows() && isThumb
&& MI
->getOpcode() == ARM::t2MOVTi16
&&
1536 (MI
->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK
) ==
1539 assert(MI
->getOpcode() == ARM::t2MOVi16
&&
1540 (MI
->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK
) ==
1544 // We really must not split an IT block.
1547 assert(!isThumb
|| getITInstrPredicate(*MI
, PredReg
) == ARMCC::AL
);
1549 NewMBB
= splitBlockBeforeInstr(&*MI
);
1552 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1553 /// is out-of-range. If so, pick up the constant pool value and move it some
1554 /// place in-range. Return true if we changed any addresses (thus must run
1555 /// another pass of branch lengthening), false otherwise.
1556 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex
,
1558 CPUser
&U
= CPUsers
[CPUserIndex
];
1559 MachineInstr
*UserMI
= U
.MI
;
1560 MachineInstr
*CPEMI
= U
.CPEMI
;
1561 unsigned CPI
= getCombinedIndex(CPEMI
);
1562 unsigned Size
= CPEMI
->getOperand(2).getImm();
1563 // Compute this only once, it's expensive.
1564 unsigned UserOffset
= getUserOffset(U
);
1566 // See if the current entry is within range, or there is a clone of it
1568 int result
= findInRangeCPEntry(U
, UserOffset
);
1569 if (result
==1) return false;
1570 else if (result
==2) return true;
1572 // No existing clone of this CPE is within range.
1573 // We will be generating a new clone. Get a UID for it.
1574 unsigned ID
= AFI
->createPICLabelUId();
1576 // Look for water where we can place this CPE.
1577 MachineBasicBlock
*NewIsland
= MF
->CreateMachineBasicBlock();
1578 MachineBasicBlock
*NewMBB
;
1580 if (findAvailableWater(U
, UserOffset
, IP
, CloserWater
)) {
1581 LLVM_DEBUG(dbgs() << "Found water in range\n");
1582 MachineBasicBlock
*WaterBB
= *IP
;
1584 // If the original WaterList entry was "new water" on this iteration,
1585 // propagate that to the new island. This is just keeping NewWaterList
1586 // updated to match the WaterList, which will be updated below.
1587 if (NewWaterList
.erase(WaterBB
))
1588 NewWaterList
.insert(NewIsland
);
1590 // The new CPE goes before the following block (NewMBB).
1591 NewMBB
= &*++WaterBB
->getIterator();
1594 LLVM_DEBUG(dbgs() << "No water found\n");
1595 createNewWater(CPUserIndex
, UserOffset
, NewMBB
);
1597 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1598 // called while handling branches so that the water will be seen on the
1599 // next iteration for constant pools, but in this context, we don't want
1600 // it. Check for this so it will be removed from the WaterList.
1601 // Also remove any entry from NewWaterList.
1602 MachineBasicBlock
*WaterBB
= &*--NewMBB
->getIterator();
1603 IP
= find(WaterList
, WaterBB
);
1604 if (IP
!= WaterList
.end())
1605 NewWaterList
.erase(WaterBB
);
1607 // We are adding new water. Update NewWaterList.
1608 NewWaterList
.insert(NewIsland
);
1610 // Always align the new block because CP entries can be smaller than 4
1611 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1612 // be an already aligned constant pool block.
1613 const Align Alignment
= isThumb
? Align(2) : Align(4);
1614 if (NewMBB
->getAlignment() < Alignment
)
1615 NewMBB
->setAlignment(Alignment
);
1617 // Remove the original WaterList entry; we want subsequent insertions in
1618 // this vicinity to go after the one we're about to insert. This
1619 // considerably reduces the number of times we have to move the same CPE
1620 // more than once and is also important to ensure the algorithm terminates.
1621 if (IP
!= WaterList
.end())
1622 WaterList
.erase(IP
);
1624 // Okay, we know we can put an island before NewMBB now, do it!
1625 MF
->insert(NewMBB
->getIterator(), NewIsland
);
1627 // Update internal data structures to account for the newly inserted MBB.
1628 updateForInsertedWaterBlock(NewIsland
);
1630 // Now that we have an island to add the CPE to, clone the original CPE and
1631 // add it to the island.
1632 U
.HighWaterMark
= NewIsland
;
1633 U
.CPEMI
= BuildMI(NewIsland
, DebugLoc(), CPEMI
->getDesc())
1635 .add(CPEMI
->getOperand(1))
1637 CPEntries
[CPI
].push_back(CPEntry(U
.CPEMI
, ID
, 1));
1640 // Decrement the old entry, and remove it if refcount becomes 0.
1641 decrementCPEReferenceCount(CPI
, CPEMI
);
1643 // Mark the basic block as aligned as required by the const-pool entry.
1644 NewIsland
->setAlignment(getCPEAlign(U
.CPEMI
));
1646 // Increase the size of the island block to account for the new entry.
1647 BBUtils
->adjustBBSize(NewIsland
, Size
);
1648 BBUtils
->adjustBBOffsetsAfter(&*--NewIsland
->getIterator());
1650 // Finally, change the CPI in the instruction operand to be ID.
1651 for (MachineOperand
&MO
: UserMI
->operands())
1658 dbgs() << " Moved CPE to #" << ID
<< " CPI=" << CPI
1659 << format(" offset=%#x\n",
1660 BBUtils
->getBBInfo()[NewIsland
->getNumber()].Offset
));
1665 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1666 /// sizes and offsets of impacted basic blocks.
1667 void ARMConstantIslands::removeDeadCPEMI(MachineInstr
*CPEMI
) {
1668 MachineBasicBlock
*CPEBB
= CPEMI
->getParent();
1669 unsigned Size
= CPEMI
->getOperand(2).getImm();
1670 CPEMI
->eraseFromParent();
1671 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1672 BBUtils
->adjustBBSize(CPEBB
, -Size
);
1673 // All succeeding offsets have the current size value added in, fix this.
1674 if (CPEBB
->empty()) {
1675 BBInfo
[CPEBB
->getNumber()].Size
= 0;
1677 // This block no longer needs to be aligned.
1678 CPEBB
->setAlignment(Align(1));
1680 // Entries are sorted by descending alignment, so realign from the front.
1681 CPEBB
->setAlignment(getCPEAlign(&*CPEBB
->begin()));
1684 BBUtils
->adjustBBOffsetsAfter(CPEBB
);
1685 // An island has only one predecessor BB and one successor BB. Check if
1686 // this BB's predecessor jumps directly to this BB's successor. This
1687 // shouldn't happen currently.
1688 assert(!BBIsJumpedOver(CPEBB
) && "How did this happen?");
1689 // FIXME: remove the empty blocks after all the work is done?
1692 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1694 bool ARMConstantIslands::removeUnusedCPEntries() {
1695 unsigned MadeChange
= false;
1696 for (std::vector
<CPEntry
> &CPEs
: CPEntries
) {
1697 for (CPEntry
&CPE
: CPEs
) {
1698 if (CPE
.RefCount
== 0 && CPE
.CPEMI
) {
1699 removeDeadCPEMI(CPE
.CPEMI
);
1700 CPE
.CPEMI
= nullptr;
1709 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1710 /// away to fit in its displacement field.
1711 bool ARMConstantIslands::fixupImmediateBr(ImmBranch
&Br
) {
1712 MachineInstr
*MI
= Br
.MI
;
1713 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1715 // Check to see if the DestBB is already in-range.
1716 if (BBUtils
->isBBInRange(MI
, DestBB
, Br
.MaxDisp
))
1720 return fixupUnconditionalBr(Br
);
1721 return fixupConditionalBr(Br
);
1724 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1725 /// too far away to fit in its displacement field. If the LR register has been
1726 /// spilled in the epilogue, then we can use BL to implement a far jump.
1727 /// Otherwise, add an intermediate branch instruction to a branch.
1729 ARMConstantIslands::fixupUnconditionalBr(ImmBranch
&Br
) {
1730 MachineInstr
*MI
= Br
.MI
;
1731 MachineBasicBlock
*MBB
= MI
->getParent();
1733 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1735 if (!AFI
->isLRSpilled())
1736 report_fatal_error("underestimated function size");
1738 // Use BL to implement far jump.
1739 Br
.MaxDisp
= (1 << 21) * 2;
1740 MI
->setDesc(TII
->get(ARM::tBfar
));
1741 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1742 BBInfo
[MBB
->getNumber()].Size
+= 2;
1743 BBUtils
->adjustBBOffsetsAfter(MBB
);
1746 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI
);
1751 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1752 /// far away to fit in its displacement field. It is converted to an inverse
1753 /// conditional branch + an unconditional branch to the destination.
1755 ARMConstantIslands::fixupConditionalBr(ImmBranch
&Br
) {
1756 MachineInstr
*MI
= Br
.MI
;
1757 MachineBasicBlock
*DestBB
= MI
->getOperand(0).getMBB();
1759 // Add an unconditional branch to the destination and invert the branch
1760 // condition to jump over it:
1766 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)MI
->getOperand(1).getImm();
1767 CC
= ARMCC::getOppositeCondition(CC
);
1768 Register CCReg
= MI
->getOperand(2).getReg();
1770 // If the branch is at the end of its MBB and that has a fall-through block,
1771 // direct the updated conditional branch to the fall-through block. Otherwise,
1772 // split the MBB before the next instruction.
1773 MachineBasicBlock
*MBB
= MI
->getParent();
1774 MachineInstr
*BMI
= &MBB
->back();
1775 bool NeedSplit
= (BMI
!= MI
) || !BBHasFallthrough(MBB
);
1779 if (std::next(MachineBasicBlock::iterator(MI
)) == std::prev(MBB
->end()) &&
1780 BMI
->getOpcode() == Br
.UncondBr
) {
1781 // Last MI in the BB is an unconditional branch. Can we simply invert the
1782 // condition and swap destinations:
1788 MachineBasicBlock
*NewDest
= BMI
->getOperand(0).getMBB();
1789 if (BBUtils
->isBBInRange(MI
, NewDest
, Br
.MaxDisp
)) {
1791 dbgs() << " Invert Bcc condition and swap its destination with "
1793 BMI
->getOperand(0).setMBB(DestBB
);
1794 MI
->getOperand(0).setMBB(NewDest
);
1795 MI
->getOperand(1).setImm(CC
);
1802 splitBlockBeforeInstr(MI
);
1803 // No need for the branch to the next block. We're adding an unconditional
1804 // branch to the destination.
1805 int delta
= TII
->getInstSizeInBytes(MBB
->back());
1806 BBUtils
->adjustBBSize(MBB
, -delta
);
1807 MBB
->back().eraseFromParent();
1809 // The conditional successor will be swapped between the BBs after this, so
1811 MBB
->addSuccessor(DestBB
);
1812 std::next(MBB
->getIterator())->removeSuccessor(DestBB
);
1814 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1816 MachineBasicBlock
*NextBB
= &*++MBB
->getIterator();
1818 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB
)
1819 << " also invert condition and change dest. to "
1820 << printMBBReference(*NextBB
) << "\n");
1822 // Insert a new conditional branch and a new unconditional branch.
1823 // Also update the ImmBranch as well as adding a new entry for the new branch.
1824 BuildMI(MBB
, DebugLoc(), TII
->get(MI
->getOpcode()))
1825 .addMBB(NextBB
).addImm(CC
).addReg(CCReg
);
1826 Br
.MI
= &MBB
->back();
1827 BBUtils
->adjustBBSize(MBB
, TII
->getInstSizeInBytes(MBB
->back()));
1829 BuildMI(MBB
, DebugLoc(), TII
->get(Br
.UncondBr
))
1831 .add(predOps(ARMCC::AL
));
1833 BuildMI(MBB
, DebugLoc(), TII
->get(Br
.UncondBr
)).addMBB(DestBB
);
1834 BBUtils
->adjustBBSize(MBB
, TII
->getInstSizeInBytes(MBB
->back()));
1835 unsigned MaxDisp
= getUnconditionalBrDisp(Br
.UncondBr
);
1836 ImmBranches
.push_back(ImmBranch(&MBB
->back(), MaxDisp
, false, Br
.UncondBr
));
1838 // Remove the old conditional branch. It may or may not still be in MBB.
1839 BBUtils
->adjustBBSize(MI
->getParent(), -TII
->getInstSizeInBytes(*MI
));
1840 MI
->eraseFromParent();
1841 BBUtils
->adjustBBOffsetsAfter(MBB
);
1845 bool ARMConstantIslands::optimizeThumb2Instructions() {
1846 bool MadeChange
= false;
1848 // Shrink ADR and LDR from constantpool.
1849 for (CPUser
&U
: CPUsers
) {
1850 unsigned Opcode
= U
.MI
->getOpcode();
1851 unsigned NewOpc
= 0;
1856 case ARM::t2LEApcrel
:
1857 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1858 NewOpc
= ARM::tLEApcrel
;
1864 if (isARMLowRegister(U
.MI
->getOperand(0).getReg())) {
1865 NewOpc
= ARM::tLDRpci
;
1875 unsigned UserOffset
= getUserOffset(U
);
1876 unsigned MaxOffs
= ((1 << Bits
) - 1) * Scale
;
1878 // Be conservative with inline asm.
1879 if (!U
.KnownAlignment
)
1882 // FIXME: Check if offset is multiple of scale if scale is not 4.
1883 if (isCPEntryInRange(U
.MI
, UserOffset
, U
.CPEMI
, MaxOffs
, false, true)) {
1884 LLVM_DEBUG(dbgs() << "Shrink: " << *U
.MI
);
1885 U
.MI
->setDesc(TII
->get(NewOpc
));
1886 MachineBasicBlock
*MBB
= U
.MI
->getParent();
1887 BBUtils
->adjustBBSize(MBB
, -2);
1888 BBUtils
->adjustBBOffsetsAfter(MBB
);
1898 bool ARMConstantIslands::optimizeThumb2Branches() {
1900 auto TryShrinkBranch
= [this](ImmBranch
&Br
) {
1901 unsigned Opcode
= Br
.MI
->getOpcode();
1902 unsigned NewOpc
= 0;
1919 unsigned MaxOffs
= ((1 << (Bits
-1))-1) * Scale
;
1920 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1921 if (BBUtils
->isBBInRange(Br
.MI
, DestBB
, MaxOffs
)) {
1922 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br
.MI
);
1923 Br
.MI
->setDesc(TII
->get(NewOpc
));
1924 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1925 BBUtils
->adjustBBSize(MBB
, -2);
1926 BBUtils
->adjustBBOffsetsAfter(MBB
);
1935 MachineInstr
* MI
= nullptr;
1936 unsigned NewOpc
= 0;
1939 auto FindCmpForCBZ
= [this](ImmBranch
&Br
, ImmCompare
&ImmCmp
,
1940 MachineBasicBlock
*DestBB
) {
1941 ImmCmp
.MI
= nullptr;
1944 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1945 // so this transformation is not safe.
1946 if (!Br
.MI
->killsRegister(ARM::CPSR
, /*TRI=*/nullptr))
1950 unsigned NewOpc
= 0;
1951 ARMCC::CondCodes Pred
= getInstrPredicate(*Br
.MI
, PredReg
);
1952 if (Pred
== ARMCC::EQ
)
1954 else if (Pred
== ARMCC::NE
)
1955 NewOpc
= ARM::tCBNZ
;
1959 // Check if the distance is within 126. Subtract starting offset by 2
1960 // because the cmp will be eliminated.
1961 unsigned BrOffset
= BBUtils
->getOffsetOf(Br
.MI
) + 4 - 2;
1962 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
1963 unsigned DestOffset
= BBInfo
[DestBB
->getNumber()].Offset
;
1964 if (BrOffset
>= DestOffset
|| (DestOffset
- BrOffset
) > 126)
1967 // Search backwards to find a tCMPi8
1968 auto *TRI
= STI
->getRegisterInfo();
1969 MachineInstr
*CmpMI
= findCMPToFoldIntoCBZ(Br
.MI
, TRI
);
1970 if (!CmpMI
|| CmpMI
->getOpcode() != ARM::tCMPi8
)
1974 ImmCmp
.NewOpc
= NewOpc
;
1978 auto TryConvertToLE
= [this](ImmBranch
&Br
, ImmCompare
&Cmp
) {
1979 if (Br
.MI
->getOpcode() != ARM::t2Bcc
|| !STI
->hasLOB() ||
1983 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
1984 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
1985 if (BBUtils
->getOffsetOf(MBB
) < BBUtils
->getOffsetOf(DestBB
) ||
1986 !BBUtils
->isBBInRange(Br
.MI
, DestBB
, 4094))
1989 if (!DT
->dominates(DestBB
, MBB
))
1992 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1993 // target of Br. So now we need to reverse the condition.
1994 Cmp
.NewOpc
= Cmp
.NewOpc
== ARM::tCBZ
? ARM::tCBNZ
: ARM::tCBZ
;
1996 MachineInstrBuilder MIB
= BuildMI(*MBB
, Br
.MI
, Br
.MI
->getDebugLoc(),
1997 TII
->get(ARM::t2LE
));
1998 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
1999 MIB
.add(Br
.MI
->getOperand(0));
2000 Br
.MI
->eraseFromParent();
2006 bool MadeChange
= false;
2008 // The order in which branches appear in ImmBranches is approximately their
2009 // order within the function body. By visiting later branches first, we reduce
2010 // the distance between earlier forward branches and their targets, making it
2011 // more likely that the cbn?z optimization, which can only apply to forward
2012 // branches, will succeed.
2013 for (ImmBranch
&Br
: reverse(ImmBranches
)) {
2014 MachineBasicBlock
*DestBB
= Br
.MI
->getOperand(0).getMBB();
2015 MachineBasicBlock
*MBB
= Br
.MI
->getParent();
2016 MachineBasicBlock
*ExitBB
= &MBB
->back() == Br
.MI
?
2017 MBB
->getFallThrough() :
2018 MBB
->back().getOperand(0).getMBB();
2021 if (FindCmpForCBZ(Br
, Cmp
, ExitBB
) && TryConvertToLE(Br
, Cmp
)) {
2025 FindCmpForCBZ(Br
, Cmp
, DestBB
);
2026 MadeChange
|= TryShrinkBranch(Br
);
2029 unsigned Opcode
= Br
.MI
->getOpcode();
2030 if ((Opcode
!= ARM::tBcc
&& Opcode
!= ARM::t2LE
) || !Cmp
.NewOpc
)
2033 Register Reg
= Cmp
.MI
->getOperand(0).getReg();
2035 // Check for Kill flags on Reg. If they are present remove them and set kill
2037 auto *TRI
= STI
->getRegisterInfo();
2038 MachineBasicBlock::iterator KillMI
= Br
.MI
;
2039 bool RegKilled
= false;
2042 if (KillMI
->killsRegister(Reg
, TRI
)) {
2043 KillMI
->clearRegisterKills(Reg
, TRI
);
2047 } while (KillMI
!= Cmp
.MI
);
2049 // Create the new CBZ/CBNZ
2050 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp
.MI
<< " and: " << *Br
.MI
);
2051 MachineInstr
*NewBR
=
2052 BuildMI(*MBB
, Br
.MI
, Br
.MI
->getDebugLoc(), TII
->get(Cmp
.NewOpc
))
2053 .addReg(Reg
, getKillRegState(RegKilled
) |
2054 getRegState(Cmp
.MI
->getOperand(0)))
2055 .addMBB(DestBB
, Br
.MI
->getOperand(0).getTargetFlags());
2057 Cmp
.MI
->eraseFromParent();
2059 if (Br
.MI
->getOpcode() == ARM::tBcc
) {
2060 Br
.MI
->eraseFromParent();
2062 BBUtils
->adjustBBSize(MBB
, -2);
2063 } else if (MBB
->back().getOpcode() != ARM::t2LE
) {
2064 // An LE has been generated, but it's not the terminator - that is an
2065 // unconditional branch. However, the logic has now been reversed with the
2066 // CBN?Z being the conditional branch and the LE being the unconditional
2067 // branch. So this means we can remove the redundant unconditional branch
2068 // at the end of the block.
2069 MachineInstr
*LastMI
= &MBB
->back();
2070 BBUtils
->adjustBBSize(MBB
, -LastMI
->getDesc().getSize());
2071 LastMI
->eraseFromParent();
2073 BBUtils
->adjustBBOffsetsAfter(MBB
);
2081 static bool isSimpleIndexCalc(MachineInstr
&I
, unsigned EntryReg
,
2083 if (I
.getOpcode() != ARM::t2ADDrs
)
2086 if (I
.getOperand(0).getReg() != EntryReg
)
2089 if (I
.getOperand(1).getReg() != BaseReg
)
2092 // FIXME: what about CC and IdxReg?
2096 /// While trying to form a TBB/TBH instruction, we may (if the table
2097 /// doesn't immediately follow the BR_JT) need access to the start of the
2098 /// jump-table. We know one instruction that produces such a register; this
2099 /// function works out whether that definition can be preserved to the BR_JT,
2100 /// possibly by removing an intervening addition (which is usually needed to
2101 /// calculate the actual entry to jump to).
2102 bool ARMConstantIslands::preserveBaseRegister(MachineInstr
*JumpMI
,
2103 MachineInstr
*LEAMI
,
2106 bool &BaseRegKill
) {
2107 if (JumpMI
->getParent() != LEAMI
->getParent())
2110 // Now we hope that we have at least these instructions in the basic block:
2111 // BaseReg = t2LEA ...
2113 // EntryReg = t2ADDrs BaseReg, ...
2117 // We have to be very conservative about what we recognise here though. The
2118 // main perturbing factors to watch out for are:
2119 // + Spills at any point in the chain: not direct problems but we would
2120 // expect a blocking Def of the spilled register so in practice what we
2121 // can do is limited.
2122 // + EntryReg == BaseReg: this is the one situation we should allow a Def
2123 // of BaseReg, but only if the t2ADDrs can be removed.
2124 // + Some instruction other than t2ADDrs computing the entry. Not seen in
2125 // the wild, but we should be careful.
2126 Register EntryReg
= JumpMI
->getOperand(0).getReg();
2127 Register BaseReg
= LEAMI
->getOperand(0).getReg();
2129 CanDeleteLEA
= true;
2130 BaseRegKill
= false;
2131 MachineInstr
*RemovableAdd
= nullptr;
2132 MachineBasicBlock::iterator
I(LEAMI
);
2133 for (++I
; &*I
!= JumpMI
; ++I
) {
2134 if (isSimpleIndexCalc(*I
, EntryReg
, BaseReg
)) {
2139 for (const MachineOperand
&MO
: I
->operands()) {
2140 if (!MO
.isReg() || !MO
.getReg())
2142 if (MO
.isDef() && MO
.getReg() == BaseReg
)
2144 if (MO
.isUse() && MO
.getReg() == BaseReg
) {
2145 BaseRegKill
= BaseRegKill
|| MO
.isKill();
2146 CanDeleteLEA
= false;
2154 // Check the add really is removable, and that nothing else in the block
2155 // clobbers BaseReg.
2156 for (++I
; &*I
!= JumpMI
; ++I
) {
2157 for (const MachineOperand
&MO
: I
->operands()) {
2158 if (!MO
.isReg() || !MO
.getReg())
2160 if (MO
.isDef() && MO
.getReg() == BaseReg
)
2162 if (MO
.isUse() && MO
.getReg() == EntryReg
)
2163 RemovableAdd
= nullptr;
2168 RemovableAdd
->eraseFromParent();
2169 DeadSize
+= isThumb2
? 4 : 2;
2170 } else if (BaseReg
== EntryReg
) {
2171 // The add wasn't removable, but clobbered the base for the TBB. So we can't
2176 // We reached the end of the block without seeing another definition of
2177 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2178 // used in the TBB/TBH if necessary.
2182 /// Returns whether CPEMI is the first instruction in the block
2183 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2184 /// we can switch the first register to PC and usually remove the address
2185 /// calculation that preceded it.
2186 static bool jumpTableFollowsTB(MachineInstr
*JTMI
, MachineInstr
*CPEMI
) {
2187 MachineFunction::iterator MBB
= JTMI
->getParent()->getIterator();
2188 MachineFunction
*MF
= MBB
->getParent();
2191 return MBB
!= MF
->end() && !MBB
->empty() && &*MBB
->begin() == CPEMI
;
2194 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr
*LEAMI
,
2195 MachineInstr
*JumpMI
,
2196 unsigned &DeadSize
) {
2197 // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2198 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2199 // and is not clobbered / used.
2200 MachineInstr
*RemovableAdd
= nullptr;
2201 Register EntryReg
= JumpMI
->getOperand(0).getReg();
2203 // Find the last ADD to set EntryReg
2204 MachineBasicBlock::iterator
I(LEAMI
);
2205 for (++I
; &*I
!= JumpMI
; ++I
) {
2206 if (I
->getOpcode() == ARM::t2ADDrs
&& I
->getOperand(0).getReg() == EntryReg
)
2213 // Ensure EntryReg is not clobbered or used.
2214 MachineBasicBlock::iterator
J(RemovableAdd
);
2215 for (++J
; &*J
!= JumpMI
; ++J
) {
2216 for (const MachineOperand
&MO
: J
->operands()) {
2217 if (!MO
.isReg() || !MO
.getReg())
2219 if (MO
.isDef() && MO
.getReg() == EntryReg
)
2221 if (MO
.isUse() && MO
.getReg() == EntryReg
)
2226 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd
);
2227 RemovableAdd
->eraseFromParent();
2231 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2232 /// jumptables when it's possible.
2233 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2234 bool MadeChange
= false;
2236 // FIXME: After the tables are shrunk, can we get rid some of the
2237 // constantpool tables?
2238 MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
2239 if (!MJTI
) return false;
2241 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
2242 for (MachineInstr
*MI
: T2JumpTables
) {
2243 const MCInstrDesc
&MCID
= MI
->getDesc();
2244 unsigned NumOps
= MCID
.getNumOperands();
2245 unsigned JTOpIdx
= NumOps
- (MI
->isPredicable() ? 2 : 1);
2246 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
2247 unsigned JTI
= JTOP
.getIndex();
2248 assert(JTI
< JT
.size());
2251 bool HalfWordOk
= true;
2252 unsigned JTOffset
= BBUtils
->getOffsetOf(MI
) + 4;
2253 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
2254 BBInfoVector
&BBInfo
= BBUtils
->getBBInfo();
2255 for (MachineBasicBlock
*MBB
: JTBBs
) {
2256 unsigned DstOffset
= BBInfo
[MBB
->getNumber()].Offset
;
2257 // Negative offset is not ok. FIXME: We should change BB layout to make
2258 // sure all the branches are forward.
2259 if (ByteOk
&& (DstOffset
- JTOffset
) > ((1<<8)-1)*2)
2261 unsigned TBHLimit
= ((1<<16)-1)*2;
2262 if (HalfWordOk
&& (DstOffset
- JTOffset
) > TBHLimit
)
2264 if (!ByteOk
&& !HalfWordOk
)
2268 if (!ByteOk
&& !HalfWordOk
)
2271 CPUser
&User
= CPUsers
[JumpTableUserIndices
[JTI
]];
2272 MachineBasicBlock
*MBB
= MI
->getParent();
2273 if (!MI
->getOperand(0).isKill()) // FIXME: needed now?
2276 unsigned DeadSize
= 0;
2277 bool CanDeleteLEA
= false;
2278 bool BaseRegKill
= false;
2280 unsigned IdxReg
= ~0U;
2281 bool IdxRegKill
= true;
2283 IdxReg
= MI
->getOperand(1).getReg();
2284 IdxRegKill
= MI
->getOperand(1).isKill();
2286 bool PreservedBaseReg
=
2287 preserveBaseRegister(MI
, User
.MI
, DeadSize
, CanDeleteLEA
, BaseRegKill
);
2288 if (!jumpTableFollowsTB(MI
, User
.CPEMI
) && !PreservedBaseReg
)
2291 // We're in thumb-1 mode, so we must have something like:
2292 // %idx = tLSLri %idx, 2
2293 // %base = tLEApcrelJT
2294 // %t = tLDRr %base, %idx
2295 Register BaseReg
= User
.MI
->getOperand(0).getReg();
2297 MachineBasicBlock
*UserMBB
= User
.MI
->getParent();
2298 MachineBasicBlock::iterator Shift
= User
.MI
->getIterator();
2299 if (Shift
== UserMBB
->begin())
2302 Shift
= prev_nodbg(Shift
, UserMBB
->begin());
2303 if (Shift
->getOpcode() != ARM::tLSLri
||
2304 Shift
->getOperand(3).getImm() != 2 ||
2305 !Shift
->getOperand(2).isKill())
2307 IdxReg
= Shift
->getOperand(2).getReg();
2308 Register ShiftedIdxReg
= Shift
->getOperand(0).getReg();
2310 // It's important that IdxReg is live until the actual TBB/TBH. Most of
2311 // the range is checked later, but the LEA might still clobber it and not
2312 // actually get removed.
2313 if (BaseReg
== IdxReg
&& !jumpTableFollowsTB(MI
, User
.CPEMI
))
2316 MachineInstr
*Load
= User
.MI
->getNextNode();
2317 if (Load
->getOpcode() != ARM::tLDRr
)
2319 if (Load
->getOperand(1).getReg() != BaseReg
||
2320 Load
->getOperand(2).getReg() != ShiftedIdxReg
||
2321 !Load
->getOperand(2).isKill())
2324 // If we're in PIC mode, there should be another ADD following.
2325 auto *TRI
= STI
->getRegisterInfo();
2327 // %base cannot be redefined after the load as it will appear before
2332 if (registerDefinedBetween(BaseReg
, Load
->getNextNode(), MBB
->end(), TRI
))
2335 if (isPositionIndependentOrROPI
) {
2336 MachineInstr
*Add
= Load
->getNextNode();
2337 if (Add
->getOpcode() != ARM::tADDrr
||
2338 Add
->getOperand(2).getReg() != BaseReg
||
2339 Add
->getOperand(3).getReg() != Load
->getOperand(0).getReg() ||
2340 !Add
->getOperand(3).isKill())
2342 if (Add
->getOperand(0).getReg() != MI
->getOperand(0).getReg())
2344 if (registerDefinedBetween(IdxReg
, Add
->getNextNode(), MI
, TRI
))
2345 // IdxReg gets redefined in the middle of the sequence.
2347 Add
->eraseFromParent();
2350 if (Load
->getOperand(0).getReg() != MI
->getOperand(0).getReg())
2352 if (registerDefinedBetween(IdxReg
, Load
->getNextNode(), MI
, TRI
))
2353 // IdxReg gets redefined in the middle of the sequence.
2357 // Now safe to delete the load and lsl. The LEA will be removed later.
2358 CanDeleteLEA
= true;
2359 Shift
->eraseFromParent();
2360 Load
->eraseFromParent();
2364 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI
);
2365 MachineInstr
*CPEMI
= User
.CPEMI
;
2366 unsigned Opc
= ByteOk
? ARM::t2TBB_JT
: ARM::t2TBH_JT
;
2368 Opc
= ByteOk
? ARM::tTBB_JT
: ARM::tTBH_JT
;
2370 MachineBasicBlock::iterator MI_JT
= MI
;
2371 MachineInstr
*NewJTMI
=
2372 BuildMI(*MBB
, MI_JT
, MI
->getDebugLoc(), TII
->get(Opc
))
2373 .addReg(User
.MI
->getOperand(0).getReg(),
2374 getKillRegState(BaseRegKill
))
2375 .addReg(IdxReg
, getKillRegState(IdxRegKill
))
2376 .addJumpTableIndex(JTI
, JTOP
.getTargetFlags())
2377 .addImm(CPEMI
->getOperand(0).getImm());
2378 LLVM_DEBUG(dbgs() << printMBBReference(*MBB
) << ": " << *NewJTMI
);
2380 unsigned JTOpc
= ByteOk
? ARM::JUMPTABLE_TBB
: ARM::JUMPTABLE_TBH
;
2381 CPEMI
->setDesc(TII
->get(JTOpc
));
2383 if (jumpTableFollowsTB(MI
, User
.CPEMI
)) {
2384 NewJTMI
->getOperand(0).setReg(ARM::PC
);
2385 NewJTMI
->getOperand(0).setIsKill(false);
2389 RemoveDeadAddBetweenLEAAndJT(User
.MI
, MI
, DeadSize
);
2391 User
.MI
->eraseFromParent();
2392 DeadSize
+= isThumb2
? 4 : 2;
2394 // The LEA was eliminated, the TBB instruction becomes the only new user
2395 // of the jump table.
2399 User
.IsSoImm
= false;
2400 User
.KnownAlignment
= false;
2402 // The LEA couldn't be eliminated, so we must add another CPUser to
2403 // record the TBB or TBH use.
2404 int CPEntryIdx
= JumpTableEntryIndices
[JTI
];
2405 auto &CPEs
= CPEntries
[CPEntryIdx
];
2407 find_if(CPEs
, [&](CPEntry
&E
) { return E
.CPEMI
== User
.CPEMI
; });
2409 CPUsers
.emplace_back(CPUser(NewJTMI
, User
.CPEMI
, 4, false, false));
2413 unsigned NewSize
= TII
->getInstSizeInBytes(*NewJTMI
);
2414 unsigned OrigSize
= TII
->getInstSizeInBytes(*MI
);
2415 MI
->eraseFromParent();
2417 int Delta
= OrigSize
- NewSize
+ DeadSize
;
2418 BBInfo
[MBB
->getNumber()].Size
-= Delta
;
2419 BBUtils
->adjustBBOffsetsAfter(MBB
);
2428 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2429 /// jump tables always branch forwards, since that's what tbb and tbh need.
2430 bool ARMConstantIslands::reorderThumb2JumpTables() {
2431 bool MadeChange
= false;
2433 MachineJumpTableInfo
*MJTI
= MF
->getJumpTableInfo();
2434 if (!MJTI
) return false;
2436 const std::vector
<MachineJumpTableEntry
> &JT
= MJTI
->getJumpTables();
2437 for (MachineInstr
*MI
: T2JumpTables
) {
2438 const MCInstrDesc
&MCID
= MI
->getDesc();
2439 unsigned NumOps
= MCID
.getNumOperands();
2440 unsigned JTOpIdx
= NumOps
- (MI
->isPredicable() ? 2 : 1);
2441 MachineOperand JTOP
= MI
->getOperand(JTOpIdx
);
2442 unsigned JTI
= JTOP
.getIndex();
2443 assert(JTI
< JT
.size());
2445 // We prefer if target blocks for the jump table come after the jump
2446 // instruction so we can use TB[BH]. Loop through the target blocks
2447 // and try to adjust them such that that's true.
2448 int JTNumber
= MI
->getParent()->getNumber();
2449 const std::vector
<MachineBasicBlock
*> &JTBBs
= JT
[JTI
].MBBs
;
2450 for (MachineBasicBlock
*MBB
: JTBBs
) {
2451 int DTNumber
= MBB
->getNumber();
2453 if (DTNumber
< JTNumber
) {
2454 // The destination precedes the switch. Try to move the block forward
2455 // so we have a positive offset.
2456 MachineBasicBlock
*NewBB
=
2457 adjustJTTargetBlockForward(JTI
, MBB
, MI
->getParent());
2459 MJTI
->ReplaceMBBInJumpTable(JTI
, MBB
, NewBB
);
2468 MachineBasicBlock
*ARMConstantIslands::adjustJTTargetBlockForward(
2469 unsigned JTI
, MachineBasicBlock
*BB
, MachineBasicBlock
*JTBB
) {
2470 // If the destination block is terminated by an unconditional branch,
2471 // try to move it; otherwise, create a new block following the jump
2472 // table that branches back to the actual target. This is a very simple
2473 // heuristic. FIXME: We can definitely improve it.
2474 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr;
2475 SmallVector
<MachineOperand
, 4> Cond
;
2476 SmallVector
<MachineOperand
, 4> CondPrior
;
2477 MachineFunction::iterator BBi
= BB
->getIterator();
2478 MachineFunction::iterator OldPrior
= std::prev(BBi
);
2479 MachineFunction::iterator OldNext
= std::next(BBi
);
2481 // If the block terminator isn't analyzable, don't try to move the block
2482 bool B
= TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
);
2484 // If the block ends in an unconditional branch, move it. The prior block
2485 // has to have an analyzable terminator for us to move this one. Be paranoid
2486 // and make sure we're not trying to move the entry block of the function.
2487 if (!B
&& Cond
.empty() && BB
!= &MF
->front() &&
2488 !TII
->analyzeBranch(*OldPrior
, TBB
, FBB
, CondPrior
)) {
2489 BB
->moveAfter(JTBB
);
2490 OldPrior
->updateTerminator(BB
);
2491 BB
->updateTerminator(OldNext
!= MF
->end() ? &*OldNext
: nullptr);
2492 // Update numbering to account for the block being moved.
2493 MF
->RenumberBlocks();
2494 DT
->updateBlockNumbers();
2499 // Create a new MBB for the code after the jump BB.
2500 MachineBasicBlock
*NewBB
=
2501 MF
->CreateMachineBasicBlock(JTBB
->getBasicBlock());
2502 MachineFunction::iterator MBBI
= ++JTBB
->getIterator();
2503 MF
->insert(MBBI
, NewBB
);
2505 // Copy live-in information to new block.
2506 for (const MachineBasicBlock::RegisterMaskPair
&RegMaskPair
: BB
->liveins())
2507 NewBB
->addLiveIn(RegMaskPair
);
2509 // Add an unconditional branch from NewBB to BB.
2510 // There doesn't seem to be meaningful DebugInfo available; this doesn't
2511 // correspond directly to anything in the source.
2513 BuildMI(NewBB
, DebugLoc(), TII
->get(ARM::t2B
))
2515 .add(predOps(ARMCC::AL
));
2517 BuildMI(NewBB
, DebugLoc(), TII
->get(ARM::tB
))
2519 .add(predOps(ARMCC::AL
));
2521 // Update internal data structures to account for the newly inserted MBB.
2522 MF
->RenumberBlocks(NewBB
);
2523 DT
->updateBlockNumbers();
2526 NewBB
->addSuccessor(BB
);
2527 JTBB
->replaceSuccessor(BB
, NewBB
);
2533 /// createARMConstantIslandPass - returns an instance of the constpool
2535 FunctionPass
*llvm::createARMConstantIslandPass() {
2536 return new ARMConstantIslands();
2539 INITIALIZE_PASS(ARMConstantIslands
, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME
,