AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / ARM / ARMFastISel.cpp
blob7156d9fac6f3293af63ec712b75be2eb3ed5cdc7
1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
13 //===----------------------------------------------------------------------===//
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetLowering.h"
45 #include "llvm/CodeGen/TargetOpcodes.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/ValueTypes.h"
48 #include "llvm/CodeGenTypes/MachineValueType.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalValue.h"
59 #include "llvm/IR/GlobalVariable.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/Type.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/MathExtras.h"
75 #include "llvm/Target/TargetMachine.h"
76 #include "llvm/Target/TargetOptions.h"
77 #include <cassert>
78 #include <cstdint>
79 #include <utility>
81 using namespace llvm;
83 namespace {
85 // All possible address modes, plus some.
86 struct Address {
87 enum {
88 RegBase,
89 FrameIndexBase
90 } BaseType = RegBase;
92 union {
93 unsigned Reg;
94 int FI;
95 } Base;
97 int Offset = 0;
99 // Innocuous defaults for our address.
100 Address() {
101 Base.Reg = 0;
105 class ARMFastISel final : public FastISel {
106 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
107 /// make the right decision when generating code for different targets.
108 const ARMSubtarget *Subtarget;
109 Module &M;
110 const TargetMachine &TM;
111 const TargetInstrInfo &TII;
112 const TargetLowering &TLI;
113 ARMFunctionInfo *AFI;
115 // Convenience variables to avoid some queries.
116 bool isThumb2;
117 LLVMContext *Context;
119 public:
120 explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
121 const TargetLibraryInfo *libInfo)
122 : FastISel(funcInfo, libInfo),
123 Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()),
124 M(const_cast<Module &>(*funcInfo.Fn->getParent())),
125 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
126 TLI(*Subtarget->getTargetLowering()) {
127 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
128 isThumb2 = AFI->isThumbFunction();
129 Context = &funcInfo.Fn->getContext();
132 private:
133 // Code from FastISel.cpp.
135 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
136 const TargetRegisterClass *RC, unsigned Op0);
137 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
138 const TargetRegisterClass *RC,
139 unsigned Op0, unsigned Op1);
140 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
141 const TargetRegisterClass *RC,
142 unsigned Op0, uint64_t Imm);
143 unsigned fastEmitInst_i(unsigned MachineInstOpcode,
144 const TargetRegisterClass *RC,
145 uint64_t Imm);
147 // Backend specific FastISel code.
149 bool fastSelectInstruction(const Instruction *I) override;
150 unsigned fastMaterializeConstant(const Constant *C) override;
151 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
152 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
153 const LoadInst *LI) override;
154 bool fastLowerArguments() override;
156 #include "ARMGenFastISel.inc"
158 // Instruction selection routines.
160 bool SelectLoad(const Instruction *I);
161 bool SelectStore(const Instruction *I);
162 bool SelectBranch(const Instruction *I);
163 bool SelectIndirectBr(const Instruction *I);
164 bool SelectCmp(const Instruction *I);
165 bool SelectFPExt(const Instruction *I);
166 bool SelectFPTrunc(const Instruction *I);
167 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
168 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
169 bool SelectIToFP(const Instruction *I, bool isSigned);
170 bool SelectFPToI(const Instruction *I, bool isSigned);
171 bool SelectDiv(const Instruction *I, bool isSigned);
172 bool SelectRem(const Instruction *I, bool isSigned);
173 bool SelectCall(const Instruction *I, const char *IntrMemName);
174 bool SelectIntrinsicCall(const IntrinsicInst &I);
175 bool SelectSelect(const Instruction *I);
176 bool SelectRet(const Instruction *I);
177 bool SelectTrunc(const Instruction *I);
178 bool SelectIntExt(const Instruction *I);
179 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
181 // Utility routines.
183 bool isPositionIndependent() const;
184 bool isTypeLegal(Type *Ty, MVT &VT);
185 bool isLoadTypeLegal(Type *Ty, MVT &VT);
186 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
187 bool isZExt);
188 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
189 MaybeAlign Alignment = std::nullopt, bool isZExt = true,
190 bool allocReg = true);
191 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
192 MaybeAlign Alignment = std::nullopt);
193 bool ARMComputeAddress(const Value *Obj, Address &Addr);
194 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
195 bool ARMIsMemCpySmall(uint64_t Len);
196 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
197 MaybeAlign Alignment);
198 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
199 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
200 unsigned ARMMaterializeInt(const Constant *C, MVT VT);
201 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
202 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
203 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
204 unsigned ARMSelectCallOp(bool UseReg);
205 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
207 const TargetLowering *getTargetLowering() { return &TLI; }
209 // Call handling routines.
211 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
212 bool Return,
213 bool isVarArg);
214 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
215 SmallVectorImpl<Register> &ArgRegs,
216 SmallVectorImpl<MVT> &ArgVTs,
217 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
218 SmallVectorImpl<Register> &RegArgs,
219 CallingConv::ID CC,
220 unsigned &NumBytes,
221 bool isVarArg);
222 unsigned getLibcallReg(const Twine &Name);
223 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
224 const Instruction *I, CallingConv::ID CC,
225 unsigned &NumBytes, bool isVarArg);
226 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
228 // OptionalDef handling routines.
230 bool isARMNEONPred(const MachineInstr *MI);
231 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
232 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
233 void AddLoadStoreOperands(MVT VT, Address &Addr,
234 const MachineInstrBuilder &MIB,
235 MachineMemOperand::Flags Flags, bool useAM3);
238 } // end anonymous namespace
240 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
241 // we don't care about implicit defs here, just places we'll need to add a
242 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
243 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
244 if (!MI->hasOptionalDef())
245 return false;
247 // Look to see if our OptionalDef is defining CPSR or CCR.
248 for (const MachineOperand &MO : MI->operands()) {
249 if (!MO.isReg() || !MO.isDef()) continue;
250 if (MO.getReg() == ARM::CPSR)
251 *CPSR = true;
253 return true;
256 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
257 const MCInstrDesc &MCID = MI->getDesc();
259 // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
260 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
261 AFI->isThumb2Function())
262 return MI->isPredicable();
264 for (const MCOperandInfo &opInfo : MCID.operands())
265 if (opInfo.isPredicate())
266 return true;
268 return false;
271 // If the machine is predicable go ahead and add the predicate operands, if
272 // it needs default CC operands add those.
273 // TODO: If we want to support thumb1 then we'll need to deal with optional
274 // CPSR defs that need to be added before the remaining operands. See s_cc_out
275 // for descriptions why.
276 const MachineInstrBuilder &
277 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
278 MachineInstr *MI = &*MIB;
280 // Do we use a predicate? or...
281 // Are we NEON in ARM mode and have a predicate operand? If so, I know
282 // we're not predicable but add it anyways.
283 if (isARMNEONPred(MI))
284 MIB.add(predOps(ARMCC::AL));
286 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
287 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
288 bool CPSR = false;
289 if (DefinesOptionalPredicate(MI, &CPSR))
290 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
291 return MIB;
294 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
295 const TargetRegisterClass *RC,
296 unsigned Op0) {
297 Register ResultReg = createResultReg(RC);
298 const MCInstrDesc &II = TII.get(MachineInstOpcode);
300 // Make sure the input operand is sufficiently constrained to be legal
301 // for this instruction.
302 Op0 = constrainOperandRegClass(II, Op0, 1);
303 if (II.getNumDefs() >= 1) {
304 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
305 ResultReg).addReg(Op0));
306 } else {
307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
308 .addReg(Op0));
309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
310 TII.get(TargetOpcode::COPY), ResultReg)
311 .addReg(II.implicit_defs()[0]));
313 return ResultReg;
316 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
317 const TargetRegisterClass *RC,
318 unsigned Op0, unsigned Op1) {
319 Register ResultReg = createResultReg(RC);
320 const MCInstrDesc &II = TII.get(MachineInstOpcode);
322 // Make sure the input operands are sufficiently constrained to be legal
323 // for this instruction.
324 Op0 = constrainOperandRegClass(II, Op0, 1);
325 Op1 = constrainOperandRegClass(II, Op1, 2);
327 if (II.getNumDefs() >= 1) {
328 AddOptionalDefs(
329 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
330 .addReg(Op0)
331 .addReg(Op1));
332 } else {
333 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
334 .addReg(Op0)
335 .addReg(Op1));
336 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
337 TII.get(TargetOpcode::COPY), ResultReg)
338 .addReg(II.implicit_defs()[0]));
340 return ResultReg;
343 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
344 const TargetRegisterClass *RC,
345 unsigned Op0, uint64_t Imm) {
346 Register ResultReg = createResultReg(RC);
347 const MCInstrDesc &II = TII.get(MachineInstOpcode);
349 // Make sure the input operand is sufficiently constrained to be legal
350 // for this instruction.
351 Op0 = constrainOperandRegClass(II, Op0, 1);
352 if (II.getNumDefs() >= 1) {
353 AddOptionalDefs(
354 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
355 .addReg(Op0)
356 .addImm(Imm));
357 } else {
358 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
359 .addReg(Op0)
360 .addImm(Imm));
361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
362 TII.get(TargetOpcode::COPY), ResultReg)
363 .addReg(II.implicit_defs()[0]));
365 return ResultReg;
368 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
369 const TargetRegisterClass *RC,
370 uint64_t Imm) {
371 Register ResultReg = createResultReg(RC);
372 const MCInstrDesc &II = TII.get(MachineInstOpcode);
374 if (II.getNumDefs() >= 1) {
375 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
376 ResultReg).addImm(Imm));
377 } else {
378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
379 .addImm(Imm));
380 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
381 TII.get(TargetOpcode::COPY), ResultReg)
382 .addReg(II.implicit_defs()[0]));
384 return ResultReg;
387 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
388 // checks from the various callers.
389 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
390 if (VT == MVT::f64) return 0;
392 Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
393 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
394 TII.get(ARM::VMOVSR), MoveReg)
395 .addReg(SrcReg));
396 return MoveReg;
399 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
400 if (VT == MVT::i64) return 0;
402 Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
403 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
404 TII.get(ARM::VMOVRS), MoveReg)
405 .addReg(SrcReg));
406 return MoveReg;
409 // For double width floating point we need to materialize two constants
410 // (the high and the low) into integer registers then use a move to get
411 // the combined constant into an FP reg.
412 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
413 const APFloat Val = CFP->getValueAPF();
414 bool is64bit = VT == MVT::f64;
416 // This checks to see if we can use VFP3 instructions to materialize
417 // a constant, otherwise we have to go through the constant pool.
418 if (TLI.isFPImmLegal(Val, VT)) {
419 int Imm;
420 unsigned Opc;
421 if (is64bit) {
422 Imm = ARM_AM::getFP64Imm(Val);
423 Opc = ARM::FCONSTD;
424 } else {
425 Imm = ARM_AM::getFP32Imm(Val);
426 Opc = ARM::FCONSTS;
428 Register DestReg = createResultReg(TLI.getRegClassFor(VT));
429 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
430 TII.get(Opc), DestReg).addImm(Imm));
431 return DestReg;
434 // Require VFP2 for loading fp constants.
435 if (!Subtarget->hasVFP2Base()) return false;
437 // MachineConstantPool wants an explicit alignment.
438 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
439 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
440 Register DestReg = createResultReg(TLI.getRegClassFor(VT));
441 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
443 // The extra reg is for addrmode5.
444 AddOptionalDefs(
445 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
446 .addConstantPoolIndex(Idx)
447 .addReg(0));
448 return DestReg;
451 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
452 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
453 return 0;
455 // If we can do this in a single instruction without a constant pool entry
456 // do so now.
457 const ConstantInt *CI = cast<ConstantInt>(C);
458 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
459 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
460 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
461 &ARM::GPRRegClass;
462 Register ImmReg = createResultReg(RC);
463 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
464 TII.get(Opc), ImmReg)
465 .addImm(CI->getZExtValue()));
466 return ImmReg;
469 // Use MVN to emit negative constants.
470 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
471 unsigned Imm = (unsigned)~(CI->getSExtValue());
472 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
473 (ARM_AM::getSOImmVal(Imm) != -1);
474 if (UseImm) {
475 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
476 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
477 &ARM::GPRRegClass;
478 Register ImmReg = createResultReg(RC);
479 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
480 TII.get(Opc), ImmReg)
481 .addImm(Imm));
482 return ImmReg;
486 unsigned ResultReg = 0;
487 if (Subtarget->useMovt())
488 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
490 if (ResultReg)
491 return ResultReg;
493 // Load from constant pool. For now 32-bit only.
494 if (VT != MVT::i32)
495 return 0;
497 // MachineConstantPool wants an explicit alignment.
498 Align Alignment = DL.getPrefTypeAlign(C->getType());
499 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
500 ResultReg = createResultReg(TLI.getRegClassFor(VT));
501 if (isThumb2)
502 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
503 TII.get(ARM::t2LDRpci), ResultReg)
504 .addConstantPoolIndex(Idx));
505 else {
506 // The extra immediate is for addrmode2.
507 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
508 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
509 TII.get(ARM::LDRcp), ResultReg)
510 .addConstantPoolIndex(Idx)
511 .addImm(0));
513 return ResultReg;
516 bool ARMFastISel::isPositionIndependent() const {
517 return TLI.isPositionIndependent();
520 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
521 // For now 32-bit only.
522 if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
524 // ROPI/RWPI not currently supported.
525 if (Subtarget->isROPI() || Subtarget->isRWPI())
526 return 0;
528 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
529 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
530 : &ARM::GPRRegClass;
531 Register DestReg = createResultReg(RC);
533 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
534 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
535 bool IsThreadLocal = GVar && GVar->isThreadLocal();
536 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
538 bool IsPositionIndependent = isPositionIndependent();
539 // Use movw+movt when possible, it avoids constant pool entries.
540 // Non-darwin targets only support static movt relocations in FastISel.
541 if (Subtarget->useMovt() &&
542 (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
543 unsigned Opc;
544 unsigned char TF = 0;
545 if (Subtarget->isTargetMachO())
546 TF = ARMII::MO_NONLAZY;
548 if (IsPositionIndependent)
549 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
550 else
551 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
552 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
553 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
554 } else {
555 // MachineConstantPool wants an explicit alignment.
556 Align Alignment = DL.getPrefTypeAlign(GV->getType());
558 if (Subtarget->isTargetELF() && IsPositionIndependent)
559 return ARMLowerPICELF(GV, VT);
561 // Grab index.
562 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
563 unsigned Id = AFI->createPICLabelUId();
564 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
565 ARMCP::CPValue,
566 PCAdj);
567 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);
569 // Load value.
570 MachineInstrBuilder MIB;
571 if (isThumb2) {
572 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
573 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
574 DestReg).addConstantPoolIndex(Idx);
575 if (IsPositionIndependent)
576 MIB.addImm(Id);
577 AddOptionalDefs(MIB);
578 } else {
579 // The extra immediate is for addrmode2.
580 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
581 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
582 TII.get(ARM::LDRcp), DestReg)
583 .addConstantPoolIndex(Idx)
584 .addImm(0);
585 AddOptionalDefs(MIB);
587 if (IsPositionIndependent) {
588 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
589 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
591 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
592 MIMD, TII.get(Opc), NewDestReg)
593 .addReg(DestReg)
594 .addImm(Id);
595 AddOptionalDefs(MIB);
596 return NewDestReg;
601 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
602 (Subtarget->isTargetMachO() && IsIndirect)) {
603 MachineInstrBuilder MIB;
604 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
605 if (isThumb2)
606 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
607 TII.get(ARM::t2LDRi12), NewDestReg)
608 .addReg(DestReg)
609 .addImm(0);
610 else
611 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
612 TII.get(ARM::LDRi12), NewDestReg)
613 .addReg(DestReg)
614 .addImm(0);
615 DestReg = NewDestReg;
616 AddOptionalDefs(MIB);
619 return DestReg;
622 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
623 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
625 // Only handle simple types.
626 if (!CEVT.isSimple()) return 0;
627 MVT VT = CEVT.getSimpleVT();
629 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
630 return ARMMaterializeFP(CFP, VT);
631 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
632 return ARMMaterializeGV(GV, VT);
633 else if (isa<ConstantInt>(C))
634 return ARMMaterializeInt(C, VT);
636 return 0;
639 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
641 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
642 // Don't handle dynamic allocas.
643 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
645 MVT VT;
646 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
648 DenseMap<const AllocaInst*, int>::iterator SI =
649 FuncInfo.StaticAllocaMap.find(AI);
651 // This will get lowered later into the correct offsets and registers
652 // via rewriteXFrameIndex.
653 if (SI != FuncInfo.StaticAllocaMap.end()) {
654 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
655 const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
656 Register ResultReg = createResultReg(RC);
657 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
659 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
660 TII.get(Opc), ResultReg)
661 .addFrameIndex(SI->second)
662 .addImm(0));
663 return ResultReg;
666 return 0;
669 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
670 EVT evt = TLI.getValueType(DL, Ty, true);
672 // Only handle simple types.
673 if (evt == MVT::Other || !evt.isSimple()) return false;
674 VT = evt.getSimpleVT();
676 // Handle all legal types, i.e. a register that will directly hold this
677 // value.
678 return TLI.isTypeLegal(VT);
681 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
682 if (isTypeLegal(Ty, VT)) return true;
684 // If this is a type than can be sign or zero-extended to a basic operation
685 // go ahead and accept it now.
686 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
687 return true;
689 return false;
692 // Computes the address to get to an object.
693 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
694 // Some boilerplate from the X86 FastISel.
695 const User *U = nullptr;
696 unsigned Opcode = Instruction::UserOp1;
697 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
698 // Don't walk into other basic blocks unless the object is an alloca from
699 // another block, otherwise it may not have a virtual register assigned.
700 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
701 FuncInfo.getMBB(I->getParent()) == FuncInfo.MBB) {
702 Opcode = I->getOpcode();
703 U = I;
705 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
706 Opcode = C->getOpcode();
707 U = C;
710 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
711 if (Ty->getAddressSpace() > 255)
712 // Fast instruction selection doesn't support the special
713 // address spaces.
714 return false;
716 switch (Opcode) {
717 default:
718 break;
719 case Instruction::BitCast:
720 // Look through bitcasts.
721 return ARMComputeAddress(U->getOperand(0), Addr);
722 case Instruction::IntToPtr:
723 // Look past no-op inttoptrs.
724 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
725 TLI.getPointerTy(DL))
726 return ARMComputeAddress(U->getOperand(0), Addr);
727 break;
728 case Instruction::PtrToInt:
729 // Look past no-op ptrtoints.
730 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
731 return ARMComputeAddress(U->getOperand(0), Addr);
732 break;
733 case Instruction::GetElementPtr: {
734 Address SavedAddr = Addr;
735 int TmpOffset = Addr.Offset;
737 // Iterate through the GEP folding the constants into offsets where
738 // we can.
739 gep_type_iterator GTI = gep_type_begin(U);
740 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
741 i != e; ++i, ++GTI) {
742 const Value *Op = *i;
743 if (StructType *STy = GTI.getStructTypeOrNull()) {
744 const StructLayout *SL = DL.getStructLayout(STy);
745 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
746 TmpOffset += SL->getElementOffset(Idx);
747 } else {
748 uint64_t S = GTI.getSequentialElementStride(DL);
749 while (true) {
750 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
751 // Constant-offset addressing.
752 TmpOffset += CI->getSExtValue() * S;
753 break;
755 if (canFoldAddIntoGEP(U, Op)) {
756 // A compatible add with a constant operand. Fold the constant.
757 ConstantInt *CI =
758 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
759 TmpOffset += CI->getSExtValue() * S;
760 // Iterate on the other operand.
761 Op = cast<AddOperator>(Op)->getOperand(0);
762 continue;
764 // Unsupported
765 goto unsupported_gep;
770 // Try to grab the base operand now.
771 Addr.Offset = TmpOffset;
772 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
774 // We failed, restore everything and try the other options.
775 Addr = SavedAddr;
777 unsupported_gep:
778 break;
780 case Instruction::Alloca: {
781 const AllocaInst *AI = cast<AllocaInst>(Obj);
782 DenseMap<const AllocaInst*, int>::iterator SI =
783 FuncInfo.StaticAllocaMap.find(AI);
784 if (SI != FuncInfo.StaticAllocaMap.end()) {
785 Addr.BaseType = Address::FrameIndexBase;
786 Addr.Base.FI = SI->second;
787 return true;
789 break;
793 // Try to get this in a register if nothing else has worked.
794 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
795 return Addr.Base.Reg != 0;
798 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
799 bool needsLowering = false;
800 switch (VT.SimpleTy) {
801 default: llvm_unreachable("Unhandled load/store type!");
802 case MVT::i1:
803 case MVT::i8:
804 case MVT::i16:
805 case MVT::i32:
806 if (!useAM3) {
807 // Integer loads/stores handle 12-bit offsets.
808 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
809 // Handle negative offsets.
810 if (needsLowering && isThumb2)
811 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
812 Addr.Offset > -256);
813 } else {
814 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
815 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
817 break;
818 case MVT::f32:
819 case MVT::f64:
820 // Floating point operands handle 8-bit offsets.
821 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
822 break;
825 // If this is a stack pointer and the offset needs to be simplified then
826 // put the alloca address into a register, set the base type back to
827 // register and continue. This should almost never happen.
828 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
829 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
830 : &ARM::GPRRegClass;
831 Register ResultReg = createResultReg(RC);
832 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
833 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
834 TII.get(Opc), ResultReg)
835 .addFrameIndex(Addr.Base.FI)
836 .addImm(0));
837 Addr.Base.Reg = ResultReg;
838 Addr.BaseType = Address::RegBase;
841 // Since the offset is too large for the load/store instruction
842 // get the reg+offset into a register.
843 if (needsLowering) {
844 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
845 Addr.Offset, MVT::i32);
846 Addr.Offset = 0;
850 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
851 const MachineInstrBuilder &MIB,
852 MachineMemOperand::Flags Flags,
853 bool useAM3) {
854 // addrmode5 output depends on the selection dag addressing dividing the
855 // offset by 4 that it then later multiplies. Do this here as well.
856 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
857 Addr.Offset /= 4;
859 // Frame base works a bit differently. Handle it separately.
860 if (Addr.BaseType == Address::FrameIndexBase) {
861 int FI = Addr.Base.FI;
862 int Offset = Addr.Offset;
863 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
864 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
865 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
866 // Now add the rest of the operands.
867 MIB.addFrameIndex(FI);
869 // ARM halfword load/stores and signed byte loads need an additional
870 // operand.
871 if (useAM3) {
872 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
873 MIB.addReg(0);
874 MIB.addImm(Imm);
875 } else {
876 MIB.addImm(Addr.Offset);
878 MIB.addMemOperand(MMO);
879 } else {
880 // Now add the rest of the operands.
881 MIB.addReg(Addr.Base.Reg);
883 // ARM halfword load/stores and signed byte loads need an additional
884 // operand.
885 if (useAM3) {
886 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
887 MIB.addReg(0);
888 MIB.addImm(Imm);
889 } else {
890 MIB.addImm(Addr.Offset);
893 AddOptionalDefs(MIB);
896 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
897 MaybeAlign Alignment, bool isZExt,
898 bool allocReg) {
899 unsigned Opc;
900 bool useAM3 = false;
901 bool needVMOV = false;
902 const TargetRegisterClass *RC;
903 switch (VT.SimpleTy) {
904 // This is mostly going to be Neon/vector support.
905 default: return false;
906 case MVT::i1:
907 case MVT::i8:
908 if (isThumb2) {
909 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
910 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
911 else
912 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
913 } else {
914 if (isZExt) {
915 Opc = ARM::LDRBi12;
916 } else {
917 Opc = ARM::LDRSB;
918 useAM3 = true;
921 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
922 break;
923 case MVT::i16:
924 if (Alignment && *Alignment < Align(2) &&
925 !Subtarget->allowsUnalignedMem())
926 return false;
928 if (isThumb2) {
929 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
930 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
931 else
932 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
933 } else {
934 Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
935 useAM3 = true;
937 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
938 break;
939 case MVT::i32:
940 if (Alignment && *Alignment < Align(4) &&
941 !Subtarget->allowsUnalignedMem())
942 return false;
944 if (isThumb2) {
945 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
946 Opc = ARM::t2LDRi8;
947 else
948 Opc = ARM::t2LDRi12;
949 } else {
950 Opc = ARM::LDRi12;
952 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
953 break;
954 case MVT::f32:
955 if (!Subtarget->hasVFP2Base()) return false;
956 // Unaligned loads need special handling. Floats require word-alignment.
957 if (Alignment && *Alignment < Align(4)) {
958 needVMOV = true;
959 VT = MVT::i32;
960 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
961 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
962 } else {
963 Opc = ARM::VLDRS;
964 RC = TLI.getRegClassFor(VT);
966 break;
967 case MVT::f64:
968 // Can load and store double precision even without FeatureFP64
969 if (!Subtarget->hasVFP2Base()) return false;
970 // FIXME: Unaligned loads need special handling. Doublewords require
971 // word-alignment.
972 if (Alignment && *Alignment < Align(4))
973 return false;
975 Opc = ARM::VLDRD;
976 RC = TLI.getRegClassFor(VT);
977 break;
979 // Simplify this down to something we can handle.
980 ARMSimplifyAddress(Addr, VT, useAM3);
982 // Create the base instruction, then add the operands.
983 if (allocReg)
984 ResultReg = createResultReg(RC);
985 assert(ResultReg > 255 && "Expected an allocated virtual register.");
986 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
987 TII.get(Opc), ResultReg);
988 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
990 // If we had an unaligned load of a float we've converted it to an regular
991 // load. Now we must move from the GRP to the FP register.
992 if (needVMOV) {
993 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
994 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
995 TII.get(ARM::VMOVSR), MoveReg)
996 .addReg(ResultReg));
997 ResultReg = MoveReg;
999 return true;
1002 bool ARMFastISel::SelectLoad(const Instruction *I) {
1003 // Atomic loads need special handling.
1004 if (cast<LoadInst>(I)->isAtomic())
1005 return false;
1007 const Value *SV = I->getOperand(0);
1008 if (TLI.supportSwiftError()) {
1009 // Swifterror values can come from either a function parameter with
1010 // swifterror attribute or an alloca with swifterror attribute.
1011 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1012 if (Arg->hasSwiftErrorAttr())
1013 return false;
1016 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1017 if (Alloca->isSwiftError())
1018 return false;
1022 // Verify we have a legal type before going any further.
1023 MVT VT;
1024 if (!isLoadTypeLegal(I->getType(), VT))
1025 return false;
1027 // See if we can handle this address.
1028 Address Addr;
1029 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1031 Register ResultReg;
1032 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlign()))
1033 return false;
1034 updateValueMap(I, ResultReg);
1035 return true;
1038 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1039 MaybeAlign Alignment) {
1040 unsigned StrOpc;
1041 bool useAM3 = false;
1042 switch (VT.SimpleTy) {
1043 // This is mostly going to be Neon/vector support.
1044 default: return false;
1045 case MVT::i1: {
1046 Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1047 : &ARM::GPRRegClass);
1048 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1049 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1050 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1051 TII.get(Opc), Res)
1052 .addReg(SrcReg).addImm(1));
1053 SrcReg = Res;
1054 [[fallthrough]];
1056 case MVT::i8:
1057 if (isThumb2) {
1058 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1059 StrOpc = ARM::t2STRBi8;
1060 else
1061 StrOpc = ARM::t2STRBi12;
1062 } else {
1063 StrOpc = ARM::STRBi12;
1065 break;
1066 case MVT::i16:
1067 if (Alignment && *Alignment < Align(2) &&
1068 !Subtarget->allowsUnalignedMem())
1069 return false;
1071 if (isThumb2) {
1072 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1073 StrOpc = ARM::t2STRHi8;
1074 else
1075 StrOpc = ARM::t2STRHi12;
1076 } else {
1077 StrOpc = ARM::STRH;
1078 useAM3 = true;
1080 break;
1081 case MVT::i32:
1082 if (Alignment && *Alignment < Align(4) &&
1083 !Subtarget->allowsUnalignedMem())
1084 return false;
1086 if (isThumb2) {
1087 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1088 StrOpc = ARM::t2STRi8;
1089 else
1090 StrOpc = ARM::t2STRi12;
1091 } else {
1092 StrOpc = ARM::STRi12;
1094 break;
1095 case MVT::f32:
1096 if (!Subtarget->hasVFP2Base()) return false;
1097 // Unaligned stores need special handling. Floats require word-alignment.
1098 if (Alignment && *Alignment < Align(4)) {
1099 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1100 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1101 TII.get(ARM::VMOVRS), MoveReg)
1102 .addReg(SrcReg));
1103 SrcReg = MoveReg;
1104 VT = MVT::i32;
1105 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1106 } else {
1107 StrOpc = ARM::VSTRS;
1109 break;
1110 case MVT::f64:
1111 // Can load and store double precision even without FeatureFP64
1112 if (!Subtarget->hasVFP2Base()) return false;
1113 // FIXME: Unaligned stores need special handling. Doublewords require
1114 // word-alignment.
1115 if (Alignment && *Alignment < Align(4))
1116 return false;
1118 StrOpc = ARM::VSTRD;
1119 break;
1121 // Simplify this down to something we can handle.
1122 ARMSimplifyAddress(Addr, VT, useAM3);
1124 // Create the base instruction, then add the operands.
1125 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1126 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1127 TII.get(StrOpc))
1128 .addReg(SrcReg);
1129 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1130 return true;
1133 bool ARMFastISel::SelectStore(const Instruction *I) {
1134 Value *Op0 = I->getOperand(0);
1135 unsigned SrcReg = 0;
1137 // Atomic stores need special handling.
1138 if (cast<StoreInst>(I)->isAtomic())
1139 return false;
1141 const Value *PtrV = I->getOperand(1);
1142 if (TLI.supportSwiftError()) {
1143 // Swifterror values can come from either a function parameter with
1144 // swifterror attribute or an alloca with swifterror attribute.
1145 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1146 if (Arg->hasSwiftErrorAttr())
1147 return false;
1150 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1151 if (Alloca->isSwiftError())
1152 return false;
1156 // Verify we have a legal type before going any further.
1157 MVT VT;
1158 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1159 return false;
1161 // Get the value to be stored into a register.
1162 SrcReg = getRegForValue(Op0);
1163 if (SrcReg == 0) return false;
1165 // See if we can handle this address.
1166 Address Addr;
1167 if (!ARMComputeAddress(I->getOperand(1), Addr))
1168 return false;
1170 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlign()))
1171 return false;
1172 return true;
1175 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1176 switch (Pred) {
1177 // Needs two compares...
1178 case CmpInst::FCMP_ONE:
1179 case CmpInst::FCMP_UEQ:
1180 default:
1181 // AL is our "false" for now. The other two need more compares.
1182 return ARMCC::AL;
1183 case CmpInst::ICMP_EQ:
1184 case CmpInst::FCMP_OEQ:
1185 return ARMCC::EQ;
1186 case CmpInst::ICMP_SGT:
1187 case CmpInst::FCMP_OGT:
1188 return ARMCC::GT;
1189 case CmpInst::ICMP_SGE:
1190 case CmpInst::FCMP_OGE:
1191 return ARMCC::GE;
1192 case CmpInst::ICMP_UGT:
1193 case CmpInst::FCMP_UGT:
1194 return ARMCC::HI;
1195 case CmpInst::FCMP_OLT:
1196 return ARMCC::MI;
1197 case CmpInst::ICMP_ULE:
1198 case CmpInst::FCMP_OLE:
1199 return ARMCC::LS;
1200 case CmpInst::FCMP_ORD:
1201 return ARMCC::VC;
1202 case CmpInst::FCMP_UNO:
1203 return ARMCC::VS;
1204 case CmpInst::FCMP_UGE:
1205 return ARMCC::PL;
1206 case CmpInst::ICMP_SLT:
1207 case CmpInst::FCMP_ULT:
1208 return ARMCC::LT;
1209 case CmpInst::ICMP_SLE:
1210 case CmpInst::FCMP_ULE:
1211 return ARMCC::LE;
1212 case CmpInst::FCMP_UNE:
1213 case CmpInst::ICMP_NE:
1214 return ARMCC::NE;
1215 case CmpInst::ICMP_UGE:
1216 return ARMCC::HS;
1217 case CmpInst::ICMP_ULT:
1218 return ARMCC::LO;
1222 bool ARMFastISel::SelectBranch(const Instruction *I) {
1223 const BranchInst *BI = cast<BranchInst>(I);
1224 MachineBasicBlock *TBB = FuncInfo.getMBB(BI->getSuccessor(0));
1225 MachineBasicBlock *FBB = FuncInfo.getMBB(BI->getSuccessor(1));
1227 // Simple branch support.
1229 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1230 // behavior.
1231 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1232 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1233 // Get the compare predicate.
1234 // Try to take advantage of fallthrough opportunities.
1235 CmpInst::Predicate Predicate = CI->getPredicate();
1236 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1237 std::swap(TBB, FBB);
1238 Predicate = CmpInst::getInversePredicate(Predicate);
1241 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1243 // We may not handle every CC for now.
1244 if (ARMPred == ARMCC::AL) return false;
1246 // Emit the compare.
1247 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1248 return false;
1250 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1251 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1252 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1253 finishCondBranch(BI->getParent(), TBB, FBB);
1254 return true;
1256 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1257 MVT SourceVT;
1258 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1259 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1260 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1261 Register OpReg = getRegForValue(TI->getOperand(0));
1262 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1263 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1264 TII.get(TstOpc))
1265 .addReg(OpReg).addImm(1));
1267 unsigned CCMode = ARMCC::NE;
1268 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1269 std::swap(TBB, FBB);
1270 CCMode = ARMCC::EQ;
1273 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1275 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1277 finishCondBranch(BI->getParent(), TBB, FBB);
1278 return true;
1280 } else if (const ConstantInt *CI =
1281 dyn_cast<ConstantInt>(BI->getCondition())) {
1282 uint64_t Imm = CI->getZExtValue();
1283 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1284 fastEmitBranch(Target, MIMD.getDL());
1285 return true;
1288 Register CmpReg = getRegForValue(BI->getCondition());
1289 if (CmpReg == 0) return false;
1291 // We've been divorced from our compare! Our block was split, and
1292 // now our compare lives in a predecessor block. We musn't
1293 // re-compare here, as the children of the compare aren't guaranteed
1294 // live across the block boundary (we *could* check for this).
1295 // Regardless, the compare has been done in the predecessor block,
1296 // and it left a value for us in a virtual register. Ergo, we test
1297 // the one-bit value left in the virtual register.
1298 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1299 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1300 AddOptionalDefs(
1301 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1302 .addReg(CmpReg)
1303 .addImm(1));
1305 unsigned CCMode = ARMCC::NE;
1306 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1307 std::swap(TBB, FBB);
1308 CCMode = ARMCC::EQ;
1311 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1312 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1313 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1314 finishCondBranch(BI->getParent(), TBB, FBB);
1315 return true;
1318 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1319 Register AddrReg = getRegForValue(I->getOperand(0));
1320 if (AddrReg == 0) return false;
1322 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1323 assert(isThumb2 || Subtarget->hasV4TOps());
1325 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1326 TII.get(Opc)).addReg(AddrReg));
1328 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1329 for (const BasicBlock *SuccBB : IB->successors())
1330 FuncInfo.MBB->addSuccessor(FuncInfo.getMBB(SuccBB));
1332 return true;
1335 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1336 bool isZExt) {
1337 Type *Ty = Src1Value->getType();
1338 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1339 if (!SrcEVT.isSimple()) return false;
1340 MVT SrcVT = SrcEVT.getSimpleVT();
1342 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1343 return false;
1345 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1346 return false;
1348 // Check to see if the 2nd operand is a constant that we can encode directly
1349 // in the compare.
1350 int Imm = 0;
1351 bool UseImm = false;
1352 bool isNegativeImm = false;
1353 // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1354 // Thus, Src1Value may be a ConstantInt, but we're missing it.
1355 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1356 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1357 SrcVT == MVT::i1) {
1358 const APInt &CIVal = ConstInt->getValue();
1359 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1360 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1361 // then a cmn, because there is no way to represent 2147483648 as a
1362 // signed 32-bit int.
1363 if (Imm < 0 && Imm != (int)0x80000000) {
1364 isNegativeImm = true;
1365 Imm = -Imm;
1367 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1368 (ARM_AM::getSOImmVal(Imm) != -1);
1370 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1371 if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1372 if (ConstFP->isZero() && !ConstFP->isNegative())
1373 UseImm = true;
1376 unsigned CmpOpc;
1377 bool isICmp = true;
1378 bool needsExt = false;
1379 switch (SrcVT.SimpleTy) {
1380 default: return false;
1381 // TODO: Verify compares.
1382 case MVT::f32:
1383 isICmp = false;
1384 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1385 break;
1386 case MVT::f64:
1387 isICmp = false;
1388 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1389 break;
1390 case MVT::i1:
1391 case MVT::i8:
1392 case MVT::i16:
1393 needsExt = true;
1394 [[fallthrough]];
1395 case MVT::i32:
1396 if (isThumb2) {
1397 if (!UseImm)
1398 CmpOpc = ARM::t2CMPrr;
1399 else
1400 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1401 } else {
1402 if (!UseImm)
1403 CmpOpc = ARM::CMPrr;
1404 else
1405 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1407 break;
1410 Register SrcReg1 = getRegForValue(Src1Value);
1411 if (SrcReg1 == 0) return false;
1413 unsigned SrcReg2 = 0;
1414 if (!UseImm) {
1415 SrcReg2 = getRegForValue(Src2Value);
1416 if (SrcReg2 == 0) return false;
1419 // We have i1, i8, or i16, we need to either zero extend or sign extend.
1420 if (needsExt) {
1421 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1422 if (SrcReg1 == 0) return false;
1423 if (!UseImm) {
1424 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1425 if (SrcReg2 == 0) return false;
1429 const MCInstrDesc &II = TII.get(CmpOpc);
1430 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1431 if (!UseImm) {
1432 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1433 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1434 .addReg(SrcReg1).addReg(SrcReg2));
1435 } else {
1436 MachineInstrBuilder MIB;
1437 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1438 .addReg(SrcReg1);
1440 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1441 if (isICmp)
1442 MIB.addImm(Imm);
1443 AddOptionalDefs(MIB);
1446 // For floating point we need to move the result to a comparison register
1447 // that we can then use for branches.
1448 if (Ty->isFloatTy() || Ty->isDoubleTy())
1449 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1450 TII.get(ARM::FMSTAT)));
1451 return true;
1454 bool ARMFastISel::SelectCmp(const Instruction *I) {
1455 const CmpInst *CI = cast<CmpInst>(I);
1457 // Get the compare predicate.
1458 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1460 // We may not handle every CC for now.
1461 if (ARMPred == ARMCC::AL) return false;
1463 // Emit the compare.
1464 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1465 return false;
1467 // Now set a register based on the comparison. Explicitly set the predicates
1468 // here.
1469 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1470 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1471 : &ARM::GPRRegClass;
1472 Register DestReg = createResultReg(RC);
1473 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1474 unsigned ZeroReg = fastMaterializeConstant(Zero);
1475 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1476 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), DestReg)
1477 .addReg(ZeroReg).addImm(1)
1478 .addImm(ARMPred).addReg(ARM::CPSR);
1480 updateValueMap(I, DestReg);
1481 return true;
1484 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1485 // Make sure we have VFP and that we're extending float to double.
1486 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1488 Value *V = I->getOperand(0);
1489 if (!I->getType()->isDoubleTy() ||
1490 !V->getType()->isFloatTy()) return false;
1492 Register Op = getRegForValue(V);
1493 if (Op == 0) return false;
1495 Register Result = createResultReg(&ARM::DPRRegClass);
1496 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1497 TII.get(ARM::VCVTDS), Result)
1498 .addReg(Op));
1499 updateValueMap(I, Result);
1500 return true;
1503 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1504 // Make sure we have VFP and that we're truncating double to float.
1505 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1507 Value *V = I->getOperand(0);
1508 if (!(I->getType()->isFloatTy() &&
1509 V->getType()->isDoubleTy())) return false;
1511 Register Op = getRegForValue(V);
1512 if (Op == 0) return false;
1514 Register Result = createResultReg(&ARM::SPRRegClass);
1515 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1516 TII.get(ARM::VCVTSD), Result)
1517 .addReg(Op));
1518 updateValueMap(I, Result);
1519 return true;
1522 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1523 // Make sure we have VFP.
1524 if (!Subtarget->hasVFP2Base()) return false;
1526 MVT DstVT;
1527 Type *Ty = I->getType();
1528 if (!isTypeLegal(Ty, DstVT))
1529 return false;
1531 Value *Src = I->getOperand(0);
1532 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1533 if (!SrcEVT.isSimple())
1534 return false;
1535 MVT SrcVT = SrcEVT.getSimpleVT();
1536 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1537 return false;
1539 Register SrcReg = getRegForValue(Src);
1540 if (SrcReg == 0) return false;
1542 // Handle sign-extension.
1543 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1544 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1545 /*isZExt*/!isSigned);
1546 if (SrcReg == 0) return false;
1549 // The conversion routine works on fp-reg to fp-reg and the operand above
1550 // was an integer, move it to the fp registers if possible.
1551 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1552 if (FP == 0) return false;
1554 unsigned Opc;
1555 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1556 else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1557 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1558 else return false;
1560 Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1561 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1562 TII.get(Opc), ResultReg).addReg(FP));
1563 updateValueMap(I, ResultReg);
1564 return true;
1567 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1568 // Make sure we have VFP.
1569 if (!Subtarget->hasVFP2Base()) return false;
1571 MVT DstVT;
1572 Type *RetTy = I->getType();
1573 if (!isTypeLegal(RetTy, DstVT))
1574 return false;
1576 Register Op = getRegForValue(I->getOperand(0));
1577 if (Op == 0) return false;
1579 unsigned Opc;
1580 Type *OpTy = I->getOperand(0)->getType();
1581 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1582 else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1583 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1584 else return false;
1586 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1587 Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1588 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1589 TII.get(Opc), ResultReg).addReg(Op));
1591 // This result needs to be in an integer register, but the conversion only
1592 // takes place in fp-regs.
1593 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1594 if (IntReg == 0) return false;
1596 updateValueMap(I, IntReg);
1597 return true;
1600 bool ARMFastISel::SelectSelect(const Instruction *I) {
1601 MVT VT;
1602 if (!isTypeLegal(I->getType(), VT))
1603 return false;
1605 // Things need to be register sized for register moves.
1606 if (VT != MVT::i32) return false;
1608 Register CondReg = getRegForValue(I->getOperand(0));
1609 if (CondReg == 0) return false;
1610 Register Op1Reg = getRegForValue(I->getOperand(1));
1611 if (Op1Reg == 0) return false;
1613 // Check to see if we can use an immediate in the conditional move.
1614 int Imm = 0;
1615 bool UseImm = false;
1616 bool isNegativeImm = false;
1617 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1618 assert(VT == MVT::i32 && "Expecting an i32.");
1619 Imm = (int)ConstInt->getValue().getZExtValue();
1620 if (Imm < 0) {
1621 isNegativeImm = true;
1622 Imm = ~Imm;
1624 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1625 (ARM_AM::getSOImmVal(Imm) != -1);
1628 unsigned Op2Reg = 0;
1629 if (!UseImm) {
1630 Op2Reg = getRegForValue(I->getOperand(2));
1631 if (Op2Reg == 0) return false;
1634 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1635 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1636 AddOptionalDefs(
1637 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1638 .addReg(CondReg)
1639 .addImm(1));
1641 unsigned MovCCOpc;
1642 const TargetRegisterClass *RC;
1643 if (!UseImm) {
1644 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1645 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1646 } else {
1647 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1648 if (!isNegativeImm)
1649 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1650 else
1651 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1653 Register ResultReg = createResultReg(RC);
1654 if (!UseImm) {
1655 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1656 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1657 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1658 ResultReg)
1659 .addReg(Op2Reg)
1660 .addReg(Op1Reg)
1661 .addImm(ARMCC::NE)
1662 .addReg(ARM::CPSR);
1663 } else {
1664 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1665 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1666 ResultReg)
1667 .addReg(Op1Reg)
1668 .addImm(Imm)
1669 .addImm(ARMCC::EQ)
1670 .addReg(ARM::CPSR);
1672 updateValueMap(I, ResultReg);
1673 return true;
1676 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1677 MVT VT;
1678 Type *Ty = I->getType();
1679 if (!isTypeLegal(Ty, VT))
1680 return false;
1682 // If we have integer div support we should have selected this automagically.
1683 // In case we have a real miss go ahead and return false and we'll pick
1684 // it up later.
1685 if (Subtarget->hasDivideInThumbMode())
1686 return false;
1688 // Otherwise emit a libcall.
1689 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1690 if (VT == MVT::i8)
1691 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1692 else if (VT == MVT::i16)
1693 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1694 else if (VT == MVT::i32)
1695 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1696 else if (VT == MVT::i64)
1697 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1698 else if (VT == MVT::i128)
1699 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1700 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1702 return ARMEmitLibcall(I, LC);
1705 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1706 MVT VT;
1707 Type *Ty = I->getType();
1708 if (!isTypeLegal(Ty, VT))
1709 return false;
1711 // Many ABIs do not provide a libcall for standalone remainder, so we need to
1712 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1713 // multi-reg returns, we'll have to bail out.
1714 if (!TLI.hasStandaloneRem(VT)) {
1715 return false;
1718 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1719 if (VT == MVT::i8)
1720 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1721 else if (VT == MVT::i16)
1722 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1723 else if (VT == MVT::i32)
1724 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1725 else if (VT == MVT::i64)
1726 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1727 else if (VT == MVT::i128)
1728 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1729 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1731 return ARMEmitLibcall(I, LC);
1734 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1735 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1737 // We can get here in the case when we have a binary operation on a non-legal
1738 // type and the target independent selector doesn't know how to handle it.
1739 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1740 return false;
1742 unsigned Opc;
1743 switch (ISDOpcode) {
1744 default: return false;
1745 case ISD::ADD:
1746 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1747 break;
1748 case ISD::OR:
1749 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1750 break;
1751 case ISD::SUB:
1752 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1753 break;
1756 Register SrcReg1 = getRegForValue(I->getOperand(0));
1757 if (SrcReg1 == 0) return false;
1759 // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1760 // in the instruction, rather then materializing the value in a register.
1761 Register SrcReg2 = getRegForValue(I->getOperand(1));
1762 if (SrcReg2 == 0) return false;
1764 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1765 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1766 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1767 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1768 TII.get(Opc), ResultReg)
1769 .addReg(SrcReg1).addReg(SrcReg2));
1770 updateValueMap(I, ResultReg);
1771 return true;
1774 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1775 EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1776 if (!FPVT.isSimple()) return false;
1777 MVT VT = FPVT.getSimpleVT();
1779 // FIXME: Support vector types where possible.
1780 if (VT.isVector())
1781 return false;
1783 // We can get here in the case when we want to use NEON for our fp
1784 // operations, but can't figure out how to. Just use the vfp instructions
1785 // if we have them.
1786 // FIXME: It'd be nice to use NEON instructions.
1787 Type *Ty = I->getType();
1788 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1789 return false;
1790 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1791 return false;
1793 unsigned Opc;
1794 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1795 switch (ISDOpcode) {
1796 default: return false;
1797 case ISD::FADD:
1798 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1799 break;
1800 case ISD::FSUB:
1801 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1802 break;
1803 case ISD::FMUL:
1804 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1805 break;
1807 Register Op1 = getRegForValue(I->getOperand(0));
1808 if (Op1 == 0) return false;
1810 Register Op2 = getRegForValue(I->getOperand(1));
1811 if (Op2 == 0) return false;
1813 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1814 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1815 TII.get(Opc), ResultReg)
1816 .addReg(Op1).addReg(Op2));
1817 updateValueMap(I, ResultReg);
1818 return true;
1821 // Call Handling Code
1823 // This is largely taken directly from CCAssignFnForNode
1824 // TODO: We may not support all of this.
1825 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1826 bool Return,
1827 bool isVarArg) {
1828 switch (CC) {
1829 default:
1830 report_fatal_error("Unsupported calling convention");
1831 case CallingConv::Fast:
1832 if (Subtarget->hasVFP2Base() && !isVarArg) {
1833 if (!Subtarget->isAAPCS_ABI())
1834 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1835 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1836 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1838 [[fallthrough]];
1839 case CallingConv::C:
1840 case CallingConv::CXX_FAST_TLS:
1841 // Use target triple & subtarget features to do actual dispatch.
1842 if (Subtarget->isAAPCS_ABI()) {
1843 if (Subtarget->hasFPRegs() &&
1844 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1845 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1846 else
1847 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1848 } else {
1849 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1851 case CallingConv::ARM_AAPCS_VFP:
1852 case CallingConv::Swift:
1853 case CallingConv::SwiftTail:
1854 if (!isVarArg)
1855 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1856 // Fall through to soft float variant, variadic functions don't
1857 // use hard floating point ABI.
1858 [[fallthrough]];
1859 case CallingConv::ARM_AAPCS:
1860 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1861 case CallingConv::ARM_APCS:
1862 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1863 case CallingConv::GHC:
1864 if (Return)
1865 report_fatal_error("Can't return in GHC call convention");
1866 else
1867 return CC_ARM_APCS_GHC;
1868 case CallingConv::CFGuard_Check:
1869 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1873 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1874 SmallVectorImpl<Register> &ArgRegs,
1875 SmallVectorImpl<MVT> &ArgVTs,
1876 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1877 SmallVectorImpl<Register> &RegArgs,
1878 CallingConv::ID CC,
1879 unsigned &NumBytes,
1880 bool isVarArg) {
1881 SmallVector<CCValAssign, 16> ArgLocs;
1882 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1883 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1884 CCAssignFnForCall(CC, false, isVarArg));
1886 // Check that we can handle all of the arguments. If we can't, then bail out
1887 // now before we add code to the MBB.
1888 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1889 CCValAssign &VA = ArgLocs[i];
1890 MVT ArgVT = ArgVTs[VA.getValNo()];
1892 // We don't handle NEON/vector parameters yet.
1893 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1894 return false;
1896 // Now copy/store arg to correct locations.
1897 if (VA.isRegLoc() && !VA.needsCustom()) {
1898 continue;
1899 } else if (VA.needsCustom()) {
1900 // TODO: We need custom lowering for vector (v2f64) args.
1901 if (VA.getLocVT() != MVT::f64 ||
1902 // TODO: Only handle register args for now.
1903 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1904 return false;
1905 } else {
1906 switch (ArgVT.SimpleTy) {
1907 default:
1908 return false;
1909 case MVT::i1:
1910 case MVT::i8:
1911 case MVT::i16:
1912 case MVT::i32:
1913 break;
1914 case MVT::f32:
1915 if (!Subtarget->hasVFP2Base())
1916 return false;
1917 break;
1918 case MVT::f64:
1919 if (!Subtarget->hasVFP2Base())
1920 return false;
1921 break;
1926 // At the point, we are able to handle the call's arguments in fast isel.
1928 // Get a count of how many bytes are to be pushed on the stack.
1929 NumBytes = CCInfo.getStackSize();
1931 // Issue CALLSEQ_START
1932 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1933 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1934 TII.get(AdjStackDown))
1935 .addImm(NumBytes).addImm(0));
1937 // Process the args.
1938 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1939 CCValAssign &VA = ArgLocs[i];
1940 const Value *ArgVal = Args[VA.getValNo()];
1941 Register Arg = ArgRegs[VA.getValNo()];
1942 MVT ArgVT = ArgVTs[VA.getValNo()];
1944 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1945 "We don't handle NEON/vector parameters yet.");
1947 // Handle arg promotion, etc.
1948 switch (VA.getLocInfo()) {
1949 case CCValAssign::Full: break;
1950 case CCValAssign::SExt: {
1951 MVT DestVT = VA.getLocVT();
1952 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1953 assert(Arg != 0 && "Failed to emit a sext");
1954 ArgVT = DestVT;
1955 break;
1957 case CCValAssign::AExt:
1958 // Intentional fall-through. Handle AExt and ZExt.
1959 case CCValAssign::ZExt: {
1960 MVT DestVT = VA.getLocVT();
1961 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1962 assert(Arg != 0 && "Failed to emit a zext");
1963 ArgVT = DestVT;
1964 break;
1966 case CCValAssign::BCvt: {
1967 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
1968 assert(BC != 0 && "Failed to emit a bitcast!");
1969 Arg = BC;
1970 ArgVT = VA.getLocVT();
1971 break;
1973 default: llvm_unreachable("Unknown arg promotion!");
1976 // Now copy/store arg to correct locations.
1977 if (VA.isRegLoc() && !VA.needsCustom()) {
1978 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1979 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1980 RegArgs.push_back(VA.getLocReg());
1981 } else if (VA.needsCustom()) {
1982 // TODO: We need custom lowering for vector (v2f64) args.
1983 assert(VA.getLocVT() == MVT::f64 &&
1984 "Custom lowering for v2f64 args not available");
1986 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1987 CCValAssign &NextVA = ArgLocs[++i];
1989 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1990 "We only handle register args!");
1992 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1993 TII.get(ARM::VMOVRRD), VA.getLocReg())
1994 .addReg(NextVA.getLocReg(), RegState::Define)
1995 .addReg(Arg));
1996 RegArgs.push_back(VA.getLocReg());
1997 RegArgs.push_back(NextVA.getLocReg());
1998 } else {
1999 assert(VA.isMemLoc());
2000 // Need to store on the stack.
2002 // Don't emit stores for undef values.
2003 if (isa<UndefValue>(ArgVal))
2004 continue;
2006 Address Addr;
2007 Addr.BaseType = Address::RegBase;
2008 Addr.Base.Reg = ARM::SP;
2009 Addr.Offset = VA.getLocMemOffset();
2011 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2012 assert(EmitRet && "Could not emit a store for argument!");
2016 return true;
2019 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2020 const Instruction *I, CallingConv::ID CC,
2021 unsigned &NumBytes, bool isVarArg) {
2022 // Issue CALLSEQ_END
2023 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2024 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2025 TII.get(AdjStackUp))
2026 .addImm(NumBytes).addImm(-1ULL));
2028 // Now the return value.
2029 if (RetVT != MVT::isVoid) {
2030 SmallVector<CCValAssign, 16> RVLocs;
2031 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2032 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2034 // Copy all of the result registers out of their specified physreg.
2035 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2036 // For this move we copy into two registers and then move into the
2037 // double fp reg we want.
2038 MVT DestVT = RVLocs[0].getValVT();
2039 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2040 Register ResultReg = createResultReg(DstRC);
2041 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2042 TII.get(ARM::VMOVDRR), ResultReg)
2043 .addReg(RVLocs[0].getLocReg())
2044 .addReg(RVLocs[1].getLocReg()));
2046 UsedRegs.push_back(RVLocs[0].getLocReg());
2047 UsedRegs.push_back(RVLocs[1].getLocReg());
2049 // Finally update the result.
2050 updateValueMap(I, ResultReg);
2051 } else {
2052 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2053 MVT CopyVT = RVLocs[0].getValVT();
2055 // Special handling for extended integers.
2056 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2057 CopyVT = MVT::i32;
2059 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2061 Register ResultReg = createResultReg(DstRC);
2062 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2063 TII.get(TargetOpcode::COPY),
2064 ResultReg).addReg(RVLocs[0].getLocReg());
2065 UsedRegs.push_back(RVLocs[0].getLocReg());
2067 // Finally update the result.
2068 updateValueMap(I, ResultReg);
2072 return true;
2075 bool ARMFastISel::SelectRet(const Instruction *I) {
2076 const ReturnInst *Ret = cast<ReturnInst>(I);
2077 const Function &F = *I->getParent()->getParent();
2078 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");
2080 if (!FuncInfo.CanLowerReturn)
2081 return false;
2083 if (TLI.supportSwiftError() &&
2084 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2085 return false;
2087 if (TLI.supportSplitCSR(FuncInfo.MF))
2088 return false;
2090 // Build a list of return value registers.
2091 SmallVector<unsigned, 4> RetRegs;
2093 CallingConv::ID CC = F.getCallingConv();
2094 if (Ret->getNumOperands() > 0) {
2095 SmallVector<ISD::OutputArg, 4> Outs;
2096 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2098 // Analyze operands of the call, assigning locations to each operand.
2099 SmallVector<CCValAssign, 16> ValLocs;
2100 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2101 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2102 F.isVarArg()));
2104 const Value *RV = Ret->getOperand(0);
2105 Register Reg = getRegForValue(RV);
2106 if (Reg == 0)
2107 return false;
2109 // Only handle a single return value for now.
2110 if (ValLocs.size() != 1)
2111 return false;
2113 CCValAssign &VA = ValLocs[0];
2115 // Don't bother handling odd stuff for now.
2116 if (VA.getLocInfo() != CCValAssign::Full)
2117 return false;
2118 // Only handle register returns for now.
2119 if (!VA.isRegLoc())
2120 return false;
2122 unsigned SrcReg = Reg + VA.getValNo();
2123 EVT RVEVT = TLI.getValueType(DL, RV->getType());
2124 if (!RVEVT.isSimple()) return false;
2125 MVT RVVT = RVEVT.getSimpleVT();
2126 MVT DestVT = VA.getValVT();
2127 // Special handling for extended integers.
2128 if (RVVT != DestVT) {
2129 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2130 return false;
2132 assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2134 // Perform extension if flagged as either zext or sext. Otherwise, do
2135 // nothing.
2136 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2137 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2138 if (SrcReg == 0) return false;
2142 // Make the copy.
2143 Register DstReg = VA.getLocReg();
2144 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2145 // Avoid a cross-class copy. This is very unlikely.
2146 if (!SrcRC->contains(DstReg))
2147 return false;
2148 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2149 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2151 // Add register to return instruction.
2152 RetRegs.push_back(VA.getLocReg());
2155 unsigned RetOpc;
2156 if (IsCmseNSEntry)
2157 if (isThumb2)
2158 RetOpc = ARM::tBXNS_RET;
2159 else
2160 llvm_unreachable("CMSE not valid for non-Thumb targets");
2161 else
2162 RetOpc = Subtarget->getReturnOpcode();
2164 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2165 TII.get(RetOpc));
2166 AddOptionalDefs(MIB);
2167 for (unsigned R : RetRegs)
2168 MIB.addReg(R, RegState::Implicit);
2169 return true;
2172 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2173 if (UseReg)
2174 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
2175 else
2176 return isThumb2 ? ARM::tBL : ARM::BL;
2179 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2180 // Manually compute the global's type to avoid building it when unnecessary.
2181 Type *GVTy = PointerType::get(*Context, /*AS=*/0);
2182 EVT LCREVT = TLI.getValueType(DL, GVTy);
2183 if (!LCREVT.isSimple()) return 0;
2185 GlobalValue *GV = M.getNamedGlobal(Name.str());
2186 if (!GV)
2187 GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2188 GlobalValue::ExternalLinkage, nullptr, Name);
2190 return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2193 // A quick function that will emit a call for a named libcall in F with the
2194 // vector of passed arguments for the Instruction in I. We can assume that we
2195 // can emit a call for any libcall we can produce. This is an abridged version
2196 // of the full call infrastructure since we won't need to worry about things
2197 // like computed function pointers or strange arguments at call sites.
2198 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2199 // with X86.
2200 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2201 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2203 // Handle *simple* calls for now.
2204 Type *RetTy = I->getType();
2205 MVT RetVT;
2206 if (RetTy->isVoidTy())
2207 RetVT = MVT::isVoid;
2208 else if (!isTypeLegal(RetTy, RetVT))
2209 return false;
2211 // Can't handle non-double multi-reg retvals.
2212 if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2213 SmallVector<CCValAssign, 16> RVLocs;
2214 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2215 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2216 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2217 return false;
2220 // Set up the argument vectors.
2221 SmallVector<Value*, 8> Args;
2222 SmallVector<Register, 8> ArgRegs;
2223 SmallVector<MVT, 8> ArgVTs;
2224 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2225 Args.reserve(I->getNumOperands());
2226 ArgRegs.reserve(I->getNumOperands());
2227 ArgVTs.reserve(I->getNumOperands());
2228 ArgFlags.reserve(I->getNumOperands());
2229 for (Value *Op : I->operands()) {
2230 Register Arg = getRegForValue(Op);
2231 if (Arg == 0) return false;
2233 Type *ArgTy = Op->getType();
2234 MVT ArgVT;
2235 if (!isTypeLegal(ArgTy, ArgVT)) return false;
2237 ISD::ArgFlagsTy Flags;
2238 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2240 Args.push_back(Op);
2241 ArgRegs.push_back(Arg);
2242 ArgVTs.push_back(ArgVT);
2243 ArgFlags.push_back(Flags);
2246 // Handle the arguments now that we've gotten them.
2247 SmallVector<Register, 4> RegArgs;
2248 unsigned NumBytes;
2249 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2250 RegArgs, CC, NumBytes, false))
2251 return false;
2253 Register CalleeReg;
2254 if (Subtarget->genLongCalls()) {
2255 CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2256 if (CalleeReg == 0) return false;
2259 // Issue the call.
2260 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2261 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2262 MIMD, TII.get(CallOpc));
2263 // BL / BLX don't take a predicate, but tBL / tBLX do.
2264 if (isThumb2)
2265 MIB.add(predOps(ARMCC::AL));
2266 if (Subtarget->genLongCalls()) {
2267 CalleeReg =
2268 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2269 MIB.addReg(CalleeReg);
2270 } else
2271 MIB.addExternalSymbol(TLI.getLibcallName(Call));
2273 // Add implicit physical register uses to the call.
2274 for (Register R : RegArgs)
2275 MIB.addReg(R, RegState::Implicit);
2277 // Add a register mask with the call-preserved registers.
2278 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2279 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2281 // Finish off the call including any return values.
2282 SmallVector<Register, 4> UsedRegs;
2283 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2285 // Set all unused physreg defs as dead.
2286 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2288 return true;
2291 bool ARMFastISel::SelectCall(const Instruction *I,
2292 const char *IntrMemName = nullptr) {
2293 const CallInst *CI = cast<CallInst>(I);
2294 const Value *Callee = CI->getCalledOperand();
2296 // Can't handle inline asm.
2297 if (isa<InlineAsm>(Callee)) return false;
2299 // Allow SelectionDAG isel to handle tail calls.
2300 if (CI->isTailCall()) return false;
2302 // Check the calling convention.
2303 CallingConv::ID CC = CI->getCallingConv();
2305 // TODO: Avoid some calling conventions?
2307 FunctionType *FTy = CI->getFunctionType();
2308 bool isVarArg = FTy->isVarArg();
2310 // Handle *simple* calls for now.
2311 Type *RetTy = I->getType();
2312 MVT RetVT;
2313 if (RetTy->isVoidTy())
2314 RetVT = MVT::isVoid;
2315 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2316 RetVT != MVT::i8 && RetVT != MVT::i1)
2317 return false;
2319 // Can't handle non-double multi-reg retvals.
2320 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2321 RetVT != MVT::i16 && RetVT != MVT::i32) {
2322 SmallVector<CCValAssign, 16> RVLocs;
2323 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2324 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2325 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2326 return false;
2329 // Set up the argument vectors.
2330 SmallVector<Value*, 8> Args;
2331 SmallVector<Register, 8> ArgRegs;
2332 SmallVector<MVT, 8> ArgVTs;
2333 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2334 unsigned arg_size = CI->arg_size();
2335 Args.reserve(arg_size);
2336 ArgRegs.reserve(arg_size);
2337 ArgVTs.reserve(arg_size);
2338 ArgFlags.reserve(arg_size);
2339 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
2340 // If we're lowering a memory intrinsic instead of a regular call, skip the
2341 // last argument, which shouldn't be passed to the underlying function.
2342 if (IntrMemName && ArgE - ArgI <= 1)
2343 break;
2345 ISD::ArgFlagsTy Flags;
2346 unsigned ArgIdx = ArgI - CI->arg_begin();
2347 if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
2348 Flags.setSExt();
2349 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
2350 Flags.setZExt();
2352 // FIXME: Only handle *easy* calls for now.
2353 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
2354 CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
2355 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2356 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2357 CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
2358 CI->paramHasAttr(ArgIdx, Attribute::ByVal))
2359 return false;
2361 Type *ArgTy = (*ArgI)->getType();
2362 MVT ArgVT;
2363 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2364 ArgVT != MVT::i1)
2365 return false;
2367 Register Arg = getRegForValue(*ArgI);
2368 if (!Arg.isValid())
2369 return false;
2371 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2373 Args.push_back(*ArgI);
2374 ArgRegs.push_back(Arg);
2375 ArgVTs.push_back(ArgVT);
2376 ArgFlags.push_back(Flags);
2379 // Handle the arguments now that we've gotten them.
2380 SmallVector<Register, 4> RegArgs;
2381 unsigned NumBytes;
2382 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2383 RegArgs, CC, NumBytes, isVarArg))
2384 return false;
2386 bool UseReg = false;
2387 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2388 if (!GV || Subtarget->genLongCalls()) UseReg = true;
2390 Register CalleeReg;
2391 if (UseReg) {
2392 if (IntrMemName)
2393 CalleeReg = getLibcallReg(IntrMemName);
2394 else
2395 CalleeReg = getRegForValue(Callee);
2397 if (CalleeReg == 0) return false;
2400 // Issue the call.
2401 unsigned CallOpc = ARMSelectCallOp(UseReg);
2402 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2403 MIMD, TII.get(CallOpc));
2405 // ARM calls don't take a predicate, but tBL / tBLX do.
2406 if(isThumb2)
2407 MIB.add(predOps(ARMCC::AL));
2408 if (UseReg) {
2409 CalleeReg =
2410 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2411 MIB.addReg(CalleeReg);
2412 } else if (!IntrMemName)
2413 MIB.addGlobalAddress(GV, 0, 0);
2414 else
2415 MIB.addExternalSymbol(IntrMemName, 0);
2417 // Add implicit physical register uses to the call.
2418 for (Register R : RegArgs)
2419 MIB.addReg(R, RegState::Implicit);
2421 // Add a register mask with the call-preserved registers.
2422 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2423 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2425 // Finish off the call including any return values.
2426 SmallVector<Register, 4> UsedRegs;
2427 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2428 return false;
2430 // Set all unused physreg defs as dead.
2431 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2433 return true;
2436 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2437 return Len <= 16;
2440 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
2441 MaybeAlign Alignment) {
2442 // Make sure we don't bloat code by inlining very large memcpy's.
2443 if (!ARMIsMemCpySmall(Len))
2444 return false;
2446 while (Len) {
2447 MVT VT;
2448 if (!Alignment || *Alignment >= 4) {
2449 if (Len >= 4)
2450 VT = MVT::i32;
2451 else if (Len >= 2)
2452 VT = MVT::i16;
2453 else {
2454 assert(Len == 1 && "Expected a length of 1!");
2455 VT = MVT::i8;
2457 } else {
2458 assert(Alignment && "Alignment is set in this branch");
2459 // Bound based on alignment.
2460 if (Len >= 2 && *Alignment == 2)
2461 VT = MVT::i16;
2462 else {
2463 VT = MVT::i8;
2467 bool RV;
2468 Register ResultReg;
2469 RV = ARMEmitLoad(VT, ResultReg, Src);
2470 assert(RV && "Should be able to handle this load.");
2471 RV = ARMEmitStore(VT, ResultReg, Dest);
2472 assert(RV && "Should be able to handle this store.");
2473 (void)RV;
2475 unsigned Size = VT.getSizeInBits()/8;
2476 Len -= Size;
2477 Dest.Offset += Size;
2478 Src.Offset += Size;
2481 return true;
2484 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2485 // FIXME: Handle more intrinsics.
2486 switch (I.getIntrinsicID()) {
2487 default: return false;
2488 case Intrinsic::frameaddress: {
2489 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2490 MFI.setFrameAddressIsTaken(true);
2492 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2493 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2494 : &ARM::GPRRegClass;
2496 const ARMBaseRegisterInfo *RegInfo =
2497 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2498 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2499 unsigned SrcReg = FramePtr;
2501 // Recursively load frame address
2502 // ldr r0 [fp]
2503 // ldr r0 [r0]
2504 // ldr r0 [r0]
2505 // ...
2506 unsigned DestReg;
2507 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2508 while (Depth--) {
2509 DestReg = createResultReg(RC);
2510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2511 TII.get(LdrOpc), DestReg)
2512 .addReg(SrcReg).addImm(0));
2513 SrcReg = DestReg;
2515 updateValueMap(&I, SrcReg);
2516 return true;
2518 case Intrinsic::memcpy:
2519 case Intrinsic::memmove: {
2520 const MemTransferInst &MTI = cast<MemTransferInst>(I);
2521 // Don't handle volatile.
2522 if (MTI.isVolatile())
2523 return false;
2525 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
2526 // we would emit dead code because we don't currently handle memmoves.
2527 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2528 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2529 // Small memcpy's are common enough that we want to do them without a call
2530 // if possible.
2531 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2532 if (ARMIsMemCpySmall(Len)) {
2533 Address Dest, Src;
2534 if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2535 !ARMComputeAddress(MTI.getRawSource(), Src))
2536 return false;
2537 MaybeAlign Alignment;
2538 if (MTI.getDestAlign() || MTI.getSourceAlign())
2539 Alignment = std::min(MTI.getDestAlign().valueOrOne(),
2540 MTI.getSourceAlign().valueOrOne());
2541 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2542 return true;
2546 if (!MTI.getLength()->getType()->isIntegerTy(32))
2547 return false;
2549 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2550 return false;
2552 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2553 return SelectCall(&I, IntrMemName);
2555 case Intrinsic::memset: {
2556 const MemSetInst &MSI = cast<MemSetInst>(I);
2557 // Don't handle volatile.
2558 if (MSI.isVolatile())
2559 return false;
2561 if (!MSI.getLength()->getType()->isIntegerTy(32))
2562 return false;
2564 if (MSI.getDestAddressSpace() > 255)
2565 return false;
2567 return SelectCall(&I, "memset");
2569 case Intrinsic::trap: {
2570 unsigned Opcode;
2571 if (Subtarget->isThumb())
2572 Opcode = ARM::tTRAP;
2573 else
2574 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode));
2576 return true;
2581 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2582 // The high bits for a type smaller than the register size are assumed to be
2583 // undefined.
2584 Value *Op = I->getOperand(0);
2586 EVT SrcVT, DestVT;
2587 SrcVT = TLI.getValueType(DL, Op->getType(), true);
2588 DestVT = TLI.getValueType(DL, I->getType(), true);
2590 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2591 return false;
2592 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2593 return false;
2595 Register SrcReg = getRegForValue(Op);
2596 if (!SrcReg) return false;
2598 // Because the high bits are undefined, a truncate doesn't generate
2599 // any code.
2600 updateValueMap(I, SrcReg);
2601 return true;
2604 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2605 bool isZExt) {
2606 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2607 return 0;
2608 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2609 return 0;
2611 // Table of which combinations can be emitted as a single instruction,
2612 // and which will require two.
2613 static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2614 // ARM Thumb
2615 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
2616 // ext: s z s z s z s z
2617 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2618 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2619 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2622 // Target registers for:
2623 // - For ARM can never be PC.
2624 // - For 16-bit Thumb are restricted to lower 8 registers.
2625 // - For 32-bit Thumb are restricted to non-SP and non-PC.
2626 static const TargetRegisterClass *RCTbl[2][2] = {
2627 // Instructions: Two Single
2628 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2629 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
2632 // Table governing the instruction(s) to be emitted.
2633 static const struct InstructionTable {
2634 uint32_t Opc : 16;
2635 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
2636 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
2637 uint32_t Imm : 8; // All instructions have either a shift or a mask.
2638 } IT[2][2][3][2] = {
2639 { // Two instructions (first is left shift, second is in this table).
2640 { // ARM Opc S Shift Imm
2641 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
2642 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
2643 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
2644 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
2645 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
2646 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
2648 { // Thumb Opc S Shift Imm
2649 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
2650 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
2651 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
2652 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
2653 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
2654 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
2657 { // Single instruction.
2658 { // ARM Opc S Shift Imm
2659 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2660 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
2661 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
2662 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
2663 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
2664 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
2666 { // Thumb Opc S Shift Imm
2667 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2668 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
2669 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
2670 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2671 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
2672 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
2677 unsigned SrcBits = SrcVT.getSizeInBits();
2678 unsigned DestBits = DestVT.getSizeInBits();
2679 (void) DestBits;
2680 assert((SrcBits < DestBits) && "can only extend to larger types");
2681 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2682 "other sizes unimplemented");
2683 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2684 "other sizes unimplemented");
2686 bool hasV6Ops = Subtarget->hasV6Ops();
2687 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
2688 assert((Bitness < 3) && "sanity-check table bounds");
2690 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2691 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2692 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2693 unsigned Opc = ITP->Opc;
2694 assert(ARM::KILL != Opc && "Invalid table entry");
2695 unsigned hasS = ITP->hasS;
2696 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2697 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2698 "only MOVsi has shift operand addressing mode");
2699 unsigned Imm = ITP->Imm;
2701 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2702 bool setsCPSR = &ARM::tGPRRegClass == RC;
2703 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2704 unsigned ResultReg;
2705 // MOVsi encodes shift and immediate in shift operand addressing mode.
2706 // The following condition has the same value when emitting two
2707 // instruction sequences: both are shifts.
2708 bool ImmIsSO = (Shift != ARM_AM::no_shift);
2710 // Either one or two instructions are emitted.
2711 // They're always of the form:
2712 // dst = in OP imm
2713 // CPSR is set only by 16-bit Thumb instructions.
2714 // Predicate, if any, is AL.
2715 // S bit, if available, is always 0.
2716 // When two are emitted the first's result will feed as the second's input,
2717 // that value is then dead.
2718 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2719 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2720 ResultReg = createResultReg(RC);
2721 bool isLsl = (0 == Instr) && !isSingleInstr;
2722 unsigned Opcode = isLsl ? LSLOpc : Opc;
2723 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2724 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2725 bool isKill = 1 == Instr;
2726 MachineInstrBuilder MIB = BuildMI(
2727 *FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode), ResultReg);
2728 if (setsCPSR)
2729 MIB.addReg(ARM::CPSR, RegState::Define);
2730 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2731 MIB.addReg(SrcReg, isKill * RegState::Kill)
2732 .addImm(ImmEnc)
2733 .add(predOps(ARMCC::AL));
2734 if (hasS)
2735 MIB.add(condCodeOp());
2736 // Second instruction consumes the first's result.
2737 SrcReg = ResultReg;
2740 return ResultReg;
2743 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2744 // On ARM, in general, integer casts don't involve legal types; this code
2745 // handles promotable integers.
2746 Type *DestTy = I->getType();
2747 Value *Src = I->getOperand(0);
2748 Type *SrcTy = Src->getType();
2750 bool isZExt = isa<ZExtInst>(I);
2751 Register SrcReg = getRegForValue(Src);
2752 if (!SrcReg) return false;
2754 EVT SrcEVT, DestEVT;
2755 SrcEVT = TLI.getValueType(DL, SrcTy, true);
2756 DestEVT = TLI.getValueType(DL, DestTy, true);
2757 if (!SrcEVT.isSimple()) return false;
2758 if (!DestEVT.isSimple()) return false;
2760 MVT SrcVT = SrcEVT.getSimpleVT();
2761 MVT DestVT = DestEVT.getSimpleVT();
2762 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2763 if (ResultReg == 0) return false;
2764 updateValueMap(I, ResultReg);
2765 return true;
2768 bool ARMFastISel::SelectShift(const Instruction *I,
2769 ARM_AM::ShiftOpc ShiftTy) {
2770 // We handle thumb2 mode by target independent selector
2771 // or SelectionDAG ISel.
2772 if (isThumb2)
2773 return false;
2775 // Only handle i32 now.
2776 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2777 if (DestVT != MVT::i32)
2778 return false;
2780 unsigned Opc = ARM::MOVsr;
2781 unsigned ShiftImm;
2782 Value *Src2Value = I->getOperand(1);
2783 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2784 ShiftImm = CI->getZExtValue();
2786 // Fall back to selection DAG isel if the shift amount
2787 // is zero or greater than the width of the value type.
2788 if (ShiftImm == 0 || ShiftImm >=32)
2789 return false;
2791 Opc = ARM::MOVsi;
2794 Value *Src1Value = I->getOperand(0);
2795 Register Reg1 = getRegForValue(Src1Value);
2796 if (Reg1 == 0) return false;
2798 unsigned Reg2 = 0;
2799 if (Opc == ARM::MOVsr) {
2800 Reg2 = getRegForValue(Src2Value);
2801 if (Reg2 == 0) return false;
2804 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2805 if(ResultReg == 0) return false;
2807 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2808 TII.get(Opc), ResultReg)
2809 .addReg(Reg1);
2811 if (Opc == ARM::MOVsi)
2812 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2813 else if (Opc == ARM::MOVsr) {
2814 MIB.addReg(Reg2);
2815 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2818 AddOptionalDefs(MIB);
2819 updateValueMap(I, ResultReg);
2820 return true;
2823 // TODO: SoftFP support.
2824 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2825 switch (I->getOpcode()) {
2826 case Instruction::Load:
2827 return SelectLoad(I);
2828 case Instruction::Store:
2829 return SelectStore(I);
2830 case Instruction::Br:
2831 return SelectBranch(I);
2832 case Instruction::IndirectBr:
2833 return SelectIndirectBr(I);
2834 case Instruction::ICmp:
2835 case Instruction::FCmp:
2836 return SelectCmp(I);
2837 case Instruction::FPExt:
2838 return SelectFPExt(I);
2839 case Instruction::FPTrunc:
2840 return SelectFPTrunc(I);
2841 case Instruction::SIToFP:
2842 return SelectIToFP(I, /*isSigned*/ true);
2843 case Instruction::UIToFP:
2844 return SelectIToFP(I, /*isSigned*/ false);
2845 case Instruction::FPToSI:
2846 return SelectFPToI(I, /*isSigned*/ true);
2847 case Instruction::FPToUI:
2848 return SelectFPToI(I, /*isSigned*/ false);
2849 case Instruction::Add:
2850 return SelectBinaryIntOp(I, ISD::ADD);
2851 case Instruction::Or:
2852 return SelectBinaryIntOp(I, ISD::OR);
2853 case Instruction::Sub:
2854 return SelectBinaryIntOp(I, ISD::SUB);
2855 case Instruction::FAdd:
2856 return SelectBinaryFPOp(I, ISD::FADD);
2857 case Instruction::FSub:
2858 return SelectBinaryFPOp(I, ISD::FSUB);
2859 case Instruction::FMul:
2860 return SelectBinaryFPOp(I, ISD::FMUL);
2861 case Instruction::SDiv:
2862 return SelectDiv(I, /*isSigned*/ true);
2863 case Instruction::UDiv:
2864 return SelectDiv(I, /*isSigned*/ false);
2865 case Instruction::SRem:
2866 return SelectRem(I, /*isSigned*/ true);
2867 case Instruction::URem:
2868 return SelectRem(I, /*isSigned*/ false);
2869 case Instruction::Call:
2870 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2871 return SelectIntrinsicCall(*II);
2872 return SelectCall(I);
2873 case Instruction::Select:
2874 return SelectSelect(I);
2875 case Instruction::Ret:
2876 return SelectRet(I);
2877 case Instruction::Trunc:
2878 return SelectTrunc(I);
2879 case Instruction::ZExt:
2880 case Instruction::SExt:
2881 return SelectIntExt(I);
2882 case Instruction::Shl:
2883 return SelectShift(I, ARM_AM::lsl);
2884 case Instruction::LShr:
2885 return SelectShift(I, ARM_AM::lsr);
2886 case Instruction::AShr:
2887 return SelectShift(I, ARM_AM::asr);
2888 default: break;
2890 return false;
2893 // This table describes sign- and zero-extend instructions which can be
2894 // folded into a preceding load. All of these extends have an immediate
2895 // (sometimes a mask and sometimes a shift) that's applied after
2896 // extension.
2897 static const struct FoldableLoadExtendsStruct {
2898 uint16_t Opc[2]; // ARM, Thumb.
2899 uint8_t ExpectedImm;
2900 uint8_t isZExt : 1;
2901 uint8_t ExpectedVT : 7;
2902 } FoldableLoadExtends[] = {
2903 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
2904 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
2905 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
2906 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
2907 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
2910 /// The specified machine instr operand is a vreg, and that
2911 /// vreg is being provided by the specified load instruction. If possible,
2912 /// try to fold the load as an operand to the instruction, returning true if
2913 /// successful.
2914 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2915 const LoadInst *LI) {
2916 // Verify we have a legal type before going any further.
2917 MVT VT;
2918 if (!isLoadTypeLegal(LI->getType(), VT))
2919 return false;
2921 // Combine load followed by zero- or sign-extend.
2922 // ldrb r1, [r0] ldrb r1, [r0]
2923 // uxtb r2, r1 =>
2924 // mov r3, r2 mov r3, r1
2925 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2926 return false;
2927 const uint64_t Imm = MI->getOperand(2).getImm();
2929 bool Found = false;
2930 bool isZExt;
2931 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2932 if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2933 (uint64_t)FLE.ExpectedImm == Imm &&
2934 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2935 Found = true;
2936 isZExt = FLE.isZExt;
2939 if (!Found) return false;
2941 // See if we can handle this address.
2942 Address Addr;
2943 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2945 Register ResultReg = MI->getOperand(0).getReg();
2946 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlign(), isZExt, false))
2947 return false;
2948 MachineBasicBlock::iterator I(MI);
2949 removeDeadCode(I, std::next(I));
2950 return true;
2953 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2954 bool UseGOT_PREL = !GV->isDSOLocal();
2955 LLVMContext *Context = &MF->getFunction().getContext();
2956 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2957 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2958 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2959 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2960 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2961 /*AddCurrentAddress=*/UseGOT_PREL);
2963 Align ConstAlign =
2964 MF->getDataLayout().getPrefTypeAlign(PointerType::get(*Context, 0));
2965 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2966 MachineMemOperand *CPMMO =
2967 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2968 MachineMemOperand::MOLoad, 4, Align(4));
2970 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2971 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2972 MachineInstrBuilder MIB =
2973 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), TempReg)
2974 .addConstantPoolIndex(Idx)
2975 .addMemOperand(CPMMO);
2976 if (Opc == ARM::LDRcp)
2977 MIB.addImm(0);
2978 MIB.add(predOps(ARMCC::AL));
2980 // Fix the address by adding pc.
2981 Register DestReg = createResultReg(TLI.getRegClassFor(VT));
2982 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2983 : ARM::PICADD;
2984 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2985 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2986 .addReg(TempReg)
2987 .addImm(ARMPCLabelIndex);
2989 if (!Subtarget->isThumb())
2990 MIB.add(predOps(ARMCC::AL));
2992 if (UseGOT_PREL && Subtarget->isThumb()) {
2993 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2994 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2995 TII.get(ARM::t2LDRi12), NewDestReg)
2996 .addReg(DestReg)
2997 .addImm(0);
2998 DestReg = NewDestReg;
2999 AddOptionalDefs(MIB);
3001 return DestReg;
3004 bool ARMFastISel::fastLowerArguments() {
3005 if (!FuncInfo.CanLowerReturn)
3006 return false;
3008 const Function *F = FuncInfo.Fn;
3009 if (F->isVarArg())
3010 return false;
3012 CallingConv::ID CC = F->getCallingConv();
3013 switch (CC) {
3014 default:
3015 return false;
3016 case CallingConv::Fast:
3017 case CallingConv::C:
3018 case CallingConv::ARM_AAPCS_VFP:
3019 case CallingConv::ARM_AAPCS:
3020 case CallingConv::ARM_APCS:
3021 case CallingConv::Swift:
3022 case CallingConv::SwiftTail:
3023 break;
3026 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3027 // which are passed in r0 - r3.
3028 for (const Argument &Arg : F->args()) {
3029 if (Arg.getArgNo() >= 4)
3030 return false;
3032 if (Arg.hasAttribute(Attribute::InReg) ||
3033 Arg.hasAttribute(Attribute::StructRet) ||
3034 Arg.hasAttribute(Attribute::SwiftSelf) ||
3035 Arg.hasAttribute(Attribute::SwiftError) ||
3036 Arg.hasAttribute(Attribute::ByVal))
3037 return false;
3039 Type *ArgTy = Arg.getType();
3040 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3041 return false;
3043 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3044 if (!ArgVT.isSimple()) return false;
3045 switch (ArgVT.getSimpleVT().SimpleTy) {
3046 case MVT::i8:
3047 case MVT::i16:
3048 case MVT::i32:
3049 break;
3050 default:
3051 return false;
3055 static const MCPhysReg GPRArgRegs[] = {
3056 ARM::R0, ARM::R1, ARM::R2, ARM::R3
3059 const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3060 for (const Argument &Arg : F->args()) {
3061 unsigned ArgNo = Arg.getArgNo();
3062 unsigned SrcReg = GPRArgRegs[ArgNo];
3063 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3064 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3065 // Without this, EmitLiveInCopies may eliminate the livein if its only
3066 // use is a bitcast (which isn't turned into an instruction).
3067 Register ResultReg = createResultReg(RC);
3068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3069 TII.get(TargetOpcode::COPY),
3070 ResultReg).addReg(DstReg, getKillRegState(true));
3071 updateValueMap(&Arg, ResultReg);
3074 return true;
3077 namespace llvm {
3079 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3080 const TargetLibraryInfo *libInfo) {
3081 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3082 return new ARMFastISel(funcInfo, libInfo);
3084 return nullptr;
3087 } // end namespace llvm