1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "ARMTargetTransformInfo.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ComplexDeinterleavingPass.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
59 #include "llvm/CodeGen/SelectionDAGNodes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/CodeGen/TargetLowering.h"
62 #include "llvm/CodeGen/TargetOpcodes.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/CodeGen/TargetSubtargetInfo.h"
65 #include "llvm/CodeGen/ValueTypes.h"
66 #include "llvm/CodeGenTypes/MachineValueType.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/CallingConv.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugLoc.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/GlobalAlias.h"
76 #include "llvm/IR/GlobalValue.h"
77 #include "llvm/IR/GlobalVariable.h"
78 #include "llvm/IR/IRBuilder.h"
79 #include "llvm/IR/InlineAsm.h"
80 #include "llvm/IR/Instruction.h"
81 #include "llvm/IR/Instructions.h"
82 #include "llvm/IR/IntrinsicInst.h"
83 #include "llvm/IR/Intrinsics.h"
84 #include "llvm/IR/IntrinsicsARM.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/MC/MCInstrItineraries.h"
91 #include "llvm/MC/MCSchedule.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/BranchProbability.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CodeGen.h"
96 #include "llvm/Support/CommandLine.h"
97 #include "llvm/Support/Compiler.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include "llvm/TargetParser/Triple.h"
117 using namespace llvm
;
118 using namespace llvm::PatternMatch
;
120 #define DEBUG_TYPE "arm-isel"
122 STATISTIC(NumTailCalls
, "Number of tail calls");
123 STATISTIC(NumMovwMovt
, "Number of GAs materialized with movw + movt");
124 STATISTIC(NumLoopByVals
, "Number of loops generated for byval arguments");
125 STATISTIC(NumConstpoolPromoted
,
126 "Number of constants with their storage promoted into constant pools");
129 ARMInterworking("arm-interworking", cl::Hidden
,
130 cl::desc("Enable / disable ARM interworking (for debugging only)"),
133 static cl::opt
<bool> EnableConstpoolPromotion(
134 "arm-promote-constant", cl::Hidden
,
135 cl::desc("Enable / disable promotion of unnamed_addr constants into "
137 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
138 static cl::opt
<unsigned> ConstpoolPromotionMaxSize(
139 "arm-promote-constant-max-size", cl::Hidden
,
140 cl::desc("Maximum size of constant to promote into a constant pool"),
142 static cl::opt
<unsigned> ConstpoolPromotionMaxTotal(
143 "arm-promote-constant-max-total", cl::Hidden
,
144 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
148 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden
,
149 cl::desc("Maximum interleave factor for MVE VLDn to generate."),
152 /// Value type used for "flags" operands / results (either CPSR or FPSCR_NZCV).
153 constexpr MVT FlagsVT
= MVT::i32
;
155 // The APCS parameter registers.
156 static const MCPhysReg GPRArgRegs
[] = {
157 ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
160 static SDValue
handleCMSEValue(const SDValue
&Value
, const ISD::InputArg
&Arg
,
161 SelectionDAG
&DAG
, const SDLoc
&DL
) {
162 assert(Arg
.ArgVT
.isScalarInteger());
163 assert(Arg
.ArgVT
.bitsLT(MVT::i32
));
164 SDValue Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, Arg
.ArgVT
, Value
);
166 DAG
.getNode(Arg
.Flags
.isSExt() ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
, DL
,
171 void ARMTargetLowering::addTypeForNEON(MVT VT
, MVT PromotedLdStVT
) {
172 if (VT
!= PromotedLdStVT
) {
173 setOperationAction(ISD::LOAD
, VT
, Promote
);
174 AddPromotedToType (ISD::LOAD
, VT
, PromotedLdStVT
);
176 setOperationAction(ISD::STORE
, VT
, Promote
);
177 AddPromotedToType (ISD::STORE
, VT
, PromotedLdStVT
);
180 MVT ElemTy
= VT
.getVectorElementType();
181 if (ElemTy
!= MVT::f64
)
182 setOperationAction(ISD::SETCC
, VT
, Custom
);
183 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
184 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
185 if (ElemTy
== MVT::i32
) {
186 setOperationAction(ISD::SINT_TO_FP
, VT
, Custom
);
187 setOperationAction(ISD::UINT_TO_FP
, VT
, Custom
);
188 setOperationAction(ISD::FP_TO_SINT
, VT
, Custom
);
189 setOperationAction(ISD::FP_TO_UINT
, VT
, Custom
);
191 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
192 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
193 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
194 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
196 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
197 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
198 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Legal
);
199 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Legal
);
200 setOperationAction(ISD::SELECT
, VT
, Expand
);
201 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
202 setOperationAction(ISD::VSELECT
, VT
, Expand
);
203 setOperationAction(ISD::SIGN_EXTEND_INREG
, VT
, Expand
);
204 if (VT
.isInteger()) {
205 setOperationAction(ISD::SHL
, VT
, Custom
);
206 setOperationAction(ISD::SRA
, VT
, Custom
);
207 setOperationAction(ISD::SRL
, VT
, Custom
);
210 // Neon does not support vector divide/remainder operations.
211 setOperationAction(ISD::SDIV
, VT
, Expand
);
212 setOperationAction(ISD::UDIV
, VT
, Expand
);
213 setOperationAction(ISD::FDIV
, VT
, Expand
);
214 setOperationAction(ISD::SREM
, VT
, Expand
);
215 setOperationAction(ISD::UREM
, VT
, Expand
);
216 setOperationAction(ISD::FREM
, VT
, Expand
);
217 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
218 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
220 if (!VT
.isFloatingPoint() && VT
!= MVT::v2i64
&& VT
!= MVT::v1i64
)
221 for (auto Opcode
: {ISD::ABS
, ISD::ABDS
, ISD::ABDU
, ISD::SMIN
, ISD::SMAX
,
222 ISD::UMIN
, ISD::UMAX
})
223 setOperationAction(Opcode
, VT
, Legal
);
224 if (!VT
.isFloatingPoint())
225 for (auto Opcode
: {ISD::SADDSAT
, ISD::UADDSAT
, ISD::SSUBSAT
, ISD::USUBSAT
})
226 setOperationAction(Opcode
, VT
, Legal
);
229 void ARMTargetLowering::addDRTypeForNEON(MVT VT
) {
230 addRegisterClass(VT
, &ARM::DPRRegClass
);
231 addTypeForNEON(VT
, MVT::f64
);
234 void ARMTargetLowering::addQRTypeForNEON(MVT VT
) {
235 addRegisterClass(VT
, &ARM::DPairRegClass
);
236 addTypeForNEON(VT
, MVT::v2f64
);
239 void ARMTargetLowering::setAllExpand(MVT VT
) {
240 for (unsigned Opc
= 0; Opc
< ISD::BUILTIN_OP_END
; ++Opc
)
241 setOperationAction(Opc
, VT
, Expand
);
243 // We support these really simple operations even on types where all
244 // the actual arithmetic has to be broken down into simpler
245 // operations or turned into library calls.
246 setOperationAction(ISD::BITCAST
, VT
, Legal
);
247 setOperationAction(ISD::LOAD
, VT
, Legal
);
248 setOperationAction(ISD::STORE
, VT
, Legal
);
249 setOperationAction(ISD::UNDEF
, VT
, Legal
);
252 void ARMTargetLowering::addAllExtLoads(const MVT From
, const MVT To
,
253 LegalizeAction Action
) {
254 setLoadExtAction(ISD::EXTLOAD
, From
, To
, Action
);
255 setLoadExtAction(ISD::ZEXTLOAD
, From
, To
, Action
);
256 setLoadExtAction(ISD::SEXTLOAD
, From
, To
, Action
);
259 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP
) {
260 const MVT IntTypes
[] = { MVT::v16i8
, MVT::v8i16
, MVT::v4i32
};
262 for (auto VT
: IntTypes
) {
263 addRegisterClass(VT
, &ARM::MQPRRegClass
);
264 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
265 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
266 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
267 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
268 setOperationAction(ISD::SHL
, VT
, Custom
);
269 setOperationAction(ISD::SRA
, VT
, Custom
);
270 setOperationAction(ISD::SRL
, VT
, Custom
);
271 setOperationAction(ISD::SMIN
, VT
, Legal
);
272 setOperationAction(ISD::SMAX
, VT
, Legal
);
273 setOperationAction(ISD::UMIN
, VT
, Legal
);
274 setOperationAction(ISD::UMAX
, VT
, Legal
);
275 setOperationAction(ISD::ABS
, VT
, Legal
);
276 setOperationAction(ISD::SETCC
, VT
, Custom
);
277 setOperationAction(ISD::MLOAD
, VT
, Custom
);
278 setOperationAction(ISD::MSTORE
, VT
, Legal
);
279 setOperationAction(ISD::CTLZ
, VT
, Legal
);
280 setOperationAction(ISD::CTTZ
, VT
, Custom
);
281 setOperationAction(ISD::BITREVERSE
, VT
, Legal
);
282 setOperationAction(ISD::BSWAP
, VT
, Legal
);
283 setOperationAction(ISD::SADDSAT
, VT
, Legal
);
284 setOperationAction(ISD::UADDSAT
, VT
, Legal
);
285 setOperationAction(ISD::SSUBSAT
, VT
, Legal
);
286 setOperationAction(ISD::USUBSAT
, VT
, Legal
);
287 setOperationAction(ISD::ABDS
, VT
, Legal
);
288 setOperationAction(ISD::ABDU
, VT
, Legal
);
289 setOperationAction(ISD::AVGFLOORS
, VT
, Legal
);
290 setOperationAction(ISD::AVGFLOORU
, VT
, Legal
);
291 setOperationAction(ISD::AVGCEILS
, VT
, Legal
);
292 setOperationAction(ISD::AVGCEILU
, VT
, Legal
);
294 // No native support for these.
295 setOperationAction(ISD::UDIV
, VT
, Expand
);
296 setOperationAction(ISD::SDIV
, VT
, Expand
);
297 setOperationAction(ISD::UREM
, VT
, Expand
);
298 setOperationAction(ISD::SREM
, VT
, Expand
);
299 setOperationAction(ISD::UDIVREM
, VT
, Expand
);
300 setOperationAction(ISD::SDIVREM
, VT
, Expand
);
301 setOperationAction(ISD::CTPOP
, VT
, Expand
);
302 setOperationAction(ISD::SELECT
, VT
, Expand
);
303 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
306 setOperationAction(ISD::VECREDUCE_ADD
, VT
, Legal
);
307 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Legal
);
308 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Legal
);
309 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Legal
);
310 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Legal
);
311 setOperationAction(ISD::VECREDUCE_MUL
, VT
, Custom
);
312 setOperationAction(ISD::VECREDUCE_AND
, VT
, Custom
);
313 setOperationAction(ISD::VECREDUCE_OR
, VT
, Custom
);
314 setOperationAction(ISD::VECREDUCE_XOR
, VT
, Custom
);
317 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
318 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
319 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
320 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
322 setOperationAction(ISD::FP_TO_SINT_SAT
, VT
, Custom
);
323 setOperationAction(ISD::FP_TO_UINT_SAT
, VT
, Custom
);
326 // Pre and Post inc are supported on loads and stores
327 for (unsigned im
= (unsigned)ISD::PRE_INC
;
328 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
329 setIndexedLoadAction(im
, VT
, Legal
);
330 setIndexedStoreAction(im
, VT
, Legal
);
331 setIndexedMaskedLoadAction(im
, VT
, Legal
);
332 setIndexedMaskedStoreAction(im
, VT
, Legal
);
336 const MVT FloatTypes
[] = { MVT::v8f16
, MVT::v4f32
};
337 for (auto VT
: FloatTypes
) {
338 addRegisterClass(VT
, &ARM::MQPRRegClass
);
342 // These are legal or custom whether we have MVE.fp or not
343 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
344 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
345 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
.getVectorElementType(), Custom
);
346 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
347 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
348 setOperationAction(ISD::BUILD_VECTOR
, VT
.getVectorElementType(), Custom
);
349 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Legal
);
350 setOperationAction(ISD::SETCC
, VT
, Custom
);
351 setOperationAction(ISD::MLOAD
, VT
, Custom
);
352 setOperationAction(ISD::MSTORE
, VT
, Legal
);
353 setOperationAction(ISD::SELECT
, VT
, Expand
);
354 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
356 // Pre and Post inc are supported on loads and stores
357 for (unsigned im
= (unsigned)ISD::PRE_INC
;
358 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
359 setIndexedLoadAction(im
, VT
, Legal
);
360 setIndexedStoreAction(im
, VT
, Legal
);
361 setIndexedMaskedLoadAction(im
, VT
, Legal
);
362 setIndexedMaskedStoreAction(im
, VT
, Legal
);
366 setOperationAction(ISD::FMINNUM
, VT
, Legal
);
367 setOperationAction(ISD::FMAXNUM
, VT
, Legal
);
368 setOperationAction(ISD::FROUND
, VT
, Legal
);
369 setOperationAction(ISD::VECREDUCE_FADD
, VT
, Custom
);
370 setOperationAction(ISD::VECREDUCE_FMUL
, VT
, Custom
);
371 setOperationAction(ISD::VECREDUCE_FMIN
, VT
, Custom
);
372 setOperationAction(ISD::VECREDUCE_FMAX
, VT
, Custom
);
374 // No native support for these.
375 setOperationAction(ISD::FDIV
, VT
, Expand
);
376 setOperationAction(ISD::FREM
, VT
, Expand
);
377 setOperationAction(ISD::FSQRT
, VT
, Expand
);
378 setOperationAction(ISD::FSIN
, VT
, Expand
);
379 setOperationAction(ISD::FCOS
, VT
, Expand
);
380 setOperationAction(ISD::FTAN
, VT
, Expand
);
381 setOperationAction(ISD::FPOW
, VT
, Expand
);
382 setOperationAction(ISD::FLOG
, VT
, Expand
);
383 setOperationAction(ISD::FLOG2
, VT
, Expand
);
384 setOperationAction(ISD::FLOG10
, VT
, Expand
);
385 setOperationAction(ISD::FEXP
, VT
, Expand
);
386 setOperationAction(ISD::FEXP2
, VT
, Expand
);
387 setOperationAction(ISD::FEXP10
, VT
, Expand
);
388 setOperationAction(ISD::FNEARBYINT
, VT
, Expand
);
392 // Custom Expand smaller than legal vector reductions to prevent false zero
393 // items being added.
394 setOperationAction(ISD::VECREDUCE_FADD
, MVT::v4f16
, Custom
);
395 setOperationAction(ISD::VECREDUCE_FMUL
, MVT::v4f16
, Custom
);
396 setOperationAction(ISD::VECREDUCE_FMIN
, MVT::v4f16
, Custom
);
397 setOperationAction(ISD::VECREDUCE_FMAX
, MVT::v4f16
, Custom
);
398 setOperationAction(ISD::VECREDUCE_FADD
, MVT::v2f16
, Custom
);
399 setOperationAction(ISD::VECREDUCE_FMUL
, MVT::v2f16
, Custom
);
400 setOperationAction(ISD::VECREDUCE_FMIN
, MVT::v2f16
, Custom
);
401 setOperationAction(ISD::VECREDUCE_FMAX
, MVT::v2f16
, Custom
);
403 // We 'support' these types up to bitcast/load/store level, regardless of
404 // MVE integer-only / float support. Only doing FP data processing on the FP
405 // vector types is inhibited at integer-only level.
406 const MVT LongTypes
[] = { MVT::v2i64
, MVT::v2f64
};
407 for (auto VT
: LongTypes
) {
408 addRegisterClass(VT
, &ARM::MQPRRegClass
);
410 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
411 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
412 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
413 setOperationAction(ISD::VSELECT
, VT
, Legal
);
414 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
416 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v2f64
, Legal
);
418 // We can do bitwise operations on v2i64 vectors
419 setOperationAction(ISD::AND
, MVT::v2i64
, Legal
);
420 setOperationAction(ISD::OR
, MVT::v2i64
, Legal
);
421 setOperationAction(ISD::XOR
, MVT::v2i64
, Legal
);
423 // It is legal to extload from v4i8 to v4i16 or v4i32.
424 addAllExtLoads(MVT::v8i16
, MVT::v8i8
, Legal
);
425 addAllExtLoads(MVT::v4i32
, MVT::v4i16
, Legal
);
426 addAllExtLoads(MVT::v4i32
, MVT::v4i8
, Legal
);
428 // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
429 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i8
, Legal
);
430 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i16
, Legal
);
431 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i32
, Legal
);
432 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v8i8
, Legal
);
433 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v8i16
, Legal
);
435 // Some truncating stores are legal too.
436 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Legal
);
437 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Legal
);
438 setTruncStoreAction(MVT::v8i16
, MVT::v8i8
, Legal
);
440 // Pre and Post inc on these are legal, given the correct extends
441 for (unsigned im
= (unsigned)ISD::PRE_INC
;
442 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
443 for (auto VT
: {MVT::v8i8
, MVT::v4i8
, MVT::v4i16
}) {
444 setIndexedLoadAction(im
, VT
, Legal
);
445 setIndexedStoreAction(im
, VT
, Legal
);
446 setIndexedMaskedLoadAction(im
, VT
, Legal
);
447 setIndexedMaskedStoreAction(im
, VT
, Legal
);
452 const MVT pTypes
[] = {MVT::v16i1
, MVT::v8i1
, MVT::v4i1
, MVT::v2i1
};
453 for (auto VT
: pTypes
) {
454 addRegisterClass(VT
, &ARM::VCCRRegClass
);
455 setOperationAction(ISD::BUILD_VECTOR
, VT
, Custom
);
456 setOperationAction(ISD::VECTOR_SHUFFLE
, VT
, Custom
);
457 setOperationAction(ISD::EXTRACT_SUBVECTOR
, VT
, Custom
);
458 setOperationAction(ISD::CONCAT_VECTORS
, VT
, Custom
);
459 setOperationAction(ISD::INSERT_VECTOR_ELT
, VT
, Custom
);
460 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, VT
, Custom
);
461 setOperationAction(ISD::SETCC
, VT
, Custom
);
462 setOperationAction(ISD::SCALAR_TO_VECTOR
, VT
, Expand
);
463 setOperationAction(ISD::LOAD
, VT
, Custom
);
464 setOperationAction(ISD::STORE
, VT
, Custom
);
465 setOperationAction(ISD::TRUNCATE
, VT
, Custom
);
466 setOperationAction(ISD::VSELECT
, VT
, Expand
);
467 setOperationAction(ISD::SELECT
, VT
, Expand
);
468 setOperationAction(ISD::SELECT_CC
, VT
, Expand
);
471 setOperationAction(ISD::SINT_TO_FP
, VT
, Expand
);
472 setOperationAction(ISD::UINT_TO_FP
, VT
, Expand
);
473 setOperationAction(ISD::FP_TO_SINT
, VT
, Expand
);
474 setOperationAction(ISD::FP_TO_UINT
, VT
, Expand
);
477 setOperationAction(ISD::SETCC
, MVT::v2i1
, Expand
);
478 setOperationAction(ISD::TRUNCATE
, MVT::v2i1
, Expand
);
479 setOperationAction(ISD::AND
, MVT::v2i1
, Expand
);
480 setOperationAction(ISD::OR
, MVT::v2i1
, Expand
);
481 setOperationAction(ISD::XOR
, MVT::v2i1
, Expand
);
482 setOperationAction(ISD::SINT_TO_FP
, MVT::v2i1
, Expand
);
483 setOperationAction(ISD::UINT_TO_FP
, MVT::v2i1
, Expand
);
484 setOperationAction(ISD::FP_TO_SINT
, MVT::v2i1
, Expand
);
485 setOperationAction(ISD::FP_TO_UINT
, MVT::v2i1
, Expand
);
487 setOperationAction(ISD::SIGN_EXTEND
, MVT::v8i32
, Custom
);
488 setOperationAction(ISD::SIGN_EXTEND
, MVT::v16i16
, Custom
);
489 setOperationAction(ISD::SIGN_EXTEND
, MVT::v16i32
, Custom
);
490 setOperationAction(ISD::ZERO_EXTEND
, MVT::v8i32
, Custom
);
491 setOperationAction(ISD::ZERO_EXTEND
, MVT::v16i16
, Custom
);
492 setOperationAction(ISD::ZERO_EXTEND
, MVT::v16i32
, Custom
);
493 setOperationAction(ISD::TRUNCATE
, MVT::v8i32
, Custom
);
494 setOperationAction(ISD::TRUNCATE
, MVT::v16i16
, Custom
);
497 ARMTargetLowering::ARMTargetLowering(const TargetMachine
&TM
,
498 const ARMSubtarget
&STI
)
499 : TargetLowering(TM
), Subtarget(&STI
) {
500 RegInfo
= Subtarget
->getRegisterInfo();
501 Itins
= Subtarget
->getInstrItineraryData();
503 setBooleanContents(ZeroOrOneBooleanContent
);
504 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
506 if (!Subtarget
->isTargetDarwin() && !Subtarget
->isTargetIOS() &&
507 !Subtarget
->isTargetWatchOS() && !Subtarget
->isTargetDriverKit()) {
508 bool IsHFTarget
= TM
.Options
.FloatABIType
== FloatABI::Hard
;
509 for (int LCID
= 0; LCID
< RTLIB::UNKNOWN_LIBCALL
; ++LCID
)
510 setLibcallCallingConv(static_cast<RTLIB::Libcall
>(LCID
),
511 IsHFTarget
? CallingConv::ARM_AAPCS_VFP
512 : CallingConv::ARM_AAPCS
);
515 if (Subtarget
->isTargetMachO()) {
516 // Uses VFP for Thumb libfuncs if available.
517 if (Subtarget
->isThumb() && Subtarget
->hasVFP2Base() &&
518 Subtarget
->hasARMOps() && !Subtarget
->useSoftFloat()) {
519 static const struct {
520 const RTLIB::Libcall Op
;
521 const char * const Name
;
522 const ISD::CondCode Cond
;
524 // Single-precision floating-point arithmetic.
525 { RTLIB::ADD_F32
, "__addsf3vfp", ISD::SETCC_INVALID
},
526 { RTLIB::SUB_F32
, "__subsf3vfp", ISD::SETCC_INVALID
},
527 { RTLIB::MUL_F32
, "__mulsf3vfp", ISD::SETCC_INVALID
},
528 { RTLIB::DIV_F32
, "__divsf3vfp", ISD::SETCC_INVALID
},
530 // Double-precision floating-point arithmetic.
531 { RTLIB::ADD_F64
, "__adddf3vfp", ISD::SETCC_INVALID
},
532 { RTLIB::SUB_F64
, "__subdf3vfp", ISD::SETCC_INVALID
},
533 { RTLIB::MUL_F64
, "__muldf3vfp", ISD::SETCC_INVALID
},
534 { RTLIB::DIV_F64
, "__divdf3vfp", ISD::SETCC_INVALID
},
536 // Single-precision comparisons.
537 { RTLIB::OEQ_F32
, "__eqsf2vfp", ISD::SETNE
},
538 { RTLIB::UNE_F32
, "__nesf2vfp", ISD::SETNE
},
539 { RTLIB::OLT_F32
, "__ltsf2vfp", ISD::SETNE
},
540 { RTLIB::OLE_F32
, "__lesf2vfp", ISD::SETNE
},
541 { RTLIB::OGE_F32
, "__gesf2vfp", ISD::SETNE
},
542 { RTLIB::OGT_F32
, "__gtsf2vfp", ISD::SETNE
},
543 { RTLIB::UO_F32
, "__unordsf2vfp", ISD::SETNE
},
545 // Double-precision comparisons.
546 { RTLIB::OEQ_F64
, "__eqdf2vfp", ISD::SETNE
},
547 { RTLIB::UNE_F64
, "__nedf2vfp", ISD::SETNE
},
548 { RTLIB::OLT_F64
, "__ltdf2vfp", ISD::SETNE
},
549 { RTLIB::OLE_F64
, "__ledf2vfp", ISD::SETNE
},
550 { RTLIB::OGE_F64
, "__gedf2vfp", ISD::SETNE
},
551 { RTLIB::OGT_F64
, "__gtdf2vfp", ISD::SETNE
},
552 { RTLIB::UO_F64
, "__unorddf2vfp", ISD::SETNE
},
554 // Floating-point to integer conversions.
555 // i64 conversions are done via library routines even when generating VFP
556 // instructions, so use the same ones.
557 { RTLIB::FPTOSINT_F64_I32
, "__fixdfsivfp", ISD::SETCC_INVALID
},
558 { RTLIB::FPTOUINT_F64_I32
, "__fixunsdfsivfp", ISD::SETCC_INVALID
},
559 { RTLIB::FPTOSINT_F32_I32
, "__fixsfsivfp", ISD::SETCC_INVALID
},
560 { RTLIB::FPTOUINT_F32_I32
, "__fixunssfsivfp", ISD::SETCC_INVALID
},
562 // Conversions between floating types.
563 { RTLIB::FPROUND_F64_F32
, "__truncdfsf2vfp", ISD::SETCC_INVALID
},
564 { RTLIB::FPEXT_F32_F64
, "__extendsfdf2vfp", ISD::SETCC_INVALID
},
566 // Integer to floating-point conversions.
567 // i64 conversions are done via library routines even when generating VFP
568 // instructions, so use the same ones.
569 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
570 // e.g., __floatunsidf vs. __floatunssidfvfp.
571 { RTLIB::SINTTOFP_I32_F64
, "__floatsidfvfp", ISD::SETCC_INVALID
},
572 { RTLIB::UINTTOFP_I32_F64
, "__floatunssidfvfp", ISD::SETCC_INVALID
},
573 { RTLIB::SINTTOFP_I32_F32
, "__floatsisfvfp", ISD::SETCC_INVALID
},
574 { RTLIB::UINTTOFP_I32_F32
, "__floatunssisfvfp", ISD::SETCC_INVALID
},
577 for (const auto &LC
: LibraryCalls
) {
578 setLibcallName(LC
.Op
, LC
.Name
);
579 if (LC
.Cond
!= ISD::SETCC_INVALID
)
580 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
586 if (Subtarget
->isAAPCS_ABI() &&
587 (Subtarget
->isTargetAEABI() || Subtarget
->isTargetGNUAEABI() ||
588 Subtarget
->isTargetMuslAEABI() || Subtarget
->isTargetAndroid())) {
589 static const struct {
590 const RTLIB::Libcall Op
;
591 const char * const Name
;
592 const CallingConv::ID CC
;
593 const ISD::CondCode Cond
;
595 // Double-precision floating-point arithmetic helper functions
596 // RTABI chapter 4.1.2, Table 2
597 { RTLIB::ADD_F64
, "__aeabi_dadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
598 { RTLIB::DIV_F64
, "__aeabi_ddiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
599 { RTLIB::MUL_F64
, "__aeabi_dmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
600 { RTLIB::SUB_F64
, "__aeabi_dsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
602 // Double-precision floating-point comparison helper functions
603 // RTABI chapter 4.1.2, Table 3
604 { RTLIB::OEQ_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
605 { RTLIB::UNE_F64
, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
606 { RTLIB::OLT_F64
, "__aeabi_dcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
607 { RTLIB::OLE_F64
, "__aeabi_dcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
608 { RTLIB::OGE_F64
, "__aeabi_dcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
609 { RTLIB::OGT_F64
, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
610 { RTLIB::UO_F64
, "__aeabi_dcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
612 // Single-precision floating-point arithmetic helper functions
613 // RTABI chapter 4.1.2, Table 4
614 { RTLIB::ADD_F32
, "__aeabi_fadd", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
615 { RTLIB::DIV_F32
, "__aeabi_fdiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
616 { RTLIB::MUL_F32
, "__aeabi_fmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
617 { RTLIB::SUB_F32
, "__aeabi_fsub", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
619 // Single-precision floating-point comparison helper functions
620 // RTABI chapter 4.1.2, Table 5
621 { RTLIB::OEQ_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETNE
},
622 { RTLIB::UNE_F32
, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS
, ISD::SETEQ
},
623 { RTLIB::OLT_F32
, "__aeabi_fcmplt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
624 { RTLIB::OLE_F32
, "__aeabi_fcmple", CallingConv::ARM_AAPCS
, ISD::SETNE
},
625 { RTLIB::OGE_F32
, "__aeabi_fcmpge", CallingConv::ARM_AAPCS
, ISD::SETNE
},
626 { RTLIB::OGT_F32
, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS
, ISD::SETNE
},
627 { RTLIB::UO_F32
, "__aeabi_fcmpun", CallingConv::ARM_AAPCS
, ISD::SETNE
},
629 // Floating-point to integer conversions.
630 // RTABI chapter 4.1.2, Table 6
631 { RTLIB::FPTOSINT_F64_I32
, "__aeabi_d2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
632 { RTLIB::FPTOUINT_F64_I32
, "__aeabi_d2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
633 { RTLIB::FPTOSINT_F64_I64
, "__aeabi_d2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
634 { RTLIB::FPTOUINT_F64_I64
, "__aeabi_d2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
635 { RTLIB::FPTOSINT_F32_I32
, "__aeabi_f2iz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
636 { RTLIB::FPTOUINT_F32_I32
, "__aeabi_f2uiz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
637 { RTLIB::FPTOSINT_F32_I64
, "__aeabi_f2lz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
638 { RTLIB::FPTOUINT_F32_I64
, "__aeabi_f2ulz", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
640 // Conversions between floating types.
641 // RTABI chapter 4.1.2, Table 7
642 { RTLIB::FPROUND_F64_F32
, "__aeabi_d2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
643 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
644 { RTLIB::FPEXT_F32_F64
, "__aeabi_f2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
646 // Integer to floating-point conversions.
647 // RTABI chapter 4.1.2, Table 8
648 { RTLIB::SINTTOFP_I32_F64
, "__aeabi_i2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
649 { RTLIB::UINTTOFP_I32_F64
, "__aeabi_ui2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
650 { RTLIB::SINTTOFP_I64_F64
, "__aeabi_l2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
651 { RTLIB::UINTTOFP_I64_F64
, "__aeabi_ul2d", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
652 { RTLIB::SINTTOFP_I32_F32
, "__aeabi_i2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
653 { RTLIB::UINTTOFP_I32_F32
, "__aeabi_ui2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
654 { RTLIB::SINTTOFP_I64_F32
, "__aeabi_l2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
655 { RTLIB::UINTTOFP_I64_F32
, "__aeabi_ul2f", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
657 // Long long helper functions
658 // RTABI chapter 4.2, Table 9
659 { RTLIB::MUL_I64
, "__aeabi_lmul", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
660 { RTLIB::SHL_I64
, "__aeabi_llsl", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
661 { RTLIB::SRL_I64
, "__aeabi_llsr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
662 { RTLIB::SRA_I64
, "__aeabi_lasr", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
664 // Integer division functions
665 // RTABI chapter 4.3.1
666 { RTLIB::SDIV_I8
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
667 { RTLIB::SDIV_I16
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
668 { RTLIB::SDIV_I32
, "__aeabi_idiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
669 { RTLIB::SDIV_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
670 { RTLIB::UDIV_I8
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
671 { RTLIB::UDIV_I16
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
672 { RTLIB::UDIV_I32
, "__aeabi_uidiv", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
673 { RTLIB::UDIV_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
676 for (const auto &LC
: LibraryCalls
) {
677 setLibcallName(LC
.Op
, LC
.Name
);
678 setLibcallCallingConv(LC
.Op
, LC
.CC
);
679 if (LC
.Cond
!= ISD::SETCC_INVALID
)
680 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
683 // EABI dependent RTLIB
684 if (TM
.Options
.EABIVersion
== EABI::EABI4
||
685 TM
.Options
.EABIVersion
== EABI::EABI5
) {
686 static const struct {
687 const RTLIB::Libcall Op
;
688 const char *const Name
;
689 const CallingConv::ID CC
;
690 const ISD::CondCode Cond
;
691 } MemOpsLibraryCalls
[] = {
693 // RTABI chapter 4.3.4
694 { RTLIB::MEMCPY
, "__aeabi_memcpy", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
695 { RTLIB::MEMMOVE
, "__aeabi_memmove", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
696 { RTLIB::MEMSET
, "__aeabi_memset", CallingConv::ARM_AAPCS
, ISD::SETCC_INVALID
},
699 for (const auto &LC
: MemOpsLibraryCalls
) {
700 setLibcallName(LC
.Op
, LC
.Name
);
701 setLibcallCallingConv(LC
.Op
, LC
.CC
);
702 if (LC
.Cond
!= ISD::SETCC_INVALID
)
703 setCmpLibcallCC(LC
.Op
, LC
.Cond
);
708 if (Subtarget
->isTargetWindows()) {
709 static const struct {
710 const RTLIB::Libcall Op
;
711 const char * const Name
;
712 const CallingConv::ID CC
;
714 { RTLIB::FPTOSINT_F32_I64
, "__stoi64", CallingConv::ARM_AAPCS_VFP
},
715 { RTLIB::FPTOSINT_F64_I64
, "__dtoi64", CallingConv::ARM_AAPCS_VFP
},
716 { RTLIB::FPTOUINT_F32_I64
, "__stou64", CallingConv::ARM_AAPCS_VFP
},
717 { RTLIB::FPTOUINT_F64_I64
, "__dtou64", CallingConv::ARM_AAPCS_VFP
},
718 { RTLIB::SINTTOFP_I64_F32
, "__i64tos", CallingConv::ARM_AAPCS_VFP
},
719 { RTLIB::SINTTOFP_I64_F64
, "__i64tod", CallingConv::ARM_AAPCS_VFP
},
720 { RTLIB::UINTTOFP_I64_F32
, "__u64tos", CallingConv::ARM_AAPCS_VFP
},
721 { RTLIB::UINTTOFP_I64_F64
, "__u64tod", CallingConv::ARM_AAPCS_VFP
},
724 for (const auto &LC
: LibraryCalls
) {
725 setLibcallName(LC
.Op
, LC
.Name
);
726 setLibcallCallingConv(LC
.Op
, LC
.CC
);
730 // Use divmod compiler-rt calls for iOS 5.0 and later.
731 if (Subtarget
->isTargetMachO() &&
732 !(Subtarget
->isTargetIOS() &&
733 Subtarget
->getTargetTriple().isOSVersionLT(5, 0))) {
734 setLibcallName(RTLIB::SDIVREM_I32
, "__divmodsi4");
735 setLibcallName(RTLIB::UDIVREM_I32
, "__udivmodsi4");
738 // The half <-> float conversion functions are always soft-float on
739 // non-watchos platforms, but are needed for some targets which use a
740 // hard-float calling convention by default.
741 if (!Subtarget
->isTargetWatchABI()) {
742 if (Subtarget
->isAAPCS_ABI()) {
743 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_AAPCS
);
744 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_AAPCS
);
745 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_AAPCS
);
747 setLibcallCallingConv(RTLIB::FPROUND_F32_F16
, CallingConv::ARM_APCS
);
748 setLibcallCallingConv(RTLIB::FPROUND_F64_F16
, CallingConv::ARM_APCS
);
749 setLibcallCallingConv(RTLIB::FPEXT_F16_F32
, CallingConv::ARM_APCS
);
753 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
754 // a __gnu_ prefix (which is the default).
755 if (Subtarget
->isTargetAEABI()) {
756 static const struct {
757 const RTLIB::Libcall Op
;
758 const char * const Name
;
759 const CallingConv::ID CC
;
761 { RTLIB::FPROUND_F32_F16
, "__aeabi_f2h", CallingConv::ARM_AAPCS
},
762 { RTLIB::FPROUND_F64_F16
, "__aeabi_d2h", CallingConv::ARM_AAPCS
},
763 { RTLIB::FPEXT_F16_F32
, "__aeabi_h2f", CallingConv::ARM_AAPCS
},
766 for (const auto &LC
: LibraryCalls
) {
767 setLibcallName(LC
.Op
, LC
.Name
);
768 setLibcallCallingConv(LC
.Op
, LC
.CC
);
772 if (Subtarget
->isThumb1Only())
773 addRegisterClass(MVT::i32
, &ARM::tGPRRegClass
);
775 addRegisterClass(MVT::i32
, &ARM::GPRRegClass
);
777 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only() &&
778 Subtarget
->hasFPRegs()) {
779 addRegisterClass(MVT::f32
, &ARM::SPRRegClass
);
780 addRegisterClass(MVT::f64
, &ARM::DPRRegClass
);
782 setOperationAction(ISD::FP_TO_SINT_SAT
, MVT::i32
, Custom
);
783 setOperationAction(ISD::FP_TO_UINT_SAT
, MVT::i32
, Custom
);
784 setOperationAction(ISD::FP_TO_SINT_SAT
, MVT::i64
, Custom
);
785 setOperationAction(ISD::FP_TO_UINT_SAT
, MVT::i64
, Custom
);
787 if (!Subtarget
->hasVFP2Base())
788 setAllExpand(MVT::f32
);
789 if (!Subtarget
->hasFP64())
790 setAllExpand(MVT::f64
);
793 if (Subtarget
->hasFullFP16()) {
794 addRegisterClass(MVT::f16
, &ARM::HPRRegClass
);
795 setOperationAction(ISD::BITCAST
, MVT::i16
, Custom
);
796 setOperationAction(ISD::BITCAST
, MVT::f16
, Custom
);
798 setOperationAction(ISD::FMINNUM
, MVT::f16
, Legal
);
799 setOperationAction(ISD::FMAXNUM
, MVT::f16
, Legal
);
802 if (Subtarget
->hasBF16()) {
803 addRegisterClass(MVT::bf16
, &ARM::HPRRegClass
);
804 setAllExpand(MVT::bf16
);
805 if (!Subtarget
->hasFullFP16())
806 setOperationAction(ISD::BITCAST
, MVT::bf16
, Custom
);
808 setOperationAction(ISD::BF16_TO_FP
, MVT::f32
, Expand
);
809 setOperationAction(ISD::BF16_TO_FP
, MVT::f64
, Expand
);
810 setOperationAction(ISD::FP_TO_BF16
, MVT::f32
, Custom
);
811 setOperationAction(ISD::FP_TO_BF16
, MVT::f64
, Custom
);
814 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
815 for (MVT InnerVT
: MVT::fixedlen_vector_valuetypes()) {
816 setTruncStoreAction(VT
, InnerVT
, Expand
);
817 addAllExtLoads(VT
, InnerVT
, Expand
);
820 setOperationAction(ISD::SMUL_LOHI
, VT
, Expand
);
821 setOperationAction(ISD::UMUL_LOHI
, VT
, Expand
);
823 setOperationAction(ISD::BSWAP
, VT
, Expand
);
826 setOperationAction(ISD::ConstantFP
, MVT::f32
, Custom
);
827 setOperationAction(ISD::ConstantFP
, MVT::f64
, Custom
);
829 setOperationAction(ISD::READ_REGISTER
, MVT::i64
, Custom
);
830 setOperationAction(ISD::WRITE_REGISTER
, MVT::i64
, Custom
);
832 if (Subtarget
->hasMVEIntegerOps())
833 addMVEVectorTypes(Subtarget
->hasMVEFloatOps());
835 // Combine low-overhead loop intrinsics so that we can lower i1 types.
836 if (Subtarget
->hasLOB()) {
837 setTargetDAGCombine({ISD::BRCOND
, ISD::BR_CC
});
840 if (Subtarget
->hasNEON()) {
841 addDRTypeForNEON(MVT::v2f32
);
842 addDRTypeForNEON(MVT::v8i8
);
843 addDRTypeForNEON(MVT::v4i16
);
844 addDRTypeForNEON(MVT::v2i32
);
845 addDRTypeForNEON(MVT::v1i64
);
847 addQRTypeForNEON(MVT::v4f32
);
848 addQRTypeForNEON(MVT::v2f64
);
849 addQRTypeForNEON(MVT::v16i8
);
850 addQRTypeForNEON(MVT::v8i16
);
851 addQRTypeForNEON(MVT::v4i32
);
852 addQRTypeForNEON(MVT::v2i64
);
854 if (Subtarget
->hasFullFP16()) {
855 addQRTypeForNEON(MVT::v8f16
);
856 addDRTypeForNEON(MVT::v4f16
);
859 if (Subtarget
->hasBF16()) {
860 addQRTypeForNEON(MVT::v8bf16
);
861 addDRTypeForNEON(MVT::v4bf16
);
865 if (Subtarget
->hasMVEIntegerOps() || Subtarget
->hasNEON()) {
866 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
867 // none of Neon, MVE or VFP supports any arithmetic operations on it.
868 setOperationAction(ISD::FADD
, MVT::v2f64
, Expand
);
869 setOperationAction(ISD::FSUB
, MVT::v2f64
, Expand
);
870 setOperationAction(ISD::FMUL
, MVT::v2f64
, Expand
);
871 // FIXME: Code duplication: FDIV and FREM are expanded always, see
872 // ARMTargetLowering::addTypeForNEON method for details.
873 setOperationAction(ISD::FDIV
, MVT::v2f64
, Expand
);
874 setOperationAction(ISD::FREM
, MVT::v2f64
, Expand
);
875 // FIXME: Create unittest.
876 // In another words, find a way when "copysign" appears in DAG with vector
878 setOperationAction(ISD::FCOPYSIGN
, MVT::v2f64
, Expand
);
879 // FIXME: Code duplication: SETCC has custom operation action, see
880 // ARMTargetLowering::addTypeForNEON method for details.
881 setOperationAction(ISD::SETCC
, MVT::v2f64
, Expand
);
882 // FIXME: Create unittest for FNEG and for FABS.
883 setOperationAction(ISD::FNEG
, MVT::v2f64
, Expand
);
884 setOperationAction(ISD::FABS
, MVT::v2f64
, Expand
);
885 setOperationAction(ISD::FSQRT
, MVT::v2f64
, Expand
);
886 setOperationAction(ISD::FSIN
, MVT::v2f64
, Expand
);
887 setOperationAction(ISD::FCOS
, MVT::v2f64
, Expand
);
888 setOperationAction(ISD::FTAN
, MVT::v2f64
, Expand
);
889 setOperationAction(ISD::FPOW
, MVT::v2f64
, Expand
);
890 setOperationAction(ISD::FLOG
, MVT::v2f64
, Expand
);
891 setOperationAction(ISD::FLOG2
, MVT::v2f64
, Expand
);
892 setOperationAction(ISD::FLOG10
, MVT::v2f64
, Expand
);
893 setOperationAction(ISD::FEXP
, MVT::v2f64
, Expand
);
894 setOperationAction(ISD::FEXP2
, MVT::v2f64
, Expand
);
895 setOperationAction(ISD::FEXP10
, MVT::v2f64
, Expand
);
896 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
897 setOperationAction(ISD::FCEIL
, MVT::v2f64
, Expand
);
898 setOperationAction(ISD::FTRUNC
, MVT::v2f64
, Expand
);
899 setOperationAction(ISD::FRINT
, MVT::v2f64
, Expand
);
900 setOperationAction(ISD::FNEARBYINT
, MVT::v2f64
, Expand
);
901 setOperationAction(ISD::FFLOOR
, MVT::v2f64
, Expand
);
902 setOperationAction(ISD::FMA
, MVT::v2f64
, Expand
);
905 if (Subtarget
->hasNEON()) {
906 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
907 // supported for v4f32.
908 setOperationAction(ISD::FSQRT
, MVT::v4f32
, Expand
);
909 setOperationAction(ISD::FSIN
, MVT::v4f32
, Expand
);
910 setOperationAction(ISD::FCOS
, MVT::v4f32
, Expand
);
911 setOperationAction(ISD::FTAN
, MVT::v4f32
, Expand
);
912 setOperationAction(ISD::FPOW
, MVT::v4f32
, Expand
);
913 setOperationAction(ISD::FLOG
, MVT::v4f32
, Expand
);
914 setOperationAction(ISD::FLOG2
, MVT::v4f32
, Expand
);
915 setOperationAction(ISD::FLOG10
, MVT::v4f32
, Expand
);
916 setOperationAction(ISD::FEXP
, MVT::v4f32
, Expand
);
917 setOperationAction(ISD::FEXP2
, MVT::v4f32
, Expand
);
918 setOperationAction(ISD::FEXP10
, MVT::v4f32
, Expand
);
919 setOperationAction(ISD::FCEIL
, MVT::v4f32
, Expand
);
920 setOperationAction(ISD::FTRUNC
, MVT::v4f32
, Expand
);
921 setOperationAction(ISD::FRINT
, MVT::v4f32
, Expand
);
922 setOperationAction(ISD::FNEARBYINT
, MVT::v4f32
, Expand
);
923 setOperationAction(ISD::FFLOOR
, MVT::v4f32
, Expand
);
925 // Mark v2f32 intrinsics.
926 setOperationAction(ISD::FSQRT
, MVT::v2f32
, Expand
);
927 setOperationAction(ISD::FSIN
, MVT::v2f32
, Expand
);
928 setOperationAction(ISD::FCOS
, MVT::v2f32
, Expand
);
929 setOperationAction(ISD::FTAN
, MVT::v2f32
, Expand
);
930 setOperationAction(ISD::FPOW
, MVT::v2f32
, Expand
);
931 setOperationAction(ISD::FLOG
, MVT::v2f32
, Expand
);
932 setOperationAction(ISD::FLOG2
, MVT::v2f32
, Expand
);
933 setOperationAction(ISD::FLOG10
, MVT::v2f32
, Expand
);
934 setOperationAction(ISD::FEXP
, MVT::v2f32
, Expand
);
935 setOperationAction(ISD::FEXP2
, MVT::v2f32
, Expand
);
936 setOperationAction(ISD::FEXP10
, MVT::v2f32
, Expand
);
937 setOperationAction(ISD::FCEIL
, MVT::v2f32
, Expand
);
938 setOperationAction(ISD::FTRUNC
, MVT::v2f32
, Expand
);
939 setOperationAction(ISD::FRINT
, MVT::v2f32
, Expand
);
940 setOperationAction(ISD::FNEARBYINT
, MVT::v2f32
, Expand
);
941 setOperationAction(ISD::FFLOOR
, MVT::v2f32
, Expand
);
943 // Neon does not support some operations on v1i64 and v2i64 types.
944 setOperationAction(ISD::MUL
, MVT::v1i64
, Expand
);
945 // Custom handling for some quad-vector types to detect VMULL.
946 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
947 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
948 setOperationAction(ISD::MUL
, MVT::v2i64
, Custom
);
949 // Custom handling for some vector types to avoid expensive expansions
950 setOperationAction(ISD::SDIV
, MVT::v4i16
, Custom
);
951 setOperationAction(ISD::SDIV
, MVT::v8i8
, Custom
);
952 setOperationAction(ISD::UDIV
, MVT::v4i16
, Custom
);
953 setOperationAction(ISD::UDIV
, MVT::v8i8
, Custom
);
954 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
955 // a destination type that is wider than the source, and nor does
956 // it have a FP_TO_[SU]INT instruction with a narrower destination than
958 setOperationAction(ISD::SINT_TO_FP
, MVT::v4i16
, Custom
);
959 setOperationAction(ISD::SINT_TO_FP
, MVT::v8i16
, Custom
);
960 setOperationAction(ISD::UINT_TO_FP
, MVT::v4i16
, Custom
);
961 setOperationAction(ISD::UINT_TO_FP
, MVT::v8i16
, Custom
);
962 setOperationAction(ISD::FP_TO_UINT
, MVT::v4i16
, Custom
);
963 setOperationAction(ISD::FP_TO_UINT
, MVT::v8i16
, Custom
);
964 setOperationAction(ISD::FP_TO_SINT
, MVT::v4i16
, Custom
);
965 setOperationAction(ISD::FP_TO_SINT
, MVT::v8i16
, Custom
);
967 setOperationAction(ISD::FP_ROUND
, MVT::v2f32
, Expand
);
968 setOperationAction(ISD::FP_EXTEND
, MVT::v2f64
, Expand
);
970 // NEON does not have single instruction CTPOP for vectors with element
971 // types wider than 8-bits. However, custom lowering can leverage the
972 // v8i8/v16i8 vcnt instruction.
973 setOperationAction(ISD::CTPOP
, MVT::v2i32
, Custom
);
974 setOperationAction(ISD::CTPOP
, MVT::v4i32
, Custom
);
975 setOperationAction(ISD::CTPOP
, MVT::v4i16
, Custom
);
976 setOperationAction(ISD::CTPOP
, MVT::v8i16
, Custom
);
977 setOperationAction(ISD::CTPOP
, MVT::v1i64
, Custom
);
978 setOperationAction(ISD::CTPOP
, MVT::v2i64
, Custom
);
980 setOperationAction(ISD::CTLZ
, MVT::v1i64
, Expand
);
981 setOperationAction(ISD::CTLZ
, MVT::v2i64
, Expand
);
983 // NEON does not have single instruction CTTZ for vectors.
984 setOperationAction(ISD::CTTZ
, MVT::v8i8
, Custom
);
985 setOperationAction(ISD::CTTZ
, MVT::v4i16
, Custom
);
986 setOperationAction(ISD::CTTZ
, MVT::v2i32
, Custom
);
987 setOperationAction(ISD::CTTZ
, MVT::v1i64
, Custom
);
989 setOperationAction(ISD::CTTZ
, MVT::v16i8
, Custom
);
990 setOperationAction(ISD::CTTZ
, MVT::v8i16
, Custom
);
991 setOperationAction(ISD::CTTZ
, MVT::v4i32
, Custom
);
992 setOperationAction(ISD::CTTZ
, MVT::v2i64
, Custom
);
994 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i8
, Custom
);
995 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i16
, Custom
);
996 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i32
, Custom
);
997 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v1i64
, Custom
);
999 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v16i8
, Custom
);
1000 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v8i16
, Custom
);
1001 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v4i32
, Custom
);
1002 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::v2i64
, Custom
);
1004 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
1005 setOperationAction(ISD::MULHS
, VT
, Expand
);
1006 setOperationAction(ISD::MULHU
, VT
, Expand
);
1009 // NEON only has FMA instructions as of VFP4.
1010 if (!Subtarget
->hasVFP4Base()) {
1011 setOperationAction(ISD::FMA
, MVT::v2f32
, Expand
);
1012 setOperationAction(ISD::FMA
, MVT::v4f32
, Expand
);
1015 setTargetDAGCombine({ISD::SHL
, ISD::SRL
, ISD::SRA
, ISD::FP_TO_SINT
,
1016 ISD::FP_TO_UINT
, ISD::FMUL
, ISD::LOAD
});
1018 // It is legal to extload from v4i8 to v4i16 or v4i32.
1019 for (MVT Ty
: {MVT::v8i8
, MVT::v4i8
, MVT::v2i8
, MVT::v4i16
, MVT::v2i16
,
1021 for (MVT VT
: MVT::integer_fixedlen_vector_valuetypes()) {
1022 setLoadExtAction(ISD::EXTLOAD
, VT
, Ty
, Legal
);
1023 setLoadExtAction(ISD::ZEXTLOAD
, VT
, Ty
, Legal
);
1024 setLoadExtAction(ISD::SEXTLOAD
, VT
, Ty
, Legal
);
1028 for (auto VT
: {MVT::v8i8
, MVT::v4i16
, MVT::v2i32
, MVT::v16i8
, MVT::v8i16
,
1030 setOperationAction(ISD::VECREDUCE_SMAX
, VT
, Custom
);
1031 setOperationAction(ISD::VECREDUCE_UMAX
, VT
, Custom
);
1032 setOperationAction(ISD::VECREDUCE_SMIN
, VT
, Custom
);
1033 setOperationAction(ISD::VECREDUCE_UMIN
, VT
, Custom
);
1037 if (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) {
1038 setTargetDAGCombine(
1039 {ISD::BUILD_VECTOR
, ISD::VECTOR_SHUFFLE
, ISD::INSERT_SUBVECTOR
,
1040 ISD::INSERT_VECTOR_ELT
, ISD::EXTRACT_VECTOR_ELT
,
1041 ISD::SIGN_EXTEND_INREG
, ISD::STORE
, ISD::SIGN_EXTEND
, ISD::ZERO_EXTEND
,
1042 ISD::ANY_EXTEND
, ISD::INTRINSIC_WO_CHAIN
, ISD::INTRINSIC_W_CHAIN
,
1043 ISD::INTRINSIC_VOID
, ISD::VECREDUCE_ADD
, ISD::ADD
, ISD::BITCAST
});
1045 if (Subtarget
->hasMVEIntegerOps()) {
1046 setTargetDAGCombine({ISD::SMIN
, ISD::UMIN
, ISD::SMAX
, ISD::UMAX
,
1047 ISD::FP_EXTEND
, ISD::SELECT
, ISD::SELECT_CC
,
1050 if (Subtarget
->hasMVEFloatOps()) {
1051 setTargetDAGCombine(ISD::FADD
);
1054 if (!Subtarget
->hasFP64()) {
1055 // When targeting a floating-point unit with only single-precision
1056 // operations, f64 is legal for the few double-precision instructions which
1057 // are present However, no double-precision operations other than moves,
1058 // loads and stores are provided by the hardware.
1059 setOperationAction(ISD::FADD
, MVT::f64
, Expand
);
1060 setOperationAction(ISD::FSUB
, MVT::f64
, Expand
);
1061 setOperationAction(ISD::FMUL
, MVT::f64
, Expand
);
1062 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1063 setOperationAction(ISD::FDIV
, MVT::f64
, Expand
);
1064 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1065 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
1066 setOperationAction(ISD::FGETSIGN
, MVT::f64
, Expand
);
1067 setOperationAction(ISD::FNEG
, MVT::f64
, Expand
);
1068 setOperationAction(ISD::FABS
, MVT::f64
, Expand
);
1069 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
1070 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1071 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1072 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1073 setOperationAction(ISD::FLOG
, MVT::f64
, Expand
);
1074 setOperationAction(ISD::FLOG2
, MVT::f64
, Expand
);
1075 setOperationAction(ISD::FLOG10
, MVT::f64
, Expand
);
1076 setOperationAction(ISD::FEXP
, MVT::f64
, Expand
);
1077 setOperationAction(ISD::FEXP2
, MVT::f64
, Expand
);
1078 setOperationAction(ISD::FEXP10
, MVT::f64
, Expand
);
1079 setOperationAction(ISD::FCEIL
, MVT::f64
, Expand
);
1080 setOperationAction(ISD::FTRUNC
, MVT::f64
, Expand
);
1081 setOperationAction(ISD::FRINT
, MVT::f64
, Expand
);
1082 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Expand
);
1083 setOperationAction(ISD::FFLOOR
, MVT::f64
, Expand
);
1084 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Custom
);
1085 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Custom
);
1086 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
1087 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Custom
);
1088 setOperationAction(ISD::FP_TO_SINT
, MVT::f64
, Custom
);
1089 setOperationAction(ISD::FP_TO_UINT
, MVT::f64
, Custom
);
1090 setOperationAction(ISD::FP_ROUND
, MVT::f32
, Custom
);
1091 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::i32
, Custom
);
1092 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::i32
, Custom
);
1093 setOperationAction(ISD::STRICT_FP_TO_SINT
, MVT::f64
, Custom
);
1094 setOperationAction(ISD::STRICT_FP_TO_UINT
, MVT::f64
, Custom
);
1095 setOperationAction(ISD::STRICT_FP_ROUND
, MVT::f32
, Custom
);
1098 if (!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) {
1099 setOperationAction(ISD::FP_EXTEND
, MVT::f64
, Custom
);
1100 setOperationAction(ISD::STRICT_FP_EXTEND
, MVT::f64
, Custom
);
1101 if (Subtarget
->hasFullFP16()) {
1102 setOperationAction(ISD::FP_ROUND
, MVT::f16
, Custom
);
1103 setOperationAction(ISD::STRICT_FP_ROUND
, MVT::f16
, Custom
);
1107 if (!Subtarget
->hasFP16()) {
1108 setOperationAction(ISD::FP_EXTEND
, MVT::f32
, Custom
);
1109 setOperationAction(ISD::STRICT_FP_EXTEND
, MVT::f32
, Custom
);
1112 computeRegisterProperties(Subtarget
->getRegisterInfo());
1114 // ARM does not have floating-point extending loads.
1115 for (MVT VT
: MVT::fp_valuetypes()) {
1116 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
1117 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
1118 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::bf16
, Expand
);
1121 // ... or truncating stores
1122 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
1123 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
1124 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
1125 setTruncStoreAction(MVT::f32
, MVT::bf16
, Expand
);
1126 setTruncStoreAction(MVT::f64
, MVT::bf16
, Expand
);
1128 // ARM does not have i1 sign extending load.
1129 for (MVT VT
: MVT::integer_valuetypes())
1130 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
1132 // ARM supports all 4 flavors of integer indexed load / store.
1133 if (!Subtarget
->isThumb1Only()) {
1134 for (unsigned im
= (unsigned)ISD::PRE_INC
;
1135 im
!= (unsigned)ISD::LAST_INDEXED_MODE
; ++im
) {
1136 setIndexedLoadAction(im
, MVT::i1
, Legal
);
1137 setIndexedLoadAction(im
, MVT::i8
, Legal
);
1138 setIndexedLoadAction(im
, MVT::i16
, Legal
);
1139 setIndexedLoadAction(im
, MVT::i32
, Legal
);
1140 setIndexedStoreAction(im
, MVT::i1
, Legal
);
1141 setIndexedStoreAction(im
, MVT::i8
, Legal
);
1142 setIndexedStoreAction(im
, MVT::i16
, Legal
);
1143 setIndexedStoreAction(im
, MVT::i32
, Legal
);
1146 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1147 setIndexedLoadAction(ISD::POST_INC
, MVT::i32
, Legal
);
1148 setIndexedStoreAction(ISD::POST_INC
, MVT::i32
, Legal
);
1151 setOperationAction(ISD::SADDO
, MVT::i32
, Custom
);
1152 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
1153 setOperationAction(ISD::SSUBO
, MVT::i32
, Custom
);
1154 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
1156 setOperationAction(ISD::UADDO_CARRY
, MVT::i32
, Custom
);
1157 setOperationAction(ISD::USUBO_CARRY
, MVT::i32
, Custom
);
1158 if (Subtarget
->hasDSP()) {
1159 setOperationAction(ISD::SADDSAT
, MVT::i8
, Custom
);
1160 setOperationAction(ISD::SSUBSAT
, MVT::i8
, Custom
);
1161 setOperationAction(ISD::SADDSAT
, MVT::i16
, Custom
);
1162 setOperationAction(ISD::SSUBSAT
, MVT::i16
, Custom
);
1163 setOperationAction(ISD::UADDSAT
, MVT::i8
, Custom
);
1164 setOperationAction(ISD::USUBSAT
, MVT::i8
, Custom
);
1165 setOperationAction(ISD::UADDSAT
, MVT::i16
, Custom
);
1166 setOperationAction(ISD::USUBSAT
, MVT::i16
, Custom
);
1168 if (Subtarget
->hasBaseDSP()) {
1169 setOperationAction(ISD::SADDSAT
, MVT::i32
, Legal
);
1170 setOperationAction(ISD::SSUBSAT
, MVT::i32
, Legal
);
1173 // i64 operation support.
1174 setOperationAction(ISD::MUL
, MVT::i64
, Expand
);
1175 setOperationAction(ISD::MULHU
, MVT::i32
, Expand
);
1176 if (Subtarget
->isThumb1Only()) {
1177 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
1178 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
1180 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6Ops()
1181 || (Subtarget
->isThumb2() && !Subtarget
->hasDSP()))
1182 setOperationAction(ISD::MULHS
, MVT::i32
, Expand
);
1184 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
1185 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
1186 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
1187 setOperationAction(ISD::SRL
, MVT::i64
, Custom
);
1188 setOperationAction(ISD::SRA
, MVT::i64
, Custom
);
1189 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
1190 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::i64
, Custom
);
1191 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
1192 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
1194 // MVE lowers 64 bit shifts to lsll and lsrl
1195 // assuming that ISD::SRL and SRA of i64 are already marked custom
1196 if (Subtarget
->hasMVEIntegerOps())
1197 setOperationAction(ISD::SHL
, MVT::i64
, Custom
);
1199 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1200 if (Subtarget
->isThumb1Only()) {
1201 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Expand
);
1202 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Expand
);
1203 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Expand
);
1206 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops())
1207 setOperationAction(ISD::BITREVERSE
, MVT::i32
, Legal
);
1209 // ARM does not have ROTL.
1210 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
1211 for (MVT VT
: MVT::fixedlen_vector_valuetypes()) {
1212 setOperationAction(ISD::ROTL
, VT
, Expand
);
1213 setOperationAction(ISD::ROTR
, VT
, Expand
);
1215 setOperationAction(ISD::CTTZ
, MVT::i32
, Custom
);
1216 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
1217 if (!Subtarget
->hasV5TOps() || Subtarget
->isThumb1Only()) {
1218 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
1219 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, LibCall
);
1222 // @llvm.readcyclecounter requires the Performance Monitors extension.
1223 // Default to the 0 expansion on unsupported platforms.
1224 // FIXME: Technically there are older ARM CPUs that have
1225 // implementation-specific ways of obtaining this information.
1226 if (Subtarget
->hasPerfMon())
1227 setOperationAction(ISD::READCYCLECOUNTER
, MVT::i64
, Custom
);
1229 // Only ARMv6 has BSWAP.
1230 if (!Subtarget
->hasV6Ops())
1231 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
1233 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
1234 : Subtarget
->hasDivideInARMMode();
1236 // These are expanded into libcalls if the cpu doesn't have HW divider.
1237 setOperationAction(ISD::SDIV
, MVT::i32
, LibCall
);
1238 setOperationAction(ISD::UDIV
, MVT::i32
, LibCall
);
1241 if (Subtarget
->isTargetWindows() && !Subtarget
->hasDivideInThumbMode()) {
1242 setOperationAction(ISD::SDIV
, MVT::i32
, Custom
);
1243 setOperationAction(ISD::UDIV
, MVT::i32
, Custom
);
1245 setOperationAction(ISD::SDIV
, MVT::i64
, Custom
);
1246 setOperationAction(ISD::UDIV
, MVT::i64
, Custom
);
1249 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
1250 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
1252 // Register based DivRem for AEABI (RTABI 4.2)
1253 if (Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
1254 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
1255 Subtarget
->isTargetWindows()) {
1256 setOperationAction(ISD::SREM
, MVT::i64
, Custom
);
1257 setOperationAction(ISD::UREM
, MVT::i64
, Custom
);
1258 HasStandaloneRem
= false;
1260 if (Subtarget
->isTargetWindows()) {
1262 const RTLIB::Libcall Op
;
1263 const char * const Name
;
1264 const CallingConv::ID CC
;
1265 } LibraryCalls
[] = {
1266 { RTLIB::SDIVREM_I8
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1267 { RTLIB::SDIVREM_I16
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1268 { RTLIB::SDIVREM_I32
, "__rt_sdiv", CallingConv::ARM_AAPCS
},
1269 { RTLIB::SDIVREM_I64
, "__rt_sdiv64", CallingConv::ARM_AAPCS
},
1271 { RTLIB::UDIVREM_I8
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1272 { RTLIB::UDIVREM_I16
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1273 { RTLIB::UDIVREM_I32
, "__rt_udiv", CallingConv::ARM_AAPCS
},
1274 { RTLIB::UDIVREM_I64
, "__rt_udiv64", CallingConv::ARM_AAPCS
},
1277 for (const auto &LC
: LibraryCalls
) {
1278 setLibcallName(LC
.Op
, LC
.Name
);
1279 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1283 const RTLIB::Libcall Op
;
1284 const char * const Name
;
1285 const CallingConv::ID CC
;
1286 } LibraryCalls
[] = {
1287 { RTLIB::SDIVREM_I8
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1288 { RTLIB::SDIVREM_I16
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1289 { RTLIB::SDIVREM_I32
, "__aeabi_idivmod", CallingConv::ARM_AAPCS
},
1290 { RTLIB::SDIVREM_I64
, "__aeabi_ldivmod", CallingConv::ARM_AAPCS
},
1292 { RTLIB::UDIVREM_I8
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1293 { RTLIB::UDIVREM_I16
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1294 { RTLIB::UDIVREM_I32
, "__aeabi_uidivmod", CallingConv::ARM_AAPCS
},
1295 { RTLIB::UDIVREM_I64
, "__aeabi_uldivmod", CallingConv::ARM_AAPCS
},
1298 for (const auto &LC
: LibraryCalls
) {
1299 setLibcallName(LC
.Op
, LC
.Name
);
1300 setLibcallCallingConv(LC
.Op
, LC
.CC
);
1304 setOperationAction(ISD::SDIVREM
, MVT::i32
, Custom
);
1305 setOperationAction(ISD::UDIVREM
, MVT::i32
, Custom
);
1306 setOperationAction(ISD::SDIVREM
, MVT::i64
, Custom
);
1307 setOperationAction(ISD::UDIVREM
, MVT::i64
, Custom
);
1309 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
1310 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
1313 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
1314 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
1315 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
1316 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
1318 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
1319 setOperationAction(ISD::DEBUGTRAP
, MVT::Other
, Legal
);
1321 // Use the default implementation.
1322 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
1323 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
1324 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
1325 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
1326 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
1327 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
1329 if (Subtarget
->isTargetWindows())
1330 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
1332 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
1334 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1335 // the default expansion.
1336 InsertFencesForAtomic
= false;
1337 if (Subtarget
->hasAnyDataBarrier() &&
1338 (!Subtarget
->isThumb() || Subtarget
->hasV8MBaselineOps())) {
1339 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1340 // to ldrex/strex loops already.
1341 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
, Custom
);
1342 if (!Subtarget
->isThumb() || !Subtarget
->isMClass())
1343 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i64
, Custom
);
1345 // On v8, we have particularly efficient implementations of atomic fences
1346 // if they can be combined with nearby atomic loads and stores.
1347 if (!Subtarget
->hasAcquireRelease() ||
1348 getTargetMachine().getOptLevel() == CodeGenOptLevel::None
) {
1349 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1350 InsertFencesForAtomic
= true;
1353 // If there's anything we can use as a barrier, go through custom lowering
1354 // for ATOMIC_FENCE.
1355 // If target has DMB in thumb, Fences can be inserted.
1356 if (Subtarget
->hasDataBarrier())
1357 InsertFencesForAtomic
= true;
1359 setOperationAction(ISD::ATOMIC_FENCE
, MVT::Other
,
1360 Subtarget
->hasAnyDataBarrier() ? Custom
: Expand
);
1362 // Set them all for libcall, which will force libcalls.
1363 setOperationAction(ISD::ATOMIC_CMP_SWAP
, MVT::i32
, LibCall
);
1364 setOperationAction(ISD::ATOMIC_SWAP
, MVT::i32
, LibCall
);
1365 setOperationAction(ISD::ATOMIC_LOAD_ADD
, MVT::i32
, LibCall
);
1366 setOperationAction(ISD::ATOMIC_LOAD_SUB
, MVT::i32
, LibCall
);
1367 setOperationAction(ISD::ATOMIC_LOAD_AND
, MVT::i32
, LibCall
);
1368 setOperationAction(ISD::ATOMIC_LOAD_OR
, MVT::i32
, LibCall
);
1369 setOperationAction(ISD::ATOMIC_LOAD_XOR
, MVT::i32
, LibCall
);
1370 setOperationAction(ISD::ATOMIC_LOAD_NAND
, MVT::i32
, LibCall
);
1371 setOperationAction(ISD::ATOMIC_LOAD_MIN
, MVT::i32
, LibCall
);
1372 setOperationAction(ISD::ATOMIC_LOAD_MAX
, MVT::i32
, LibCall
);
1373 setOperationAction(ISD::ATOMIC_LOAD_UMIN
, MVT::i32
, LibCall
);
1374 setOperationAction(ISD::ATOMIC_LOAD_UMAX
, MVT::i32
, LibCall
);
1375 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1376 // Unordered/Monotonic case.
1377 if (!InsertFencesForAtomic
) {
1378 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Custom
);
1379 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Custom
);
1383 // Compute supported atomic widths.
1384 if (Subtarget
->isTargetLinux() ||
1385 (!Subtarget
->isMClass() && Subtarget
->hasV6Ops())) {
1386 // For targets where __sync_* routines are reliably available, we use them
1389 // ARM Linux always supports 64-bit atomics through kernel-assisted atomic
1390 // routines (kernel 3.1 or later). FIXME: Not with compiler-rt?
1392 // ARMv6 targets have native instructions in ARM mode. For Thumb mode,
1393 // such targets should provide __sync_* routines, which use the ARM mode
1394 // instructions. (ARMv6 doesn't have dmb, but it has an equivalent
1395 // encoding; see ARMISD::MEMBARRIER_MCR.)
1396 setMaxAtomicSizeInBitsSupported(64);
1397 } else if ((Subtarget
->isMClass() && Subtarget
->hasV8MBaselineOps()) ||
1398 Subtarget
->hasForced32BitAtomics()) {
1399 // Cortex-M (besides Cortex-M0) have 32-bit atomics.
1400 setMaxAtomicSizeInBitsSupported(32);
1402 // We can't assume anything about other targets; just use libatomic
1404 setMaxAtomicSizeInBitsSupported(0);
1407 setMaxDivRemBitWidthSupported(64);
1409 setOperationAction(ISD::PREFETCH
, MVT::Other
, Custom
);
1411 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1412 if (!Subtarget
->hasV6Ops()) {
1413 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
1414 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
1416 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
1418 if (!Subtarget
->useSoftFloat() && Subtarget
->hasFPRegs() &&
1419 !Subtarget
->isThumb1Only()) {
1420 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1421 // iff target supports vfp2.
1422 setOperationAction(ISD::BITCAST
, MVT::i64
, Custom
);
1423 setOperationAction(ISD::GET_ROUNDING
, MVT::i32
, Custom
);
1424 setOperationAction(ISD::SET_ROUNDING
, MVT::Other
, Custom
);
1425 setOperationAction(ISD::GET_FPENV
, MVT::i32
, Legal
);
1426 setOperationAction(ISD::SET_FPENV
, MVT::i32
, Legal
);
1427 setOperationAction(ISD::RESET_FPENV
, MVT::Other
, Legal
);
1428 setOperationAction(ISD::GET_FPMODE
, MVT::i32
, Legal
);
1429 setOperationAction(ISD::SET_FPMODE
, MVT::i32
, Custom
);
1430 setOperationAction(ISD::RESET_FPMODE
, MVT::Other
, Custom
);
1433 // We want to custom lower some of our intrinsics.
1434 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
1435 setOperationAction(ISD::EH_SJLJ_SETJMP
, MVT::i32
, Custom
);
1436 setOperationAction(ISD::EH_SJLJ_LONGJMP
, MVT::Other
, Custom
);
1437 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH
, MVT::Other
, Custom
);
1438 if (Subtarget
->useSjLjEH())
1439 setLibcallName(RTLIB::UNWIND_RESUME
, "_Unwind_SjLj_Resume");
1441 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
1442 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
1443 setOperationAction(ISD::SETCC
, MVT::f64
, Expand
);
1444 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
1445 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
1446 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
1447 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
1448 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
1449 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
1450 if (Subtarget
->hasFullFP16()) {
1451 setOperationAction(ISD::SETCC
, MVT::f16
, Expand
);
1452 setOperationAction(ISD::SELECT
, MVT::f16
, Custom
);
1453 setOperationAction(ISD::SELECT_CC
, MVT::f16
, Custom
);
1456 setOperationAction(ISD::SETCCCARRY
, MVT::i32
, Custom
);
1458 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
1459 setOperationAction(ISD::BR_CC
, MVT::i32
, Custom
);
1460 if (Subtarget
->hasFullFP16())
1461 setOperationAction(ISD::BR_CC
, MVT::f16
, Custom
);
1462 setOperationAction(ISD::BR_CC
, MVT::f32
, Custom
);
1463 setOperationAction(ISD::BR_CC
, MVT::f64
, Custom
);
1464 setOperationAction(ISD::BR_JT
, MVT::Other
, Custom
);
1466 // We don't support sin/cos/fmod/copysign/pow
1467 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
1468 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
1469 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
1470 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
1471 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
1472 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
1473 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
1474 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
1475 if (!Subtarget
->useSoftFloat() && Subtarget
->hasVFP2Base() &&
1476 !Subtarget
->isThumb1Only()) {
1477 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
1478 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
1480 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
1481 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
1483 if (!Subtarget
->hasVFP4Base()) {
1484 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
1485 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
1488 // Various VFP goodness
1489 if (!Subtarget
->useSoftFloat() && !Subtarget
->isThumb1Only()) {
1490 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1491 if (!Subtarget
->hasFPARMv8Base() || !Subtarget
->hasFP64()) {
1492 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
1493 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
1496 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1497 if (!Subtarget
->hasFP16()) {
1498 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
1499 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
1502 // Strict floating-point comparisons need custom lowering.
1503 setOperationAction(ISD::STRICT_FSETCC
, MVT::f16
, Custom
);
1504 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f16
, Custom
);
1505 setOperationAction(ISD::STRICT_FSETCC
, MVT::f32
, Custom
);
1506 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f32
, Custom
);
1507 setOperationAction(ISD::STRICT_FSETCC
, MVT::f64
, Custom
);
1508 setOperationAction(ISD::STRICT_FSETCCS
, MVT::f64
, Custom
);
1511 // Use __sincos_stret if available.
1512 if (getLibcallName(RTLIB::SINCOS_STRET_F32
) != nullptr &&
1513 getLibcallName(RTLIB::SINCOS_STRET_F64
) != nullptr) {
1514 setOperationAction(ISD::FSINCOS
, MVT::f64
, Custom
);
1515 setOperationAction(ISD::FSINCOS
, MVT::f32
, Custom
);
1518 // FP-ARMv8 implements a lot of rounding-like FP operations.
1519 if (Subtarget
->hasFPARMv8Base()) {
1520 setOperationAction(ISD::FFLOOR
, MVT::f32
, Legal
);
1521 setOperationAction(ISD::FCEIL
, MVT::f32
, Legal
);
1522 setOperationAction(ISD::FROUND
, MVT::f32
, Legal
);
1523 setOperationAction(ISD::FTRUNC
, MVT::f32
, Legal
);
1524 setOperationAction(ISD::FNEARBYINT
, MVT::f32
, Legal
);
1525 setOperationAction(ISD::FRINT
, MVT::f32
, Legal
);
1526 setOperationAction(ISD::FMINNUM
, MVT::f32
, Legal
);
1527 setOperationAction(ISD::FMAXNUM
, MVT::f32
, Legal
);
1528 if (Subtarget
->hasNEON()) {
1529 setOperationAction(ISD::FMINNUM
, MVT::v2f32
, Legal
);
1530 setOperationAction(ISD::FMAXNUM
, MVT::v2f32
, Legal
);
1531 setOperationAction(ISD::FMINNUM
, MVT::v4f32
, Legal
);
1532 setOperationAction(ISD::FMAXNUM
, MVT::v4f32
, Legal
);
1535 if (Subtarget
->hasFP64()) {
1536 setOperationAction(ISD::FFLOOR
, MVT::f64
, Legal
);
1537 setOperationAction(ISD::FCEIL
, MVT::f64
, Legal
);
1538 setOperationAction(ISD::FROUND
, MVT::f64
, Legal
);
1539 setOperationAction(ISD::FTRUNC
, MVT::f64
, Legal
);
1540 setOperationAction(ISD::FNEARBYINT
, MVT::f64
, Legal
);
1541 setOperationAction(ISD::FRINT
, MVT::f64
, Legal
);
1542 setOperationAction(ISD::FMINNUM
, MVT::f64
, Legal
);
1543 setOperationAction(ISD::FMAXNUM
, MVT::f64
, Legal
);
1547 // FP16 often need to be promoted to call lib functions
1548 if (Subtarget
->hasFullFP16()) {
1549 setOperationAction(ISD::FREM
, MVT::f16
, Promote
);
1550 setOperationAction(ISD::FCOPYSIGN
, MVT::f16
, Expand
);
1551 setOperationAction(ISD::FSIN
, MVT::f16
, Promote
);
1552 setOperationAction(ISD::FCOS
, MVT::f16
, Promote
);
1553 setOperationAction(ISD::FTAN
, MVT::f16
, Promote
);
1554 setOperationAction(ISD::FSINCOS
, MVT::f16
, Promote
);
1555 setOperationAction(ISD::FPOWI
, MVT::f16
, Promote
);
1556 setOperationAction(ISD::FPOW
, MVT::f16
, Promote
);
1557 setOperationAction(ISD::FEXP
, MVT::f16
, Promote
);
1558 setOperationAction(ISD::FEXP2
, MVT::f16
, Promote
);
1559 setOperationAction(ISD::FEXP10
, MVT::f16
, Promote
);
1560 setOperationAction(ISD::FLOG
, MVT::f16
, Promote
);
1561 setOperationAction(ISD::FLOG10
, MVT::f16
, Promote
);
1562 setOperationAction(ISD::FLOG2
, MVT::f16
, Promote
);
1564 setOperationAction(ISD::FROUND
, MVT::f16
, Legal
);
1567 if (Subtarget
->hasNEON()) {
1568 // vmin and vmax aren't available in a scalar form, so we can use
1569 // a NEON instruction with an undef lane instead.
1570 setOperationAction(ISD::FMINIMUM
, MVT::f32
, Legal
);
1571 setOperationAction(ISD::FMAXIMUM
, MVT::f32
, Legal
);
1572 setOperationAction(ISD::FMINIMUM
, MVT::f16
, Legal
);
1573 setOperationAction(ISD::FMAXIMUM
, MVT::f16
, Legal
);
1574 setOperationAction(ISD::FMINIMUM
, MVT::v2f32
, Legal
);
1575 setOperationAction(ISD::FMAXIMUM
, MVT::v2f32
, Legal
);
1576 setOperationAction(ISD::FMINIMUM
, MVT::v4f32
, Legal
);
1577 setOperationAction(ISD::FMAXIMUM
, MVT::v4f32
, Legal
);
1579 if (Subtarget
->hasFullFP16()) {
1580 setOperationAction(ISD::FMINNUM
, MVT::v4f16
, Legal
);
1581 setOperationAction(ISD::FMAXNUM
, MVT::v4f16
, Legal
);
1582 setOperationAction(ISD::FMINNUM
, MVT::v8f16
, Legal
);
1583 setOperationAction(ISD::FMAXNUM
, MVT::v8f16
, Legal
);
1585 setOperationAction(ISD::FMINIMUM
, MVT::v4f16
, Legal
);
1586 setOperationAction(ISD::FMAXIMUM
, MVT::v4f16
, Legal
);
1587 setOperationAction(ISD::FMINIMUM
, MVT::v8f16
, Legal
);
1588 setOperationAction(ISD::FMAXIMUM
, MVT::v8f16
, Legal
);
1592 // On MSVC, both 32-bit and 64-bit, ldexpf(f32) is not defined. MinGW has
1593 // it, but it's just a wrapper around ldexp.
1594 if (Subtarget
->isTargetWindows()) {
1595 for (ISD::NodeType Op
: {ISD::FLDEXP
, ISD::STRICT_FLDEXP
, ISD::FFREXP
})
1596 if (isOperationExpand(Op
, MVT::f32
))
1597 setOperationAction(Op
, MVT::f32
, Promote
);
1600 // LegalizeDAG currently can't expand fp16 LDEXP/FREXP on targets where i16
1602 for (ISD::NodeType Op
: {ISD::FLDEXP
, ISD::STRICT_FLDEXP
, ISD::FFREXP
})
1603 if (isOperationExpand(Op
, MVT::f16
))
1604 setOperationAction(Op
, MVT::f16
, Promote
);
1606 // We have target-specific dag combine patterns for the following nodes:
1607 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1608 setTargetDAGCombine(
1609 {ISD::ADD
, ISD::SUB
, ISD::MUL
, ISD::AND
, ISD::OR
, ISD::XOR
});
1611 if (Subtarget
->hasMVEIntegerOps())
1612 setTargetDAGCombine(ISD::VSELECT
);
1614 if (Subtarget
->hasV6Ops())
1615 setTargetDAGCombine(ISD::SRL
);
1616 if (Subtarget
->isThumb1Only())
1617 setTargetDAGCombine(ISD::SHL
);
1618 // Attempt to lower smin/smax to ssat/usat
1619 if ((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) ||
1620 Subtarget
->isThumb2()) {
1621 setTargetDAGCombine({ISD::SMIN
, ISD::SMAX
});
1624 setStackPointerRegisterToSaveRestore(ARM::SP
);
1626 if (Subtarget
->useSoftFloat() || Subtarget
->isThumb1Only() ||
1627 !Subtarget
->hasVFP2Base() || Subtarget
->hasMinSize())
1628 setSchedulingPreference(Sched::RegPressure
);
1630 setSchedulingPreference(Sched::Hybrid
);
1632 //// temporary - rewrite interface to use type
1633 MaxStoresPerMemset
= 8;
1634 MaxStoresPerMemsetOptSize
= 4;
1635 MaxStoresPerMemcpy
= 4; // For @llvm.memcpy -> sequence of stores
1636 MaxStoresPerMemcpyOptSize
= 2;
1637 MaxStoresPerMemmove
= 4; // For @llvm.memmove -> sequence of stores
1638 MaxStoresPerMemmoveOptSize
= 2;
1640 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1641 // are at least 4 bytes aligned.
1642 setMinStackArgumentAlignment(Align(4));
1644 // Prefer likely predicted branches to selects on out-of-order cores.
1645 PredictableSelectIsExpensive
= Subtarget
->getSchedModel().isOutOfOrder();
1647 setPrefLoopAlignment(Align(1ULL << Subtarget
->getPreferBranchLogAlignment()));
1648 setPrefFunctionAlignment(
1649 Align(1ULL << Subtarget
->getPreferBranchLogAlignment()));
1651 setMinFunctionAlignment(Subtarget
->isThumb() ? Align(2) : Align(4));
1654 bool ARMTargetLowering::useSoftFloat() const {
1655 return Subtarget
->useSoftFloat();
1658 // FIXME: It might make sense to define the representative register class as the
1659 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1660 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1661 // SPR's representative would be DPR_VFP2. This should work well if register
1662 // pressure tracking were modified such that a register use would increment the
1663 // pressure of the register class's representative and all of it's super
1664 // classes' representatives transitively. We have not implemented this because
1665 // of the difficulty prior to coalescing of modeling operand register classes
1666 // due to the common occurrence of cross class copies and subregister insertions
1668 std::pair
<const TargetRegisterClass
*, uint8_t>
1669 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo
*TRI
,
1671 const TargetRegisterClass
*RRC
= nullptr;
1673 switch (VT
.SimpleTy
) {
1675 return TargetLowering::findRepresentativeClass(TRI
, VT
);
1676 // Use DPR as representative register class for all floating point
1677 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1678 // the cost is 1 for both f32 and f64.
1679 case MVT::f32
: case MVT::f64
: case MVT::v8i8
: case MVT::v4i16
:
1680 case MVT::v2i32
: case MVT::v1i64
: case MVT::v2f32
:
1681 RRC
= &ARM::DPRRegClass
;
1682 // When NEON is used for SP, only half of the register file is available
1683 // because operations that define both SP and DP results will be constrained
1684 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1685 // coalescing by double-counting the SP regs. See the FIXME above.
1686 if (Subtarget
->useNEONForSinglePrecisionFP())
1689 case MVT::v16i8
: case MVT::v8i16
: case MVT::v4i32
: case MVT::v2i64
:
1690 case MVT::v4f32
: case MVT::v2f64
:
1691 RRC
= &ARM::DPRRegClass
;
1695 RRC
= &ARM::DPRRegClass
;
1699 RRC
= &ARM::DPRRegClass
;
1703 return std::make_pair(RRC
, Cost
);
1706 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode
) const {
1707 #define MAKE_CASE(V) \
1710 switch ((ARMISD::NodeType
)Opcode
) {
1711 case ARMISD::FIRST_NUMBER
:
1713 MAKE_CASE(ARMISD::Wrapper
)
1714 MAKE_CASE(ARMISD::WrapperPIC
)
1715 MAKE_CASE(ARMISD::WrapperJT
)
1716 MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL
)
1717 MAKE_CASE(ARMISD::CALL
)
1718 MAKE_CASE(ARMISD::CALL_PRED
)
1719 MAKE_CASE(ARMISD::CALL_NOLINK
)
1720 MAKE_CASE(ARMISD::tSECALL
)
1721 MAKE_CASE(ARMISD::t2CALL_BTI
)
1722 MAKE_CASE(ARMISD::BRCOND
)
1723 MAKE_CASE(ARMISD::BR_JT
)
1724 MAKE_CASE(ARMISD::BR2_JT
)
1725 MAKE_CASE(ARMISD::RET_GLUE
)
1726 MAKE_CASE(ARMISD::SERET_GLUE
)
1727 MAKE_CASE(ARMISD::INTRET_GLUE
)
1728 MAKE_CASE(ARMISD::PIC_ADD
)
1729 MAKE_CASE(ARMISD::CMP
)
1730 MAKE_CASE(ARMISD::CMN
)
1731 MAKE_CASE(ARMISD::CMPZ
)
1732 MAKE_CASE(ARMISD::CMPFP
)
1733 MAKE_CASE(ARMISD::CMPFPE
)
1734 MAKE_CASE(ARMISD::CMPFPw0
)
1735 MAKE_CASE(ARMISD::CMPFPEw0
)
1736 MAKE_CASE(ARMISD::BCC_i64
)
1737 MAKE_CASE(ARMISD::FMSTAT
)
1738 MAKE_CASE(ARMISD::CMOV
)
1739 MAKE_CASE(ARMISD::SSAT
)
1740 MAKE_CASE(ARMISD::USAT
)
1741 MAKE_CASE(ARMISD::ASRL
)
1742 MAKE_CASE(ARMISD::LSRL
)
1743 MAKE_CASE(ARMISD::LSLL
)
1744 MAKE_CASE(ARMISD::LSLS
)
1745 MAKE_CASE(ARMISD::LSRS1
)
1746 MAKE_CASE(ARMISD::ASRS1
)
1747 MAKE_CASE(ARMISD::RRX
)
1748 MAKE_CASE(ARMISD::ADDC
)
1749 MAKE_CASE(ARMISD::ADDE
)
1750 MAKE_CASE(ARMISD::SUBC
)
1751 MAKE_CASE(ARMISD::SUBE
)
1752 MAKE_CASE(ARMISD::VMOVRRD
)
1753 MAKE_CASE(ARMISD::VMOVDRR
)
1754 MAKE_CASE(ARMISD::VMOVhr
)
1755 MAKE_CASE(ARMISD::VMOVrh
)
1756 MAKE_CASE(ARMISD::VMOVSR
)
1757 MAKE_CASE(ARMISD::EH_SJLJ_SETJMP
)
1758 MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP
)
1759 MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH
)
1760 MAKE_CASE(ARMISD::TC_RETURN
)
1761 MAKE_CASE(ARMISD::THREAD_POINTER
)
1762 MAKE_CASE(ARMISD::DYN_ALLOC
)
1763 MAKE_CASE(ARMISD::MEMBARRIER_MCR
)
1764 MAKE_CASE(ARMISD::PRELOAD
)
1765 MAKE_CASE(ARMISD::LDRD
)
1766 MAKE_CASE(ARMISD::STRD
)
1767 MAKE_CASE(ARMISD::WIN__CHKSTK
)
1768 MAKE_CASE(ARMISD::WIN__DBZCHK
)
1769 MAKE_CASE(ARMISD::PREDICATE_CAST
)
1770 MAKE_CASE(ARMISD::VECTOR_REG_CAST
)
1771 MAKE_CASE(ARMISD::MVESEXT
)
1772 MAKE_CASE(ARMISD::MVEZEXT
)
1773 MAKE_CASE(ARMISD::MVETRUNC
)
1774 MAKE_CASE(ARMISD::VCMP
)
1775 MAKE_CASE(ARMISD::VCMPZ
)
1776 MAKE_CASE(ARMISD::VTST
)
1777 MAKE_CASE(ARMISD::VSHLs
)
1778 MAKE_CASE(ARMISD::VSHLu
)
1779 MAKE_CASE(ARMISD::VSHLIMM
)
1780 MAKE_CASE(ARMISD::VSHRsIMM
)
1781 MAKE_CASE(ARMISD::VSHRuIMM
)
1782 MAKE_CASE(ARMISD::VRSHRsIMM
)
1783 MAKE_CASE(ARMISD::VRSHRuIMM
)
1784 MAKE_CASE(ARMISD::VRSHRNIMM
)
1785 MAKE_CASE(ARMISD::VQSHLsIMM
)
1786 MAKE_CASE(ARMISD::VQSHLuIMM
)
1787 MAKE_CASE(ARMISD::VQSHLsuIMM
)
1788 MAKE_CASE(ARMISD::VQSHRNsIMM
)
1789 MAKE_CASE(ARMISD::VQSHRNuIMM
)
1790 MAKE_CASE(ARMISD::VQSHRNsuIMM
)
1791 MAKE_CASE(ARMISD::VQRSHRNsIMM
)
1792 MAKE_CASE(ARMISD::VQRSHRNuIMM
)
1793 MAKE_CASE(ARMISD::VQRSHRNsuIMM
)
1794 MAKE_CASE(ARMISD::VSLIIMM
)
1795 MAKE_CASE(ARMISD::VSRIIMM
)
1796 MAKE_CASE(ARMISD::VGETLANEu
)
1797 MAKE_CASE(ARMISD::VGETLANEs
)
1798 MAKE_CASE(ARMISD::VMOVIMM
)
1799 MAKE_CASE(ARMISD::VMVNIMM
)
1800 MAKE_CASE(ARMISD::VMOVFPIMM
)
1801 MAKE_CASE(ARMISD::VDUP
)
1802 MAKE_CASE(ARMISD::VDUPLANE
)
1803 MAKE_CASE(ARMISD::VEXT
)
1804 MAKE_CASE(ARMISD::VREV64
)
1805 MAKE_CASE(ARMISD::VREV32
)
1806 MAKE_CASE(ARMISD::VREV16
)
1807 MAKE_CASE(ARMISD::VZIP
)
1808 MAKE_CASE(ARMISD::VUZP
)
1809 MAKE_CASE(ARMISD::VTRN
)
1810 MAKE_CASE(ARMISD::VTBL1
)
1811 MAKE_CASE(ARMISD::VTBL2
)
1812 MAKE_CASE(ARMISD::VMOVN
)
1813 MAKE_CASE(ARMISD::VQMOVNs
)
1814 MAKE_CASE(ARMISD::VQMOVNu
)
1815 MAKE_CASE(ARMISD::VCVTN
)
1816 MAKE_CASE(ARMISD::VCVTL
)
1817 MAKE_CASE(ARMISD::VIDUP
)
1818 MAKE_CASE(ARMISD::VMULLs
)
1819 MAKE_CASE(ARMISD::VMULLu
)
1820 MAKE_CASE(ARMISD::VQDMULH
)
1821 MAKE_CASE(ARMISD::VADDVs
)
1822 MAKE_CASE(ARMISD::VADDVu
)
1823 MAKE_CASE(ARMISD::VADDVps
)
1824 MAKE_CASE(ARMISD::VADDVpu
)
1825 MAKE_CASE(ARMISD::VADDLVs
)
1826 MAKE_CASE(ARMISD::VADDLVu
)
1827 MAKE_CASE(ARMISD::VADDLVAs
)
1828 MAKE_CASE(ARMISD::VADDLVAu
)
1829 MAKE_CASE(ARMISD::VADDLVps
)
1830 MAKE_CASE(ARMISD::VADDLVpu
)
1831 MAKE_CASE(ARMISD::VADDLVAps
)
1832 MAKE_CASE(ARMISD::VADDLVApu
)
1833 MAKE_CASE(ARMISD::VMLAVs
)
1834 MAKE_CASE(ARMISD::VMLAVu
)
1835 MAKE_CASE(ARMISD::VMLAVps
)
1836 MAKE_CASE(ARMISD::VMLAVpu
)
1837 MAKE_CASE(ARMISD::VMLALVs
)
1838 MAKE_CASE(ARMISD::VMLALVu
)
1839 MAKE_CASE(ARMISD::VMLALVps
)
1840 MAKE_CASE(ARMISD::VMLALVpu
)
1841 MAKE_CASE(ARMISD::VMLALVAs
)
1842 MAKE_CASE(ARMISD::VMLALVAu
)
1843 MAKE_CASE(ARMISD::VMLALVAps
)
1844 MAKE_CASE(ARMISD::VMLALVApu
)
1845 MAKE_CASE(ARMISD::VMINVu
)
1846 MAKE_CASE(ARMISD::VMINVs
)
1847 MAKE_CASE(ARMISD::VMAXVu
)
1848 MAKE_CASE(ARMISD::VMAXVs
)
1849 MAKE_CASE(ARMISD::UMAAL
)
1850 MAKE_CASE(ARMISD::UMLAL
)
1851 MAKE_CASE(ARMISD::SMLAL
)
1852 MAKE_CASE(ARMISD::SMLALBB
)
1853 MAKE_CASE(ARMISD::SMLALBT
)
1854 MAKE_CASE(ARMISD::SMLALTB
)
1855 MAKE_CASE(ARMISD::SMLALTT
)
1856 MAKE_CASE(ARMISD::SMULWB
)
1857 MAKE_CASE(ARMISD::SMULWT
)
1858 MAKE_CASE(ARMISD::SMLALD
)
1859 MAKE_CASE(ARMISD::SMLALDX
)
1860 MAKE_CASE(ARMISD::SMLSLD
)
1861 MAKE_CASE(ARMISD::SMLSLDX
)
1862 MAKE_CASE(ARMISD::SMMLAR
)
1863 MAKE_CASE(ARMISD::SMMLSR
)
1864 MAKE_CASE(ARMISD::QADD16b
)
1865 MAKE_CASE(ARMISD::QSUB16b
)
1866 MAKE_CASE(ARMISD::QADD8b
)
1867 MAKE_CASE(ARMISD::QSUB8b
)
1868 MAKE_CASE(ARMISD::UQADD16b
)
1869 MAKE_CASE(ARMISD::UQSUB16b
)
1870 MAKE_CASE(ARMISD::UQADD8b
)
1871 MAKE_CASE(ARMISD::UQSUB8b
)
1872 MAKE_CASE(ARMISD::BUILD_VECTOR
)
1873 MAKE_CASE(ARMISD::BFI
)
1874 MAKE_CASE(ARMISD::VORRIMM
)
1875 MAKE_CASE(ARMISD::VBICIMM
)
1876 MAKE_CASE(ARMISD::VBSP
)
1877 MAKE_CASE(ARMISD::MEMCPY
)
1878 MAKE_CASE(ARMISD::VLD1DUP
)
1879 MAKE_CASE(ARMISD::VLD2DUP
)
1880 MAKE_CASE(ARMISD::VLD3DUP
)
1881 MAKE_CASE(ARMISD::VLD4DUP
)
1882 MAKE_CASE(ARMISD::VLD1_UPD
)
1883 MAKE_CASE(ARMISD::VLD2_UPD
)
1884 MAKE_CASE(ARMISD::VLD3_UPD
)
1885 MAKE_CASE(ARMISD::VLD4_UPD
)
1886 MAKE_CASE(ARMISD::VLD1x2_UPD
)
1887 MAKE_CASE(ARMISD::VLD1x3_UPD
)
1888 MAKE_CASE(ARMISD::VLD1x4_UPD
)
1889 MAKE_CASE(ARMISD::VLD2LN_UPD
)
1890 MAKE_CASE(ARMISD::VLD3LN_UPD
)
1891 MAKE_CASE(ARMISD::VLD4LN_UPD
)
1892 MAKE_CASE(ARMISD::VLD1DUP_UPD
)
1893 MAKE_CASE(ARMISD::VLD2DUP_UPD
)
1894 MAKE_CASE(ARMISD::VLD3DUP_UPD
)
1895 MAKE_CASE(ARMISD::VLD4DUP_UPD
)
1896 MAKE_CASE(ARMISD::VST1_UPD
)
1897 MAKE_CASE(ARMISD::VST2_UPD
)
1898 MAKE_CASE(ARMISD::VST3_UPD
)
1899 MAKE_CASE(ARMISD::VST4_UPD
)
1900 MAKE_CASE(ARMISD::VST1x2_UPD
)
1901 MAKE_CASE(ARMISD::VST1x3_UPD
)
1902 MAKE_CASE(ARMISD::VST1x4_UPD
)
1903 MAKE_CASE(ARMISD::VST2LN_UPD
)
1904 MAKE_CASE(ARMISD::VST3LN_UPD
)
1905 MAKE_CASE(ARMISD::VST4LN_UPD
)
1906 MAKE_CASE(ARMISD::WLS
)
1907 MAKE_CASE(ARMISD::WLSSETUP
)
1908 MAKE_CASE(ARMISD::LE
)
1909 MAKE_CASE(ARMISD::LOOP_DEC
)
1910 MAKE_CASE(ARMISD::CSINV
)
1911 MAKE_CASE(ARMISD::CSNEG
)
1912 MAKE_CASE(ARMISD::CSINC
)
1913 MAKE_CASE(ARMISD::MEMCPYLOOP
)
1914 MAKE_CASE(ARMISD::MEMSETLOOP
)
1920 EVT
ARMTargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1923 return getPointerTy(DL
);
1925 // MVE has a predicate register.
1926 if ((Subtarget
->hasMVEIntegerOps() &&
1927 (VT
== MVT::v2i64
|| VT
== MVT::v4i32
|| VT
== MVT::v8i16
||
1928 VT
== MVT::v16i8
)) ||
1929 (Subtarget
->hasMVEFloatOps() &&
1930 (VT
== MVT::v2f64
|| VT
== MVT::v4f32
|| VT
== MVT::v8f16
)))
1931 return MVT::getVectorVT(MVT::i1
, VT
.getVectorElementCount());
1932 return VT
.changeVectorElementTypeToInteger();
1935 /// getRegClassFor - Return the register class that should be used for the
1936 /// specified value type.
1937 const TargetRegisterClass
*
1938 ARMTargetLowering::getRegClassFor(MVT VT
, bool isDivergent
) const {
1940 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1941 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1942 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1944 if (Subtarget
->hasNEON()) {
1945 if (VT
== MVT::v4i64
)
1946 return &ARM::QQPRRegClass
;
1947 if (VT
== MVT::v8i64
)
1948 return &ARM::QQQQPRRegClass
;
1950 if (Subtarget
->hasMVEIntegerOps()) {
1951 if (VT
== MVT::v4i64
)
1952 return &ARM::MQQPRRegClass
;
1953 if (VT
== MVT::v8i64
)
1954 return &ARM::MQQQQPRRegClass
;
1956 return TargetLowering::getRegClassFor(VT
);
1959 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1960 // source/dest is aligned and the copy size is large enough. We therefore want
1961 // to align such objects passed to memory intrinsics.
1962 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst
*CI
, unsigned &MinSize
,
1963 Align
&PrefAlign
) const {
1964 if (!isa
<MemIntrinsic
>(CI
))
1967 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1968 // cycle faster than 4-byte aligned LDM.
1970 (Subtarget
->hasV6Ops() && !Subtarget
->isMClass() ? Align(8) : Align(4));
1974 // Create a fast isel object.
1976 ARMTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
1977 const TargetLibraryInfo
*libInfo
) const {
1978 return ARM::createFastISel(funcInfo
, libInfo
);
1981 Sched::Preference
ARMTargetLowering::getSchedulingPreference(SDNode
*N
) const {
1982 unsigned NumVals
= N
->getNumValues();
1984 return Sched::RegPressure
;
1986 for (unsigned i
= 0; i
!= NumVals
; ++i
) {
1987 EVT VT
= N
->getValueType(i
);
1988 if (VT
== MVT::Glue
|| VT
== MVT::Other
)
1990 if (VT
.isFloatingPoint() || VT
.isVector())
1994 if (!N
->isMachineOpcode())
1995 return Sched::RegPressure
;
1997 // Load are scheduled for latency even if there instruction itinerary
1998 // is not available.
1999 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
2000 const MCInstrDesc
&MCID
= TII
->get(N
->getMachineOpcode());
2002 if (MCID
.getNumDefs() == 0)
2003 return Sched::RegPressure
;
2004 if (!Itins
->isEmpty() &&
2005 Itins
->getOperandCycle(MCID
.getSchedClass(), 0) > 2U)
2008 return Sched::RegPressure
;
2011 //===----------------------------------------------------------------------===//
2013 //===----------------------------------------------------------------------===//
2015 static bool isSRL16(const SDValue
&Op
) {
2016 if (Op
.getOpcode() != ISD::SRL
)
2018 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2019 return Const
->getZExtValue() == 16;
2023 static bool isSRA16(const SDValue
&Op
) {
2024 if (Op
.getOpcode() != ISD::SRA
)
2026 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2027 return Const
->getZExtValue() == 16;
2031 static bool isSHL16(const SDValue
&Op
) {
2032 if (Op
.getOpcode() != ISD::SHL
)
2034 if (auto Const
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1)))
2035 return Const
->getZExtValue() == 16;
2039 // Check for a signed 16-bit value. We special case SRA because it makes it
2040 // more simple when also looking for SRAs that aren't sign extending a
2041 // smaller value. Without the check, we'd need to take extra care with
2042 // checking order for some operations.
2043 static bool isS16(const SDValue
&Op
, SelectionDAG
&DAG
) {
2045 return isSHL16(Op
.getOperand(0));
2046 return DAG
.ComputeNumSignBits(Op
) == 17;
2049 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
2050 static ARMCC::CondCodes
IntCCToARMCC(ISD::CondCode CC
) {
2052 default: llvm_unreachable("Unknown condition code!");
2053 case ISD::SETNE
: return ARMCC::NE
;
2054 case ISD::SETEQ
: return ARMCC::EQ
;
2055 case ISD::SETGT
: return ARMCC::GT
;
2056 case ISD::SETGE
: return ARMCC::GE
;
2057 case ISD::SETLT
: return ARMCC::LT
;
2058 case ISD::SETLE
: return ARMCC::LE
;
2059 case ISD::SETUGT
: return ARMCC::HI
;
2060 case ISD::SETUGE
: return ARMCC::HS
;
2061 case ISD::SETULT
: return ARMCC::LO
;
2062 case ISD::SETULE
: return ARMCC::LS
;
2066 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
2067 static void FPCCToARMCC(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
2068 ARMCC::CondCodes
&CondCode2
) {
2069 CondCode2
= ARMCC::AL
;
2071 default: llvm_unreachable("Unknown FP condition!");
2073 case ISD::SETOEQ
: CondCode
= ARMCC::EQ
; break;
2075 case ISD::SETOGT
: CondCode
= ARMCC::GT
; break;
2077 case ISD::SETOGE
: CondCode
= ARMCC::GE
; break;
2078 case ISD::SETOLT
: CondCode
= ARMCC::MI
; break;
2079 case ISD::SETOLE
: CondCode
= ARMCC::LS
; break;
2080 case ISD::SETONE
: CondCode
= ARMCC::MI
; CondCode2
= ARMCC::GT
; break;
2081 case ISD::SETO
: CondCode
= ARMCC::VC
; break;
2082 case ISD::SETUO
: CondCode
= ARMCC::VS
; break;
2083 case ISD::SETUEQ
: CondCode
= ARMCC::EQ
; CondCode2
= ARMCC::VS
; break;
2084 case ISD::SETUGT
: CondCode
= ARMCC::HI
; break;
2085 case ISD::SETUGE
: CondCode
= ARMCC::PL
; break;
2087 case ISD::SETULT
: CondCode
= ARMCC::LT
; break;
2089 case ISD::SETULE
: CondCode
= ARMCC::LE
; break;
2091 case ISD::SETUNE
: CondCode
= ARMCC::NE
; break;
2095 //===----------------------------------------------------------------------===//
2096 // Calling Convention Implementation
2097 //===----------------------------------------------------------------------===//
2099 /// getEffectiveCallingConv - Get the effective calling convention, taking into
2100 /// account presence of floating point hardware and calling convention
2101 /// limitations, such as support for variadic functions.
2103 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC
,
2104 bool isVarArg
) const {
2107 report_fatal_error("Unsupported calling convention");
2108 case CallingConv::ARM_AAPCS
:
2109 case CallingConv::ARM_APCS
:
2110 case CallingConv::GHC
:
2111 case CallingConv::CFGuard_Check
:
2113 case CallingConv::PreserveMost
:
2114 return CallingConv::PreserveMost
;
2115 case CallingConv::PreserveAll
:
2116 return CallingConv::PreserveAll
;
2117 case CallingConv::ARM_AAPCS_VFP
:
2118 case CallingConv::Swift
:
2119 case CallingConv::SwiftTail
:
2120 return isVarArg
? CallingConv::ARM_AAPCS
: CallingConv::ARM_AAPCS_VFP
;
2121 case CallingConv::C
:
2122 case CallingConv::Tail
:
2123 if (!Subtarget
->isAAPCS_ABI())
2124 return CallingConv::ARM_APCS
;
2125 else if (Subtarget
->hasFPRegs() && !Subtarget
->isThumb1Only() &&
2126 getTargetMachine().Options
.FloatABIType
== FloatABI::Hard
&&
2128 return CallingConv::ARM_AAPCS_VFP
;
2130 return CallingConv::ARM_AAPCS
;
2131 case CallingConv::Fast
:
2132 case CallingConv::CXX_FAST_TLS
:
2133 if (!Subtarget
->isAAPCS_ABI()) {
2134 if (Subtarget
->hasVFP2Base() && !Subtarget
->isThumb1Only() && !isVarArg
)
2135 return CallingConv::Fast
;
2136 return CallingConv::ARM_APCS
;
2137 } else if (Subtarget
->hasVFP2Base() &&
2138 !Subtarget
->isThumb1Only() && !isVarArg
)
2139 return CallingConv::ARM_AAPCS_VFP
;
2141 return CallingConv::ARM_AAPCS
;
2145 CCAssignFn
*ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
2146 bool isVarArg
) const {
2147 return CCAssignFnForNode(CC
, false, isVarArg
);
2150 CCAssignFn
*ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC
,
2151 bool isVarArg
) const {
2152 return CCAssignFnForNode(CC
, true, isVarArg
);
2155 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2156 /// CallingConvention.
2157 CCAssignFn
*ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC
,
2159 bool isVarArg
) const {
2160 switch (getEffectiveCallingConv(CC
, isVarArg
)) {
2162 report_fatal_error("Unsupported calling convention");
2163 case CallingConv::ARM_APCS
:
2164 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS
);
2165 case CallingConv::ARM_AAPCS
:
2166 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
2167 case CallingConv::ARM_AAPCS_VFP
:
2168 return (Return
? RetCC_ARM_AAPCS_VFP
: CC_ARM_AAPCS_VFP
);
2169 case CallingConv::Fast
:
2170 return (Return
? RetFastCC_ARM_APCS
: FastCC_ARM_APCS
);
2171 case CallingConv::GHC
:
2172 return (Return
? RetCC_ARM_APCS
: CC_ARM_APCS_GHC
);
2173 case CallingConv::PreserveMost
:
2174 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
2175 case CallingConv::PreserveAll
:
2176 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_AAPCS
);
2177 case CallingConv::CFGuard_Check
:
2178 return (Return
? RetCC_ARM_AAPCS
: CC_ARM_Win32_CFGuard_Check
);
2182 SDValue
ARMTargetLowering::MoveToHPR(const SDLoc
&dl
, SelectionDAG
&DAG
,
2183 MVT LocVT
, MVT ValVT
, SDValue Val
) const {
2184 Val
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::getIntegerVT(LocVT
.getSizeInBits()),
2186 if (Subtarget
->hasFullFP16()) {
2187 Val
= DAG
.getNode(ARMISD::VMOVhr
, dl
, ValVT
, Val
);
2189 Val
= DAG
.getNode(ISD::TRUNCATE
, dl
,
2190 MVT::getIntegerVT(ValVT
.getSizeInBits()), Val
);
2191 Val
= DAG
.getNode(ISD::BITCAST
, dl
, ValVT
, Val
);
2196 SDValue
ARMTargetLowering::MoveFromHPR(const SDLoc
&dl
, SelectionDAG
&DAG
,
2197 MVT LocVT
, MVT ValVT
,
2198 SDValue Val
) const {
2199 if (Subtarget
->hasFullFP16()) {
2200 Val
= DAG
.getNode(ARMISD::VMOVrh
, dl
,
2201 MVT::getIntegerVT(LocVT
.getSizeInBits()), Val
);
2203 Val
= DAG
.getNode(ISD::BITCAST
, dl
,
2204 MVT::getIntegerVT(ValVT
.getSizeInBits()), Val
);
2205 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
,
2206 MVT::getIntegerVT(LocVT
.getSizeInBits()), Val
);
2208 return DAG
.getNode(ISD::BITCAST
, dl
, LocVT
, Val
);
2211 /// LowerCallResult - Lower the result values of a call into the
2212 /// appropriate copies out of appropriate physical registers.
2213 SDValue
ARMTargetLowering::LowerCallResult(
2214 SDValue Chain
, SDValue InGlue
, CallingConv::ID CallConv
, bool isVarArg
,
2215 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
2216 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
, bool isThisReturn
,
2217 SDValue ThisVal
, bool isCmseNSCall
) const {
2218 // Assign locations to each value returned by this call.
2219 SmallVector
<CCValAssign
, 16> RVLocs
;
2220 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
2222 CCInfo
.AnalyzeCallResult(Ins
, CCAssignFnForReturn(CallConv
, isVarArg
));
2224 // Copy all of the result registers out of their specified physreg.
2225 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
2226 CCValAssign VA
= RVLocs
[i
];
2228 // Pass 'this' value directly from the argument to return value, to avoid
2229 // reg unit interference
2230 if (i
== 0 && isThisReturn
) {
2231 assert(!VA
.needsCustom() && VA
.getLocVT() == MVT::i32
&&
2232 "unexpected return calling convention register assignment");
2233 InVals
.push_back(ThisVal
);
2238 if (VA
.needsCustom() &&
2239 (VA
.getLocVT() == MVT::f64
|| VA
.getLocVT() == MVT::v2f64
)) {
2240 // Handle f64 or half of a v2f64.
2241 SDValue Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
2243 Chain
= Lo
.getValue(1);
2244 InGlue
= Lo
.getValue(2);
2245 VA
= RVLocs
[++i
]; // skip ahead to next loc
2246 SDValue Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
,
2248 Chain
= Hi
.getValue(1);
2249 InGlue
= Hi
.getValue(2);
2250 if (!Subtarget
->isLittle())
2252 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
2254 if (VA
.getLocVT() == MVT::v2f64
) {
2255 SDValue Vec
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
2256 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
2257 DAG
.getConstant(0, dl
, MVT::i32
));
2259 VA
= RVLocs
[++i
]; // skip ahead to next loc
2260 Lo
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InGlue
);
2261 Chain
= Lo
.getValue(1);
2262 InGlue
= Lo
.getValue(2);
2263 VA
= RVLocs
[++i
]; // skip ahead to next loc
2264 Hi
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), MVT::i32
, InGlue
);
2265 Chain
= Hi
.getValue(1);
2266 InGlue
= Hi
.getValue(2);
2267 if (!Subtarget
->isLittle())
2269 Val
= DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
2270 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Vec
, Val
,
2271 DAG
.getConstant(1, dl
, MVT::i32
));
2274 Val
= DAG
.getCopyFromReg(Chain
, dl
, VA
.getLocReg(), VA
.getLocVT(),
2276 Chain
= Val
.getValue(1);
2277 InGlue
= Val
.getValue(2);
2280 switch (VA
.getLocInfo()) {
2281 default: llvm_unreachable("Unknown loc info!");
2282 case CCValAssign::Full
: break;
2283 case CCValAssign::BCvt
:
2284 Val
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), Val
);
2288 // f16 arguments have their size extended to 4 bytes and passed as if they
2289 // had been copied to the LSBs of a 32-bit register.
2290 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2291 if (VA
.needsCustom() &&
2292 (VA
.getValVT() == MVT::f16
|| VA
.getValVT() == MVT::bf16
))
2293 Val
= MoveToHPR(dl
, DAG
, VA
.getLocVT(), VA
.getValVT(), Val
);
2295 // On CMSE Non-secure Calls, call results (returned values) whose bitwidth
2296 // is less than 32 bits must be sign- or zero-extended after the call for
2297 // security reasons. Although the ABI mandates an extension done by the
2298 // callee, the latter cannot be trusted to follow the rules of the ABI.
2299 const ISD::InputArg
&Arg
= Ins
[VA
.getValNo()];
2300 if (isCmseNSCall
&& Arg
.ArgVT
.isScalarInteger() &&
2301 VA
.getLocVT().isScalarInteger() && Arg
.ArgVT
.bitsLT(MVT::i32
))
2302 Val
= handleCMSEValue(Val
, Arg
, DAG
, dl
);
2304 InVals
.push_back(Val
);
2310 std::pair
<SDValue
, MachinePointerInfo
> ARMTargetLowering::computeAddrForCallArg(
2311 const SDLoc
&dl
, SelectionDAG
&DAG
, const CCValAssign
&VA
, SDValue StackPtr
,
2312 bool IsTailCall
, int SPDiff
) const {
2314 MachinePointerInfo DstInfo
;
2315 int32_t Offset
= VA
.getLocMemOffset();
2316 MachineFunction
&MF
= DAG
.getMachineFunction();
2320 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2321 int Size
= VA
.getLocVT().getFixedSizeInBits() / 8;
2322 int FI
= MF
.getFrameInfo().CreateFixedObject(Size
, Offset
, true);
2323 DstAddr
= DAG
.getFrameIndex(FI
, PtrVT
);
2325 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
);
2327 SDValue PtrOff
= DAG
.getIntPtrConstant(Offset
, dl
);
2328 DstAddr
= DAG
.getNode(ISD::ADD
, dl
, getPointerTy(DAG
.getDataLayout()),
2331 MachinePointerInfo::getStack(DAG
.getMachineFunction(), Offset
);
2334 return std::make_pair(DstAddr
, DstInfo
);
2337 // Returns the type of copying which is required to set up a byval argument to
2338 // a tail-called function. This isn't needed for non-tail calls, because they
2339 // always need the equivalent of CopyOnce, but tail-calls sometimes need two to
2340 // avoid clobbering another argument (CopyViaTemp), and sometimes can be
2341 // optimised to zero copies when forwarding an argument from the caller's
2343 ARMTargetLowering::ByValCopyKind
ARMTargetLowering::ByValNeedsCopyForTailCall(
2344 SelectionDAG
&DAG
, SDValue Src
, SDValue Dst
, ISD::ArgFlagsTy Flags
) const {
2345 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2346 ARMFunctionInfo
*AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
2348 // Globals are always safe to copy from.
2349 if (isa
<GlobalAddressSDNode
>(Src
) || isa
<ExternalSymbolSDNode
>(Src
))
2352 // Can only analyse frame index nodes, conservatively assume we need a
2354 auto *SrcFrameIdxNode
= dyn_cast
<FrameIndexSDNode
>(Src
);
2355 auto *DstFrameIdxNode
= dyn_cast
<FrameIndexSDNode
>(Dst
);
2356 if (!SrcFrameIdxNode
|| !DstFrameIdxNode
)
2359 int SrcFI
= SrcFrameIdxNode
->getIndex();
2360 int DstFI
= DstFrameIdxNode
->getIndex();
2361 assert(MFI
.isFixedObjectIndex(DstFI
) &&
2362 "byval passed in non-fixed stack slot");
2364 int64_t SrcOffset
= MFI
.getObjectOffset(SrcFI
);
2365 int64_t DstOffset
= MFI
.getObjectOffset(DstFI
);
2367 // If the source is in the local frame, then the copy to the argument memory
2369 bool FixedSrc
= MFI
.isFixedObjectIndex(SrcFI
);
2371 (FixedSrc
&& SrcOffset
< -(int64_t)AFI
->getArgRegsSaveSize()))
2374 // In the case of byval arguments split between registers and the stack,
2375 // computeAddrForCallArg returns a FrameIndex which corresponds only to the
2376 // stack portion, but the Src SDValue will refer to the full value, including
2377 // the local stack memory that the register portion gets stored into. We only
2378 // need to compare them for equality, so normalise on the full value version.
2379 uint64_t RegSize
= Flags
.getByValSize() - MFI
.getObjectSize(DstFI
);
2380 DstOffset
-= RegSize
;
2382 // If the value is already in the correct location, then no copying is
2383 // needed. If not, then we need to copy via a temporary.
2384 if (SrcOffset
== DstOffset
)
2390 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc
&dl
, SelectionDAG
&DAG
,
2391 SDValue Chain
, SDValue
&Arg
,
2392 RegsToPassVector
&RegsToPass
,
2393 CCValAssign
&VA
, CCValAssign
&NextVA
,
2395 SmallVectorImpl
<SDValue
> &MemOpChains
,
2398 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
2399 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
2400 unsigned id
= Subtarget
->isLittle() ? 0 : 1;
2401 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), fmrrd
.getValue(id
)));
2403 if (NextVA
.isRegLoc())
2404 RegsToPass
.push_back(std::make_pair(NextVA
.getLocReg(), fmrrd
.getValue(1-id
)));
2406 assert(NextVA
.isMemLoc());
2407 if (!StackPtr
.getNode())
2408 StackPtr
= DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
,
2409 getPointerTy(DAG
.getDataLayout()));
2412 MachinePointerInfo DstInfo
;
2413 std::tie(DstAddr
, DstInfo
) =
2414 computeAddrForCallArg(dl
, DAG
, NextVA
, StackPtr
, IsTailCall
, SPDiff
);
2415 MemOpChains
.push_back(
2416 DAG
.getStore(Chain
, dl
, fmrrd
.getValue(1 - id
), DstAddr
, DstInfo
));
2420 static bool canGuaranteeTCO(CallingConv::ID CC
, bool GuaranteeTailCalls
) {
2421 return (CC
== CallingConv::Fast
&& GuaranteeTailCalls
) ||
2422 CC
== CallingConv::Tail
|| CC
== CallingConv::SwiftTail
;
2425 /// LowerCall - Lowering a call into a callseq_start <-
2426 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2429 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
2430 SmallVectorImpl
<SDValue
> &InVals
) const {
2431 SelectionDAG
&DAG
= CLI
.DAG
;
2433 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
2434 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
2435 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
2436 SDValue Chain
= CLI
.Chain
;
2437 SDValue Callee
= CLI
.Callee
;
2438 bool &isTailCall
= CLI
.IsTailCall
;
2439 CallingConv::ID CallConv
= CLI
.CallConv
;
2440 bool doesNotRet
= CLI
.DoesNotReturn
;
2441 bool isVarArg
= CLI
.IsVarArg
;
2443 MachineFunction
&MF
= DAG
.getMachineFunction();
2444 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2445 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2446 MachineFunction::CallSiteInfo CSInfo
;
2447 bool isStructRet
= (Outs
.empty()) ? false : Outs
[0].Flags
.isSRet();
2448 bool isThisReturn
= false;
2449 bool isCmseNSCall
= false;
2450 bool isSibCall
= false;
2451 bool PreferIndirect
= false;
2452 bool GuardWithBTI
= false;
2454 // Analyze operands of the call, assigning locations to each operand.
2455 SmallVector
<CCValAssign
, 16> ArgLocs
;
2456 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
2458 CCInfo
.AnalyzeCallOperands(Outs
, CCAssignFnForCall(CallConv
, isVarArg
));
2460 // Lower 'returns_twice' calls to a pseudo-instruction.
2461 if (CLI
.CB
&& CLI
.CB
->getAttributes().hasFnAttr(Attribute::ReturnsTwice
) &&
2462 !Subtarget
->noBTIAtReturnTwice())
2463 GuardWithBTI
= AFI
->branchTargetEnforcement();
2465 // Determine whether this is a non-secure function call.
2466 if (CLI
.CB
&& CLI
.CB
->getAttributes().hasFnAttr("cmse_nonsecure_call"))
2467 isCmseNSCall
= true;
2469 // Disable tail calls if they're not supported.
2470 if (!Subtarget
->supportsTailCall())
2473 // For both the non-secure calls and the returns from a CMSE entry function,
2474 // the function needs to do some extra work after the call, or before the
2475 // return, respectively, thus it cannot end with a tail call
2476 if (isCmseNSCall
|| AFI
->isCmseNSEntryFunction())
2479 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2480 // If we're optimizing for minimum size and the function is called three or
2481 // more times in this block, we can improve codesize by calling indirectly
2482 // as BLXr has a 16-bit encoding.
2483 auto *GV
= cast
<GlobalAddressSDNode
>(Callee
)->getGlobal();
2485 auto *BB
= CLI
.CB
->getParent();
2486 PreferIndirect
= Subtarget
->isThumb() && Subtarget
->hasMinSize() &&
2487 count_if(GV
->users(), [&BB
](const User
*U
) {
2488 return isa
<Instruction
>(U
) &&
2489 cast
<Instruction
>(U
)->getParent() == BB
;
2494 // Check if it's really possible to do a tail call.
2496 IsEligibleForTailCallOptimization(CLI
, CCInfo
, ArgLocs
, PreferIndirect
);
2498 if (isTailCall
&& !getTargetMachine().Options
.GuaranteedTailCallOpt
&&
2499 CallConv
!= CallingConv::Tail
&& CallConv
!= CallingConv::SwiftTail
)
2502 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2503 // detected sibcalls.
2508 if (!isTailCall
&& CLI
.CB
&& CLI
.CB
->isMustTailCall())
2509 report_fatal_error("failed to perform tail call elimination on a call "
2510 "site marked musttail");
2512 // Get a count of how many bytes are to be pushed on the stack.
2513 unsigned NumBytes
= CCInfo
.getStackSize();
2515 // SPDiff is the byte offset of the call's argument area from the callee's.
2516 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2517 // by this amount for a tail call. In a sibling call it must be 0 because the
2518 // caller will deallocate the entire stack and the callee still expects its
2519 // arguments to begin at SP+0. Completely unused for non-tail calls.
2522 if (isTailCall
&& !isSibCall
) {
2523 auto FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
2524 unsigned NumReusableBytes
= FuncInfo
->getArgumentStackSize();
2526 // Since callee will pop argument stack as a tail call, we must keep the
2527 // popped size 16-byte aligned.
2528 MaybeAlign StackAlign
= DAG
.getDataLayout().getStackAlignment();
2529 assert(StackAlign
&& "data layout string is missing stack alignment");
2530 NumBytes
= alignTo(NumBytes
, *StackAlign
);
2532 // SPDiff will be negative if this tail call requires more space than we
2533 // would automatically have in our incoming argument space. Positive if we
2534 // can actually shrink the stack.
2535 SPDiff
= NumReusableBytes
- NumBytes
;
2537 // If this call requires more stack than we have available from
2538 // LowerFormalArguments, tell FrameLowering to reserve space for it.
2539 if (SPDiff
< 0 && AFI
->getArgRegsSaveSize() < (unsigned)-SPDiff
)
2540 AFI
->setArgRegsSaveSize(-SPDiff
);
2544 // For sibling tail calls, memory operands are available in our caller's stack.
2547 // Adjust the stack pointer for the new arguments...
2548 // These operations are automatically eliminated by the prolog/epilog pass
2549 Chain
= DAG
.getCALLSEQ_START(Chain
, isTailCall
? 0 : NumBytes
, 0, dl
);
2553 DAG
.getCopyFromReg(Chain
, dl
, ARM::SP
, getPointerTy(DAG
.getDataLayout()));
2555 RegsToPassVector RegsToPass
;
2556 SmallVector
<SDValue
, 8> MemOpChains
;
2558 // If we are doing a tail-call, any byval arguments will be written to stack
2559 // space which was used for incoming arguments. If any the values being used
2560 // are incoming byval arguments to this function, then they might be
2561 // overwritten by the stores of the outgoing arguments. To avoid this, we
2562 // need to make a temporary copy of them in local stack space, then copy back
2563 // to the argument area.
2564 DenseMap
<unsigned, SDValue
> ByValTemporaries
;
2565 SDValue ByValTempChain
;
2567 SmallVector
<SDValue
, 8> ByValCopyChains
;
2568 for (const CCValAssign
&VA
: ArgLocs
) {
2569 unsigned ArgIdx
= VA
.getValNo();
2570 SDValue Src
= OutVals
[ArgIdx
];
2571 ISD::ArgFlagsTy Flags
= Outs
[ArgIdx
].Flags
;
2573 if (!Flags
.isByVal())
2577 MachinePointerInfo DstInfo
;
2578 std::tie(Dst
, DstInfo
) =
2579 computeAddrForCallArg(dl
, DAG
, VA
, SDValue(), true, SPDiff
);
2580 ByValCopyKind Copy
= ByValNeedsCopyForTailCall(DAG
, Src
, Dst
, Flags
);
2582 if (Copy
== NoCopy
) {
2583 // If the argument is already at the correct offset on the stack
2584 // (because we are forwarding a byval argument from our caller), we
2585 // don't need any copying.
2587 } else if (Copy
== CopyOnce
) {
2588 // If the argument is in our local stack frame, no other argument
2589 // preparation can clobber it, so we can copy it to the final location
2591 ByValTemporaries
[ArgIdx
] = Src
;
2593 assert(Copy
== CopyViaTemp
&& "unexpected enum value");
2594 // If we might be copying this argument from the outgoing argument
2595 // stack area, we need to copy via a temporary in the local stack
2597 int TempFrameIdx
= MFI
.CreateStackObject(
2598 Flags
.getByValSize(), Flags
.getNonZeroByValAlign(), false);
2600 DAG
.getFrameIndex(TempFrameIdx
, getPointerTy(DAG
.getDataLayout()));
2602 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize(), dl
, MVT::i32
);
2604 DAG
.getConstant(Flags
.getNonZeroByValAlign().value(), dl
, MVT::i32
);
2606 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2607 SDValue Ops
[] = {Chain
, Temp
, Src
, SizeNode
, AlignNode
};
2608 ByValCopyChains
.push_back(
2609 DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
, Ops
));
2610 ByValTemporaries
[ArgIdx
] = Temp
;
2613 if (!ByValCopyChains
.empty())
2615 DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, ByValCopyChains
);
2618 // During a tail call, stores to the argument area must happen after all of
2619 // the function's incoming arguments have been loaded because they may alias.
2620 // This is done by folding in a TokenFactor from LowerFormalArguments, but
2621 // there's no point in doing so repeatedly so this tracks whether that's
2623 bool AfterFormalArgLoads
= false;
2625 // Walk the register/memloc assignments, inserting copies/loads. In the case
2626 // of tail call optimization, arguments are handled later.
2627 for (unsigned i
= 0, realArgIdx
= 0, e
= ArgLocs
.size();
2629 ++i
, ++realArgIdx
) {
2630 CCValAssign
&VA
= ArgLocs
[i
];
2631 SDValue Arg
= OutVals
[realArgIdx
];
2632 ISD::ArgFlagsTy Flags
= Outs
[realArgIdx
].Flags
;
2633 bool isByVal
= Flags
.isByVal();
2635 // Promote the value if needed.
2636 switch (VA
.getLocInfo()) {
2637 default: llvm_unreachable("Unknown loc info!");
2638 case CCValAssign::Full
: break;
2639 case CCValAssign::SExt
:
2640 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2642 case CCValAssign::ZExt
:
2643 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2645 case CCValAssign::AExt
:
2646 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, VA
.getLocVT(), Arg
);
2648 case CCValAssign::BCvt
:
2649 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2653 if (isTailCall
&& VA
.isMemLoc() && !AfterFormalArgLoads
) {
2654 Chain
= DAG
.getStackArgumentTokenFactor(Chain
);
2656 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chain
,
2658 AfterFormalArgLoads
= true;
2661 // f16 arguments have their size extended to 4 bytes and passed as if they
2662 // had been copied to the LSBs of a 32-bit register.
2663 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2664 if (VA
.needsCustom() &&
2665 (VA
.getValVT() == MVT::f16
|| VA
.getValVT() == MVT::bf16
)) {
2666 Arg
= MoveFromHPR(dl
, DAG
, VA
.getLocVT(), VA
.getValVT(), Arg
);
2668 // f16 arguments could have been extended prior to argument lowering.
2669 // Mask them arguments if this is a CMSE nonsecure call.
2670 auto ArgVT
= Outs
[realArgIdx
].ArgVT
;
2671 if (isCmseNSCall
&& (ArgVT
== MVT::f16
)) {
2672 auto LocBits
= VA
.getLocVT().getSizeInBits();
2673 auto MaskValue
= APInt::getLowBitsSet(LocBits
, ArgVT
.getSizeInBits());
2675 DAG
.getConstant(MaskValue
, dl
, MVT::getIntegerVT(LocBits
));
2676 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::getIntegerVT(LocBits
), Arg
);
2677 Arg
= DAG
.getNode(ISD::AND
, dl
, MVT::getIntegerVT(LocBits
), Arg
, Mask
);
2678 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
2682 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2683 if (VA
.needsCustom() && VA
.getLocVT() == MVT::v2f64
) {
2684 SDValue Op0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2685 DAG
.getConstant(0, dl
, MVT::i32
));
2686 SDValue Op1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
2687 DAG
.getConstant(1, dl
, MVT::i32
));
2689 PassF64ArgInRegs(dl
, DAG
, Chain
, Op0
, RegsToPass
, VA
, ArgLocs
[++i
],
2690 StackPtr
, MemOpChains
, isTailCall
, SPDiff
);
2692 VA
= ArgLocs
[++i
]; // skip ahead to next loc
2693 if (VA
.isRegLoc()) {
2694 PassF64ArgInRegs(dl
, DAG
, Chain
, Op1
, RegsToPass
, VA
, ArgLocs
[++i
],
2695 StackPtr
, MemOpChains
, isTailCall
, SPDiff
);
2697 assert(VA
.isMemLoc());
2699 MachinePointerInfo DstInfo
;
2700 std::tie(DstAddr
, DstInfo
) =
2701 computeAddrForCallArg(dl
, DAG
, VA
, StackPtr
, isTailCall
, SPDiff
);
2702 MemOpChains
.push_back(DAG
.getStore(Chain
, dl
, Op1
, DstAddr
, DstInfo
));
2704 } else if (VA
.needsCustom() && VA
.getLocVT() == MVT::f64
) {
2705 PassF64ArgInRegs(dl
, DAG
, Chain
, Arg
, RegsToPass
, VA
, ArgLocs
[++i
],
2706 StackPtr
, MemOpChains
, isTailCall
, SPDiff
);
2707 } else if (VA
.isRegLoc()) {
2708 if (realArgIdx
== 0 && Flags
.isReturned() && !Flags
.isSwiftSelf() &&
2709 Outs
[0].VT
== MVT::i32
) {
2710 assert(VA
.getLocVT() == MVT::i32
&&
2711 "unexpected calling convention register assignment");
2712 assert(!Ins
.empty() && Ins
[0].VT
== MVT::i32
&&
2713 "unexpected use of 'returned'");
2714 isThisReturn
= true;
2716 const TargetOptions
&Options
= DAG
.getTarget().Options
;
2717 if (Options
.EmitCallSiteInfo
)
2718 CSInfo
.ArgRegPairs
.emplace_back(VA
.getLocReg(), i
);
2719 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
2720 } else if (isByVal
) {
2721 assert(VA
.isMemLoc());
2722 unsigned offset
= 0;
2724 // True if this byval aggregate will be split between registers
2726 unsigned ByValArgsCount
= CCInfo
.getInRegsParamsCount();
2727 unsigned CurByValIdx
= CCInfo
.getInRegsParamsProcessed();
2730 bool NeedsStackCopy
;
2731 if (ByValTemporaries
.contains(realArgIdx
)) {
2732 ByValSrc
= ByValTemporaries
[realArgIdx
];
2733 NeedsStackCopy
= true;
2736 NeedsStackCopy
= !isTailCall
;
2739 // If part of the argument is in registers, load them.
2740 if (CurByValIdx
< ByValArgsCount
) {
2741 unsigned RegBegin
, RegEnd
;
2742 CCInfo
.getInRegsParamInfo(CurByValIdx
, RegBegin
, RegEnd
);
2745 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2747 for (i
= 0, j
= RegBegin
; j
< RegEnd
; i
++, j
++) {
2748 SDValue Const
= DAG
.getConstant(4*i
, dl
, MVT::i32
);
2749 SDValue AddArg
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ByValSrc
, Const
);
2751 DAG
.getLoad(PtrVT
, dl
, Chain
, AddArg
, MachinePointerInfo(),
2752 DAG
.InferPtrAlign(AddArg
));
2753 MemOpChains
.push_back(Load
.getValue(1));
2754 RegsToPass
.push_back(std::make_pair(j
, Load
));
2757 // If parameter size outsides register area, "offset" value
2758 // helps us to calculate stack slot for remained part properly.
2759 offset
= RegEnd
- RegBegin
;
2761 CCInfo
.nextInRegsParam();
2764 // If the memory part of the argument isn't already in the correct place
2765 // (which can happen with tail calls), copy it into the argument area.
2766 if (NeedsStackCopy
&& Flags
.getByValSize() > 4 * offset
) {
2767 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
2769 MachinePointerInfo DstInfo
;
2770 std::tie(Dst
, DstInfo
) =
2771 computeAddrForCallArg(dl
, DAG
, VA
, StackPtr
, isTailCall
, SPDiff
);
2772 SDValue SrcOffset
= DAG
.getIntPtrConstant(4*offset
, dl
);
2773 SDValue Src
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ByValSrc
, SrcOffset
);
2774 SDValue SizeNode
= DAG
.getConstant(Flags
.getByValSize() - 4*offset
, dl
,
2777 DAG
.getConstant(Flags
.getNonZeroByValAlign().value(), dl
, MVT::i32
);
2779 SDVTList VTs
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
2780 SDValue Ops
[] = { Chain
, Dst
, Src
, SizeNode
, AlignNode
};
2781 MemOpChains
.push_back(DAG
.getNode(ARMISD::COPY_STRUCT_BYVAL
, dl
, VTs
,
2785 assert(VA
.isMemLoc());
2787 MachinePointerInfo DstInfo
;
2788 std::tie(DstAddr
, DstInfo
) =
2789 computeAddrForCallArg(dl
, DAG
, VA
, StackPtr
, isTailCall
, SPDiff
);
2791 SDValue Store
= DAG
.getStore(Chain
, dl
, Arg
, DstAddr
, DstInfo
);
2792 MemOpChains
.push_back(Store
);
2796 if (!MemOpChains
.empty())
2797 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOpChains
);
2799 // Build a sequence of copy-to-reg nodes chained together with token chain
2800 // and flag operands which copy the outgoing args into the appropriate regs.
2802 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
2803 Chain
= DAG
.getCopyToReg(Chain
, dl
, RegsToPass
[i
].first
,
2804 RegsToPass
[i
].second
, InGlue
);
2805 InGlue
= Chain
.getValue(1);
2808 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2809 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2810 // node so that legalize doesn't hack it.
2811 bool isDirect
= false;
2813 const TargetMachine
&TM
= getTargetMachine();
2814 const GlobalValue
*GVal
= nullptr;
2815 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
2816 GVal
= G
->getGlobal();
2817 bool isStub
= !TM
.shouldAssumeDSOLocal(GVal
) && Subtarget
->isTargetMachO();
2819 bool isARMFunc
= !Subtarget
->isThumb() || (isStub
&& !Subtarget
->isMClass());
2820 bool isLocalARMFunc
= false;
2821 auto PtrVt
= getPointerTy(DAG
.getDataLayout());
2823 if (Subtarget
->genLongCalls()) {
2824 assert((!isPositionIndependent() || Subtarget
->isTargetWindows()) &&
2825 "long-calls codegen is not position independent!");
2826 // Handle a global address or an external symbol. If it's not one of
2827 // those, the target's already in a register, so we don't need to do
2829 if (isa
<GlobalAddressSDNode
>(Callee
)) {
2830 if (Subtarget
->genExecuteOnly()) {
2831 if (Subtarget
->useMovt())
2833 Callee
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
,
2834 DAG
.getTargetGlobalAddress(GVal
, dl
, PtrVt
));
2836 // Create a constant pool entry for the callee address
2837 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2838 ARMConstantPoolValue
*CPV
= ARMConstantPoolConstant::Create(
2839 GVal
, ARMPCLabelIndex
, ARMCP::CPValue
, 0);
2841 // Get the address of the callee into a register
2842 SDValue Addr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, Align(4));
2843 Addr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Addr
);
2844 Callee
= DAG
.getLoad(
2845 PtrVt
, dl
, DAG
.getEntryNode(), Addr
,
2846 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2848 } else if (ExternalSymbolSDNode
*S
=dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2849 const char *Sym
= S
->getSymbol();
2851 if (Subtarget
->genExecuteOnly()) {
2852 if (Subtarget
->useMovt())
2854 Callee
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
,
2855 DAG
.getTargetGlobalAddress(GVal
, dl
, PtrVt
));
2857 // Create a constant pool entry for the callee address
2858 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2859 ARMConstantPoolValue
*CPV
= ARMConstantPoolSymbol::Create(
2860 *DAG
.getContext(), Sym
, ARMPCLabelIndex
, 0);
2862 // Get the address of the callee into a register
2863 SDValue Addr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, Align(4));
2864 Addr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Addr
);
2865 Callee
= DAG
.getLoad(
2866 PtrVt
, dl
, DAG
.getEntryNode(), Addr
,
2867 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2870 } else if (isa
<GlobalAddressSDNode
>(Callee
)) {
2871 if (!PreferIndirect
) {
2873 bool isDef
= GVal
->isStrongDefinitionForLinker();
2875 // ARM call to a local ARM function is predicable.
2876 isLocalARMFunc
= !Subtarget
->isThumb() && (isDef
|| !ARMInterworking
);
2877 // tBX takes a register source operand.
2878 if (isStub
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2879 assert(Subtarget
->isTargetMachO() && "WrapperPIC use on non-MachO?");
2880 Callee
= DAG
.getNode(
2881 ARMISD::WrapperPIC
, dl
, PtrVt
,
2882 DAG
.getTargetGlobalAddress(GVal
, dl
, PtrVt
, 0, ARMII::MO_NONLAZY
));
2883 Callee
= DAG
.getLoad(
2884 PtrVt
, dl
, DAG
.getEntryNode(), Callee
,
2885 MachinePointerInfo::getGOT(DAG
.getMachineFunction()), MaybeAlign(),
2886 MachineMemOperand::MODereferenceable
|
2887 MachineMemOperand::MOInvariant
);
2888 } else if (Subtarget
->isTargetCOFF()) {
2889 assert(Subtarget
->isTargetWindows() &&
2890 "Windows is the only supported COFF target");
2891 unsigned TargetFlags
= ARMII::MO_NO_FLAG
;
2892 if (GVal
->hasDLLImportStorageClass())
2893 TargetFlags
= ARMII::MO_DLLIMPORT
;
2894 else if (!TM
.shouldAssumeDSOLocal(GVal
))
2895 TargetFlags
= ARMII::MO_COFFSTUB
;
2896 Callee
= DAG
.getTargetGlobalAddress(GVal
, dl
, PtrVt
, /*offset=*/0,
2898 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
2900 DAG
.getLoad(PtrVt
, dl
, DAG
.getEntryNode(),
2901 DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVt
, Callee
),
2902 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2904 Callee
= DAG
.getTargetGlobalAddress(GVal
, dl
, PtrVt
, 0, 0);
2907 } else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
2909 // tBX takes a register source operand.
2910 const char *Sym
= S
->getSymbol();
2911 if (isARMFunc
&& Subtarget
->isThumb1Only() && !Subtarget
->hasV5TOps()) {
2912 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
2913 ARMConstantPoolValue
*CPV
=
2914 ARMConstantPoolSymbol::Create(*DAG
.getContext(), Sym
,
2915 ARMPCLabelIndex
, 4);
2916 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVt
, Align(4));
2917 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
2918 Callee
= DAG
.getLoad(
2919 PtrVt
, dl
, DAG
.getEntryNode(), CPAddr
,
2920 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
2921 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
2922 Callee
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVt
, Callee
, PICLabel
);
2924 Callee
= DAG
.getTargetExternalSymbol(Sym
, PtrVt
, 0);
2929 assert(!isARMFunc
&& !isDirect
&&
2930 "Cannot handle call to ARM function or direct call");
2932 DiagnosticInfoUnsupported
Diag(DAG
.getMachineFunction().getFunction(),
2933 "call to non-secure function would "
2934 "require passing arguments on stack",
2936 DAG
.getContext()->diagnose(Diag
);
2939 DiagnosticInfoUnsupported
Diag(
2940 DAG
.getMachineFunction().getFunction(),
2941 "call to non-secure function would return value through pointer",
2943 DAG
.getContext()->diagnose(Diag
);
2947 // FIXME: handle tail calls differently.
2949 if (Subtarget
->isThumb()) {
2951 CallOpc
= ARMISD::t2CALL_BTI
;
2952 else if (isCmseNSCall
)
2953 CallOpc
= ARMISD::tSECALL
;
2954 else if ((!isDirect
|| isARMFunc
) && !Subtarget
->hasV5TOps())
2955 CallOpc
= ARMISD::CALL_NOLINK
;
2957 CallOpc
= ARMISD::CALL
;
2959 if (!isDirect
&& !Subtarget
->hasV5TOps())
2960 CallOpc
= ARMISD::CALL_NOLINK
;
2961 else if (doesNotRet
&& isDirect
&& Subtarget
->hasRetAddrStack() &&
2962 // Emit regular call when code size is the priority
2963 !Subtarget
->hasMinSize())
2964 // "mov lr, pc; b _foo" to avoid confusing the RSP
2965 CallOpc
= ARMISD::CALL_NOLINK
;
2967 CallOpc
= isLocalARMFunc
? ARMISD::CALL_PRED
: ARMISD::CALL
;
2970 // We don't usually want to end the call-sequence here because we would tidy
2971 // the frame up *after* the call, however in the ABI-changing tail-call case
2972 // we've carefully laid out the parameters so that when sp is reset they'll be
2973 // in the correct location.
2974 if (isTailCall
&& !isSibCall
) {
2975 Chain
= DAG
.getCALLSEQ_END(Chain
, 0, 0, InGlue
, dl
);
2976 InGlue
= Chain
.getValue(1);
2979 std::vector
<SDValue
> Ops
;
2980 Ops
.push_back(Chain
);
2981 Ops
.push_back(Callee
);
2984 Ops
.push_back(DAG
.getSignedTargetConstant(SPDiff
, dl
, MVT::i32
));
2987 // Add argument registers to the end of the list so that they are known live
2989 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
2990 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
2991 RegsToPass
[i
].second
.getValueType()));
2993 // Add a register mask operand representing the call-preserved registers.
2994 const uint32_t *Mask
;
2995 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
2997 // For 'this' returns, use the R0-preserving mask if applicable
2998 Mask
= ARI
->getThisReturnPreservedMask(MF
, CallConv
);
3000 // Set isThisReturn to false if the calling convention is not one that
3001 // allows 'returned' to be modeled in this way, so LowerCallResult does
3002 // not try to pass 'this' straight through
3003 isThisReturn
= false;
3004 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
3007 Mask
= ARI
->getCallPreservedMask(MF
, CallConv
);
3009 assert(Mask
&& "Missing call preserved mask for calling convention");
3010 Ops
.push_back(DAG
.getRegisterMask(Mask
));
3012 if (InGlue
.getNode())
3013 Ops
.push_back(InGlue
);
3016 MF
.getFrameInfo().setHasTailCall();
3017 SDValue Ret
= DAG
.getNode(ARMISD::TC_RETURN
, dl
, MVT::Other
, Ops
);
3018 DAG
.addNoMergeSiteInfo(Ret
.getNode(), CLI
.NoMerge
);
3019 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
3023 // Returns a chain and a flag for retval copy to use.
3024 Chain
= DAG
.getNode(CallOpc
, dl
, {MVT::Other
, MVT::Glue
}, Ops
);
3025 DAG
.addNoMergeSiteInfo(Chain
.getNode(), CLI
.NoMerge
);
3026 InGlue
= Chain
.getValue(1);
3027 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
3029 // If we're guaranteeing tail-calls will be honoured, the callee must
3030 // pop its own argument stack on return. But this call is *not* a tail call so
3031 // we need to undo that after it returns to restore the status-quo.
3032 bool TailCallOpt
= getTargetMachine().Options
.GuaranteedTailCallOpt
;
3033 uint64_t CalleePopBytes
=
3034 canGuaranteeTCO(CallConv
, TailCallOpt
) ? alignTo(NumBytes
, 16) : -1U;
3036 Chain
= DAG
.getCALLSEQ_END(Chain
, NumBytes
, CalleePopBytes
, InGlue
, dl
);
3038 InGlue
= Chain
.getValue(1);
3040 // Handle result values, copying them out of physregs into vregs that we
3042 return LowerCallResult(Chain
, InGlue
, CallConv
, isVarArg
, Ins
, dl
, DAG
,
3043 InVals
, isThisReturn
,
3044 isThisReturn
? OutVals
[0] : SDValue(), isCmseNSCall
);
3047 /// HandleByVal - Every parameter *after* a byval parameter is passed
3048 /// on the stack. Remember the next parameter register to allocate,
3049 /// and then confiscate the rest of the parameter registers to insure
3051 void ARMTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
3052 Align Alignment
) const {
3053 // Byval (as with any stack) slots are always at least 4 byte aligned.
3054 Alignment
= std::max(Alignment
, Align(4));
3056 MCRegister Reg
= State
->AllocateReg(GPRArgRegs
);
3060 unsigned AlignInRegs
= Alignment
.value() / 4;
3061 unsigned Waste
= (ARM::R4
- Reg
) % AlignInRegs
;
3062 for (unsigned i
= 0; i
< Waste
; ++i
)
3063 Reg
= State
->AllocateReg(GPRArgRegs
);
3068 unsigned Excess
= 4 * (ARM::R4
- Reg
);
3070 // Special case when NSAA != SP and parameter size greater than size of
3071 // all remained GPR regs. In that case we can't split parameter, we must
3072 // send it to stack. We also must set NCRN to R4, so waste all
3073 // remained registers.
3074 const unsigned NSAAOffset
= State
->getStackSize();
3075 if (NSAAOffset
!= 0 && Size
> Excess
) {
3076 while (State
->AllocateReg(GPRArgRegs
))
3081 // First register for byval parameter is the first register that wasn't
3082 // allocated before this method call, so it would be "reg".
3083 // If parameter is small enough to be saved in range [reg, r4), then
3084 // the end (first after last) register would be reg + param-size-in-regs,
3085 // else parameter would be splitted between registers and stack,
3086 // end register would be r4 in this case.
3087 unsigned ByValRegBegin
= Reg
;
3088 unsigned ByValRegEnd
= std::min
<unsigned>(Reg
+ Size
/ 4, ARM::R4
);
3089 State
->addInRegsParamInfo(ByValRegBegin
, ByValRegEnd
);
3090 // Note, first register is allocated in the beginning of function already,
3091 // allocate remained amount of registers we need.
3092 for (unsigned i
= Reg
+ 1; i
!= ByValRegEnd
; ++i
)
3093 State
->AllocateReg(GPRArgRegs
);
3094 // A byval parameter that is split between registers and memory needs its
3095 // size truncated here.
3096 // In the case where the entire structure fits in registers, we set the
3097 // size in memory to zero.
3098 Size
= std::max
<int>(Size
- Excess
, 0);
3101 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3102 /// for tail call optimization. Targets which want to do tail call
3103 /// optimization should implement this function. Note that this function also
3104 /// processes musttail calls, so when this function returns false on a valid
3105 /// musttail call, a fatal backend error occurs.
3106 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
3107 TargetLowering::CallLoweringInfo
&CLI
, CCState
&CCInfo
,
3108 SmallVectorImpl
<CCValAssign
> &ArgLocs
, const bool isIndirect
) const {
3109 CallingConv::ID CalleeCC
= CLI
.CallConv
;
3110 SDValue Callee
= CLI
.Callee
;
3111 bool isVarArg
= CLI
.IsVarArg
;
3112 const SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3113 const SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3114 const SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3115 const SelectionDAG
&DAG
= CLI
.DAG
;
3116 MachineFunction
&MF
= DAG
.getMachineFunction();
3117 const Function
&CallerF
= MF
.getFunction();
3118 CallingConv::ID CallerCC
= CallerF
.getCallingConv();
3120 assert(Subtarget
->supportsTailCall());
3122 // Indirect tail-calls require a register to hold the target address. That
3123 // register must be:
3124 // * Allocatable (i.e. r0-r7 if the target is Thumb1).
3125 // * Not callee-saved, so must be one of r0-r3 or r12.
3126 // * Not used to hold an argument to the tail-called function, which might be
3128 // * Not used to hold the return address authentication code, which is in r12
3130 // Sometimes, no register matches all of these conditions, so we can't do a
3132 if (!isa
<GlobalAddressSDNode
>(Callee
.getNode()) || isIndirect
) {
3133 SmallSet
<MCPhysReg
, 5> AddressRegisters
;
3134 for (Register R
: {ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
})
3135 AddressRegisters
.insert(R
);
3136 if (!(Subtarget
->isThumb1Only() ||
3137 MF
.getInfo
<ARMFunctionInfo
>()->shouldSignReturnAddress(true)))
3138 AddressRegisters
.insert(ARM::R12
);
3139 for (const CCValAssign
&AL
: ArgLocs
)
3141 AddressRegisters
.erase(AL
.getLocReg());
3142 if (AddressRegisters
.empty()) {
3143 LLVM_DEBUG(dbgs() << "false (no reg to hold function pointer)\n");
3148 // Look for obvious safe cases to perform tail call optimization that do not
3149 // require ABI changes. This is what gcc calls sibcall.
3151 // Exception-handling functions need a special set of instructions to indicate
3152 // a return to the hardware. Tail-calling another function would probably
3154 if (CallerF
.hasFnAttribute("interrupt")) {
3155 LLVM_DEBUG(dbgs() << "false (interrupt attribute)\n");
3159 if (canGuaranteeTCO(CalleeCC
,
3160 getTargetMachine().Options
.GuaranteedTailCallOpt
)) {
3161 LLVM_DEBUG(dbgs() << (CalleeCC
== CallerCC
? "true" : "false")
3162 << " (guaranteed tail-call CC)\n");
3163 return CalleeCC
== CallerCC
;
3166 // Also avoid sibcall optimization if either caller or callee uses struct
3167 // return semantics.
3168 bool isCalleeStructRet
= Outs
.empty() ? false : Outs
[0].Flags
.isSRet();
3169 bool isCallerStructRet
= MF
.getFunction().hasStructRetAttr();
3170 if (isCalleeStructRet
!= isCallerStructRet
) {
3171 LLVM_DEBUG(dbgs() << "false (struct-ret)\n");
3175 // Externally-defined functions with weak linkage should not be
3176 // tail-called on ARM when the OS does not support dynamic
3177 // pre-emption of symbols, as the AAELF spec requires normal calls
3178 // to undefined weak functions to be replaced with a NOP or jump to the
3179 // next instruction. The behaviour of branch instructions in this
3180 // situation (as used for tail calls) is implementation-defined, so we
3181 // cannot rely on the linker replacing the tail call with a return.
3182 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3183 const GlobalValue
*GV
= G
->getGlobal();
3184 const Triple
&TT
= getTargetMachine().getTargetTriple();
3185 if (GV
->hasExternalWeakLinkage() &&
3186 (!TT
.isOSWindows() || TT
.isOSBinFormatELF() ||
3187 TT
.isOSBinFormatMachO())) {
3188 LLVM_DEBUG(dbgs() << "false (external weak linkage)\n");
3193 // Check that the call results are passed in the same way.
3194 LLVMContext
&C
= *DAG
.getContext();
3195 if (!CCState::resultsCompatible(
3196 getEffectiveCallingConv(CalleeCC
, isVarArg
),
3197 getEffectiveCallingConv(CallerCC
, CallerF
.isVarArg()), MF
, C
, Ins
,
3198 CCAssignFnForReturn(CalleeCC
, isVarArg
),
3199 CCAssignFnForReturn(CallerCC
, CallerF
.isVarArg()))) {
3200 LLVM_DEBUG(dbgs() << "false (incompatible results)\n");
3203 // The callee has to preserve all registers the caller needs to preserve.
3204 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
3205 const uint32_t *CallerPreserved
= TRI
->getCallPreservedMask(MF
, CallerCC
);
3206 if (CalleeCC
!= CallerCC
) {
3207 const uint32_t *CalleePreserved
= TRI
->getCallPreservedMask(MF
, CalleeCC
);
3208 if (!TRI
->regmaskSubsetEqual(CallerPreserved
, CalleePreserved
)) {
3209 LLVM_DEBUG(dbgs() << "false (not all registers preserved)\n");
3214 // If Caller's vararg argument has been split between registers and stack, do
3215 // not perform tail call, since part of the argument is in caller's local
3217 const ARMFunctionInfo
*AFI_Caller
= MF
.getInfo
<ARMFunctionInfo
>();
3218 if (CLI
.IsVarArg
&& AFI_Caller
->getArgRegsSaveSize()) {
3219 LLVM_DEBUG(dbgs() << "false (arg reg save area)\n");
3223 // If the callee takes no arguments then go on to check the results of the
3225 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3226 if (!parametersInCSRMatch(MRI
, CallerPreserved
, ArgLocs
, OutVals
)) {
3227 LLVM_DEBUG(dbgs() << "false (parameters in CSRs do not match)\n");
3231 // If the stack arguments for this call do not fit into our own save area then
3232 // the call cannot be made tail.
3233 if (CCInfo
.getStackSize() > AFI_Caller
->getArgumentStackSize())
3236 LLVM_DEBUG(dbgs() << "true\n");
3241 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3242 MachineFunction
&MF
, bool isVarArg
,
3243 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3244 LLVMContext
&Context
) const {
3245 SmallVector
<CCValAssign
, 16> RVLocs
;
3246 CCState
CCInfo(CallConv
, isVarArg
, MF
, RVLocs
, Context
);
3247 return CCInfo
.CheckReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
3250 static SDValue
LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3251 const SDLoc
&DL
, SelectionDAG
&DAG
) {
3252 const MachineFunction
&MF
= DAG
.getMachineFunction();
3253 const Function
&F
= MF
.getFunction();
3255 StringRef IntKind
= F
.getFnAttribute("interrupt").getValueAsString();
3257 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
3258 // version of the "preferred return address". These offsets affect the return
3259 // instruction if this is a return from PL1 without hypervisor extensions.
3260 // IRQ/FIQ: +4 "subs pc, lr, #4"
3261 // SWI: 0 "subs pc, lr, #0"
3262 // ABORT: +4 "subs pc, lr, #4"
3263 // UNDEF: +4/+2 "subs pc, lr, #0"
3264 // UNDEF varies depending on where the exception came from ARM or Thumb
3265 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
3268 if (IntKind
== "" || IntKind
== "IRQ" || IntKind
== "FIQ" ||
3271 else if (IntKind
== "SWI" || IntKind
== "UNDEF")
3274 report_fatal_error("Unsupported interrupt attribute. If present, value "
3275 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3277 RetOps
.insert(RetOps
.begin() + 1,
3278 DAG
.getConstant(LROffset
, DL
, MVT::i32
, false));
3280 return DAG
.getNode(ARMISD::INTRET_GLUE
, DL
, MVT::Other
, RetOps
);
3284 ARMTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3286 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3287 const SmallVectorImpl
<SDValue
> &OutVals
,
3288 const SDLoc
&dl
, SelectionDAG
&DAG
) const {
3289 // CCValAssign - represent the assignment of the return value to a location.
3290 SmallVector
<CCValAssign
, 16> RVLocs
;
3292 // CCState - Info about the registers and stack slots.
3293 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), RVLocs
,
3296 // Analyze outgoing return values.
3297 CCInfo
.AnalyzeReturn(Outs
, CCAssignFnForReturn(CallConv
, isVarArg
));
3300 SmallVector
<SDValue
, 4> RetOps
;
3301 RetOps
.push_back(Chain
); // Operand #0 = Chain (updated below)
3302 bool isLittleEndian
= Subtarget
->isLittle();
3304 MachineFunction
&MF
= DAG
.getMachineFunction();
3305 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3306 AFI
->setReturnRegsCount(RVLocs
.size());
3308 // Report error if cmse entry function returns structure through first ptr arg.
3309 if (AFI
->isCmseNSEntryFunction() && MF
.getFunction().hasStructRetAttr()) {
3310 // Note: using an empty SDLoc(), as the first line of the function is a
3311 // better place to report than the last line.
3312 DiagnosticInfoUnsupported
Diag(
3313 DAG
.getMachineFunction().getFunction(),
3314 "secure entry function would return value through pointer",
3315 SDLoc().getDebugLoc());
3316 DAG
.getContext()->diagnose(Diag
);
3319 // Copy the result values into the output registers.
3320 for (unsigned i
= 0, realRVLocIdx
= 0;
3322 ++i
, ++realRVLocIdx
) {
3323 CCValAssign
&VA
= RVLocs
[i
];
3324 assert(VA
.isRegLoc() && "Can only return in registers!");
3326 SDValue Arg
= OutVals
[realRVLocIdx
];
3327 bool ReturnF16
= false;
3329 if (Subtarget
->hasFullFP16() && Subtarget
->isTargetHardFloat()) {
3330 // Half-precision return values can be returned like this:
3332 // t11 f16 = fadd ...
3333 // t12: i16 = bitcast t11
3334 // t13: i32 = zero_extend t12
3335 // t14: f32 = bitcast t13 <~~~~~~~ Arg
3337 // to avoid code generation for bitcasts, we simply set Arg to the node
3338 // that produces the f16 value, t11 in this case.
3340 if (Arg
.getValueType() == MVT::f32
&& Arg
.getOpcode() == ISD::BITCAST
) {
3341 SDValue ZE
= Arg
.getOperand(0);
3342 if (ZE
.getOpcode() == ISD::ZERO_EXTEND
&& ZE
.getValueType() == MVT::i32
) {
3343 SDValue BC
= ZE
.getOperand(0);
3344 if (BC
.getOpcode() == ISD::BITCAST
&& BC
.getValueType() == MVT::i16
) {
3345 Arg
= BC
.getOperand(0);
3352 switch (VA
.getLocInfo()) {
3353 default: llvm_unreachable("Unknown loc info!");
3354 case CCValAssign::Full
: break;
3355 case CCValAssign::BCvt
:
3357 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
3361 // Mask f16 arguments if this is a CMSE nonsecure entry.
3362 auto RetVT
= Outs
[realRVLocIdx
].ArgVT
;
3363 if (AFI
->isCmseNSEntryFunction() && (RetVT
== MVT::f16
)) {
3364 if (VA
.needsCustom() && VA
.getValVT() == MVT::f16
) {
3365 Arg
= MoveFromHPR(dl
, DAG
, VA
.getLocVT(), VA
.getValVT(), Arg
);
3367 auto LocBits
= VA
.getLocVT().getSizeInBits();
3368 auto MaskValue
= APInt::getLowBitsSet(LocBits
, RetVT
.getSizeInBits());
3370 DAG
.getConstant(MaskValue
, dl
, MVT::getIntegerVT(LocBits
));
3371 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::getIntegerVT(LocBits
), Arg
);
3372 Arg
= DAG
.getNode(ISD::AND
, dl
, MVT::getIntegerVT(LocBits
), Arg
, Mask
);
3373 Arg
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getLocVT(), Arg
);
3377 if (VA
.needsCustom() &&
3378 (VA
.getLocVT() == MVT::v2f64
|| VA
.getLocVT() == MVT::f64
)) {
3379 if (VA
.getLocVT() == MVT::v2f64
) {
3380 // Extract the first half and return it in two registers.
3381 SDValue Half
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
3382 DAG
.getConstant(0, dl
, MVT::i32
));
3383 SDValue HalfGPRs
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
3384 DAG
.getVTList(MVT::i32
, MVT::i32
), Half
);
3387 DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
3388 HalfGPRs
.getValue(isLittleEndian
? 0 : 1), Glue
);
3389 Glue
= Chain
.getValue(1);
3390 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3391 VA
= RVLocs
[++i
]; // skip ahead to next loc
3393 DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
3394 HalfGPRs
.getValue(isLittleEndian
? 1 : 0), Glue
);
3395 Glue
= Chain
.getValue(1);
3396 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3397 VA
= RVLocs
[++i
]; // skip ahead to next loc
3399 // Extract the 2nd half and fall through to handle it as an f64 value.
3400 Arg
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
, Arg
,
3401 DAG
.getConstant(1, dl
, MVT::i32
));
3403 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
3405 SDValue fmrrd
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
3406 DAG
.getVTList(MVT::i32
, MVT::i32
), Arg
);
3407 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
3408 fmrrd
.getValue(isLittleEndian
? 0 : 1), Glue
);
3409 Glue
= Chain
.getValue(1);
3410 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3411 VA
= RVLocs
[++i
]; // skip ahead to next loc
3412 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(),
3413 fmrrd
.getValue(isLittleEndian
? 1 : 0), Glue
);
3415 Chain
= DAG
.getCopyToReg(Chain
, dl
, VA
.getLocReg(), Arg
, Glue
);
3417 // Guarantee that all emitted copies are
3418 // stuck together, avoiding something bad.
3419 Glue
= Chain
.getValue(1);
3420 RetOps
.push_back(DAG
.getRegister(
3421 VA
.getLocReg(), ReturnF16
? Arg
.getValueType() : VA
.getLocVT()));
3423 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
3424 const MCPhysReg
*I
=
3425 TRI
->getCalleeSavedRegsViaCopy(&DAG
.getMachineFunction());
3428 if (ARM::GPRRegClass
.contains(*I
))
3429 RetOps
.push_back(DAG
.getRegister(*I
, MVT::i32
));
3430 else if (ARM::DPRRegClass
.contains(*I
))
3431 RetOps
.push_back(DAG
.getRegister(*I
, MVT::getFloatingPointVT(64)));
3433 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3437 // Update chain and glue.
3440 RetOps
.push_back(Glue
);
3442 // CPUs which aren't M-class use a special sequence to return from
3443 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3444 // though we use "subs pc, lr, #N").
3446 // M-class CPUs actually use a normal return sequence with a special
3447 // (hardware-provided) value in LR, so the normal code path works.
3448 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3449 !Subtarget
->isMClass()) {
3450 if (Subtarget
->isThumb1Only())
3451 report_fatal_error("interrupt attribute is not supported in Thumb1");
3452 return LowerInterruptReturn(RetOps
, dl
, DAG
);
3455 ARMISD::NodeType RetNode
= AFI
->isCmseNSEntryFunction() ? ARMISD::SERET_GLUE
:
3457 return DAG
.getNode(RetNode
, dl
, MVT::Other
, RetOps
);
3460 bool ARMTargetLowering::isUsedByReturnOnly(SDNode
*N
, SDValue
&Chain
) const {
3461 if (N
->getNumValues() != 1)
3463 if (!N
->hasNUsesOfValue(1, 0))
3466 SDValue TCChain
= Chain
;
3467 SDNode
*Copy
= *N
->user_begin();
3468 if (Copy
->getOpcode() == ISD::CopyToReg
) {
3469 // If the copy has a glue operand, we conservatively assume it isn't safe to
3470 // perform a tail call.
3471 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
3473 TCChain
= Copy
->getOperand(0);
3474 } else if (Copy
->getOpcode() == ARMISD::VMOVRRD
) {
3475 SDNode
*VMov
= Copy
;
3476 // f64 returned in a pair of GPRs.
3477 SmallPtrSet
<SDNode
*, 2> Copies
;
3478 for (SDNode
*U
: VMov
->users()) {
3479 if (U
->getOpcode() != ISD::CopyToReg
)
3483 if (Copies
.size() > 2)
3486 for (SDNode
*U
: VMov
->users()) {
3487 SDValue UseChain
= U
->getOperand(0);
3488 if (Copies
.count(UseChain
.getNode()))
3492 // We are at the top of this chain.
3493 // If the copy has a glue operand, we conservatively assume it
3494 // isn't safe to perform a tail call.
3495 if (U
->getOperand(U
->getNumOperands() - 1).getValueType() == MVT::Glue
)
3501 } else if (Copy
->getOpcode() == ISD::BITCAST
) {
3502 // f32 returned in a single GPR.
3503 if (!Copy
->hasOneUse())
3505 Copy
= *Copy
->user_begin();
3506 if (Copy
->getOpcode() != ISD::CopyToReg
|| !Copy
->hasNUsesOfValue(1, 0))
3508 // If the copy has a glue operand, we conservatively assume it isn't safe to
3509 // perform a tail call.
3510 if (Copy
->getOperand(Copy
->getNumOperands()-1).getValueType() == MVT::Glue
)
3512 TCChain
= Copy
->getOperand(0);
3517 bool HasRet
= false;
3518 for (const SDNode
*U
: Copy
->users()) {
3519 if (U
->getOpcode() != ARMISD::RET_GLUE
&&
3520 U
->getOpcode() != ARMISD::INTRET_GLUE
)
3532 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst
*CI
) const {
3533 if (!Subtarget
->supportsTailCall())
3536 if (!CI
->isTailCall())
3542 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3543 // and pass the lower and high parts through.
3544 static SDValue
LowerWRITE_REGISTER(SDValue Op
, SelectionDAG
&DAG
) {
3546 SDValue WriteValue
= Op
->getOperand(2);
3548 // This function is only supposed to be called for i64 type argument.
3549 assert(WriteValue
.getValueType() == MVT::i64
3550 && "LowerWRITE_REGISTER called for non-i64 type argument.");
3553 std::tie(Lo
, Hi
) = DAG
.SplitScalar(WriteValue
, DL
, MVT::i32
, MVT::i32
);
3554 SDValue Ops
[] = { Op
->getOperand(0), Op
->getOperand(1), Lo
, Hi
};
3555 return DAG
.getNode(ISD::WRITE_REGISTER
, DL
, MVT::Other
, Ops
);
3558 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3559 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3560 // one of the above mentioned nodes. It has to be wrapped because otherwise
3561 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3562 // be used to form addressing mode. These wrapped nodes will be selected
3564 SDValue
ARMTargetLowering::LowerConstantPool(SDValue Op
,
3565 SelectionDAG
&DAG
) const {
3566 EVT PtrVT
= Op
.getValueType();
3567 // FIXME there is no actual debug info here
3569 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
3572 // When generating execute-only code Constant Pools must be promoted to the
3573 // global data section. It's a bit ugly that we can't share them across basic
3574 // blocks, but this way we guarantee that execute-only behaves correct with
3575 // position-independent addressing modes.
3576 if (Subtarget
->genExecuteOnly()) {
3577 auto AFI
= DAG
.getMachineFunction().getInfo
<ARMFunctionInfo
>();
3578 auto T
= const_cast<Type
*>(CP
->getType());
3579 auto C
= const_cast<Constant
*>(CP
->getConstVal());
3580 auto M
= const_cast<Module
*>(DAG
.getMachineFunction().
3581 getFunction().getParent());
3582 auto GV
= new GlobalVariable(
3583 *M
, T
, /*isConstant=*/true, GlobalVariable::InternalLinkage
, C
,
3584 Twine(DAG
.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3585 Twine(DAG
.getMachineFunction().getFunctionNumber()) + "_" +
3586 Twine(AFI
->createPICLabelUId())
3588 SDValue GA
= DAG
.getTargetGlobalAddress(dyn_cast
<GlobalValue
>(GV
),
3590 return LowerGlobalAddress(GA
, DAG
);
3593 // The 16-bit ADR instruction can only encode offsets that are multiples of 4,
3594 // so we need to align to at least 4 bytes when we don't have 32-bit ADR.
3595 Align CPAlign
= CP
->getAlign();
3596 if (Subtarget
->isThumb1Only())
3597 CPAlign
= std::max(CPAlign
, Align(4));
3598 if (CP
->isMachineConstantPoolEntry())
3600 DAG
.getTargetConstantPool(CP
->getMachineCPVal(), PtrVT
, CPAlign
);
3602 Res
= DAG
.getTargetConstantPool(CP
->getConstVal(), PtrVT
, CPAlign
);
3603 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Res
);
3606 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3607 // If we don't have a 32-bit pc-relative branch instruction then the jump
3608 // table consists of block addresses. Usually this is inline, but for
3609 // execute-only it must be placed out-of-line.
3610 if (Subtarget
->genExecuteOnly() && !Subtarget
->hasV8MBaselineOps())
3611 return MachineJumpTableInfo::EK_BlockAddress
;
3612 return MachineJumpTableInfo::EK_Inline
;
3615 SDValue
ARMTargetLowering::LowerBlockAddress(SDValue Op
,
3616 SelectionDAG
&DAG
) const {
3617 MachineFunction
&MF
= DAG
.getMachineFunction();
3618 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3619 unsigned ARMPCLabelIndex
= 0;
3621 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3622 const BlockAddress
*BA
= cast
<BlockAddressSDNode
>(Op
)->getBlockAddress();
3624 bool IsPositionIndependent
= isPositionIndependent() || Subtarget
->isROPI();
3625 if (!IsPositionIndependent
) {
3626 CPAddr
= DAG
.getTargetConstantPool(BA
, PtrVT
, Align(4));
3628 unsigned PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3629 ARMPCLabelIndex
= AFI
->createPICLabelUId();
3630 ARMConstantPoolValue
*CPV
=
3631 ARMConstantPoolConstant::Create(BA
, ARMPCLabelIndex
,
3632 ARMCP::CPBlockAddress
, PCAdj
);
3633 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, Align(4));
3635 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, CPAddr
);
3636 SDValue Result
= DAG
.getLoad(
3637 PtrVT
, DL
, DAG
.getEntryNode(), CPAddr
,
3638 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3639 if (!IsPositionIndependent
)
3641 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, DL
, MVT::i32
);
3642 return DAG
.getNode(ARMISD::PIC_ADD
, DL
, PtrVT
, Result
, PICLabel
);
3645 /// Convert a TLS address reference into the correct sequence of loads
3646 /// and calls to compute the variable's address for Darwin, and return an
3647 /// SDValue containing the final node.
3649 /// Darwin only has one TLS scheme which must be capable of dealing with the
3650 /// fully general situation, in the worst case. This means:
3651 /// + "extern __thread" declaration.
3652 /// + Defined in a possibly unknown dynamic library.
3654 /// The general system is that each __thread variable has a [3 x i32] descriptor
3655 /// which contains information used by the runtime to calculate the address. The
3656 /// only part of this the compiler needs to know about is the first word, which
3657 /// contains a function pointer that must be called with the address of the
3658 /// entire descriptor in "r0".
3660 /// Since this descriptor may be in a different unit, in general access must
3661 /// proceed along the usual ARM rules. A common sequence to produce is:
3663 /// movw rT1, :lower16:_var$non_lazy_ptr
3664 /// movt rT1, :upper16:_var$non_lazy_ptr
3668 /// [...address now in r0...]
3670 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op
,
3671 SelectionDAG
&DAG
) const {
3672 assert(Subtarget
->isTargetDarwin() &&
3673 "This function expects a Darwin target");
3676 // First step is to get the address of the actua global symbol. This is where
3677 // the TLS descriptor lives.
3678 SDValue DescAddr
= LowerGlobalAddressDarwin(Op
, DAG
);
3680 // The first entry in the descriptor is a function pointer that we must call
3681 // to obtain the address of the variable.
3682 SDValue Chain
= DAG
.getEntryNode();
3683 SDValue FuncTLVGet
= DAG
.getLoad(
3684 MVT::i32
, DL
, Chain
, DescAddr
,
3685 MachinePointerInfo::getGOT(DAG
.getMachineFunction()), Align(4),
3686 MachineMemOperand::MONonTemporal
| MachineMemOperand::MODereferenceable
|
3687 MachineMemOperand::MOInvariant
);
3688 Chain
= FuncTLVGet
.getValue(1);
3690 MachineFunction
&F
= DAG
.getMachineFunction();
3691 MachineFrameInfo
&MFI
= F
.getFrameInfo();
3692 MFI
.setAdjustsStack(true);
3694 // TLS calls preserve all registers except those that absolutely must be
3695 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3698 getTargetMachine().getSubtargetImpl(F
.getFunction())->getRegisterInfo();
3699 auto ARI
= static_cast<const ARMRegisterInfo
*>(TRI
);
3700 const uint32_t *Mask
= ARI
->getTLSCallPreservedMask(DAG
.getMachineFunction());
3702 // Finally, we can make the call. This is just a degenerate version of a
3703 // normal AArch64 call node: r0 takes the address of the descriptor, and
3704 // returns the address of the variable in this thread.
3705 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R0
, DescAddr
, SDValue());
3707 DAG
.getNode(ARMISD::CALL
, DL
, DAG
.getVTList(MVT::Other
, MVT::Glue
),
3708 Chain
, FuncTLVGet
, DAG
.getRegister(ARM::R0
, MVT::i32
),
3709 DAG
.getRegisterMask(Mask
), Chain
.getValue(1));
3710 return DAG
.getCopyFromReg(Chain
, DL
, ARM::R0
, MVT::i32
, Chain
.getValue(1));
3714 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op
,
3715 SelectionDAG
&DAG
) const {
3716 assert(Subtarget
->isTargetWindows() && "Windows specific TLS lowering");
3718 SDValue Chain
= DAG
.getEntryNode();
3719 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3722 // Load the current TEB (thread environment block)
3723 SDValue Ops
[] = {Chain
,
3724 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
3725 DAG
.getTargetConstant(15, DL
, MVT::i32
),
3726 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3727 DAG
.getTargetConstant(13, DL
, MVT::i32
),
3728 DAG
.getTargetConstant(0, DL
, MVT::i32
),
3729 DAG
.getTargetConstant(2, DL
, MVT::i32
)};
3730 SDValue CurrentTEB
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
3731 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
3733 SDValue TEB
= CurrentTEB
.getValue(0);
3734 Chain
= CurrentTEB
.getValue(1);
3736 // Load the ThreadLocalStoragePointer from the TEB
3737 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3739 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TEB
, DAG
.getIntPtrConstant(0x2c, DL
));
3740 TLSArray
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSArray
, MachinePointerInfo());
3742 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3743 // offset into the TLSArray.
3745 // Load the TLS index from the C runtime
3747 DAG
.getTargetExternalSymbol("_tls_index", PtrVT
, ARMII::MO_NO_FLAG
);
3748 TLSIndex
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
, TLSIndex
);
3749 TLSIndex
= DAG
.getLoad(PtrVT
, DL
, Chain
, TLSIndex
, MachinePointerInfo());
3751 SDValue Slot
= DAG
.getNode(ISD::SHL
, DL
, PtrVT
, TLSIndex
,
3752 DAG
.getConstant(2, DL
, MVT::i32
));
3753 SDValue TLS
= DAG
.getLoad(PtrVT
, DL
, Chain
,
3754 DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLSArray
, Slot
),
3755 MachinePointerInfo());
3757 // Get the offset of the start of the .tls section (section base)
3758 const auto *GA
= cast
<GlobalAddressSDNode
>(Op
);
3759 auto *CPV
= ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMCP::SECREL
);
3760 SDValue Offset
= DAG
.getLoad(
3762 DAG
.getNode(ARMISD::Wrapper
, DL
, MVT::i32
,
3763 DAG
.getTargetConstantPool(CPV
, PtrVT
, Align(4))),
3764 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3766 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, TLS
, Offset
);
3769 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3771 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode
*GA
,
3772 SelectionDAG
&DAG
) const {
3774 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3775 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3776 MachineFunction
&MF
= DAG
.getMachineFunction();
3777 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3778 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3779 ARMConstantPoolValue
*CPV
=
3780 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3781 ARMCP::CPValue
, PCAdj
, ARMCP::TLSGD
, true);
3782 SDValue Argument
= DAG
.getTargetConstantPool(CPV
, PtrVT
, Align(4));
3783 Argument
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Argument
);
3784 Argument
= DAG
.getLoad(
3785 PtrVT
, dl
, DAG
.getEntryNode(), Argument
,
3786 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3787 SDValue Chain
= Argument
.getValue(1);
3789 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3790 Argument
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Argument
, PICLabel
);
3792 // call __tls_get_addr.
3795 Entry
.Node
= Argument
;
3796 Entry
.Ty
= (Type
*) Type::getInt32Ty(*DAG
.getContext());
3797 Args
.push_back(Entry
);
3799 // FIXME: is there useful debug info available here?
3800 TargetLowering::CallLoweringInfo
CLI(DAG
);
3801 CLI
.setDebugLoc(dl
).setChain(Chain
).setLibCallee(
3802 CallingConv::C
, Type::getInt32Ty(*DAG
.getContext()),
3803 DAG
.getExternalSymbol("__tls_get_addr", PtrVT
), std::move(Args
));
3805 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
3806 return CallResult
.first
;
3809 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3810 // "local exec" model.
3812 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode
*GA
,
3814 TLSModel::Model model
) const {
3815 const GlobalValue
*GV
= GA
->getGlobal();
3818 SDValue Chain
= DAG
.getEntryNode();
3819 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
3820 // Get the Thread Pointer
3821 SDValue ThreadPointer
= DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
3823 if (model
== TLSModel::InitialExec
) {
3824 MachineFunction
&MF
= DAG
.getMachineFunction();
3825 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3826 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
3827 // Initial exec model.
3828 unsigned char PCAdj
= Subtarget
->isThumb() ? 4 : 8;
3829 ARMConstantPoolValue
*CPV
=
3830 ARMConstantPoolConstant::Create(GA
->getGlobal(), ARMPCLabelIndex
,
3831 ARMCP::CPValue
, PCAdj
, ARMCP::GOTTPOFF
,
3833 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, Align(4));
3834 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3835 Offset
= DAG
.getLoad(
3836 PtrVT
, dl
, Chain
, Offset
,
3837 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3838 Chain
= Offset
.getValue(1);
3840 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
3841 Offset
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Offset
, PICLabel
);
3843 Offset
= DAG
.getLoad(
3844 PtrVT
, dl
, Chain
, Offset
,
3845 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3848 assert(model
== TLSModel::LocalExec
);
3849 ARMConstantPoolValue
*CPV
=
3850 ARMConstantPoolConstant::Create(GV
, ARMCP::TPOFF
);
3851 Offset
= DAG
.getTargetConstantPool(CPV
, PtrVT
, Align(4));
3852 Offset
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, Offset
);
3853 Offset
= DAG
.getLoad(
3854 PtrVT
, dl
, Chain
, Offset
,
3855 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
3858 // The address of the thread local variable is the add of the thread
3859 // pointer with the offset of the variable.
3860 return DAG
.getNode(ISD::ADD
, dl
, PtrVT
, ThreadPointer
, Offset
);
3864 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const {
3865 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
3866 if (DAG
.getTarget().useEmulatedTLS())
3867 return LowerToTLSEmulatedModel(GA
, DAG
);
3869 if (Subtarget
->isTargetDarwin())
3870 return LowerGlobalTLSAddressDarwin(Op
, DAG
);
3872 if (Subtarget
->isTargetWindows())
3873 return LowerGlobalTLSAddressWindows(Op
, DAG
);
3875 // TODO: implement the "local dynamic" model
3876 assert(Subtarget
->isTargetELF() && "Only ELF implemented here");
3877 TLSModel::Model model
= getTargetMachine().getTLSModel(GA
->getGlobal());
3880 case TLSModel::GeneralDynamic
:
3881 case TLSModel::LocalDynamic
:
3882 return LowerToTLSGeneralDynamicModel(GA
, DAG
);
3883 case TLSModel::InitialExec
:
3884 case TLSModel::LocalExec
:
3885 return LowerToTLSExecModels(GA
, DAG
, model
);
3887 llvm_unreachable("bogus TLS model");
3890 /// Return true if all users of V are within function F, looking through
3892 static bool allUsersAreInFunction(const Value
*V
, const Function
*F
) {
3893 SmallVector
<const User
*,4> Worklist(V
->users());
3894 while (!Worklist
.empty()) {
3895 auto *U
= Worklist
.pop_back_val();
3896 if (isa
<ConstantExpr
>(U
)) {
3897 append_range(Worklist
, U
->users());
3901 auto *I
= dyn_cast
<Instruction
>(U
);
3902 if (!I
|| I
->getParent()->getParent() != F
)
3908 static SDValue
promoteToConstantPool(const ARMTargetLowering
*TLI
,
3909 const GlobalValue
*GV
, SelectionDAG
&DAG
,
3910 EVT PtrVT
, const SDLoc
&dl
) {
3911 // If we're creating a pool entry for a constant global with unnamed address,
3912 // and the global is small enough, we can emit it inline into the constant pool
3913 // to save ourselves an indirection.
3915 // This is a win if the constant is only used in one function (so it doesn't
3916 // need to be duplicated) or duplicating the constant wouldn't increase code
3917 // size (implying the constant is no larger than 4 bytes).
3918 const Function
&F
= DAG
.getMachineFunction().getFunction();
3920 // We rely on this decision to inline being idemopotent and unrelated to the
3921 // use-site. We know that if we inline a variable at one use site, we'll
3922 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3923 // doesn't know about this optimization, so bail out if it's enabled else
3924 // we could decide to inline here (and thus never emit the GV) but require
3925 // the GV from fast-isel generated code.
3926 if (!EnableConstpoolPromotion
||
3927 DAG
.getMachineFunction().getTarget().Options
.EnableFastISel
)
3930 auto *GVar
= dyn_cast
<GlobalVariable
>(GV
);
3931 if (!GVar
|| !GVar
->hasInitializer() ||
3932 !GVar
->isConstant() || !GVar
->hasGlobalUnnamedAddr() ||
3933 !GVar
->hasLocalLinkage())
3936 // If we inline a value that contains relocations, we move the relocations
3937 // from .data to .text. This is not allowed in position-independent code.
3938 auto *Init
= GVar
->getInitializer();
3939 if ((TLI
->isPositionIndependent() || TLI
->getSubtarget()->isROPI()) &&
3940 Init
->needsDynamicRelocation())
3943 // The constant islands pass can only really deal with alignment requests
3944 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3945 // any type wanting greater alignment requirements than 4 bytes. We also
3946 // can only promote constants that are multiples of 4 bytes in size or
3947 // are paddable to a multiple of 4. Currently we only try and pad constants
3948 // that are strings for simplicity.
3949 auto *CDAInit
= dyn_cast
<ConstantDataArray
>(Init
);
3950 unsigned Size
= DAG
.getDataLayout().getTypeAllocSize(Init
->getType());
3951 Align PrefAlign
= DAG
.getDataLayout().getPreferredAlign(GVar
);
3952 unsigned RequiredPadding
= 4 - (Size
% 4);
3953 bool PaddingPossible
=
3954 RequiredPadding
== 4 || (CDAInit
&& CDAInit
->isString());
3955 if (!PaddingPossible
|| PrefAlign
> 4 || Size
> ConstpoolPromotionMaxSize
||
3959 unsigned PaddedSize
= Size
+ ((RequiredPadding
== 4) ? 0 : RequiredPadding
);
3960 MachineFunction
&MF
= DAG
.getMachineFunction();
3961 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
3963 // We can't bloat the constant pool too much, else the ConstantIslands pass
3964 // may fail to converge. If we haven't promoted this global yet (it may have
3965 // multiple uses), and promoting it would increase the constant pool size (Sz
3966 // > 4), ensure we have space to do so up to MaxTotal.
3967 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
) && Size
> 4)
3968 if (AFI
->getPromotedConstpoolIncrease() + PaddedSize
- 4 >=
3969 ConstpoolPromotionMaxTotal
)
3972 // This is only valid if all users are in a single function; we can't clone
3973 // the constant in general. The LLVM IR unnamed_addr allows merging
3974 // constants, but not cloning them.
3976 // We could potentially allow cloning if we could prove all uses of the
3977 // constant in the current function don't care about the address, like
3978 // printf format strings. But that isn't implemented for now.
3979 if (!allUsersAreInFunction(GVar
, &F
))
3982 // We're going to inline this global. Pad it out if needed.
3983 if (RequiredPadding
!= 4) {
3984 StringRef S
= CDAInit
->getAsString();
3986 SmallVector
<uint8_t,16> V(S
.size());
3987 std::copy(S
.bytes_begin(), S
.bytes_end(), V
.begin());
3988 while (RequiredPadding
--)
3990 Init
= ConstantDataArray::get(*DAG
.getContext(), V
);
3993 auto CPVal
= ARMConstantPoolConstant::Create(GVar
, Init
);
3994 SDValue CPAddr
= DAG
.getTargetConstantPool(CPVal
, PtrVT
, Align(4));
3995 if (!AFI
->getGlobalsPromotedToConstantPool().count(GVar
)) {
3996 AFI
->markGlobalAsPromotedToConstantPool(GVar
);
3997 AFI
->setPromotedConstpoolIncrease(AFI
->getPromotedConstpoolIncrease() +
4000 ++NumConstpoolPromoted
;
4001 return DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
4004 bool ARMTargetLowering::isReadOnly(const GlobalValue
*GV
) const {
4005 if (const GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(GV
))
4006 if (!(GV
= GA
->getAliaseeObject()))
4008 if (const auto *V
= dyn_cast
<GlobalVariable
>(GV
))
4009 return V
->isConstant();
4010 return isa
<Function
>(GV
);
4013 SDValue
ARMTargetLowering::LowerGlobalAddress(SDValue Op
,
4014 SelectionDAG
&DAG
) const {
4015 switch (Subtarget
->getTargetTriple().getObjectFormat()) {
4016 default: llvm_unreachable("unknown object format");
4018 return LowerGlobalAddressWindows(Op
, DAG
);
4020 return LowerGlobalAddressELF(Op
, DAG
);
4022 return LowerGlobalAddressDarwin(Op
, DAG
);
4026 SDValue
ARMTargetLowering::LowerGlobalAddressELF(SDValue Op
,
4027 SelectionDAG
&DAG
) const {
4028 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4030 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4031 bool IsRO
= isReadOnly(GV
);
4033 // promoteToConstantPool only if not generating XO text section
4034 if (GV
->isDSOLocal() && !Subtarget
->genExecuteOnly())
4035 if (SDValue V
= promoteToConstantPool(this, GV
, DAG
, PtrVT
, dl
))
4038 if (isPositionIndependent()) {
4039 SDValue G
= DAG
.getTargetGlobalAddress(
4040 GV
, dl
, PtrVT
, 0, GV
->isDSOLocal() ? 0 : ARMII::MO_GOT
);
4041 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
4042 if (!GV
->isDSOLocal())
4044 DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
4045 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
4047 } else if (Subtarget
->isROPI() && IsRO
) {
4049 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
);
4050 SDValue Result
= DAG
.getNode(ARMISD::WrapperPIC
, dl
, PtrVT
, G
);
4052 } else if (Subtarget
->isRWPI() && !IsRO
) {
4055 if (Subtarget
->useMovt()) {
4057 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_SBREL
);
4058 RelAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
, G
);
4059 } else { // use literal pool for address constant
4060 ARMConstantPoolValue
*CPV
=
4061 ARMConstantPoolConstant::Create(GV
, ARMCP::SBREL
);
4062 SDValue CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, Align(4));
4063 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
4064 RelAddr
= DAG
.getLoad(
4065 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
4066 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
4068 SDValue SB
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, ARM::R9
, PtrVT
);
4069 SDValue Result
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SB
, RelAddr
);
4073 // If we have T2 ops, we can materialize the address directly via movt/movw
4074 // pair. This is always cheaper. If need to generate Execute Only code, and we
4075 // only have Thumb1 available, we can't use a constant pool and are forced to
4076 // use immediate relocations.
4077 if (Subtarget
->useMovt() || Subtarget
->genExecuteOnly()) {
4078 if (Subtarget
->useMovt())
4080 // FIXME: Once remat is capable of dealing with instructions with register
4081 // operands, expand this into two nodes.
4082 return DAG
.getNode(ARMISD::Wrapper
, dl
, PtrVT
,
4083 DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
));
4085 SDValue CPAddr
= DAG
.getTargetConstantPool(GV
, PtrVT
, Align(4));
4086 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
4088 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
4089 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
4093 SDValue
ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op
,
4094 SelectionDAG
&DAG
) const {
4095 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
4096 "ROPI/RWPI not currently supported for Darwin");
4097 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4099 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4101 if (Subtarget
->useMovt())
4104 // FIXME: Once remat is capable of dealing with instructions with register
4105 // operands, expand this into multiple nodes
4107 isPositionIndependent() ? ARMISD::WrapperPIC
: ARMISD::Wrapper
;
4109 SDValue G
= DAG
.getTargetGlobalAddress(GV
, dl
, PtrVT
, 0, ARMII::MO_NONLAZY
);
4110 SDValue Result
= DAG
.getNode(Wrapper
, dl
, PtrVT
, G
);
4112 if (Subtarget
->isGVIndirectSymbol(GV
))
4113 Result
= DAG
.getLoad(PtrVT
, dl
, DAG
.getEntryNode(), Result
,
4114 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
4118 SDValue
ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op
,
4119 SelectionDAG
&DAG
) const {
4120 assert(Subtarget
->isTargetWindows() && "non-Windows COFF is not supported");
4121 assert(Subtarget
->useMovt() &&
4122 "Windows on ARM expects to use movw/movt");
4123 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
4124 "ROPI/RWPI not currently supported for Windows");
4126 const TargetMachine
&TM
= getTargetMachine();
4127 const GlobalValue
*GV
= cast
<GlobalAddressSDNode
>(Op
)->getGlobal();
4128 ARMII::TOF TargetFlags
= ARMII::MO_NO_FLAG
;
4129 if (GV
->hasDLLImportStorageClass())
4130 TargetFlags
= ARMII::MO_DLLIMPORT
;
4131 else if (!TM
.shouldAssumeDSOLocal(GV
))
4132 TargetFlags
= ARMII::MO_COFFSTUB
;
4133 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4139 // FIXME: Once remat is capable of dealing with instructions with register
4140 // operands, expand this into two nodes.
4141 Result
= DAG
.getNode(ARMISD::Wrapper
, DL
, PtrVT
,
4142 DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, /*offset=*/0,
4144 if (TargetFlags
& (ARMII::MO_DLLIMPORT
| ARMII::MO_COFFSTUB
))
4145 Result
= DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), Result
,
4146 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
4151 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op
, SelectionDAG
&DAG
) const {
4153 SDValue Val
= DAG
.getConstant(0, dl
, MVT::i32
);
4154 return DAG
.getNode(ARMISD::EH_SJLJ_SETJMP
, dl
,
4155 DAG
.getVTList(MVT::i32
, MVT::Other
), Op
.getOperand(0),
4156 Op
.getOperand(1), Val
);
4160 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op
, SelectionDAG
&DAG
) const {
4162 return DAG
.getNode(ARMISD::EH_SJLJ_LONGJMP
, dl
, MVT::Other
, Op
.getOperand(0),
4163 Op
.getOperand(1), DAG
.getConstant(0, dl
, MVT::i32
));
4166 SDValue
ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op
,
4167 SelectionDAG
&DAG
) const {
4169 return DAG
.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH
, dl
, MVT::Other
,
4173 SDValue
ARMTargetLowering::LowerINTRINSIC_VOID(
4174 SDValue Op
, SelectionDAG
&DAG
, const ARMSubtarget
*Subtarget
) const {
4176 Op
.getConstantOperandVal(Op
.getOperand(0).getValueType() == MVT::Other
);
4179 return SDValue(); // Don't custom lower most intrinsics.
4180 case Intrinsic::arm_gnu_eabi_mcount
: {
4181 MachineFunction
&MF
= DAG
.getMachineFunction();
4182 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4184 SDValue Chain
= Op
.getOperand(0);
4185 // call "\01__gnu_mcount_nc"
4186 const ARMBaseRegisterInfo
*ARI
= Subtarget
->getRegisterInfo();
4187 const uint32_t *Mask
=
4188 ARI
->getCallPreservedMask(DAG
.getMachineFunction(), CallingConv::C
);
4189 assert(Mask
&& "Missing call preserved mask for calling convention");
4190 // Mark LR an implicit live-in.
4191 Register Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
4192 SDValue ReturnAddress
=
4193 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, PtrVT
);
4194 constexpr EVT ResultTys
[] = {MVT::Other
, MVT::Glue
};
4196 DAG
.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT
, 0);
4197 SDValue RegisterMask
= DAG
.getRegisterMask(Mask
);
4198 if (Subtarget
->isThumb())
4201 ARM::tBL_PUSHLR
, dl
, ResultTys
,
4202 {ReturnAddress
, DAG
.getTargetConstant(ARMCC::AL
, dl
, PtrVT
),
4203 DAG
.getRegister(0, PtrVT
), Callee
, RegisterMask
, Chain
}),
4206 DAG
.getMachineNode(ARM::BL_PUSHLR
, dl
, ResultTys
,
4207 {ReturnAddress
, Callee
, RegisterMask
, Chain
}),
4214 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op
, SelectionDAG
&DAG
,
4215 const ARMSubtarget
*Subtarget
) const {
4216 unsigned IntNo
= Op
.getConstantOperandVal(0);
4219 default: return SDValue(); // Don't custom lower most intrinsics.
4220 case Intrinsic::thread_pointer
: {
4221 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4222 return DAG
.getNode(ARMISD::THREAD_POINTER
, dl
, PtrVT
);
4224 case Intrinsic::arm_cls
: {
4225 const SDValue
&Operand
= Op
.getOperand(1);
4226 const EVT VTy
= Op
.getValueType();
4228 DAG
.getNode(ISD::SRA
, dl
, VTy
, Operand
, DAG
.getConstant(31, dl
, VTy
));
4229 SDValue XOR
= DAG
.getNode(ISD::XOR
, dl
, VTy
, SRA
, Operand
);
4231 DAG
.getNode(ISD::SHL
, dl
, VTy
, XOR
, DAG
.getConstant(1, dl
, VTy
));
4233 DAG
.getNode(ISD::OR
, dl
, VTy
, SHL
, DAG
.getConstant(1, dl
, VTy
));
4234 SDValue Result
= DAG
.getNode(ISD::CTLZ
, dl
, VTy
, OR
);
4237 case Intrinsic::arm_cls64
: {
4238 // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
4239 // else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
4240 const SDValue
&Operand
= Op
.getOperand(1);
4241 const EVT VTy
= Op
.getValueType();
4243 std::tie(Lo
, Hi
) = DAG
.SplitScalar(Operand
, dl
, VTy
, VTy
);
4244 SDValue Constant0
= DAG
.getConstant(0, dl
, VTy
);
4245 SDValue Constant1
= DAG
.getConstant(1, dl
, VTy
);
4246 SDValue Constant31
= DAG
.getConstant(31, dl
, VTy
);
4247 SDValue SRAHi
= DAG
.getNode(ISD::SRA
, dl
, VTy
, Hi
, Constant31
);
4248 SDValue XORHi
= DAG
.getNode(ISD::XOR
, dl
, VTy
, SRAHi
, Hi
);
4249 SDValue SHLHi
= DAG
.getNode(ISD::SHL
, dl
, VTy
, XORHi
, Constant1
);
4250 SDValue ORHi
= DAG
.getNode(ISD::OR
, dl
, VTy
, SHLHi
, Constant1
);
4251 SDValue CLSHi
= DAG
.getNode(ISD::CTLZ
, dl
, VTy
, ORHi
);
4253 DAG
.getSetCC(dl
, MVT::i1
, CLSHi
, Constant31
, ISD::CondCode::SETEQ
);
4255 DAG
.getSetCC(dl
, MVT::i1
, Hi
, Constant0
, ISD::CondCode::SETEQ
);
4256 SDValue AdjustedLo
=
4257 DAG
.getSelect(dl
, VTy
, HiIsZero
, Lo
, DAG
.getNOT(dl
, Lo
, VTy
));
4258 SDValue CLZAdjustedLo
= DAG
.getNode(ISD::CTLZ
, dl
, VTy
, AdjustedLo
);
4260 DAG
.getSelect(dl
, VTy
, CheckLo
,
4261 DAG
.getNode(ISD::ADD
, dl
, VTy
, CLZAdjustedLo
, Constant31
), CLSHi
);
4264 case Intrinsic::eh_sjlj_lsda
: {
4265 MachineFunction
&MF
= DAG
.getMachineFunction();
4266 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
4267 unsigned ARMPCLabelIndex
= AFI
->createPICLabelUId();
4268 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
4270 bool IsPositionIndependent
= isPositionIndependent();
4271 unsigned PCAdj
= IsPositionIndependent
? (Subtarget
->isThumb() ? 4 : 8) : 0;
4272 ARMConstantPoolValue
*CPV
=
4273 ARMConstantPoolConstant::Create(&MF
.getFunction(), ARMPCLabelIndex
,
4274 ARMCP::CPLSDA
, PCAdj
);
4275 CPAddr
= DAG
.getTargetConstantPool(CPV
, PtrVT
, Align(4));
4276 CPAddr
= DAG
.getNode(ARMISD::Wrapper
, dl
, MVT::i32
, CPAddr
);
4277 SDValue Result
= DAG
.getLoad(
4278 PtrVT
, dl
, DAG
.getEntryNode(), CPAddr
,
4279 MachinePointerInfo::getConstantPool(DAG
.getMachineFunction()));
4281 if (IsPositionIndependent
) {
4282 SDValue PICLabel
= DAG
.getConstant(ARMPCLabelIndex
, dl
, MVT::i32
);
4283 Result
= DAG
.getNode(ARMISD::PIC_ADD
, dl
, PtrVT
, Result
, PICLabel
);
4287 case Intrinsic::arm_neon_vabs
:
4288 return DAG
.getNode(ISD::ABS
, SDLoc(Op
), Op
.getValueType(),
4290 case Intrinsic::arm_neon_vabds
:
4291 if (Op
.getValueType().isInteger())
4292 return DAG
.getNode(ISD::ABDS
, SDLoc(Op
), Op
.getValueType(),
4293 Op
.getOperand(1), Op
.getOperand(2));
4295 case Intrinsic::arm_neon_vabdu
:
4296 return DAG
.getNode(ISD::ABDU
, SDLoc(Op
), Op
.getValueType(),
4297 Op
.getOperand(1), Op
.getOperand(2));
4298 case Intrinsic::arm_neon_vmulls
:
4299 case Intrinsic::arm_neon_vmullu
: {
4300 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmulls
)
4301 ? ARMISD::VMULLs
: ARMISD::VMULLu
;
4302 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
4303 Op
.getOperand(1), Op
.getOperand(2));
4305 case Intrinsic::arm_neon_vminnm
:
4306 case Intrinsic::arm_neon_vmaxnm
: {
4307 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminnm
)
4308 ? ISD::FMINNUM
: ISD::FMAXNUM
;
4309 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
4310 Op
.getOperand(1), Op
.getOperand(2));
4312 case Intrinsic::arm_neon_vminu
:
4313 case Intrinsic::arm_neon_vmaxu
: {
4314 if (Op
.getValueType().isFloatingPoint())
4316 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vminu
)
4317 ? ISD::UMIN
: ISD::UMAX
;
4318 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
4319 Op
.getOperand(1), Op
.getOperand(2));
4321 case Intrinsic::arm_neon_vmins
:
4322 case Intrinsic::arm_neon_vmaxs
: {
4323 // v{min,max}s is overloaded between signed integers and floats.
4324 if (!Op
.getValueType().isFloatingPoint()) {
4325 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
4326 ? ISD::SMIN
: ISD::SMAX
;
4327 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
4328 Op
.getOperand(1), Op
.getOperand(2));
4330 unsigned NewOpc
= (IntNo
== Intrinsic::arm_neon_vmins
)
4331 ? ISD::FMINIMUM
: ISD::FMAXIMUM
;
4332 return DAG
.getNode(NewOpc
, SDLoc(Op
), Op
.getValueType(),
4333 Op
.getOperand(1), Op
.getOperand(2));
4335 case Intrinsic::arm_neon_vtbl1
:
4336 return DAG
.getNode(ARMISD::VTBL1
, SDLoc(Op
), Op
.getValueType(),
4337 Op
.getOperand(1), Op
.getOperand(2));
4338 case Intrinsic::arm_neon_vtbl2
:
4339 return DAG
.getNode(ARMISD::VTBL2
, SDLoc(Op
), Op
.getValueType(),
4340 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
4341 case Intrinsic::arm_mve_pred_i2v
:
4342 case Intrinsic::arm_mve_pred_v2i
:
4343 return DAG
.getNode(ARMISD::PREDICATE_CAST
, SDLoc(Op
), Op
.getValueType(),
4345 case Intrinsic::arm_mve_vreinterpretq
:
4346 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, SDLoc(Op
), Op
.getValueType(),
4348 case Intrinsic::arm_mve_lsll
:
4349 return DAG
.getNode(ARMISD::LSLL
, SDLoc(Op
), Op
->getVTList(),
4350 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
4351 case Intrinsic::arm_mve_asrl
:
4352 return DAG
.getNode(ARMISD::ASRL
, SDLoc(Op
), Op
->getVTList(),
4353 Op
.getOperand(1), Op
.getOperand(2), Op
.getOperand(3));
4357 static SDValue
LowerATOMIC_FENCE(SDValue Op
, SelectionDAG
&DAG
,
4358 const ARMSubtarget
*Subtarget
) {
4360 auto SSID
= static_cast<SyncScope::ID
>(Op
.getConstantOperandVal(2));
4361 if (SSID
== SyncScope::SingleThread
)
4364 if (!Subtarget
->hasDataBarrier()) {
4365 // Some ARMv6 cpus can support data barriers with an mcr instruction.
4366 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4368 assert(Subtarget
->hasV6Ops() && !Subtarget
->isThumb() &&
4369 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4370 return DAG
.getNode(ARMISD::MEMBARRIER_MCR
, dl
, MVT::Other
, Op
.getOperand(0),
4371 DAG
.getConstant(0, dl
, MVT::i32
));
4374 AtomicOrdering Ord
=
4375 static_cast<AtomicOrdering
>(Op
.getConstantOperandVal(1));
4376 ARM_MB::MemBOpt Domain
= ARM_MB::ISH
;
4377 if (Subtarget
->isMClass()) {
4378 // Only a full system barrier exists in the M-class architectures.
4379 Domain
= ARM_MB::SY
;
4380 } else if (Subtarget
->preferISHSTBarriers() &&
4381 Ord
== AtomicOrdering::Release
) {
4382 // Swift happens to implement ISHST barriers in a way that's compatible with
4383 // Release semantics but weaker than ISH so we'd be fools not to use
4384 // it. Beware: other processors probably don't!
4385 Domain
= ARM_MB::ISHST
;
4388 return DAG
.getNode(ISD::INTRINSIC_VOID
, dl
, MVT::Other
, Op
.getOperand(0),
4389 DAG
.getConstant(Intrinsic::arm_dmb
, dl
, MVT::i32
),
4390 DAG
.getConstant(Domain
, dl
, MVT::i32
));
4393 static SDValue
LowerPREFETCH(SDValue Op
, SelectionDAG
&DAG
,
4394 const ARMSubtarget
*Subtarget
) {
4395 // ARM pre v5TE and Thumb1 does not have preload instructions.
4396 if (!(Subtarget
->isThumb2() ||
4397 (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TEOps())))
4398 // Just preserve the chain.
4399 return Op
.getOperand(0);
4402 unsigned isRead
= ~Op
.getConstantOperandVal(2) & 1;
4404 (!Subtarget
->hasV7Ops() || !Subtarget
->hasMPExtension()))
4405 // ARMv7 with MP extension has PLDW.
4406 return Op
.getOperand(0);
4408 unsigned isData
= Op
.getConstantOperandVal(4);
4409 if (Subtarget
->isThumb()) {
4411 isRead
= ~isRead
& 1;
4412 isData
= ~isData
& 1;
4415 return DAG
.getNode(ARMISD::PRELOAD
, dl
, MVT::Other
, Op
.getOperand(0),
4416 Op
.getOperand(1), DAG
.getConstant(isRead
, dl
, MVT::i32
),
4417 DAG
.getConstant(isData
, dl
, MVT::i32
));
4420 static SDValue
LowerVASTART(SDValue Op
, SelectionDAG
&DAG
) {
4421 MachineFunction
&MF
= DAG
.getMachineFunction();
4422 ARMFunctionInfo
*FuncInfo
= MF
.getInfo
<ARMFunctionInfo
>();
4424 // vastart just stores the address of the VarArgsFrameIndex slot into the
4425 // memory location argument.
4427 EVT PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
4428 SDValue FR
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(), PtrVT
);
4429 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
4430 return DAG
.getStore(Op
.getOperand(0), dl
, FR
, Op
.getOperand(1),
4431 MachinePointerInfo(SV
));
4434 SDValue
ARMTargetLowering::GetF64FormalArgument(CCValAssign
&VA
,
4435 CCValAssign
&NextVA
,
4438 const SDLoc
&dl
) const {
4439 MachineFunction
&MF
= DAG
.getMachineFunction();
4440 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
4442 const TargetRegisterClass
*RC
;
4443 if (AFI
->isThumb1OnlyFunction())
4444 RC
= &ARM::tGPRRegClass
;
4446 RC
= &ARM::GPRRegClass
;
4448 // Transform the arguments stored in physical registers into virtual ones.
4449 Register Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4450 SDValue ArgValue
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
4453 if (NextVA
.isMemLoc()) {
4454 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4455 int FI
= MFI
.CreateFixedObject(4, NextVA
.getLocMemOffset(), true);
4457 // Create load node to retrieve arguments from the stack.
4458 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4459 ArgValue2
= DAG
.getLoad(
4460 MVT::i32
, dl
, Root
, FIN
,
4461 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
4463 Reg
= MF
.addLiveIn(NextVA
.getLocReg(), RC
);
4464 ArgValue2
= DAG
.getCopyFromReg(Root
, dl
, Reg
, MVT::i32
);
4466 if (!Subtarget
->isLittle())
4467 std::swap (ArgValue
, ArgValue2
);
4468 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, ArgValue
, ArgValue2
);
4471 // The remaining GPRs hold either the beginning of variable-argument
4472 // data, or the beginning of an aggregate passed by value (usually
4473 // byval). Either way, we allocate stack slots adjacent to the data
4474 // provided by our caller, and store the unallocated registers there.
4475 // If this is a variadic function, the va_list pointer will begin with
4476 // these values; otherwise, this reassembles a (byval) structure that
4477 // was split between registers and memory.
4478 // Return: The frame index registers were stored into.
4479 int ARMTargetLowering::StoreByValRegs(CCState
&CCInfo
, SelectionDAG
&DAG
,
4480 const SDLoc
&dl
, SDValue
&Chain
,
4481 const Value
*OrigArg
,
4482 unsigned InRegsParamRecordIdx
,
4483 int ArgOffset
, unsigned ArgSize
) const {
4484 // Currently, two use-cases possible:
4485 // Case #1. Non-var-args function, and we meet first byval parameter.
4486 // Setup first unallocated register as first byval register;
4487 // eat all remained registers
4488 // (these two actions are performed by HandleByVal method).
4489 // Then, here, we initialize stack frame with
4490 // "store-reg" instructions.
4491 // Case #2. Var-args function, that doesn't contain byval parameters.
4492 // The same: eat all remained unallocated registers,
4493 // initialize stack frame.
4495 MachineFunction
&MF
= DAG
.getMachineFunction();
4496 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4497 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
4498 unsigned RBegin
, REnd
;
4499 if (InRegsParamRecordIdx
< CCInfo
.getInRegsParamsCount()) {
4500 CCInfo
.getInRegsParamInfo(InRegsParamRecordIdx
, RBegin
, REnd
);
4502 unsigned RBeginIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
4503 RBegin
= RBeginIdx
== 4 ? (unsigned)ARM::R4
: GPRArgRegs
[RBeginIdx
];
4508 ArgOffset
= -4 * (ARM::R4
- RBegin
);
4510 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
4511 int FrameIndex
= MFI
.CreateFixedObject(ArgSize
, ArgOffset
, false);
4512 SDValue FIN
= DAG
.getFrameIndex(FrameIndex
, PtrVT
);
4514 SmallVector
<SDValue
, 4> MemOps
;
4515 const TargetRegisterClass
*RC
=
4516 AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
4518 for (unsigned Reg
= RBegin
, i
= 0; Reg
< REnd
; ++Reg
, ++i
) {
4519 Register VReg
= MF
.addLiveIn(Reg
, RC
);
4520 SDValue Val
= DAG
.getCopyFromReg(Chain
, dl
, VReg
, MVT::i32
);
4521 SDValue Store
= DAG
.getStore(Val
.getValue(1), dl
, Val
, FIN
,
4522 MachinePointerInfo(OrigArg
, 4 * i
));
4523 MemOps
.push_back(Store
);
4524 FIN
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, FIN
, DAG
.getConstant(4, dl
, PtrVT
));
4527 if (!MemOps
.empty())
4528 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, MemOps
);
4532 // Setup stack frame, the va_list pointer will start from.
4533 void ARMTargetLowering::VarArgStyleRegisters(CCState
&CCInfo
, SelectionDAG
&DAG
,
4534 const SDLoc
&dl
, SDValue
&Chain
,
4536 unsigned TotalArgRegsSaveSize
,
4537 bool ForceMutable
) const {
4538 MachineFunction
&MF
= DAG
.getMachineFunction();
4539 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
4541 // Try to store any remaining integer argument regs
4542 // to their spots on the stack so that they may be loaded by dereferencing
4543 // the result of va_next.
4544 // If there is no regs to be stored, just point address after last
4545 // argument passed via stack.
4546 int FrameIndex
= StoreByValRegs(
4547 CCInfo
, DAG
, dl
, Chain
, nullptr, CCInfo
.getInRegsParamsCount(),
4548 CCInfo
.getStackSize(), std::max(4U, TotalArgRegsSaveSize
));
4549 AFI
->setVarArgsFrameIndex(FrameIndex
);
4552 bool ARMTargetLowering::splitValueIntoRegisterParts(
4553 SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
, SDValue
*Parts
,
4554 unsigned NumParts
, MVT PartVT
, std::optional
<CallingConv::ID
> CC
) const {
4555 EVT ValueVT
= Val
.getValueType();
4556 if ((ValueVT
== MVT::f16
|| ValueVT
== MVT::bf16
) && PartVT
== MVT::f32
) {
4557 unsigned ValueBits
= ValueVT
.getSizeInBits();
4558 unsigned PartBits
= PartVT
.getSizeInBits();
4559 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::getIntegerVT(ValueBits
), Val
);
4560 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, MVT::getIntegerVT(PartBits
), Val
);
4561 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
4568 SDValue
ARMTargetLowering::joinRegisterPartsIntoValue(
4569 SelectionDAG
&DAG
, const SDLoc
&DL
, const SDValue
*Parts
, unsigned NumParts
,
4570 MVT PartVT
, EVT ValueVT
, std::optional
<CallingConv::ID
> CC
) const {
4571 if ((ValueVT
== MVT::f16
|| ValueVT
== MVT::bf16
) && PartVT
== MVT::f32
) {
4572 unsigned ValueBits
= ValueVT
.getSizeInBits();
4573 unsigned PartBits
= PartVT
.getSizeInBits();
4574 SDValue Val
= Parts
[0];
4576 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::getIntegerVT(PartBits
), Val
);
4577 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, MVT::getIntegerVT(ValueBits
), Val
);
4578 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
4584 SDValue
ARMTargetLowering::LowerFormalArguments(
4585 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
4586 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&dl
,
4587 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
4588 MachineFunction
&MF
= DAG
.getMachineFunction();
4589 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4591 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
4593 // Assign locations to all of the incoming arguments.
4594 SmallVector
<CCValAssign
, 16> ArgLocs
;
4595 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
4597 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
4599 Function::const_arg_iterator CurOrigArg
= MF
.getFunction().arg_begin();
4600 unsigned CurArgIdx
= 0;
4602 // Initially ArgRegsSaveSize is zero.
4603 // Then we increase this value each time we meet byval parameter.
4604 // We also increase this value in case of varargs function.
4605 AFI
->setArgRegsSaveSize(0);
4607 // Calculate the amount of stack space that we need to allocate to store
4608 // byval and variadic arguments that are passed in registers.
4609 // We need to know this before we allocate the first byval or variadic
4610 // argument, as they will be allocated a stack slot below the CFA (Canonical
4611 // Frame Address, the stack pointer at entry to the function).
4612 unsigned ArgRegBegin
= ARM::R4
;
4613 for (const CCValAssign
&VA
: ArgLocs
) {
4614 if (CCInfo
.getInRegsParamsProcessed() >= CCInfo
.getInRegsParamsCount())
4617 unsigned Index
= VA
.getValNo();
4618 ISD::ArgFlagsTy Flags
= Ins
[Index
].Flags
;
4619 if (!Flags
.isByVal())
4622 assert(VA
.isMemLoc() && "unexpected byval pointer in reg");
4623 unsigned RBegin
, REnd
;
4624 CCInfo
.getInRegsParamInfo(CCInfo
.getInRegsParamsProcessed(), RBegin
, REnd
);
4625 ArgRegBegin
= std::min(ArgRegBegin
, RBegin
);
4627 CCInfo
.nextInRegsParam();
4629 CCInfo
.rewindByValRegsInfo();
4631 int lastInsIndex
= -1;
4632 if (isVarArg
&& MFI
.hasVAStart()) {
4633 unsigned RegIdx
= CCInfo
.getFirstUnallocated(GPRArgRegs
);
4634 if (RegIdx
!= std::size(GPRArgRegs
))
4635 ArgRegBegin
= std::min(ArgRegBegin
, (unsigned)GPRArgRegs
[RegIdx
]);
4638 unsigned TotalArgRegsSaveSize
= 4 * (ARM::R4
- ArgRegBegin
);
4639 AFI
->setArgRegsSaveSize(TotalArgRegsSaveSize
);
4640 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
4642 for (unsigned i
= 0, e
= ArgLocs
.size(); i
!= e
; ++i
) {
4643 CCValAssign
&VA
= ArgLocs
[i
];
4644 if (Ins
[VA
.getValNo()].isOrigArg()) {
4645 std::advance(CurOrigArg
,
4646 Ins
[VA
.getValNo()].getOrigArgIndex() - CurArgIdx
);
4647 CurArgIdx
= Ins
[VA
.getValNo()].getOrigArgIndex();
4649 // Arguments stored in registers.
4650 if (VA
.isRegLoc()) {
4651 EVT RegVT
= VA
.getLocVT();
4654 if (VA
.needsCustom() && VA
.getLocVT() == MVT::v2f64
) {
4655 // f64 and vector types are split up into multiple registers or
4656 // combinations of registers and stack slots.
4658 GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
4659 VA
= ArgLocs
[++i
]; // skip ahead to next loc
4661 if (VA
.isMemLoc()) {
4662 int FI
= MFI
.CreateFixedObject(8, VA
.getLocMemOffset(), true);
4663 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4664 ArgValue2
= DAG
.getLoad(
4665 MVT::f64
, dl
, Chain
, FIN
,
4666 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
4668 ArgValue2
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
4670 ArgValue
= DAG
.getNode(ISD::UNDEF
, dl
, MVT::v2f64
);
4671 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, ArgValue
,
4672 ArgValue1
, DAG
.getIntPtrConstant(0, dl
));
4673 ArgValue
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, ArgValue
,
4674 ArgValue2
, DAG
.getIntPtrConstant(1, dl
));
4675 } else if (VA
.needsCustom() && VA
.getLocVT() == MVT::f64
) {
4676 ArgValue
= GetF64FormalArgument(VA
, ArgLocs
[++i
], Chain
, DAG
, dl
);
4678 const TargetRegisterClass
*RC
;
4680 if (RegVT
== MVT::f16
|| RegVT
== MVT::bf16
)
4681 RC
= &ARM::HPRRegClass
;
4682 else if (RegVT
== MVT::f32
)
4683 RC
= &ARM::SPRRegClass
;
4684 else if (RegVT
== MVT::f64
|| RegVT
== MVT::v4f16
||
4685 RegVT
== MVT::v4bf16
)
4686 RC
= &ARM::DPRRegClass
;
4687 else if (RegVT
== MVT::v2f64
|| RegVT
== MVT::v8f16
||
4688 RegVT
== MVT::v8bf16
)
4689 RC
= &ARM::QPRRegClass
;
4690 else if (RegVT
== MVT::i32
)
4691 RC
= AFI
->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4692 : &ARM::GPRRegClass
;
4694 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4696 // Transform the arguments in physical registers into virtual ones.
4697 Register Reg
= MF
.addLiveIn(VA
.getLocReg(), RC
);
4698 ArgValue
= DAG
.getCopyFromReg(Chain
, dl
, Reg
, RegVT
);
4700 // If this value is passed in r0 and has the returned attribute (e.g.
4701 // C++ 'structors), record this fact for later use.
4702 if (VA
.getLocReg() == ARM::R0
&& Ins
[VA
.getValNo()].Flags
.isReturned()) {
4703 AFI
->setPreservesR0();
4707 // If this is an 8 or 16-bit value, it is really passed promoted
4708 // to 32 bits. Insert an assert[sz]ext to capture this, then
4709 // truncate to the right size.
4710 switch (VA
.getLocInfo()) {
4711 default: llvm_unreachable("Unknown loc info!");
4712 case CCValAssign::Full
: break;
4713 case CCValAssign::BCvt
:
4714 ArgValue
= DAG
.getNode(ISD::BITCAST
, dl
, VA
.getValVT(), ArgValue
);
4718 // f16 arguments have their size extended to 4 bytes and passed as if they
4719 // had been copied to the LSBs of a 32-bit register.
4720 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4721 if (VA
.needsCustom() &&
4722 (VA
.getValVT() == MVT::f16
|| VA
.getValVT() == MVT::bf16
))
4723 ArgValue
= MoveToHPR(dl
, DAG
, VA
.getLocVT(), VA
.getValVT(), ArgValue
);
4725 // On CMSE Entry Functions, formal integer arguments whose bitwidth is
4726 // less than 32 bits must be sign- or zero-extended in the callee for
4727 // security reasons. Although the ABI mandates an extension done by the
4728 // caller, the latter cannot be trusted to follow the rules of the ABI.
4729 const ISD::InputArg
&Arg
= Ins
[VA
.getValNo()];
4730 if (AFI
->isCmseNSEntryFunction() && Arg
.ArgVT
.isScalarInteger() &&
4731 RegVT
.isScalarInteger() && Arg
.ArgVT
.bitsLT(MVT::i32
))
4732 ArgValue
= handleCMSEValue(ArgValue
, Arg
, DAG
, dl
);
4734 InVals
.push_back(ArgValue
);
4735 } else { // VA.isRegLoc()
4736 // Only arguments passed on the stack should make it here.
4737 assert(VA
.isMemLoc());
4738 assert(VA
.getValVT() != MVT::i64
&& "i64 should already be lowered");
4740 int index
= VA
.getValNo();
4742 // Some Ins[] entries become multiple ArgLoc[] entries.
4743 // Process them only once.
4744 if (index
!= lastInsIndex
)
4746 ISD::ArgFlagsTy Flags
= Ins
[index
].Flags
;
4747 // FIXME: For now, all byval parameter objects are marked mutable.
4748 // This can be changed with more analysis.
4749 // In case of tail call optimization mark all arguments mutable.
4750 // Since they could be overwritten by lowering of arguments in case of
4752 if (Flags
.isByVal()) {
4753 assert(Ins
[index
].isOrigArg() &&
4754 "Byval arguments cannot be implicit");
4755 unsigned CurByValIndex
= CCInfo
.getInRegsParamsProcessed();
4757 int FrameIndex
= StoreByValRegs(
4758 CCInfo
, DAG
, dl
, Chain
, &*CurOrigArg
, CurByValIndex
,
4759 VA
.getLocMemOffset(), Flags
.getByValSize());
4760 InVals
.push_back(DAG
.getFrameIndex(FrameIndex
, PtrVT
));
4761 CCInfo
.nextInRegsParam();
4763 unsigned FIOffset
= VA
.getLocMemOffset();
4764 int FI
= MFI
.CreateFixedObject(VA
.getLocVT().getSizeInBits()/8,
4767 // Create load nodes to retrieve arguments from the stack.
4768 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
4769 InVals
.push_back(DAG
.getLoad(VA
.getValVT(), dl
, Chain
, FIN
,
4770 MachinePointerInfo::getFixedStack(
4771 DAG
.getMachineFunction(), FI
)));
4773 lastInsIndex
= index
;
4779 if (isVarArg
&& MFI
.hasVAStart()) {
4780 VarArgStyleRegisters(CCInfo
, DAG
, dl
, Chain
, CCInfo
.getStackSize(),
4781 TotalArgRegsSaveSize
);
4782 if (AFI
->isCmseNSEntryFunction()) {
4783 DiagnosticInfoUnsupported
Diag(
4784 DAG
.getMachineFunction().getFunction(),
4785 "secure entry function must not be variadic", dl
.getDebugLoc());
4786 DAG
.getContext()->diagnose(Diag
);
4790 unsigned StackArgSize
= CCInfo
.getStackSize();
4791 bool TailCallOpt
= MF
.getTarget().Options
.GuaranteedTailCallOpt
;
4792 if (canGuaranteeTCO(CallConv
, TailCallOpt
)) {
4793 // The only way to guarantee a tail call is if the callee restores its
4794 // argument area, but it must also keep the stack aligned when doing so.
4795 MaybeAlign StackAlign
= DAG
.getDataLayout().getStackAlignment();
4796 assert(StackAlign
&& "data layout string is missing stack alignment");
4797 StackArgSize
= alignTo(StackArgSize
, *StackAlign
);
4799 AFI
->setArgumentStackToRestore(StackArgSize
);
4801 AFI
->setArgumentStackSize(StackArgSize
);
4803 if (CCInfo
.getStackSize() > 0 && AFI
->isCmseNSEntryFunction()) {
4804 DiagnosticInfoUnsupported
Diag(
4805 DAG
.getMachineFunction().getFunction(),
4806 "secure entry function requires arguments on stack", dl
.getDebugLoc());
4807 DAG
.getContext()->diagnose(Diag
);
4813 /// isFloatingPointZero - Return true if this is +0.0.
4814 static bool isFloatingPointZero(SDValue Op
) {
4815 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
4816 return CFP
->getValueAPF().isPosZero();
4817 else if (ISD::isEXTLoad(Op
.getNode()) || ISD::isNON_EXTLoad(Op
.getNode())) {
4818 // Maybe this has already been legalized into the constant pool?
4819 if (Op
.getOperand(1).getOpcode() == ARMISD::Wrapper
) {
4820 SDValue WrapperOp
= Op
.getOperand(1).getOperand(0);
4821 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(WrapperOp
))
4822 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
4823 return CFP
->getValueAPF().isPosZero();
4825 } else if (Op
->getOpcode() == ISD::BITCAST
&&
4826 Op
->getValueType(0) == MVT::f64
) {
4827 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4828 // created by LowerConstantFP().
4829 SDValue BitcastOp
= Op
->getOperand(0);
4830 if (BitcastOp
->getOpcode() == ARMISD::VMOVIMM
&&
4831 isNullConstant(BitcastOp
->getOperand(0)))
4837 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4838 /// the given operands.
4839 SDValue
ARMTargetLowering::getARMCmp(SDValue LHS
, SDValue RHS
, ISD::CondCode CC
,
4840 SDValue
&ARMcc
, SelectionDAG
&DAG
,
4841 const SDLoc
&dl
) const {
4842 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
.getNode())) {
4843 unsigned C
= RHSC
->getZExtValue();
4844 if (!isLegalICmpImmediate((int32_t)C
)) {
4845 // Constant does not fit, try adjusting it by one.
4850 if (C
!= 0x80000000 && isLegalICmpImmediate(C
-1)) {
4851 CC
= (CC
== ISD::SETLT
) ? ISD::SETLE
: ISD::SETGT
;
4852 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4857 if (C
!= 0 && isLegalICmpImmediate(C
-1)) {
4858 CC
= (CC
== ISD::SETULT
) ? ISD::SETULE
: ISD::SETUGT
;
4859 RHS
= DAG
.getConstant(C
- 1, dl
, MVT::i32
);
4864 if (C
!= 0x7fffffff && isLegalICmpImmediate(C
+1)) {
4865 CC
= (CC
== ISD::SETLE
) ? ISD::SETLT
: ISD::SETGE
;
4866 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4871 if (C
!= 0xffffffff && isLegalICmpImmediate(C
+1)) {
4872 CC
= (CC
== ISD::SETULE
) ? ISD::SETULT
: ISD::SETUGE
;
4873 RHS
= DAG
.getConstant(C
+ 1, dl
, MVT::i32
);
4878 } else if ((ARM_AM::getShiftOpcForNode(LHS
.getOpcode()) != ARM_AM::no_shift
) &&
4879 (ARM_AM::getShiftOpcForNode(RHS
.getOpcode()) == ARM_AM::no_shift
)) {
4880 // In ARM and Thumb-2, the compare instructions can shift their second
4882 CC
= ISD::getSetCCSwappedOperands(CC
);
4883 std::swap(LHS
, RHS
);
4886 // Thumb1 has very limited immediate modes, so turning an "and" into a
4887 // shift can save multiple instructions.
4889 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4890 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4891 // own. If it's the operand to an unsigned comparison with an immediate,
4892 // we can eliminate one of the shifts: we transform
4893 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4895 // We avoid transforming cases which aren't profitable due to encoding
4898 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4899 // would not; in that case, we're essentially trading one immediate load for
4901 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4902 // 3. C2 is zero; we have other code for this special case.
4904 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4905 // instruction, since the AND is always one instruction anyway, but we could
4906 // use narrow instructions in some cases.
4907 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::AND
&&
4908 LHS
->hasOneUse() && isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4909 LHS
.getValueType() == MVT::i32
&& isa
<ConstantSDNode
>(RHS
) &&
4910 !isSignedIntSetCC(CC
)) {
4911 unsigned Mask
= LHS
.getConstantOperandVal(1);
4912 auto *RHSC
= cast
<ConstantSDNode
>(RHS
.getNode());
4913 uint64_t RHSV
= RHSC
->getZExtValue();
4914 if (isMask_32(Mask
) && (RHSV
& ~Mask
) == 0 && Mask
!= 255 && Mask
!= 65535) {
4915 unsigned ShiftBits
= llvm::countl_zero(Mask
);
4916 if (RHSV
&& (RHSV
> 255 || (RHSV
<< ShiftBits
) <= 255)) {
4917 SDValue ShiftAmt
= DAG
.getConstant(ShiftBits
, dl
, MVT::i32
);
4918 LHS
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, LHS
.getOperand(0), ShiftAmt
);
4919 RHS
= DAG
.getConstant(RHSV
<< ShiftBits
, dl
, MVT::i32
);
4924 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4925 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4927 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4928 // some tweaks to the heuristics for the previous and->shift transform.
4929 // FIXME: Optimize cases where the LHS isn't a shift.
4930 if (Subtarget
->isThumb1Only() && LHS
->getOpcode() == ISD::SHL
&&
4931 isa
<ConstantSDNode
>(RHS
) && RHS
->getAsZExtVal() == 0x80000000U
&&
4932 CC
== ISD::SETUGT
&& isa
<ConstantSDNode
>(LHS
.getOperand(1)) &&
4933 LHS
.getConstantOperandVal(1) < 31) {
4934 unsigned ShiftAmt
= LHS
.getConstantOperandVal(1) + 1;
4936 DAG
.getNode(ARMISD::LSLS
, dl
, DAG
.getVTList(MVT::i32
, FlagsVT
),
4937 LHS
.getOperand(0), DAG
.getConstant(ShiftAmt
, dl
, MVT::i32
));
4938 ARMcc
= DAG
.getConstant(ARMCC::HI
, dl
, MVT::i32
);
4939 return Shift
.getValue(1);
4942 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
4944 // If the RHS is a constant zero then the V (overflow) flag will never be
4945 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4946 // simpler for other passes (like the peephole optimiser) to deal with.
4947 if (isNullConstant(RHS
)) {
4951 CondCode
= ARMCC::PL
;
4954 CondCode
= ARMCC::MI
;
4959 ARMISD::NodeType CompareType
;
4962 CompareType
= ARMISD::CMP
;
4967 CompareType
= ARMISD::CMPZ
;
4970 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
4971 return DAG
.getNode(CompareType
, dl
, FlagsVT
, LHS
, RHS
);
4974 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4975 SDValue
ARMTargetLowering::getVFPCmp(SDValue LHS
, SDValue RHS
,
4976 SelectionDAG
&DAG
, const SDLoc
&dl
,
4977 bool Signaling
) const {
4978 assert(Subtarget
->hasFP64() || RHS
.getValueType() != MVT::f64
);
4980 if (!isFloatingPointZero(RHS
))
4981 Flags
= DAG
.getNode(Signaling
? ARMISD::CMPFPE
: ARMISD::CMPFP
, dl
, FlagsVT
,
4984 Flags
= DAG
.getNode(Signaling
? ARMISD::CMPFPEw0
: ARMISD::CMPFPw0
, dl
,
4986 return DAG
.getNode(ARMISD::FMSTAT
, dl
, FlagsVT
, Flags
);
4989 // This function returns three things: the arithmetic computation itself
4990 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4991 // comparison and the condition code define the case in which the arithmetic
4992 // computation *does not* overflow.
4993 std::pair
<SDValue
, SDValue
>
4994 ARMTargetLowering::getARMXALUOOp(SDValue Op
, SelectionDAG
&DAG
,
4995 SDValue
&ARMcc
) const {
4996 assert(Op
.getValueType() == MVT::i32
&& "Unsupported value type");
4998 SDValue Value
, OverflowCmp
;
4999 SDValue LHS
= Op
.getOperand(0);
5000 SDValue RHS
= Op
.getOperand(1);
5003 // FIXME: We are currently always generating CMPs because we don't support
5004 // generating CMN through the backend. This is not as good as the natural
5005 // CMP case because it causes a register dependency and cannot be folded
5008 switch (Op
.getOpcode()) {
5010 llvm_unreachable("Unknown overflow instruction!");
5012 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
5013 Value
= DAG
.getNode(ISD::ADD
, dl
, Op
.getValueType(), LHS
, RHS
);
5014 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, FlagsVT
, Value
, LHS
);
5017 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
5018 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
5019 // We do not use it in the USUBO case as Value may not be used.
5020 Value
= DAG
.getNode(ARMISD::ADDC
, dl
,
5021 DAG
.getVTList(Op
.getValueType(), MVT::i32
), LHS
, RHS
)
5023 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, FlagsVT
, Value
, LHS
);
5026 ARMcc
= DAG
.getConstant(ARMCC::VC
, dl
, MVT::i32
);
5027 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
5028 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, FlagsVT
, LHS
, RHS
);
5031 ARMcc
= DAG
.getConstant(ARMCC::HS
, dl
, MVT::i32
);
5032 Value
= DAG
.getNode(ISD::SUB
, dl
, Op
.getValueType(), LHS
, RHS
);
5033 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, FlagsVT
, LHS
, RHS
);
5036 // We generate a UMUL_LOHI and then check if the high word is 0.
5037 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
5038 Value
= DAG
.getNode(ISD::UMUL_LOHI
, dl
,
5039 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
5041 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, FlagsVT
, Value
.getValue(1),
5042 DAG
.getConstant(0, dl
, MVT::i32
));
5043 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
5046 // We generate a SMUL_LOHI and then check if all the bits of the high word
5047 // are the same as the sign bit of the low word.
5048 ARMcc
= DAG
.getConstant(ARMCC::EQ
, dl
, MVT::i32
);
5049 Value
= DAG
.getNode(ISD::SMUL_LOHI
, dl
,
5050 DAG
.getVTList(Op
.getValueType(), Op
.getValueType()),
5052 OverflowCmp
= DAG
.getNode(ARMISD::CMP
, dl
, FlagsVT
, Value
.getValue(1),
5053 DAG
.getNode(ISD::SRA
, dl
, Op
.getValueType(),
5055 DAG
.getConstant(31, dl
, MVT::i32
)));
5056 Value
= Value
.getValue(0); // We only want the low 32 bits for the result.
5060 return std::make_pair(Value
, OverflowCmp
);
5064 ARMTargetLowering::LowerSignedALUO(SDValue Op
, SelectionDAG
&DAG
) const {
5065 // Let legalize expand this if it isn't a legal type yet.
5066 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
5069 SDValue Value
, OverflowCmp
;
5071 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Op
, DAG
, ARMcc
);
5073 // We use 0 and 1 as false and true values.
5074 SDValue TVal
= DAG
.getConstant(1, dl
, MVT::i32
);
5075 SDValue FVal
= DAG
.getConstant(0, dl
, MVT::i32
);
5076 EVT VT
= Op
.getValueType();
5079 DAG
.getNode(ARMISD::CMOV
, dl
, VT
, TVal
, FVal
, ARMcc
, OverflowCmp
);
5081 SDVTList VTs
= DAG
.getVTList(Op
.getValueType(), MVT::i32
);
5082 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
5085 static SDValue
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry
,
5086 SelectionDAG
&DAG
) {
5087 SDLoc
DL(BoolCarry
);
5088 EVT CarryVT
= BoolCarry
.getValueType();
5090 // This converts the boolean value carry into the carry flag by doing
5091 // ARMISD::SUBC Carry, 1
5092 SDValue Carry
= DAG
.getNode(ARMISD::SUBC
, DL
,
5093 DAG
.getVTList(CarryVT
, MVT::i32
),
5094 BoolCarry
, DAG
.getConstant(1, DL
, CarryVT
));
5095 return Carry
.getValue(1);
5098 static SDValue
ConvertCarryFlagToBooleanCarry(SDValue Flags
, EVT VT
,
5099 SelectionDAG
&DAG
) {
5102 // Now convert the carry flag into a boolean carry. We do this
5103 // using ARMISD:ADDE 0, 0, Carry
5104 return DAG
.getNode(ARMISD::ADDE
, DL
, DAG
.getVTList(VT
, MVT::i32
),
5105 DAG
.getConstant(0, DL
, MVT::i32
),
5106 DAG
.getConstant(0, DL
, MVT::i32
), Flags
);
5109 SDValue
ARMTargetLowering::LowerUnsignedALUO(SDValue Op
,
5110 SelectionDAG
&DAG
) const {
5111 // Let legalize expand this if it isn't a legal type yet.
5112 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Op
.getValueType()))
5115 SDValue LHS
= Op
.getOperand(0);
5116 SDValue RHS
= Op
.getOperand(1);
5119 EVT VT
= Op
.getValueType();
5120 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
5123 switch (Op
.getOpcode()) {
5125 llvm_unreachable("Unknown overflow instruction!");
5127 Value
= DAG
.getNode(ARMISD::ADDC
, dl
, VTs
, LHS
, RHS
);
5128 // Convert the carry flag into a boolean value.
5129 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
5132 Value
= DAG
.getNode(ARMISD::SUBC
, dl
, VTs
, LHS
, RHS
);
5133 // Convert the carry flag into a boolean value.
5134 Overflow
= ConvertCarryFlagToBooleanCarry(Value
.getValue(1), VT
, DAG
);
5135 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
5136 // value. So compute 1 - C.
5137 Overflow
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
5138 DAG
.getConstant(1, dl
, MVT::i32
), Overflow
);
5143 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, VTs
, Value
, Overflow
);
5146 static SDValue
LowerADDSUBSAT(SDValue Op
, SelectionDAG
&DAG
,
5147 const ARMSubtarget
*Subtarget
) {
5148 EVT VT
= Op
.getValueType();
5149 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP() || Subtarget
->isThumb1Only())
5155 switch (VT
.getSimpleVT().SimpleTy
) {
5159 switch (Op
->getOpcode()) {
5161 NewOpcode
= ARMISD::UQADD8b
;
5164 NewOpcode
= ARMISD::QADD8b
;
5167 NewOpcode
= ARMISD::UQSUB8b
;
5170 NewOpcode
= ARMISD::QSUB8b
;
5175 switch (Op
->getOpcode()) {
5177 NewOpcode
= ARMISD::UQADD16b
;
5180 NewOpcode
= ARMISD::QADD16b
;
5183 NewOpcode
= ARMISD::UQSUB16b
;
5186 NewOpcode
= ARMISD::QSUB16b
;
5194 DAG
.getNode(NewOpcode
, dl
, MVT::i32
,
5195 DAG
.getSExtOrTrunc(Op
->getOperand(0), dl
, MVT::i32
),
5196 DAG
.getSExtOrTrunc(Op
->getOperand(1), dl
, MVT::i32
));
5197 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Add
);
5200 SDValue
ARMTargetLowering::LowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const {
5201 SDValue Cond
= Op
.getOperand(0);
5202 SDValue SelectTrue
= Op
.getOperand(1);
5203 SDValue SelectFalse
= Op
.getOperand(2);
5205 unsigned Opc
= Cond
.getOpcode();
5207 if (Cond
.getResNo() == 1 &&
5208 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5209 Opc
== ISD::USUBO
)) {
5210 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5213 SDValue Value
, OverflowCmp
;
5215 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5216 EVT VT
= Op
.getValueType();
5218 return getCMOV(dl
, VT
, SelectTrue
, SelectFalse
, ARMcc
, OverflowCmp
, DAG
);
5223 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
5224 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
5226 if (Cond
.getOpcode() == ARMISD::CMOV
&& Cond
.hasOneUse()) {
5227 const ConstantSDNode
*CMOVTrue
=
5228 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(0));
5229 const ConstantSDNode
*CMOVFalse
=
5230 dyn_cast
<ConstantSDNode
>(Cond
.getOperand(1));
5232 if (CMOVTrue
&& CMOVFalse
) {
5233 unsigned CMOVTrueVal
= CMOVTrue
->getZExtValue();
5234 unsigned CMOVFalseVal
= CMOVFalse
->getZExtValue();
5238 if (CMOVTrueVal
== 1 && CMOVFalseVal
== 0) {
5240 False
= SelectFalse
;
5241 } else if (CMOVTrueVal
== 0 && CMOVFalseVal
== 1) {
5246 if (True
.getNode() && False
.getNode())
5247 return getCMOV(dl
, Op
.getValueType(), True
, False
, Cond
.getOperand(2),
5248 Cond
.getOperand(3), DAG
);
5252 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
5253 // undefined bits before doing a full-word comparison with zero.
5254 Cond
= DAG
.getNode(ISD::AND
, dl
, Cond
.getValueType(), Cond
,
5255 DAG
.getConstant(1, dl
, Cond
.getValueType()));
5257 return DAG
.getSelectCC(dl
, Cond
,
5258 DAG
.getConstant(0, dl
, Cond
.getValueType()),
5259 SelectTrue
, SelectFalse
, ISD::SETNE
);
5262 static void checkVSELConstraints(ISD::CondCode CC
, ARMCC::CondCodes
&CondCode
,
5263 bool &swpCmpOps
, bool &swpVselOps
) {
5264 // Start by selecting the GE condition code for opcodes that return true for
5266 if (CC
== ISD::SETUGE
|| CC
== ISD::SETOGE
|| CC
== ISD::SETOLE
||
5267 CC
== ISD::SETULE
|| CC
== ISD::SETGE
|| CC
== ISD::SETLE
)
5268 CondCode
= ARMCC::GE
;
5270 // and GT for opcodes that return false for 'equality'.
5271 else if (CC
== ISD::SETUGT
|| CC
== ISD::SETOGT
|| CC
== ISD::SETOLT
||
5272 CC
== ISD::SETULT
|| CC
== ISD::SETGT
|| CC
== ISD::SETLT
)
5273 CondCode
= ARMCC::GT
;
5275 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
5276 // to swap the compare operands.
5277 if (CC
== ISD::SETOLE
|| CC
== ISD::SETULE
|| CC
== ISD::SETOLT
||
5278 CC
== ISD::SETULT
|| CC
== ISD::SETLE
|| CC
== ISD::SETLT
)
5281 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
5282 // If we have an unordered opcode, we need to swap the operands to the VSEL
5283 // instruction (effectively negating the condition).
5285 // This also has the effect of swapping which one of 'less' or 'greater'
5286 // returns true, so we also swap the compare operands. It also switches
5287 // whether we return true for 'equality', so we compensate by picking the
5288 // opposite condition code to our original choice.
5289 if (CC
== ISD::SETULE
|| CC
== ISD::SETULT
|| CC
== ISD::SETUGE
||
5290 CC
== ISD::SETUGT
) {
5291 swpCmpOps
= !swpCmpOps
;
5292 swpVselOps
= !swpVselOps
;
5293 CondCode
= CondCode
== ARMCC::GT
? ARMCC::GE
: ARMCC::GT
;
5296 // 'ordered' is 'anything but unordered', so use the VS condition code and
5297 // swap the VSEL operands.
5298 if (CC
== ISD::SETO
) {
5299 CondCode
= ARMCC::VS
;
5303 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
5304 // code and swap the VSEL operands. Also do this if we don't care about the
5306 if (CC
== ISD::SETUNE
|| CC
== ISD::SETNE
) {
5307 CondCode
= ARMCC::EQ
;
5312 SDValue
ARMTargetLowering::getCMOV(const SDLoc
&dl
, EVT VT
, SDValue FalseVal
,
5313 SDValue TrueVal
, SDValue ARMcc
,
5314 SDValue Flags
, SelectionDAG
&DAG
) const {
5315 if (!Subtarget
->hasFP64() && VT
== MVT::f64
) {
5316 FalseVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5317 DAG
.getVTList(MVT::i32
, MVT::i32
), FalseVal
);
5318 TrueVal
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
5319 DAG
.getVTList(MVT::i32
, MVT::i32
), TrueVal
);
5321 SDValue TrueLow
= TrueVal
.getValue(0);
5322 SDValue TrueHigh
= TrueVal
.getValue(1);
5323 SDValue FalseLow
= FalseVal
.getValue(0);
5324 SDValue FalseHigh
= FalseVal
.getValue(1);
5326 SDValue Low
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseLow
, TrueLow
,
5328 SDValue High
= DAG
.getNode(ARMISD::CMOV
, dl
, MVT::i32
, FalseHigh
, TrueHigh
,
5331 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Low
, High
);
5333 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
, ARMcc
, Flags
);
5336 static bool isGTorGE(ISD::CondCode CC
) {
5337 return CC
== ISD::SETGT
|| CC
== ISD::SETGE
;
5340 static bool isLTorLE(ISD::CondCode CC
) {
5341 return CC
== ISD::SETLT
|| CC
== ISD::SETLE
;
5344 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5345 // All of these conditions (and their <= and >= counterparts) will do:
5350 static bool isLowerSaturate(const SDValue LHS
, const SDValue RHS
,
5351 const SDValue TrueVal
, const SDValue FalseVal
,
5352 const ISD::CondCode CC
, const SDValue K
) {
5353 return (isGTorGE(CC
) &&
5354 ((K
== LHS
&& K
== TrueVal
) || (K
== RHS
&& K
== FalseVal
))) ||
5356 ((K
== RHS
&& K
== TrueVal
) || (K
== LHS
&& K
== FalseVal
)));
5359 // Check if two chained conditionals could be converted into SSAT or USAT.
5361 // SSAT can replace a set of two conditional selectors that bound a number to an
5362 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5364 // x < -k ? -k : (x > k ? k : x)
5365 // x < -k ? -k : (x < k ? x : k)
5366 // x > -k ? (x > k ? k : x) : -k
5367 // x < k ? (x < -k ? -k : x) : k
5370 // LLVM canonicalizes these to either a min(max()) or a max(min())
5371 // pattern. This function tries to match one of these and will return a SSAT
5372 // node if successful.
5374 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5376 static SDValue
LowerSaturatingConditional(SDValue Op
, SelectionDAG
&DAG
) {
5377 EVT VT
= Op
.getValueType();
5378 SDValue V1
= Op
.getOperand(0);
5379 SDValue K1
= Op
.getOperand(1);
5380 SDValue TrueVal1
= Op
.getOperand(2);
5381 SDValue FalseVal1
= Op
.getOperand(3);
5382 ISD::CondCode CC1
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
5384 const SDValue Op2
= isa
<ConstantSDNode
>(TrueVal1
) ? FalseVal1
: TrueVal1
;
5385 if (Op2
.getOpcode() != ISD::SELECT_CC
)
5388 SDValue V2
= Op2
.getOperand(0);
5389 SDValue K2
= Op2
.getOperand(1);
5390 SDValue TrueVal2
= Op2
.getOperand(2);
5391 SDValue FalseVal2
= Op2
.getOperand(3);
5392 ISD::CondCode CC2
= cast
<CondCodeSDNode
>(Op2
.getOperand(4))->get();
5397 // Check that the registers and the constants match a max(min()) or min(max())
5399 if (V1Tmp
!= TrueVal1
|| V2Tmp
!= TrueVal2
|| K1
!= FalseVal1
||
5401 !((isGTorGE(CC1
) && isLTorLE(CC2
)) || (isLTorLE(CC1
) && isGTorGE(CC2
))))
5404 // Check that the constant in the lower-bound check is
5405 // the opposite of the constant in the upper-bound check
5406 // in 1's complement.
5407 if (!isa
<ConstantSDNode
>(K1
) || !isa
<ConstantSDNode
>(K2
))
5410 int64_t Val1
= cast
<ConstantSDNode
>(K1
)->getSExtValue();
5411 int64_t Val2
= cast
<ConstantSDNode
>(K2
)->getSExtValue();
5412 int64_t PosVal
= std::max(Val1
, Val2
);
5413 int64_t NegVal
= std::min(Val1
, Val2
);
5415 if (!((Val1
> Val2
&& isLTorLE(CC1
)) || (Val1
< Val2
&& isLTorLE(CC2
))) ||
5416 !isPowerOf2_64(PosVal
+ 1))
5419 // Handle the difference between USAT (unsigned) and SSAT (signed)
5421 // At this point, PosVal is guaranteed to be positive
5422 uint64_t K
= PosVal
;
5425 return DAG
.getNode(ARMISD::SSAT
, dl
, VT
, V2Tmp
,
5426 DAG
.getConstant(llvm::countr_one(K
), dl
, VT
));
5428 return DAG
.getNode(ARMISD::USAT
, dl
, VT
, V2Tmp
,
5429 DAG
.getConstant(llvm::countr_one(K
), dl
, VT
));
5434 // Check if a condition of the type x < k ? k : x can be converted into a
5435 // bit operation instead of conditional moves.
5436 // Currently this is allowed given:
5437 // - The conditions and values match up
5438 // - k is 0 or -1 (all ones)
5439 // This function will not check the last condition, thats up to the caller
5440 // It returns true if the transformation can be made, and in such case
5441 // returns x in V, and k in SatK.
5442 static bool isLowerSaturatingConditional(const SDValue
&Op
, SDValue
&V
,
5445 SDValue LHS
= Op
.getOperand(0);
5446 SDValue RHS
= Op
.getOperand(1);
5447 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
5448 SDValue TrueVal
= Op
.getOperand(2);
5449 SDValue FalseVal
= Op
.getOperand(3);
5451 SDValue
*K
= isa
<ConstantSDNode
>(LHS
) ? &LHS
: isa
<ConstantSDNode
>(RHS
)
5455 // No constant operation in comparison, early out
5459 SDValue KTmp
= isa
<ConstantSDNode
>(TrueVal
) ? TrueVal
: FalseVal
;
5460 V
= (KTmp
== TrueVal
) ? FalseVal
: TrueVal
;
5461 SDValue VTmp
= (K
&& *K
== LHS
) ? RHS
: LHS
;
5463 // If the constant on left and right side, or variable on left and right,
5464 // does not match, early out
5465 if (*K
!= KTmp
|| V
!= VTmp
)
5468 if (isLowerSaturate(LHS
, RHS
, TrueVal
, FalseVal
, CC
, *K
)) {
5476 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT
) const {
5478 return !Subtarget
->hasVFP2Base();
5480 return !Subtarget
->hasFP64();
5482 return !Subtarget
->hasFullFP16();
5486 SDValue
ARMTargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5487 EVT VT
= Op
.getValueType();
5490 // Try to convert two saturating conditional selects into a single SSAT
5491 if ((!Subtarget
->isThumb() && Subtarget
->hasV6Ops()) || Subtarget
->isThumb2())
5492 if (SDValue SatValue
= LowerSaturatingConditional(Op
, DAG
))
5495 // Try to convert expressions of the form x < k ? k : x (and similar forms)
5496 // into more efficient bit operations, which is possible when k is 0 or -1
5497 // On ARM and Thumb-2 which have flexible operand 2 this will result in
5498 // single instructions. On Thumb the shift and the bit operation will be two
5500 // Only allow this transformation on full-width (32-bit) operations
5501 SDValue LowerSatConstant
;
5503 if (VT
== MVT::i32
&&
5504 isLowerSaturatingConditional(Op
, SatValue
, LowerSatConstant
)) {
5505 SDValue ShiftV
= DAG
.getNode(ISD::SRA
, dl
, VT
, SatValue
,
5506 DAG
.getConstant(31, dl
, VT
));
5507 if (isNullConstant(LowerSatConstant
)) {
5508 SDValue NotShiftV
= DAG
.getNode(ISD::XOR
, dl
, VT
, ShiftV
,
5509 DAG
.getAllOnesConstant(dl
, VT
));
5510 return DAG
.getNode(ISD::AND
, dl
, VT
, SatValue
, NotShiftV
);
5511 } else if (isAllOnesConstant(LowerSatConstant
))
5512 return DAG
.getNode(ISD::OR
, dl
, VT
, SatValue
, ShiftV
);
5515 SDValue LHS
= Op
.getOperand(0);
5516 SDValue RHS
= Op
.getOperand(1);
5517 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
5518 SDValue TrueVal
= Op
.getOperand(2);
5519 SDValue FalseVal
= Op
.getOperand(3);
5520 ConstantSDNode
*CFVal
= dyn_cast
<ConstantSDNode
>(FalseVal
);
5521 ConstantSDNode
*CTVal
= dyn_cast
<ConstantSDNode
>(TrueVal
);
5523 if (Subtarget
->hasV8_1MMainlineOps() && CFVal
&& CTVal
&&
5524 LHS
.getValueType() == MVT::i32
&& RHS
.getValueType() == MVT::i32
) {
5525 unsigned TVal
= CTVal
->getZExtValue();
5526 unsigned FVal
= CFVal
->getZExtValue();
5527 unsigned Opcode
= 0;
5529 if (TVal
== ~FVal
) {
5530 Opcode
= ARMISD::CSINV
;
5531 } else if (TVal
== ~FVal
+ 1) {
5532 Opcode
= ARMISD::CSNEG
;
5533 } else if (TVal
+ 1 == FVal
) {
5534 Opcode
= ARMISD::CSINC
;
5535 } else if (TVal
== FVal
+ 1) {
5536 Opcode
= ARMISD::CSINC
;
5537 std::swap(TrueVal
, FalseVal
);
5538 std::swap(TVal
, FVal
);
5539 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5543 // If one of the constants is cheaper than another, materialise the
5544 // cheaper one and let the csel generate the other.
5545 if (Opcode
!= ARMISD::CSINC
&&
5546 HasLowerConstantMaterializationCost(FVal
, TVal
, Subtarget
)) {
5547 std::swap(TrueVal
, FalseVal
);
5548 std::swap(TVal
, FVal
);
5549 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5552 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5553 // to get there. CSINC not is invertable like the other two (~(~a) == a,
5554 // -(-a) == a, but (a+1)+1 != a).
5555 if (FVal
== 0 && Opcode
!= ARMISD::CSINC
) {
5556 std::swap(TrueVal
, FalseVal
);
5557 std::swap(TVal
, FVal
);
5558 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5561 // Drops F's value because we can get it by inverting/negating TVal.
5565 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5566 EVT VT
= TrueVal
.getValueType();
5567 return DAG
.getNode(Opcode
, dl
, VT
, TrueVal
, FalseVal
, ARMcc
, Cmp
);
5571 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5572 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5573 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5575 // If softenSetCCOperands only returned one value, we should compare it to
5577 if (!RHS
.getNode()) {
5578 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5583 if (LHS
.getValueType() == MVT::i32
) {
5584 // Try to generate VSEL on ARMv8.
5585 // The VSEL instruction can't use all the usual ARM condition
5586 // codes: it only has two bits to select the condition code, so it's
5587 // constrained to use only GE, GT, VS and EQ.
5589 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5590 // swap the operands of the previous compare instruction (effectively
5591 // inverting the compare condition, swapping 'less' and 'greater') and
5592 // sometimes need to swap the operands to the VSEL (which inverts the
5593 // condition in the sense of firing whenever the previous condition didn't)
5594 if (Subtarget
->hasFPARMv8Base() && (TrueVal
.getValueType() == MVT::f16
||
5595 TrueVal
.getValueType() == MVT::f32
||
5596 TrueVal
.getValueType() == MVT::f64
)) {
5597 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5598 if (CondCode
== ARMCC::LT
|| CondCode
== ARMCC::LE
||
5599 CondCode
== ARMCC::VC
|| CondCode
== ARMCC::NE
) {
5600 CC
= ISD::getSetCCInverse(CC
, LHS
.getValueType());
5601 std::swap(TrueVal
, FalseVal
);
5606 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5607 // Choose GE over PL, which vsel does now support
5608 if (ARMcc
->getAsZExtVal() == ARMCC::PL
)
5609 ARMcc
= DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
);
5610 return getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, Cmp
, DAG
);
5613 ARMCC::CondCodes CondCode
, CondCode2
;
5614 FPCCToARMCC(CC
, CondCode
, CondCode2
);
5616 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5617 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5618 // must use VSEL (limited condition codes), due to not having conditional f16
5620 if (Subtarget
->hasFPARMv8Base() &&
5621 !(isFloatingPointZero(RHS
) && TrueVal
.getValueType() != MVT::f16
) &&
5622 (TrueVal
.getValueType() == MVT::f16
||
5623 TrueVal
.getValueType() == MVT::f32
||
5624 TrueVal
.getValueType() == MVT::f64
)) {
5625 bool swpCmpOps
= false;
5626 bool swpVselOps
= false;
5627 checkVSELConstraints(CC
, CondCode
, swpCmpOps
, swpVselOps
);
5629 if (CondCode
== ARMCC::GT
|| CondCode
== ARMCC::GE
||
5630 CondCode
== ARMCC::VS
|| CondCode
== ARMCC::EQ
) {
5632 std::swap(LHS
, RHS
);
5634 std::swap(TrueVal
, FalseVal
);
5638 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5639 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
5640 SDValue Result
= getCMOV(dl
, VT
, FalseVal
, TrueVal
, ARMcc
, Cmp
, DAG
);
5641 if (CondCode2
!= ARMCC::AL
) {
5642 SDValue ARMcc2
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5643 Result
= getCMOV(dl
, VT
, Result
, TrueVal
, ARMcc2
, Cmp
, DAG
);
5648 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5649 /// to morph to an integer compare sequence.
5650 static bool canChangeToInt(SDValue Op
, bool &SeenZero
,
5651 const ARMSubtarget
*Subtarget
) {
5652 SDNode
*N
= Op
.getNode();
5653 if (!N
->hasOneUse())
5654 // Otherwise it requires moving the value from fp to integer registers.
5656 if (!N
->getNumValues())
5658 EVT VT
= Op
.getValueType();
5659 if (VT
!= MVT::f32
&& !Subtarget
->isFPBrccSlow())
5660 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5661 // vmrs are very slow, e.g. cortex-a8.
5664 if (isFloatingPointZero(Op
)) {
5668 return ISD::isNormalLoad(N
);
5671 static SDValue
bitcastf32Toi32(SDValue Op
, SelectionDAG
&DAG
) {
5672 if (isFloatingPointZero(Op
))
5673 return DAG
.getConstant(0, SDLoc(Op
), MVT::i32
);
5675 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
))
5676 return DAG
.getLoad(MVT::i32
, SDLoc(Op
), Ld
->getChain(), Ld
->getBasePtr(),
5677 Ld
->getPointerInfo(), Ld
->getAlign(),
5678 Ld
->getMemOperand()->getFlags());
5680 llvm_unreachable("Unknown VFP cmp argument!");
5683 static void expandf64Toi32(SDValue Op
, SelectionDAG
&DAG
,
5684 SDValue
&RetVal1
, SDValue
&RetVal2
) {
5687 if (isFloatingPointZero(Op
)) {
5688 RetVal1
= DAG
.getConstant(0, dl
, MVT::i32
);
5689 RetVal2
= DAG
.getConstant(0, dl
, MVT::i32
);
5693 if (LoadSDNode
*Ld
= dyn_cast
<LoadSDNode
>(Op
)) {
5694 SDValue Ptr
= Ld
->getBasePtr();
5696 DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), Ptr
, Ld
->getPointerInfo(),
5697 Ld
->getAlign(), Ld
->getMemOperand()->getFlags());
5699 EVT PtrType
= Ptr
.getValueType();
5700 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, dl
,
5701 PtrType
, Ptr
, DAG
.getConstant(4, dl
, PtrType
));
5702 RetVal2
= DAG
.getLoad(MVT::i32
, dl
, Ld
->getChain(), NewPtr
,
5703 Ld
->getPointerInfo().getWithOffset(4),
5704 commonAlignment(Ld
->getAlign(), 4),
5705 Ld
->getMemOperand()->getFlags());
5709 llvm_unreachable("Unknown VFP cmp argument!");
5712 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5713 /// f32 and even f64 comparisons to integer ones.
5715 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op
, SelectionDAG
&DAG
) const {
5716 SDValue Chain
= Op
.getOperand(0);
5717 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5718 SDValue LHS
= Op
.getOperand(2);
5719 SDValue RHS
= Op
.getOperand(3);
5720 SDValue Dest
= Op
.getOperand(4);
5723 bool LHSSeenZero
= false;
5724 bool LHSOk
= canChangeToInt(LHS
, LHSSeenZero
, Subtarget
);
5725 bool RHSSeenZero
= false;
5726 bool RHSOk
= canChangeToInt(RHS
, RHSSeenZero
, Subtarget
);
5727 if (LHSOk
&& RHSOk
&& (LHSSeenZero
|| RHSSeenZero
)) {
5728 // If unsafe fp math optimization is enabled and there are no other uses of
5729 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5730 // to an integer comparison.
5731 if (CC
== ISD::SETOEQ
)
5733 else if (CC
== ISD::SETUNE
)
5736 SDValue Mask
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
5738 if (LHS
.getValueType() == MVT::f32
) {
5739 LHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5740 bitcastf32Toi32(LHS
, DAG
), Mask
);
5741 RHS
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
5742 bitcastf32Toi32(RHS
, DAG
), Mask
);
5743 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5744 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
,
5750 expandf64Toi32(LHS
, DAG
, LHS1
, LHS2
);
5751 expandf64Toi32(RHS
, DAG
, RHS1
, RHS2
);
5752 LHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, LHS2
, Mask
);
5753 RHS2
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RHS2
, Mask
);
5754 ARMCC::CondCodes CondCode
= IntCCToARMCC(CC
);
5755 ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5756 SDValue Ops
[] = { Chain
, ARMcc
, LHS1
, LHS2
, RHS1
, RHS2
, Dest
};
5757 return DAG
.getNode(ARMISD::BCC_i64
, dl
, MVT::Other
, Ops
);
5763 SDValue
ARMTargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
5764 SDValue Chain
= Op
.getOperand(0);
5765 SDValue Cond
= Op
.getOperand(1);
5766 SDValue Dest
= Op
.getOperand(2);
5769 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5771 unsigned Opc
= Cond
.getOpcode();
5772 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5773 !Subtarget
->isThumb1Only();
5774 if (Cond
.getResNo() == 1 &&
5775 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5776 Opc
== ISD::USUBO
|| OptimizeMul
)) {
5777 // Only lower legal XALUO ops.
5778 if (!DAG
.getTargetLoweringInfo().isTypeLegal(Cond
->getValueType(0)))
5781 // The actual operation with overflow check.
5782 SDValue Value
, OverflowCmp
;
5784 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(Cond
, DAG
, ARMcc
);
5786 // Reverse the condition code.
5787 ARMCC::CondCodes CondCode
=
5788 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5789 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5790 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5792 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
,
5799 SDValue
ARMTargetLowering::LowerBR_CC(SDValue Op
, SelectionDAG
&DAG
) const {
5800 SDValue Chain
= Op
.getOperand(0);
5801 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(1))->get();
5802 SDValue LHS
= Op
.getOperand(2);
5803 SDValue RHS
= Op
.getOperand(3);
5804 SDValue Dest
= Op
.getOperand(4);
5807 if (isUnsupportedFloatingType(LHS
.getValueType())) {
5808 DAG
.getTargetLoweringInfo().softenSetCCOperands(
5809 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
);
5811 // If softenSetCCOperands only returned one value, we should compare it to
5813 if (!RHS
.getNode()) {
5814 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
5819 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5821 unsigned Opc
= LHS
.getOpcode();
5822 bool OptimizeMul
= (Opc
== ISD::SMULO
|| Opc
== ISD::UMULO
) &&
5823 !Subtarget
->isThumb1Only();
5824 if (LHS
.getResNo() == 1 && (isOneConstant(RHS
) || isNullConstant(RHS
)) &&
5825 (Opc
== ISD::SADDO
|| Opc
== ISD::UADDO
|| Opc
== ISD::SSUBO
||
5826 Opc
== ISD::USUBO
|| OptimizeMul
) &&
5827 (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
5828 // Only lower legal XALUO ops.
5829 if (!DAG
.getTargetLoweringInfo().isTypeLegal(LHS
->getValueType(0)))
5832 // The actual operation with overflow check.
5833 SDValue Value
, OverflowCmp
;
5835 std::tie(Value
, OverflowCmp
) = getARMXALUOOp(LHS
.getValue(0), DAG
, ARMcc
);
5837 if ((CC
== ISD::SETNE
) != isOneConstant(RHS
)) {
5838 // Reverse the condition code.
5839 ARMCC::CondCodes CondCode
=
5840 (ARMCC::CondCodes
)cast
<const ConstantSDNode
>(ARMcc
)->getZExtValue();
5841 CondCode
= ARMCC::getOppositeCondition(CondCode
);
5842 ARMcc
= DAG
.getConstant(CondCode
, SDLoc(ARMcc
), MVT::i32
);
5845 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
,
5849 if (LHS
.getValueType() == MVT::i32
) {
5851 SDValue Cmp
= getARMCmp(LHS
, RHS
, CC
, ARMcc
, DAG
, dl
);
5852 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, Dest
, ARMcc
, Cmp
);
5855 if (getTargetMachine().Options
.UnsafeFPMath
&&
5856 (CC
== ISD::SETEQ
|| CC
== ISD::SETOEQ
||
5857 CC
== ISD::SETNE
|| CC
== ISD::SETUNE
)) {
5858 if (SDValue Result
= OptimizeVFPBrcond(Op
, DAG
))
5862 ARMCC::CondCodes CondCode
, CondCode2
;
5863 FPCCToARMCC(CC
, CondCode
, CondCode2
);
5865 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
5866 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
);
5867 SDValue Ops
[] = {Chain
, Dest
, ARMcc
, Cmp
};
5868 SDValue Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Ops
);
5869 if (CondCode2
!= ARMCC::AL
) {
5870 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
5871 SDValue Ops
[] = {Res
, Dest
, ARMcc
, Cmp
};
5872 Res
= DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Ops
);
5877 SDValue
ARMTargetLowering::LowerBR_JT(SDValue Op
, SelectionDAG
&DAG
) const {
5878 SDValue Chain
= Op
.getOperand(0);
5879 SDValue Table
= Op
.getOperand(1);
5880 SDValue Index
= Op
.getOperand(2);
5883 EVT PTy
= getPointerTy(DAG
.getDataLayout());
5884 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Table
);
5885 SDValue JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PTy
);
5886 Table
= DAG
.getNode(ARMISD::WrapperJT
, dl
, MVT::i32
, JTI
);
5887 Index
= DAG
.getNode(ISD::MUL
, dl
, PTy
, Index
, DAG
.getConstant(4, dl
, PTy
));
5888 SDValue Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Index
);
5889 if (Subtarget
->isThumb2() || (Subtarget
->hasV8MBaselineOps() && Subtarget
->isThumb())) {
5890 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5891 // which does another jump to the destination. This also makes it easier
5892 // to translate it to TBB / TBH later (Thumb2 only).
5893 // FIXME: This might not work if the function is extremely large.
5894 return DAG
.getNode(ARMISD::BR2_JT
, dl
, MVT::Other
, Chain
,
5895 Addr
, Op
.getOperand(2), JTI
);
5897 if (isPositionIndependent() || Subtarget
->isROPI()) {
5899 DAG
.getLoad((EVT
)MVT::i32
, dl
, Chain
, Addr
,
5900 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5901 Chain
= Addr
.getValue(1);
5902 Addr
= DAG
.getNode(ISD::ADD
, dl
, PTy
, Table
, Addr
);
5903 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5906 DAG
.getLoad(PTy
, dl
, Chain
, Addr
,
5907 MachinePointerInfo::getJumpTable(DAG
.getMachineFunction()));
5908 Chain
= Addr
.getValue(1);
5909 return DAG
.getNode(ARMISD::BR_JT
, dl
, MVT::Other
, Chain
, Addr
, JTI
);
5913 static SDValue
LowerVectorFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) {
5914 EVT VT
= Op
.getValueType();
5917 if (Op
.getValueType().getVectorElementType() == MVT::i32
) {
5918 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::f32
)
5920 return DAG
.UnrollVectorOp(Op
.getNode());
5923 const bool HasFullFP16
= DAG
.getSubtarget
<ARMSubtarget
>().hasFullFP16();
5926 const EVT OpTy
= Op
.getOperand(0).getValueType();
5927 if (OpTy
== MVT::v4f32
)
5929 else if (OpTy
== MVT::v4f16
&& HasFullFP16
)
5931 else if (OpTy
== MVT::v8f16
&& HasFullFP16
)
5934 llvm_unreachable("Invalid type for custom lowering!");
5936 if (VT
!= MVT::v4i16
&& VT
!= MVT::v8i16
)
5937 return DAG
.UnrollVectorOp(Op
.getNode());
5939 Op
= DAG
.getNode(Op
.getOpcode(), dl
, NewTy
, Op
.getOperand(0));
5940 return DAG
.getNode(ISD::TRUNCATE
, dl
, VT
, Op
);
5943 SDValue
ARMTargetLowering::LowerFP_TO_INT(SDValue Op
, SelectionDAG
&DAG
) const {
5944 EVT VT
= Op
.getValueType();
5946 return LowerVectorFP_TO_INT(Op
, DAG
);
5948 bool IsStrict
= Op
->isStrictFPOpcode();
5949 SDValue SrcVal
= Op
.getOperand(IsStrict
? 1 : 0);
5951 if (isUnsupportedFloatingType(SrcVal
.getValueType())) {
5953 if (Op
.getOpcode() == ISD::FP_TO_SINT
||
5954 Op
.getOpcode() == ISD::STRICT_FP_TO_SINT
)
5955 LC
= RTLIB::getFPTOSINT(SrcVal
.getValueType(),
5958 LC
= RTLIB::getFPTOUINT(SrcVal
.getValueType(),
5961 MakeLibCallOptions CallOptions
;
5962 SDValue Chain
= IsStrict
? Op
.getOperand(0) : SDValue();
5964 std::tie(Result
, Chain
) = makeLibCall(DAG
, LC
, Op
.getValueType(), SrcVal
,
5965 CallOptions
, Loc
, Chain
);
5966 return IsStrict
? DAG
.getMergeValues({Result
, Chain
}, Loc
) : Result
;
5969 // FIXME: Remove this when we have strict fp instruction selection patterns
5973 DAG
.getNode(Op
.getOpcode() == ISD::STRICT_FP_TO_SINT
? ISD::FP_TO_SINT
5975 Loc
, Op
.getValueType(), SrcVal
);
5976 return DAG
.getMergeValues({Result
, Op
.getOperand(0)}, Loc
);
5982 static SDValue
LowerFP_TO_INT_SAT(SDValue Op
, SelectionDAG
&DAG
,
5983 const ARMSubtarget
*Subtarget
) {
5984 EVT VT
= Op
.getValueType();
5985 EVT ToVT
= cast
<VTSDNode
>(Op
.getOperand(1))->getVT();
5986 EVT FromVT
= Op
.getOperand(0).getValueType();
5988 if (VT
== MVT::i32
&& ToVT
== MVT::i32
&& FromVT
== MVT::f32
)
5990 if (VT
== MVT::i32
&& ToVT
== MVT::i32
&& FromVT
== MVT::f64
&&
5991 Subtarget
->hasFP64())
5993 if (VT
== MVT::i32
&& ToVT
== MVT::i32
&& FromVT
== MVT::f16
&&
5994 Subtarget
->hasFullFP16())
5996 if (VT
== MVT::v4i32
&& ToVT
== MVT::i32
&& FromVT
== MVT::v4f32
&&
5997 Subtarget
->hasMVEFloatOps())
5999 if (VT
== MVT::v8i16
&& ToVT
== MVT::i16
&& FromVT
== MVT::v8f16
&&
6000 Subtarget
->hasMVEFloatOps())
6003 if (FromVT
!= MVT::v4f32
&& FromVT
!= MVT::v8f16
)
6007 bool IsSigned
= Op
.getOpcode() == ISD::FP_TO_SINT_SAT
;
6008 unsigned BW
= ToVT
.getScalarSizeInBits() - IsSigned
;
6009 SDValue CVT
= DAG
.getNode(Op
.getOpcode(), DL
, VT
, Op
.getOperand(0),
6010 DAG
.getValueType(VT
.getScalarType()));
6011 SDValue Max
= DAG
.getNode(IsSigned
? ISD::SMIN
: ISD::UMIN
, DL
, VT
, CVT
,
6012 DAG
.getConstant((1 << BW
) - 1, DL
, VT
));
6014 Max
= DAG
.getNode(ISD::SMAX
, DL
, VT
, Max
,
6015 DAG
.getSignedConstant(-(1 << BW
), DL
, VT
));
6019 static SDValue
LowerVectorINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) {
6020 EVT VT
= Op
.getValueType();
6023 if (Op
.getOperand(0).getValueType().getVectorElementType() == MVT::i32
) {
6024 if (VT
.getVectorElementType() == MVT::f32
)
6026 return DAG
.UnrollVectorOp(Op
.getNode());
6029 assert((Op
.getOperand(0).getValueType() == MVT::v4i16
||
6030 Op
.getOperand(0).getValueType() == MVT::v8i16
) &&
6031 "Invalid type for custom lowering!");
6033 const bool HasFullFP16
= DAG
.getSubtarget
<ARMSubtarget
>().hasFullFP16();
6036 if (VT
== MVT::v4f32
)
6037 DestVecType
= MVT::v4i32
;
6038 else if (VT
== MVT::v4f16
&& HasFullFP16
)
6039 DestVecType
= MVT::v4i16
;
6040 else if (VT
== MVT::v8f16
&& HasFullFP16
)
6041 DestVecType
= MVT::v8i16
;
6043 return DAG
.UnrollVectorOp(Op
.getNode());
6047 switch (Op
.getOpcode()) {
6048 default: llvm_unreachable("Invalid opcode!");
6049 case ISD::SINT_TO_FP
:
6050 CastOpc
= ISD::SIGN_EXTEND
;
6051 Opc
= ISD::SINT_TO_FP
;
6053 case ISD::UINT_TO_FP
:
6054 CastOpc
= ISD::ZERO_EXTEND
;
6055 Opc
= ISD::UINT_TO_FP
;
6059 Op
= DAG
.getNode(CastOpc
, dl
, DestVecType
, Op
.getOperand(0));
6060 return DAG
.getNode(Opc
, dl
, VT
, Op
);
6063 SDValue
ARMTargetLowering::LowerINT_TO_FP(SDValue Op
, SelectionDAG
&DAG
) const {
6064 EVT VT
= Op
.getValueType();
6066 return LowerVectorINT_TO_FP(Op
, DAG
);
6067 if (isUnsupportedFloatingType(VT
)) {
6069 if (Op
.getOpcode() == ISD::SINT_TO_FP
)
6070 LC
= RTLIB::getSINTTOFP(Op
.getOperand(0).getValueType(),
6073 LC
= RTLIB::getUINTTOFP(Op
.getOperand(0).getValueType(),
6075 MakeLibCallOptions CallOptions
;
6076 return makeLibCall(DAG
, LC
, Op
.getValueType(), Op
.getOperand(0),
6077 CallOptions
, SDLoc(Op
)).first
;
6083 SDValue
ARMTargetLowering::LowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
6084 // Implement fcopysign with a fabs and a conditional fneg.
6085 SDValue Tmp0
= Op
.getOperand(0);
6086 SDValue Tmp1
= Op
.getOperand(1);
6088 EVT VT
= Op
.getValueType();
6089 EVT SrcVT
= Tmp1
.getValueType();
6090 bool InGPR
= Tmp0
.getOpcode() == ISD::BITCAST
||
6091 Tmp0
.getOpcode() == ARMISD::VMOVDRR
;
6092 bool UseNEON
= !InGPR
&& Subtarget
->hasNEON();
6095 // Use VBSL to copy the sign bit.
6096 unsigned EncodedVal
= ARM_AM::createVMOVModImm(0x6, 0x80);
6097 SDValue Mask
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v2i32
,
6098 DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
));
6099 EVT OpVT
= (VT
== MVT::f32
) ? MVT::v2i32
: MVT::v1i64
;
6101 Mask
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
6102 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Mask
),
6103 DAG
.getConstant(32, dl
, MVT::i32
));
6104 else /*if (VT == MVT::f32)*/
6105 Tmp0
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp0
);
6106 if (SrcVT
== MVT::f32
) {
6107 Tmp1
= DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, MVT::v2f32
, Tmp1
);
6109 Tmp1
= DAG
.getNode(ARMISD::VSHLIMM
, dl
, OpVT
,
6110 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
),
6111 DAG
.getConstant(32, dl
, MVT::i32
));
6112 } else if (VT
== MVT::f32
)
6113 Tmp1
= DAG
.getNode(ARMISD::VSHRuIMM
, dl
, MVT::v1i64
,
6114 DAG
.getNode(ISD::BITCAST
, dl
, MVT::v1i64
, Tmp1
),
6115 DAG
.getConstant(32, dl
, MVT::i32
));
6116 Tmp0
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp0
);
6117 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, Tmp1
);
6119 SDValue AllOnes
= DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
6121 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v8i8
, AllOnes
);
6122 SDValue MaskNot
= DAG
.getNode(ISD::XOR
, dl
, OpVT
, Mask
,
6123 DAG
.getNode(ISD::BITCAST
, dl
, OpVT
, AllOnes
));
6125 SDValue Res
= DAG
.getNode(ISD::OR
, dl
, OpVT
,
6126 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp1
, Mask
),
6127 DAG
.getNode(ISD::AND
, dl
, OpVT
, Tmp0
, MaskNot
));
6128 if (VT
== MVT::f32
) {
6129 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v2f32
, Res
);
6130 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, Res
,
6131 DAG
.getConstant(0, dl
, MVT::i32
));
6133 Res
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Res
);
6139 // Bitcast operand 1 to i32.
6140 if (SrcVT
== MVT::f64
)
6141 Tmp1
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
6143 Tmp1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp1
);
6145 // Or in the signbit with integer operations.
6146 SDValue Mask1
= DAG
.getConstant(0x80000000, dl
, MVT::i32
);
6147 SDValue Mask2
= DAG
.getConstant(0x7fffffff, dl
, MVT::i32
);
6148 Tmp1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp1
, Mask1
);
6149 if (VT
== MVT::f32
) {
6150 Tmp0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
,
6151 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Tmp0
), Mask2
);
6152 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
6153 DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Tmp0
, Tmp1
));
6156 // f64: Or the high part with signbit and then combine two parts.
6157 Tmp0
= DAG
.getNode(ARMISD::VMOVRRD
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
6159 SDValue Lo
= Tmp0
.getValue(0);
6160 SDValue Hi
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Tmp0
.getValue(1), Mask2
);
6161 Hi
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, Hi
, Tmp1
);
6162 return DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
);
6165 SDValue
ARMTargetLowering::LowerRETURNADDR(SDValue Op
, SelectionDAG
&DAG
) const{
6166 MachineFunction
&MF
= DAG
.getMachineFunction();
6167 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6168 MFI
.setReturnAddressIsTaken(true);
6170 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
6173 EVT VT
= Op
.getValueType();
6175 unsigned Depth
= Op
.getConstantOperandVal(0);
6177 SDValue FrameAddr
= LowerFRAMEADDR(Op
, DAG
);
6178 SDValue Offset
= DAG
.getConstant(4, dl
, MVT::i32
);
6179 return DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(),
6180 DAG
.getNode(ISD::ADD
, dl
, VT
, FrameAddr
, Offset
),
6181 MachinePointerInfo());
6184 // Return LR, which contains the return address. Mark it an implicit live-in.
6185 Register Reg
= MF
.addLiveIn(ARM::LR
, getRegClassFor(MVT::i32
));
6186 return DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, Reg
, VT
);
6189 SDValue
ARMTargetLowering::LowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
6190 const ARMBaseRegisterInfo
&ARI
=
6191 *static_cast<const ARMBaseRegisterInfo
*>(RegInfo
);
6192 MachineFunction
&MF
= DAG
.getMachineFunction();
6193 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6194 MFI
.setFrameAddressIsTaken(true);
6196 EVT VT
= Op
.getValueType();
6197 SDLoc
dl(Op
); // FIXME probably not meaningful
6198 unsigned Depth
= Op
.getConstantOperandVal(0);
6199 Register FrameReg
= ARI
.getFrameRegister(MF
);
6200 SDValue FrameAddr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
, FrameReg
, VT
);
6202 FrameAddr
= DAG
.getLoad(VT
, dl
, DAG
.getEntryNode(), FrameAddr
,
6203 MachinePointerInfo());
6207 // FIXME? Maybe this could be a TableGen attribute on some registers and
6208 // this table could be generated automatically from RegInfo.
6209 Register
ARMTargetLowering::getRegisterByName(const char* RegName
, LLT VT
,
6210 const MachineFunction
&MF
) const {
6211 Register Reg
= StringSwitch
<unsigned>(RegName
)
6212 .Case("sp", ARM::SP
)
6216 report_fatal_error(Twine("Invalid register name \""
6217 + StringRef(RegName
) + "\"."));
6220 // Result is 64 bit value so split into two 32 bit values and return as a
6222 static void ExpandREAD_REGISTER(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
6223 SelectionDAG
&DAG
) {
6226 // This function is only supposed to be called for i64 type destination.
6227 assert(N
->getValueType(0) == MVT::i64
6228 && "ExpandREAD_REGISTER called for non-i64 type result.");
6230 SDValue Read
= DAG
.getNode(ISD::READ_REGISTER
, DL
,
6231 DAG
.getVTList(MVT::i32
, MVT::i32
, MVT::Other
),
6235 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Read
.getValue(0),
6237 Results
.push_back(Read
.getOperand(0));
6240 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
6241 /// When \p DstVT, the destination type of \p BC, is on the vector
6242 /// register bank and the source of bitcast, \p Op, operates on the same bank,
6243 /// it might be possible to combine them, such that everything stays on the
6244 /// vector register bank.
6245 /// \p return The node that would replace \p BT, if the combine
6247 static SDValue
CombineVMOVDRRCandidateWithVecOp(const SDNode
*BC
,
6248 SelectionDAG
&DAG
) {
6249 SDValue Op
= BC
->getOperand(0);
6250 EVT DstVT
= BC
->getValueType(0);
6252 // The only vector instruction that can produce a scalar (remember,
6253 // since the bitcast was about to be turned into VMOVDRR, the source
6254 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
6255 // Moreover, we can do this combine only if there is one use.
6256 // Finally, if the destination type is not a vector, there is not
6257 // much point on forcing everything on the vector bank.
6258 if (!DstVT
.isVector() || Op
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
6262 // If the index is not constant, we will introduce an additional
6263 // multiply that will stick.
6264 // Give up in that case.
6265 ConstantSDNode
*Index
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
6268 unsigned DstNumElt
= DstVT
.getVectorNumElements();
6270 // Compute the new index.
6271 const APInt
&APIntIndex
= Index
->getAPIntValue();
6272 APInt
NewIndex(APIntIndex
.getBitWidth(), DstNumElt
);
6273 NewIndex
*= APIntIndex
;
6274 // Check if the new constant index fits into i32.
6275 if (NewIndex
.getBitWidth() > 32)
6278 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
6279 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
6281 SDValue ExtractSrc
= Op
.getOperand(0);
6282 EVT VecVT
= EVT::getVectorVT(
6283 *DAG
.getContext(), DstVT
.getScalarType(),
6284 ExtractSrc
.getValueType().getVectorNumElements() * DstNumElt
);
6285 SDValue BitCast
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, ExtractSrc
);
6286 return DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DstVT
, BitCast
,
6287 DAG
.getConstant(NewIndex
.getZExtValue(), dl
, MVT::i32
));
6290 /// ExpandBITCAST - If the target supports VFP, this function is called to
6291 /// expand a bit convert where either the source or destination type is i64 to
6292 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
6293 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
6294 /// vectors), since the legalizer won't know what to do with that.
6295 SDValue
ARMTargetLowering::ExpandBITCAST(SDNode
*N
, SelectionDAG
&DAG
,
6296 const ARMSubtarget
*Subtarget
) const {
6297 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6299 SDValue Op
= N
->getOperand(0);
6301 // This function is only supposed to be called for i16 and i64 types, either
6302 // as the source or destination of the bit convert.
6303 EVT SrcVT
= Op
.getValueType();
6304 EVT DstVT
= N
->getValueType(0);
6306 if ((SrcVT
== MVT::i16
|| SrcVT
== MVT::i32
) &&
6307 (DstVT
== MVT::f16
|| DstVT
== MVT::bf16
))
6308 return MoveToHPR(SDLoc(N
), DAG
, MVT::i32
, DstVT
.getSimpleVT(),
6309 DAG
.getNode(ISD::ZERO_EXTEND
, SDLoc(N
), MVT::i32
, Op
));
6311 if ((DstVT
== MVT::i16
|| DstVT
== MVT::i32
) &&
6312 (SrcVT
== MVT::f16
|| SrcVT
== MVT::bf16
)) {
6313 if (Subtarget
->hasFullFP16() && !Subtarget
->hasBF16())
6314 Op
= DAG
.getBitcast(MVT::f16
, Op
);
6316 ISD::TRUNCATE
, SDLoc(N
), DstVT
,
6317 MoveFromHPR(SDLoc(N
), DAG
, MVT::i32
, SrcVT
.getSimpleVT(), Op
));
6320 if (!(SrcVT
== MVT::i64
|| DstVT
== MVT::i64
))
6323 // Turn i64->f64 into VMOVDRR.
6324 if (SrcVT
== MVT::i64
&& TLI
.isTypeLegal(DstVT
)) {
6325 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
6326 // if we can combine the bitcast with its source.
6327 if (SDValue Val
= CombineVMOVDRRCandidateWithVecOp(N
, DAG
))
6330 std::tie(Lo
, Hi
) = DAG
.SplitScalar(Op
, dl
, MVT::i32
, MVT::i32
);
6331 return DAG
.getNode(ISD::BITCAST
, dl
, DstVT
,
6332 DAG
.getNode(ARMISD::VMOVDRR
, dl
, MVT::f64
, Lo
, Hi
));
6335 // Turn f64->i64 into VMOVRRD.
6336 if (DstVT
== MVT::i64
&& TLI
.isTypeLegal(SrcVT
)) {
6338 if (DAG
.getDataLayout().isBigEndian() && SrcVT
.isVector() &&
6339 SrcVT
.getVectorNumElements() > 1)
6340 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
6341 DAG
.getVTList(MVT::i32
, MVT::i32
),
6342 DAG
.getNode(ARMISD::VREV64
, dl
, SrcVT
, Op
));
6344 Cvt
= DAG
.getNode(ARMISD::VMOVRRD
, dl
,
6345 DAG
.getVTList(MVT::i32
, MVT::i32
), Op
);
6346 // Merge the pieces into a single i64 value.
6347 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Cvt
, Cvt
.getValue(1));
6353 /// getZeroVector - Returns a vector of specified type with all zero elements.
6354 /// Zero vectors are used to represent vector negation and in those cases
6355 /// will be implemented with the NEON VNEG instruction. However, VNEG does
6356 /// not support i64 elements, so sometimes the zero vectors will need to be
6357 /// explicitly constructed. Regardless, use a canonical VMOV to create the
6359 static SDValue
getZeroVector(EVT VT
, SelectionDAG
&DAG
, const SDLoc
&dl
) {
6360 assert(VT
.isVector() && "Expected a vector type");
6361 // The canonical modified immediate encoding of a zero vector is....0!
6362 SDValue EncodedVal
= DAG
.getTargetConstant(0, dl
, MVT::i32
);
6363 EVT VmovVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
6364 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, EncodedVal
);
6365 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vmov
);
6368 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6369 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6370 SDValue
ARMTargetLowering::LowerShiftRightParts(SDValue Op
,
6371 SelectionDAG
&DAG
) const {
6372 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
6373 EVT VT
= Op
.getValueType();
6374 unsigned VTBits
= VT
.getSizeInBits();
6376 SDValue ShOpLo
= Op
.getOperand(0);
6377 SDValue ShOpHi
= Op
.getOperand(1);
6378 SDValue ShAmt
= Op
.getOperand(2);
6380 unsigned Opc
= (Op
.getOpcode() == ISD::SRA_PARTS
) ? ISD::SRA
: ISD::SRL
;
6382 assert(Op
.getOpcode() == ISD::SRA_PARTS
|| Op
.getOpcode() == ISD::SRL_PARTS
);
6384 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6385 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
6386 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, ShAmt
);
6387 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
6388 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
6389 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, RevShAmt
);
6390 SDValue LoSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
6391 SDValue LoBigShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ExtraShAmt
);
6392 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
6393 ISD::SETGE
, ARMcc
, DAG
, dl
);
6395 DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
, LoBigShift
, ARMcc
, CmpLo
);
6397 SDValue HiSmallShift
= DAG
.getNode(Opc
, dl
, VT
, ShOpHi
, ShAmt
);
6398 SDValue HiBigShift
= Opc
== ISD::SRA
6399 ? DAG
.getNode(Opc
, dl
, VT
, ShOpHi
,
6400 DAG
.getConstant(VTBits
- 1, dl
, VT
))
6401 : DAG
.getConstant(0, dl
, VT
);
6402 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
6403 ISD::SETGE
, ARMcc
, DAG
, dl
);
6405 DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
, ARMcc
, CmpHi
);
6407 SDValue Ops
[2] = { Lo
, Hi
};
6408 return DAG
.getMergeValues(Ops
, dl
);
6411 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6412 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6413 SDValue
ARMTargetLowering::LowerShiftLeftParts(SDValue Op
,
6414 SelectionDAG
&DAG
) const {
6415 assert(Op
.getNumOperands() == 3 && "Not a double-shift!");
6416 EVT VT
= Op
.getValueType();
6417 unsigned VTBits
= VT
.getSizeInBits();
6419 SDValue ShOpLo
= Op
.getOperand(0);
6420 SDValue ShOpHi
= Op
.getOperand(1);
6421 SDValue ShAmt
= Op
.getOperand(2);
6424 assert(Op
.getOpcode() == ISD::SHL_PARTS
);
6425 SDValue RevShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6426 DAG
.getConstant(VTBits
, dl
, MVT::i32
), ShAmt
);
6427 SDValue Tmp1
= DAG
.getNode(ISD::SRL
, dl
, VT
, ShOpLo
, RevShAmt
);
6428 SDValue Tmp2
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpHi
, ShAmt
);
6429 SDValue HiSmallShift
= DAG
.getNode(ISD::OR
, dl
, VT
, Tmp1
, Tmp2
);
6431 SDValue ExtraShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, ShAmt
,
6432 DAG
.getConstant(VTBits
, dl
, MVT::i32
));
6433 SDValue HiBigShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ExtraShAmt
);
6434 SDValue CmpHi
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
6435 ISD::SETGE
, ARMcc
, DAG
, dl
);
6437 DAG
.getNode(ARMISD::CMOV
, dl
, VT
, HiSmallShift
, HiBigShift
, ARMcc
, CmpHi
);
6439 SDValue CmpLo
= getARMCmp(ExtraShAmt
, DAG
.getConstant(0, dl
, MVT::i32
),
6440 ISD::SETGE
, ARMcc
, DAG
, dl
);
6441 SDValue LoSmallShift
= DAG
.getNode(ISD::SHL
, dl
, VT
, ShOpLo
, ShAmt
);
6442 SDValue Lo
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LoSmallShift
,
6443 DAG
.getConstant(0, dl
, VT
), ARMcc
, CmpLo
);
6445 SDValue Ops
[2] = { Lo
, Hi
};
6446 return DAG
.getMergeValues(Ops
, dl
);
6449 SDValue
ARMTargetLowering::LowerGET_ROUNDING(SDValue Op
,
6450 SelectionDAG
&DAG
) const {
6451 // The rounding mode is in bits 23:22 of the FPSCR.
6452 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6453 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6454 // so that the shift + and get folded into a bitfield extract.
6456 SDValue Chain
= Op
.getOperand(0);
6457 SDValue Ops
[] = {Chain
,
6458 DAG
.getConstant(Intrinsic::arm_get_fpscr
, dl
, MVT::i32
)};
6461 DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, dl
, {MVT::i32
, MVT::Other
}, Ops
);
6462 Chain
= FPSCR
.getValue(1);
6463 SDValue FltRounds
= DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, FPSCR
,
6464 DAG
.getConstant(1U << 22, dl
, MVT::i32
));
6465 SDValue RMODE
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, FltRounds
,
6466 DAG
.getConstant(22, dl
, MVT::i32
));
6467 SDValue And
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, RMODE
,
6468 DAG
.getConstant(3, dl
, MVT::i32
));
6469 return DAG
.getMergeValues({And
, Chain
}, dl
);
6472 SDValue
ARMTargetLowering::LowerSET_ROUNDING(SDValue Op
,
6473 SelectionDAG
&DAG
) const {
6475 SDValue Chain
= Op
->getOperand(0);
6476 SDValue RMValue
= Op
->getOperand(1);
6478 // The rounding mode is in bits 23:22 of the FPSCR.
6479 // The llvm.set.rounding argument value to ARM rounding mode value mapping
6480 // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
6481 // ((arg - 1) & 3) << 22).
6483 // It is expected that the argument of llvm.set.rounding is within the
6484 // segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
6485 // responsibility of the code generated llvm.set.rounding to ensure this
6488 // Calculate new value of FPSCR[23:22].
6489 RMValue
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, RMValue
,
6490 DAG
.getConstant(1, DL
, MVT::i32
));
6491 RMValue
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, RMValue
,
6492 DAG
.getConstant(0x3, DL
, MVT::i32
));
6493 RMValue
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, RMValue
,
6494 DAG
.getConstant(ARM::RoundingBitsPos
, DL
, MVT::i32
));
6496 // Get current value of FPSCR.
6497 SDValue Ops
[] = {Chain
,
6498 DAG
.getConstant(Intrinsic::arm_get_fpscr
, DL
, MVT::i32
)};
6500 DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
, {MVT::i32
, MVT::Other
}, Ops
);
6501 Chain
= FPSCR
.getValue(1);
6502 FPSCR
= FPSCR
.getValue(0);
6504 // Put new rounding mode into FPSCR[23:22].
6505 const unsigned RMMask
= ~(ARM::Rounding::rmMask
<< ARM::RoundingBitsPos
);
6506 FPSCR
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, FPSCR
,
6507 DAG
.getConstant(RMMask
, DL
, MVT::i32
));
6508 FPSCR
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, FPSCR
, RMValue
);
6510 Chain
, DAG
.getConstant(Intrinsic::arm_set_fpscr
, DL
, MVT::i32
), FPSCR
};
6511 return DAG
.getNode(ISD::INTRINSIC_VOID
, DL
, MVT::Other
, Ops2
);
6514 SDValue
ARMTargetLowering::LowerSET_FPMODE(SDValue Op
,
6515 SelectionDAG
&DAG
) const {
6517 SDValue Chain
= Op
->getOperand(0);
6518 SDValue Mode
= Op
->getOperand(1);
6520 // Generate nodes to build:
6521 // FPSCR = (FPSCR & FPStatusBits) | (Mode & ~FPStatusBits)
6522 SDValue Ops
[] = {Chain
,
6523 DAG
.getConstant(Intrinsic::arm_get_fpscr
, DL
, MVT::i32
)};
6525 DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
, {MVT::i32
, MVT::Other
}, Ops
);
6526 Chain
= FPSCR
.getValue(1);
6527 FPSCR
= FPSCR
.getValue(0);
6529 SDValue FPSCRMasked
=
6530 DAG
.getNode(ISD::AND
, DL
, MVT::i32
, FPSCR
,
6531 DAG
.getConstant(ARM::FPStatusBits
, DL
, MVT::i32
));
6532 SDValue InputMasked
=
6533 DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Mode
,
6534 DAG
.getConstant(~ARM::FPStatusBits
, DL
, MVT::i32
));
6535 FPSCR
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, FPSCRMasked
, InputMasked
);
6538 Chain
, DAG
.getConstant(Intrinsic::arm_set_fpscr
, DL
, MVT::i32
), FPSCR
};
6539 return DAG
.getNode(ISD::INTRINSIC_VOID
, DL
, MVT::Other
, Ops2
);
6542 SDValue
ARMTargetLowering::LowerRESET_FPMODE(SDValue Op
,
6543 SelectionDAG
&DAG
) const {
6545 SDValue Chain
= Op
->getOperand(0);
6547 // To get the default FP mode all control bits are cleared:
6548 // FPSCR = FPSCR & (FPStatusBits | FPReservedBits)
6549 SDValue Ops
[] = {Chain
,
6550 DAG
.getConstant(Intrinsic::arm_get_fpscr
, DL
, MVT::i32
)};
6552 DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
, {MVT::i32
, MVT::Other
}, Ops
);
6553 Chain
= FPSCR
.getValue(1);
6554 FPSCR
= FPSCR
.getValue(0);
6556 SDValue FPSCRMasked
= DAG
.getNode(
6557 ISD::AND
, DL
, MVT::i32
, FPSCR
,
6558 DAG
.getConstant(ARM::FPStatusBits
| ARM::FPReservedBits
, DL
, MVT::i32
));
6559 SDValue Ops2
[] = {Chain
,
6560 DAG
.getConstant(Intrinsic::arm_set_fpscr
, DL
, MVT::i32
),
6562 return DAG
.getNode(ISD::INTRINSIC_VOID
, DL
, MVT::Other
, Ops2
);
6565 static SDValue
LowerCTTZ(SDNode
*N
, SelectionDAG
&DAG
,
6566 const ARMSubtarget
*ST
) {
6568 EVT VT
= N
->getValueType(0);
6569 if (VT
.isVector() && ST
->hasNEON()) {
6571 // Compute the least significant set bit: LSB = X & -X
6572 SDValue X
= N
->getOperand(0);
6573 SDValue NX
= DAG
.getNode(ISD::SUB
, dl
, VT
, getZeroVector(VT
, DAG
, dl
), X
);
6574 SDValue LSB
= DAG
.getNode(ISD::AND
, dl
, VT
, X
, NX
);
6576 EVT ElemTy
= VT
.getVectorElementType();
6578 if (ElemTy
== MVT::i8
) {
6579 // Compute with: cttz(x) = ctpop(lsb - 1)
6580 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
6581 DAG
.getTargetConstant(1, dl
, ElemTy
));
6582 SDValue Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
6583 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
6586 if ((ElemTy
== MVT::i16
|| ElemTy
== MVT::i32
) &&
6587 (N
->getOpcode() == ISD::CTTZ_ZERO_UNDEF
)) {
6588 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6589 unsigned NumBits
= ElemTy
.getSizeInBits();
6590 SDValue WidthMinus1
=
6591 DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
6592 DAG
.getTargetConstant(NumBits
- 1, dl
, ElemTy
));
6593 SDValue CTLZ
= DAG
.getNode(ISD::CTLZ
, dl
, VT
, LSB
);
6594 return DAG
.getNode(ISD::SUB
, dl
, VT
, WidthMinus1
, CTLZ
);
6597 // Compute with: cttz(x) = ctpop(lsb - 1)
6601 if (ElemTy
== MVT::i64
) {
6602 // Load constant 0xffff'ffff'ffff'ffff to register.
6603 SDValue FF
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
6604 DAG
.getTargetConstant(0x1eff, dl
, MVT::i32
));
6605 Bits
= DAG
.getNode(ISD::ADD
, dl
, VT
, LSB
, FF
);
6607 SDValue One
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
6608 DAG
.getTargetConstant(1, dl
, ElemTy
));
6609 Bits
= DAG
.getNode(ISD::SUB
, dl
, VT
, LSB
, One
);
6611 return DAG
.getNode(ISD::CTPOP
, dl
, VT
, Bits
);
6614 if (!ST
->hasV6T2Ops())
6617 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, VT
, N
->getOperand(0));
6618 return DAG
.getNode(ISD::CTLZ
, dl
, VT
, rbit
);
6621 static SDValue
LowerCTPOP(SDNode
*N
, SelectionDAG
&DAG
,
6622 const ARMSubtarget
*ST
) {
6623 EVT VT
= N
->getValueType(0);
6626 assert(ST
->hasNEON() && "Custom ctpop lowering requires NEON.");
6627 assert((VT
== MVT::v1i64
|| VT
== MVT::v2i64
|| VT
== MVT::v2i32
||
6628 VT
== MVT::v4i32
|| VT
== MVT::v4i16
|| VT
== MVT::v8i16
) &&
6629 "Unexpected type for custom ctpop lowering");
6631 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6632 EVT VT8Bit
= VT
.is64BitVector() ? MVT::v8i8
: MVT::v16i8
;
6633 SDValue Res
= DAG
.getBitcast(VT8Bit
, N
->getOperand(0));
6634 Res
= DAG
.getNode(ISD::CTPOP
, DL
, VT8Bit
, Res
);
6636 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6637 unsigned EltSize
= 8;
6638 unsigned NumElts
= VT
.is64BitVector() ? 8 : 16;
6639 while (EltSize
!= VT
.getScalarSizeInBits()) {
6640 SmallVector
<SDValue
, 8> Ops
;
6641 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddlu
, DL
,
6642 TLI
.getPointerTy(DAG
.getDataLayout())));
6647 MVT WidenVT
= MVT::getVectorVT(MVT::getIntegerVT(EltSize
), NumElts
);
6648 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, WidenVT
, Ops
);
6654 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6655 /// operand of a vector shift operation, where all the elements of the
6656 /// build_vector must have the same constant integer value.
6657 static bool getVShiftImm(SDValue Op
, unsigned ElementBits
, int64_t &Cnt
) {
6658 // Ignore bit_converts.
6659 while (Op
.getOpcode() == ISD::BITCAST
)
6660 Op
= Op
.getOperand(0);
6661 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(Op
.getNode());
6662 APInt SplatBits
, SplatUndef
;
6663 unsigned SplatBitSize
;
6666 !BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
,
6668 SplatBitSize
> ElementBits
)
6670 Cnt
= SplatBits
.getSExtValue();
6674 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6675 /// operand of a vector shift left operation. That value must be in the range:
6676 /// 0 <= Value < ElementBits for a left shift; or
6677 /// 0 <= Value <= ElementBits for a long left shift.
6678 static bool isVShiftLImm(SDValue Op
, EVT VT
, bool isLong
, int64_t &Cnt
) {
6679 assert(VT
.isVector() && "vector shift count is not a vector type");
6680 int64_t ElementBits
= VT
.getScalarSizeInBits();
6681 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
6683 return (Cnt
>= 0 && (isLong
? Cnt
- 1 : Cnt
) < ElementBits
);
6686 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6687 /// operand of a vector shift right operation. For a shift opcode, the value
6688 /// is positive, but for an intrinsic the value count must be negative. The
6689 /// absolute value must be in the range:
6690 /// 1 <= |Value| <= ElementBits for a right shift; or
6691 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6692 static bool isVShiftRImm(SDValue Op
, EVT VT
, bool isNarrow
, bool isIntrinsic
,
6694 assert(VT
.isVector() && "vector shift count is not a vector type");
6695 int64_t ElementBits
= VT
.getScalarSizeInBits();
6696 if (!getVShiftImm(Op
, ElementBits
, Cnt
))
6699 return (Cnt
>= 1 && Cnt
<= (isNarrow
? ElementBits
/ 2 : ElementBits
));
6700 if (Cnt
>= -(isNarrow
? ElementBits
/ 2 : ElementBits
) && Cnt
<= -1) {
6707 static SDValue
LowerShift(SDNode
*N
, SelectionDAG
&DAG
,
6708 const ARMSubtarget
*ST
) {
6709 EVT VT
= N
->getValueType(0);
6716 // We essentially have two forms here. Shift by an immediate and shift by a
6717 // vector register (there are also shift by a gpr, but that is just handled
6718 // with a tablegen pattern). We cannot easily match shift by an immediate in
6719 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6720 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6721 // signed or unsigned, and a negative shift indicates a shift right).
6722 if (N
->getOpcode() == ISD::SHL
) {
6723 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
))
6724 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
6725 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
6726 return DAG
.getNode(ARMISD::VSHLu
, dl
, VT
, N
->getOperand(0),
6730 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
6731 "unexpected vector shift opcode");
6733 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
6734 unsigned VShiftOpc
=
6735 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
6736 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
6737 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
6740 // Other right shifts we don't have operations for (we use a shift left by a
6741 // negative number).
6742 EVT ShiftVT
= N
->getOperand(1).getValueType();
6743 SDValue NegatedCount
= DAG
.getNode(
6744 ISD::SUB
, dl
, ShiftVT
, getZeroVector(ShiftVT
, DAG
, dl
), N
->getOperand(1));
6745 unsigned VShiftOpc
=
6746 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHLs
: ARMISD::VSHLu
);
6747 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0), NegatedCount
);
6750 static SDValue
Expand64BitShift(SDNode
*N
, SelectionDAG
&DAG
,
6751 const ARMSubtarget
*ST
) {
6752 EVT VT
= N
->getValueType(0);
6755 // We can get here for a node like i32 = ISD::SHL i32, i64
6759 assert((N
->getOpcode() == ISD::SRL
|| N
->getOpcode() == ISD::SRA
||
6760 N
->getOpcode() == ISD::SHL
) &&
6761 "Unknown shift to lower!");
6763 unsigned ShOpc
= N
->getOpcode();
6764 if (ST
->hasMVEIntegerOps()) {
6765 SDValue ShAmt
= N
->getOperand(1);
6766 unsigned ShPartsOpc
= ARMISD::LSLL
;
6767 ConstantSDNode
*Con
= dyn_cast
<ConstantSDNode
>(ShAmt
);
6769 // If the shift amount is greater than 32 or has a greater bitwidth than 64
6770 // then do the default optimisation
6771 if ((!Con
&& ShAmt
->getValueType(0).getSizeInBits() > 64) ||
6772 (Con
&& (Con
->getAPIntValue() == 0 || Con
->getAPIntValue().uge(32))))
6775 // Extract the lower 32 bits of the shift amount if it's not an i32
6776 if (ShAmt
->getValueType(0) != MVT::i32
)
6777 ShAmt
= DAG
.getZExtOrTrunc(ShAmt
, dl
, MVT::i32
);
6779 if (ShOpc
== ISD::SRL
) {
6781 // There is no t2LSRLr instruction so negate and perform an lsll if the
6782 // shift amount is in a register, emulating a right shift.
6783 ShAmt
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
6784 DAG
.getConstant(0, dl
, MVT::i32
), ShAmt
);
6786 // Else generate an lsrl on the immediate shift amount
6787 ShPartsOpc
= ARMISD::LSRL
;
6788 } else if (ShOpc
== ISD::SRA
)
6789 ShPartsOpc
= ARMISD::ASRL
;
6791 // Split Lower/Upper 32 bits of the destination/source
6794 DAG
.SplitScalar(N
->getOperand(0), dl
, MVT::i32
, MVT::i32
);
6795 // Generate the shift operation as computed above
6796 Lo
= DAG
.getNode(ShPartsOpc
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
), Lo
, Hi
,
6798 // The upper 32 bits come from the second return value of lsll
6799 Hi
= SDValue(Lo
.getNode(), 1);
6800 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6803 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6804 if (!isOneConstant(N
->getOperand(1)) || N
->getOpcode() == ISD::SHL
)
6807 // If we are in thumb mode, we don't have RRX.
6808 if (ST
->isThumb1Only())
6811 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6813 std::tie(Lo
, Hi
) = DAG
.SplitScalar(N
->getOperand(0), dl
, MVT::i32
, MVT::i32
);
6815 // First, build a LSRS1/ASRS1 op, which shifts the top part by one and
6816 // captures the shifted out bit into a carry flag.
6817 unsigned Opc
= N
->getOpcode() == ISD::SRL
? ARMISD::LSRS1
: ARMISD::ASRS1
;
6818 Hi
= DAG
.getNode(Opc
, dl
, DAG
.getVTList(MVT::i32
, FlagsVT
), Hi
);
6820 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6821 Lo
= DAG
.getNode(ARMISD::RRX
, dl
, MVT::i32
, Lo
, Hi
.getValue(1));
6823 // Merge the pieces into a single i64 value.
6824 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
6827 static SDValue
LowerVSETCC(SDValue Op
, SelectionDAG
&DAG
,
6828 const ARMSubtarget
*ST
) {
6829 bool Invert
= false;
6831 unsigned Opc
= ARMCC::AL
;
6833 SDValue Op0
= Op
.getOperand(0);
6834 SDValue Op1
= Op
.getOperand(1);
6835 SDValue CC
= Op
.getOperand(2);
6836 EVT VT
= Op
.getValueType();
6837 ISD::CondCode SetCCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
6842 CmpVT
= Op0
.getValueType().changeVectorElementTypeToInteger();
6844 assert(ST
->hasMVEIntegerOps() &&
6845 "No hardware support for integer vector comparison!");
6847 if (Op
.getValueType().getVectorElementType() != MVT::i1
)
6850 // Make sure we expand floating point setcc to scalar if we do not have
6851 // mve.fp, so that we can handle them from there.
6852 if (Op0
.getValueType().isFloatingPoint() && !ST
->hasMVEFloatOps())
6858 if (Op0
.getValueType().getVectorElementType() == MVT::i64
&&
6859 (SetCCOpcode
== ISD::SETEQ
|| SetCCOpcode
== ISD::SETNE
)) {
6860 // Special-case integer 64-bit equality comparisons. They aren't legal,
6861 // but they can be lowered with a few vector instructions.
6862 unsigned CmpElements
= CmpVT
.getVectorNumElements() * 2;
6863 EVT SplitVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, CmpElements
);
6864 SDValue CastOp0
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op0
);
6865 SDValue CastOp1
= DAG
.getNode(ISD::BITCAST
, dl
, SplitVT
, Op1
);
6866 SDValue Cmp
= DAG
.getNode(ISD::SETCC
, dl
, SplitVT
, CastOp0
, CastOp1
,
6867 DAG
.getCondCode(ISD::SETEQ
));
6868 SDValue Reversed
= DAG
.getNode(ARMISD::VREV64
, dl
, SplitVT
, Cmp
);
6869 SDValue Merged
= DAG
.getNode(ISD::AND
, dl
, SplitVT
, Cmp
, Reversed
);
6870 Merged
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, Merged
);
6871 if (SetCCOpcode
== ISD::SETNE
)
6872 Merged
= DAG
.getNOT(dl
, Merged
, CmpVT
);
6873 Merged
= DAG
.getSExtOrTrunc(Merged
, dl
, VT
);
6877 if (CmpVT
.getVectorElementType() == MVT::i64
)
6878 // 64-bit comparisons are not legal in general.
6881 if (Op1
.getValueType().isFloatingPoint()) {
6882 switch (SetCCOpcode
) {
6883 default: llvm_unreachable("Illegal FP comparison");
6886 if (ST
->hasMVEFloatOps()) {
6887 Opc
= ARMCC::NE
; break;
6889 Invert
= true; [[fallthrough
]];
6892 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6894 case ISD::SETLT
: Swap
= true; [[fallthrough
]];
6896 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6898 case ISD::SETLE
: Swap
= true; [[fallthrough
]];
6900 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6901 case ISD::SETUGE
: Swap
= true; [[fallthrough
]];
6902 case ISD::SETULE
: Invert
= true; Opc
= ARMCC::GT
; break;
6903 case ISD::SETUGT
: Swap
= true; [[fallthrough
]];
6904 case ISD::SETULT
: Invert
= true; Opc
= ARMCC::GE
; break;
6905 case ISD::SETUEQ
: Invert
= true; [[fallthrough
]];
6907 // Expand this to (OLT | OGT).
6908 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6909 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6910 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6911 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6912 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6914 Result
= DAG
.getNOT(dl
, Result
, VT
);
6917 case ISD::SETUO
: Invert
= true; [[fallthrough
]];
6919 // Expand this to (OLT | OGE).
6920 SDValue TmpOp0
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op1
, Op0
,
6921 DAG
.getConstant(ARMCC::GT
, dl
, MVT::i32
));
6922 SDValue TmpOp1
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6923 DAG
.getConstant(ARMCC::GE
, dl
, MVT::i32
));
6924 SDValue Result
= DAG
.getNode(ISD::OR
, dl
, CmpVT
, TmpOp0
, TmpOp1
);
6926 Result
= DAG
.getNOT(dl
, Result
, VT
);
6931 // Integer comparisons.
6932 switch (SetCCOpcode
) {
6933 default: llvm_unreachable("Illegal integer comparison");
6935 if (ST
->hasMVEIntegerOps()) {
6936 Opc
= ARMCC::NE
; break;
6938 Invert
= true; [[fallthrough
]];
6940 case ISD::SETEQ
: Opc
= ARMCC::EQ
; break;
6941 case ISD::SETLT
: Swap
= true; [[fallthrough
]];
6942 case ISD::SETGT
: Opc
= ARMCC::GT
; break;
6943 case ISD::SETLE
: Swap
= true; [[fallthrough
]];
6944 case ISD::SETGE
: Opc
= ARMCC::GE
; break;
6945 case ISD::SETULT
: Swap
= true; [[fallthrough
]];
6946 case ISD::SETUGT
: Opc
= ARMCC::HI
; break;
6947 case ISD::SETULE
: Swap
= true; [[fallthrough
]];
6948 case ISD::SETUGE
: Opc
= ARMCC::HS
; break;
6951 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6952 if (ST
->hasNEON() && Opc
== ARMCC::EQ
) {
6954 if (ISD::isBuildVectorAllZeros(Op1
.getNode()))
6956 else if (ISD::isBuildVectorAllZeros(Op0
.getNode()))
6959 // Ignore bitconvert.
6960 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::BITCAST
)
6961 AndOp
= AndOp
.getOperand(0);
6963 if (AndOp
.getNode() && AndOp
.getOpcode() == ISD::AND
) {
6964 Op0
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(0));
6965 Op1
= DAG
.getNode(ISD::BITCAST
, dl
, CmpVT
, AndOp
.getOperand(1));
6966 SDValue Result
= DAG
.getNode(ARMISD::VTST
, dl
, CmpVT
, Op0
, Op1
);
6968 Result
= DAG
.getNOT(dl
, Result
, VT
);
6975 std::swap(Op0
, Op1
);
6977 // If one of the operands is a constant vector zero, attempt to fold the
6978 // comparison to a specialized compare-against-zero form.
6979 if (ISD::isBuildVectorAllZeros(Op0
.getNode()) &&
6980 (Opc
== ARMCC::GE
|| Opc
== ARMCC::GT
|| Opc
== ARMCC::EQ
||
6981 Opc
== ARMCC::NE
)) {
6982 if (Opc
== ARMCC::GE
)
6984 else if (Opc
== ARMCC::GT
)
6986 std::swap(Op0
, Op1
);
6990 if (ISD::isBuildVectorAllZeros(Op1
.getNode()) &&
6991 (Opc
== ARMCC::GE
|| Opc
== ARMCC::GT
|| Opc
== ARMCC::LE
||
6992 Opc
== ARMCC::LT
|| Opc
== ARMCC::NE
|| Opc
== ARMCC::EQ
))
6993 Result
= DAG
.getNode(ARMISD::VCMPZ
, dl
, CmpVT
, Op0
,
6994 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6996 Result
= DAG
.getNode(ARMISD::VCMP
, dl
, CmpVT
, Op0
, Op1
,
6997 DAG
.getConstant(Opc
, dl
, MVT::i32
));
6999 Result
= DAG
.getSExtOrTrunc(Result
, dl
, VT
);
7002 Result
= DAG
.getNOT(dl
, Result
, VT
);
7007 static SDValue
LowerSETCCCARRY(SDValue Op
, SelectionDAG
&DAG
) {
7008 SDValue LHS
= Op
.getOperand(0);
7009 SDValue RHS
= Op
.getOperand(1);
7010 SDValue Carry
= Op
.getOperand(2);
7011 SDValue Cond
= Op
.getOperand(3);
7014 assert(LHS
.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
7016 // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
7017 // have to invert the carry first.
7018 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
7019 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
7020 // This converts the boolean value carry into the carry flag.
7021 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
7023 SDVTList VTs
= DAG
.getVTList(LHS
.getValueType(), MVT::i32
);
7024 SDValue Cmp
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, LHS
, RHS
, Carry
);
7026 SDValue FVal
= DAG
.getConstant(0, DL
, MVT::i32
);
7027 SDValue TVal
= DAG
.getConstant(1, DL
, MVT::i32
);
7028 SDValue ARMcc
= DAG
.getConstant(
7029 IntCCToARMCC(cast
<CondCodeSDNode
>(Cond
)->get()), DL
, MVT::i32
);
7030 return DAG
.getNode(ARMISD::CMOV
, DL
, Op
.getValueType(), FVal
, TVal
, ARMcc
,
7034 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
7035 /// valid vector constant for a NEON or MVE instruction with a "modified
7036 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
7037 static SDValue
isVMOVModifiedImm(uint64_t SplatBits
, uint64_t SplatUndef
,
7038 unsigned SplatBitSize
, SelectionDAG
&DAG
,
7039 const SDLoc
&dl
, EVT
&VT
, EVT VectorVT
,
7040 VMOVModImmType type
) {
7041 unsigned OpCmode
, Imm
;
7042 bool is128Bits
= VectorVT
.is128BitVector();
7044 // SplatBitSize is set to the smallest size that splats the vector, so a
7045 // zero vector will always have SplatBitSize == 8. However, NEON modified
7046 // immediate instructions others than VMOV do not support the 8-bit encoding
7047 // of a zero vector, and the default encoding of zero is supposed to be the
7052 switch (SplatBitSize
) {
7054 if (type
!= VMOVModImm
)
7056 // Any 1-byte value is OK. Op=0, Cmode=1110.
7057 assert((SplatBits
& ~0xff) == 0 && "one byte splat value is too big");
7060 VT
= is128Bits
? MVT::v16i8
: MVT::v8i8
;
7064 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
7065 VT
= is128Bits
? MVT::v8i16
: MVT::v4i16
;
7066 if ((SplatBits
& ~0xff) == 0) {
7067 // Value = 0x00nn: Op=x, Cmode=100x.
7072 if ((SplatBits
& ~0xff00) == 0) {
7073 // Value = 0xnn00: Op=x, Cmode=101x.
7075 Imm
= SplatBits
>> 8;
7081 // NEON's 32-bit VMOV supports splat values where:
7082 // * only one byte is nonzero, or
7083 // * the least significant byte is 0xff and the second byte is nonzero, or
7084 // * the least significant 2 bytes are 0xff and the third is nonzero.
7085 VT
= is128Bits
? MVT::v4i32
: MVT::v2i32
;
7086 if ((SplatBits
& ~0xff) == 0) {
7087 // Value = 0x000000nn: Op=x, Cmode=000x.
7092 if ((SplatBits
& ~0xff00) == 0) {
7093 // Value = 0x0000nn00: Op=x, Cmode=001x.
7095 Imm
= SplatBits
>> 8;
7098 if ((SplatBits
& ~0xff0000) == 0) {
7099 // Value = 0x00nn0000: Op=x, Cmode=010x.
7101 Imm
= SplatBits
>> 16;
7104 if ((SplatBits
& ~0xff000000) == 0) {
7105 // Value = 0xnn000000: Op=x, Cmode=011x.
7107 Imm
= SplatBits
>> 24;
7111 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
7112 if (type
== OtherModImm
) return SDValue();
7114 if ((SplatBits
& ~0xffff) == 0 &&
7115 ((SplatBits
| SplatUndef
) & 0xff) == 0xff) {
7116 // Value = 0x0000nnff: Op=x, Cmode=1100.
7118 Imm
= SplatBits
>> 8;
7122 // cmode == 0b1101 is not supported for MVE VMVN
7123 if (type
== MVEVMVNModImm
)
7126 if ((SplatBits
& ~0xffffff) == 0 &&
7127 ((SplatBits
| SplatUndef
) & 0xffff) == 0xffff) {
7128 // Value = 0x00nnffff: Op=x, Cmode=1101.
7130 Imm
= SplatBits
>> 16;
7134 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
7135 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
7136 // VMOV.I32. A (very) minor optimization would be to replicate the value
7137 // and fall through here to test for a valid 64-bit splat. But, then the
7138 // caller would also need to check and handle the change in size.
7142 if (type
!= VMOVModImm
)
7144 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
7145 uint64_t BitMask
= 0xff;
7146 unsigned ImmMask
= 1;
7148 for (int ByteNum
= 0; ByteNum
< 8; ++ByteNum
) {
7149 if (((SplatBits
| SplatUndef
) & BitMask
) == BitMask
) {
7151 } else if ((SplatBits
& BitMask
) != 0) {
7158 // Op=1, Cmode=1110.
7160 VT
= is128Bits
? MVT::v2i64
: MVT::v1i64
;
7165 llvm_unreachable("unexpected size for isVMOVModifiedImm");
7168 unsigned EncodedVal
= ARM_AM::createVMOVModImm(OpCmode
, Imm
);
7169 return DAG
.getTargetConstant(EncodedVal
, dl
, MVT::i32
);
7172 SDValue
ARMTargetLowering::LowerConstantFP(SDValue Op
, SelectionDAG
&DAG
,
7173 const ARMSubtarget
*ST
) const {
7174 EVT VT
= Op
.getValueType();
7175 bool IsDouble
= (VT
== MVT::f64
);
7176 ConstantFPSDNode
*CFP
= cast
<ConstantFPSDNode
>(Op
);
7177 const APFloat
&FPVal
= CFP
->getValueAPF();
7179 // Prevent floating-point constants from using literal loads
7180 // when execute-only is enabled.
7181 if (ST
->genExecuteOnly()) {
7182 // We shouldn't trigger this for v6m execute-only
7183 assert((!ST
->isThumb1Only() || ST
->hasV8MBaselineOps()) &&
7184 "Unexpected architecture");
7186 // If we can represent the constant as an immediate, don't lower it
7187 if (isFPImmLegal(FPVal
, VT
))
7189 // Otherwise, construct as integer, and move to float register
7190 APInt INTVal
= FPVal
.bitcastToAPInt();
7192 switch (VT
.getSimpleVT().SimpleTy
) {
7194 llvm_unreachable("Unknown floating point type!");
7197 SDValue Lo
= DAG
.getConstant(INTVal
.trunc(32), DL
, MVT::i32
);
7198 SDValue Hi
= DAG
.getConstant(INTVal
.lshr(32).trunc(32), DL
, MVT::i32
);
7199 return DAG
.getNode(ARMISD::VMOVDRR
, DL
, MVT::f64
, Lo
, Hi
);
7202 return DAG
.getNode(ARMISD::VMOVSR
, DL
, VT
,
7203 DAG
.getConstant(INTVal
, DL
, MVT::i32
));
7207 if (!ST
->hasVFP3Base())
7210 // Use the default (constant pool) lowering for double constants when we have
7212 if (IsDouble
&& !Subtarget
->hasFP64())
7215 // Try splatting with a VMOV.f32...
7216 int ImmVal
= IsDouble
? ARM_AM::getFP64Imm(FPVal
) : ARM_AM::getFP32Imm(FPVal
);
7219 if (IsDouble
|| !ST
->useNEONForSinglePrecisionFP()) {
7220 // We have code in place to select a valid ConstantFP already, no need to
7225 // It's a float and we are trying to use NEON operations where
7226 // possible. Lower it to a splat followed by an extract.
7228 SDValue NewVal
= DAG
.getTargetConstant(ImmVal
, DL
, MVT::i32
);
7229 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVFPIMM
, DL
, MVT::v2f32
,
7231 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecConstant
,
7232 DAG
.getConstant(0, DL
, MVT::i32
));
7235 // The rest of our options are NEON only, make sure that's allowed before
7237 if (!ST
->hasNEON() || (!IsDouble
&& !ST
->useNEONForSinglePrecisionFP()))
7241 uint64_t iVal
= FPVal
.bitcastToAPInt().getZExtValue();
7243 // It wouldn't really be worth bothering for doubles except for one very
7244 // important value, which does happen to match: 0.0. So make sure we don't do
7246 if (IsDouble
&& (iVal
& 0xffffffff) != (iVal
>> 32))
7249 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
7250 SDValue NewVal
= isVMOVModifiedImm(iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
),
7251 VMovVT
, VT
, VMOVModImm
);
7252 if (NewVal
!= SDValue()) {
7254 SDValue VecConstant
= DAG
.getNode(ARMISD::VMOVIMM
, DL
, VMovVT
,
7257 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
7259 // It's a float: cast and extract a vector element.
7260 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
7262 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
7263 DAG
.getConstant(0, DL
, MVT::i32
));
7266 // Finally, try a VMVN.i32
7267 NewVal
= isVMOVModifiedImm(~iVal
& 0xffffffffU
, 0, 32, DAG
, SDLoc(Op
), VMovVT
,
7269 if (NewVal
!= SDValue()) {
7271 SDValue VecConstant
= DAG
.getNode(ARMISD::VMVNIMM
, DL
, VMovVT
, NewVal
);
7274 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, VecConstant
);
7276 // It's a float: cast and extract a vector element.
7277 SDValue VecFConstant
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::v2f32
,
7279 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, VecFConstant
,
7280 DAG
.getConstant(0, DL
, MVT::i32
));
7286 // check if an VEXT instruction can handle the shuffle mask when the
7287 // vector sources of the shuffle are the same.
7288 static bool isSingletonVEXTMask(ArrayRef
<int> M
, EVT VT
, unsigned &Imm
) {
7289 unsigned NumElts
= VT
.getVectorNumElements();
7291 // Assume that the first shuffle index is not UNDEF. Fail if it is.
7297 // If this is a VEXT shuffle, the immediate value is the index of the first
7298 // element. The other shuffle indices must be the successive elements after
7300 unsigned ExpectedElt
= Imm
;
7301 for (unsigned i
= 1; i
< NumElts
; ++i
) {
7302 // Increment the expected index. If it wraps around, just follow it
7303 // back to index zero and keep going.
7305 if (ExpectedElt
== NumElts
)
7308 if (M
[i
] < 0) continue; // ignore UNDEF indices
7309 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
7316 static bool isVEXTMask(ArrayRef
<int> M
, EVT VT
,
7317 bool &ReverseVEXT
, unsigned &Imm
) {
7318 unsigned NumElts
= VT
.getVectorNumElements();
7319 ReverseVEXT
= false;
7321 // Assume that the first shuffle index is not UNDEF. Fail if it is.
7327 // If this is a VEXT shuffle, the immediate value is the index of the first
7328 // element. The other shuffle indices must be the successive elements after
7330 unsigned ExpectedElt
= Imm
;
7331 for (unsigned i
= 1; i
< NumElts
; ++i
) {
7332 // Increment the expected index. If it wraps around, it may still be
7333 // a VEXT but the source vectors must be swapped.
7335 if (ExpectedElt
== NumElts
* 2) {
7340 if (M
[i
] < 0) continue; // ignore UNDEF indices
7341 if (ExpectedElt
!= static_cast<unsigned>(M
[i
]))
7345 // Adjust the index value if the source operands will be swapped.
7352 static bool isVTBLMask(ArrayRef
<int> M
, EVT VT
) {
7353 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
7354 // range, then 0 is placed into the resulting vector. So pretty much any mask
7355 // of 8 elements can work here.
7356 return VT
== MVT::v8i8
&& M
.size() == 8;
7359 static unsigned SelectPairHalf(unsigned Elements
, ArrayRef
<int> Mask
,
7361 if (Mask
.size() == Elements
* 2)
7362 return Index
/ Elements
;
7363 return Mask
[Index
] == 0 ? 0 : 1;
7366 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
7367 // checking that pairs of elements in the shuffle mask represent the same index
7368 // in each vector, incrementing the expected index by 2 at each step.
7369 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
7370 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
7372 // WhichResult gives the offset for each element in the mask based on which
7373 // of the two results it belongs to.
7375 // The transpose can be represented either as:
7376 // result1 = shufflevector v1, v2, result1_shuffle_mask
7377 // result2 = shufflevector v1, v2, result2_shuffle_mask
7378 // where v1/v2 and the shuffle masks have the same number of elements
7379 // (here WhichResult (see below) indicates which result is being checked)
7382 // results = shufflevector v1, v2, shuffle_mask
7383 // where both results are returned in one vector and the shuffle mask has twice
7384 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
7385 // want to check the low half and high half of the shuffle mask as if it were
7387 static bool isVTRNMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
7388 unsigned EltSz
= VT
.getScalarSizeInBits();
7392 unsigned NumElts
= VT
.getVectorNumElements();
7393 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
7396 // If the mask is twice as long as the input vector then we need to check the
7397 // upper and lower parts of the mask with a matching value for WhichResult
7398 // FIXME: A mask with only even values will be rejected in case the first
7399 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7400 // M[0] is used to determine WhichResult
7401 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
7402 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
7403 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
7404 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
7405 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ NumElts
+ WhichResult
))
7410 if (M
.size() == NumElts
*2)
7416 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7417 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7418 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
7419 static bool isVTRN_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
7420 unsigned EltSz
= VT
.getScalarSizeInBits();
7424 unsigned NumElts
= VT
.getVectorNumElements();
7425 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
7428 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
7429 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
7430 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
7431 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != j
+ WhichResult
) ||
7432 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != j
+ WhichResult
))
7437 if (M
.size() == NumElts
*2)
7443 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7444 // that the mask elements are either all even and in steps of size 2 or all odd
7445 // and in steps of size 2.
7446 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7447 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7449 // Requires similar checks to that of isVTRNMask with
7450 // respect the how results are returned.
7451 static bool isVUZPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
7452 unsigned EltSz
= VT
.getScalarSizeInBits();
7456 unsigned NumElts
= VT
.getVectorNumElements();
7457 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
7460 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
7461 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
7462 for (unsigned j
= 0; j
< NumElts
; ++j
) {
7463 if (M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != 2 * j
+ WhichResult
)
7468 if (M
.size() == NumElts
*2)
7471 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7472 if (VT
.is64BitVector() && EltSz
== 32)
7478 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7479 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7480 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
7481 static bool isVUZP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
7482 unsigned EltSz
= VT
.getScalarSizeInBits();
7486 unsigned NumElts
= VT
.getVectorNumElements();
7487 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
7490 unsigned Half
= NumElts
/ 2;
7491 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
7492 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
7493 for (unsigned j
= 0; j
< NumElts
; j
+= Half
) {
7494 unsigned Idx
= WhichResult
;
7495 for (unsigned k
= 0; k
< Half
; ++k
) {
7496 int MIdx
= M
[i
+ j
+ k
];
7497 if (MIdx
>= 0 && (unsigned) MIdx
!= Idx
)
7504 if (M
.size() == NumElts
*2)
7507 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7508 if (VT
.is64BitVector() && EltSz
== 32)
7514 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7515 // that pairs of elements of the shufflemask represent the same index in each
7516 // vector incrementing sequentially through the vectors.
7517 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7518 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7520 // Requires similar checks to that of isVTRNMask with respect the how results
7522 static bool isVZIPMask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
) {
7523 unsigned EltSz
= VT
.getScalarSizeInBits();
7527 unsigned NumElts
= VT
.getVectorNumElements();
7528 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
7531 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
7532 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
7533 unsigned Idx
= WhichResult
* NumElts
/ 2;
7534 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
7535 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
7536 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
+ NumElts
))
7542 if (M
.size() == NumElts
*2)
7545 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7546 if (VT
.is64BitVector() && EltSz
== 32)
7552 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7553 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7554 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
7555 static bool isVZIP_v_undef_Mask(ArrayRef
<int> M
, EVT VT
, unsigned &WhichResult
){
7556 unsigned EltSz
= VT
.getScalarSizeInBits();
7560 unsigned NumElts
= VT
.getVectorNumElements();
7561 if (M
.size() != NumElts
&& M
.size() != NumElts
*2)
7564 for (unsigned i
= 0; i
< M
.size(); i
+= NumElts
) {
7565 WhichResult
= SelectPairHalf(NumElts
, M
, i
);
7566 unsigned Idx
= WhichResult
* NumElts
/ 2;
7567 for (unsigned j
= 0; j
< NumElts
; j
+= 2) {
7568 if ((M
[i
+j
] >= 0 && (unsigned) M
[i
+j
] != Idx
) ||
7569 (M
[i
+j
+1] >= 0 && (unsigned) M
[i
+j
+1] != Idx
))
7575 if (M
.size() == NumElts
*2)
7578 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7579 if (VT
.is64BitVector() && EltSz
== 32)
7585 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7586 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
7587 static unsigned isNEONTwoResultShuffleMask(ArrayRef
<int> ShuffleMask
, EVT VT
,
7588 unsigned &WhichResult
,
7591 if (isVTRNMask(ShuffleMask
, VT
, WhichResult
))
7592 return ARMISD::VTRN
;
7593 if (isVUZPMask(ShuffleMask
, VT
, WhichResult
))
7594 return ARMISD::VUZP
;
7595 if (isVZIPMask(ShuffleMask
, VT
, WhichResult
))
7596 return ARMISD::VZIP
;
7599 if (isVTRN_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
7600 return ARMISD::VTRN
;
7601 if (isVUZP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
7602 return ARMISD::VUZP
;
7603 if (isVZIP_v_undef_Mask(ShuffleMask
, VT
, WhichResult
))
7604 return ARMISD::VZIP
;
7609 /// \return true if this is a reverse operation on an vector.
7610 static bool isReverseMask(ArrayRef
<int> M
, EVT VT
) {
7611 unsigned NumElts
= VT
.getVectorNumElements();
7612 // Make sure the mask has the right size.
7613 if (NumElts
!= M
.size())
7616 // Look for <15, ..., 3, -1, 1, 0>.
7617 for (unsigned i
= 0; i
!= NumElts
; ++i
)
7618 if (M
[i
] >= 0 && M
[i
] != (int) (NumElts
- 1 - i
))
7624 static bool isTruncMask(ArrayRef
<int> M
, EVT VT
, bool Top
, bool SingleSource
) {
7625 unsigned NumElts
= VT
.getVectorNumElements();
7626 // Make sure the mask has the right size.
7627 if (NumElts
!= M
.size() || (VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
))
7630 // Half-width truncation patterns (e.g. v4i32 -> v8i16):
7631 // !Top && SingleSource: <0, 2, 4, 6, 0, 2, 4, 6>
7632 // !Top && !SingleSource: <0, 2, 4, 6, 8, 10, 12, 14>
7633 // Top && SingleSource: <1, 3, 5, 7, 1, 3, 5, 7>
7634 // Top && !SingleSource: <1, 3, 5, 7, 9, 11, 13, 15>
7635 int Ofs
= Top
? 1 : 0;
7636 int Upper
= SingleSource
? 0 : NumElts
;
7637 for (int i
= 0, e
= NumElts
/ 2; i
!= e
; ++i
) {
7638 if (M
[i
] >= 0 && M
[i
] != (i
* 2) + Ofs
)
7640 if (M
[i
+ e
] >= 0 && M
[i
+ e
] != (i
* 2) + Ofs
+ Upper
)
7646 static bool isVMOVNMask(ArrayRef
<int> M
, EVT VT
, bool Top
, bool SingleSource
) {
7647 unsigned NumElts
= VT
.getVectorNumElements();
7648 // Make sure the mask has the right size.
7649 if (NumElts
!= M
.size() || (VT
!= MVT::v8i16
&& VT
!= MVT::v16i8
))
7653 // Look for <0, N, 2, N+2, 4, N+4, ..>.
7654 // This inserts Input2 into Input1
7656 // Look for <0, N+1, 2, N+3, 4, N+5, ..>
7657 // This inserts Input1 into Input2
7658 unsigned Offset
= Top
? 0 : 1;
7659 unsigned N
= SingleSource
? 0 : NumElts
;
7660 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
7661 if (M
[i
] >= 0 && M
[i
] != (int)i
)
7663 if (M
[i
+ 1] >= 0 && M
[i
+ 1] != (int)(N
+ i
+ Offset
))
7670 static bool isVMOVNTruncMask(ArrayRef
<int> M
, EVT ToVT
, bool rev
) {
7671 unsigned NumElts
= ToVT
.getVectorNumElements();
7672 if (NumElts
!= M
.size())
7675 // Test if the Trunc can be convertable to a VMOVN with this shuffle. We are
7676 // looking for patterns of:
7677 // !rev: 0 N/2 1 N/2+1 2 N/2+2 ...
7678 // rev: N/2 0 N/2+1 1 N/2+2 2 ...
7680 unsigned Off0
= rev
? NumElts
/ 2 : 0;
7681 unsigned Off1
= rev
? 0 : NumElts
/ 2;
7682 for (unsigned i
= 0; i
< NumElts
; i
+= 2) {
7683 if (M
[i
] >= 0 && M
[i
] != (int)(Off0
+ i
/ 2))
7685 if (M
[i
+ 1] >= 0 && M
[i
+ 1] != (int)(Off1
+ i
/ 2))
7692 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7693 // from a pair of inputs. For example:
7694 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7695 // FP_ROUND(EXTRACT_ELT(Y, 0),
7696 // FP_ROUND(EXTRACT_ELT(X, 1),
7697 // FP_ROUND(EXTRACT_ELT(Y, 1), ...)
7698 static SDValue
LowerBuildVectorOfFPTrunc(SDValue BV
, SelectionDAG
&DAG
,
7699 const ARMSubtarget
*ST
) {
7700 assert(BV
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7701 if (!ST
->hasMVEFloatOps())
7705 EVT VT
= BV
.getValueType();
7706 if (VT
!= MVT::v8f16
)
7709 // We are looking for a buildvector of fptrunc elements, where all the
7710 // elements are interleavingly extracted from two sources. Check the first two
7711 // items are valid enough and extract some info from them (they are checked
7712 // properly in the loop below).
7713 if (BV
.getOperand(0).getOpcode() != ISD::FP_ROUND
||
7714 BV
.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
7715 BV
.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7717 if (BV
.getOperand(1).getOpcode() != ISD::FP_ROUND
||
7718 BV
.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
7719 BV
.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7721 SDValue Op0
= BV
.getOperand(0).getOperand(0).getOperand(0);
7722 SDValue Op1
= BV
.getOperand(1).getOperand(0).getOperand(0);
7723 if (Op0
.getValueType() != MVT::v4f32
|| Op1
.getValueType() != MVT::v4f32
)
7726 // Check all the values in the BuildVector line up with our expectations.
7727 for (unsigned i
= 1; i
< 4; i
++) {
7728 auto Check
= [](SDValue Trunc
, SDValue Op
, unsigned Idx
) {
7729 return Trunc
.getOpcode() == ISD::FP_ROUND
&&
7730 Trunc
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7731 Trunc
.getOperand(0).getOperand(0) == Op
&&
7732 Trunc
.getOperand(0).getConstantOperandVal(1) == Idx
;
7734 if (!Check(BV
.getOperand(i
* 2 + 0), Op0
, i
))
7736 if (!Check(BV
.getOperand(i
* 2 + 1), Op1
, i
))
7740 SDValue N1
= DAG
.getNode(ARMISD::VCVTN
, dl
, VT
, DAG
.getUNDEF(VT
), Op0
,
7741 DAG
.getConstant(0, dl
, MVT::i32
));
7742 return DAG
.getNode(ARMISD::VCVTN
, dl
, VT
, N1
, Op1
,
7743 DAG
.getConstant(1, dl
, MVT::i32
));
7746 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7747 // from a single input on alternating lanes. For example:
7748 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7749 // FP_ROUND(EXTRACT_ELT(X, 2),
7750 // FP_ROUND(EXTRACT_ELT(X, 4), ...)
7751 static SDValue
LowerBuildVectorOfFPExt(SDValue BV
, SelectionDAG
&DAG
,
7752 const ARMSubtarget
*ST
) {
7753 assert(BV
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
7754 if (!ST
->hasMVEFloatOps())
7758 EVT VT
= BV
.getValueType();
7759 if (VT
!= MVT::v4f32
)
7762 // We are looking for a buildvector of fptext elements, where all the
7763 // elements are alternating lanes from a single source. For example <0,2,4,6>
7764 // or <1,3,5,7>. Check the first two items are valid enough and extract some
7765 // info from them (they are checked properly in the loop below).
7766 if (BV
.getOperand(0).getOpcode() != ISD::FP_EXTEND
||
7767 BV
.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
7769 SDValue Op0
= BV
.getOperand(0).getOperand(0).getOperand(0);
7770 int Offset
= BV
.getOperand(0).getOperand(0).getConstantOperandVal(1);
7771 if (Op0
.getValueType() != MVT::v8f16
|| (Offset
!= 0 && Offset
!= 1))
7774 // Check all the values in the BuildVector line up with our expectations.
7775 for (unsigned i
= 1; i
< 4; i
++) {
7776 auto Check
= [](SDValue Trunc
, SDValue Op
, unsigned Idx
) {
7777 return Trunc
.getOpcode() == ISD::FP_EXTEND
&&
7778 Trunc
.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
7779 Trunc
.getOperand(0).getOperand(0) == Op
&&
7780 Trunc
.getOperand(0).getConstantOperandVal(1) == Idx
;
7782 if (!Check(BV
.getOperand(i
), Op0
, 2 * i
+ Offset
))
7786 return DAG
.getNode(ARMISD::VCVTL
, dl
, VT
, Op0
,
7787 DAG
.getConstant(Offset
, dl
, MVT::i32
));
7790 // If N is an integer constant that can be moved into a register in one
7791 // instruction, return an SDValue of such a constant (will become a MOV
7792 // instruction). Otherwise return null.
7793 static SDValue
IsSingleInstrConstant(SDValue N
, SelectionDAG
&DAG
,
7794 const ARMSubtarget
*ST
, const SDLoc
&dl
) {
7796 if (!isa
<ConstantSDNode
>(N
))
7798 Val
= N
->getAsZExtVal();
7800 if (ST
->isThumb1Only()) {
7801 if (Val
<= 255 || ~Val
<= 255)
7802 return DAG
.getConstant(Val
, dl
, MVT::i32
);
7804 if (ARM_AM::getSOImmVal(Val
) != -1 || ARM_AM::getSOImmVal(~Val
) != -1)
7805 return DAG
.getConstant(Val
, dl
, MVT::i32
);
7810 static SDValue
LowerBUILD_VECTOR_i1(SDValue Op
, SelectionDAG
&DAG
,
7811 const ARMSubtarget
*ST
) {
7813 EVT VT
= Op
.getValueType();
7815 assert(ST
->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7817 unsigned NumElts
= VT
.getVectorNumElements();
7819 unsigned BitsPerBool
;
7823 } else if (NumElts
== 4) {
7826 } else if (NumElts
== 8) {
7829 } else if (NumElts
== 16) {
7835 // If this is a single value copied into all lanes (a splat), we can just sign
7836 // extend that single value
7837 SDValue FirstOp
= Op
.getOperand(0);
7838 if (!isa
<ConstantSDNode
>(FirstOp
) &&
7839 llvm::all_of(llvm::drop_begin(Op
->ops()), [&FirstOp
](const SDUse
&U
) {
7840 return U
.get().isUndef() || U
.get() == FirstOp
;
7842 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
, FirstOp
,
7843 DAG
.getValueType(MVT::i1
));
7844 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), Ext
);
7847 // First create base with bits set where known
7848 unsigned Bits32
= 0;
7849 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7850 SDValue V
= Op
.getOperand(i
);
7851 if (!isa
<ConstantSDNode
>(V
) && !V
.isUndef())
7853 bool BitSet
= V
.isUndef() ? false : V
->getAsZExtVal();
7855 Bits32
|= BoolMask
<< (i
* BitsPerBool
);
7858 // Add in unknown nodes
7859 SDValue Base
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
7860 DAG
.getConstant(Bits32
, dl
, MVT::i32
));
7861 for (unsigned i
= 0; i
< NumElts
; ++i
) {
7862 SDValue V
= Op
.getOperand(i
);
7863 if (isa
<ConstantSDNode
>(V
) || V
.isUndef())
7865 Base
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Base
, V
,
7866 DAG
.getConstant(i
, dl
, MVT::i32
));
7872 static SDValue
LowerBUILD_VECTORToVIDUP(SDValue Op
, SelectionDAG
&DAG
,
7873 const ARMSubtarget
*ST
) {
7874 if (!ST
->hasMVEIntegerOps())
7877 // We are looking for a buildvector where each element is Op[0] + i*N
7878 EVT VT
= Op
.getValueType();
7879 SDValue Op0
= Op
.getOperand(0);
7880 unsigned NumElts
= VT
.getVectorNumElements();
7882 // Get the increment value from operand 1
7883 SDValue Op1
= Op
.getOperand(1);
7884 if (Op1
.getOpcode() != ISD::ADD
|| Op1
.getOperand(0) != Op0
||
7885 !isa
<ConstantSDNode
>(Op1
.getOperand(1)))
7887 unsigned N
= Op1
.getConstantOperandVal(1);
7888 if (N
!= 1 && N
!= 2 && N
!= 4 && N
!= 8)
7891 // Check that each other operand matches
7892 for (unsigned I
= 2; I
< NumElts
; I
++) {
7893 SDValue OpI
= Op
.getOperand(I
);
7894 if (OpI
.getOpcode() != ISD::ADD
|| OpI
.getOperand(0) != Op0
||
7895 !isa
<ConstantSDNode
>(OpI
.getOperand(1)) ||
7896 OpI
.getConstantOperandVal(1) != I
* N
)
7901 return DAG
.getNode(ARMISD::VIDUP
, DL
, DAG
.getVTList(VT
, MVT::i32
), Op0
,
7902 DAG
.getConstant(N
, DL
, MVT::i32
));
7905 // Returns true if the operation N can be treated as qr instruction variant at
7907 static bool IsQRMVEInstruction(const SDNode
*N
, const SDNode
*Op
) {
7908 switch (N
->getOpcode()) {
7913 case ISD::AVGFLOORS
:
7914 case ISD::AVGFLOORU
:
7919 return N
->getOperand(1).getNode() == Op
;
7920 case ISD::INTRINSIC_WO_CHAIN
:
7921 switch (N
->getConstantOperandVal(0)) {
7922 case Intrinsic::arm_mve_add_predicated
:
7923 case Intrinsic::arm_mve_mul_predicated
:
7924 case Intrinsic::arm_mve_qadd_predicated
:
7925 case Intrinsic::arm_mve_vhadd
:
7926 case Intrinsic::arm_mve_hadd_predicated
:
7927 case Intrinsic::arm_mve_vqdmulh
:
7928 case Intrinsic::arm_mve_qdmulh_predicated
:
7929 case Intrinsic::arm_mve_vqrdmulh
:
7930 case Intrinsic::arm_mve_qrdmulh_predicated
:
7931 case Intrinsic::arm_mve_vqdmull
:
7932 case Intrinsic::arm_mve_vqdmull_predicated
:
7934 case Intrinsic::arm_mve_sub_predicated
:
7935 case Intrinsic::arm_mve_qsub_predicated
:
7936 case Intrinsic::arm_mve_vhsub
:
7937 case Intrinsic::arm_mve_hsub_predicated
:
7938 return N
->getOperand(2).getNode() == Op
;
7947 // If this is a case we can't handle, return null and let the default
7948 // expansion code take care of it.
7949 SDValue
ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op
, SelectionDAG
&DAG
,
7950 const ARMSubtarget
*ST
) const {
7951 BuildVectorSDNode
*BVN
= cast
<BuildVectorSDNode
>(Op
.getNode());
7953 EVT VT
= Op
.getValueType();
7955 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
7956 return LowerBUILD_VECTOR_i1(Op
, DAG
, ST
);
7958 if (SDValue R
= LowerBUILD_VECTORToVIDUP(Op
, DAG
, ST
))
7961 APInt SplatBits
, SplatUndef
;
7962 unsigned SplatBitSize
;
7964 if (BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
7965 if (SplatUndef
.isAllOnes())
7966 return DAG
.getUNDEF(VT
);
7968 // If all the users of this constant splat are qr instruction variants,
7969 // generate a vdup of the constant.
7970 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == SplatBitSize
&&
7971 (SplatBitSize
== 8 || SplatBitSize
== 16 || SplatBitSize
== 32) &&
7972 all_of(BVN
->users(),
7973 [BVN
](const SDNode
*U
) { return IsQRMVEInstruction(U
, BVN
); })) {
7974 EVT DupVT
= SplatBitSize
== 32 ? MVT::v4i32
7975 : SplatBitSize
== 16 ? MVT::v8i16
7977 SDValue Const
= DAG
.getConstant(SplatBits
.getZExtValue(), dl
, MVT::i32
);
7978 SDValue VDup
= DAG
.getNode(ARMISD::VDUP
, dl
, DupVT
, Const
);
7979 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, VDup
);
7982 if ((ST
->hasNEON() && SplatBitSize
<= 64) ||
7983 (ST
->hasMVEIntegerOps() && SplatBitSize
<= 64)) {
7984 // Check if an immediate VMOV works.
7987 isVMOVModifiedImm(SplatBits
.getZExtValue(), SplatUndef
.getZExtValue(),
7988 SplatBitSize
, DAG
, dl
, VmovVT
, VT
, VMOVModImm
);
7990 if (Val
.getNode()) {
7991 SDValue Vmov
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VmovVT
, Val
);
7992 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, Vmov
);
7995 // Try an immediate VMVN.
7996 uint64_t NegatedImm
= (~SplatBits
).getZExtValue();
7997 Val
= isVMOVModifiedImm(
7998 NegatedImm
, SplatUndef
.getZExtValue(), SplatBitSize
, DAG
, dl
, VmovVT
,
7999 VT
, ST
->hasMVEIntegerOps() ? MVEVMVNModImm
: VMVNModImm
);
8000 if (Val
.getNode()) {
8001 SDValue Vmov
= DAG
.getNode(ARMISD::VMVNIMM
, dl
, VmovVT
, Val
);
8002 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, Vmov
);
8005 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
8006 if ((VT
== MVT::v2f32
|| VT
== MVT::v4f32
) && SplatBitSize
== 32) {
8007 int ImmVal
= ARM_AM::getFP32Imm(SplatBits
);
8009 SDValue Val
= DAG
.getTargetConstant(ImmVal
, dl
, MVT::i32
);
8010 return DAG
.getNode(ARMISD::VMOVFPIMM
, dl
, VT
, Val
);
8014 // If we are under MVE, generate a VDUP(constant), bitcast to the original
8016 if (ST
->hasMVEIntegerOps() &&
8017 (SplatBitSize
== 8 || SplatBitSize
== 16 || SplatBitSize
== 32)) {
8018 EVT DupVT
= SplatBitSize
== 32 ? MVT::v4i32
8019 : SplatBitSize
== 16 ? MVT::v8i16
8021 SDValue Const
= DAG
.getConstant(SplatBits
.getZExtValue(), dl
, MVT::i32
);
8022 SDValue VDup
= DAG
.getNode(ARMISD::VDUP
, dl
, DupVT
, Const
);
8023 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, VDup
);
8028 // Scan through the operands to see if only one value is used.
8030 // As an optimisation, even if more than one value is used it may be more
8031 // profitable to splat with one value then change some lanes.
8033 // Heuristically we decide to do this if the vector has a "dominant" value,
8034 // defined as splatted to more than half of the lanes.
8035 unsigned NumElts
= VT
.getVectorNumElements();
8036 bool isOnlyLowElement
= true;
8037 bool usesOnlyOneValue
= true;
8038 bool hasDominantValue
= false;
8039 bool isConstant
= true;
8041 // Map of the number of times a particular SDValue appears in the
8043 DenseMap
<SDValue
, unsigned> ValueCounts
;
8045 for (unsigned i
= 0; i
< NumElts
; ++i
) {
8046 SDValue V
= Op
.getOperand(i
);
8050 isOnlyLowElement
= false;
8051 if (!isa
<ConstantFPSDNode
>(V
) && !isa
<ConstantSDNode
>(V
))
8054 unsigned &Count
= ValueCounts
[V
];
8056 // Is this value dominant? (takes up more than half of the lanes)
8057 if (++Count
> (NumElts
/ 2)) {
8058 hasDominantValue
= true;
8062 if (ValueCounts
.size() != 1)
8063 usesOnlyOneValue
= false;
8064 if (!Value
.getNode() && !ValueCounts
.empty())
8065 Value
= ValueCounts
.begin()->first
;
8067 if (ValueCounts
.empty())
8068 return DAG
.getUNDEF(VT
);
8070 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
8071 // Keep going if we are hitting this case.
8072 if (isOnlyLowElement
&& !ISD::isNormalLoad(Value
.getNode()))
8073 return DAG
.getNode(ISD::SCALAR_TO_VECTOR
, dl
, VT
, Value
);
8075 unsigned EltSize
= VT
.getScalarSizeInBits();
8077 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
8078 // i32 and try again.
8079 if (hasDominantValue
&& EltSize
<= 32) {
8083 // If we are VDUPing a value that comes directly from a vector, that will
8084 // cause an unnecessary move to and from a GPR, where instead we could
8085 // just use VDUPLANE. We can only do this if the lane being extracted
8086 // is at a constant index, as the VDUP from lane instructions only have
8087 // constant-index forms.
8088 ConstantSDNode
*constIndex
;
8089 if (Value
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
8090 (constIndex
= dyn_cast
<ConstantSDNode
>(Value
->getOperand(1)))) {
8091 // We need to create a new undef vector to use for the VDUPLANE if the
8092 // size of the vector from which we get the value is different than the
8093 // size of the vector that we need to create. We will insert the element
8094 // such that the register coalescer will remove unnecessary copies.
8095 if (VT
!= Value
->getOperand(0).getValueType()) {
8096 unsigned index
= constIndex
->getAPIntValue().getLimitedValue() %
8097 VT
.getVectorNumElements();
8098 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
8099 DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, DAG
.getUNDEF(VT
),
8100 Value
, DAG
.getConstant(index
, dl
, MVT::i32
)),
8101 DAG
.getConstant(index
, dl
, MVT::i32
));
8103 N
= DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
8104 Value
->getOperand(0), Value
->getOperand(1));
8106 N
= DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Value
);
8108 if (!usesOnlyOneValue
) {
8109 // The dominant value was splatted as 'N', but we now have to insert
8110 // all differing elements.
8111 for (unsigned I
= 0; I
< NumElts
; ++I
) {
8112 if (Op
.getOperand(I
) == Value
)
8114 SmallVector
<SDValue
, 3> Ops
;
8116 Ops
.push_back(Op
.getOperand(I
));
8117 Ops
.push_back(DAG
.getConstant(I
, dl
, MVT::i32
));
8118 N
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Ops
);
8123 if (VT
.getVectorElementType().isFloatingPoint()) {
8124 SmallVector
<SDValue
, 8> Ops
;
8125 MVT FVT
= VT
.getVectorElementType().getSimpleVT();
8126 assert(FVT
== MVT::f32
|| FVT
== MVT::f16
);
8127 MVT IVT
= (FVT
== MVT::f32
) ? MVT::i32
: MVT::i16
;
8128 for (unsigned i
= 0; i
< NumElts
; ++i
)
8129 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, IVT
,
8131 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), IVT
, NumElts
);
8132 SDValue Val
= DAG
.getBuildVector(VecVT
, dl
, Ops
);
8133 Val
= LowerBUILD_VECTOR(Val
, DAG
, ST
);
8135 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
8137 if (usesOnlyOneValue
) {
8138 SDValue Val
= IsSingleInstrConstant(Value
, DAG
, ST
, dl
);
8139 if (isConstant
&& Val
.getNode())
8140 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, Val
);
8144 // If all elements are constants and the case above didn't get hit, fall back
8145 // to the default expansion, which will generate a load from the constant
8150 // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
8151 // vmovn). Empirical tests suggest this is rarely worth it for vectors of
8154 if (SDValue shuffle
= ReconstructShuffle(Op
, DAG
))
8157 // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
8159 if (SDValue VCVT
= LowerBuildVectorOfFPTrunc(Op
, DAG
, Subtarget
))
8161 if (SDValue VCVT
= LowerBuildVectorOfFPExt(Op
, DAG
, Subtarget
))
8164 if (ST
->hasNEON() && VT
.is128BitVector() && VT
!= MVT::v2f64
&& VT
!= MVT::v4f32
) {
8165 // If we haven't found an efficient lowering, try splitting a 128-bit vector
8166 // into two 64-bit vectors; we might discover a better way to lower it.
8167 SmallVector
<SDValue
, 64> Ops(Op
->op_begin(), Op
->op_begin() + NumElts
);
8168 EVT ExtVT
= VT
.getVectorElementType();
8169 EVT HVT
= EVT::getVectorVT(*DAG
.getContext(), ExtVT
, NumElts
/ 2);
8170 SDValue Lower
= DAG
.getBuildVector(HVT
, dl
, ArrayRef(&Ops
[0], NumElts
/ 2));
8171 if (Lower
.getOpcode() == ISD::BUILD_VECTOR
)
8172 Lower
= LowerBUILD_VECTOR(Lower
, DAG
, ST
);
8174 DAG
.getBuildVector(HVT
, dl
, ArrayRef(&Ops
[NumElts
/ 2], NumElts
/ 2));
8175 if (Upper
.getOpcode() == ISD::BUILD_VECTOR
)
8176 Upper
= LowerBUILD_VECTOR(Upper
, DAG
, ST
);
8178 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Lower
, Upper
);
8181 // Vectors with 32- or 64-bit elements can be built by directly assigning
8182 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
8183 // will be legalized.
8184 if (EltSize
>= 32) {
8185 // Do the expansion with floating-point types, since that is what the VFP
8186 // registers are defined to use, and since i64 is not legal.
8187 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
8188 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
8189 SmallVector
<SDValue
, 8> Ops
;
8190 for (unsigned i
= 0; i
< NumElts
; ++i
)
8191 Ops
.push_back(DAG
.getNode(ISD::BITCAST
, dl
, EltVT
, Op
.getOperand(i
)));
8192 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
8193 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
8196 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8197 // know the default expansion would otherwise fall back on something even
8198 // worse. For a vector with one or two non-undef values, that's
8199 // scalar_to_vector for the elements followed by a shuffle (provided the
8200 // shuffle is valid for the target) and materialization element by element
8201 // on the stack followed by a load for everything else.
8202 if (!isConstant
&& !usesOnlyOneValue
) {
8203 SDValue Vec
= DAG
.getUNDEF(VT
);
8204 for (unsigned i
= 0 ; i
< NumElts
; ++i
) {
8205 SDValue V
= Op
.getOperand(i
);
8208 SDValue LaneIdx
= DAG
.getConstant(i
, dl
, MVT::i32
);
8209 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, Vec
, V
, LaneIdx
);
8217 // Gather data to see if the operation can be modelled as a
8218 // shuffle in combination with VEXTs.
8219 SDValue
ARMTargetLowering::ReconstructShuffle(SDValue Op
,
8220 SelectionDAG
&DAG
) const {
8221 assert(Op
.getOpcode() == ISD::BUILD_VECTOR
&& "Unknown opcode!");
8223 EVT VT
= Op
.getValueType();
8224 unsigned NumElts
= VT
.getVectorNumElements();
8226 struct ShuffleSourceInfo
{
8228 unsigned MinElt
= std::numeric_limits
<unsigned>::max();
8229 unsigned MaxElt
= 0;
8231 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
8232 // be compatible with the shuffle we intend to construct. As a result
8233 // ShuffleVec will be some sliding window into the original Vec.
8236 // Code should guarantee that element i in Vec starts at element "WindowBase
8237 // + i * WindowScale in ShuffleVec".
8239 int WindowScale
= 1;
8241 ShuffleSourceInfo(SDValue Vec
) : Vec(Vec
), ShuffleVec(Vec
) {}
8243 bool operator ==(SDValue OtherVec
) { return Vec
== OtherVec
; }
8246 // First gather all vectors used as an immediate source for this BUILD_VECTOR
8248 SmallVector
<ShuffleSourceInfo
, 2> Sources
;
8249 for (unsigned i
= 0; i
< NumElts
; ++i
) {
8250 SDValue V
= Op
.getOperand(i
);
8253 else if (V
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
) {
8254 // A shuffle can only come from building a vector from various
8255 // elements of other vectors.
8257 } else if (!isa
<ConstantSDNode
>(V
.getOperand(1))) {
8258 // Furthermore, shuffles require a constant mask, whereas extractelts
8259 // accept variable indices.
8263 // Add this element source to the list if it's not already there.
8264 SDValue SourceVec
= V
.getOperand(0);
8265 auto Source
= llvm::find(Sources
, SourceVec
);
8266 if (Source
== Sources
.end())
8267 Source
= Sources
.insert(Sources
.end(), ShuffleSourceInfo(SourceVec
));
8269 // Update the minimum and maximum lane number seen.
8270 unsigned EltNo
= V
.getConstantOperandVal(1);
8271 Source
->MinElt
= std::min(Source
->MinElt
, EltNo
);
8272 Source
->MaxElt
= std::max(Source
->MaxElt
, EltNo
);
8275 // Currently only do something sane when at most two source vectors
8277 if (Sources
.size() > 2)
8280 // Find out the smallest element size among result and two sources, and use
8281 // it as element size to build the shuffle_vector.
8282 EVT SmallestEltTy
= VT
.getVectorElementType();
8283 for (auto &Source
: Sources
) {
8284 EVT SrcEltTy
= Source
.Vec
.getValueType().getVectorElementType();
8285 if (SrcEltTy
.bitsLT(SmallestEltTy
))
8286 SmallestEltTy
= SrcEltTy
;
8288 unsigned ResMultiplier
=
8289 VT
.getScalarSizeInBits() / SmallestEltTy
.getSizeInBits();
8290 NumElts
= VT
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
8291 EVT ShuffleVT
= EVT::getVectorVT(*DAG
.getContext(), SmallestEltTy
, NumElts
);
8293 // If the source vector is too wide or too narrow, we may nevertheless be able
8294 // to construct a compatible shuffle either by concatenating it with UNDEF or
8295 // extracting a suitable range of elements.
8296 for (auto &Src
: Sources
) {
8297 EVT SrcVT
= Src
.ShuffleVec
.getValueType();
8299 uint64_t SrcVTSize
= SrcVT
.getFixedSizeInBits();
8300 uint64_t VTSize
= VT
.getFixedSizeInBits();
8301 if (SrcVTSize
== VTSize
)
8304 // This stage of the search produces a source with the same element type as
8305 // the original, but with a total width matching the BUILD_VECTOR output.
8306 EVT EltVT
= SrcVT
.getVectorElementType();
8307 unsigned NumSrcElts
= VTSize
/ EltVT
.getFixedSizeInBits();
8308 EVT DestVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumSrcElts
);
8310 if (SrcVTSize
< VTSize
) {
8311 if (2 * SrcVTSize
!= VTSize
)
8313 // We can pad out the smaller vector for free, so if it's part of a
8316 DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, DestVT
, Src
.ShuffleVec
,
8317 DAG
.getUNDEF(Src
.ShuffleVec
.getValueType()));
8321 if (SrcVTSize
!= 2 * VTSize
)
8324 if (Src
.MaxElt
- Src
.MinElt
>= NumSrcElts
) {
8325 // Span too large for a VEXT to cope
8329 if (Src
.MinElt
>= NumSrcElts
) {
8330 // The extraction can just take the second half
8332 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
8333 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
8334 Src
.WindowBase
= -NumSrcElts
;
8335 } else if (Src
.MaxElt
< NumSrcElts
) {
8336 // The extraction can just take the first half
8338 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
8339 DAG
.getConstant(0, dl
, MVT::i32
));
8341 // An actual VEXT is needed
8343 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
8344 DAG
.getConstant(0, dl
, MVT::i32
));
8346 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, DestVT
, Src
.ShuffleVec
,
8347 DAG
.getConstant(NumSrcElts
, dl
, MVT::i32
));
8349 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VEXT
, dl
, DestVT
, VEXTSrc1
,
8351 DAG
.getConstant(Src
.MinElt
, dl
, MVT::i32
));
8352 Src
.WindowBase
= -Src
.MinElt
;
8356 // Another possible incompatibility occurs from the vector element types. We
8357 // can fix this by bitcasting the source vectors to the same type we intend
8359 for (auto &Src
: Sources
) {
8360 EVT SrcEltTy
= Src
.ShuffleVec
.getValueType().getVectorElementType();
8361 if (SrcEltTy
== SmallestEltTy
)
8363 assert(ShuffleVT
.getVectorElementType() == SmallestEltTy
);
8364 Src
.ShuffleVec
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, ShuffleVT
, Src
.ShuffleVec
);
8365 Src
.WindowScale
= SrcEltTy
.getSizeInBits() / SmallestEltTy
.getSizeInBits();
8366 Src
.WindowBase
*= Src
.WindowScale
;
8369 // Final check before we try to actually produce a shuffle.
8371 for (auto Src
: Sources
)
8372 assert(Src
.ShuffleVec
.getValueType() == ShuffleVT
);
8375 // The stars all align, our next step is to produce the mask for the shuffle.
8376 SmallVector
<int, 8> Mask(ShuffleVT
.getVectorNumElements(), -1);
8377 int BitsPerShuffleLane
= ShuffleVT
.getScalarSizeInBits();
8378 for (unsigned i
= 0; i
< VT
.getVectorNumElements(); ++i
) {
8379 SDValue Entry
= Op
.getOperand(i
);
8380 if (Entry
.isUndef())
8383 auto Src
= llvm::find(Sources
, Entry
.getOperand(0));
8384 int EltNo
= cast
<ConstantSDNode
>(Entry
.getOperand(1))->getSExtValue();
8386 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
8387 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
8389 EVT OrigEltTy
= Entry
.getOperand(0).getValueType().getVectorElementType();
8390 int BitsDefined
= std::min(OrigEltTy
.getScalarSizeInBits(),
8391 VT
.getScalarSizeInBits());
8392 int LanesDefined
= BitsDefined
/ BitsPerShuffleLane
;
8394 // This source is expected to fill ResMultiplier lanes of the final shuffle,
8395 // starting at the appropriate offset.
8396 int *LaneMask
= &Mask
[i
* ResMultiplier
];
8398 int ExtractBase
= EltNo
* Src
->WindowScale
+ Src
->WindowBase
;
8399 ExtractBase
+= NumElts
* (Src
- Sources
.begin());
8400 for (int j
= 0; j
< LanesDefined
; ++j
)
8401 LaneMask
[j
] = ExtractBase
+ j
;
8405 // We can't handle more than two sources. This should have already
8406 // been checked before this point.
8407 assert(Sources
.size() <= 2 && "Too many sources!");
8409 SDValue ShuffleOps
[] = { DAG
.getUNDEF(ShuffleVT
), DAG
.getUNDEF(ShuffleVT
) };
8410 for (unsigned i
= 0; i
< Sources
.size(); ++i
)
8411 ShuffleOps
[i
] = Sources
[i
].ShuffleVec
;
8413 SDValue Shuffle
= buildLegalVectorShuffle(ShuffleVT
, dl
, ShuffleOps
[0],
8414 ShuffleOps
[1], Mask
, DAG
);
8417 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, Shuffle
);
8420 enum ShuffleOpCodes
{
8421 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8430 OP_VUZPL
, // VUZP, left result
8431 OP_VUZPR
, // VUZP, right result
8432 OP_VZIPL
, // VZIP, left result
8433 OP_VZIPR
, // VZIP, right result
8434 OP_VTRNL
, // VTRN, left result
8435 OP_VTRNR
// VTRN, right result
8438 static bool isLegalMVEShuffleOp(unsigned PFEntry
) {
8439 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
8452 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8453 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8454 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8455 /// are assumed to be legal.
8456 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef
<int> M
, EVT VT
) const {
8457 if (VT
.getVectorNumElements() == 4 &&
8458 (VT
.is128BitVector() || VT
.is64BitVector())) {
8459 unsigned PFIndexes
[4];
8460 for (unsigned i
= 0; i
!= 4; ++i
) {
8464 PFIndexes
[i
] = M
[i
];
8467 // Compute the index in the perfect shuffle table.
8468 unsigned PFTableIndex
=
8469 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
8470 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
8471 unsigned Cost
= (PFEntry
>> 30);
8473 if (Cost
<= 4 && (Subtarget
->hasNEON() || isLegalMVEShuffleOp(PFEntry
)))
8477 bool ReverseVEXT
, isV_UNDEF
;
8478 unsigned Imm
, WhichResult
;
8480 unsigned EltSize
= VT
.getScalarSizeInBits();
8481 if (EltSize
>= 32 ||
8482 ShuffleVectorSDNode::isSplatMask(&M
[0], VT
) ||
8483 ShuffleVectorInst::isIdentityMask(M
, M
.size()) ||
8484 isVREVMask(M
, VT
, 64) ||
8485 isVREVMask(M
, VT
, 32) ||
8486 isVREVMask(M
, VT
, 16))
8488 else if (Subtarget
->hasNEON() &&
8489 (isVEXTMask(M
, VT
, ReverseVEXT
, Imm
) ||
8490 isVTBLMask(M
, VT
) ||
8491 isNEONTwoResultShuffleMask(M
, VT
, WhichResult
, isV_UNDEF
)))
8493 else if ((VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v16i8
) &&
8494 isReverseMask(M
, VT
))
8496 else if (Subtarget
->hasMVEIntegerOps() &&
8497 (isVMOVNMask(M
, VT
, true, false) ||
8498 isVMOVNMask(M
, VT
, false, false) || isVMOVNMask(M
, VT
, true, true)))
8500 else if (Subtarget
->hasMVEIntegerOps() &&
8501 (isTruncMask(M
, VT
, false, false) ||
8502 isTruncMask(M
, VT
, false, true) ||
8503 isTruncMask(M
, VT
, true, false) || isTruncMask(M
, VT
, true, true)))
8509 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8510 /// the specified operations to build the shuffle.
8511 static SDValue
GeneratePerfectShuffle(unsigned PFEntry
, SDValue LHS
,
8512 SDValue RHS
, SelectionDAG
&DAG
,
8514 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
8515 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
8516 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
8518 if (OpNum
== OP_COPY
) {
8519 if (LHSID
== (1*9+2)*9+3) return LHS
;
8520 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8524 SDValue OpLHS
, OpRHS
;
8525 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
, dl
);
8526 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
, dl
);
8527 EVT VT
= OpLHS
.getValueType();
8530 default: llvm_unreachable("Unknown shuffle opcode!");
8532 // VREV divides the vector in half and swaps within the half.
8533 if (VT
.getScalarSizeInBits() == 32)
8534 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, OpLHS
);
8535 // vrev <4 x i16> -> VREV32
8536 if (VT
.getScalarSizeInBits() == 16)
8537 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, OpLHS
);
8538 // vrev <4 x i8> -> VREV16
8539 assert(VT
.getScalarSizeInBits() == 8);
8540 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, OpLHS
);
8545 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
,
8546 OpLHS
, DAG
.getConstant(OpNum
-OP_VDUP0
, dl
, MVT::i32
));
8550 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
,
8552 DAG
.getConstant(OpNum
- OP_VEXT1
+ 1, dl
, MVT::i32
));
8555 return DAG
.getNode(ARMISD::VUZP
, dl
, DAG
.getVTList(VT
, VT
),
8556 OpLHS
, OpRHS
).getValue(OpNum
-OP_VUZPL
);
8559 return DAG
.getNode(ARMISD::VZIP
, dl
, DAG
.getVTList(VT
, VT
),
8560 OpLHS
, OpRHS
).getValue(OpNum
-OP_VZIPL
);
8563 return DAG
.getNode(ARMISD::VTRN
, dl
, DAG
.getVTList(VT
, VT
),
8564 OpLHS
, OpRHS
).getValue(OpNum
-OP_VTRNL
);
8568 static SDValue
LowerVECTOR_SHUFFLEv8i8(SDValue Op
,
8569 ArrayRef
<int> ShuffleMask
,
8570 SelectionDAG
&DAG
) {
8571 // Check to see if we can use the VTBL instruction.
8572 SDValue V1
= Op
.getOperand(0);
8573 SDValue V2
= Op
.getOperand(1);
8576 SmallVector
<SDValue
, 8> VTBLMask
;
8577 for (int I
: ShuffleMask
)
8578 VTBLMask
.push_back(DAG
.getSignedConstant(I
, DL
, MVT::i32
));
8580 if (V2
.getNode()->isUndef())
8581 return DAG
.getNode(ARMISD::VTBL1
, DL
, MVT::v8i8
, V1
,
8582 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
8584 return DAG
.getNode(ARMISD::VTBL2
, DL
, MVT::v8i8
, V1
, V2
,
8585 DAG
.getBuildVector(MVT::v8i8
, DL
, VTBLMask
));
8588 static SDValue
LowerReverse_VECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
) {
8590 EVT VT
= Op
.getValueType();
8592 assert((VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v16i8
) &&
8593 "Expect an v8i16/v16i8 type");
8594 SDValue OpLHS
= DAG
.getNode(ARMISD::VREV64
, DL
, VT
, Op
.getOperand(0));
8595 // For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now,
8596 // extract the first 8 bytes into the top double word and the last 8 bytes
8597 // into the bottom double word, through a new vector shuffle that will be
8598 // turned into a VEXT on Neon, or a couple of VMOVDs on MVE.
8599 std::vector
<int> NewMask
;
8600 for (unsigned i
= 0; i
< VT
.getVectorNumElements() / 2; i
++)
8601 NewMask
.push_back(VT
.getVectorNumElements() / 2 + i
);
8602 for (unsigned i
= 0; i
< VT
.getVectorNumElements() / 2; i
++)
8603 NewMask
.push_back(i
);
8604 return DAG
.getVectorShuffle(VT
, DL
, OpLHS
, OpLHS
, NewMask
);
8607 static EVT
getVectorTyFromPredicateVector(EVT VT
) {
8608 switch (VT
.getSimpleVT().SimpleTy
) {
8618 llvm_unreachable("Unexpected vector predicate type");
8622 static SDValue
PromoteMVEPredVector(SDLoc dl
, SDValue Pred
, EVT VT
,
8623 SelectionDAG
&DAG
) {
8624 // Converting from boolean predicates to integers involves creating a vector
8625 // of all ones or all zeroes and selecting the lanes based upon the real
8628 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl
, MVT::i32
);
8629 AllOnes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllOnes
);
8632 DAG
.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl
, MVT::i32
);
8633 AllZeroes
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, MVT::v16i8
, AllZeroes
);
8635 // Get full vector type from predicate type
8636 EVT NewVT
= getVectorTyFromPredicateVector(VT
);
8639 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8640 // this to a v16i1. This cannot be done with an ordinary bitcast because the
8641 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8642 // since we know in hardware the sizes are really the same.
8643 if (VT
!= MVT::v16i1
)
8644 RecastV1
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Pred
);
8648 // Select either all ones or zeroes depending upon the real predicate bits.
8649 SDValue PredAsVector
=
8650 DAG
.getNode(ISD::VSELECT
, dl
, MVT::v16i8
, RecastV1
, AllOnes
, AllZeroes
);
8652 // Recast our new predicate-as-integer v16i8 vector into something
8653 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8654 return DAG
.getNode(ISD::BITCAST
, dl
, NewVT
, PredAsVector
);
8657 static SDValue
LowerVECTOR_SHUFFLE_i1(SDValue Op
, SelectionDAG
&DAG
,
8658 const ARMSubtarget
*ST
) {
8659 EVT VT
= Op
.getValueType();
8660 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
8661 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
8663 assert(ST
->hasMVEIntegerOps() &&
8664 "No support for vector shuffle of boolean predicates");
8666 SDValue V1
= Op
.getOperand(0);
8667 SDValue V2
= Op
.getOperand(1);
8669 if (isReverseMask(ShuffleMask
, VT
)) {
8670 SDValue cast
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, V1
);
8671 SDValue rbit
= DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, cast
);
8672 SDValue srl
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, rbit
,
8673 DAG
.getConstant(16, dl
, MVT::i32
));
8674 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, srl
);
8677 // Until we can come up with optimised cases for every single vector
8678 // shuffle in existence we have chosen the least painful strategy. This is
8679 // to essentially promote the boolean predicate to a 8-bit integer, where
8680 // each predicate represents a byte. Then we fall back on a normal integer
8681 // vector shuffle and convert the result back into a predicate vector. In
8682 // many cases the generated code might be even better than scalar code
8683 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8684 // fields in a register into 8 other arbitrary 2-bit fields!
8685 SDValue PredAsVector1
= PromoteMVEPredVector(dl
, V1
, VT
, DAG
);
8686 EVT NewVT
= PredAsVector1
.getValueType();
8687 SDValue PredAsVector2
= V2
.isUndef() ? DAG
.getUNDEF(NewVT
)
8688 : PromoteMVEPredVector(dl
, V2
, VT
, DAG
);
8689 assert(PredAsVector2
.getValueType() == NewVT
&&
8690 "Expected identical vector type in expanded i1 shuffle!");
8693 SDValue Shuffled
= DAG
.getVectorShuffle(NewVT
, dl
, PredAsVector1
,
8694 PredAsVector2
, ShuffleMask
);
8696 // Now return the result of comparing the shuffled vector with zero,
8697 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1
8698 // we convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
8699 if (VT
== MVT::v2i1
) {
8700 SDValue BC
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, MVT::v4i32
, Shuffled
);
8701 SDValue Cmp
= DAG
.getNode(ARMISD::VCMPZ
, dl
, MVT::v4i1
, BC
,
8702 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8703 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v2i1
, Cmp
);
8705 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Shuffled
,
8706 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
8709 static SDValue
LowerVECTOR_SHUFFLEUsingMovs(SDValue Op
,
8710 ArrayRef
<int> ShuffleMask
,
8711 SelectionDAG
&DAG
) {
8712 // Attempt to lower the vector shuffle using as many whole register movs as
8713 // possible. This is useful for types smaller than 32bits, which would
8714 // often otherwise become a series for grp movs.
8716 EVT VT
= Op
.getValueType();
8717 if (VT
.getScalarSizeInBits() >= 32)
8720 assert((VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v16i8
) &&
8721 "Unexpected vector type");
8722 int NumElts
= VT
.getVectorNumElements();
8723 int QuarterSize
= NumElts
/ 4;
8724 // The four final parts of the vector, as i32's
8727 // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8728 // <u,u,u,u>), returning the vmov lane index
8729 auto getMovIdx
= [](ArrayRef
<int> ShuffleMask
, int Start
, int Length
) {
8730 // Detect which mov lane this would be from the first non-undef element.
8732 for (int i
= 0; i
< Length
; i
++) {
8733 if (ShuffleMask
[Start
+ i
] >= 0) {
8734 if (ShuffleMask
[Start
+ i
] % Length
!= i
)
8736 MovIdx
= ShuffleMask
[Start
+ i
] / Length
;
8740 // If all items are undef, leave this for other combines
8743 // Check the remaining values are the correct part of the same mov
8744 for (int i
= 1; i
< Length
; i
++) {
8745 if (ShuffleMask
[Start
+ i
] >= 0 &&
8746 (ShuffleMask
[Start
+ i
] / Length
!= MovIdx
||
8747 ShuffleMask
[Start
+ i
] % Length
!= i
))
8753 for (int Part
= 0; Part
< 4; ++Part
) {
8754 // Does this part look like a mov
8755 int Elt
= getMovIdx(ShuffleMask
, Part
* QuarterSize
, QuarterSize
);
8757 SDValue Input
= Op
->getOperand(0);
8759 Input
= Op
->getOperand(1);
8762 SDValue BitCast
= DAG
.getBitcast(MVT::v4f32
, Input
);
8763 Parts
[Part
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
, BitCast
,
8764 DAG
.getConstant(Elt
, dl
, MVT::i32
));
8768 // Nothing interesting found, just return
8769 if (!Parts
[0] && !Parts
[1] && !Parts
[2] && !Parts
[3])
8772 // The other parts need to be built with the old shuffle vector, cast to a
8773 // v4i32 and extract_vector_elts
8774 if (!Parts
[0] || !Parts
[1] || !Parts
[2] || !Parts
[3]) {
8775 SmallVector
<int, 16> NewShuffleMask
;
8776 for (int Part
= 0; Part
< 4; ++Part
)
8777 for (int i
= 0; i
< QuarterSize
; i
++)
8778 NewShuffleMask
.push_back(
8779 Parts
[Part
] ? -1 : ShuffleMask
[Part
* QuarterSize
+ i
]);
8780 SDValue NewShuffle
= DAG
.getVectorShuffle(
8781 VT
, dl
, Op
->getOperand(0), Op
->getOperand(1), NewShuffleMask
);
8782 SDValue BitCast
= DAG
.getBitcast(MVT::v4f32
, NewShuffle
);
8784 for (int Part
= 0; Part
< 4; ++Part
)
8786 Parts
[Part
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f32
,
8787 BitCast
, DAG
.getConstant(Part
, dl
, MVT::i32
));
8789 // Build a vector out of the various parts and bitcast it back to the original
8791 SDValue NewVec
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, MVT::v4f32
, Parts
);
8792 return DAG
.getBitcast(VT
, NewVec
);
8795 static SDValue
LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op
,
8796 ArrayRef
<int> ShuffleMask
,
8797 SelectionDAG
&DAG
) {
8798 SDValue V1
= Op
.getOperand(0);
8799 SDValue V2
= Op
.getOperand(1);
8800 EVT VT
= Op
.getValueType();
8801 unsigned NumElts
= VT
.getVectorNumElements();
8803 // An One-Off Identity mask is one that is mostly an identity mask from as
8804 // single source but contains a single element out-of-place, either from a
8805 // different vector or from another position in the same vector. As opposed to
8806 // lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
8808 auto isOneOffIdentityMask
= [](ArrayRef
<int> Mask
, EVT VT
, int BaseOffset
,
8812 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
8816 if (Mask
[i
] != i
+ BaseOffset
) {
8817 if (OffElement
== -1)
8823 return NonUndef
> 2 && OffElement
!= -1;
8827 if (isOneOffIdentityMask(ShuffleMask
, VT
, 0, OffElement
))
8829 else if (isOneOffIdentityMask(ShuffleMask
, VT
, NumElts
, OffElement
))
8835 EVT SVT
= VT
.getScalarType() == MVT::i8
|| VT
.getScalarType() == MVT::i16
8837 : VT
.getScalarType();
8838 SDValue Elt
= DAG
.getNode(
8839 ISD::EXTRACT_VECTOR_ELT
, dl
, SVT
,
8840 ShuffleMask
[OffElement
] < (int)NumElts
? V1
: V2
,
8841 DAG
.getVectorIdxConstant(ShuffleMask
[OffElement
] % NumElts
, dl
));
8842 return DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VT
, VInput
, Elt
,
8843 DAG
.getVectorIdxConstant(OffElement
% NumElts
, dl
));
8846 static SDValue
LowerVECTOR_SHUFFLE(SDValue Op
, SelectionDAG
&DAG
,
8847 const ARMSubtarget
*ST
) {
8848 SDValue V1
= Op
.getOperand(0);
8849 SDValue V2
= Op
.getOperand(1);
8851 EVT VT
= Op
.getValueType();
8852 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(Op
.getNode());
8853 unsigned EltSize
= VT
.getScalarSizeInBits();
8855 if (ST
->hasMVEIntegerOps() && EltSize
== 1)
8856 return LowerVECTOR_SHUFFLE_i1(Op
, DAG
, ST
);
8858 // Convert shuffles that are directly supported on NEON to target-specific
8859 // DAG nodes, instead of keeping them as shuffles and matching them again
8860 // during code selection. This is more efficient and avoids the possibility
8861 // of inconsistencies between legalization and selection.
8862 // FIXME: floating-point vectors should be canonicalized to integer vectors
8863 // of the same time so that they get CSEd properly.
8864 ArrayRef
<int> ShuffleMask
= SVN
->getMask();
8866 if (EltSize
<= 32) {
8867 if (SVN
->isSplat()) {
8868 int Lane
= SVN
->getSplatIndex();
8869 // If this is undef splat, generate it via "just" vdup, if possible.
8870 if (Lane
== -1) Lane
= 0;
8872 // Test if V1 is a SCALAR_TO_VECTOR.
8873 if (Lane
== 0 && V1
.getOpcode() == ISD::SCALAR_TO_VECTOR
) {
8874 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
8876 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8877 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8879 if (Lane
== 0 && V1
.getOpcode() == ISD::BUILD_VECTOR
&&
8880 !isa
<ConstantSDNode
>(V1
.getOperand(0))) {
8881 bool IsScalarToVector
= true;
8882 for (unsigned i
= 1, e
= V1
.getNumOperands(); i
!= e
; ++i
)
8883 if (!V1
.getOperand(i
).isUndef()) {
8884 IsScalarToVector
= false;
8887 if (IsScalarToVector
)
8888 return DAG
.getNode(ARMISD::VDUP
, dl
, VT
, V1
.getOperand(0));
8890 return DAG
.getNode(ARMISD::VDUPLANE
, dl
, VT
, V1
,
8891 DAG
.getConstant(Lane
, dl
, MVT::i32
));
8894 bool ReverseVEXT
= false;
8896 if (ST
->hasNEON() && isVEXTMask(ShuffleMask
, VT
, ReverseVEXT
, Imm
)) {
8899 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V2
,
8900 DAG
.getConstant(Imm
, dl
, MVT::i32
));
8903 if (isVREVMask(ShuffleMask
, VT
, 64))
8904 return DAG
.getNode(ARMISD::VREV64
, dl
, VT
, V1
);
8905 if (isVREVMask(ShuffleMask
, VT
, 32))
8906 return DAG
.getNode(ARMISD::VREV32
, dl
, VT
, V1
);
8907 if (isVREVMask(ShuffleMask
, VT
, 16))
8908 return DAG
.getNode(ARMISD::VREV16
, dl
, VT
, V1
);
8910 if (ST
->hasNEON() && V2
->isUndef() && isSingletonVEXTMask(ShuffleMask
, VT
, Imm
)) {
8911 return DAG
.getNode(ARMISD::VEXT
, dl
, VT
, V1
, V1
,
8912 DAG
.getConstant(Imm
, dl
, MVT::i32
));
8915 // Check for Neon shuffles that modify both input vectors in place.
8916 // If both results are used, i.e., if there are two shuffles with the same
8917 // source operands and with masks corresponding to both results of one of
8918 // these operations, DAG memoization will ensure that a single node is
8919 // used for both shuffles.
8920 unsigned WhichResult
= 0;
8921 bool isV_UNDEF
= false;
8922 if (ST
->hasNEON()) {
8923 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
8924 ShuffleMask
, VT
, WhichResult
, isV_UNDEF
)) {
8927 return DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(VT
, VT
), V1
, V2
)
8928 .getValue(WhichResult
);
8931 if (ST
->hasMVEIntegerOps()) {
8932 if (isVMOVNMask(ShuffleMask
, VT
, false, false))
8933 return DAG
.getNode(ARMISD::VMOVN
, dl
, VT
, V2
, V1
,
8934 DAG
.getConstant(0, dl
, MVT::i32
));
8935 if (isVMOVNMask(ShuffleMask
, VT
, true, false))
8936 return DAG
.getNode(ARMISD::VMOVN
, dl
, VT
, V1
, V2
,
8937 DAG
.getConstant(1, dl
, MVT::i32
));
8938 if (isVMOVNMask(ShuffleMask
, VT
, true, true))
8939 return DAG
.getNode(ARMISD::VMOVN
, dl
, VT
, V1
, V1
,
8940 DAG
.getConstant(1, dl
, MVT::i32
));
8943 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8944 // shuffles that produce a result larger than their operands with:
8945 // shuffle(concat(v1, undef), concat(v2, undef))
8947 // shuffle(concat(v1, v2), undef)
8948 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8950 // This is useful in the general case, but there are special cases where
8951 // native shuffles produce larger results: the two-result ops.
8953 // Look through the concat when lowering them:
8954 // shuffle(concat(v1, v2), undef)
8956 // concat(VZIP(v1, v2):0, :1)
8958 if (ST
->hasNEON() && V1
->getOpcode() == ISD::CONCAT_VECTORS
&& V2
->isUndef()) {
8959 SDValue SubV1
= V1
->getOperand(0);
8960 SDValue SubV2
= V1
->getOperand(1);
8961 EVT SubVT
= SubV1
.getValueType();
8963 // We expect these to have been canonicalized to -1.
8964 assert(llvm::all_of(ShuffleMask
, [&](int i
) {
8965 return i
< (int)VT
.getVectorNumElements();
8966 }) && "Unexpected shuffle index into UNDEF operand!");
8968 if (unsigned ShuffleOpc
= isNEONTwoResultShuffleMask(
8969 ShuffleMask
, SubVT
, WhichResult
, isV_UNDEF
)) {
8972 assert((WhichResult
== 0) &&
8973 "In-place shuffle of concat can only have one result!");
8974 SDValue Res
= DAG
.getNode(ShuffleOpc
, dl
, DAG
.getVTList(SubVT
, SubVT
),
8976 return DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, VT
, Res
.getValue(0),
8982 if (ST
->hasMVEIntegerOps() && EltSize
<= 32) {
8983 if (SDValue V
= LowerVECTOR_SHUFFLEUsingOneOff(Op
, ShuffleMask
, DAG
))
8986 for (bool Top
: {false, true}) {
8987 for (bool SingleSource
: {false, true}) {
8988 if (isTruncMask(ShuffleMask
, VT
, Top
, SingleSource
)) {
8989 MVT FromSVT
= MVT::getIntegerVT(EltSize
* 2);
8990 MVT FromVT
= MVT::getVectorVT(FromSVT
, ShuffleMask
.size() / 2);
8991 SDValue Lo
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, FromVT
, V1
);
8992 SDValue Hi
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, FromVT
,
8993 SingleSource
? V1
: V2
);
8995 SDValue Amt
= DAG
.getConstant(EltSize
, dl
, FromVT
);
8996 Lo
= DAG
.getNode(ISD::SRL
, dl
, FromVT
, Lo
, Amt
);
8997 Hi
= DAG
.getNode(ISD::SRL
, dl
, FromVT
, Hi
, Amt
);
8999 return DAG
.getNode(ARMISD::MVETRUNC
, dl
, VT
, Lo
, Hi
);
9005 // If the shuffle is not directly supported and it has 4 elements, use
9006 // the PerfectShuffle-generated table to synthesize it from other shuffles.
9007 unsigned NumElts
= VT
.getVectorNumElements();
9009 unsigned PFIndexes
[4];
9010 for (unsigned i
= 0; i
!= 4; ++i
) {
9011 if (ShuffleMask
[i
] < 0)
9014 PFIndexes
[i
] = ShuffleMask
[i
];
9017 // Compute the index in the perfect shuffle table.
9018 unsigned PFTableIndex
=
9019 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
9020 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
9021 unsigned Cost
= (PFEntry
>> 30);
9025 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
9026 else if (isLegalMVEShuffleOp(PFEntry
)) {
9027 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
9028 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
9029 unsigned PFEntryLHS
= PerfectShuffleTable
[LHSID
];
9030 unsigned PFEntryRHS
= PerfectShuffleTable
[RHSID
];
9031 if (isLegalMVEShuffleOp(PFEntryLHS
) && isLegalMVEShuffleOp(PFEntryRHS
))
9032 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
, dl
);
9037 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
9038 if (EltSize
>= 32) {
9039 // Do the expansion with floating-point types, since that is what the VFP
9040 // registers are defined to use, and since i64 is not legal.
9041 EVT EltVT
= EVT::getFloatingPointVT(EltSize
);
9042 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), EltVT
, NumElts
);
9043 V1
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V1
);
9044 V2
= DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, V2
);
9045 SmallVector
<SDValue
, 8> Ops
;
9046 for (unsigned i
= 0; i
< NumElts
; ++i
) {
9047 if (ShuffleMask
[i
] < 0)
9048 Ops
.push_back(DAG
.getUNDEF(EltVT
));
9050 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
,
9051 ShuffleMask
[i
] < (int)NumElts
? V1
: V2
,
9052 DAG
.getConstant(ShuffleMask
[i
] & (NumElts
-1),
9055 SDValue Val
= DAG
.getNode(ARMISD::BUILD_VECTOR
, dl
, VecVT
, Ops
);
9056 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Val
);
9059 if ((VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v16i8
) &&
9060 isReverseMask(ShuffleMask
, VT
))
9061 return LowerReverse_VECTOR_SHUFFLE(Op
, DAG
);
9063 if (ST
->hasNEON() && VT
== MVT::v8i8
)
9064 if (SDValue NewOp
= LowerVECTOR_SHUFFLEv8i8(Op
, ShuffleMask
, DAG
))
9067 if (ST
->hasMVEIntegerOps())
9068 if (SDValue NewOp
= LowerVECTOR_SHUFFLEUsingMovs(Op
, ShuffleMask
, DAG
))
9074 static SDValue
LowerINSERT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
9075 const ARMSubtarget
*ST
) {
9076 EVT VecVT
= Op
.getOperand(0).getValueType();
9079 assert(ST
->hasMVEIntegerOps() &&
9080 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9083 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
9084 unsigned Lane
= Op
.getConstantOperandVal(2);
9085 unsigned LaneWidth
=
9086 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
9087 unsigned Mask
= ((1 << LaneWidth
) - 1) << Lane
* LaneWidth
;
9088 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, dl
, MVT::i32
,
9089 Op
.getOperand(1), DAG
.getValueType(MVT::i1
));
9090 SDValue BFI
= DAG
.getNode(ARMISD::BFI
, dl
, MVT::i32
, Conv
, Ext
,
9091 DAG
.getConstant(~Mask
, dl
, MVT::i32
));
9092 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, Op
.getValueType(), BFI
);
9095 SDValue
ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
9096 SelectionDAG
&DAG
) const {
9097 // INSERT_VECTOR_ELT is legal only for immediate indexes.
9098 SDValue Lane
= Op
.getOperand(2);
9099 if (!isa
<ConstantSDNode
>(Lane
))
9102 SDValue Elt
= Op
.getOperand(1);
9103 EVT EltVT
= Elt
.getValueType();
9105 if (Subtarget
->hasMVEIntegerOps() &&
9106 Op
.getValueType().getScalarSizeInBits() == 1)
9107 return LowerINSERT_VECTOR_ELT_i1(Op
, DAG
, Subtarget
);
9109 if (getTypeAction(*DAG
.getContext(), EltVT
) ==
9110 TargetLowering::TypeSoftPromoteHalf
) {
9111 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
9112 // but the type system will try to do that if we don't intervene.
9113 // Reinterpret any such vector-element insertion as one with the
9114 // corresponding integer types.
9118 EVT IEltVT
= MVT::getIntegerVT(EltVT
.getScalarSizeInBits());
9119 assert(getTypeAction(*DAG
.getContext(), IEltVT
) !=
9120 TargetLowering::TypeSoftPromoteHalf
);
9122 SDValue VecIn
= Op
.getOperand(0);
9123 EVT VecVT
= VecIn
.getValueType();
9124 EVT IVecVT
= EVT::getVectorVT(*DAG
.getContext(), IEltVT
,
9125 VecVT
.getVectorNumElements());
9127 SDValue IElt
= DAG
.getNode(ISD::BITCAST
, dl
, IEltVT
, Elt
);
9128 SDValue IVecIn
= DAG
.getNode(ISD::BITCAST
, dl
, IVecVT
, VecIn
);
9129 SDValue IVecOut
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, IVecVT
,
9130 IVecIn
, IElt
, Lane
);
9131 return DAG
.getNode(ISD::BITCAST
, dl
, VecVT
, IVecOut
);
9137 static SDValue
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op
, SelectionDAG
&DAG
,
9138 const ARMSubtarget
*ST
) {
9139 EVT VecVT
= Op
.getOperand(0).getValueType();
9142 assert(ST
->hasMVEIntegerOps() &&
9143 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9146 DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Op
->getOperand(0));
9147 unsigned Lane
= Op
.getConstantOperandVal(1);
9148 unsigned LaneWidth
=
9149 getVectorTyFromPredicateVector(VecVT
).getScalarSizeInBits() / 8;
9150 SDValue Shift
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
, Conv
,
9151 DAG
.getConstant(Lane
* LaneWidth
, dl
, MVT::i32
));
9155 static SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op
, SelectionDAG
&DAG
,
9156 const ARMSubtarget
*ST
) {
9157 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
9158 SDValue Lane
= Op
.getOperand(1);
9159 if (!isa
<ConstantSDNode
>(Lane
))
9162 SDValue Vec
= Op
.getOperand(0);
9163 EVT VT
= Vec
.getValueType();
9165 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
9166 return LowerEXTRACT_VECTOR_ELT_i1(Op
, DAG
, ST
);
9168 if (Op
.getValueType() == MVT::i32
&& Vec
.getScalarValueSizeInBits() < 32) {
9170 return DAG
.getNode(ARMISD::VGETLANEu
, dl
, MVT::i32
, Vec
, Lane
);
9176 static SDValue
LowerCONCAT_VECTORS_i1(SDValue Op
, SelectionDAG
&DAG
,
9177 const ARMSubtarget
*ST
) {
9179 assert(Op
.getValueType().getScalarSizeInBits() == 1 &&
9180 "Unexpected custom CONCAT_VECTORS lowering");
9181 assert(isPowerOf2_32(Op
.getNumOperands()) &&
9182 "Unexpected custom CONCAT_VECTORS lowering");
9183 assert(ST
->hasMVEIntegerOps() &&
9184 "CONCAT_VECTORS lowering only supported for MVE");
9186 auto ConcatPair
= [&](SDValue V1
, SDValue V2
) {
9187 EVT Op1VT
= V1
.getValueType();
9188 EVT Op2VT
= V2
.getValueType();
9189 assert(Op1VT
== Op2VT
&& "Operand types don't match!");
9190 assert((Op1VT
== MVT::v2i1
|| Op1VT
== MVT::v4i1
|| Op1VT
== MVT::v8i1
) &&
9191 "Unexpected i1 concat operations!");
9192 EVT VT
= Op1VT
.getDoubleNumVectorElementsVT(*DAG
.getContext());
9194 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
9195 SDValue NewV2
= PromoteMVEPredVector(dl
, V2
, Op2VT
, DAG
);
9197 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
9198 // promoted to v8i16, etc.
9200 getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
9201 unsigned NumElts
= 2 * Op1VT
.getVectorNumElements();
9203 EVT ConcatVT
= MVT::getVectorVT(ElType
, NumElts
);
9204 if (Op1VT
== MVT::v4i1
|| Op1VT
== MVT::v8i1
) {
9205 // Use MVETRUNC to truncate the combined NewV1::NewV2 into the smaller
9208 DAG
.getNode(ARMISD::MVETRUNC
, dl
, ConcatVT
, NewV1
, NewV2
);
9209 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
9210 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
9213 // Extract the vector elements from Op1 and Op2 one by one and truncate them
9214 // to be the right size for the destination. For example, if Op1 is v4i1
9215 // then the promoted vector is v4i32. The result of concatenation gives a
9216 // v8i1, which when promoted is v8i16. That means each i32 element from Op1
9217 // needs truncating to i16 and inserting in the result.
9218 auto ExtractInto
= [&DAG
, &dl
](SDValue NewV
, SDValue ConVec
, unsigned &j
) {
9219 EVT NewVT
= NewV
.getValueType();
9220 EVT ConcatVT
= ConVec
.getValueType();
9221 unsigned ExtScale
= 1;
9222 if (NewVT
== MVT::v2f64
) {
9223 NewV
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, MVT::v4i32
, NewV
);
9226 for (unsigned i
= 0, e
= NewVT
.getVectorNumElements(); i
< e
; i
++, j
++) {
9227 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV
,
9228 DAG
.getIntPtrConstant(i
* ExtScale
, dl
));
9229 ConVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, ConcatVT
, ConVec
, Elt
,
9230 DAG
.getConstant(j
, dl
, MVT::i32
));
9235 SDValue ConVec
= DAG
.getNode(ISD::UNDEF
, dl
, ConcatVT
);
9236 ConVec
= ExtractInto(NewV1
, ConVec
, j
);
9237 ConVec
= ExtractInto(NewV2
, ConVec
, j
);
9239 // Now return the result of comparing the subvector with zero, which will
9240 // generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9241 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, ConVec
,
9242 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
9245 // Concat each pair of subvectors and pack into the lower half of the array.
9246 SmallVector
<SDValue
> ConcatOps(Op
->ops());
9247 while (ConcatOps
.size() > 1) {
9248 for (unsigned I
= 0, E
= ConcatOps
.size(); I
!= E
; I
+= 2) {
9249 SDValue V1
= ConcatOps
[I
];
9250 SDValue V2
= ConcatOps
[I
+ 1];
9251 ConcatOps
[I
/ 2] = ConcatPair(V1
, V2
);
9253 ConcatOps
.resize(ConcatOps
.size() / 2);
9255 return ConcatOps
[0];
9258 static SDValue
LowerCONCAT_VECTORS(SDValue Op
, SelectionDAG
&DAG
,
9259 const ARMSubtarget
*ST
) {
9260 EVT VT
= Op
->getValueType(0);
9261 if (ST
->hasMVEIntegerOps() && VT
.getScalarSizeInBits() == 1)
9262 return LowerCONCAT_VECTORS_i1(Op
, DAG
, ST
);
9264 // The only time a CONCAT_VECTORS operation can have legal types is when
9265 // two 64-bit vectors are concatenated to a 128-bit vector.
9266 assert(Op
.getValueType().is128BitVector() && Op
.getNumOperands() == 2 &&
9267 "unexpected CONCAT_VECTORS");
9269 SDValue Val
= DAG
.getUNDEF(MVT::v2f64
);
9270 SDValue Op0
= Op
.getOperand(0);
9271 SDValue Op1
= Op
.getOperand(1);
9273 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
9274 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op0
),
9275 DAG
.getIntPtrConstant(0, dl
));
9277 Val
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, MVT::v2f64
, Val
,
9278 DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, Op1
),
9279 DAG
.getIntPtrConstant(1, dl
));
9280 return DAG
.getNode(ISD::BITCAST
, dl
, Op
.getValueType(), Val
);
9283 static SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op
, SelectionDAG
&DAG
,
9284 const ARMSubtarget
*ST
) {
9285 SDValue V1
= Op
.getOperand(0);
9286 SDValue V2
= Op
.getOperand(1);
9288 EVT VT
= Op
.getValueType();
9289 EVT Op1VT
= V1
.getValueType();
9290 unsigned NumElts
= VT
.getVectorNumElements();
9291 unsigned Index
= V2
->getAsZExtVal();
9293 assert(VT
.getScalarSizeInBits() == 1 &&
9294 "Unexpected custom EXTRACT_SUBVECTOR lowering");
9295 assert(ST
->hasMVEIntegerOps() &&
9296 "EXTRACT_SUBVECTOR lowering only supported for MVE");
9298 SDValue NewV1
= PromoteMVEPredVector(dl
, V1
, Op1VT
, DAG
);
9300 // We now have Op1 promoted to a vector of integers, where v8i1 gets
9301 // promoted to v8i16, etc.
9303 MVT ElType
= getVectorTyFromPredicateVector(VT
).getScalarType().getSimpleVT();
9306 EVT SubVT
= MVT::v4i32
;
9307 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
9308 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
+= 2) {
9309 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
9310 DAG
.getIntPtrConstant(i
, dl
));
9311 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
9312 DAG
.getConstant(j
, dl
, MVT::i32
));
9313 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
9314 DAG
.getConstant(j
+ 1, dl
, MVT::i32
));
9316 SDValue Cmp
= DAG
.getNode(ARMISD::VCMPZ
, dl
, MVT::v4i1
, SubVec
,
9317 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
9318 return DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v2i1
, Cmp
);
9321 EVT SubVT
= MVT::getVectorVT(ElType
, NumElts
);
9322 SDValue SubVec
= DAG
.getNode(ISD::UNDEF
, dl
, SubVT
);
9323 for (unsigned i
= Index
, j
= 0; i
< (Index
+ NumElts
); i
++, j
++) {
9324 SDValue Elt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, NewV1
,
9325 DAG
.getIntPtrConstant(i
, dl
));
9326 SubVec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, SubVT
, SubVec
, Elt
,
9327 DAG
.getConstant(j
, dl
, MVT::i32
));
9330 // Now return the result of comparing the subvector with zero,
9331 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9332 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, SubVec
,
9333 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
));
9336 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
9337 static SDValue
LowerTruncatei1(SDNode
*N
, SelectionDAG
&DAG
,
9338 const ARMSubtarget
*ST
) {
9339 assert(ST
->hasMVEIntegerOps() && "Expected MVE!");
9340 EVT VT
= N
->getValueType(0);
9341 assert((VT
== MVT::v16i1
|| VT
== MVT::v8i1
|| VT
== MVT::v4i1
) &&
9342 "Expected a vector i1 type!");
9343 SDValue Op
= N
->getOperand(0);
9344 EVT FromVT
= Op
.getValueType();
9348 DAG
.getNode(ISD::AND
, DL
, FromVT
, Op
, DAG
.getConstant(1, DL
, FromVT
));
9349 return DAG
.getNode(ISD::SETCC
, DL
, VT
, And
, DAG
.getConstant(0, DL
, FromVT
),
9350 DAG
.getCondCode(ISD::SETNE
));
9353 static SDValue
LowerTruncate(SDNode
*N
, SelectionDAG
&DAG
,
9354 const ARMSubtarget
*Subtarget
) {
9355 if (!Subtarget
->hasMVEIntegerOps())
9358 EVT ToVT
= N
->getValueType(0);
9359 if (ToVT
.getScalarType() == MVT::i1
)
9360 return LowerTruncatei1(N
, DAG
, Subtarget
);
9362 // MVE does not have a single instruction to perform the truncation of a v4i32
9363 // into the lower half of a v8i16, in the same way that a NEON vmovn would.
9364 // Most of the instructions in MVE follow the 'Beats' system, where moving
9365 // values from different lanes is usually something that the instructions
9368 // Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B,
9369 // which take a the top/bottom half of a larger lane and extend it (or do the
9370 // opposite, truncating into the top/bottom lane from a larger lane). Note
9371 // that because of the way we widen lanes, a v4i16 is really a v4i32 using the
9372 // bottom 16bits from each vector lane. This works really well with T/B
9373 // instructions, but that doesn't extend to v8i32->v8i16 where the lanes need
9376 // But truncates and sext/zext are always going to be fairly common from llvm.
9377 // We have several options for how to deal with them:
9378 // - Wherever possible combine them into an instruction that makes them
9379 // "free". This includes loads/stores, which can perform the trunc as part
9380 // of the memory operation. Or certain shuffles that can be turned into
9382 // - Lane Interleaving to transform blocks surrounded by ext/trunc. So
9383 // trunc(mul(sext(a), sext(b))) may become
9384 // VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in
9385 // this case can use VMULL). This is performed in the
9386 // MVELaneInterleavingPass.
9387 // - Otherwise we have an option. By default we would expand the
9388 // zext/sext/trunc into a series of lane extract/inserts going via GPR
9389 // registers. One for each vector lane in the vector. This can obviously be
9391 // - The other option is to use the fact that loads/store can extend/truncate
9392 // to turn a trunc into two truncating stack stores and a stack reload. This
9393 // becomes 3 back-to-back memory operations, but at least that is less than
9394 // all the insert/extracts.
9396 // In order to do the last, we convert certain trunc's into MVETRUNC, which
9397 // are either optimized where they can be, or eventually lowered into stack
9398 // stores/loads. This prevents us from splitting a v8i16 trunc into two stores
9399 // two early, where other instructions would be better, and stops us from
9400 // having to reconstruct multiple buildvector shuffles into loads/stores.
9401 if (ToVT
!= MVT::v8i16
&& ToVT
!= MVT::v16i8
)
9403 EVT FromVT
= N
->getOperand(0).getValueType();
9404 if (FromVT
!= MVT::v8i32
&& FromVT
!= MVT::v16i16
)
9408 std::tie(Lo
, Hi
) = DAG
.SplitVectorOperand(N
, 0);
9410 return DAG
.getNode(ARMISD::MVETRUNC
, DL
, ToVT
, Lo
, Hi
);
9413 static SDValue
LowerVectorExtend(SDNode
*N
, SelectionDAG
&DAG
,
9414 const ARMSubtarget
*Subtarget
) {
9415 if (!Subtarget
->hasMVEIntegerOps())
9418 // See LowerTruncate above for an explanation of MVEEXT/MVETRUNC.
9420 EVT ToVT
= N
->getValueType(0);
9421 if (ToVT
!= MVT::v16i32
&& ToVT
!= MVT::v8i32
&& ToVT
!= MVT::v16i16
)
9423 SDValue Op
= N
->getOperand(0);
9424 EVT FromVT
= Op
.getValueType();
9425 if (FromVT
!= MVT::v8i16
&& FromVT
!= MVT::v16i8
)
9429 EVT ExtVT
= ToVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
9430 if (ToVT
.getScalarType() == MVT::i32
&& FromVT
.getScalarType() == MVT::i8
)
9434 N
->getOpcode() == ISD::SIGN_EXTEND
? ARMISD::MVESEXT
: ARMISD::MVEZEXT
;
9435 SDValue Ext
= DAG
.getNode(Opcode
, DL
, DAG
.getVTList(ExtVT
, ExtVT
), Op
);
9436 SDValue Ext1
= Ext
.getValue(1);
9438 if (ToVT
.getScalarType() == MVT::i32
&& FromVT
.getScalarType() == MVT::i8
) {
9439 Ext
= DAG
.getNode(N
->getOpcode(), DL
, MVT::v8i32
, Ext
);
9440 Ext1
= DAG
.getNode(N
->getOpcode(), DL
, MVT::v8i32
, Ext1
);
9443 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ToVT
, Ext
, Ext1
);
9446 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
9447 /// element has been zero/sign-extended, depending on the isSigned parameter,
9448 /// from an integer type half its size.
9449 static bool isExtendedBUILD_VECTOR(SDNode
*N
, SelectionDAG
&DAG
,
9451 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
9452 EVT VT
= N
->getValueType(0);
9453 if (VT
== MVT::v2i64
&& N
->getOpcode() == ISD::BITCAST
) {
9454 SDNode
*BVN
= N
->getOperand(0).getNode();
9455 if (BVN
->getValueType(0) != MVT::v4i32
||
9456 BVN
->getOpcode() != ISD::BUILD_VECTOR
)
9458 unsigned LoElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9459 unsigned HiElt
= 1 - LoElt
;
9460 ConstantSDNode
*Lo0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
));
9461 ConstantSDNode
*Hi0
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
));
9462 ConstantSDNode
*Lo1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(LoElt
+2));
9463 ConstantSDNode
*Hi1
= dyn_cast
<ConstantSDNode
>(BVN
->getOperand(HiElt
+2));
9464 if (!Lo0
|| !Hi0
|| !Lo1
|| !Hi1
)
9467 if (Hi0
->getSExtValue() == Lo0
->getSExtValue() >> 32 &&
9468 Hi1
->getSExtValue() == Lo1
->getSExtValue() >> 32)
9471 if (Hi0
->isZero() && Hi1
->isZero())
9477 if (N
->getOpcode() != ISD::BUILD_VECTOR
)
9480 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
9481 SDNode
*Elt
= N
->getOperand(i
).getNode();
9482 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Elt
)) {
9483 unsigned EltSize
= VT
.getScalarSizeInBits();
9484 unsigned HalfSize
= EltSize
/ 2;
9486 if (!isIntN(HalfSize
, C
->getSExtValue()))
9489 if (!isUIntN(HalfSize
, C
->getZExtValue()))
9500 /// isSignExtended - Check if a node is a vector value that is sign-extended
9501 /// or a constant BUILD_VECTOR with sign-extended elements.
9502 static bool isSignExtended(SDNode
*N
, SelectionDAG
&DAG
) {
9503 if (N
->getOpcode() == ISD::SIGN_EXTEND
|| ISD::isSEXTLoad(N
))
9505 if (isExtendedBUILD_VECTOR(N
, DAG
, true))
9510 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or
9511 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
9512 static bool isZeroExtended(SDNode
*N
, SelectionDAG
&DAG
) {
9513 if (N
->getOpcode() == ISD::ZERO_EXTEND
|| N
->getOpcode() == ISD::ANY_EXTEND
||
9516 if (isExtendedBUILD_VECTOR(N
, DAG
, false))
9521 static EVT
getExtensionTo64Bits(const EVT
&OrigVT
) {
9522 if (OrigVT
.getSizeInBits() >= 64)
9525 assert(OrigVT
.isSimple() && "Expecting a simple value type");
9527 MVT::SimpleValueType OrigSimpleTy
= OrigVT
.getSimpleVT().SimpleTy
;
9528 switch (OrigSimpleTy
) {
9529 default: llvm_unreachable("Unexpected Vector Type");
9538 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
9539 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
9540 /// We insert the required extension here to get the vector to fill a D register.
9541 static SDValue
AddRequiredExtensionForVMULL(SDValue N
, SelectionDAG
&DAG
,
9544 unsigned ExtOpcode
) {
9545 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
9546 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
9547 // 64-bits we need to insert a new extension so that it will be 64-bits.
9548 assert(ExtTy
.is128BitVector() && "Unexpected extension size");
9549 if (OrigTy
.getSizeInBits() >= 64)
9552 // Must extend size to at least 64 bits to be used as an operand for VMULL.
9553 EVT NewVT
= getExtensionTo64Bits(OrigTy
);
9555 return DAG
.getNode(ExtOpcode
, SDLoc(N
), NewVT
, N
);
9558 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
9559 /// does not do any sign/zero extension. If the original vector is less
9560 /// than 64 bits, an appropriate extension will be added after the load to
9561 /// reach a total size of 64 bits. We have to add the extension separately
9562 /// because ARM does not have a sign/zero extending load for vectors.
9563 static SDValue
SkipLoadExtensionForVMULL(LoadSDNode
*LD
, SelectionDAG
& DAG
) {
9564 EVT ExtendedTy
= getExtensionTo64Bits(LD
->getMemoryVT());
9566 // The load already has the right type.
9567 if (ExtendedTy
== LD
->getMemoryVT())
9568 return DAG
.getLoad(LD
->getMemoryVT(), SDLoc(LD
), LD
->getChain(),
9569 LD
->getBasePtr(), LD
->getPointerInfo(), LD
->getAlign(),
9570 LD
->getMemOperand()->getFlags());
9572 // We need to create a zextload/sextload. We cannot just create a load
9573 // followed by a zext/zext node because LowerMUL is also run during normal
9574 // operation legalization where we can't create illegal types.
9575 return DAG
.getExtLoad(LD
->getExtensionType(), SDLoc(LD
), ExtendedTy
,
9576 LD
->getChain(), LD
->getBasePtr(), LD
->getPointerInfo(),
9577 LD
->getMemoryVT(), LD
->getAlign(),
9578 LD
->getMemOperand()->getFlags());
9581 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
9582 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
9583 /// the unextended value. The unextended vector should be 64 bits so that it can
9584 /// be used as an operand to a VMULL instruction. If the original vector size
9585 /// before extension is less than 64 bits we add a an extension to resize
9586 /// the vector to 64 bits.
9587 static SDValue
SkipExtensionForVMULL(SDNode
*N
, SelectionDAG
&DAG
) {
9588 if (N
->getOpcode() == ISD::SIGN_EXTEND
||
9589 N
->getOpcode() == ISD::ZERO_EXTEND
|| N
->getOpcode() == ISD::ANY_EXTEND
)
9590 return AddRequiredExtensionForVMULL(N
->getOperand(0), DAG
,
9591 N
->getOperand(0)->getValueType(0),
9595 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
9596 assert((ISD::isSEXTLoad(LD
) || ISD::isZEXTLoad(LD
)) &&
9597 "Expected extending load");
9599 SDValue newLoad
= SkipLoadExtensionForVMULL(LD
, DAG
);
9600 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), newLoad
.getValue(1));
9601 unsigned Opcode
= ISD::isSEXTLoad(LD
) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
9603 DAG
.getNode(Opcode
, SDLoc(newLoad
), LD
->getValueType(0), newLoad
);
9604 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 0), extLoad
);
9609 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
9610 // have been legalized as a BITCAST from v4i32.
9611 if (N
->getOpcode() == ISD::BITCAST
) {
9612 SDNode
*BVN
= N
->getOperand(0).getNode();
9613 assert(BVN
->getOpcode() == ISD::BUILD_VECTOR
&&
9614 BVN
->getValueType(0) == MVT::v4i32
&& "expected v4i32 BUILD_VECTOR");
9615 unsigned LowElt
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9616 return DAG
.getBuildVector(
9617 MVT::v2i32
, SDLoc(N
),
9618 {BVN
->getOperand(LowElt
), BVN
->getOperand(LowElt
+ 2)});
9620 // Construct a new BUILD_VECTOR with elements truncated to half the size.
9621 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& "expected BUILD_VECTOR");
9622 EVT VT
= N
->getValueType(0);
9623 unsigned EltSize
= VT
.getScalarSizeInBits() / 2;
9624 unsigned NumElts
= VT
.getVectorNumElements();
9625 MVT TruncVT
= MVT::getIntegerVT(EltSize
);
9626 SmallVector
<SDValue
, 8> Ops
;
9628 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
9629 const APInt
&CInt
= N
->getConstantOperandAPInt(i
);
9630 // Element types smaller than 32 bits are not legal, so use i32 elements.
9631 // The values are implicitly truncated so sext vs. zext doesn't matter.
9632 Ops
.push_back(DAG
.getConstant(CInt
.zextOrTrunc(32), dl
, MVT::i32
));
9634 return DAG
.getBuildVector(MVT::getVectorVT(TruncVT
, NumElts
), dl
, Ops
);
9637 static bool isAddSubSExt(SDNode
*N
, SelectionDAG
&DAG
) {
9638 unsigned Opcode
= N
->getOpcode();
9639 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
9640 SDNode
*N0
= N
->getOperand(0).getNode();
9641 SDNode
*N1
= N
->getOperand(1).getNode();
9642 return N0
->hasOneUse() && N1
->hasOneUse() &&
9643 isSignExtended(N0
, DAG
) && isSignExtended(N1
, DAG
);
9648 static bool isAddSubZExt(SDNode
*N
, SelectionDAG
&DAG
) {
9649 unsigned Opcode
= N
->getOpcode();
9650 if (Opcode
== ISD::ADD
|| Opcode
== ISD::SUB
) {
9651 SDNode
*N0
= N
->getOperand(0).getNode();
9652 SDNode
*N1
= N
->getOperand(1).getNode();
9653 return N0
->hasOneUse() && N1
->hasOneUse() &&
9654 isZeroExtended(N0
, DAG
) && isZeroExtended(N1
, DAG
);
9659 static SDValue
LowerMUL(SDValue Op
, SelectionDAG
&DAG
) {
9660 // Multiplications are only custom-lowered for 128-bit vectors so that
9661 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
9662 EVT VT
= Op
.getValueType();
9663 assert(VT
.is128BitVector() && VT
.isInteger() &&
9664 "unexpected type for custom-lowering ISD::MUL");
9665 SDNode
*N0
= Op
.getOperand(0).getNode();
9666 SDNode
*N1
= Op
.getOperand(1).getNode();
9667 unsigned NewOpc
= 0;
9669 bool isN0SExt
= isSignExtended(N0
, DAG
);
9670 bool isN1SExt
= isSignExtended(N1
, DAG
);
9671 if (isN0SExt
&& isN1SExt
)
9672 NewOpc
= ARMISD::VMULLs
;
9674 bool isN0ZExt
= isZeroExtended(N0
, DAG
);
9675 bool isN1ZExt
= isZeroExtended(N1
, DAG
);
9676 if (isN0ZExt
&& isN1ZExt
)
9677 NewOpc
= ARMISD::VMULLu
;
9678 else if (isN1SExt
|| isN1ZExt
) {
9679 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
9680 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
9681 if (isN1SExt
&& isAddSubSExt(N0
, DAG
)) {
9682 NewOpc
= ARMISD::VMULLs
;
9684 } else if (isN1ZExt
&& isAddSubZExt(N0
, DAG
)) {
9685 NewOpc
= ARMISD::VMULLu
;
9687 } else if (isN0ZExt
&& isAddSubZExt(N1
, DAG
)) {
9689 NewOpc
= ARMISD::VMULLu
;
9695 if (VT
== MVT::v2i64
)
9696 // Fall through to expand this. It is not legal.
9699 // Other vector multiplications are legal.
9704 // Legalize to a VMULL instruction.
9707 SDValue Op1
= SkipExtensionForVMULL(N1
, DAG
);
9709 Op0
= SkipExtensionForVMULL(N0
, DAG
);
9710 assert(Op0
.getValueType().is64BitVector() &&
9711 Op1
.getValueType().is64BitVector() &&
9712 "unexpected types for extended operands to VMULL");
9713 return DAG
.getNode(NewOpc
, DL
, VT
, Op0
, Op1
);
9716 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
9717 // isel lowering to take advantage of no-stall back to back vmul + vmla.
9724 SDValue N00
= SkipExtensionForVMULL(N0
->getOperand(0).getNode(), DAG
);
9725 SDValue N01
= SkipExtensionForVMULL(N0
->getOperand(1).getNode(), DAG
);
9726 EVT Op1VT
= Op1
.getValueType();
9727 return DAG
.getNode(N0
->getOpcode(), DL
, VT
,
9728 DAG
.getNode(NewOpc
, DL
, VT
,
9729 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N00
), Op1
),
9730 DAG
.getNode(NewOpc
, DL
, VT
,
9731 DAG
.getNode(ISD::BITCAST
, DL
, Op1VT
, N01
), Op1
));
9734 static SDValue
LowerSDIV_v4i8(SDValue X
, SDValue Y
, const SDLoc
&dl
,
9735 SelectionDAG
&DAG
) {
9736 // TODO: Should this propagate fast-math-flags?
9739 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
9740 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
9741 X
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, X
);
9742 Y
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, Y
);
9743 X
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, X
);
9744 Y
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, Y
);
9745 // Get reciprocal estimate.
9746 // float4 recip = vrecpeq_f32(yf);
9747 Y
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
9748 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
9750 // Because char has a smaller range than uchar, we can actually get away
9751 // without any newton steps. This requires that we use a weird bias
9752 // of 0xb000, however (again, this has been exhaustively tested).
9753 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
9754 X
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, X
, Y
);
9755 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, X
);
9756 Y
= DAG
.getConstant(0xb000, dl
, MVT::v4i32
);
9757 X
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, X
, Y
);
9758 X
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, X
);
9759 // Convert back to short.
9760 X
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, X
);
9761 X
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, X
);
9765 static SDValue
LowerSDIV_v4i16(SDValue N0
, SDValue N1
, const SDLoc
&dl
,
9766 SelectionDAG
&DAG
) {
9767 // TODO: Should this propagate fast-math-flags?
9770 // Convert to float.
9771 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
9772 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
9773 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N0
);
9774 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v4i32
, N1
);
9775 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
9776 N1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
9778 // Use reciprocal estimate and one refinement step.
9779 // float4 recip = vrecpeq_f32(yf);
9780 // recip *= vrecpsq_f32(yf, recip);
9781 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
9782 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
9784 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
9785 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
9787 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
9788 // Because short has a smaller range than ushort, we can actually get away
9789 // with only a single newton step. This requires that we use a weird bias
9790 // of 89, however (again, this has been exhaustively tested).
9791 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9792 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
9793 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
9794 N1
= DAG
.getConstant(0x89, dl
, MVT::v4i32
);
9795 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
9796 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
9797 // Convert back to integer and return.
9798 // return vmovn_s32(vcvt_s32_f32(result));
9799 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
9800 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
9804 static SDValue
LowerSDIV(SDValue Op
, SelectionDAG
&DAG
,
9805 const ARMSubtarget
*ST
) {
9806 EVT VT
= Op
.getValueType();
9807 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
9808 "unexpected type for custom-lowering ISD::SDIV");
9811 SDValue N0
= Op
.getOperand(0);
9812 SDValue N1
= Op
.getOperand(1);
9815 if (VT
== MVT::v8i8
) {
9816 N0
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N0
);
9817 N1
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, MVT::v8i16
, N1
);
9819 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
9820 DAG
.getIntPtrConstant(4, dl
));
9821 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
9822 DAG
.getIntPtrConstant(4, dl
));
9823 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
9824 DAG
.getIntPtrConstant(0, dl
));
9825 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
9826 DAG
.getIntPtrConstant(0, dl
));
9828 N0
= LowerSDIV_v4i8(N0
, N1
, dl
, DAG
); // v4i16
9829 N2
= LowerSDIV_v4i8(N2
, N3
, dl
, DAG
); // v4i16
9831 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
9832 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
9834 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v8i8
, N0
);
9837 return LowerSDIV_v4i16(N0
, N1
, dl
, DAG
);
9840 static SDValue
LowerUDIV(SDValue Op
, SelectionDAG
&DAG
,
9841 const ARMSubtarget
*ST
) {
9842 // TODO: Should this propagate fast-math-flags?
9843 EVT VT
= Op
.getValueType();
9844 assert((VT
== MVT::v4i16
|| VT
== MVT::v8i8
) &&
9845 "unexpected type for custom-lowering ISD::UDIV");
9848 SDValue N0
= Op
.getOperand(0);
9849 SDValue N1
= Op
.getOperand(1);
9852 if (VT
== MVT::v8i8
) {
9853 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N0
);
9854 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v8i16
, N1
);
9856 N2
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
9857 DAG
.getIntPtrConstant(4, dl
));
9858 N3
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
9859 DAG
.getIntPtrConstant(4, dl
));
9860 N0
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N0
,
9861 DAG
.getIntPtrConstant(0, dl
));
9862 N1
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MVT::v4i16
, N1
,
9863 DAG
.getIntPtrConstant(0, dl
));
9865 N0
= LowerSDIV_v4i16(N0
, N1
, dl
, DAG
); // v4i16
9866 N2
= LowerSDIV_v4i16(N2
, N3
, dl
, DAG
); // v4i16
9868 N0
= DAG
.getNode(ISD::CONCAT_VECTORS
, dl
, MVT::v8i16
, N0
, N2
);
9869 N0
= LowerCONCAT_VECTORS(N0
, DAG
, ST
);
9871 N0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v8i8
,
9872 DAG
.getConstant(Intrinsic::arm_neon_vqmovnsu
, dl
,
9878 // v4i16 sdiv ... Convert to float.
9879 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9880 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9881 N0
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N0
);
9882 N1
= DAG
.getNode(ISD::ZERO_EXTEND
, dl
, MVT::v4i32
, N1
);
9883 N0
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N0
);
9884 SDValue BN1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::v4f32
, N1
);
9886 // Use reciprocal estimate and two refinement steps.
9887 // float4 recip = vrecpeq_f32(yf);
9888 // recip *= vrecpsq_f32(yf, recip);
9889 // recip *= vrecpsq_f32(yf, recip);
9890 N2
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
9891 DAG
.getConstant(Intrinsic::arm_neon_vrecpe
, dl
, MVT::i32
),
9893 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
9894 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
9896 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
9897 N1
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, MVT::v4f32
,
9898 DAG
.getConstant(Intrinsic::arm_neon_vrecps
, dl
, MVT::i32
),
9900 N2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N1
, N2
);
9901 // Simply multiplying by the reciprocal estimate can leave us a few ulps
9902 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9903 // and that it will never cause us to return an answer too large).
9904 // float4 result = as_float4(as_int4(xf*recip) + 2);
9905 N0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::v4f32
, N0
, N2
);
9906 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4i32
, N0
);
9907 N1
= DAG
.getConstant(2, dl
, MVT::v4i32
);
9908 N0
= DAG
.getNode(ISD::ADD
, dl
, MVT::v4i32
, N0
, N1
);
9909 N0
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::v4f32
, N0
);
9910 // Convert back to integer and return.
9911 // return vmovn_u32(vcvt_s32_f32(result));
9912 N0
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::v4i32
, N0
);
9913 N0
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::v4i16
, N0
);
9917 static SDValue
LowerUADDSUBO_CARRY(SDValue Op
, SelectionDAG
&DAG
) {
9918 SDNode
*N
= Op
.getNode();
9919 EVT VT
= N
->getValueType(0);
9920 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
9922 SDValue Carry
= Op
.getOperand(2);
9927 if (Op
.getOpcode() == ISD::UADDO_CARRY
) {
9928 // This converts the boolean value carry into the carry flag.
9929 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
9931 // Do the addition proper using the carry flag we wanted.
9932 Result
= DAG
.getNode(ARMISD::ADDE
, DL
, VTs
, Op
.getOperand(0),
9933 Op
.getOperand(1), Carry
);
9935 // Now convert the carry flag into a boolean value.
9936 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
9938 // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
9939 // have to invert the carry first.
9940 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
9941 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
9942 // This converts the boolean value carry into the carry flag.
9943 Carry
= ConvertBooleanCarryToCarryFlag(Carry
, DAG
);
9945 // Do the subtraction proper using the carry flag we wanted.
9946 Result
= DAG
.getNode(ARMISD::SUBE
, DL
, VTs
, Op
.getOperand(0),
9947 Op
.getOperand(1), Carry
);
9949 // Now convert the carry flag into a boolean value.
9950 Carry
= ConvertCarryFlagToBooleanCarry(Result
.getValue(1), VT
, DAG
);
9951 // But the carry returned by ARMISD::SUBE is not a borrow as expected
9952 // by ISD::USUBO_CARRY, so compute 1 - C.
9953 Carry
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
,
9954 DAG
.getConstant(1, DL
, MVT::i32
), Carry
);
9957 // Return both values.
9958 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, N
->getVTList(), Result
, Carry
);
9961 SDValue
ARMTargetLowering::LowerFSINCOS(SDValue Op
, SelectionDAG
&DAG
) const {
9962 assert(Subtarget
->isTargetDarwin());
9964 // For iOS, we want to call an alternative entry point: __sincos_stret,
9965 // return values are passed via sret.
9967 SDValue Arg
= Op
.getOperand(0);
9968 EVT ArgVT
= Arg
.getValueType();
9969 Type
*ArgTy
= ArgVT
.getTypeForEVT(*DAG
.getContext());
9970 auto PtrVT
= getPointerTy(DAG
.getDataLayout());
9972 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
9973 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9975 // Pair of floats / doubles used to pass the result.
9976 Type
*RetTy
= StructType::get(ArgTy
, ArgTy
);
9977 auto &DL
= DAG
.getDataLayout();
9980 bool ShouldUseSRet
= Subtarget
->isAPCS_ABI();
9982 if (ShouldUseSRet
) {
9983 // Create stack object for sret.
9984 const uint64_t ByteSize
= DL
.getTypeAllocSize(RetTy
);
9985 const Align StackAlign
= DL
.getPrefTypeAlign(RetTy
);
9986 int FrameIdx
= MFI
.CreateStackObject(ByteSize
, StackAlign
, false);
9987 SRet
= DAG
.getFrameIndex(FrameIdx
, TLI
.getPointerTy(DL
));
9991 Entry
.Ty
= PointerType::getUnqual(RetTy
->getContext());
9992 Entry
.IsSExt
= false;
9993 Entry
.IsZExt
= false;
9994 Entry
.IsSRet
= true;
9995 Args
.push_back(Entry
);
9996 RetTy
= Type::getVoidTy(*DAG
.getContext());
10002 Entry
.IsSExt
= false;
10003 Entry
.IsZExt
= false;
10004 Args
.push_back(Entry
);
10006 RTLIB::Libcall LC
=
10007 (ArgVT
== MVT::f64
) ? RTLIB::SINCOS_STRET_F64
: RTLIB::SINCOS_STRET_F32
;
10008 const char *LibcallName
= getLibcallName(LC
);
10009 CallingConv::ID CC
= getLibcallCallingConv(LC
);
10010 SDValue Callee
= DAG
.getExternalSymbol(LibcallName
, getPointerTy(DL
));
10012 TargetLowering::CallLoweringInfo
CLI(DAG
);
10013 CLI
.setDebugLoc(dl
)
10014 .setChain(DAG
.getEntryNode())
10015 .setCallee(CC
, RetTy
, Callee
, std::move(Args
))
10016 .setDiscardResult(ShouldUseSRet
);
10017 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
10019 if (!ShouldUseSRet
)
10020 return CallResult
.first
;
10023 DAG
.getLoad(ArgVT
, dl
, CallResult
.second
, SRet
, MachinePointerInfo());
10025 // Address of cos field.
10026 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, SRet
,
10027 DAG
.getIntPtrConstant(ArgVT
.getStoreSize(), dl
));
10029 DAG
.getLoad(ArgVT
, dl
, LoadSin
.getValue(1), Add
, MachinePointerInfo());
10031 SDVTList Tys
= DAG
.getVTList(ArgVT
, ArgVT
);
10032 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Tys
,
10033 LoadSin
.getValue(0), LoadCos
.getValue(0));
10036 SDValue
ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op
, SelectionDAG
&DAG
,
10038 SDValue
&Chain
) const {
10039 EVT VT
= Op
.getValueType();
10040 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
10041 "unexpected type for custom lowering DIV");
10044 const auto &DL
= DAG
.getDataLayout();
10045 const auto &TLI
= DAG
.getTargetLoweringInfo();
10047 const char *Name
= nullptr;
10049 Name
= (VT
== MVT::i32
) ? "__rt_sdiv" : "__rt_sdiv64";
10051 Name
= (VT
== MVT::i32
) ? "__rt_udiv" : "__rt_udiv64";
10053 SDValue ES
= DAG
.getExternalSymbol(Name
, TLI
.getPointerTy(DL
));
10055 ARMTargetLowering::ArgListTy Args
;
10057 for (auto AI
: {1, 0}) {
10059 Arg
.Node
= Op
.getOperand(AI
);
10060 Arg
.Ty
= Arg
.Node
.getValueType().getTypeForEVT(*DAG
.getContext());
10061 Args
.push_back(Arg
);
10064 CallLoweringInfo
CLI(DAG
);
10065 CLI
.setDebugLoc(dl
)
10067 .setCallee(CallingConv::ARM_AAPCS_VFP
, VT
.getTypeForEVT(*DAG
.getContext()),
10068 ES
, std::move(Args
));
10070 return LowerCallTo(CLI
).first
;
10073 // This is a code size optimisation: return the original SDIV node to
10074 // DAGCombiner when we don't want to expand SDIV into a sequence of
10075 // instructions, and an empty node otherwise which will cause the
10076 // SDIV to be expanded in DAGCombine.
10078 ARMTargetLowering::BuildSDIVPow2(SDNode
*N
, const APInt
&Divisor
,
10080 SmallVectorImpl
<SDNode
*> &Created
) const {
10081 // TODO: Support SREM
10082 if (N
->getOpcode() != ISD::SDIV
)
10085 const auto &ST
= DAG
.getSubtarget
<ARMSubtarget
>();
10086 const bool MinSize
= ST
.hasMinSize();
10087 const bool HasDivide
= ST
.isThumb() ? ST
.hasDivideInThumbMode()
10088 : ST
.hasDivideInARMMode();
10090 // Don't touch vector types; rewriting this may lead to scalarizing
10092 if (N
->getOperand(0).getValueType().isVector())
10095 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
10096 // hwdiv support for this to be really profitable.
10097 if (!(MinSize
&& HasDivide
))
10100 // ARM mode is a bit simpler than Thumb: we can handle large power
10101 // of 2 immediates with 1 mov instruction; no further checks required,
10102 // just return the sdiv node.
10104 return SDValue(N
, 0);
10106 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
10107 // and thus lose the code size benefits of a MOVS that requires only 2.
10108 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
10109 // but as it's doing exactly this, it's not worth the trouble to get TTI.
10110 if (Divisor
.sgt(128))
10113 return SDValue(N
, 0);
10116 SDValue
ARMTargetLowering::LowerDIV_Windows(SDValue Op
, SelectionDAG
&DAG
,
10117 bool Signed
) const {
10118 assert(Op
.getValueType() == MVT::i32
&&
10119 "unexpected type for custom lowering DIV");
10122 SDValue DBZCHK
= DAG
.getNode(ARMISD::WIN__DBZCHK
, dl
, MVT::Other
,
10123 DAG
.getEntryNode(), Op
.getOperand(1));
10125 return LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
10128 static SDValue
WinDBZCheckDenominator(SelectionDAG
&DAG
, SDNode
*N
, SDValue InChain
) {
10130 SDValue Op
= N
->getOperand(1);
10131 if (N
->getValueType(0) == MVT::i32
)
10132 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
, Op
);
10134 std::tie(Lo
, Hi
) = DAG
.SplitScalar(Op
, DL
, MVT::i32
, MVT::i32
);
10135 return DAG
.getNode(ARMISD::WIN__DBZCHK
, DL
, MVT::Other
, InChain
,
10136 DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Lo
, Hi
));
10139 void ARMTargetLowering::ExpandDIV_Windows(
10140 SDValue Op
, SelectionDAG
&DAG
, bool Signed
,
10141 SmallVectorImpl
<SDValue
> &Results
) const {
10142 const auto &DL
= DAG
.getDataLayout();
10143 const auto &TLI
= DAG
.getTargetLoweringInfo();
10145 assert(Op
.getValueType() == MVT::i64
&&
10146 "unexpected type for custom lowering DIV");
10149 SDValue DBZCHK
= WinDBZCheckDenominator(DAG
, Op
.getNode(), DAG
.getEntryNode());
10151 SDValue Result
= LowerWindowsDIVLibCall(Op
, DAG
, Signed
, DBZCHK
);
10153 SDValue Lower
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Result
);
10154 SDValue Upper
= DAG
.getNode(ISD::SRL
, dl
, MVT::i64
, Result
,
10155 DAG
.getConstant(32, dl
, TLI
.getPointerTy(DL
)));
10156 Upper
= DAG
.getNode(ISD::TRUNCATE
, dl
, MVT::i32
, Upper
);
10158 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lower
, Upper
));
10161 static SDValue
LowerPredicateLoad(SDValue Op
, SelectionDAG
&DAG
) {
10162 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
.getNode());
10163 EVT MemVT
= LD
->getMemoryVT();
10164 assert((MemVT
== MVT::v2i1
|| MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
||
10165 MemVT
== MVT::v16i1
) &&
10166 "Expected a predicate type!");
10167 assert(MemVT
== Op
.getValueType());
10168 assert(LD
->getExtensionType() == ISD::NON_EXTLOAD
&&
10169 "Expected a non-extending load");
10170 assert(LD
->isUnindexed() && "Expected a unindexed load");
10172 // The basic MVE VLDR on a v2i1/v4i1/v8i1 actually loads the entire 16bit
10173 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
10174 // need to make sure that 8/4/2 bits are actually loaded into the correct
10175 // place, which means loading the value and then shuffling the values into
10176 // the bottom bits of the predicate.
10177 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
10179 // Speaking of BE, apparently the rest of llvm will assume a reverse order to
10180 // a natural VMSR(load), so needs to be reversed.
10183 SDValue Load
= DAG
.getExtLoad(
10184 ISD::EXTLOAD
, dl
, MVT::i32
, LD
->getChain(), LD
->getBasePtr(),
10185 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
10186 LD
->getMemOperand());
10187 SDValue Val
= Load
;
10188 if (DAG
.getDataLayout().isBigEndian())
10189 Val
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
,
10190 DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, Load
),
10191 DAG
.getConstant(32 - MemVT
.getSizeInBits(), dl
, MVT::i32
));
10192 SDValue Pred
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::v16i1
, Val
);
10193 if (MemVT
!= MVT::v16i1
)
10194 Pred
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, dl
, MemVT
, Pred
,
10195 DAG
.getConstant(0, dl
, MVT::i32
));
10196 return DAG
.getMergeValues({Pred
, Load
.getValue(1)}, dl
);
10199 void ARMTargetLowering::LowerLOAD(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
10200 SelectionDAG
&DAG
) const {
10201 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
10202 EVT MemVT
= LD
->getMemoryVT();
10203 assert(LD
->isUnindexed() && "Loads should be unindexed at this point.");
10205 if (MemVT
== MVT::i64
&& Subtarget
->hasV5TEOps() &&
10206 !Subtarget
->isThumb1Only() && LD
->isVolatile() &&
10207 LD
->getAlign() >= Subtarget
->getDualLoadStoreAlignment()) {
10209 SDValue Result
= DAG
.getMemIntrinsicNode(
10210 ARMISD::LDRD
, dl
, DAG
.getVTList({MVT::i32
, MVT::i32
, MVT::Other
}),
10211 {LD
->getChain(), LD
->getBasePtr()}, MemVT
, LD
->getMemOperand());
10212 SDValue Lo
= Result
.getValue(DAG
.getDataLayout().isLittleEndian() ? 0 : 1);
10213 SDValue Hi
= Result
.getValue(DAG
.getDataLayout().isLittleEndian() ? 1 : 0);
10214 SDValue Pair
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Lo
, Hi
);
10215 Results
.append({Pair
, Result
.getValue(2)});
10219 static SDValue
LowerPredicateStore(SDValue Op
, SelectionDAG
&DAG
) {
10220 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
10221 EVT MemVT
= ST
->getMemoryVT();
10222 assert((MemVT
== MVT::v2i1
|| MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
||
10223 MemVT
== MVT::v16i1
) &&
10224 "Expected a predicate type!");
10225 assert(MemVT
== ST
->getValue().getValueType());
10226 assert(!ST
->isTruncatingStore() && "Expected a non-extending store");
10227 assert(ST
->isUnindexed() && "Expected a unindexed store");
10229 // Only store the v2i1 or v4i1 or v8i1 worth of bits, via a buildvector with
10230 // top bits unset and a scalar store.
10232 SDValue Build
= ST
->getValue();
10233 if (MemVT
!= MVT::v16i1
) {
10234 SmallVector
<SDValue
, 16> Ops
;
10235 for (unsigned I
= 0; I
< MemVT
.getVectorNumElements(); I
++) {
10236 unsigned Elt
= DAG
.getDataLayout().isBigEndian()
10237 ? MemVT
.getVectorNumElements() - I
- 1
10239 Ops
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::i32
, Build
,
10240 DAG
.getConstant(Elt
, dl
, MVT::i32
)));
10242 for (unsigned I
= MemVT
.getVectorNumElements(); I
< 16; I
++)
10243 Ops
.push_back(DAG
.getUNDEF(MVT::i32
));
10244 Build
= DAG
.getNode(ISD::BUILD_VECTOR
, dl
, MVT::v16i1
, Ops
);
10246 SDValue GRP
= DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, MVT::i32
, Build
);
10247 if (MemVT
== MVT::v16i1
&& DAG
.getDataLayout().isBigEndian())
10248 GRP
= DAG
.getNode(ISD::SRL
, dl
, MVT::i32
,
10249 DAG
.getNode(ISD::BITREVERSE
, dl
, MVT::i32
, GRP
),
10250 DAG
.getConstant(16, dl
, MVT::i32
));
10251 return DAG
.getTruncStore(
10252 ST
->getChain(), dl
, GRP
, ST
->getBasePtr(),
10253 EVT::getIntegerVT(*DAG
.getContext(), MemVT
.getSizeInBits()),
10254 ST
->getMemOperand());
10257 static SDValue
LowerSTORE(SDValue Op
, SelectionDAG
&DAG
,
10258 const ARMSubtarget
*Subtarget
) {
10259 StoreSDNode
*ST
= cast
<StoreSDNode
>(Op
.getNode());
10260 EVT MemVT
= ST
->getMemoryVT();
10261 assert(ST
->isUnindexed() && "Stores should be unindexed at this point.");
10263 if (MemVT
== MVT::i64
&& Subtarget
->hasV5TEOps() &&
10264 !Subtarget
->isThumb1Only() && ST
->isVolatile() &&
10265 ST
->getAlign() >= Subtarget
->getDualLoadStoreAlignment()) {
10266 SDNode
*N
= Op
.getNode();
10269 SDValue Lo
= DAG
.getNode(
10270 ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, ST
->getValue(),
10271 DAG
.getTargetConstant(DAG
.getDataLayout().isLittleEndian() ? 0 : 1, dl
,
10273 SDValue Hi
= DAG
.getNode(
10274 ISD::EXTRACT_ELEMENT
, dl
, MVT::i32
, ST
->getValue(),
10275 DAG
.getTargetConstant(DAG
.getDataLayout().isLittleEndian() ? 1 : 0, dl
,
10278 return DAG
.getMemIntrinsicNode(ARMISD::STRD
, dl
, DAG
.getVTList(MVT::Other
),
10279 {ST
->getChain(), Lo
, Hi
, ST
->getBasePtr()},
10280 MemVT
, ST
->getMemOperand());
10281 } else if (Subtarget
->hasMVEIntegerOps() &&
10282 ((MemVT
== MVT::v2i1
|| MemVT
== MVT::v4i1
|| MemVT
== MVT::v8i1
||
10283 MemVT
== MVT::v16i1
))) {
10284 return LowerPredicateStore(Op
, DAG
);
10290 static bool isZeroVector(SDValue N
) {
10291 return (ISD::isBuildVectorAllZeros(N
.getNode()) ||
10292 (N
->getOpcode() == ARMISD::VMOVIMM
&&
10293 isNullConstant(N
->getOperand(0))));
10296 static SDValue
LowerMLOAD(SDValue Op
, SelectionDAG
&DAG
) {
10297 MaskedLoadSDNode
*N
= cast
<MaskedLoadSDNode
>(Op
.getNode());
10298 MVT VT
= Op
.getSimpleValueType();
10299 SDValue Mask
= N
->getMask();
10300 SDValue PassThru
= N
->getPassThru();
10303 if (isZeroVector(PassThru
))
10306 // MVE Masked loads use zero as the passthru value. Here we convert undef to
10307 // zero too, and other values are lowered to a select.
10308 SDValue ZeroVec
= DAG
.getNode(ARMISD::VMOVIMM
, dl
, VT
,
10309 DAG
.getTargetConstant(0, dl
, MVT::i32
));
10310 SDValue NewLoad
= DAG
.getMaskedLoad(
10311 VT
, dl
, N
->getChain(), N
->getBasePtr(), N
->getOffset(), Mask
, ZeroVec
,
10312 N
->getMemoryVT(), N
->getMemOperand(), N
->getAddressingMode(),
10313 N
->getExtensionType(), N
->isExpandingLoad());
10314 SDValue Combo
= NewLoad
;
10315 bool PassThruIsCastZero
= (PassThru
.getOpcode() == ISD::BITCAST
||
10316 PassThru
.getOpcode() == ARMISD::VECTOR_REG_CAST
) &&
10317 isZeroVector(PassThru
->getOperand(0));
10318 if (!PassThru
.isUndef() && !PassThruIsCastZero
)
10319 Combo
= DAG
.getNode(ISD::VSELECT
, dl
, VT
, Mask
, NewLoad
, PassThru
);
10320 return DAG
.getMergeValues({Combo
, NewLoad
.getValue(1)}, dl
);
10323 static SDValue
LowerVecReduce(SDValue Op
, SelectionDAG
&DAG
,
10324 const ARMSubtarget
*ST
) {
10325 if (!ST
->hasMVEIntegerOps())
10329 unsigned BaseOpcode
= 0;
10330 switch (Op
->getOpcode()) {
10331 default: llvm_unreachable("Expected VECREDUCE opcode");
10332 case ISD::VECREDUCE_FADD
: BaseOpcode
= ISD::FADD
; break;
10333 case ISD::VECREDUCE_FMUL
: BaseOpcode
= ISD::FMUL
; break;
10334 case ISD::VECREDUCE_MUL
: BaseOpcode
= ISD::MUL
; break;
10335 case ISD::VECREDUCE_AND
: BaseOpcode
= ISD::AND
; break;
10336 case ISD::VECREDUCE_OR
: BaseOpcode
= ISD::OR
; break;
10337 case ISD::VECREDUCE_XOR
: BaseOpcode
= ISD::XOR
; break;
10338 case ISD::VECREDUCE_FMAX
: BaseOpcode
= ISD::FMAXNUM
; break;
10339 case ISD::VECREDUCE_FMIN
: BaseOpcode
= ISD::FMINNUM
; break;
10342 SDValue Op0
= Op
->getOperand(0);
10343 EVT VT
= Op0
.getValueType();
10344 EVT EltVT
= VT
.getVectorElementType();
10345 unsigned NumElts
= VT
.getVectorNumElements();
10346 unsigned NumActiveLanes
= NumElts
;
10348 assert((NumActiveLanes
== 16 || NumActiveLanes
== 8 || NumActiveLanes
== 4 ||
10349 NumActiveLanes
== 2) &&
10350 "Only expected a power 2 vector size");
10352 // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
10353 // allows us to easily extract vector elements from the lanes.
10354 while (NumActiveLanes
> 4) {
10355 unsigned RevOpcode
= NumActiveLanes
== 16 ? ARMISD::VREV16
: ARMISD::VREV32
;
10356 SDValue Rev
= DAG
.getNode(RevOpcode
, dl
, VT
, Op0
);
10357 Op0
= DAG
.getNode(BaseOpcode
, dl
, VT
, Op0
, Rev
);
10358 NumActiveLanes
/= 2;
10362 if (NumActiveLanes
== 4) {
10363 // The remaining 4 elements are summed sequentially
10364 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
10365 DAG
.getConstant(0 * NumElts
/ 4, dl
, MVT::i32
));
10366 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
10367 DAG
.getConstant(1 * NumElts
/ 4, dl
, MVT::i32
));
10368 SDValue Ext2
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
10369 DAG
.getConstant(2 * NumElts
/ 4, dl
, MVT::i32
));
10370 SDValue Ext3
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
10371 DAG
.getConstant(3 * NumElts
/ 4, dl
, MVT::i32
));
10372 SDValue Res0
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Ext0
, Ext1
, Op
->getFlags());
10373 SDValue Res1
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Ext2
, Ext3
, Op
->getFlags());
10374 Res
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Res0
, Res1
, Op
->getFlags());
10376 SDValue Ext0
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
10377 DAG
.getConstant(0, dl
, MVT::i32
));
10378 SDValue Ext1
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
10379 DAG
.getConstant(1, dl
, MVT::i32
));
10380 Res
= DAG
.getNode(BaseOpcode
, dl
, EltVT
, Ext0
, Ext1
, Op
->getFlags());
10383 // Result type may be wider than element type.
10384 if (EltVT
!= Op
->getValueType(0))
10385 Res
= DAG
.getNode(ISD::ANY_EXTEND
, dl
, Op
->getValueType(0), Res
);
10389 static SDValue
LowerVecReduceF(SDValue Op
, SelectionDAG
&DAG
,
10390 const ARMSubtarget
*ST
) {
10391 if (!ST
->hasMVEFloatOps())
10393 return LowerVecReduce(Op
, DAG
, ST
);
10396 static SDValue
LowerVecReduceMinMax(SDValue Op
, SelectionDAG
&DAG
,
10397 const ARMSubtarget
*ST
) {
10398 if (!ST
->hasNEON())
10402 SDValue Op0
= Op
->getOperand(0);
10403 EVT VT
= Op0
.getValueType();
10404 EVT EltVT
= VT
.getVectorElementType();
10406 unsigned PairwiseIntrinsic
= 0;
10407 switch (Op
->getOpcode()) {
10409 llvm_unreachable("Expected VECREDUCE opcode");
10410 case ISD::VECREDUCE_UMIN
:
10411 PairwiseIntrinsic
= Intrinsic::arm_neon_vpminu
;
10413 case ISD::VECREDUCE_UMAX
:
10414 PairwiseIntrinsic
= Intrinsic::arm_neon_vpmaxu
;
10416 case ISD::VECREDUCE_SMIN
:
10417 PairwiseIntrinsic
= Intrinsic::arm_neon_vpmins
;
10419 case ISD::VECREDUCE_SMAX
:
10420 PairwiseIntrinsic
= Intrinsic::arm_neon_vpmaxs
;
10423 SDValue PairwiseOp
= DAG
.getConstant(PairwiseIntrinsic
, dl
, MVT::i32
);
10425 unsigned NumElts
= VT
.getVectorNumElements();
10426 unsigned NumActiveLanes
= NumElts
;
10428 assert((NumActiveLanes
== 16 || NumActiveLanes
== 8 || NumActiveLanes
== 4 ||
10429 NumActiveLanes
== 2) &&
10430 "Only expected a power 2 vector size");
10432 // Split 128-bit vectors, since vpmin/max takes 2 64-bit vectors.
10433 if (VT
.is128BitVector()) {
10435 std::tie(Lo
, Hi
) = DAG
.SplitVector(Op0
, dl
);
10436 VT
= Lo
.getValueType();
10437 Op0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, {PairwiseOp
, Lo
, Hi
});
10438 NumActiveLanes
/= 2;
10441 // Use pairwise reductions until one lane remains
10442 while (NumActiveLanes
> 1) {
10443 Op0
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, {PairwiseOp
, Op0
, Op0
});
10444 NumActiveLanes
/= 2;
10447 SDValue Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, EltVT
, Op0
,
10448 DAG
.getConstant(0, dl
, MVT::i32
));
10450 // Result type may be wider than element type.
10451 if (EltVT
!= Op
.getValueType()) {
10452 unsigned Extend
= 0;
10453 switch (Op
->getOpcode()) {
10455 llvm_unreachable("Expected VECREDUCE opcode");
10456 case ISD::VECREDUCE_UMIN
:
10457 case ISD::VECREDUCE_UMAX
:
10458 Extend
= ISD::ZERO_EXTEND
;
10460 case ISD::VECREDUCE_SMIN
:
10461 case ISD::VECREDUCE_SMAX
:
10462 Extend
= ISD::SIGN_EXTEND
;
10465 Res
= DAG
.getNode(Extend
, dl
, Op
.getValueType(), Res
);
10470 static SDValue
LowerAtomicLoadStore(SDValue Op
, SelectionDAG
&DAG
) {
10471 if (isStrongerThanMonotonic(cast
<AtomicSDNode
>(Op
)->getSuccessOrdering()))
10472 // Acquire/Release load/store is not legal for targets without a dmb or
10473 // equivalent available.
10476 // Monotonic load/store is legal for all targets.
10480 static void ReplaceREADCYCLECOUNTER(SDNode
*N
,
10481 SmallVectorImpl
<SDValue
> &Results
,
10483 const ARMSubtarget
*Subtarget
) {
10485 // Under Power Management extensions, the cycle-count is:
10486 // mrc p15, #0, <Rt>, c9, c13, #0
10487 SDValue Ops
[] = { N
->getOperand(0), // Chain
10488 DAG
.getTargetConstant(Intrinsic::arm_mrc
, DL
, MVT::i32
),
10489 DAG
.getTargetConstant(15, DL
, MVT::i32
),
10490 DAG
.getTargetConstant(0, DL
, MVT::i32
),
10491 DAG
.getTargetConstant(9, DL
, MVT::i32
),
10492 DAG
.getTargetConstant(13, DL
, MVT::i32
),
10493 DAG
.getTargetConstant(0, DL
, MVT::i32
)
10496 SDValue Cycles32
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, DL
,
10497 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
10498 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, Cycles32
,
10499 DAG
.getConstant(0, DL
, MVT::i32
)));
10500 Results
.push_back(Cycles32
.getValue(1));
10503 static SDValue
createGPRPairNode2xi32(SelectionDAG
&DAG
, SDValue V0
,
10505 SDLoc
dl(V0
.getNode());
10507 DAG
.getTargetConstant(ARM::GPRPairRegClassID
, dl
, MVT::i32
);
10508 SDValue SubReg0
= DAG
.getTargetConstant(ARM::gsub_0
, dl
, MVT::i32
);
10509 SDValue SubReg1
= DAG
.getTargetConstant(ARM::gsub_1
, dl
, MVT::i32
);
10510 const SDValue Ops
[] = {RegClass
, V0
, SubReg0
, V1
, SubReg1
};
10512 DAG
.getMachineNode(TargetOpcode::REG_SEQUENCE
, dl
, MVT::Untyped
, Ops
), 0);
10515 static SDValue
createGPRPairNodei64(SelectionDAG
&DAG
, SDValue V
) {
10516 SDLoc
dl(V
.getNode());
10517 auto [VLo
, VHi
] = DAG
.SplitScalar(V
, dl
, MVT::i32
, MVT::i32
);
10518 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
10520 std::swap(VLo
, VHi
);
10521 return createGPRPairNode2xi32(DAG
, VLo
, VHi
);
10524 static void ReplaceCMP_SWAP_64Results(SDNode
*N
,
10525 SmallVectorImpl
<SDValue
> &Results
,
10526 SelectionDAG
&DAG
) {
10527 assert(N
->getValueType(0) == MVT::i64
&&
10528 "AtomicCmpSwap on types less than 64 should be legal");
10530 createGPRPairNode2xi32(DAG
, N
->getOperand(1),
10531 DAG
.getUNDEF(MVT::i32
)), // pointer, temp
10532 createGPRPairNodei64(DAG
, N
->getOperand(2)), // expected
10533 createGPRPairNodei64(DAG
, N
->getOperand(3)), // new
10534 N
->getOperand(0), // chain in
10536 SDNode
*CmpSwap
= DAG
.getMachineNode(
10537 ARM::CMP_SWAP_64
, SDLoc(N
),
10538 DAG
.getVTList(MVT::Untyped
, MVT::Untyped
, MVT::Other
), Ops
);
10540 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
10541 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
10543 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
10546 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_1
: ARM::gsub_0
,
10547 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0));
10549 DAG
.getTargetExtractSubreg(isBigEndian
? ARM::gsub_0
: ARM::gsub_1
,
10550 SDLoc(N
), MVT::i32
, SDValue(CmpSwap
, 0));
10551 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N
), MVT::i64
, Lo
, Hi
));
10552 Results
.push_back(SDValue(CmpSwap
, 2));
10555 SDValue
ARMTargetLowering::LowerFSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
10557 EVT VT
= Op
.getValueType();
10558 SDValue Chain
= Op
.getOperand(0);
10559 SDValue LHS
= Op
.getOperand(1);
10560 SDValue RHS
= Op
.getOperand(2);
10561 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(3))->get();
10562 bool IsSignaling
= Op
.getOpcode() == ISD::STRICT_FSETCCS
;
10564 // If we don't have instructions of this float type then soften to a libcall
10565 // and use SETCC instead.
10566 if (isUnsupportedFloatingType(LHS
.getValueType())) {
10567 DAG
.getTargetLoweringInfo().softenSetCCOperands(
10568 DAG
, LHS
.getValueType(), LHS
, RHS
, CC
, dl
, LHS
, RHS
, Chain
, IsSignaling
);
10569 if (!RHS
.getNode()) {
10570 RHS
= DAG
.getConstant(0, dl
, LHS
.getValueType());
10573 SDValue Result
= DAG
.getNode(ISD::SETCC
, dl
, VT
, LHS
, RHS
,
10574 DAG
.getCondCode(CC
));
10575 return DAG
.getMergeValues({Result
, Chain
}, dl
);
10578 ARMCC::CondCodes CondCode
, CondCode2
;
10579 FPCCToARMCC(CC
, CondCode
, CondCode2
);
10581 SDValue True
= DAG
.getConstant(1, dl
, VT
);
10582 SDValue False
= DAG
.getConstant(0, dl
, VT
);
10583 SDValue ARMcc
= DAG
.getConstant(CondCode
, dl
, MVT::i32
);
10584 SDValue Cmp
= getVFPCmp(LHS
, RHS
, DAG
, dl
, IsSignaling
);
10585 SDValue Result
= getCMOV(dl
, VT
, False
, True
, ARMcc
, Cmp
, DAG
);
10586 if (CondCode2
!= ARMCC::AL
) {
10587 ARMcc
= DAG
.getConstant(CondCode2
, dl
, MVT::i32
);
10588 Result
= getCMOV(dl
, VT
, Result
, True
, ARMcc
, Cmp
, DAG
);
10590 return DAG
.getMergeValues({Result
, Chain
}, dl
);
10593 SDValue
ARMTargetLowering::LowerSPONENTRY(SDValue Op
, SelectionDAG
&DAG
) const {
10594 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
10596 EVT VT
= getPointerTy(DAG
.getDataLayout());
10598 int FI
= MFI
.CreateFixedObject(4, 0, false);
10599 return DAG
.getFrameIndex(FI
, VT
);
10602 SDValue
ARMTargetLowering::LowerFP_TO_BF16(SDValue Op
,
10603 SelectionDAG
&DAG
) const {
10605 MakeLibCallOptions CallOptions
;
10606 MVT SVT
= Op
.getOperand(0).getSimpleValueType();
10607 RTLIB::Libcall LC
= RTLIB::getFPROUND(SVT
, MVT::bf16
);
10609 makeLibCall(DAG
, LC
, MVT::f32
, Op
.getOperand(0), CallOptions
, DL
).first
;
10610 return DAG
.getBitcast(MVT::i32
, Res
);
10613 SDValue
ARMTargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
10614 LLVM_DEBUG(dbgs() << "Lowering node: "; Op
.dump());
10615 switch (Op
.getOpcode()) {
10616 default: llvm_unreachable("Don't know how to custom lower this!");
10617 case ISD::WRITE_REGISTER
: return LowerWRITE_REGISTER(Op
, DAG
);
10618 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
10619 case ISD::BlockAddress
: return LowerBlockAddress(Op
, DAG
);
10620 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
10621 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
10622 case ISD::SELECT
: return LowerSELECT(Op
, DAG
);
10623 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
10624 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
10625 case ISD::BR_CC
: return LowerBR_CC(Op
, DAG
);
10626 case ISD::BR_JT
: return LowerBR_JT(Op
, DAG
);
10627 case ISD::VASTART
: return LowerVASTART(Op
, DAG
);
10628 case ISD::ATOMIC_FENCE
: return LowerATOMIC_FENCE(Op
, DAG
, Subtarget
);
10629 case ISD::PREFETCH
: return LowerPREFETCH(Op
, DAG
, Subtarget
);
10630 case ISD::SINT_TO_FP
:
10631 case ISD::UINT_TO_FP
: return LowerINT_TO_FP(Op
, DAG
);
10632 case ISD::STRICT_FP_TO_SINT
:
10633 case ISD::STRICT_FP_TO_UINT
:
10634 case ISD::FP_TO_SINT
:
10635 case ISD::FP_TO_UINT
: return LowerFP_TO_INT(Op
, DAG
);
10636 case ISD::FP_TO_SINT_SAT
:
10637 case ISD::FP_TO_UINT_SAT
: return LowerFP_TO_INT_SAT(Op
, DAG
, Subtarget
);
10638 case ISD::FCOPYSIGN
: return LowerFCOPYSIGN(Op
, DAG
);
10639 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
10640 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
10641 case ISD::EH_SJLJ_SETJMP
: return LowerEH_SJLJ_SETJMP(Op
, DAG
);
10642 case ISD::EH_SJLJ_LONGJMP
: return LowerEH_SJLJ_LONGJMP(Op
, DAG
);
10643 case ISD::EH_SJLJ_SETUP_DISPATCH
: return LowerEH_SJLJ_SETUP_DISPATCH(Op
, DAG
);
10644 case ISD::INTRINSIC_VOID
: return LowerINTRINSIC_VOID(Op
, DAG
, Subtarget
);
10645 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
,
10647 case ISD::BITCAST
: return ExpandBITCAST(Op
.getNode(), DAG
, Subtarget
);
10650 case ISD::SRA
: return LowerShift(Op
.getNode(), DAG
, Subtarget
);
10651 case ISD::SREM
: return LowerREM(Op
.getNode(), DAG
);
10652 case ISD::UREM
: return LowerREM(Op
.getNode(), DAG
);
10653 case ISD::SHL_PARTS
: return LowerShiftLeftParts(Op
, DAG
);
10654 case ISD::SRL_PARTS
:
10655 case ISD::SRA_PARTS
: return LowerShiftRightParts(Op
, DAG
);
10657 case ISD::CTTZ_ZERO_UNDEF
: return LowerCTTZ(Op
.getNode(), DAG
, Subtarget
);
10658 case ISD::CTPOP
: return LowerCTPOP(Op
.getNode(), DAG
, Subtarget
);
10659 case ISD::SETCC
: return LowerVSETCC(Op
, DAG
, Subtarget
);
10660 case ISD::SETCCCARRY
: return LowerSETCCCARRY(Op
, DAG
);
10661 case ISD::ConstantFP
: return LowerConstantFP(Op
, DAG
, Subtarget
);
10662 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
, Subtarget
);
10663 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
, Subtarget
);
10664 case ISD::EXTRACT_SUBVECTOR
: return LowerEXTRACT_SUBVECTOR(Op
, DAG
, Subtarget
);
10665 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
10666 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
, Subtarget
);
10667 case ISD::CONCAT_VECTORS
: return LowerCONCAT_VECTORS(Op
, DAG
, Subtarget
);
10668 case ISD::TRUNCATE
: return LowerTruncate(Op
.getNode(), DAG
, Subtarget
);
10669 case ISD::SIGN_EXTEND
:
10670 case ISD::ZERO_EXTEND
: return LowerVectorExtend(Op
.getNode(), DAG
, Subtarget
);
10671 case ISD::GET_ROUNDING
: return LowerGET_ROUNDING(Op
, DAG
);
10672 case ISD::SET_ROUNDING
: return LowerSET_ROUNDING(Op
, DAG
);
10673 case ISD::SET_FPMODE
:
10674 return LowerSET_FPMODE(Op
, DAG
);
10675 case ISD::RESET_FPMODE
:
10676 return LowerRESET_FPMODE(Op
, DAG
);
10677 case ISD::MUL
: return LowerMUL(Op
, DAG
);
10679 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
10680 return LowerDIV_Windows(Op
, DAG
, /* Signed */ true);
10681 return LowerSDIV(Op
, DAG
, Subtarget
);
10683 if (Subtarget
->isTargetWindows() && !Op
.getValueType().isVector())
10684 return LowerDIV_Windows(Op
, DAG
, /* Signed */ false);
10685 return LowerUDIV(Op
, DAG
, Subtarget
);
10686 case ISD::UADDO_CARRY
:
10687 case ISD::USUBO_CARRY
:
10688 return LowerUADDSUBO_CARRY(Op
, DAG
);
10691 return LowerSignedALUO(Op
, DAG
);
10694 return LowerUnsignedALUO(Op
, DAG
);
10699 return LowerADDSUBSAT(Op
, DAG
, Subtarget
);
10701 return LowerPredicateLoad(Op
, DAG
);
10703 return LowerSTORE(Op
, DAG
, Subtarget
);
10705 return LowerMLOAD(Op
, DAG
);
10706 case ISD::VECREDUCE_MUL
:
10707 case ISD::VECREDUCE_AND
:
10708 case ISD::VECREDUCE_OR
:
10709 case ISD::VECREDUCE_XOR
:
10710 return LowerVecReduce(Op
, DAG
, Subtarget
);
10711 case ISD::VECREDUCE_FADD
:
10712 case ISD::VECREDUCE_FMUL
:
10713 case ISD::VECREDUCE_FMIN
:
10714 case ISD::VECREDUCE_FMAX
:
10715 return LowerVecReduceF(Op
, DAG
, Subtarget
);
10716 case ISD::VECREDUCE_UMIN
:
10717 case ISD::VECREDUCE_UMAX
:
10718 case ISD::VECREDUCE_SMIN
:
10719 case ISD::VECREDUCE_SMAX
:
10720 return LowerVecReduceMinMax(Op
, DAG
, Subtarget
);
10721 case ISD::ATOMIC_LOAD
:
10722 case ISD::ATOMIC_STORE
: return LowerAtomicLoadStore(Op
, DAG
);
10723 case ISD::FSINCOS
: return LowerFSINCOS(Op
, DAG
);
10725 case ISD::UDIVREM
: return LowerDivRem(Op
, DAG
);
10726 case ISD::DYNAMIC_STACKALLOC
:
10727 if (Subtarget
->isTargetWindows())
10728 return LowerDYNAMIC_STACKALLOC(Op
, DAG
);
10729 llvm_unreachable("Don't know how to custom lower this!");
10730 case ISD::STRICT_FP_ROUND
:
10731 case ISD::FP_ROUND
: return LowerFP_ROUND(Op
, DAG
);
10732 case ISD::STRICT_FP_EXTEND
:
10733 case ISD::FP_EXTEND
: return LowerFP_EXTEND(Op
, DAG
);
10734 case ISD::STRICT_FSETCC
:
10735 case ISD::STRICT_FSETCCS
: return LowerFSETCC(Op
, DAG
);
10736 case ISD::SPONENTRY
:
10737 return LowerSPONENTRY(Op
, DAG
);
10738 case ISD::FP_TO_BF16
:
10739 return LowerFP_TO_BF16(Op
, DAG
);
10740 case ARMISD::WIN__DBZCHK
: return SDValue();
10744 static void ReplaceLongIntrinsic(SDNode
*N
, SmallVectorImpl
<SDValue
> &Results
,
10745 SelectionDAG
&DAG
) {
10746 unsigned IntNo
= N
->getConstantOperandVal(0);
10748 if (IntNo
== Intrinsic::arm_smlald
)
10749 Opc
= ARMISD::SMLALD
;
10750 else if (IntNo
== Intrinsic::arm_smlaldx
)
10751 Opc
= ARMISD::SMLALDX
;
10752 else if (IntNo
== Intrinsic::arm_smlsld
)
10753 Opc
= ARMISD::SMLSLD
;
10754 else if (IntNo
== Intrinsic::arm_smlsldx
)
10755 Opc
= ARMISD::SMLSLDX
;
10761 std::tie(Lo
, Hi
) = DAG
.SplitScalar(N
->getOperand(3), dl
, MVT::i32
, MVT::i32
);
10763 SDValue LongMul
= DAG
.getNode(Opc
, dl
,
10764 DAG
.getVTList(MVT::i32
, MVT::i32
),
10765 N
->getOperand(1), N
->getOperand(2),
10767 Results
.push_back(DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
,
10768 LongMul
.getValue(0), LongMul
.getValue(1)));
10771 /// ReplaceNodeResults - Replace the results of node with an illegal result
10772 /// type with new values built out of custom code.
10773 void ARMTargetLowering::ReplaceNodeResults(SDNode
*N
,
10774 SmallVectorImpl
<SDValue
> &Results
,
10775 SelectionDAG
&DAG
) const {
10777 switch (N
->getOpcode()) {
10779 llvm_unreachable("Don't know how to custom expand this!");
10780 case ISD::READ_REGISTER
:
10781 ExpandREAD_REGISTER(N
, Results
, DAG
);
10784 Res
= ExpandBITCAST(N
, DAG
, Subtarget
);
10789 Res
= Expand64BitShift(N
, DAG
, Subtarget
);
10793 Res
= LowerREM(N
, DAG
);
10797 Res
= LowerDivRem(SDValue(N
, 0), DAG
);
10798 assert(Res
.getNumOperands() == 2 && "DivRem needs two values");
10799 Results
.push_back(Res
.getValue(0));
10800 Results
.push_back(Res
.getValue(1));
10806 Res
= LowerADDSUBSAT(SDValue(N
, 0), DAG
, Subtarget
);
10808 case ISD::READCYCLECOUNTER
:
10809 ReplaceREADCYCLECOUNTER(N
, Results
, DAG
, Subtarget
);
10813 assert(Subtarget
->isTargetWindows() && "can only expand DIV on Windows");
10814 return ExpandDIV_Windows(SDValue(N
, 0), DAG
, N
->getOpcode() == ISD::SDIV
,
10816 case ISD::ATOMIC_CMP_SWAP
:
10817 ReplaceCMP_SWAP_64Results(N
, Results
, DAG
);
10819 case ISD::INTRINSIC_WO_CHAIN
:
10820 return ReplaceLongIntrinsic(N
, Results
, DAG
);
10822 LowerLOAD(N
, Results
, DAG
);
10824 case ISD::TRUNCATE
:
10825 Res
= LowerTruncate(N
, DAG
, Subtarget
);
10827 case ISD::SIGN_EXTEND
:
10828 case ISD::ZERO_EXTEND
:
10829 Res
= LowerVectorExtend(N
, DAG
, Subtarget
);
10831 case ISD::FP_TO_SINT_SAT
:
10832 case ISD::FP_TO_UINT_SAT
:
10833 Res
= LowerFP_TO_INT_SAT(SDValue(N
, 0), DAG
, Subtarget
);
10837 Results
.push_back(Res
);
10840 //===----------------------------------------------------------------------===//
10841 // ARM Scheduler Hooks
10842 //===----------------------------------------------------------------------===//
10844 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
10845 /// registers the function context.
10846 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr
&MI
,
10847 MachineBasicBlock
*MBB
,
10848 MachineBasicBlock
*DispatchBB
,
10850 assert(!Subtarget
->isROPI() && !Subtarget
->isRWPI() &&
10851 "ROPI/RWPI not currently supported with SjLj");
10852 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10853 DebugLoc dl
= MI
.getDebugLoc();
10854 MachineFunction
*MF
= MBB
->getParent();
10855 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
10856 MachineConstantPool
*MCP
= MF
->getConstantPool();
10857 ARMFunctionInfo
*AFI
= MF
->getInfo
<ARMFunctionInfo
>();
10858 const Function
&F
= MF
->getFunction();
10860 bool isThumb
= Subtarget
->isThumb();
10861 bool isThumb2
= Subtarget
->isThumb2();
10863 unsigned PCLabelId
= AFI
->createPICLabelUId();
10864 unsigned PCAdj
= (isThumb
|| isThumb2
) ? 4 : 8;
10865 ARMConstantPoolValue
*CPV
=
10866 ARMConstantPoolMBB::Create(F
.getContext(), DispatchBB
, PCLabelId
, PCAdj
);
10867 unsigned CPI
= MCP
->getConstantPoolIndex(CPV
, Align(4));
10869 const TargetRegisterClass
*TRC
= isThumb
? &ARM::tGPRRegClass
10870 : &ARM::GPRRegClass
;
10872 // Grab constant pool and fixed stack memory operands.
10873 MachineMemOperand
*CPMMO
=
10874 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
10875 MachineMemOperand::MOLoad
, 4, Align(4));
10877 MachineMemOperand
*FIMMOSt
=
10878 MF
->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF
, FI
),
10879 MachineMemOperand::MOStore
, 4, Align(4));
10881 // Load the address of the dispatch MBB into the jump buffer.
10883 // Incoming value: jbuf
10884 // ldr.n r5, LCPI1_1
10887 // str r5, [$jbuf, #+4] ; &jbuf[1]
10888 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
10889 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2LDRpci
), NewVReg1
)
10890 .addConstantPoolIndex(CPI
)
10891 .addMemOperand(CPMMO
)
10892 .add(predOps(ARMCC::AL
));
10893 // Set the low bit because of thumb mode.
10894 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
10895 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2ORRri
), NewVReg2
)
10896 .addReg(NewVReg1
, RegState::Kill
)
10898 .add(predOps(ARMCC::AL
))
10899 .add(condCodeOp());
10900 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
10901 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg3
)
10902 .addReg(NewVReg2
, RegState::Kill
)
10903 .addImm(PCLabelId
);
10904 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::t2STRi12
))
10905 .addReg(NewVReg3
, RegState::Kill
)
10907 .addImm(36) // &jbuf[1] :: pc
10908 .addMemOperand(FIMMOSt
)
10909 .add(predOps(ARMCC::AL
));
10910 } else if (isThumb
) {
10911 // Incoming value: jbuf
10912 // ldr.n r1, LCPI1_4
10916 // add r2, $jbuf, #+4 ; &jbuf[1]
10918 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
10919 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tLDRpci
), NewVReg1
)
10920 .addConstantPoolIndex(CPI
)
10921 .addMemOperand(CPMMO
)
10922 .add(predOps(ARMCC::AL
));
10923 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
10924 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tPICADD
), NewVReg2
)
10925 .addReg(NewVReg1
, RegState::Kill
)
10926 .addImm(PCLabelId
);
10927 // Set the low bit because of thumb mode.
10928 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
10929 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tMOVi8
), NewVReg3
)
10930 .addReg(ARM::CPSR
, RegState::Define
)
10932 .add(predOps(ARMCC::AL
));
10933 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
10934 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tORR
), NewVReg4
)
10935 .addReg(ARM::CPSR
, RegState::Define
)
10936 .addReg(NewVReg2
, RegState::Kill
)
10937 .addReg(NewVReg3
, RegState::Kill
)
10938 .add(predOps(ARMCC::AL
));
10939 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
10940 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tADDframe
), NewVReg5
)
10942 .addImm(36); // &jbuf[1] :: pc
10943 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::tSTRi
))
10944 .addReg(NewVReg4
, RegState::Kill
)
10945 .addReg(NewVReg5
, RegState::Kill
)
10947 .addMemOperand(FIMMOSt
)
10948 .add(predOps(ARMCC::AL
));
10950 // Incoming value: jbuf
10953 // str r1, [$jbuf, #+4] ; &jbuf[1]
10954 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
10955 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
10956 .addConstantPoolIndex(CPI
)
10958 .addMemOperand(CPMMO
)
10959 .add(predOps(ARMCC::AL
));
10960 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
10961 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::PICADD
), NewVReg2
)
10962 .addReg(NewVReg1
, RegState::Kill
)
10964 .add(predOps(ARMCC::AL
));
10965 BuildMI(*MBB
, MI
, dl
, TII
->get(ARM::STRi12
))
10966 .addReg(NewVReg2
, RegState::Kill
)
10968 .addImm(36) // &jbuf[1] :: pc
10969 .addMemOperand(FIMMOSt
)
10970 .add(predOps(ARMCC::AL
));
10974 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr
&MI
,
10975 MachineBasicBlock
*MBB
) const {
10976 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
10977 DebugLoc dl
= MI
.getDebugLoc();
10978 MachineFunction
*MF
= MBB
->getParent();
10979 MachineRegisterInfo
*MRI
= &MF
->getRegInfo();
10980 MachineFrameInfo
&MFI
= MF
->getFrameInfo();
10981 int FI
= MFI
.getFunctionContextIndex();
10983 const TargetRegisterClass
*TRC
= Subtarget
->isThumb() ? &ARM::tGPRRegClass
10984 : &ARM::GPRnopcRegClass
;
10986 // Get a mapping of the call site numbers to all of the landing pads they're
10987 // associated with.
10988 DenseMap
<unsigned, SmallVector
<MachineBasicBlock
*, 2>> CallSiteNumToLPad
;
10989 unsigned MaxCSNum
= 0;
10990 for (MachineBasicBlock
&BB
: *MF
) {
10994 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10996 for (MachineInstr
&II
: BB
) {
10997 if (!II
.isEHLabel())
11000 MCSymbol
*Sym
= II
.getOperand(0).getMCSymbol();
11001 if (!MF
->hasCallSiteLandingPad(Sym
)) continue;
11003 SmallVectorImpl
<unsigned> &CallSiteIdxs
= MF
->getCallSiteLandingPad(Sym
);
11004 for (unsigned Idx
: CallSiteIdxs
) {
11005 CallSiteNumToLPad
[Idx
].push_back(&BB
);
11006 MaxCSNum
= std::max(MaxCSNum
, Idx
);
11012 // Get an ordered list of the machine basic blocks for the jump table.
11013 std::vector
<MachineBasicBlock
*> LPadList
;
11014 SmallPtrSet
<MachineBasicBlock
*, 32> InvokeBBs
;
11015 LPadList
.reserve(CallSiteNumToLPad
.size());
11016 for (unsigned I
= 1; I
<= MaxCSNum
; ++I
) {
11017 SmallVectorImpl
<MachineBasicBlock
*> &MBBList
= CallSiteNumToLPad
[I
];
11018 for (MachineBasicBlock
*MBB
: MBBList
) {
11019 LPadList
.push_back(MBB
);
11020 InvokeBBs
.insert(MBB
->pred_begin(), MBB
->pred_end());
11024 assert(!LPadList
.empty() &&
11025 "No landing pad destinations for the dispatch jump table!");
11027 // Create the jump table and associated information.
11028 MachineJumpTableInfo
*JTI
=
11029 MF
->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline
);
11030 unsigned MJTI
= JTI
->createJumpTableIndex(LPadList
);
11032 // Create the MBBs for the dispatch code.
11034 // Shove the dispatch's address into the return slot in the function context.
11035 MachineBasicBlock
*DispatchBB
= MF
->CreateMachineBasicBlock();
11036 DispatchBB
->setIsEHPad();
11038 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
11039 unsigned trap_opcode
;
11040 if (Subtarget
->isThumb())
11041 trap_opcode
= ARM::tTRAP
;
11043 trap_opcode
= Subtarget
->useNaClTrap() ? ARM::TRAPNaCl
: ARM::TRAP
;
11045 BuildMI(TrapBB
, dl
, TII
->get(trap_opcode
));
11046 DispatchBB
->addSuccessor(TrapBB
);
11048 MachineBasicBlock
*DispContBB
= MF
->CreateMachineBasicBlock();
11049 DispatchBB
->addSuccessor(DispContBB
);
11051 // Insert and MBBs.
11052 MF
->insert(MF
->end(), DispatchBB
);
11053 MF
->insert(MF
->end(), DispContBB
);
11054 MF
->insert(MF
->end(), TrapBB
);
11056 // Insert code into the entry block that creates and registers the function
11058 SetupEntryBlockForSjLj(MI
, MBB
, DispatchBB
, FI
);
11060 MachineMemOperand
*FIMMOLd
= MF
->getMachineMemOperand(
11061 MachinePointerInfo::getFixedStack(*MF
, FI
),
11062 MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
, 4, Align(4));
11064 MachineInstrBuilder MIB
;
11065 MIB
= BuildMI(DispatchBB
, dl
, TII
->get(ARM::Int_eh_sjlj_dispatchsetup
));
11067 const ARMBaseInstrInfo
*AII
= static_cast<const ARMBaseInstrInfo
*>(TII
);
11068 const ARMBaseRegisterInfo
&RI
= AII
->getRegisterInfo();
11070 // Add a register mask with no preserved registers. This results in all
11071 // registers being marked as clobbered. This can't work if the dispatch block
11072 // is in a Thumb1 function and is linked with ARM code which uses the FP
11073 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
11074 MIB
.addRegMask(RI
.getSjLjDispatchPreservedMask(*MF
));
11076 bool IsPositionIndependent
= isPositionIndependent();
11077 unsigned NumLPads
= LPadList
.size();
11078 if (Subtarget
->isThumb2()) {
11079 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
11080 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2LDRi12
), NewVReg1
)
11083 .addMemOperand(FIMMOLd
)
11084 .add(predOps(ARMCC::AL
));
11086 if (NumLPads
< 256) {
11087 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPri
))
11089 .addImm(LPadList
.size())
11090 .add(predOps(ARMCC::AL
));
11092 Register VReg1
= MRI
->createVirtualRegister(TRC
);
11093 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVi16
), VReg1
)
11094 .addImm(NumLPads
& 0xFFFF)
11095 .add(predOps(ARMCC::AL
));
11097 unsigned VReg2
= VReg1
;
11098 if ((NumLPads
& 0xFFFF0000) != 0) {
11099 VReg2
= MRI
->createVirtualRegister(TRC
);
11100 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2MOVTi16
), VReg2
)
11102 .addImm(NumLPads
>> 16)
11103 .add(predOps(ARMCC::AL
));
11106 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2CMPrr
))
11109 .add(predOps(ARMCC::AL
));
11112 BuildMI(DispatchBB
, dl
, TII
->get(ARM::t2Bcc
))
11115 .addReg(ARM::CPSR
);
11117 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
11118 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2LEApcrelJT
), NewVReg3
)
11119 .addJumpTableIndex(MJTI
)
11120 .add(predOps(ARMCC::AL
));
11122 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
11123 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2ADDrs
), NewVReg4
)
11124 .addReg(NewVReg3
, RegState::Kill
)
11126 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
11127 .add(predOps(ARMCC::AL
))
11128 .add(condCodeOp());
11130 BuildMI(DispContBB
, dl
, TII
->get(ARM::t2BR_JT
))
11131 .addReg(NewVReg4
, RegState::Kill
)
11133 .addJumpTableIndex(MJTI
);
11134 } else if (Subtarget
->isThumb()) {
11135 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
11136 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRspi
), NewVReg1
)
11139 .addMemOperand(FIMMOLd
)
11140 .add(predOps(ARMCC::AL
));
11142 if (NumLPads
< 256) {
11143 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPi8
))
11146 .add(predOps(ARMCC::AL
));
11148 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
11149 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
11150 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
11152 // MachineConstantPool wants an explicit alignment.
11153 Align Alignment
= MF
->getDataLayout().getPrefTypeAlign(Int32Ty
);
11154 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Alignment
);
11156 Register VReg1
= MRI
->createVirtualRegister(TRC
);
11157 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tLDRpci
))
11158 .addReg(VReg1
, RegState::Define
)
11159 .addConstantPoolIndex(Idx
)
11160 .add(predOps(ARMCC::AL
));
11161 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tCMPr
))
11164 .add(predOps(ARMCC::AL
));
11167 BuildMI(DispatchBB
, dl
, TII
->get(ARM::tBcc
))
11170 .addReg(ARM::CPSR
);
11172 Register NewVReg2
= MRI
->createVirtualRegister(TRC
);
11173 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLSLri
), NewVReg2
)
11174 .addReg(ARM::CPSR
, RegState::Define
)
11177 .add(predOps(ARMCC::AL
));
11179 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
11180 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLEApcrelJT
), NewVReg3
)
11181 .addJumpTableIndex(MJTI
)
11182 .add(predOps(ARMCC::AL
));
11184 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
11185 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg4
)
11186 .addReg(ARM::CPSR
, RegState::Define
)
11187 .addReg(NewVReg2
, RegState::Kill
)
11189 .add(predOps(ARMCC::AL
));
11191 MachineMemOperand
*JTMMOLd
=
11192 MF
->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF
),
11193 MachineMemOperand::MOLoad
, 4, Align(4));
11195 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
11196 BuildMI(DispContBB
, dl
, TII
->get(ARM::tLDRi
), NewVReg5
)
11197 .addReg(NewVReg4
, RegState::Kill
)
11199 .addMemOperand(JTMMOLd
)
11200 .add(predOps(ARMCC::AL
));
11202 unsigned NewVReg6
= NewVReg5
;
11203 if (IsPositionIndependent
) {
11204 NewVReg6
= MRI
->createVirtualRegister(TRC
);
11205 BuildMI(DispContBB
, dl
, TII
->get(ARM::tADDrr
), NewVReg6
)
11206 .addReg(ARM::CPSR
, RegState::Define
)
11207 .addReg(NewVReg5
, RegState::Kill
)
11209 .add(predOps(ARMCC::AL
));
11212 BuildMI(DispContBB
, dl
, TII
->get(ARM::tBR_JTr
))
11213 .addReg(NewVReg6
, RegState::Kill
)
11214 .addJumpTableIndex(MJTI
);
11216 Register NewVReg1
= MRI
->createVirtualRegister(TRC
);
11217 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRi12
), NewVReg1
)
11220 .addMemOperand(FIMMOLd
)
11221 .add(predOps(ARMCC::AL
));
11223 if (NumLPads
< 256) {
11224 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPri
))
11227 .add(predOps(ARMCC::AL
));
11228 } else if (Subtarget
->hasV6T2Ops() && isUInt
<16>(NumLPads
)) {
11229 Register VReg1
= MRI
->createVirtualRegister(TRC
);
11230 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVi16
), VReg1
)
11231 .addImm(NumLPads
& 0xFFFF)
11232 .add(predOps(ARMCC::AL
));
11234 unsigned VReg2
= VReg1
;
11235 if ((NumLPads
& 0xFFFF0000) != 0) {
11236 VReg2
= MRI
->createVirtualRegister(TRC
);
11237 BuildMI(DispatchBB
, dl
, TII
->get(ARM::MOVTi16
), VReg2
)
11239 .addImm(NumLPads
>> 16)
11240 .add(predOps(ARMCC::AL
));
11243 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
11246 .add(predOps(ARMCC::AL
));
11248 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
11249 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
11250 const Constant
*C
= ConstantInt::get(Int32Ty
, NumLPads
);
11252 // MachineConstantPool wants an explicit alignment.
11253 Align Alignment
= MF
->getDataLayout().getPrefTypeAlign(Int32Ty
);
11254 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Alignment
);
11256 Register VReg1
= MRI
->createVirtualRegister(TRC
);
11257 BuildMI(DispatchBB
, dl
, TII
->get(ARM::LDRcp
))
11258 .addReg(VReg1
, RegState::Define
)
11259 .addConstantPoolIndex(Idx
)
11261 .add(predOps(ARMCC::AL
));
11262 BuildMI(DispatchBB
, dl
, TII
->get(ARM::CMPrr
))
11264 .addReg(VReg1
, RegState::Kill
)
11265 .add(predOps(ARMCC::AL
));
11268 BuildMI(DispatchBB
, dl
, TII
->get(ARM::Bcc
))
11271 .addReg(ARM::CPSR
);
11273 Register NewVReg3
= MRI
->createVirtualRegister(TRC
);
11274 BuildMI(DispContBB
, dl
, TII
->get(ARM::MOVsi
), NewVReg3
)
11276 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, 2))
11277 .add(predOps(ARMCC::AL
))
11278 .add(condCodeOp());
11279 Register NewVReg4
= MRI
->createVirtualRegister(TRC
);
11280 BuildMI(DispContBB
, dl
, TII
->get(ARM::LEApcrelJT
), NewVReg4
)
11281 .addJumpTableIndex(MJTI
)
11282 .add(predOps(ARMCC::AL
));
11284 MachineMemOperand
*JTMMOLd
=
11285 MF
->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF
),
11286 MachineMemOperand::MOLoad
, 4, Align(4));
11287 Register NewVReg5
= MRI
->createVirtualRegister(TRC
);
11288 BuildMI(DispContBB
, dl
, TII
->get(ARM::LDRrs
), NewVReg5
)
11289 .addReg(NewVReg3
, RegState::Kill
)
11292 .addMemOperand(JTMMOLd
)
11293 .add(predOps(ARMCC::AL
));
11295 if (IsPositionIndependent
) {
11296 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTadd
))
11297 .addReg(NewVReg5
, RegState::Kill
)
11299 .addJumpTableIndex(MJTI
);
11301 BuildMI(DispContBB
, dl
, TII
->get(ARM::BR_JTr
))
11302 .addReg(NewVReg5
, RegState::Kill
)
11303 .addJumpTableIndex(MJTI
);
11307 // Add the jump table entries as successors to the MBB.
11308 SmallPtrSet
<MachineBasicBlock
*, 8> SeenMBBs
;
11309 for (MachineBasicBlock
*CurMBB
: LPadList
) {
11310 if (SeenMBBs
.insert(CurMBB
).second
)
11311 DispContBB
->addSuccessor(CurMBB
);
11314 // N.B. the order the invoke BBs are processed in doesn't matter here.
11315 const MCPhysReg
*SavedRegs
= RI
.getCalleeSavedRegs(MF
);
11316 SmallVector
<MachineBasicBlock
*, 64> MBBLPads
;
11317 for (MachineBasicBlock
*BB
: InvokeBBs
) {
11319 // Remove the landing pad successor from the invoke block and replace it
11320 // with the new dispatch block.
11321 SmallVector
<MachineBasicBlock
*, 4> Successors(BB
->successors());
11322 while (!Successors
.empty()) {
11323 MachineBasicBlock
*SMBB
= Successors
.pop_back_val();
11324 if (SMBB
->isEHPad()) {
11325 BB
->removeSuccessor(SMBB
);
11326 MBBLPads
.push_back(SMBB
);
11330 BB
->addSuccessor(DispatchBB
, BranchProbability::getZero());
11331 BB
->normalizeSuccProbs();
11333 // Find the invoke call and mark all of the callee-saved registers as
11334 // 'implicit defined' so that they're spilled. This prevents code from
11335 // moving instructions to before the EH block, where they will never be
11337 for (MachineBasicBlock::reverse_iterator
11338 II
= BB
->rbegin(), IE
= BB
->rend(); II
!= IE
; ++II
) {
11339 if (!II
->isCall()) continue;
11341 DenseMap
<unsigned, bool> DefRegs
;
11342 for (MachineInstr::mop_iterator
11343 OI
= II
->operands_begin(), OE
= II
->operands_end();
11345 if (!OI
->isReg()) continue;
11346 DefRegs
[OI
->getReg()] = true;
11349 MachineInstrBuilder
MIB(*MF
, &*II
);
11351 for (unsigned i
= 0; SavedRegs
[i
] != 0; ++i
) {
11352 unsigned Reg
= SavedRegs
[i
];
11353 if (Subtarget
->isThumb2() &&
11354 !ARM::tGPRRegClass
.contains(Reg
) &&
11355 !ARM::hGPRRegClass
.contains(Reg
))
11357 if (Subtarget
->isThumb1Only() && !ARM::tGPRRegClass
.contains(Reg
))
11359 if (!Subtarget
->isThumb() && !ARM::GPRRegClass
.contains(Reg
))
11362 MIB
.addReg(Reg
, RegState::ImplicitDefine
| RegState::Dead
);
11369 // Mark all former landing pads as non-landing pads. The dispatch is the only
11370 // landing pad now.
11371 for (MachineBasicBlock
*MBBLPad
: MBBLPads
)
11372 MBBLPad
->setIsEHPad(false);
11374 // The instruction is gone now.
11375 MI
.eraseFromParent();
11379 MachineBasicBlock
*OtherSucc(MachineBasicBlock
*MBB
, MachineBasicBlock
*Succ
) {
11380 for (MachineBasicBlock
*S
: MBB
->successors())
11383 llvm_unreachable("Expecting a BB with two successors!");
11386 /// Return the load opcode for a given load size. If load size >= 8,
11387 /// neon opcode will be returned.
11388 static unsigned getLdOpcode(unsigned LdSize
, bool IsThumb1
, bool IsThumb2
) {
11390 return LdSize
== 16 ? ARM::VLD1q32wb_fixed
11391 : LdSize
== 8 ? ARM::VLD1d32wb_fixed
: 0;
11393 return LdSize
== 4 ? ARM::tLDRi
11394 : LdSize
== 2 ? ARM::tLDRHi
11395 : LdSize
== 1 ? ARM::tLDRBi
: 0;
11397 return LdSize
== 4 ? ARM::t2LDR_POST
11398 : LdSize
== 2 ? ARM::t2LDRH_POST
11399 : LdSize
== 1 ? ARM::t2LDRB_POST
: 0;
11400 return LdSize
== 4 ? ARM::LDR_POST_IMM
11401 : LdSize
== 2 ? ARM::LDRH_POST
11402 : LdSize
== 1 ? ARM::LDRB_POST_IMM
: 0;
11405 /// Return the store opcode for a given store size. If store size >= 8,
11406 /// neon opcode will be returned.
11407 static unsigned getStOpcode(unsigned StSize
, bool IsThumb1
, bool IsThumb2
) {
11409 return StSize
== 16 ? ARM::VST1q32wb_fixed
11410 : StSize
== 8 ? ARM::VST1d32wb_fixed
: 0;
11412 return StSize
== 4 ? ARM::tSTRi
11413 : StSize
== 2 ? ARM::tSTRHi
11414 : StSize
== 1 ? ARM::tSTRBi
: 0;
11416 return StSize
== 4 ? ARM::t2STR_POST
11417 : StSize
== 2 ? ARM::t2STRH_POST
11418 : StSize
== 1 ? ARM::t2STRB_POST
: 0;
11419 return StSize
== 4 ? ARM::STR_POST_IMM
11420 : StSize
== 2 ? ARM::STRH_POST
11421 : StSize
== 1 ? ARM::STRB_POST_IMM
: 0;
11424 /// Emit a post-increment load operation with given size. The instructions
11425 /// will be added to BB at Pos.
11426 static void emitPostLd(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
11427 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
11428 unsigned LdSize
, unsigned Data
, unsigned AddrIn
,
11429 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
11430 unsigned LdOpc
= getLdOpcode(LdSize
, IsThumb1
, IsThumb2
);
11431 assert(LdOpc
!= 0 && "Should have a load opcode");
11433 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
11434 .addReg(AddrOut
, RegState::Define
)
11437 .add(predOps(ARMCC::AL
));
11438 } else if (IsThumb1
) {
11439 // load + update AddrIn
11440 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
11443 .add(predOps(ARMCC::AL
));
11444 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
11445 .add(t1CondCodeOp())
11448 .add(predOps(ARMCC::AL
));
11449 } else if (IsThumb2
) {
11450 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
11451 .addReg(AddrOut
, RegState::Define
)
11454 .add(predOps(ARMCC::AL
));
11456 BuildMI(*BB
, Pos
, dl
, TII
->get(LdOpc
), Data
)
11457 .addReg(AddrOut
, RegState::Define
)
11461 .add(predOps(ARMCC::AL
));
11465 /// Emit a post-increment store operation with given size. The instructions
11466 /// will be added to BB at Pos.
11467 static void emitPostSt(MachineBasicBlock
*BB
, MachineBasicBlock::iterator Pos
,
11468 const TargetInstrInfo
*TII
, const DebugLoc
&dl
,
11469 unsigned StSize
, unsigned Data
, unsigned AddrIn
,
11470 unsigned AddrOut
, bool IsThumb1
, bool IsThumb2
) {
11471 unsigned StOpc
= getStOpcode(StSize
, IsThumb1
, IsThumb2
);
11472 assert(StOpc
!= 0 && "Should have a store opcode");
11474 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
11478 .add(predOps(ARMCC::AL
));
11479 } else if (IsThumb1
) {
11480 // store + update AddrIn
11481 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
))
11485 .add(predOps(ARMCC::AL
));
11486 BuildMI(*BB
, Pos
, dl
, TII
->get(ARM::tADDi8
), AddrOut
)
11487 .add(t1CondCodeOp())
11490 .add(predOps(ARMCC::AL
));
11491 } else if (IsThumb2
) {
11492 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
11496 .add(predOps(ARMCC::AL
));
11498 BuildMI(*BB
, Pos
, dl
, TII
->get(StOpc
), AddrOut
)
11503 .add(predOps(ARMCC::AL
));
11507 MachineBasicBlock
*
11508 ARMTargetLowering::EmitStructByval(MachineInstr
&MI
,
11509 MachineBasicBlock
*BB
) const {
11510 // This pseudo instruction has 3 operands: dst, src, size
11511 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
11512 // Otherwise, we will generate unrolled scalar copies.
11513 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
11514 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
11515 MachineFunction::iterator It
= ++BB
->getIterator();
11517 Register dest
= MI
.getOperand(0).getReg();
11518 Register src
= MI
.getOperand(1).getReg();
11519 unsigned SizeVal
= MI
.getOperand(2).getImm();
11520 unsigned Alignment
= MI
.getOperand(3).getImm();
11521 DebugLoc dl
= MI
.getDebugLoc();
11523 MachineFunction
*MF
= BB
->getParent();
11524 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
11525 unsigned UnitSize
= 0;
11526 const TargetRegisterClass
*TRC
= nullptr;
11527 const TargetRegisterClass
*VecTRC
= nullptr;
11529 bool IsThumb1
= Subtarget
->isThumb1Only();
11530 bool IsThumb2
= Subtarget
->isThumb2();
11531 bool IsThumb
= Subtarget
->isThumb();
11533 if (Alignment
& 1) {
11535 } else if (Alignment
& 2) {
11538 // Check whether we can use NEON instructions.
11539 if (!MF
->getFunction().hasFnAttribute(Attribute::NoImplicitFloat
) &&
11540 Subtarget
->hasNEON()) {
11541 if ((Alignment
% 16 == 0) && SizeVal
>= 16)
11543 else if ((Alignment
% 8 == 0) && SizeVal
>= 8)
11546 // Can't use NEON instructions.
11551 // Select the correct opcode and register class for unit size load/store
11552 bool IsNeon
= UnitSize
>= 8;
11553 TRC
= IsThumb
? &ARM::tGPRRegClass
: &ARM::GPRRegClass
;
11555 VecTRC
= UnitSize
== 16 ? &ARM::DPairRegClass
11556 : UnitSize
== 8 ? &ARM::DPRRegClass
11559 unsigned BytesLeft
= SizeVal
% UnitSize
;
11560 unsigned LoopSize
= SizeVal
- BytesLeft
;
11562 if (SizeVal
<= Subtarget
->getMaxInlineSizeThreshold()) {
11563 // Use LDR and STR to copy.
11564 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
11565 // [destOut] = STR_POST(scratch, destIn, UnitSize)
11566 unsigned srcIn
= src
;
11567 unsigned destIn
= dest
;
11568 for (unsigned i
= 0; i
< LoopSize
; i
+=UnitSize
) {
11569 Register srcOut
= MRI
.createVirtualRegister(TRC
);
11570 Register destOut
= MRI
.createVirtualRegister(TRC
);
11571 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
11572 emitPostLd(BB
, MI
, TII
, dl
, UnitSize
, scratch
, srcIn
, srcOut
,
11573 IsThumb1
, IsThumb2
);
11574 emitPostSt(BB
, MI
, TII
, dl
, UnitSize
, scratch
, destIn
, destOut
,
11575 IsThumb1
, IsThumb2
);
11580 // Handle the leftover bytes with LDRB and STRB.
11581 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
11582 // [destOut] = STRB_POST(scratch, destIn, 1)
11583 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
11584 Register srcOut
= MRI
.createVirtualRegister(TRC
);
11585 Register destOut
= MRI
.createVirtualRegister(TRC
);
11586 Register scratch
= MRI
.createVirtualRegister(TRC
);
11587 emitPostLd(BB
, MI
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
11588 IsThumb1
, IsThumb2
);
11589 emitPostSt(BB
, MI
, TII
, dl
, 1, scratch
, destIn
, destOut
,
11590 IsThumb1
, IsThumb2
);
11594 MI
.eraseFromParent(); // The instruction is gone now.
11598 // Expand the pseudo op to a loop.
11601 // movw varEnd, # --> with thumb2
11603 // ldrcp varEnd, idx --> without thumb2
11604 // fallthrough --> loopMBB
11606 // PHI varPhi, varEnd, varLoop
11607 // PHI srcPhi, src, srcLoop
11608 // PHI destPhi, dst, destLoop
11609 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11610 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
11611 // subs varLoop, varPhi, #UnitSize
11613 // fallthrough --> exitMBB
11615 // epilogue to handle left-over bytes
11616 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11617 // [destOut] = STRB_POST(scratch, destLoop, 1)
11618 MachineBasicBlock
*loopMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
11619 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
11620 MF
->insert(It
, loopMBB
);
11621 MF
->insert(It
, exitMBB
);
11623 // Set the call frame size on entry to the new basic blocks.
11624 unsigned CallFrameSize
= TII
->getCallFrameSizeAt(MI
);
11625 loopMBB
->setCallFrameSize(CallFrameSize
);
11626 exitMBB
->setCallFrameSize(CallFrameSize
);
11628 // Transfer the remainder of BB and its successor edges to exitMBB.
11629 exitMBB
->splice(exitMBB
->begin(), BB
,
11630 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
11631 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
11633 // Load an immediate to varEnd.
11634 Register varEnd
= MRI
.createVirtualRegister(TRC
);
11635 if (Subtarget
->useMovt()) {
11636 BuildMI(BB
, dl
, TII
->get(IsThumb
? ARM::t2MOVi32imm
: ARM::MOVi32imm
),
11639 } else if (Subtarget
->genExecuteOnly()) {
11640 assert(IsThumb
&& "Non-thumb expected to have used movt");
11641 BuildMI(BB
, dl
, TII
->get(ARM::tMOVi32imm
), varEnd
).addImm(LoopSize
);
11643 MachineConstantPool
*ConstantPool
= MF
->getConstantPool();
11644 Type
*Int32Ty
= Type::getInt32Ty(MF
->getFunction().getContext());
11645 const Constant
*C
= ConstantInt::get(Int32Ty
, LoopSize
);
11647 // MachineConstantPool wants an explicit alignment.
11648 Align Alignment
= MF
->getDataLayout().getPrefTypeAlign(Int32Ty
);
11649 unsigned Idx
= ConstantPool
->getConstantPoolIndex(C
, Alignment
);
11650 MachineMemOperand
*CPMMO
=
11651 MF
->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF
),
11652 MachineMemOperand::MOLoad
, 4, Align(4));
11655 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDRpci
))
11656 .addReg(varEnd
, RegState::Define
)
11657 .addConstantPoolIndex(Idx
)
11658 .add(predOps(ARMCC::AL
))
11659 .addMemOperand(CPMMO
);
11661 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::LDRcp
))
11662 .addReg(varEnd
, RegState::Define
)
11663 .addConstantPoolIndex(Idx
)
11665 .add(predOps(ARMCC::AL
))
11666 .addMemOperand(CPMMO
);
11668 BB
->addSuccessor(loopMBB
);
11670 // Generate the loop body:
11671 // varPhi = PHI(varLoop, varEnd)
11672 // srcPhi = PHI(srcLoop, src)
11673 // destPhi = PHI(destLoop, dst)
11674 MachineBasicBlock
*entryBB
= BB
;
11676 Register varLoop
= MRI
.createVirtualRegister(TRC
);
11677 Register varPhi
= MRI
.createVirtualRegister(TRC
);
11678 Register srcLoop
= MRI
.createVirtualRegister(TRC
);
11679 Register srcPhi
= MRI
.createVirtualRegister(TRC
);
11680 Register destLoop
= MRI
.createVirtualRegister(TRC
);
11681 Register destPhi
= MRI
.createVirtualRegister(TRC
);
11683 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), varPhi
)
11684 .addReg(varLoop
).addMBB(loopMBB
)
11685 .addReg(varEnd
).addMBB(entryBB
);
11686 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), srcPhi
)
11687 .addReg(srcLoop
).addMBB(loopMBB
)
11688 .addReg(src
).addMBB(entryBB
);
11689 BuildMI(BB
, dl
, TII
->get(ARM::PHI
), destPhi
)
11690 .addReg(destLoop
).addMBB(loopMBB
)
11691 .addReg(dest
).addMBB(entryBB
);
11693 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11694 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
11695 Register scratch
= MRI
.createVirtualRegister(IsNeon
? VecTRC
: TRC
);
11696 emitPostLd(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, srcPhi
, srcLoop
,
11697 IsThumb1
, IsThumb2
);
11698 emitPostSt(BB
, BB
->end(), TII
, dl
, UnitSize
, scratch
, destPhi
, destLoop
,
11699 IsThumb1
, IsThumb2
);
11701 // Decrement loop variable by UnitSize.
11703 BuildMI(*BB
, BB
->end(), dl
, TII
->get(ARM::tSUBi8
), varLoop
)
11704 .add(t1CondCodeOp())
11707 .add(predOps(ARMCC::AL
));
11709 MachineInstrBuilder MIB
=
11710 BuildMI(*BB
, BB
->end(), dl
,
11711 TII
->get(IsThumb2
? ARM::t2SUBri
: ARM::SUBri
), varLoop
);
11714 .add(predOps(ARMCC::AL
))
11715 .add(condCodeOp());
11716 MIB
->getOperand(5).setReg(ARM::CPSR
);
11717 MIB
->getOperand(5).setIsDef(true);
11719 BuildMI(*BB
, BB
->end(), dl
,
11720 TII
->get(IsThumb1
? ARM::tBcc
: IsThumb2
? ARM::t2Bcc
: ARM::Bcc
))
11721 .addMBB(loopMBB
).addImm(ARMCC::NE
).addReg(ARM::CPSR
);
11723 // loopMBB can loop back to loopMBB or fall through to exitMBB.
11724 BB
->addSuccessor(loopMBB
);
11725 BB
->addSuccessor(exitMBB
);
11727 // Add epilogue to handle BytesLeft.
11729 auto StartOfExit
= exitMBB
->begin();
11731 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11732 // [destOut] = STRB_POST(scratch, destLoop, 1)
11733 unsigned srcIn
= srcLoop
;
11734 unsigned destIn
= destLoop
;
11735 for (unsigned i
= 0; i
< BytesLeft
; i
++) {
11736 Register srcOut
= MRI
.createVirtualRegister(TRC
);
11737 Register destOut
= MRI
.createVirtualRegister(TRC
);
11738 Register scratch
= MRI
.createVirtualRegister(TRC
);
11739 emitPostLd(BB
, StartOfExit
, TII
, dl
, 1, scratch
, srcIn
, srcOut
,
11740 IsThumb1
, IsThumb2
);
11741 emitPostSt(BB
, StartOfExit
, TII
, dl
, 1, scratch
, destIn
, destOut
,
11742 IsThumb1
, IsThumb2
);
11747 MI
.eraseFromParent(); // The instruction is gone now.
11751 MachineBasicBlock
*
11752 ARMTargetLowering::EmitLowered__chkstk(MachineInstr
&MI
,
11753 MachineBasicBlock
*MBB
) const {
11754 const TargetMachine
&TM
= getTargetMachine();
11755 const TargetInstrInfo
&TII
= *Subtarget
->getInstrInfo();
11756 DebugLoc DL
= MI
.getDebugLoc();
11758 assert(Subtarget
->isTargetWindows() &&
11759 "__chkstk is only supported on Windows");
11760 assert(Subtarget
->isThumb2() && "Windows on ARM requires Thumb-2 mode");
11762 // __chkstk takes the number of words to allocate on the stack in R4, and
11763 // returns the stack adjustment in number of bytes in R4. This will not
11764 // clober any other registers (other than the obvious lr).
11766 // Although, technically, IP should be considered a register which may be
11767 // clobbered, the call itself will not touch it. Windows on ARM is a pure
11768 // thumb-2 environment, so there is no interworking required. As a result, we
11769 // do not expect a veneer to be emitted by the linker, clobbering IP.
11771 // Each module receives its own copy of __chkstk, so no import thunk is
11772 // required, again, ensuring that IP is not clobbered.
11774 // Finally, although some linkers may theoretically provide a trampoline for
11775 // out of range calls (which is quite common due to a 32M range limitation of
11776 // branches for Thumb), we can generate the long-call version via
11777 // -mcmodel=large, alleviating the need for the trampoline which may clobber
11780 switch (TM
.getCodeModel()) {
11781 case CodeModel::Tiny
:
11782 llvm_unreachable("Tiny code model not available on ARM.");
11783 case CodeModel::Small
:
11784 case CodeModel::Medium
:
11785 case CodeModel::Kernel
:
11786 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::tBL
))
11787 .add(predOps(ARMCC::AL
))
11788 .addExternalSymbol("__chkstk")
11789 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
11790 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
11792 RegState::Implicit
| RegState::Define
| RegState::Dead
)
11794 RegState::Implicit
| RegState::Define
| RegState::Dead
);
11796 case CodeModel::Large
: {
11797 MachineRegisterInfo
&MRI
= MBB
->getParent()->getRegInfo();
11798 Register Reg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11800 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2MOVi32imm
), Reg
)
11801 .addExternalSymbol("__chkstk");
11802 BuildMI(*MBB
, MI
, DL
, TII
.get(gettBLXrOpcode(*MBB
->getParent())))
11803 .add(predOps(ARMCC::AL
))
11804 .addReg(Reg
, RegState::Kill
)
11805 .addReg(ARM::R4
, RegState::Implicit
| RegState::Kill
)
11806 .addReg(ARM::R4
, RegState::Implicit
| RegState::Define
)
11808 RegState::Implicit
| RegState::Define
| RegState::Dead
)
11810 RegState::Implicit
| RegState::Define
| RegState::Dead
);
11815 BuildMI(*MBB
, MI
, DL
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
11816 .addReg(ARM::SP
, RegState::Kill
)
11817 .addReg(ARM::R4
, RegState::Kill
)
11818 .setMIFlags(MachineInstr::FrameSetup
)
11819 .add(predOps(ARMCC::AL
))
11820 .add(condCodeOp());
11822 MI
.eraseFromParent();
11826 MachineBasicBlock
*
11827 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr
&MI
,
11828 MachineBasicBlock
*MBB
) const {
11829 DebugLoc DL
= MI
.getDebugLoc();
11830 MachineFunction
*MF
= MBB
->getParent();
11831 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
11833 MachineBasicBlock
*ContBB
= MF
->CreateMachineBasicBlock();
11834 MF
->insert(++MBB
->getIterator(), ContBB
);
11835 ContBB
->splice(ContBB
->begin(), MBB
,
11836 std::next(MachineBasicBlock::iterator(MI
)), MBB
->end());
11837 ContBB
->transferSuccessorsAndUpdatePHIs(MBB
);
11838 MBB
->addSuccessor(ContBB
);
11840 MachineBasicBlock
*TrapBB
= MF
->CreateMachineBasicBlock();
11841 BuildMI(TrapBB
, DL
, TII
->get(ARM::t__brkdiv0
));
11842 MF
->push_back(TrapBB
);
11843 MBB
->addSuccessor(TrapBB
);
11845 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::tCMPi8
))
11846 .addReg(MI
.getOperand(0).getReg())
11848 .add(predOps(ARMCC::AL
));
11849 BuildMI(*MBB
, MI
, DL
, TII
->get(ARM::t2Bcc
))
11852 .addReg(ARM::CPSR
);
11854 MI
.eraseFromParent();
11858 // The CPSR operand of SelectItr might be missing a kill marker
11859 // because there were multiple uses of CPSR, and ISel didn't know
11860 // which to mark. Figure out whether SelectItr should have had a
11861 // kill marker, and set it if it should. Returns the correct kill
11863 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr
,
11864 MachineBasicBlock
* BB
,
11865 const TargetRegisterInfo
* TRI
) {
11866 // Scan forward through BB for a use/def of CPSR.
11867 MachineBasicBlock::iterator
miI(std::next(SelectItr
));
11868 for (MachineBasicBlock::iterator miE
= BB
->end(); miI
!= miE
; ++miI
) {
11869 const MachineInstr
& mi
= *miI
;
11870 if (mi
.readsRegister(ARM::CPSR
, /*TRI=*/nullptr))
11872 if (mi
.definesRegister(ARM::CPSR
, /*TRI=*/nullptr))
11873 break; // Should have kill-flag - update below.
11876 // If we hit the end of the block, check whether CPSR is live into a
11878 if (miI
== BB
->end()) {
11879 for (MachineBasicBlock
*Succ
: BB
->successors())
11880 if (Succ
->isLiveIn(ARM::CPSR
))
11884 // We found a def, or hit the end of the basic block and CPSR wasn't live
11885 // out. SelectMI should have a kill flag on CPSR.
11886 SelectItr
->addRegisterKilled(ARM::CPSR
, TRI
);
11890 /// Adds logic in loop entry MBB to calculate loop iteration count and adds
11891 /// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
11892 static Register
genTPEntry(MachineBasicBlock
*TpEntry
,
11893 MachineBasicBlock
*TpLoopBody
,
11894 MachineBasicBlock
*TpExit
, Register OpSizeReg
,
11895 const TargetInstrInfo
*TII
, DebugLoc Dl
,
11896 MachineRegisterInfo
&MRI
) {
11897 // Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4.
11898 Register AddDestReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11899 BuildMI(TpEntry
, Dl
, TII
->get(ARM::t2ADDri
), AddDestReg
)
11902 .add(predOps(ARMCC::AL
))
11905 Register LsrDestReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11906 BuildMI(TpEntry
, Dl
, TII
->get(ARM::t2LSRri
), LsrDestReg
)
11907 .addUse(AddDestReg
, RegState::Kill
)
11909 .add(predOps(ARMCC::AL
))
11912 Register TotalIterationsReg
= MRI
.createVirtualRegister(&ARM::GPRlrRegClass
);
11913 BuildMI(TpEntry
, Dl
, TII
->get(ARM::t2WhileLoopSetup
), TotalIterationsReg
)
11914 .addUse(LsrDestReg
, RegState::Kill
);
11916 BuildMI(TpEntry
, Dl
, TII
->get(ARM::t2WhileLoopStart
))
11917 .addUse(TotalIterationsReg
)
11920 BuildMI(TpEntry
, Dl
, TII
->get(ARM::t2B
))
11921 .addMBB(TpLoopBody
)
11922 .add(predOps(ARMCC::AL
));
11924 return TotalIterationsReg
;
11927 /// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
11928 /// t2DoLoopEnd. These are used by later passes to generate tail predicated
11930 static void genTPLoopBody(MachineBasicBlock
*TpLoopBody
,
11931 MachineBasicBlock
*TpEntry
, MachineBasicBlock
*TpExit
,
11932 const TargetInstrInfo
*TII
, DebugLoc Dl
,
11933 MachineRegisterInfo
&MRI
, Register OpSrcReg
,
11934 Register OpDestReg
, Register ElementCountReg
,
11935 Register TotalIterationsReg
, bool IsMemcpy
) {
11936 // First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
11937 // array, loop iteration counter, predication counter.
11939 Register SrcPhiReg
, CurrSrcReg
;
11941 // Current position in the src array
11942 SrcPhiReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11943 CurrSrcReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11944 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::PHI
), SrcPhiReg
)
11947 .addUse(CurrSrcReg
)
11948 .addMBB(TpLoopBody
);
11951 // Current position in the dest array
11952 Register DestPhiReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11953 Register CurrDestReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11954 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::PHI
), DestPhiReg
)
11957 .addUse(CurrDestReg
)
11958 .addMBB(TpLoopBody
);
11960 // Current loop counter
11961 Register LoopCounterPhiReg
= MRI
.createVirtualRegister(&ARM::GPRlrRegClass
);
11962 Register RemainingLoopIterationsReg
=
11963 MRI
.createVirtualRegister(&ARM::GPRlrRegClass
);
11964 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::PHI
), LoopCounterPhiReg
)
11965 .addUse(TotalIterationsReg
)
11967 .addUse(RemainingLoopIterationsReg
)
11968 .addMBB(TpLoopBody
);
11970 // Predication counter
11971 Register PredCounterPhiReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11972 Register RemainingElementsReg
= MRI
.createVirtualRegister(&ARM::rGPRRegClass
);
11973 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::PHI
), PredCounterPhiReg
)
11974 .addUse(ElementCountReg
)
11976 .addUse(RemainingElementsReg
)
11977 .addMBB(TpLoopBody
);
11979 // Pass predication counter to VCTP
11980 Register VccrReg
= MRI
.createVirtualRegister(&ARM::VCCRRegClass
);
11981 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::MVE_VCTP8
), VccrReg
)
11982 .addUse(PredCounterPhiReg
)
11983 .addImm(ARMVCC::None
)
11987 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::t2SUBri
), RemainingElementsReg
)
11988 .addUse(PredCounterPhiReg
)
11990 .add(predOps(ARMCC::AL
))
11993 // VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
11994 Register SrcValueReg
;
11996 SrcValueReg
= MRI
.createVirtualRegister(&ARM::MQPRRegClass
);
11997 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::MVE_VLDRBU8_post
))
11998 .addDef(CurrSrcReg
)
11999 .addDef(SrcValueReg
)
12002 .addImm(ARMVCC::Then
)
12006 SrcValueReg
= OpSrcReg
;
12008 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::MVE_VSTRBU8_post
))
12009 .addDef(CurrDestReg
)
12010 .addUse(SrcValueReg
)
12011 .addReg(DestPhiReg
)
12013 .addImm(ARMVCC::Then
)
12017 // Add the pseudoInstrs for decrementing the loop counter and marking the
12018 // end:t2DoLoopDec and t2DoLoopEnd
12019 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::t2LoopDec
), RemainingLoopIterationsReg
)
12020 .addUse(LoopCounterPhiReg
)
12023 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::t2LoopEnd
))
12024 .addUse(RemainingLoopIterationsReg
)
12025 .addMBB(TpLoopBody
);
12027 BuildMI(TpLoopBody
, Dl
, TII
->get(ARM::t2B
))
12029 .add(predOps(ARMCC::AL
));
12032 MachineBasicBlock
*
12033 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
12034 MachineBasicBlock
*BB
) const {
12035 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
12036 DebugLoc dl
= MI
.getDebugLoc();
12037 bool isThumb2
= Subtarget
->isThumb2();
12038 switch (MI
.getOpcode()) {
12041 llvm_unreachable("Unexpected instr type to insert");
12044 // Thumb1 post-indexed loads are really just single-register LDMs.
12045 case ARM::tLDR_postidx
: {
12046 MachineOperand
Def(MI
.getOperand(1));
12047 BuildMI(*BB
, MI
, dl
, TII
->get(ARM::tLDMIA_UPD
))
12049 .add(MI
.getOperand(2)) // Rn
12050 .add(MI
.getOperand(3)) // PredImm
12051 .add(MI
.getOperand(4)) // PredReg
12052 .add(MI
.getOperand(0)) // Rt
12054 MI
.eraseFromParent();
12058 case ARM::MVE_MEMCPYLOOPINST
:
12059 case ARM::MVE_MEMSETLOOPINST
: {
12061 // Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
12062 // into a Tail Predicated (TP) Loop. It adds the instructions to calculate
12063 // the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
12064 // adds the relevant instructions in the TP loop Body for generation of a
12067 // Below is relevant portion of the CFG after the transformation.
12068 // The Machine Basic Blocks are shown along with branch conditions (in
12069 // brackets). Note that TP entry/exit MBBs depict the entry/exit of this
12070 // portion of the CFG and may not necessarily be the entry/exit of the
12073 // (Relevant) CFG after transformation:
12076 // |-----------------|
12077 // (n <= 0) (n > 0)
12079 // | TP loop Body MBB<--|
12085 MachineFunction
*MF
= BB
->getParent();
12086 MachineFunctionProperties
&Properties
= MF
->getProperties();
12087 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
12089 Register OpDestReg
= MI
.getOperand(0).getReg();
12090 Register OpSrcReg
= MI
.getOperand(1).getReg();
12091 Register OpSizeReg
= MI
.getOperand(2).getReg();
12093 // Allocate the required MBBs and add to parent function.
12094 MachineBasicBlock
*TpEntry
= BB
;
12095 MachineBasicBlock
*TpLoopBody
= MF
->CreateMachineBasicBlock();
12096 MachineBasicBlock
*TpExit
;
12098 MF
->push_back(TpLoopBody
);
12100 // If any instructions are present in the current block after
12101 // MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
12102 // move the instructions into the newly created exit block. If there are no
12103 // instructions add an explicit branch to the FallThrough block and then
12106 // The split is required for two reasons:
12107 // 1) A terminator(t2WhileLoopStart) will be placed at that site.
12108 // 2) Since a TPLoopBody will be added later, any phis in successive blocks
12109 // need to be updated. splitAt() already handles this.
12110 TpExit
= BB
->splitAt(MI
, false);
12111 if (TpExit
== BB
) {
12112 assert(BB
->canFallThrough() && "Exit Block must be Fallthrough of the "
12113 "block containing memcpy/memset Pseudo");
12114 TpExit
= BB
->getFallThrough();
12115 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
12117 .add(predOps(ARMCC::AL
));
12118 TpExit
= BB
->splitAt(MI
, false);
12121 // Add logic for iteration count
12122 Register TotalIterationsReg
=
12123 genTPEntry(TpEntry
, TpLoopBody
, TpExit
, OpSizeReg
, TII
, dl
, MRI
);
12125 // Add the vectorized (and predicated) loads/store instructions
12126 bool IsMemcpy
= MI
.getOpcode() == ARM::MVE_MEMCPYLOOPINST
;
12127 genTPLoopBody(TpLoopBody
, TpEntry
, TpExit
, TII
, dl
, MRI
, OpSrcReg
,
12128 OpDestReg
, OpSizeReg
, TotalIterationsReg
, IsMemcpy
);
12130 // Required to avoid conflict with the MachineVerifier during testing.
12131 Properties
.reset(MachineFunctionProperties::Property::NoPHIs
);
12133 // Connect the blocks
12134 TpEntry
->addSuccessor(TpLoopBody
);
12135 TpLoopBody
->addSuccessor(TpLoopBody
);
12136 TpLoopBody
->addSuccessor(TpExit
);
12138 // Reorder for a more natural layout
12139 TpLoopBody
->moveAfter(TpEntry
);
12140 TpExit
->moveAfter(TpLoopBody
);
12142 // Finally, remove the memcpy Pseudo Instruction
12143 MI
.eraseFromParent();
12145 // Return the exit block as it may contain other instructions requiring a
12150 // The Thumb2 pre-indexed stores have the same MI operands, they just
12151 // define them differently in the .td files from the isel patterns, so
12152 // they need pseudos.
12153 case ARM::t2STR_preidx
:
12154 MI
.setDesc(TII
->get(ARM::t2STR_PRE
));
12156 case ARM::t2STRB_preidx
:
12157 MI
.setDesc(TII
->get(ARM::t2STRB_PRE
));
12159 case ARM::t2STRH_preidx
:
12160 MI
.setDesc(TII
->get(ARM::t2STRH_PRE
));
12163 case ARM::STRi_preidx
:
12164 case ARM::STRBi_preidx
: {
12165 unsigned NewOpc
= MI
.getOpcode() == ARM::STRi_preidx
? ARM::STR_PRE_IMM
12166 : ARM::STRB_PRE_IMM
;
12167 // Decode the offset.
12168 unsigned Offset
= MI
.getOperand(4).getImm();
12169 bool isSub
= ARM_AM::getAM2Op(Offset
) == ARM_AM::sub
;
12170 Offset
= ARM_AM::getAM2Offset(Offset
);
12174 MachineMemOperand
*MMO
= *MI
.memoperands_begin();
12175 BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
))
12176 .add(MI
.getOperand(0)) // Rn_wb
12177 .add(MI
.getOperand(1)) // Rt
12178 .add(MI
.getOperand(2)) // Rn
12179 .addImm(Offset
) // offset (skip GPR==zero_reg)
12180 .add(MI
.getOperand(5)) // pred
12181 .add(MI
.getOperand(6))
12182 .addMemOperand(MMO
);
12183 MI
.eraseFromParent();
12186 case ARM::STRr_preidx
:
12187 case ARM::STRBr_preidx
:
12188 case ARM::STRH_preidx
: {
12190 switch (MI
.getOpcode()) {
12191 default: llvm_unreachable("unexpected opcode!");
12192 case ARM::STRr_preidx
: NewOpc
= ARM::STR_PRE_REG
; break;
12193 case ARM::STRBr_preidx
: NewOpc
= ARM::STRB_PRE_REG
; break;
12194 case ARM::STRH_preidx
: NewOpc
= ARM::STRH_PRE
; break;
12196 MachineInstrBuilder MIB
= BuildMI(*BB
, MI
, dl
, TII
->get(NewOpc
));
12197 for (const MachineOperand
&MO
: MI
.operands())
12199 MI
.eraseFromParent();
12203 case ARM::tMOVCCr_pseudo
: {
12204 // To "insert" a SELECT_CC instruction, we actually have to insert the
12205 // diamond control-flow pattern. The incoming instruction knows the
12206 // destination vreg to set, the condition code register to branch on, the
12207 // true/false values to select between, and a branch opcode to use.
12208 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
12209 MachineFunction::iterator It
= ++BB
->getIterator();
12214 // cmpTY ccX, r1, r2
12216 // fallthrough --> copy0MBB
12217 MachineBasicBlock
*thisMBB
= BB
;
12218 MachineFunction
*F
= BB
->getParent();
12219 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12220 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
12221 F
->insert(It
, copy0MBB
);
12222 F
->insert(It
, sinkMBB
);
12224 // Set the call frame size on entry to the new basic blocks.
12225 unsigned CallFrameSize
= TII
->getCallFrameSizeAt(MI
);
12226 copy0MBB
->setCallFrameSize(CallFrameSize
);
12227 sinkMBB
->setCallFrameSize(CallFrameSize
);
12229 // Check whether CPSR is live past the tMOVCCr_pseudo.
12230 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
12231 if (!MI
.killsRegister(ARM::CPSR
, /*TRI=*/nullptr) &&
12232 !checkAndUpdateCPSRKill(MI
, thisMBB
, TRI
)) {
12233 copy0MBB
->addLiveIn(ARM::CPSR
);
12234 sinkMBB
->addLiveIn(ARM::CPSR
);
12237 // Transfer the remainder of BB and its successor edges to sinkMBB.
12238 sinkMBB
->splice(sinkMBB
->begin(), BB
,
12239 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
12240 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
12242 BB
->addSuccessor(copy0MBB
);
12243 BB
->addSuccessor(sinkMBB
);
12245 BuildMI(BB
, dl
, TII
->get(ARM::tBcc
))
12247 .addImm(MI
.getOperand(3).getImm())
12248 .addReg(MI
.getOperand(4).getReg());
12251 // %FalseValue = ...
12252 // # fallthrough to sinkMBB
12255 // Update machine-CFG edges
12256 BB
->addSuccessor(sinkMBB
);
12259 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12262 BuildMI(*BB
, BB
->begin(), dl
, TII
->get(ARM::PHI
), MI
.getOperand(0).getReg())
12263 .addReg(MI
.getOperand(1).getReg())
12265 .addReg(MI
.getOperand(2).getReg())
12268 MI
.eraseFromParent(); // The pseudo instruction is gone now.
12273 case ARM::BCCZi64
: {
12274 // If there is an unconditional branch to the other successor, remove it.
12275 BB
->erase(std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
12277 // Compare both parts that make up the double comparison separately for
12279 bool RHSisZero
= MI
.getOpcode() == ARM::BCCZi64
;
12281 Register LHS1
= MI
.getOperand(1).getReg();
12282 Register LHS2
= MI
.getOperand(2).getReg();
12284 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
12287 .add(predOps(ARMCC::AL
));
12288 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
12289 .addReg(LHS2
).addImm(0)
12290 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
12292 Register RHS1
= MI
.getOperand(3).getReg();
12293 Register RHS2
= MI
.getOperand(4).getReg();
12294 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
12297 .add(predOps(ARMCC::AL
));
12298 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPrr
: ARM::CMPrr
))
12299 .addReg(LHS2
).addReg(RHS2
)
12300 .addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
12303 MachineBasicBlock
*destMBB
= MI
.getOperand(RHSisZero
? 3 : 5).getMBB();
12304 MachineBasicBlock
*exitMBB
= OtherSucc(BB
, destMBB
);
12305 if (MI
.getOperand(0).getImm() == ARMCC::NE
)
12306 std::swap(destMBB
, exitMBB
);
12308 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
))
12309 .addMBB(destMBB
).addImm(ARMCC::EQ
).addReg(ARM::CPSR
);
12311 BuildMI(BB
, dl
, TII
->get(ARM::t2B
))
12313 .add(predOps(ARMCC::AL
));
12315 BuildMI(BB
, dl
, TII
->get(ARM::B
)) .addMBB(exitMBB
);
12317 MI
.eraseFromParent(); // The pseudo instruction is gone now.
12321 case ARM::Int_eh_sjlj_setjmp
:
12322 case ARM::Int_eh_sjlj_setjmp_nofp
:
12323 case ARM::tInt_eh_sjlj_setjmp
:
12324 case ARM::t2Int_eh_sjlj_setjmp
:
12325 case ARM::t2Int_eh_sjlj_setjmp_nofp
:
12328 case ARM::Int_eh_sjlj_setup_dispatch
:
12329 EmitSjLjDispatchBlock(MI
, BB
);
12334 // To insert an ABS instruction, we have to insert the
12335 // diamond control-flow pattern. The incoming instruction knows the
12336 // source vreg to test against 0, the destination vreg to set,
12337 // the condition code register to branch on, the
12338 // true/false values to select between, and a branch opcode to use.
12343 // BCC (branch to SinkBB if V0 >= 0)
12344 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
12345 // SinkBB: V1 = PHI(V2, V3)
12346 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
12347 MachineFunction::iterator BBI
= ++BB
->getIterator();
12348 MachineFunction
*Fn
= BB
->getParent();
12349 MachineBasicBlock
*RSBBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
12350 MachineBasicBlock
*SinkBB
= Fn
->CreateMachineBasicBlock(LLVM_BB
);
12351 Fn
->insert(BBI
, RSBBB
);
12352 Fn
->insert(BBI
, SinkBB
);
12354 Register ABSSrcReg
= MI
.getOperand(1).getReg();
12355 Register ABSDstReg
= MI
.getOperand(0).getReg();
12356 bool ABSSrcKIll
= MI
.getOperand(1).isKill();
12357 bool isThumb2
= Subtarget
->isThumb2();
12358 MachineRegisterInfo
&MRI
= Fn
->getRegInfo();
12359 // In Thumb mode S must not be specified if source register is the SP or
12360 // PC and if destination register is the SP, so restrict register class
12361 Register NewRsbDstReg
= MRI
.createVirtualRegister(
12362 isThumb2
? &ARM::rGPRRegClass
: &ARM::GPRRegClass
);
12364 // Transfer the remainder of BB and its successor edges to sinkMBB.
12365 SinkBB
->splice(SinkBB
->begin(), BB
,
12366 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
12367 SinkBB
->transferSuccessorsAndUpdatePHIs(BB
);
12369 BB
->addSuccessor(RSBBB
);
12370 BB
->addSuccessor(SinkBB
);
12372 // fall through to SinkMBB
12373 RSBBB
->addSuccessor(SinkBB
);
12375 // insert a cmp at the end of BB
12376 BuildMI(BB
, dl
, TII
->get(isThumb2
? ARM::t2CMPri
: ARM::CMPri
))
12379 .add(predOps(ARMCC::AL
));
12381 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
12383 TII
->get(isThumb2
? ARM::t2Bcc
: ARM::Bcc
)).addMBB(SinkBB
)
12384 .addImm(ARMCC::getOppositeCondition(ARMCC::MI
)).addReg(ARM::CPSR
);
12386 // insert rsbri in RSBBB
12387 // Note: BCC and rsbri will be converted into predicated rsbmi
12388 // by if-conversion pass
12389 BuildMI(*RSBBB
, RSBBB
->begin(), dl
,
12390 TII
->get(isThumb2
? ARM::t2RSBri
: ARM::RSBri
), NewRsbDstReg
)
12391 .addReg(ABSSrcReg
, ABSSrcKIll
? RegState::Kill
: 0)
12393 .add(predOps(ARMCC::AL
))
12394 .add(condCodeOp());
12396 // insert PHI in SinkBB,
12397 // reuse ABSDstReg to not change uses of ABS instruction
12398 BuildMI(*SinkBB
, SinkBB
->begin(), dl
,
12399 TII
->get(ARM::PHI
), ABSDstReg
)
12400 .addReg(NewRsbDstReg
).addMBB(RSBBB
)
12401 .addReg(ABSSrcReg
).addMBB(BB
);
12403 // remove ABS instruction
12404 MI
.eraseFromParent();
12406 // return last added BB
12409 case ARM::COPY_STRUCT_BYVAL_I32
:
12411 return EmitStructByval(MI
, BB
);
12412 case ARM::WIN__CHKSTK
:
12413 return EmitLowered__chkstk(MI
, BB
);
12414 case ARM::WIN__DBZCHK
:
12415 return EmitLowered__dbzchk(MI
, BB
);
12419 /// Attaches vregs to MEMCPY that it will use as scratch registers
12420 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
12421 /// instead of as a custom inserter because we need the use list from the SDNode.
12422 static void attachMEMCPYScratchRegs(const ARMSubtarget
*Subtarget
,
12423 MachineInstr
&MI
, const SDNode
*Node
) {
12424 bool isThumb1
= Subtarget
->isThumb1Only();
12426 DebugLoc DL
= MI
.getDebugLoc();
12427 MachineFunction
*MF
= MI
.getParent()->getParent();
12428 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
12429 MachineInstrBuilder
MIB(*MF
, MI
);
12431 // If the new dst/src is unused mark it as dead.
12432 if (!Node
->hasAnyUseOfValue(0)) {
12433 MI
.getOperand(0).setIsDead(true);
12435 if (!Node
->hasAnyUseOfValue(1)) {
12436 MI
.getOperand(1).setIsDead(true);
12439 // The MEMCPY both defines and kills the scratch registers.
12440 for (unsigned I
= 0; I
!= MI
.getOperand(4).getImm(); ++I
) {
12441 Register TmpReg
= MRI
.createVirtualRegister(isThumb1
? &ARM::tGPRRegClass
12442 : &ARM::GPRRegClass
);
12443 MIB
.addReg(TmpReg
, RegState::Define
|RegState::Dead
);
12447 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
12448 SDNode
*Node
) const {
12449 if (MI
.getOpcode() == ARM::MEMCPY
) {
12450 attachMEMCPYScratchRegs(Subtarget
, MI
, Node
);
12454 const MCInstrDesc
*MCID
= &MI
.getDesc();
12455 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
12456 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
12457 // operand is still set to noreg. If needed, set the optional operand's
12458 // register to CPSR, and remove the redundant implicit def.
12460 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
12462 // Rename pseudo opcodes.
12463 unsigned NewOpc
= convertAddSubFlagsOpcode(MI
.getOpcode());
12466 const ARMBaseInstrInfo
*TII
= Subtarget
->getInstrInfo();
12467 MCID
= &TII
->get(NewOpc
);
12469 assert(MCID
->getNumOperands() ==
12470 MI
.getDesc().getNumOperands() + 5 - MI
.getDesc().getSize()
12471 && "converted opcode should be the same except for cc_out"
12472 " (and, on Thumb1, pred)");
12476 // Add the optional cc_out operand
12477 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
12479 // On Thumb1, move all input operands to the end, then add the predicate
12480 if (Subtarget
->isThumb1Only()) {
12481 for (unsigned c
= MCID
->getNumOperands() - 4; c
--;) {
12482 MI
.addOperand(MI
.getOperand(1));
12483 MI
.removeOperand(1);
12486 // Restore the ties
12487 for (unsigned i
= MI
.getNumOperands(); i
--;) {
12488 const MachineOperand
& op
= MI
.getOperand(i
);
12489 if (op
.isReg() && op
.isUse()) {
12490 int DefIdx
= MCID
->getOperandConstraint(i
, MCOI::TIED_TO
);
12492 MI
.tieOperands(DefIdx
, i
);
12496 MI
.addOperand(MachineOperand::CreateImm(ARMCC::AL
));
12497 MI
.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
12500 ccOutIdx
= MCID
->getNumOperands() - 1;
12502 ccOutIdx
= MCID
->getNumOperands() - 1;
12504 // Any ARM instruction that sets the 's' bit should specify an optional
12505 // "cc_out" operand in the last operand position.
12506 if (!MI
.hasOptionalDef() || !MCID
->operands()[ccOutIdx
].isOptionalDef()) {
12507 assert(!NewOpc
&& "Optional cc_out operand required");
12510 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
12511 // since we already have an optional CPSR def.
12512 bool definesCPSR
= false;
12513 bool deadCPSR
= false;
12514 for (unsigned i
= MCID
->getNumOperands(), e
= MI
.getNumOperands(); i
!= e
;
12516 const MachineOperand
&MO
= MI
.getOperand(i
);
12517 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == ARM::CPSR
) {
12518 definesCPSR
= true;
12521 MI
.removeOperand(i
);
12525 if (!definesCPSR
) {
12526 assert(!NewOpc
&& "Optional cc_out operand required");
12529 assert(deadCPSR
== !Node
->hasAnyUseOfValue(1) && "inconsistent dead flag");
12531 assert(!MI
.getOperand(ccOutIdx
).getReg() &&
12532 "expect uninitialized optional cc_out operand");
12533 // Thumb1 instructions must have the S bit even if the CPSR is dead.
12534 if (!Subtarget
->isThumb1Only())
12538 // If this instruction was defined with an optional CPSR def and its dag node
12539 // had a live implicit CPSR def, then activate the optional CPSR def.
12540 MachineOperand
&MO
= MI
.getOperand(ccOutIdx
);
12541 MO
.setReg(ARM::CPSR
);
12545 //===----------------------------------------------------------------------===//
12546 // ARM Optimization Hooks
12547 //===----------------------------------------------------------------------===//
12549 // Helper function that checks if N is a null or all ones constant.
12550 static inline bool isZeroOrAllOnes(SDValue N
, bool AllOnes
) {
12551 return AllOnes
? isAllOnesConstant(N
) : isNullConstant(N
);
12554 // Return true if N is conditionally 0 or all ones.
12555 // Detects these expressions where cc is an i1 value:
12557 // (select cc 0, y) [AllOnes=0]
12558 // (select cc y, 0) [AllOnes=0]
12559 // (zext cc) [AllOnes=0]
12560 // (sext cc) [AllOnes=0/1]
12561 // (select cc -1, y) [AllOnes=1]
12562 // (select cc y, -1) [AllOnes=1]
12564 // Invert is set when N is the null/all ones constant when CC is false.
12565 // OtherOp is set to the alternative value of N.
12566 static bool isConditionalZeroOrAllOnes(SDNode
*N
, bool AllOnes
,
12567 SDValue
&CC
, bool &Invert
,
12569 SelectionDAG
&DAG
) {
12570 switch (N
->getOpcode()) {
12571 default: return false;
12572 case ISD::SELECT
: {
12573 CC
= N
->getOperand(0);
12574 SDValue N1
= N
->getOperand(1);
12575 SDValue N2
= N
->getOperand(2);
12576 if (isZeroOrAllOnes(N1
, AllOnes
)) {
12581 if (isZeroOrAllOnes(N2
, AllOnes
)) {
12588 case ISD::ZERO_EXTEND
:
12589 // (zext cc) can never be the all ones value.
12593 case ISD::SIGN_EXTEND
: {
12595 EVT VT
= N
->getValueType(0);
12596 CC
= N
->getOperand(0);
12597 if (CC
.getValueType() != MVT::i1
|| CC
.getOpcode() != ISD::SETCC
)
12601 // When looking for an AllOnes constant, N is an sext, and the 'other'
12603 OtherOp
= DAG
.getConstant(0, dl
, VT
);
12604 else if (N
->getOpcode() == ISD::ZERO_EXTEND
)
12605 // When looking for a 0 constant, N can be zext or sext.
12606 OtherOp
= DAG
.getConstant(1, dl
, VT
);
12608 OtherOp
= DAG
.getAllOnesConstant(dl
, VT
);
12614 // Combine a constant select operand into its use:
12616 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
12617 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
12618 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
12619 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12620 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12622 // The transform is rejected if the select doesn't have a constant operand that
12623 // is null, or all ones when AllOnes is set.
12625 // Also recognize sext/zext from i1:
12627 // (add (zext cc), x) -> (select cc (add x, 1), x)
12628 // (add (sext cc), x) -> (select cc (add x, -1), x)
12630 // These transformations eventually create predicated instructions.
12632 // @param N The node to transform.
12633 // @param Slct The N operand that is a select.
12634 // @param OtherOp The other N operand (x above).
12635 // @param DCI Context.
12636 // @param AllOnes Require the select constant to be all ones instead of null.
12637 // @returns The new node, or SDValue() on failure.
12639 SDValue
combineSelectAndUse(SDNode
*N
, SDValue Slct
, SDValue OtherOp
,
12640 TargetLowering::DAGCombinerInfo
&DCI
,
12641 bool AllOnes
= false) {
12642 SelectionDAG
&DAG
= DCI
.DAG
;
12643 EVT VT
= N
->getValueType(0);
12644 SDValue NonConstantVal
;
12646 bool SwapSelectOps
;
12647 if (!isConditionalZeroOrAllOnes(Slct
.getNode(), AllOnes
, CCOp
, SwapSelectOps
,
12648 NonConstantVal
, DAG
))
12651 // Slct is now know to be the desired identity constant when CC is true.
12652 SDValue TrueVal
= OtherOp
;
12653 SDValue FalseVal
= DAG
.getNode(N
->getOpcode(), SDLoc(N
), VT
,
12654 OtherOp
, NonConstantVal
);
12655 // Unless SwapSelectOps says CC should be false.
12657 std::swap(TrueVal
, FalseVal
);
12659 return DAG
.getNode(ISD::SELECT
, SDLoc(N
), VT
,
12660 CCOp
, TrueVal
, FalseVal
);
12663 // Attempt combineSelectAndUse on each operand of a commutative operator N.
12665 SDValue
combineSelectAndUseCommutative(SDNode
*N
, bool AllOnes
,
12666 TargetLowering::DAGCombinerInfo
&DCI
) {
12667 SDValue N0
= N
->getOperand(0);
12668 SDValue N1
= N
->getOperand(1);
12669 if (N0
.getNode()->hasOneUse())
12670 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
, AllOnes
))
12672 if (N1
.getNode()->hasOneUse())
12673 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
, AllOnes
))
12678 static bool IsVUZPShuffleNode(SDNode
*N
) {
12679 // VUZP shuffle node.
12680 if (N
->getOpcode() == ARMISD::VUZP
)
12683 // "VUZP" on i32 is an alias for VTRN.
12684 if (N
->getOpcode() == ARMISD::VTRN
&& N
->getValueType(0) == MVT::v2i32
)
12690 static SDValue
AddCombineToVPADD(SDNode
*N
, SDValue N0
, SDValue N1
,
12691 TargetLowering::DAGCombinerInfo
&DCI
,
12692 const ARMSubtarget
*Subtarget
) {
12693 // Look for ADD(VUZP.0, VUZP.1).
12694 if (!IsVUZPShuffleNode(N0
.getNode()) || N0
.getNode() != N1
.getNode() ||
12698 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
12699 if (!N
->getValueType(0).is64BitVector())
12703 SelectionDAG
&DAG
= DCI
.DAG
;
12704 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12706 SDNode
*Unzip
= N0
.getNode();
12707 EVT VT
= N
->getValueType(0);
12709 SmallVector
<SDValue
, 8> Ops
;
12710 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpadd
, dl
,
12711 TLI
.getPointerTy(DAG
.getDataLayout())));
12712 Ops
.push_back(Unzip
->getOperand(0));
12713 Ops
.push_back(Unzip
->getOperand(1));
12715 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
12718 static SDValue
AddCombineVUZPToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
12719 TargetLowering::DAGCombinerInfo
&DCI
,
12720 const ARMSubtarget
*Subtarget
) {
12721 // Check for two extended operands.
12722 if (!(N0
.getOpcode() == ISD::SIGN_EXTEND
&&
12723 N1
.getOpcode() == ISD::SIGN_EXTEND
) &&
12724 !(N0
.getOpcode() == ISD::ZERO_EXTEND
&&
12725 N1
.getOpcode() == ISD::ZERO_EXTEND
))
12728 SDValue N00
= N0
.getOperand(0);
12729 SDValue N10
= N1
.getOperand(0);
12731 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
12732 if (!IsVUZPShuffleNode(N00
.getNode()) || N00
.getNode() != N10
.getNode() ||
12736 // We only recognize Q register paddl here; this can't be reached until
12737 // after type legalization.
12738 if (!N00
.getValueType().is64BitVector() ||
12739 !N0
.getValueType().is128BitVector())
12742 // Generate vpaddl.
12743 SelectionDAG
&DAG
= DCI
.DAG
;
12744 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12746 EVT VT
= N
->getValueType(0);
12748 SmallVector
<SDValue
, 8> Ops
;
12749 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
12751 if (N0
.getOpcode() == ISD::SIGN_EXTEND
)
12752 Opcode
= Intrinsic::arm_neon_vpaddls
;
12754 Opcode
= Intrinsic::arm_neon_vpaddlu
;
12755 Ops
.push_back(DAG
.getConstant(Opcode
, dl
,
12756 TLI
.getPointerTy(DAG
.getDataLayout())));
12757 EVT ElemTy
= N00
.getValueType().getVectorElementType();
12758 unsigned NumElts
= VT
.getVectorNumElements();
12759 EVT ConcatVT
= EVT::getVectorVT(*DAG
.getContext(), ElemTy
, NumElts
* 2);
12760 SDValue Concat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), ConcatVT
,
12761 N00
.getOperand(0), N00
.getOperand(1));
12762 Ops
.push_back(Concat
);
12764 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, VT
, Ops
);
12767 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
12768 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
12769 // much easier to match.
12771 AddCombineBUILD_VECTORToVPADDL(SDNode
*N
, SDValue N0
, SDValue N1
,
12772 TargetLowering::DAGCombinerInfo
&DCI
,
12773 const ARMSubtarget
*Subtarget
) {
12774 // Only perform optimization if after legalize, and if NEON is available. We
12775 // also expected both operands to be BUILD_VECTORs.
12776 if (DCI
.isBeforeLegalize() || !Subtarget
->hasNEON()
12777 || N0
.getOpcode() != ISD::BUILD_VECTOR
12778 || N1
.getOpcode() != ISD::BUILD_VECTOR
)
12781 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
12782 EVT VT
= N
->getValueType(0);
12783 if (!VT
.isInteger() || VT
.getVectorElementType() == MVT::i64
)
12786 // Check that the vector operands are of the right form.
12787 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
12788 // operands, where N is the size of the formed vector.
12789 // Each EXTRACT_VECTOR should have the same input vector and odd or even
12790 // index such that we have a pair wise add pattern.
12792 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
12793 if (N0
->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
12795 SDValue Vec
= N0
->getOperand(0)->getOperand(0);
12796 SDNode
*V
= Vec
.getNode();
12797 unsigned nextIndex
= 0;
12799 // For each operands to the ADD which are BUILD_VECTORs,
12800 // check to see if each of their operands are an EXTRACT_VECTOR with
12801 // the same vector and appropriate index.
12802 for (unsigned i
= 0, e
= N0
->getNumOperands(); i
!= e
; ++i
) {
12803 if (N0
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
12804 && N1
->getOperand(i
)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
12806 SDValue ExtVec0
= N0
->getOperand(i
);
12807 SDValue ExtVec1
= N1
->getOperand(i
);
12809 // First operand is the vector, verify its the same.
12810 if (V
!= ExtVec0
->getOperand(0).getNode() ||
12811 V
!= ExtVec1
->getOperand(0).getNode())
12814 // Second is the constant, verify its correct.
12815 ConstantSDNode
*C0
= dyn_cast
<ConstantSDNode
>(ExtVec0
->getOperand(1));
12816 ConstantSDNode
*C1
= dyn_cast
<ConstantSDNode
>(ExtVec1
->getOperand(1));
12818 // For the constant, we want to see all the even or all the odd.
12819 if (!C0
|| !C1
|| C0
->getZExtValue() != nextIndex
12820 || C1
->getZExtValue() != nextIndex
+1)
12823 // Increment index.
12829 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
12830 // we're using the entire input vector, otherwise there's a size/legality
12831 // mismatch somewhere.
12832 if (nextIndex
!= Vec
.getValueType().getVectorNumElements() ||
12833 Vec
.getValueType().getVectorElementType() == VT
.getVectorElementType())
12836 // Create VPADDL node.
12837 SelectionDAG
&DAG
= DCI
.DAG
;
12838 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
12842 // Build operand list.
12843 SmallVector
<SDValue
, 8> Ops
;
12844 Ops
.push_back(DAG
.getConstant(Intrinsic::arm_neon_vpaddls
, dl
,
12845 TLI
.getPointerTy(DAG
.getDataLayout())));
12847 // Input is the vector.
12848 Ops
.push_back(Vec
);
12850 // Get widened type and narrowed type.
12852 unsigned numElem
= VT
.getVectorNumElements();
12854 EVT inputLaneType
= Vec
.getValueType().getVectorElementType();
12855 switch (inputLaneType
.getSimpleVT().SimpleTy
) {
12856 case MVT::i8
: widenType
= MVT::getVectorVT(MVT::i16
, numElem
); break;
12857 case MVT::i16
: widenType
= MVT::getVectorVT(MVT::i32
, numElem
); break;
12858 case MVT::i32
: widenType
= MVT::getVectorVT(MVT::i64
, numElem
); break;
12860 llvm_unreachable("Invalid vector element type for padd optimization.");
12863 SDValue tmp
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, dl
, widenType
, Ops
);
12864 unsigned ExtOp
= VT
.bitsGT(tmp
.getValueType()) ? ISD::ANY_EXTEND
: ISD::TRUNCATE
;
12865 return DAG
.getNode(ExtOp
, dl
, VT
, tmp
);
12868 static SDValue
findMUL_LOHI(SDValue V
) {
12869 if (V
->getOpcode() == ISD::UMUL_LOHI
||
12870 V
->getOpcode() == ISD::SMUL_LOHI
)
12875 static SDValue
AddCombineTo64BitSMLAL16(SDNode
*AddcNode
, SDNode
*AddeNode
,
12876 TargetLowering::DAGCombinerInfo
&DCI
,
12877 const ARMSubtarget
*Subtarget
) {
12878 if (!Subtarget
->hasBaseDSP())
12881 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
12882 // accumulates the product into a 64-bit value. The 16-bit values will
12883 // be sign extended somehow or SRA'd into 32-bit values
12884 // (addc (adde (mul 16bit, 16bit), lo), hi)
12885 SDValue Mul
= AddcNode
->getOperand(0);
12886 SDValue Lo
= AddcNode
->getOperand(1);
12887 if (Mul
.getOpcode() != ISD::MUL
) {
12888 Lo
= AddcNode
->getOperand(0);
12889 Mul
= AddcNode
->getOperand(1);
12890 if (Mul
.getOpcode() != ISD::MUL
)
12894 SDValue SRA
= AddeNode
->getOperand(0);
12895 SDValue Hi
= AddeNode
->getOperand(1);
12896 if (SRA
.getOpcode() != ISD::SRA
) {
12897 SRA
= AddeNode
->getOperand(1);
12898 Hi
= AddeNode
->getOperand(0);
12899 if (SRA
.getOpcode() != ISD::SRA
)
12902 if (auto Const
= dyn_cast
<ConstantSDNode
>(SRA
.getOperand(1))) {
12903 if (Const
->getZExtValue() != 31)
12908 if (SRA
.getOperand(0) != Mul
)
12911 SelectionDAG
&DAG
= DCI
.DAG
;
12912 SDLoc
dl(AddcNode
);
12913 unsigned Opcode
= 0;
12917 if (isS16(Mul
.getOperand(0), DAG
) && isS16(Mul
.getOperand(1), DAG
)) {
12918 Opcode
= ARMISD::SMLALBB
;
12919 Op0
= Mul
.getOperand(0);
12920 Op1
= Mul
.getOperand(1);
12921 } else if (isS16(Mul
.getOperand(0), DAG
) && isSRA16(Mul
.getOperand(1))) {
12922 Opcode
= ARMISD::SMLALBT
;
12923 Op0
= Mul
.getOperand(0);
12924 Op1
= Mul
.getOperand(1).getOperand(0);
12925 } else if (isSRA16(Mul
.getOperand(0)) && isS16(Mul
.getOperand(1), DAG
)) {
12926 Opcode
= ARMISD::SMLALTB
;
12927 Op0
= Mul
.getOperand(0).getOperand(0);
12928 Op1
= Mul
.getOperand(1);
12929 } else if (isSRA16(Mul
.getOperand(0)) && isSRA16(Mul
.getOperand(1))) {
12930 Opcode
= ARMISD::SMLALTT
;
12931 Op0
= Mul
->getOperand(0).getOperand(0);
12932 Op1
= Mul
->getOperand(1).getOperand(0);
12938 SDValue SMLAL
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
12940 // Replace the ADDs' nodes uses by the MLA node's values.
12941 SDValue
HiMLALResult(SMLAL
.getNode(), 1);
12942 SDValue
LoMLALResult(SMLAL
.getNode(), 0);
12944 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), LoMLALResult
);
12945 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), HiMLALResult
);
12947 // Return original node to notify the driver to stop replacing.
12948 SDValue
resNode(AddcNode
, 0);
12952 static SDValue
AddCombineTo64bitMLAL(SDNode
*AddeSubeNode
,
12953 TargetLowering::DAGCombinerInfo
&DCI
,
12954 const ARMSubtarget
*Subtarget
) {
12955 // Look for multiply add opportunities.
12956 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
12957 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
12958 // a glue link from the first add to the second add.
12959 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
12960 // a S/UMLAL instruction.
12963 // V \ [no multiline comment]
12969 // In the special case where only the higher part of a signed result is used
12970 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
12971 // a constant with the exact value of 0x80000000, we recognize we are dealing
12972 // with a "rounded multiply and add" (or subtract) and transform it into
12973 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
12975 assert((AddeSubeNode
->getOpcode() == ARMISD::ADDE
||
12976 AddeSubeNode
->getOpcode() == ARMISD::SUBE
) &&
12977 "Expect an ADDE or SUBE");
12979 assert(AddeSubeNode
->getNumOperands() == 3 &&
12980 AddeSubeNode
->getOperand(2).getValueType() == MVT::i32
&&
12981 "ADDE node has the wrong inputs");
12983 // Check that we are chained to the right ADDC or SUBC node.
12984 SDNode
*AddcSubcNode
= AddeSubeNode
->getOperand(2).getNode();
12985 if ((AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
12986 AddcSubcNode
->getOpcode() != ARMISD::ADDC
) ||
12987 (AddeSubeNode
->getOpcode() == ARMISD::SUBE
&&
12988 AddcSubcNode
->getOpcode() != ARMISD::SUBC
))
12991 SDValue AddcSubcOp0
= AddcSubcNode
->getOperand(0);
12992 SDValue AddcSubcOp1
= AddcSubcNode
->getOperand(1);
12994 // Check if the two operands are from the same mul_lohi node.
12995 if (AddcSubcOp0
.getNode() == AddcSubcOp1
.getNode())
12998 assert(AddcSubcNode
->getNumValues() == 2 &&
12999 AddcSubcNode
->getValueType(0) == MVT::i32
&&
13000 "Expect ADDC with two result values. First: i32");
13002 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
13003 // maybe a SMLAL which multiplies two 16-bit values.
13004 if (AddeSubeNode
->getOpcode() == ARMISD::ADDE
&&
13005 AddcSubcOp0
->getOpcode() != ISD::UMUL_LOHI
&&
13006 AddcSubcOp0
->getOpcode() != ISD::SMUL_LOHI
&&
13007 AddcSubcOp1
->getOpcode() != ISD::UMUL_LOHI
&&
13008 AddcSubcOp1
->getOpcode() != ISD::SMUL_LOHI
)
13009 return AddCombineTo64BitSMLAL16(AddcSubcNode
, AddeSubeNode
, DCI
, Subtarget
);
13011 // Check for the triangle shape.
13012 SDValue AddeSubeOp0
= AddeSubeNode
->getOperand(0);
13013 SDValue AddeSubeOp1
= AddeSubeNode
->getOperand(1);
13015 // Make sure that the ADDE/SUBE operands are not coming from the same node.
13016 if (AddeSubeOp0
.getNode() == AddeSubeOp1
.getNode())
13019 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
13020 bool IsLeftOperandMUL
= false;
13021 SDValue MULOp
= findMUL_LOHI(AddeSubeOp0
);
13022 if (MULOp
== SDValue())
13023 MULOp
= findMUL_LOHI(AddeSubeOp1
);
13025 IsLeftOperandMUL
= true;
13026 if (MULOp
== SDValue())
13029 // Figure out the right opcode.
13030 unsigned Opc
= MULOp
->getOpcode();
13031 unsigned FinalOpc
= (Opc
== ISD::SMUL_LOHI
) ? ARMISD::SMLAL
: ARMISD::UMLAL
;
13033 // Figure out the high and low input values to the MLAL node.
13034 SDValue
*HiAddSub
= nullptr;
13035 SDValue
*LoMul
= nullptr;
13036 SDValue
*LowAddSub
= nullptr;
13038 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
13039 if ((AddeSubeOp0
!= MULOp
.getValue(1)) && (AddeSubeOp1
!= MULOp
.getValue(1)))
13042 if (IsLeftOperandMUL
)
13043 HiAddSub
= &AddeSubeOp1
;
13045 HiAddSub
= &AddeSubeOp0
;
13047 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
13048 // whose low result is fed to the ADDC/SUBC we are checking.
13050 if (AddcSubcOp0
== MULOp
.getValue(0)) {
13051 LoMul
= &AddcSubcOp0
;
13052 LowAddSub
= &AddcSubcOp1
;
13054 if (AddcSubcOp1
== MULOp
.getValue(0)) {
13055 LoMul
= &AddcSubcOp1
;
13056 LowAddSub
= &AddcSubcOp0
;
13062 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
13063 // the replacement below will create a cycle.
13064 if (AddcSubcNode
== HiAddSub
->getNode() ||
13065 AddcSubcNode
->isPredecessorOf(HiAddSub
->getNode()))
13068 // Create the merged node.
13069 SelectionDAG
&DAG
= DCI
.DAG
;
13071 // Start building operand list.
13072 SmallVector
<SDValue
, 8> Ops
;
13073 Ops
.push_back(LoMul
->getOperand(0));
13074 Ops
.push_back(LoMul
->getOperand(1));
13076 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
13077 // the case, we must be doing signed multiplication and only use the higher
13078 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
13079 // addition or subtraction with the value of 0x800000.
13080 if (Subtarget
->hasV6Ops() && Subtarget
->hasDSP() && Subtarget
->useMulOps() &&
13081 FinalOpc
== ARMISD::SMLAL
&& !AddeSubeNode
->hasAnyUseOfValue(1) &&
13082 LowAddSub
->getNode()->getOpcode() == ISD::Constant
&&
13083 static_cast<ConstantSDNode
*>(LowAddSub
->getNode())->getZExtValue() ==
13085 Ops
.push_back(*HiAddSub
);
13086 if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
) {
13087 FinalOpc
= ARMISD::SMMLSR
;
13089 FinalOpc
= ARMISD::SMMLAR
;
13091 SDValue NewNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
), MVT::i32
, Ops
);
13092 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), NewNode
);
13094 return SDValue(AddeSubeNode
, 0);
13095 } else if (AddcSubcNode
->getOpcode() == ARMISD::SUBC
)
13096 // SMMLS is generated during instruction selection and the rest of this
13097 // function can not handle the case where AddcSubcNode is a SUBC.
13100 // Finish building the operand list for {U/S}MLAL
13101 Ops
.push_back(*LowAddSub
);
13102 Ops
.push_back(*HiAddSub
);
13104 SDValue MLALNode
= DAG
.getNode(FinalOpc
, SDLoc(AddcSubcNode
),
13105 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
13107 // Replace the ADDs' nodes uses by the MLA node's values.
13108 SDValue
HiMLALResult(MLALNode
.getNode(), 1);
13109 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode
, 0), HiMLALResult
);
13111 SDValue
LoMLALResult(MLALNode
.getNode(), 0);
13112 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode
, 0), LoMLALResult
);
13114 // Return original node to notify the driver to stop replacing.
13115 return SDValue(AddeSubeNode
, 0);
13118 static SDValue
AddCombineTo64bitUMAAL(SDNode
*AddeNode
,
13119 TargetLowering::DAGCombinerInfo
&DCI
,
13120 const ARMSubtarget
*Subtarget
) {
13121 // UMAAL is similar to UMLAL except that it adds two unsigned values.
13122 // While trying to combine for the other MLAL nodes, first search for the
13123 // chance to use UMAAL. Check if Addc uses a node which has already
13124 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
13125 // as the addend, and it's handled in PerformUMLALCombine.
13127 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
13128 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
13130 // Check that we have a glued ADDC node.
13131 SDNode
* AddcNode
= AddeNode
->getOperand(2).getNode();
13132 if (AddcNode
->getOpcode() != ARMISD::ADDC
)
13135 // Find the converted UMAAL or quit if it doesn't exist.
13136 SDNode
*UmlalNode
= nullptr;
13138 if (AddcNode
->getOperand(0).getOpcode() == ARMISD::UMLAL
) {
13139 UmlalNode
= AddcNode
->getOperand(0).getNode();
13140 AddHi
= AddcNode
->getOperand(1);
13141 } else if (AddcNode
->getOperand(1).getOpcode() == ARMISD::UMLAL
) {
13142 UmlalNode
= AddcNode
->getOperand(1).getNode();
13143 AddHi
= AddcNode
->getOperand(0);
13145 return AddCombineTo64bitMLAL(AddeNode
, DCI
, Subtarget
);
13148 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
13149 // the ADDC as well as Zero.
13150 if (!isNullConstant(UmlalNode
->getOperand(3)))
13153 if ((isNullConstant(AddeNode
->getOperand(0)) &&
13154 AddeNode
->getOperand(1).getNode() == UmlalNode
) ||
13155 (AddeNode
->getOperand(0).getNode() == UmlalNode
&&
13156 isNullConstant(AddeNode
->getOperand(1)))) {
13157 SelectionDAG
&DAG
= DCI
.DAG
;
13158 SDValue Ops
[] = { UmlalNode
->getOperand(0), UmlalNode
->getOperand(1),
13159 UmlalNode
->getOperand(2), AddHi
};
13160 SDValue UMAAL
= DAG
.getNode(ARMISD::UMAAL
, SDLoc(AddcNode
),
13161 DAG
.getVTList(MVT::i32
, MVT::i32
), Ops
);
13163 // Replace the ADDs' nodes uses by the UMAAL node's values.
13164 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddeNode
, 0), SDValue(UMAAL
.getNode(), 1));
13165 DAG
.ReplaceAllUsesOfValueWith(SDValue(AddcNode
, 0), SDValue(UMAAL
.getNode(), 0));
13167 // Return original node to notify the driver to stop replacing.
13168 return SDValue(AddeNode
, 0);
13173 static SDValue
PerformUMLALCombine(SDNode
*N
, SelectionDAG
&DAG
,
13174 const ARMSubtarget
*Subtarget
) {
13175 if (!Subtarget
->hasV6Ops() || !Subtarget
->hasDSP())
13178 // Check that we have a pair of ADDC and ADDE as operands.
13179 // Both addends of the ADDE must be zero.
13180 SDNode
* AddcNode
= N
->getOperand(2).getNode();
13181 SDNode
* AddeNode
= N
->getOperand(3).getNode();
13182 if ((AddcNode
->getOpcode() == ARMISD::ADDC
) &&
13183 (AddeNode
->getOpcode() == ARMISD::ADDE
) &&
13184 isNullConstant(AddeNode
->getOperand(0)) &&
13185 isNullConstant(AddeNode
->getOperand(1)) &&
13186 (AddeNode
->getOperand(2).getNode() == AddcNode
))
13187 return DAG
.getNode(ARMISD::UMAAL
, SDLoc(N
),
13188 DAG
.getVTList(MVT::i32
, MVT::i32
),
13189 {N
->getOperand(0), N
->getOperand(1),
13190 AddcNode
->getOperand(0), AddcNode
->getOperand(1)});
13195 static SDValue
PerformAddcSubcCombine(SDNode
*N
,
13196 TargetLowering::DAGCombinerInfo
&DCI
,
13197 const ARMSubtarget
*Subtarget
) {
13198 SelectionDAG
&DAG(DCI
.DAG
);
13200 if (N
->getOpcode() == ARMISD::SUBC
&& N
->hasAnyUseOfValue(1)) {
13201 // (SUBC (ADDE 0, 0, C), 1) -> C
13202 SDValue LHS
= N
->getOperand(0);
13203 SDValue RHS
= N
->getOperand(1);
13204 if (LHS
->getOpcode() == ARMISD::ADDE
&&
13205 isNullConstant(LHS
->getOperand(0)) &&
13206 isNullConstant(LHS
->getOperand(1)) && isOneConstant(RHS
)) {
13207 return DCI
.CombineTo(N
, SDValue(N
, 0), LHS
->getOperand(2));
13211 if (Subtarget
->isThumb1Only()) {
13212 SDValue RHS
= N
->getOperand(1);
13213 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
13214 int32_t imm
= C
->getSExtValue();
13215 if (imm
< 0 && imm
> std::numeric_limits
<int>::min()) {
13217 RHS
= DAG
.getConstant(-imm
, DL
, MVT::i32
);
13218 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDC
) ? ARMISD::SUBC
13220 return DAG
.getNode(Opcode
, DL
, N
->getVTList(), N
->getOperand(0), RHS
);
13228 static SDValue
PerformAddeSubeCombine(SDNode
*N
,
13229 TargetLowering::DAGCombinerInfo
&DCI
,
13230 const ARMSubtarget
*Subtarget
) {
13231 if (Subtarget
->isThumb1Only()) {
13232 SelectionDAG
&DAG
= DCI
.DAG
;
13233 SDValue RHS
= N
->getOperand(1);
13234 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
13235 int64_t imm
= C
->getSExtValue();
13239 // The with-carry-in form matches bitwise not instead of the negation.
13240 // Effectively, the inverse interpretation of the carry flag already
13241 // accounts for part of the negation.
13242 RHS
= DAG
.getConstant(~imm
, DL
, MVT::i32
);
13244 unsigned Opcode
= (N
->getOpcode() == ARMISD::ADDE
) ? ARMISD::SUBE
13246 return DAG
.getNode(Opcode
, DL
, N
->getVTList(),
13247 N
->getOperand(0), RHS
, N
->getOperand(2));
13250 } else if (N
->getOperand(1)->getOpcode() == ISD::SMUL_LOHI
) {
13251 return AddCombineTo64bitMLAL(N
, DCI
, Subtarget
);
13256 static SDValue
PerformSELECTCombine(SDNode
*N
,
13257 TargetLowering::DAGCombinerInfo
&DCI
,
13258 const ARMSubtarget
*Subtarget
) {
13259 if (!Subtarget
->hasMVEIntegerOps())
13270 if (N
->getOpcode() == ISD::SELECT
&&
13271 N
->getOperand(0)->getOpcode() == ISD::SETCC
) {
13272 SetCC
= N
->getOperand(0);
13273 LHS
= SetCC
->getOperand(0);
13274 RHS
= SetCC
->getOperand(1);
13275 CC
= cast
<CondCodeSDNode
>(SetCC
->getOperand(2))->get();
13276 TrueVal
= N
->getOperand(1);
13277 FalseVal
= N
->getOperand(2);
13278 } else if (N
->getOpcode() == ISD::SELECT_CC
) {
13279 LHS
= N
->getOperand(0);
13280 RHS
= N
->getOperand(1);
13281 CC
= cast
<CondCodeSDNode
>(N
->getOperand(4))->get();
13282 TrueVal
= N
->getOperand(2);
13283 FalseVal
= N
->getOperand(3);
13288 unsigned int Opcode
= 0;
13289 if ((TrueVal
->getOpcode() == ISD::VECREDUCE_UMIN
||
13290 FalseVal
->getOpcode() == ISD::VECREDUCE_UMIN
) &&
13291 (CC
== ISD::SETULT
|| CC
== ISD::SETUGT
)) {
13292 Opcode
= ARMISD::VMINVu
;
13293 if (CC
== ISD::SETUGT
)
13294 std::swap(TrueVal
, FalseVal
);
13295 } else if ((TrueVal
->getOpcode() == ISD::VECREDUCE_SMIN
||
13296 FalseVal
->getOpcode() == ISD::VECREDUCE_SMIN
) &&
13297 (CC
== ISD::SETLT
|| CC
== ISD::SETGT
)) {
13298 Opcode
= ARMISD::VMINVs
;
13299 if (CC
== ISD::SETGT
)
13300 std::swap(TrueVal
, FalseVal
);
13301 } else if ((TrueVal
->getOpcode() == ISD::VECREDUCE_UMAX
||
13302 FalseVal
->getOpcode() == ISD::VECREDUCE_UMAX
) &&
13303 (CC
== ISD::SETUGT
|| CC
== ISD::SETULT
)) {
13304 Opcode
= ARMISD::VMAXVu
;
13305 if (CC
== ISD::SETULT
)
13306 std::swap(TrueVal
, FalseVal
);
13307 } else if ((TrueVal
->getOpcode() == ISD::VECREDUCE_SMAX
||
13308 FalseVal
->getOpcode() == ISD::VECREDUCE_SMAX
) &&
13309 (CC
== ISD::SETGT
|| CC
== ISD::SETLT
)) {
13310 Opcode
= ARMISD::VMAXVs
;
13311 if (CC
== ISD::SETLT
)
13312 std::swap(TrueVal
, FalseVal
);
13316 // Normalise to the right hand side being the vector reduction
13317 switch (TrueVal
->getOpcode()) {
13318 case ISD::VECREDUCE_UMIN
:
13319 case ISD::VECREDUCE_SMIN
:
13320 case ISD::VECREDUCE_UMAX
:
13321 case ISD::VECREDUCE_SMAX
:
13322 std::swap(LHS
, RHS
);
13323 std::swap(TrueVal
, FalseVal
);
13327 EVT VectorType
= FalseVal
->getOperand(0).getValueType();
13329 if (VectorType
!= MVT::v16i8
&& VectorType
!= MVT::v8i16
&&
13330 VectorType
!= MVT::v4i32
)
13333 EVT VectorScalarType
= VectorType
.getVectorElementType();
13335 // The values being selected must also be the ones being compared
13336 if (TrueVal
!= LHS
|| FalseVal
!= RHS
)
13339 EVT LeftType
= LHS
->getValueType(0);
13340 EVT RightType
= RHS
->getValueType(0);
13342 // The types must match the reduced type too
13343 if (LeftType
!= VectorScalarType
|| RightType
!= VectorScalarType
)
13346 // Legalise the scalar to an i32
13347 if (VectorScalarType
!= MVT::i32
)
13348 LHS
= DCI
.DAG
.getNode(ISD::ANY_EXTEND
, dl
, MVT::i32
, LHS
);
13350 // Generate the reduction as an i32 for legalisation purposes
13352 DCI
.DAG
.getNode(Opcode
, dl
, MVT::i32
, LHS
, RHS
->getOperand(0));
13354 // The result isn't actually an i32 so truncate it back to its original type
13355 if (VectorScalarType
!= MVT::i32
)
13356 Reduction
= DCI
.DAG
.getNode(ISD::TRUNCATE
, dl
, VectorScalarType
, Reduction
);
13361 // A special combine for the vqdmulh family of instructions. This is one of the
13362 // potential set of patterns that could patch this instruction. The base pattern
13363 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
13364 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
13365 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
13366 // the max is unnecessary.
13367 static SDValue
PerformVQDMULHCombine(SDNode
*N
, SelectionDAG
&DAG
) {
13368 EVT VT
= N
->getValueType(0);
13370 ConstantSDNode
*Clamp
;
13372 if (!VT
.isVector() || VT
.getScalarSizeInBits() > 64)
13375 if (N
->getOpcode() == ISD::SMIN
) {
13376 Shft
= N
->getOperand(0);
13377 Clamp
= isConstOrConstSplat(N
->getOperand(1));
13378 } else if (N
->getOpcode() == ISD::VSELECT
) {
13379 // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
13380 SDValue Cmp
= N
->getOperand(0);
13381 if (Cmp
.getOpcode() != ISD::SETCC
||
13382 cast
<CondCodeSDNode
>(Cmp
.getOperand(2))->get() != ISD::SETLT
||
13383 Cmp
.getOperand(0) != N
->getOperand(1) ||
13384 Cmp
.getOperand(1) != N
->getOperand(2))
13386 Shft
= N
->getOperand(1);
13387 Clamp
= isConstOrConstSplat(N
->getOperand(2));
13396 switch (Clamp
->getSExtValue()) {
13398 ScalarType
= MVT::i8
;
13401 case (1 << 15) - 1:
13402 ScalarType
= MVT::i16
;
13405 case (1ULL << 31) - 1:
13406 ScalarType
= MVT::i32
;
13413 if (Shft
.getOpcode() != ISD::SRA
)
13415 ConstantSDNode
*N1
= isConstOrConstSplat(Shft
.getOperand(1));
13416 if (!N1
|| N1
->getSExtValue() != ShftAmt
)
13419 SDValue Mul
= Shft
.getOperand(0);
13420 if (Mul
.getOpcode() != ISD::MUL
)
13423 SDValue Ext0
= Mul
.getOperand(0);
13424 SDValue Ext1
= Mul
.getOperand(1);
13425 if (Ext0
.getOpcode() != ISD::SIGN_EXTEND
||
13426 Ext1
.getOpcode() != ISD::SIGN_EXTEND
)
13428 EVT VecVT
= Ext0
.getOperand(0).getValueType();
13429 if (!VecVT
.isPow2VectorType() || VecVT
.getVectorNumElements() == 1)
13431 if (Ext1
.getOperand(0).getValueType() != VecVT
||
13432 VecVT
.getScalarType() != ScalarType
||
13433 VT
.getScalarSizeInBits() < ScalarType
.getScalarSizeInBits() * 2)
13437 unsigned LegalLanes
= 128 / (ShftAmt
+ 1);
13438 EVT LegalVecVT
= MVT::getVectorVT(ScalarType
, LegalLanes
);
13439 // For types smaller than legal vectors extend to be legal and only use needed
13441 if (VecVT
.getSizeInBits() < 128) {
13443 MVT::getVectorVT(MVT::getIntegerVT(128 / VecVT
.getVectorNumElements()),
13444 VecVT
.getVectorNumElements());
13446 DAG
.getNode(ISD::ANY_EXTEND
, DL
, ExtVecVT
, Ext0
.getOperand(0));
13448 DAG
.getNode(ISD::ANY_EXTEND
, DL
, ExtVecVT
, Ext1
.getOperand(0));
13449 Inp0
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, LegalVecVT
, Inp0
);
13450 Inp1
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, LegalVecVT
, Inp1
);
13451 SDValue VQDMULH
= DAG
.getNode(ARMISD::VQDMULH
, DL
, LegalVecVT
, Inp0
, Inp1
);
13452 SDValue Trunc
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, ExtVecVT
, VQDMULH
);
13453 Trunc
= DAG
.getNode(ISD::TRUNCATE
, DL
, VecVT
, Trunc
);
13454 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
, Trunc
);
13457 // For larger types, split into legal sized chunks.
13458 assert(VecVT
.getSizeInBits() % 128 == 0 && "Expected a power2 type");
13459 unsigned NumParts
= VecVT
.getSizeInBits() / 128;
13460 SmallVector
<SDValue
> Parts
;
13461 for (unsigned I
= 0; I
< NumParts
; ++I
) {
13463 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LegalVecVT
, Ext0
.getOperand(0),
13464 DAG
.getVectorIdxConstant(I
* LegalLanes
, DL
));
13466 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, LegalVecVT
, Ext1
.getOperand(0),
13467 DAG
.getVectorIdxConstant(I
* LegalLanes
, DL
));
13468 SDValue VQDMULH
= DAG
.getNode(ARMISD::VQDMULH
, DL
, LegalVecVT
, Inp0
, Inp1
);
13469 Parts
.push_back(VQDMULH
);
13471 return DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VT
,
13472 DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VecVT
, Parts
));
13475 static SDValue
PerformVSELECTCombine(SDNode
*N
,
13476 TargetLowering::DAGCombinerInfo
&DCI
,
13477 const ARMSubtarget
*Subtarget
) {
13478 if (!Subtarget
->hasMVEIntegerOps())
13481 if (SDValue V
= PerformVQDMULHCombine(N
, DCI
.DAG
))
13484 // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
13486 // We need to re-implement this optimization here as the implementation in the
13487 // Target-Independent DAGCombiner does not handle the kind of constant we make
13488 // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
13489 // good reason, allowing truncation there would break other targets).
13491 // Currently, this is only done for MVE, as it's the only target that benefits
13492 // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
13493 if (N
->getOperand(0).getOpcode() != ISD::XOR
)
13495 SDValue XOR
= N
->getOperand(0);
13497 // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
13498 // It is important to check with truncation allowed as the BUILD_VECTORs we
13499 // generate in those situations will truncate their operands.
13500 ConstantSDNode
*Const
=
13501 isConstOrConstSplat(XOR
->getOperand(1), /*AllowUndefs*/ false,
13502 /*AllowTruncation*/ true);
13503 if (!Const
|| !Const
->isOne())
13506 // Rewrite into vselect(cond, rhs, lhs).
13507 SDValue Cond
= XOR
->getOperand(0);
13508 SDValue LHS
= N
->getOperand(1);
13509 SDValue RHS
= N
->getOperand(2);
13510 EVT Type
= N
->getValueType(0);
13511 return DCI
.DAG
.getNode(ISD::VSELECT
, SDLoc(N
), Type
, Cond
, RHS
, LHS
);
13514 // Convert vsetcc([0,1,2,..], splat(n), ult) -> vctp n
13515 static SDValue
PerformVSetCCToVCTPCombine(SDNode
*N
,
13516 TargetLowering::DAGCombinerInfo
&DCI
,
13517 const ARMSubtarget
*Subtarget
) {
13518 SDValue Op0
= N
->getOperand(0);
13519 SDValue Op1
= N
->getOperand(1);
13520 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(2))->get();
13521 EVT VT
= N
->getValueType(0);
13523 if (!Subtarget
->hasMVEIntegerOps() ||
13524 !DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
13527 if (CC
== ISD::SETUGE
) {
13528 std::swap(Op0
, Op1
);
13532 if (CC
!= ISD::SETULT
|| VT
.getScalarSizeInBits() != 1 ||
13533 Op0
.getOpcode() != ISD::BUILD_VECTOR
)
13536 // Check first operand is BuildVector of 0,1,2,...
13537 for (unsigned I
= 0; I
< VT
.getVectorNumElements(); I
++) {
13538 if (!Op0
.getOperand(I
).isUndef() &&
13539 !(isa
<ConstantSDNode
>(Op0
.getOperand(I
)) &&
13540 Op0
.getConstantOperandVal(I
) == I
))
13544 // The second is a Splat of Op1S
13545 SDValue Op1S
= DCI
.DAG
.getSplatValue(Op1
);
13550 switch (VT
.getVectorNumElements()) {
13552 Opc
= Intrinsic::arm_mve_vctp64
;
13555 Opc
= Intrinsic::arm_mve_vctp32
;
13558 Opc
= Intrinsic::arm_mve_vctp16
;
13561 Opc
= Intrinsic::arm_mve_vctp8
;
13568 return DCI
.DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, VT
,
13569 DCI
.DAG
.getConstant(Opc
, DL
, MVT::i32
),
13570 DCI
.DAG
.getZExtOrTrunc(Op1S
, DL
, MVT::i32
));
13573 /// PerformADDECombine - Target-specific dag combine transform from
13574 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
13575 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
13576 static SDValue
PerformADDECombine(SDNode
*N
,
13577 TargetLowering::DAGCombinerInfo
&DCI
,
13578 const ARMSubtarget
*Subtarget
) {
13579 // Only ARM and Thumb2 support UMLAL/SMLAL.
13580 if (Subtarget
->isThumb1Only())
13581 return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
13583 // Only perform the checks after legalize when the pattern is available.
13584 if (DCI
.isBeforeLegalize()) return SDValue();
13586 return AddCombineTo64bitUMAAL(N
, DCI
, Subtarget
);
13589 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
13590 /// operands N0 and N1. This is a helper for PerformADDCombine that is
13591 /// called with the default operands, and if that fails, with commuted
13593 static SDValue
PerformADDCombineWithOperands(SDNode
*N
, SDValue N0
, SDValue N1
,
13594 TargetLowering::DAGCombinerInfo
&DCI
,
13595 const ARMSubtarget
*Subtarget
){
13596 // Attempt to create vpadd for this add.
13597 if (SDValue Result
= AddCombineToVPADD(N
, N0
, N1
, DCI
, Subtarget
))
13600 // Attempt to create vpaddl for this add.
13601 if (SDValue Result
= AddCombineVUZPToVPADDL(N
, N0
, N1
, DCI
, Subtarget
))
13603 if (SDValue Result
= AddCombineBUILD_VECTORToVPADDL(N
, N0
, N1
, DCI
,
13607 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
13608 if (N0
.getNode()->hasOneUse())
13609 if (SDValue Result
= combineSelectAndUse(N
, N0
, N1
, DCI
))
13614 static SDValue
TryDistrubutionADDVecReduce(SDNode
*N
, SelectionDAG
&DAG
) {
13615 EVT VT
= N
->getValueType(0);
13616 SDValue N0
= N
->getOperand(0);
13617 SDValue N1
= N
->getOperand(1);
13620 auto IsVecReduce
= [](SDValue Op
) {
13621 switch (Op
.getOpcode()) {
13622 case ISD::VECREDUCE_ADD
:
13623 case ARMISD::VADDVs
:
13624 case ARMISD::VADDVu
:
13625 case ARMISD::VMLAVs
:
13626 case ARMISD::VMLAVu
:
13632 auto DistrubuteAddAddVecReduce
= [&](SDValue N0
, SDValue N1
) {
13633 // Distribute add(X, add(vecreduce(Y), vecreduce(Z))) ->
13634 // add(add(X, vecreduce(Y)), vecreduce(Z))
13635 // to make better use of vaddva style instructions.
13636 if (VT
== MVT::i32
&& N1
.getOpcode() == ISD::ADD
&& !IsVecReduce(N0
) &&
13637 IsVecReduce(N1
.getOperand(0)) && IsVecReduce(N1
.getOperand(1)) &&
13638 !isa
<ConstantSDNode
>(N0
) && N1
->hasOneUse()) {
13639 SDValue Add0
= DAG
.getNode(ISD::ADD
, dl
, VT
, N0
, N1
.getOperand(0));
13640 return DAG
.getNode(ISD::ADD
, dl
, VT
, Add0
, N1
.getOperand(1));
13642 // And turn add(add(A, reduce(B)), add(C, reduce(D))) ->
13643 // add(add(add(A, C), reduce(B)), reduce(D))
13644 if (VT
== MVT::i32
&& N0
.getOpcode() == ISD::ADD
&&
13645 N1
.getOpcode() == ISD::ADD
&& N0
->hasOneUse() && N1
->hasOneUse()) {
13646 unsigned N0RedOp
= 0;
13647 if (!IsVecReduce(N0
.getOperand(N0RedOp
))) {
13649 if (!IsVecReduce(N0
.getOperand(N0RedOp
)))
13653 unsigned N1RedOp
= 0;
13654 if (!IsVecReduce(N1
.getOperand(N1RedOp
)))
13656 if (!IsVecReduce(N1
.getOperand(N1RedOp
)))
13659 SDValue Add0
= DAG
.getNode(ISD::ADD
, dl
, VT
, N0
.getOperand(1 - N0RedOp
),
13660 N1
.getOperand(1 - N1RedOp
));
13662 DAG
.getNode(ISD::ADD
, dl
, VT
, Add0
, N0
.getOperand(N0RedOp
));
13663 return DAG
.getNode(ISD::ADD
, dl
, VT
, Add1
, N1
.getOperand(N1RedOp
));
13667 if (SDValue R
= DistrubuteAddAddVecReduce(N0
, N1
))
13669 if (SDValue R
= DistrubuteAddAddVecReduce(N1
, N0
))
13672 // Distribute add(vecreduce(load(Y)), vecreduce(load(Z)))
13673 // Or add(add(X, vecreduce(load(Y))), vecreduce(load(Z)))
13674 // by ascending load offsets. This can help cores prefetch if the order of
13675 // loads is more predictable.
13676 auto DistrubuteVecReduceLoad
= [&](SDValue N0
, SDValue N1
, bool IsForward
) {
13677 // Check if two reductions are known to load data where one is before/after
13678 // another. Return negative if N0 loads data before N1, positive if N1 is
13679 // before N0 and 0 otherwise if nothing is known.
13680 auto IsKnownOrderedLoad
= [&](SDValue N0
, SDValue N1
) {
13681 // Look through to the first operand of a MUL, for the VMLA case.
13682 // Currently only looks at the first operand, in the hope they are equal.
13683 if (N0
.getOpcode() == ISD::MUL
)
13684 N0
= N0
.getOperand(0);
13685 if (N1
.getOpcode() == ISD::MUL
)
13686 N1
= N1
.getOperand(0);
13688 // Return true if the two operands are loads to the same object and the
13689 // offset of the first is known to be less than the offset of the second.
13690 LoadSDNode
*Load0
= dyn_cast
<LoadSDNode
>(N0
);
13691 LoadSDNode
*Load1
= dyn_cast
<LoadSDNode
>(N1
);
13692 if (!Load0
|| !Load1
|| Load0
->getChain() != Load1
->getChain() ||
13693 !Load0
->isSimple() || !Load1
->isSimple() || Load0
->isIndexed() ||
13694 Load1
->isIndexed())
13697 auto BaseLocDecomp0
= BaseIndexOffset::match(Load0
, DAG
);
13698 auto BaseLocDecomp1
= BaseIndexOffset::match(Load1
, DAG
);
13700 if (!BaseLocDecomp0
.getBase() ||
13701 BaseLocDecomp0
.getBase() != BaseLocDecomp1
.getBase() ||
13702 !BaseLocDecomp0
.hasValidOffset() || !BaseLocDecomp1
.hasValidOffset())
13704 if (BaseLocDecomp0
.getOffset() < BaseLocDecomp1
.getOffset())
13706 if (BaseLocDecomp0
.getOffset() > BaseLocDecomp1
.getOffset())
13712 if (N0
.getOpcode() == ISD::ADD
&& N0
->hasOneUse()) {
13713 if (IsVecReduce(N0
.getOperand(0)) && IsVecReduce(N0
.getOperand(1))) {
13714 int IsBefore
= IsKnownOrderedLoad(N0
.getOperand(0).getOperand(0),
13715 N0
.getOperand(1).getOperand(0));
13716 if (IsBefore
< 0) {
13717 X
= N0
.getOperand(0);
13718 N0
= N0
.getOperand(1);
13719 } else if (IsBefore
> 0) {
13720 X
= N0
.getOperand(1);
13721 N0
= N0
.getOperand(0);
13724 } else if (IsVecReduce(N0
.getOperand(0))) {
13725 X
= N0
.getOperand(1);
13726 N0
= N0
.getOperand(0);
13727 } else if (IsVecReduce(N0
.getOperand(1))) {
13728 X
= N0
.getOperand(0);
13729 N0
= N0
.getOperand(1);
13732 } else if (IsForward
&& IsVecReduce(N0
) && IsVecReduce(N1
) &&
13733 IsKnownOrderedLoad(N0
.getOperand(0), N1
.getOperand(0)) < 0) {
13734 // Note this is backward to how you would expect. We create
13735 // add(reduce(load + 16), reduce(load + 0)) so that the
13736 // add(reduce(load+16), X) is combined into VADDVA(X, load+16)), leaving
13737 // the X as VADDV(load + 0)
13738 return DAG
.getNode(ISD::ADD
, dl
, VT
, N1
, N0
);
13742 if (!IsVecReduce(N0
) || !IsVecReduce(N1
))
13745 if (IsKnownOrderedLoad(N1
.getOperand(0), N0
.getOperand(0)) >= 0)
13748 // Switch from add(add(X, N0), N1) to add(add(X, N1), N0)
13749 SDValue Add0
= DAG
.getNode(ISD::ADD
, dl
, VT
, X
, N1
);
13750 return DAG
.getNode(ISD::ADD
, dl
, VT
, Add0
, N0
);
13752 if (SDValue R
= DistrubuteVecReduceLoad(N0
, N1
, true))
13754 if (SDValue R
= DistrubuteVecReduceLoad(N1
, N0
, false))
13759 static SDValue
PerformADDVecReduce(SDNode
*N
, SelectionDAG
&DAG
,
13760 const ARMSubtarget
*Subtarget
) {
13761 if (!Subtarget
->hasMVEIntegerOps())
13764 if (SDValue R
= TryDistrubutionADDVecReduce(N
, DAG
))
13767 EVT VT
= N
->getValueType(0);
13768 SDValue N0
= N
->getOperand(0);
13769 SDValue N1
= N
->getOperand(1);
13772 if (VT
!= MVT::i64
)
13775 // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
13777 // t1: i32,i32 = ARMISD::VADDLVs x
13778 // t2: i64 = build_pair t1, t1:1
13779 // t3: i64 = add t2, y
13780 // Otherwise we try to push the add up above VADDLVAx, to potentially allow
13781 // the add to be simplified separately.
13782 // We also need to check for sext / zext and commutitive adds.
13783 auto MakeVecReduce
= [&](unsigned Opcode
, unsigned OpcodeA
, SDValue NA
,
13785 if (NB
->getOpcode() != ISD::BUILD_PAIR
)
13787 SDValue VecRed
= NB
->getOperand(0);
13788 if ((VecRed
->getOpcode() != Opcode
&& VecRed
->getOpcode() != OpcodeA
) ||
13789 VecRed
.getResNo() != 0 ||
13790 NB
->getOperand(1) != SDValue(VecRed
.getNode(), 1))
13793 if (VecRed
->getOpcode() == OpcodeA
) {
13794 // add(NA, VADDLVA(Inp), Y) -> VADDLVA(add(NA, Inp), Y)
13795 SDValue Inp
= DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
,
13796 VecRed
.getOperand(0), VecRed
.getOperand(1));
13797 NA
= DAG
.getNode(ISD::ADD
, dl
, MVT::i64
, Inp
, NA
);
13800 SmallVector
<SDValue
, 4> Ops(2);
13801 std::tie(Ops
[0], Ops
[1]) = DAG
.SplitScalar(NA
, dl
, MVT::i32
, MVT::i32
);
13803 unsigned S
= VecRed
->getOpcode() == OpcodeA
? 2 : 0;
13804 for (unsigned I
= S
, E
= VecRed
.getNumOperands(); I
< E
; I
++)
13805 Ops
.push_back(VecRed
->getOperand(I
));
13807 DAG
.getNode(OpcodeA
, dl
, DAG
.getVTList({MVT::i32
, MVT::i32
}), Ops
);
13808 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Red
,
13809 SDValue(Red
.getNode(), 1));
13812 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVs
, ARMISD::VADDLVAs
, N0
, N1
))
13814 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVu
, ARMISD::VADDLVAu
, N0
, N1
))
13816 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVs
, ARMISD::VADDLVAs
, N1
, N0
))
13818 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVu
, ARMISD::VADDLVAu
, N1
, N0
))
13820 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVps
, ARMISD::VADDLVAps
, N0
, N1
))
13822 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVpu
, ARMISD::VADDLVApu
, N0
, N1
))
13824 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVps
, ARMISD::VADDLVAps
, N1
, N0
))
13826 if (SDValue M
= MakeVecReduce(ARMISD::VADDLVpu
, ARMISD::VADDLVApu
, N1
, N0
))
13828 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVs
, ARMISD::VMLALVAs
, N0
, N1
))
13830 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVu
, ARMISD::VMLALVAu
, N0
, N1
))
13832 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVs
, ARMISD::VMLALVAs
, N1
, N0
))
13834 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVu
, ARMISD::VMLALVAu
, N1
, N0
))
13836 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVps
, ARMISD::VMLALVAps
, N0
, N1
))
13838 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVpu
, ARMISD::VMLALVApu
, N0
, N1
))
13840 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVps
, ARMISD::VMLALVAps
, N1
, N0
))
13842 if (SDValue M
= MakeVecReduce(ARMISD::VMLALVpu
, ARMISD::VMLALVApu
, N1
, N0
))
13848 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode
*N
,
13849 CombineLevel Level
) const {
13850 assert((N
->getOpcode() == ISD::SHL
|| N
->getOpcode() == ISD::SRA
||
13851 N
->getOpcode() == ISD::SRL
) &&
13852 "Expected shift op");
13854 SDValue ShiftLHS
= N
->getOperand(0);
13855 if (!ShiftLHS
->hasOneUse())
13858 if (ShiftLHS
.getOpcode() == ISD::SIGN_EXTEND
&&
13859 !ShiftLHS
.getOperand(0)->hasOneUse())
13862 if (Level
== BeforeLegalizeTypes
)
13865 if (N
->getOpcode() != ISD::SHL
)
13868 if (Subtarget
->isThumb1Only()) {
13869 // Avoid making expensive immediates by commuting shifts. (This logic
13870 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
13872 if (N
->getOpcode() != ISD::SHL
)
13874 SDValue N1
= N
->getOperand(0);
13875 if (N1
->getOpcode() != ISD::ADD
&& N1
->getOpcode() != ISD::AND
&&
13876 N1
->getOpcode() != ISD::OR
&& N1
->getOpcode() != ISD::XOR
)
13878 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N1
->getOperand(1))) {
13879 if (Const
->getAPIntValue().ult(256))
13881 if (N1
->getOpcode() == ISD::ADD
&& Const
->getAPIntValue().slt(0) &&
13882 Const
->getAPIntValue().sgt(-256))
13888 // Turn off commute-with-shift transform after legalization, so it doesn't
13889 // conflict with PerformSHLSimplify. (We could try to detect when
13890 // PerformSHLSimplify would trigger more precisely, but it isn't
13891 // really necessary.)
13895 bool ARMTargetLowering::isDesirableToCommuteXorWithShift(
13896 const SDNode
*N
) const {
13897 assert(N
->getOpcode() == ISD::XOR
&&
13898 (N
->getOperand(0).getOpcode() == ISD::SHL
||
13899 N
->getOperand(0).getOpcode() == ISD::SRL
) &&
13900 "Expected XOR(SHIFT) pattern");
13902 // Only commute if the entire NOT mask is a hidden shifted mask.
13903 auto *XorC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
13904 auto *ShiftC
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0).getOperand(1));
13905 if (XorC
&& ShiftC
) {
13906 unsigned MaskIdx
, MaskLen
;
13907 if (XorC
->getAPIntValue().isShiftedMask(MaskIdx
, MaskLen
)) {
13908 unsigned ShiftAmt
= ShiftC
->getZExtValue();
13909 unsigned BitWidth
= N
->getValueType(0).getScalarSizeInBits();
13910 if (N
->getOperand(0).getOpcode() == ISD::SHL
)
13911 return MaskIdx
== ShiftAmt
&& MaskLen
== (BitWidth
- ShiftAmt
);
13912 return MaskIdx
== 0 && MaskLen
== (BitWidth
- ShiftAmt
);
13919 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
13920 const SDNode
*N
, CombineLevel Level
) const {
13921 assert(((N
->getOpcode() == ISD::SHL
&&
13922 N
->getOperand(0).getOpcode() == ISD::SRL
) ||
13923 (N
->getOpcode() == ISD::SRL
&&
13924 N
->getOperand(0).getOpcode() == ISD::SHL
)) &&
13925 "Expected shift-shift mask");
13927 if (!Subtarget
->isThumb1Only())
13930 if (Level
== BeforeLegalizeTypes
)
13936 bool ARMTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned BinOpcode
,
13938 return Subtarget
->hasMVEIntegerOps() && isTypeLegal(VT
);
13941 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT
) const {
13942 if (!Subtarget
->hasNEON()) {
13943 if (Subtarget
->isThumb1Only())
13944 return VT
.getScalarSizeInBits() <= 32;
13947 return VT
.isScalarInteger();
13950 bool ARMTargetLowering::shouldConvertFpToSat(unsigned Op
, EVT FPVT
,
13952 if (!isOperationLegalOrCustom(Op
, VT
) || !FPVT
.isSimple())
13955 switch (FPVT
.getSimpleVT().SimpleTy
) {
13957 return Subtarget
->hasVFP2Base();
13959 return Subtarget
->hasVFP2Base();
13961 return Subtarget
->hasFP64();
13964 return Subtarget
->hasMVEFloatOps();
13970 static SDValue
PerformSHLSimplify(SDNode
*N
,
13971 TargetLowering::DAGCombinerInfo
&DCI
,
13972 const ARMSubtarget
*ST
) {
13973 // Allow the generic combiner to identify potential bswaps.
13974 if (DCI
.isBeforeLegalize())
13977 // DAG combiner will fold:
13978 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
13979 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
13980 // Other code patterns that can be also be modified have the following form:
13981 // b + ((a << 1) | 510)
13982 // b + ((a << 1) & 510)
13983 // b + ((a << 1) ^ 510)
13984 // b + ((a << 1) + 510)
13986 // Many instructions can perform the shift for free, but it requires both
13987 // the operands to be registers. If c1 << c2 is too large, a mov immediate
13988 // instruction will needed. So, unfold back to the original pattern if:
13989 // - if c1 and c2 are small enough that they don't require mov imms.
13990 // - the user(s) of the node can perform an shl
13992 // No shifted operands for 16-bit instructions.
13993 if (ST
->isThumb() && ST
->isThumb1Only())
13996 // Check that all the users could perform the shl themselves.
13997 for (auto *U
: N
->users()) {
13998 switch(U
->getOpcode()) {
14008 // Check that the user isn't already using a constant because there
14009 // aren't any instructions that support an immediate operand and a
14010 // shifted operand.
14011 if (isa
<ConstantSDNode
>(U
->getOperand(0)) ||
14012 isa
<ConstantSDNode
>(U
->getOperand(1)))
14015 // Check that it's not already using a shift.
14016 if (U
->getOperand(0).getOpcode() == ISD::SHL
||
14017 U
->getOperand(1).getOpcode() == ISD::SHL
)
14023 if (N
->getOpcode() != ISD::ADD
&& N
->getOpcode() != ISD::OR
&&
14024 N
->getOpcode() != ISD::XOR
&& N
->getOpcode() != ISD::AND
)
14027 if (N
->getOperand(0).getOpcode() != ISD::SHL
)
14030 SDValue SHL
= N
->getOperand(0);
14032 auto *C1ShlC2
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
14033 auto *C2
= dyn_cast
<ConstantSDNode
>(SHL
.getOperand(1));
14034 if (!C1ShlC2
|| !C2
)
14037 APInt C2Int
= C2
->getAPIntValue();
14038 APInt C1Int
= C1ShlC2
->getAPIntValue();
14039 unsigned C2Width
= C2Int
.getBitWidth();
14040 if (C2Int
.uge(C2Width
))
14042 uint64_t C2Value
= C2Int
.getZExtValue();
14044 // Check that performing a lshr will not lose any information.
14045 APInt Mask
= APInt::getHighBitsSet(C2Width
, C2Width
- C2Value
);
14046 if ((C1Int
& Mask
) != C1Int
)
14049 // Shift the first constant.
14050 C1Int
.lshrInPlace(C2Int
);
14052 // The immediates are encoded as an 8-bit value that can be rotated.
14053 auto LargeImm
= [](const APInt
&Imm
) {
14054 unsigned Zeros
= Imm
.countl_zero() + Imm
.countr_zero();
14055 return Imm
.getBitWidth() - Zeros
> 8;
14058 if (LargeImm(C1Int
) || LargeImm(C2Int
))
14061 SelectionDAG
&DAG
= DCI
.DAG
;
14063 SDValue X
= SHL
.getOperand(0);
14064 SDValue BinOp
= DAG
.getNode(N
->getOpcode(), dl
, MVT::i32
, X
,
14065 DAG
.getConstant(C1Int
, dl
, MVT::i32
));
14066 // Shift left to compensate for the lshr of C1Int.
14067 SDValue Res
= DAG
.getNode(ISD::SHL
, dl
, MVT::i32
, BinOp
, SHL
.getOperand(1));
14069 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL
.getOperand(0).dump();
14070 SHL
.dump(); N
->dump());
14071 LLVM_DEBUG(dbgs() << "Into:\n"; X
.dump(); BinOp
.dump(); Res
.dump());
14076 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
14078 static SDValue
PerformADDCombine(SDNode
*N
,
14079 TargetLowering::DAGCombinerInfo
&DCI
,
14080 const ARMSubtarget
*Subtarget
) {
14081 SDValue N0
= N
->getOperand(0);
14082 SDValue N1
= N
->getOperand(1);
14084 // Only works one way, because it needs an immediate operand.
14085 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
14088 if (SDValue Result
= PerformADDVecReduce(N
, DCI
.DAG
, Subtarget
))
14091 // First try with the default operand order.
14092 if (SDValue Result
= PerformADDCombineWithOperands(N
, N0
, N1
, DCI
, Subtarget
))
14095 // If that didn't work, try again with the operands commuted.
14096 return PerformADDCombineWithOperands(N
, N1
, N0
, DCI
, Subtarget
);
14099 // Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC)
14100 // providing -X is as cheap as X (currently, just a constant).
14101 static SDValue
PerformSubCSINCCombine(SDNode
*N
, SelectionDAG
&DAG
) {
14102 if (N
->getValueType(0) != MVT::i32
|| !isNullConstant(N
->getOperand(0)))
14104 SDValue CSINC
= N
->getOperand(1);
14105 if (CSINC
.getOpcode() != ARMISD::CSINC
|| !CSINC
.hasOneUse())
14108 ConstantSDNode
*X
= dyn_cast
<ConstantSDNode
>(CSINC
.getOperand(0));
14112 return DAG
.getNode(ARMISD::CSINV
, SDLoc(N
), MVT::i32
,
14113 DAG
.getNode(ISD::SUB
, SDLoc(N
), MVT::i32
, N
->getOperand(0),
14114 CSINC
.getOperand(0)),
14115 CSINC
.getOperand(1), CSINC
.getOperand(2),
14116 CSINC
.getOperand(3));
14119 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
14121 static SDValue
PerformSUBCombine(SDNode
*N
,
14122 TargetLowering::DAGCombinerInfo
&DCI
,
14123 const ARMSubtarget
*Subtarget
) {
14124 SDValue N0
= N
->getOperand(0);
14125 SDValue N1
= N
->getOperand(1);
14127 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
14128 if (N1
.getNode()->hasOneUse())
14129 if (SDValue Result
= combineSelectAndUse(N
, N1
, N0
, DCI
))
14132 if (SDValue R
= PerformSubCSINCCombine(N
, DCI
.DAG
))
14135 if (!Subtarget
->hasMVEIntegerOps() || !N
->getValueType(0).isVector())
14138 // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
14139 // so that we can readily pattern match more mve instructions which can use
14140 // a scalar operand.
14141 SDValue VDup
= N
->getOperand(1);
14142 if (VDup
->getOpcode() != ARMISD::VDUP
)
14145 SDValue VMov
= N
->getOperand(0);
14146 if (VMov
->getOpcode() == ISD::BITCAST
)
14147 VMov
= VMov
->getOperand(0);
14149 if (VMov
->getOpcode() != ARMISD::VMOVIMM
|| !isZeroVector(VMov
))
14153 SDValue Negate
= DCI
.DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
14154 DCI
.DAG
.getConstant(0, dl
, MVT::i32
),
14155 VDup
->getOperand(0));
14156 return DCI
.DAG
.getNode(ARMISD::VDUP
, dl
, N
->getValueType(0), Negate
);
14159 /// PerformVMULCombine
14160 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
14161 /// special multiplier accumulator forwarding.
14162 /// vmul d3, d0, d2
14163 /// vmla d3, d1, d2
14165 /// vadd d3, d0, d1
14166 /// vmul d3, d3, d2
14167 // However, for (A + B) * (A + B),
14174 static SDValue
PerformVMULCombine(SDNode
*N
,
14175 TargetLowering::DAGCombinerInfo
&DCI
,
14176 const ARMSubtarget
*Subtarget
) {
14177 if (!Subtarget
->hasVMLxForwarding())
14180 SelectionDAG
&DAG
= DCI
.DAG
;
14181 SDValue N0
= N
->getOperand(0);
14182 SDValue N1
= N
->getOperand(1);
14183 unsigned Opcode
= N0
.getOpcode();
14184 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
14185 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
) {
14186 Opcode
= N1
.getOpcode();
14187 if (Opcode
!= ISD::ADD
&& Opcode
!= ISD::SUB
&&
14188 Opcode
!= ISD::FADD
&& Opcode
!= ISD::FSUB
)
14196 EVT VT
= N
->getValueType(0);
14198 SDValue N00
= N0
->getOperand(0);
14199 SDValue N01
= N0
->getOperand(1);
14200 return DAG
.getNode(Opcode
, DL
, VT
,
14201 DAG
.getNode(ISD::MUL
, DL
, VT
, N00
, N1
),
14202 DAG
.getNode(ISD::MUL
, DL
, VT
, N01
, N1
));
14205 static SDValue
PerformMVEVMULLCombine(SDNode
*N
, SelectionDAG
&DAG
,
14206 const ARMSubtarget
*Subtarget
) {
14207 EVT VT
= N
->getValueType(0);
14208 if (VT
!= MVT::v2i64
)
14211 SDValue N0
= N
->getOperand(0);
14212 SDValue N1
= N
->getOperand(1);
14214 auto IsSignExt
= [&](SDValue Op
) {
14215 if (Op
->getOpcode() != ISD::SIGN_EXTEND_INREG
)
14217 EVT VT
= cast
<VTSDNode
>(Op
->getOperand(1))->getVT();
14218 if (VT
.getScalarSizeInBits() == 32)
14219 return Op
->getOperand(0);
14222 auto IsZeroExt
= [&](SDValue Op
) {
14223 // Zero extends are a little more awkward. At the point we are matching
14224 // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
14225 // That might be before of after a bitcast depending on how the and is
14226 // placed. Because this has to look through bitcasts, it is currently only
14227 // supported on LE.
14228 if (!Subtarget
->isLittle())
14232 if (And
->getOpcode() == ISD::BITCAST
)
14233 And
= And
->getOperand(0);
14234 if (And
->getOpcode() != ISD::AND
)
14236 SDValue Mask
= And
->getOperand(1);
14237 if (Mask
->getOpcode() == ISD::BITCAST
)
14238 Mask
= Mask
->getOperand(0);
14240 if (Mask
->getOpcode() != ISD::BUILD_VECTOR
||
14241 Mask
.getValueType() != MVT::v4i32
)
14243 if (isAllOnesConstant(Mask
->getOperand(0)) &&
14244 isNullConstant(Mask
->getOperand(1)) &&
14245 isAllOnesConstant(Mask
->getOperand(2)) &&
14246 isNullConstant(Mask
->getOperand(3)))
14247 return And
->getOperand(0);
14252 if (SDValue Op0
= IsSignExt(N0
)) {
14253 if (SDValue Op1
= IsSignExt(N1
)) {
14254 SDValue New0a
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, MVT::v4i32
, Op0
);
14255 SDValue New1a
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, MVT::v4i32
, Op1
);
14256 return DAG
.getNode(ARMISD::VMULLs
, dl
, VT
, New0a
, New1a
);
14259 if (SDValue Op0
= IsZeroExt(N0
)) {
14260 if (SDValue Op1
= IsZeroExt(N1
)) {
14261 SDValue New0a
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, MVT::v4i32
, Op0
);
14262 SDValue New1a
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, MVT::v4i32
, Op1
);
14263 return DAG
.getNode(ARMISD::VMULLu
, dl
, VT
, New0a
, New1a
);
14270 static SDValue
PerformMULCombine(SDNode
*N
,
14271 TargetLowering::DAGCombinerInfo
&DCI
,
14272 const ARMSubtarget
*Subtarget
) {
14273 SelectionDAG
&DAG
= DCI
.DAG
;
14275 EVT VT
= N
->getValueType(0);
14276 if (Subtarget
->hasMVEIntegerOps() && VT
== MVT::v2i64
)
14277 return PerformMVEVMULLCombine(N
, DAG
, Subtarget
);
14279 if (Subtarget
->isThumb1Only())
14282 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
14285 if (VT
.is64BitVector() || VT
.is128BitVector())
14286 return PerformVMULCombine(N
, DCI
, Subtarget
);
14287 if (VT
!= MVT::i32
)
14290 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
14294 int64_t MulAmt
= C
->getSExtValue();
14295 unsigned ShiftAmt
= llvm::countr_zero
<uint64_t>(MulAmt
);
14297 ShiftAmt
= ShiftAmt
& (32 - 1);
14298 SDValue V
= N
->getOperand(0);
14302 MulAmt
>>= ShiftAmt
;
14305 if (llvm::has_single_bit
<uint32_t>(MulAmt
- 1)) {
14306 // (mul x, 2^N + 1) => (add (shl x, N), x)
14307 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
14309 DAG
.getNode(ISD::SHL
, DL
, VT
,
14311 DAG
.getConstant(Log2_32(MulAmt
- 1), DL
,
14313 } else if (llvm::has_single_bit
<uint32_t>(MulAmt
+ 1)) {
14314 // (mul x, 2^N - 1) => (sub (shl x, N), x)
14315 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
14316 DAG
.getNode(ISD::SHL
, DL
, VT
,
14318 DAG
.getConstant(Log2_32(MulAmt
+ 1), DL
,
14324 uint64_t MulAmtAbs
= -MulAmt
;
14325 if (llvm::has_single_bit
<uint32_t>(MulAmtAbs
+ 1)) {
14326 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14327 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
14329 DAG
.getNode(ISD::SHL
, DL
, VT
,
14331 DAG
.getConstant(Log2_32(MulAmtAbs
+ 1), DL
,
14333 } else if (llvm::has_single_bit
<uint32_t>(MulAmtAbs
- 1)) {
14334 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
14335 Res
= DAG
.getNode(ISD::ADD
, DL
, VT
,
14337 DAG
.getNode(ISD::SHL
, DL
, VT
,
14339 DAG
.getConstant(Log2_32(MulAmtAbs
- 1), DL
,
14341 Res
= DAG
.getNode(ISD::SUB
, DL
, VT
,
14342 DAG
.getConstant(0, DL
, MVT::i32
), Res
);
14348 Res
= DAG
.getNode(ISD::SHL
, DL
, VT
,
14349 Res
, DAG
.getConstant(ShiftAmt
, DL
, MVT::i32
));
14351 // Do not add new nodes to DAG combiner worklist.
14352 DCI
.CombineTo(N
, Res
, false);
14356 static SDValue
CombineANDShift(SDNode
*N
,
14357 TargetLowering::DAGCombinerInfo
&DCI
,
14358 const ARMSubtarget
*Subtarget
) {
14359 // Allow DAGCombine to pattern-match before we touch the canonical form.
14360 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
14363 if (N
->getValueType(0) != MVT::i32
)
14366 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
14370 uint32_t C1
= (uint32_t)N1C
->getZExtValue();
14371 // Don't transform uxtb/uxth.
14372 if (C1
== 255 || C1
== 65535)
14375 SDNode
*N0
= N
->getOperand(0).getNode();
14376 if (!N0
->hasOneUse())
14379 if (N0
->getOpcode() != ISD::SHL
&& N0
->getOpcode() != ISD::SRL
)
14382 bool LeftShift
= N0
->getOpcode() == ISD::SHL
;
14384 ConstantSDNode
*N01C
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
14388 uint32_t C2
= (uint32_t)N01C
->getZExtValue();
14389 if (!C2
|| C2
>= 32)
14392 // Clear irrelevant bits in the mask.
14398 SelectionDAG
&DAG
= DCI
.DAG
;
14401 // We have a pattern of the form "(and (shl x, c2) c1)" or
14402 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
14403 // transform to a pair of shifts, to save materializing c1.
14405 // First pattern: right shift, then mask off leading bits.
14406 // FIXME: Use demanded bits?
14407 if (!LeftShift
&& isMask_32(C1
)) {
14408 uint32_t C3
= llvm::countl_zero(C1
);
14410 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
14411 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
14412 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
14413 DAG
.getConstant(C3
, DL
, MVT::i32
));
14417 // First pattern, reversed: left shift, then mask off trailing bits.
14418 if (LeftShift
&& isMask_32(~C1
)) {
14419 uint32_t C3
= llvm::countr_zero(C1
);
14421 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
14422 DAG
.getConstant(C3
- C2
, DL
, MVT::i32
));
14423 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
14424 DAG
.getConstant(C3
, DL
, MVT::i32
));
14428 // Second pattern: left shift, then mask off leading bits.
14429 // FIXME: Use demanded bits?
14430 if (LeftShift
&& isShiftedMask_32(C1
)) {
14431 uint32_t Trailing
= llvm::countr_zero(C1
);
14432 uint32_t C3
= llvm::countl_zero(C1
);
14433 if (Trailing
== C2
&& C2
+ C3
< 32) {
14434 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
14435 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
14436 return DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SHL
,
14437 DAG
.getConstant(C3
, DL
, MVT::i32
));
14441 // Second pattern, reversed: right shift, then mask off trailing bits.
14442 // FIXME: Handle other patterns of known/demanded bits.
14443 if (!LeftShift
&& isShiftedMask_32(C1
)) {
14444 uint32_t Leading
= llvm::countl_zero(C1
);
14445 uint32_t C3
= llvm::countr_zero(C1
);
14446 if (Leading
== C2
&& C2
+ C3
< 32) {
14447 SDValue SHL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, N0
->getOperand(0),
14448 DAG
.getConstant(C2
+ C3
, DL
, MVT::i32
));
14449 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SHL
,
14450 DAG
.getConstant(C3
, DL
, MVT::i32
));
14454 // Transform "(and (shl x, c2) c1)" into "(shl (and x, c1>>c2), c2)"
14455 // if "c1 >> c2" is a cheaper immediate than "c1"
14457 HasLowerConstantMaterializationCost(C1
>> C2
, C1
, Subtarget
)) {
14459 SDValue And
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, N0
->getOperand(0),
14460 DAG
.getConstant(C1
>> C2
, DL
, MVT::i32
));
14461 return DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, And
,
14462 DAG
.getConstant(C2
, DL
, MVT::i32
));
14468 static SDValue
PerformANDCombine(SDNode
*N
,
14469 TargetLowering::DAGCombinerInfo
&DCI
,
14470 const ARMSubtarget
*Subtarget
) {
14471 // Attempt to use immediate-form VBIC
14472 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
14474 EVT VT
= N
->getValueType(0);
14475 SelectionDAG
&DAG
= DCI
.DAG
;
14477 if (!DAG
.getTargetLoweringInfo().isTypeLegal(VT
) || VT
== MVT::v2i1
||
14478 VT
== MVT::v4i1
|| VT
== MVT::v8i1
|| VT
== MVT::v16i1
)
14481 APInt SplatBits
, SplatUndef
;
14482 unsigned SplatBitSize
;
14484 if (BVN
&& (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) &&
14485 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
14486 if (SplatBitSize
== 8 || SplatBitSize
== 16 || SplatBitSize
== 32 ||
14487 SplatBitSize
== 64) {
14489 SDValue Val
= isVMOVModifiedImm((~SplatBits
).getZExtValue(),
14490 SplatUndef
.getZExtValue(), SplatBitSize
,
14491 DAG
, dl
, VbicVT
, VT
, OtherModImm
);
14492 if (Val
.getNode()) {
14494 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VbicVT
, N
->getOperand(0));
14495 SDValue Vbic
= DAG
.getNode(ARMISD::VBICIMM
, dl
, VbicVT
, Input
, Val
);
14496 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, Vbic
);
14501 if (!Subtarget
->isThumb1Only()) {
14502 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
14503 if (SDValue Result
= combineSelectAndUseCommutative(N
, true, DCI
))
14506 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
14510 if (Subtarget
->isThumb1Only())
14511 if (SDValue Result
= CombineANDShift(N
, DCI
, Subtarget
))
14517 // Try combining OR nodes to SMULWB, SMULWT.
14518 static SDValue
PerformORCombineToSMULWBT(SDNode
*OR
,
14519 TargetLowering::DAGCombinerInfo
&DCI
,
14520 const ARMSubtarget
*Subtarget
) {
14521 if (!Subtarget
->hasV6Ops() ||
14522 (Subtarget
->isThumb() &&
14523 (!Subtarget
->hasThumb2() || !Subtarget
->hasDSP())))
14526 SDValue SRL
= OR
->getOperand(0);
14527 SDValue SHL
= OR
->getOperand(1);
14529 if (SRL
.getOpcode() != ISD::SRL
|| SHL
.getOpcode() != ISD::SHL
) {
14530 SRL
= OR
->getOperand(1);
14531 SHL
= OR
->getOperand(0);
14533 if (!isSRL16(SRL
) || !isSHL16(SHL
))
14536 // The first operands to the shifts need to be the two results from the
14537 // same smul_lohi node.
14538 if ((SRL
.getOperand(0).getNode() != SHL
.getOperand(0).getNode()) ||
14539 SRL
.getOperand(0).getOpcode() != ISD::SMUL_LOHI
)
14542 SDNode
*SMULLOHI
= SRL
.getOperand(0).getNode();
14543 if (SRL
.getOperand(0) != SDValue(SMULLOHI
, 0) ||
14544 SHL
.getOperand(0) != SDValue(SMULLOHI
, 1))
14548 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
14549 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
14550 // For SMUWB the 16-bit value will signed extended somehow.
14551 // For SMULWT only the SRA is required.
14552 // Check both sides of SMUL_LOHI
14553 SDValue OpS16
= SMULLOHI
->getOperand(0);
14554 SDValue OpS32
= SMULLOHI
->getOperand(1);
14556 SelectionDAG
&DAG
= DCI
.DAG
;
14557 if (!isS16(OpS16
, DAG
) && !isSRA16(OpS16
)) {
14559 OpS32
= SMULLOHI
->getOperand(0);
14563 unsigned Opcode
= 0;
14564 if (isS16(OpS16
, DAG
))
14565 Opcode
= ARMISD::SMULWB
;
14566 else if (isSRA16(OpS16
)) {
14567 Opcode
= ARMISD::SMULWT
;
14568 OpS16
= OpS16
->getOperand(0);
14573 SDValue Res
= DAG
.getNode(Opcode
, dl
, MVT::i32
, OpS32
, OpS16
);
14574 DAG
.ReplaceAllUsesOfValueWith(SDValue(OR
, 0), Res
);
14575 return SDValue(OR
, 0);
14578 static SDValue
PerformORCombineToBFI(SDNode
*N
,
14579 TargetLowering::DAGCombinerInfo
&DCI
,
14580 const ARMSubtarget
*Subtarget
) {
14581 // BFI is only available on V6T2+
14582 if (Subtarget
->isThumb1Only() || !Subtarget
->hasV6T2Ops())
14585 EVT VT
= N
->getValueType(0);
14586 SDValue N0
= N
->getOperand(0);
14587 SDValue N1
= N
->getOperand(1);
14588 SelectionDAG
&DAG
= DCI
.DAG
;
14590 // 1) or (and A, mask), val => ARMbfi A, val, mask
14591 // iff (val & mask) == val
14593 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14594 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
14595 // && mask == ~mask2
14596 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
14597 // && ~mask == mask2
14598 // (i.e., copy a bitfield value into another bitfield of the same width)
14600 if (VT
!= MVT::i32
)
14603 SDValue N00
= N0
.getOperand(0);
14605 // The value and the mask need to be constants so we can verify this is
14606 // actually a bitfield set. If the mask is 0xffff, we can do better
14607 // via a movt instruction, so don't use BFI in that case.
14608 SDValue MaskOp
= N0
.getOperand(1);
14609 ConstantSDNode
*MaskC
= dyn_cast
<ConstantSDNode
>(MaskOp
);
14612 unsigned Mask
= MaskC
->getZExtValue();
14613 if (Mask
== 0xffff)
14616 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
14617 ConstantSDNode
*N1C
= dyn_cast
<ConstantSDNode
>(N1
);
14619 unsigned Val
= N1C
->getZExtValue();
14620 if ((Val
& ~Mask
) != Val
)
14623 if (ARM::isBitFieldInvertedMask(Mask
)) {
14624 Val
>>= llvm::countr_zero(~Mask
);
14626 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
,
14627 DAG
.getConstant(Val
, DL
, MVT::i32
),
14628 DAG
.getConstant(Mask
, DL
, MVT::i32
));
14630 DCI
.CombineTo(N
, Res
, false);
14631 // Return value from the original node to inform the combiner than N is
14633 return SDValue(N
, 0);
14635 } else if (N1
.getOpcode() == ISD::AND
) {
14636 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14637 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
14640 unsigned Mask2
= N11C
->getZExtValue();
14642 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
14644 if (ARM::isBitFieldInvertedMask(Mask
) &&
14645 (Mask
== ~Mask2
)) {
14646 // The pack halfword instruction works better for masks that fit it,
14647 // so use that when it's available.
14648 if (Subtarget
->hasDSP() &&
14649 (Mask
== 0xffff || Mask
== 0xffff0000))
14652 unsigned amt
= llvm::countr_zero(Mask2
);
14653 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N1
.getOperand(0),
14654 DAG
.getConstant(amt
, DL
, MVT::i32
));
14655 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N00
, Res
,
14656 DAG
.getConstant(Mask
, DL
, MVT::i32
));
14657 DCI
.CombineTo(N
, Res
, false);
14658 // Return value from the original node to inform the combiner than N is
14660 return SDValue(N
, 0);
14661 } else if (ARM::isBitFieldInvertedMask(~Mask
) &&
14662 (~Mask
== Mask2
)) {
14663 // The pack halfword instruction works better for masks that fit it,
14664 // so use that when it's available.
14665 if (Subtarget
->hasDSP() &&
14666 (Mask2
== 0xffff || Mask2
== 0xffff0000))
14669 unsigned lsb
= llvm::countr_zero(Mask
);
14670 Res
= DAG
.getNode(ISD::SRL
, DL
, VT
, N00
,
14671 DAG
.getConstant(lsb
, DL
, MVT::i32
));
14672 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
.getOperand(0), Res
,
14673 DAG
.getConstant(Mask2
, DL
, MVT::i32
));
14674 DCI
.CombineTo(N
, Res
, false);
14675 // Return value from the original node to inform the combiner than N is
14677 return SDValue(N
, 0);
14681 if (DAG
.MaskedValueIsZero(N1
, MaskC
->getAPIntValue()) &&
14682 N00
.getOpcode() == ISD::SHL
&& isa
<ConstantSDNode
>(N00
.getOperand(1)) &&
14683 ARM::isBitFieldInvertedMask(~Mask
)) {
14684 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
14685 // where lsb(mask) == #shamt and masked bits of B are known zero.
14686 SDValue ShAmt
= N00
.getOperand(1);
14687 unsigned ShAmtC
= ShAmt
->getAsZExtVal();
14688 unsigned LSB
= llvm::countr_zero(Mask
);
14692 Res
= DAG
.getNode(ARMISD::BFI
, DL
, VT
, N1
, N00
.getOperand(0),
14693 DAG
.getConstant(~Mask
, DL
, MVT::i32
));
14695 DCI
.CombineTo(N
, Res
, false);
14696 // Return value from the original node to inform the combiner than N is
14698 return SDValue(N
, 0);
14704 static bool isValidMVECond(unsigned CC
, bool IsFloat
) {
14721 static ARMCC::CondCodes
getVCMPCondCode(SDValue N
) {
14722 if (N
->getOpcode() == ARMISD::VCMP
)
14723 return (ARMCC::CondCodes
)N
->getConstantOperandVal(2);
14724 else if (N
->getOpcode() == ARMISD::VCMPZ
)
14725 return (ARMCC::CondCodes
)N
->getConstantOperandVal(1);
14727 llvm_unreachable("Not a VCMP/VCMPZ!");
14730 static bool CanInvertMVEVCMP(SDValue N
) {
14731 ARMCC::CondCodes CC
= ARMCC::getOppositeCondition(getVCMPCondCode(N
));
14732 return isValidMVECond(CC
, N
->getOperand(0).getValueType().isFloatingPoint());
14735 static SDValue
PerformORCombine_i1(SDNode
*N
, SelectionDAG
&DAG
,
14736 const ARMSubtarget
*Subtarget
) {
14737 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
14738 // together with predicates
14739 EVT VT
= N
->getValueType(0);
14741 SDValue N0
= N
->getOperand(0);
14742 SDValue N1
= N
->getOperand(1);
14744 auto IsFreelyInvertable
= [&](SDValue V
) {
14745 if (V
->getOpcode() == ARMISD::VCMP
|| V
->getOpcode() == ARMISD::VCMPZ
)
14746 return CanInvertMVEVCMP(V
);
14750 // At least one operand must be freely invertable.
14751 if (!(IsFreelyInvertable(N0
) || IsFreelyInvertable(N1
)))
14754 SDValue NewN0
= DAG
.getLogicalNOT(DL
, N0
, VT
);
14755 SDValue NewN1
= DAG
.getLogicalNOT(DL
, N1
, VT
);
14756 SDValue And
= DAG
.getNode(ISD::AND
, DL
, VT
, NewN0
, NewN1
);
14757 return DAG
.getLogicalNOT(DL
, And
, VT
);
14760 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
14761 static SDValue
PerformORCombine(SDNode
*N
,
14762 TargetLowering::DAGCombinerInfo
&DCI
,
14763 const ARMSubtarget
*Subtarget
) {
14764 // Attempt to use immediate-form VORR
14765 BuildVectorSDNode
*BVN
= dyn_cast
<BuildVectorSDNode
>(N
->getOperand(1));
14767 EVT VT
= N
->getValueType(0);
14768 SelectionDAG
&DAG
= DCI
.DAG
;
14770 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
14773 if (Subtarget
->hasMVEIntegerOps() && (VT
== MVT::v2i1
|| VT
== MVT::v4i1
||
14774 VT
== MVT::v8i1
|| VT
== MVT::v16i1
))
14775 return PerformORCombine_i1(N
, DAG
, Subtarget
);
14777 APInt SplatBits
, SplatUndef
;
14778 unsigned SplatBitSize
;
14780 if (BVN
&& (Subtarget
->hasNEON() || Subtarget
->hasMVEIntegerOps()) &&
14781 BVN
->isConstantSplat(SplatBits
, SplatUndef
, SplatBitSize
, HasAnyUndefs
)) {
14782 if (SplatBitSize
== 8 || SplatBitSize
== 16 || SplatBitSize
== 32 ||
14783 SplatBitSize
== 64) {
14786 isVMOVModifiedImm(SplatBits
.getZExtValue(), SplatUndef
.getZExtValue(),
14787 SplatBitSize
, DAG
, dl
, VorrVT
, VT
, OtherModImm
);
14788 if (Val
.getNode()) {
14790 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VorrVT
, N
->getOperand(0));
14791 SDValue Vorr
= DAG
.getNode(ARMISD::VORRIMM
, dl
, VorrVT
, Input
, Val
);
14792 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, Vorr
);
14797 if (!Subtarget
->isThumb1Only()) {
14798 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
14799 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
14801 if (SDValue Result
= PerformORCombineToSMULWBT(N
, DCI
, Subtarget
))
14805 SDValue N0
= N
->getOperand(0);
14806 SDValue N1
= N
->getOperand(1);
14808 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
14809 if (Subtarget
->hasNEON() && N1
.getOpcode() == ISD::AND
&& VT
.isVector() &&
14810 DAG
.getTargetLoweringInfo().isTypeLegal(VT
)) {
14812 // The code below optimizes (or (and X, Y), Z).
14813 // The AND operand needs to have a single user to make these optimizations
14815 if (N0
.getOpcode() != ISD::AND
|| !N0
.hasOneUse())
14819 unsigned SplatBitSize
;
14822 APInt SplatBits0
, SplatBits1
;
14823 BuildVectorSDNode
*BVN0
= dyn_cast
<BuildVectorSDNode
>(N0
->getOperand(1));
14824 BuildVectorSDNode
*BVN1
= dyn_cast
<BuildVectorSDNode
>(N1
->getOperand(1));
14825 // Ensure that the second operand of both ands are constants
14826 if (BVN0
&& BVN0
->isConstantSplat(SplatBits0
, SplatUndef
, SplatBitSize
,
14827 HasAnyUndefs
) && !HasAnyUndefs
) {
14828 if (BVN1
&& BVN1
->isConstantSplat(SplatBits1
, SplatUndef
, SplatBitSize
,
14829 HasAnyUndefs
) && !HasAnyUndefs
) {
14830 // Ensure that the bit width of the constants are the same and that
14831 // the splat arguments are logical inverses as per the pattern we
14832 // are trying to simplify.
14833 if (SplatBits0
.getBitWidth() == SplatBits1
.getBitWidth() &&
14834 SplatBits0
== ~SplatBits1
) {
14835 // Canonicalize the vector type to make instruction selection
14837 EVT CanonicalVT
= VT
.is128BitVector() ? MVT::v4i32
: MVT::v2i32
;
14838 SDValue Result
= DAG
.getNode(ARMISD::VBSP
, dl
, CanonicalVT
,
14841 N1
->getOperand(0));
14842 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, Result
);
14848 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
14850 if (N0
.getOpcode() == ISD::AND
&& N0
.hasOneUse()) {
14851 if (SDValue Res
= PerformORCombineToBFI(N
, DCI
, Subtarget
))
14855 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
14861 static SDValue
PerformXORCombine(SDNode
*N
,
14862 TargetLowering::DAGCombinerInfo
&DCI
,
14863 const ARMSubtarget
*Subtarget
) {
14864 EVT VT
= N
->getValueType(0);
14865 SelectionDAG
&DAG
= DCI
.DAG
;
14867 if(!DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
14870 if (!Subtarget
->isThumb1Only()) {
14871 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
14872 if (SDValue Result
= combineSelectAndUseCommutative(N
, false, DCI
))
14875 if (SDValue Result
= PerformSHLSimplify(N
, DCI
, Subtarget
))
14879 if (Subtarget
->hasMVEIntegerOps()) {
14880 // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
14881 SDValue N0
= N
->getOperand(0);
14882 SDValue N1
= N
->getOperand(1);
14883 const TargetLowering
*TLI
= Subtarget
->getTargetLowering();
14884 if (TLI
->isConstTrueVal(N1
) &&
14885 (N0
->getOpcode() == ARMISD::VCMP
|| N0
->getOpcode() == ARMISD::VCMPZ
)) {
14886 if (CanInvertMVEVCMP(N0
)) {
14888 ARMCC::CondCodes CC
= ARMCC::getOppositeCondition(getVCMPCondCode(N0
));
14890 SmallVector
<SDValue
, 4> Ops
;
14891 Ops
.push_back(N0
->getOperand(0));
14892 if (N0
->getOpcode() == ARMISD::VCMP
)
14893 Ops
.push_back(N0
->getOperand(1));
14894 Ops
.push_back(DAG
.getConstant(CC
, DL
, MVT::i32
));
14895 return DAG
.getNode(N0
->getOpcode(), DL
, N0
->getValueType(0), Ops
);
14903 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
14904 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
14905 // their position in "to" (Rd).
14906 static SDValue
ParseBFI(SDNode
*N
, APInt
&ToMask
, APInt
&FromMask
) {
14907 assert(N
->getOpcode() == ARMISD::BFI
);
14909 SDValue From
= N
->getOperand(1);
14910 ToMask
= ~N
->getConstantOperandAPInt(2);
14911 FromMask
= APInt::getLowBitsSet(ToMask
.getBitWidth(), ToMask
.popcount());
14913 // If the Base came from a SHR #C, we can deduce that it is really testing bit
14914 // #C in the base of the SHR.
14915 if (From
->getOpcode() == ISD::SRL
&&
14916 isa
<ConstantSDNode
>(From
->getOperand(1))) {
14917 APInt Shift
= From
->getConstantOperandAPInt(1);
14918 assert(Shift
.getLimitedValue() < 32 && "Shift too large!");
14919 FromMask
<<= Shift
.getLimitedValue(31);
14920 From
= From
->getOperand(0);
14926 // If A and B contain one contiguous set of bits, does A | B == A . B?
14928 // Neither A nor B must be zero.
14929 static bool BitsProperlyConcatenate(const APInt
&A
, const APInt
&B
) {
14930 unsigned LastActiveBitInA
= A
.countr_zero();
14931 unsigned FirstActiveBitInB
= B
.getBitWidth() - B
.countl_zero() - 1;
14932 return LastActiveBitInA
- 1 == FirstActiveBitInB
;
14935 static SDValue
FindBFIToCombineWith(SDNode
*N
) {
14936 // We have a BFI in N. Find a BFI it can combine with, if one exists.
14937 APInt ToMask
, FromMask
;
14938 SDValue From
= ParseBFI(N
, ToMask
, FromMask
);
14939 SDValue To
= N
->getOperand(0);
14942 if (V
.getOpcode() != ARMISD::BFI
)
14945 APInt NewToMask
, NewFromMask
;
14946 SDValue NewFrom
= ParseBFI(V
.getNode(), NewToMask
, NewFromMask
);
14947 if (NewFrom
!= From
)
14950 // Do the written bits conflict with any we've seen so far?
14951 if ((NewToMask
& ToMask
).getBoolValue())
14952 // Conflicting bits.
14955 // Are the new bits contiguous when combined with the old bits?
14956 if (BitsProperlyConcatenate(ToMask
, NewToMask
) &&
14957 BitsProperlyConcatenate(FromMask
, NewFromMask
))
14959 if (BitsProperlyConcatenate(NewToMask
, ToMask
) &&
14960 BitsProperlyConcatenate(NewFromMask
, FromMask
))
14966 static SDValue
PerformBFICombine(SDNode
*N
, SelectionDAG
&DAG
) {
14967 SDValue N0
= N
->getOperand(0);
14968 SDValue N1
= N
->getOperand(1);
14970 if (N1
.getOpcode() == ISD::AND
) {
14971 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
14972 // the bits being cleared by the AND are not demanded by the BFI.
14973 ConstantSDNode
*N11C
= dyn_cast
<ConstantSDNode
>(N1
.getOperand(1));
14976 unsigned InvMask
= N
->getConstantOperandVal(2);
14977 unsigned LSB
= llvm::countr_zero(~InvMask
);
14978 unsigned Width
= llvm::bit_width
<unsigned>(~InvMask
) - LSB
;
14980 static_cast<unsigned>(std::numeric_limits
<unsigned>::digits
) &&
14981 "undefined behavior");
14982 unsigned Mask
= (1u << Width
) - 1;
14983 unsigned Mask2
= N11C
->getZExtValue();
14984 if ((Mask
& (~Mask2
)) == 0)
14985 return DAG
.getNode(ARMISD::BFI
, SDLoc(N
), N
->getValueType(0),
14986 N
->getOperand(0), N1
.getOperand(0), N
->getOperand(2));
14990 // Look for another BFI to combine with.
14991 if (SDValue CombineBFI
= FindBFIToCombineWith(N
)) {
14992 // We've found a BFI.
14993 APInt ToMask1
, FromMask1
;
14994 SDValue From1
= ParseBFI(N
, ToMask1
, FromMask1
);
14996 APInt ToMask2
, FromMask2
;
14997 SDValue From2
= ParseBFI(CombineBFI
.getNode(), ToMask2
, FromMask2
);
14998 assert(From1
== From2
);
15001 // Create a new BFI, combining the two together.
15002 APInt NewFromMask
= FromMask1
| FromMask2
;
15003 APInt NewToMask
= ToMask1
| ToMask2
;
15005 EVT VT
= N
->getValueType(0);
15008 if (NewFromMask
[0] == 0)
15009 From1
= DAG
.getNode(ISD::SRL
, dl
, VT
, From1
,
15010 DAG
.getConstant(NewFromMask
.countr_zero(), dl
, VT
));
15011 return DAG
.getNode(ARMISD::BFI
, dl
, VT
, CombineBFI
.getOperand(0), From1
,
15012 DAG
.getConstant(~NewToMask
, dl
, VT
));
15015 // Reassociate BFI(BFI (A, B, M1), C, M2) to BFI(BFI (A, C, M2), B, M1) so
15016 // that lower bit insertions are performed first, providing that M1 and M2
15017 // do no overlap. This can allow multiple BFI instructions to be combined
15018 // together by the other folds above.
15019 if (N
->getOperand(0).getOpcode() == ARMISD::BFI
) {
15020 APInt ToMask1
= ~N
->getConstantOperandAPInt(2);
15021 APInt ToMask2
= ~N0
.getConstantOperandAPInt(2);
15023 if (!N0
.hasOneUse() || (ToMask1
& ToMask2
) != 0 ||
15024 ToMask1
.countl_zero() < ToMask2
.countl_zero())
15027 EVT VT
= N
->getValueType(0);
15029 SDValue BFI1
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, N0
.getOperand(0),
15030 N
->getOperand(1), N
->getOperand(2));
15031 return DAG
.getNode(ARMISD::BFI
, dl
, VT
, BFI1
, N0
.getOperand(1),
15038 // Check that N is CMPZ(CSINC(0, 0, CC, X)),
15039 // or CMPZ(CMOV(1, 0, CC, X))
15040 // return X if valid.
15041 static SDValue
IsCMPZCSINC(SDNode
*Cmp
, ARMCC::CondCodes
&CC
) {
15042 if (Cmp
->getOpcode() != ARMISD::CMPZ
|| !isNullConstant(Cmp
->getOperand(1)))
15044 SDValue CSInc
= Cmp
->getOperand(0);
15046 // Ignore any `And 1` nodes that may not yet have been removed. We are
15047 // looking for a value that produces 1/0, so these have no effect on the
15049 while (CSInc
.getOpcode() == ISD::AND
&&
15050 isa
<ConstantSDNode
>(CSInc
.getOperand(1)) &&
15051 CSInc
.getConstantOperandVal(1) == 1 && CSInc
->hasOneUse())
15052 CSInc
= CSInc
.getOperand(0);
15054 if (CSInc
.getOpcode() == ARMISD::CSINC
&&
15055 isNullConstant(CSInc
.getOperand(0)) &&
15056 isNullConstant(CSInc
.getOperand(1)) && CSInc
->hasOneUse()) {
15057 CC
= (ARMCC::CondCodes
)CSInc
.getConstantOperandVal(2);
15058 return CSInc
.getOperand(3);
15060 if (CSInc
.getOpcode() == ARMISD::CMOV
&& isOneConstant(CSInc
.getOperand(0)) &&
15061 isNullConstant(CSInc
.getOperand(1)) && CSInc
->hasOneUse()) {
15062 CC
= (ARMCC::CondCodes
)CSInc
.getConstantOperandVal(2);
15063 return CSInc
.getOperand(3);
15065 if (CSInc
.getOpcode() == ARMISD::CMOV
&& isOneConstant(CSInc
.getOperand(1)) &&
15066 isNullConstant(CSInc
.getOperand(0)) && CSInc
->hasOneUse()) {
15067 CC
= ARMCC::getOppositeCondition(
15068 (ARMCC::CondCodes
)CSInc
.getConstantOperandVal(2));
15069 return CSInc
.getOperand(3);
15074 static SDValue
PerformCMPZCombine(SDNode
*N
, SelectionDAG
&DAG
) {
15075 // Given CMPZ(CSINC(C, 0, 0, EQ), 0), we can just use C directly. As in
15076 // t92: flags = ARMISD::CMPZ t74, 0
15077 // t93: i32 = ARMISD::CSINC 0, 0, 1, t92
15078 // t96: flags = ARMISD::CMPZ t93, 0
15079 // t114: i32 = ARMISD::CSINV 0, 0, 0, t96
15080 ARMCC::CondCodes Cond
;
15081 if (SDValue C
= IsCMPZCSINC(N
, Cond
))
15082 if (Cond
== ARMCC::EQ
)
15087 static SDValue
PerformCSETCombine(SDNode
*N
, SelectionDAG
&DAG
) {
15088 // Fold away an unneccessary CMPZ/CSINC
15089 // CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0) ->
15090 // if C1==EQ -> CSXYZ A, B, C2, D
15091 // if C1==NE -> CSXYZ A, B, NOT(C2), D
15092 ARMCC::CondCodes Cond
;
15093 if (SDValue C
= IsCMPZCSINC(N
->getOperand(3).getNode(), Cond
)) {
15094 if (N
->getConstantOperandVal(2) == ARMCC::EQ
)
15095 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), MVT::i32
, N
->getOperand(0),
15097 DAG
.getConstant(Cond
, SDLoc(N
), MVT::i32
), C
);
15098 if (N
->getConstantOperandVal(2) == ARMCC::NE
)
15099 return DAG
.getNode(
15100 N
->getOpcode(), SDLoc(N
), MVT::i32
, N
->getOperand(0),
15102 DAG
.getConstant(ARMCC::getOppositeCondition(Cond
), SDLoc(N
), MVT::i32
), C
);
15107 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
15108 /// ARMISD::VMOVRRD.
15109 static SDValue
PerformVMOVRRDCombine(SDNode
*N
,
15110 TargetLowering::DAGCombinerInfo
&DCI
,
15111 const ARMSubtarget
*Subtarget
) {
15112 // vmovrrd(vmovdrr x, y) -> x,y
15113 SDValue InDouble
= N
->getOperand(0);
15114 if (InDouble
.getOpcode() == ARMISD::VMOVDRR
&& Subtarget
->hasFP64())
15115 return DCI
.CombineTo(N
, InDouble
.getOperand(0), InDouble
.getOperand(1));
15117 // vmovrrd(load f64) -> (load i32), (load i32)
15118 SDNode
*InNode
= InDouble
.getNode();
15119 if (ISD::isNormalLoad(InNode
) && InNode
->hasOneUse() &&
15120 InNode
->getValueType(0) == MVT::f64
&&
15121 InNode
->getOperand(1).getOpcode() == ISD::FrameIndex
&&
15122 !cast
<LoadSDNode
>(InNode
)->isVolatile()) {
15123 // TODO: Should this be done for non-FrameIndex operands?
15124 LoadSDNode
*LD
= cast
<LoadSDNode
>(InNode
);
15126 SelectionDAG
&DAG
= DCI
.DAG
;
15128 SDValue BasePtr
= LD
->getBasePtr();
15130 DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), BasePtr
, LD
->getPointerInfo(),
15131 LD
->getAlign(), LD
->getMemOperand()->getFlags());
15133 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
15134 DAG
.getConstant(4, DL
, MVT::i32
));
15136 SDValue NewLD2
= DAG
.getLoad(MVT::i32
, DL
, LD
->getChain(), OffsetPtr
,
15137 LD
->getPointerInfo().getWithOffset(4),
15138 commonAlignment(LD
->getAlign(), 4),
15139 LD
->getMemOperand()->getFlags());
15141 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewLD2
.getValue(1));
15142 if (DCI
.DAG
.getDataLayout().isBigEndian())
15143 std::swap (NewLD1
, NewLD2
);
15144 SDValue Result
= DCI
.CombineTo(N
, NewLD1
, NewLD2
);
15148 // VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d
15149 // VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b
15150 if (InDouble
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
15151 isa
<ConstantSDNode
>(InDouble
.getOperand(1))) {
15152 SDValue BV
= InDouble
.getOperand(0);
15153 // Look up through any nop bitcasts and vector_reg_casts. bitcasts may
15154 // change lane order under big endian.
15155 bool BVSwap
= BV
.getOpcode() == ISD::BITCAST
;
15157 (BV
.getOpcode() == ISD::BITCAST
||
15158 BV
.getOpcode() == ARMISD::VECTOR_REG_CAST
) &&
15159 (BV
.getValueType() == MVT::v2f64
|| BV
.getValueType() == MVT::v2i64
)) {
15160 BVSwap
= BV
.getOpcode() == ISD::BITCAST
;
15161 BV
= BV
.getOperand(0);
15163 if (BV
.getValueType() != MVT::v4i32
)
15166 // Handle buildvectors, pulling out the correct lane depending on
15168 unsigned Offset
= InDouble
.getConstantOperandVal(1) == 1 ? 2 : 0;
15169 if (BV
.getOpcode() == ISD::BUILD_VECTOR
) {
15170 SDValue Op0
= BV
.getOperand(Offset
);
15171 SDValue Op1
= BV
.getOperand(Offset
+ 1);
15172 if (!Subtarget
->isLittle() && BVSwap
)
15173 std::swap(Op0
, Op1
);
15175 return DCI
.DAG
.getMergeValues({Op0
, Op1
}, SDLoc(N
));
15178 // A chain of insert_vectors, grabbing the correct value of the chain of
15181 while (BV
.getOpcode() == ISD::INSERT_VECTOR_ELT
) {
15182 if (isa
<ConstantSDNode
>(BV
.getOperand(2))) {
15183 if (BV
.getConstantOperandVal(2) == Offset
&& !Op0
)
15184 Op0
= BV
.getOperand(1);
15185 if (BV
.getConstantOperandVal(2) == Offset
+ 1 && !Op1
)
15186 Op1
= BV
.getOperand(1);
15188 BV
= BV
.getOperand(0);
15190 if (!Subtarget
->isLittle() && BVSwap
)
15191 std::swap(Op0
, Op1
);
15193 return DCI
.DAG
.getMergeValues({Op0
, Op1
}, SDLoc(N
));
15199 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
15200 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
15201 static SDValue
PerformVMOVDRRCombine(SDNode
*N
, SelectionDAG
&DAG
) {
15202 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
15203 SDValue Op0
= N
->getOperand(0);
15204 SDValue Op1
= N
->getOperand(1);
15205 if (Op0
.getOpcode() == ISD::BITCAST
)
15206 Op0
= Op0
.getOperand(0);
15207 if (Op1
.getOpcode() == ISD::BITCAST
)
15208 Op1
= Op1
.getOperand(0);
15209 if (Op0
.getOpcode() == ARMISD::VMOVRRD
&&
15210 Op0
.getNode() == Op1
.getNode() &&
15211 Op0
.getResNo() == 0 && Op1
.getResNo() == 1)
15212 return DAG
.getNode(ISD::BITCAST
, SDLoc(N
),
15213 N
->getValueType(0), Op0
.getOperand(0));
15217 static SDValue
PerformVMOVhrCombine(SDNode
*N
,
15218 TargetLowering::DAGCombinerInfo
&DCI
) {
15219 SDValue Op0
= N
->getOperand(0);
15221 // VMOVhr (VMOVrh (X)) -> X
15222 if (Op0
->getOpcode() == ARMISD::VMOVrh
)
15223 return Op0
->getOperand(0);
15225 // FullFP16: half values are passed in S-registers, and we don't
15226 // need any of the bitcast and moves:
15228 // t2: f32,ch1,gl1? = CopyFromReg ch, Register:f32 %0, gl?
15229 // t5: i32 = bitcast t2
15230 // t18: f16 = ARMISD::VMOVhr t5
15232 // tN: f16,ch2,gl2? = CopyFromReg ch, Register::f32 %0, gl?
15233 if (Op0
->getOpcode() == ISD::BITCAST
) {
15234 SDValue Copy
= Op0
->getOperand(0);
15235 if (Copy
.getValueType() == MVT::f32
&&
15236 Copy
->getOpcode() == ISD::CopyFromReg
) {
15237 bool HasGlue
= Copy
->getNumOperands() == 3;
15238 SDValue Ops
[] = {Copy
->getOperand(0), Copy
->getOperand(1),
15239 HasGlue
? Copy
->getOperand(2) : SDValue()};
15240 EVT OutTys
[] = {N
->getValueType(0), MVT::Other
, MVT::Glue
};
15242 DCI
.DAG
.getNode(ISD::CopyFromReg
, SDLoc(N
),
15243 DCI
.DAG
.getVTList(ArrayRef(OutTys
, HasGlue
? 3 : 2)),
15244 ArrayRef(Ops
, HasGlue
? 3 : 2));
15246 // Update Users, Chains, and Potential Glue.
15247 DCI
.DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), NewCopy
.getValue(0));
15248 DCI
.DAG
.ReplaceAllUsesOfValueWith(Copy
.getValue(1), NewCopy
.getValue(1));
15250 DCI
.DAG
.ReplaceAllUsesOfValueWith(Copy
.getValue(2),
15251 NewCopy
.getValue(2));
15257 // fold (VMOVhr (load x)) -> (load (f16*)x)
15258 if (LoadSDNode
*LN0
= dyn_cast
<LoadSDNode
>(Op0
)) {
15259 if (LN0
->hasOneUse() && LN0
->isUnindexed() &&
15260 LN0
->getMemoryVT() == MVT::i16
) {
15262 DCI
.DAG
.getLoad(N
->getValueType(0), SDLoc(N
), LN0
->getChain(),
15263 LN0
->getBasePtr(), LN0
->getMemOperand());
15264 DCI
.DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Load
.getValue(0));
15265 DCI
.DAG
.ReplaceAllUsesOfValueWith(Op0
.getValue(1), Load
.getValue(1));
15270 // Only the bottom 16 bits of the source register are used.
15271 APInt DemandedMask
= APInt::getLowBitsSet(32, 16);
15272 const TargetLowering
&TLI
= DCI
.DAG
.getTargetLoweringInfo();
15273 if (TLI
.SimplifyDemandedBits(Op0
, DemandedMask
, DCI
))
15274 return SDValue(N
, 0);
15279 static SDValue
PerformVMOVrhCombine(SDNode
*N
, SelectionDAG
&DAG
) {
15280 SDValue N0
= N
->getOperand(0);
15281 EVT VT
= N
->getValueType(0);
15283 // fold (VMOVrh (fpconst x)) -> const x
15284 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N0
)) {
15285 APFloat V
= C
->getValueAPF();
15286 return DAG
.getConstant(V
.bitcastToAPInt().getZExtValue(), SDLoc(N
), VT
);
15289 // fold (VMOVrh (load x)) -> (zextload (i16*)x)
15290 if (ISD::isNormalLoad(N0
.getNode()) && N0
.hasOneUse()) {
15291 LoadSDNode
*LN0
= cast
<LoadSDNode
>(N0
);
15294 DAG
.getExtLoad(ISD::ZEXTLOAD
, SDLoc(N
), VT
, LN0
->getChain(),
15295 LN0
->getBasePtr(), MVT::i16
, LN0
->getMemOperand());
15296 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), Load
.getValue(0));
15297 DAG
.ReplaceAllUsesOfValueWith(N0
.getValue(1), Load
.getValue(1));
15301 // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
15302 if (N0
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
15303 isa
<ConstantSDNode
>(N0
->getOperand(1)))
15304 return DAG
.getNode(ARMISD::VGETLANEu
, SDLoc(N
), VT
, N0
->getOperand(0),
15305 N0
->getOperand(1));
15310 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
15311 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
15312 /// i64 vector to have f64 elements, since the value can then be loaded
15313 /// directly into a VFP register.
15314 static bool hasNormalLoadOperand(SDNode
*N
) {
15315 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
15316 for (unsigned i
= 0; i
< NumElts
; ++i
) {
15317 SDNode
*Elt
= N
->getOperand(i
).getNode();
15318 if (ISD::isNormalLoad(Elt
) && !cast
<LoadSDNode
>(Elt
)->isVolatile())
15324 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
15325 /// ISD::BUILD_VECTOR.
15326 static SDValue
PerformBUILD_VECTORCombine(SDNode
*N
,
15327 TargetLowering::DAGCombinerInfo
&DCI
,
15328 const ARMSubtarget
*Subtarget
) {
15329 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
15330 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
15331 // into a pair of GPRs, which is fine when the value is used as a scalar,
15332 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
15333 SelectionDAG
&DAG
= DCI
.DAG
;
15334 if (N
->getNumOperands() == 2)
15335 if (SDValue RV
= PerformVMOVDRRCombine(N
, DAG
))
15338 // Load i64 elements as f64 values so that type legalization does not split
15339 // them up into i32 values.
15340 EVT VT
= N
->getValueType(0);
15341 if (VT
.getVectorElementType() != MVT::i64
|| !hasNormalLoadOperand(N
))
15344 SmallVector
<SDValue
, 8> Ops
;
15345 unsigned NumElts
= VT
.getVectorNumElements();
15346 for (unsigned i
= 0; i
< NumElts
; ++i
) {
15347 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(i
));
15349 // Make the DAGCombiner fold the bitcast.
15350 DCI
.AddToWorklist(V
.getNode());
15352 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
, NumElts
);
15353 SDValue BV
= DAG
.getBuildVector(FloatVT
, dl
, Ops
);
15354 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, BV
);
15357 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
15359 PerformARMBUILD_VECTORCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
15360 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
15361 // At that time, we may have inserted bitcasts from integer to float.
15362 // If these bitcasts have survived DAGCombine, change the lowering of this
15363 // BUILD_VECTOR in something more vector friendly, i.e., that does not
15364 // force to use floating point types.
15366 // Make sure we can change the type of the vector.
15367 // This is possible iff:
15368 // 1. The vector is only used in a bitcast to a integer type. I.e.,
15369 // 1.1. Vector is used only once.
15370 // 1.2. Use is a bit convert to an integer type.
15371 // 2. The size of its operands are 32-bits (64-bits are not legal).
15372 EVT VT
= N
->getValueType(0);
15373 EVT EltVT
= VT
.getVectorElementType();
15375 // Check 1.1. and 2.
15376 if (EltVT
.getSizeInBits() != 32 || !N
->hasOneUse())
15379 // By construction, the input type must be float.
15380 assert(EltVT
== MVT::f32
&& "Unexpected type!");
15383 SDNode
*Use
= *N
->user_begin();
15384 if (Use
->getOpcode() != ISD::BITCAST
||
15385 Use
->getValueType(0).isFloatingPoint())
15388 // Check profitability.
15389 // Model is, if more than half of the relevant operands are bitcast from
15390 // i32, turn the build_vector into a sequence of insert_vector_elt.
15391 // Relevant operands are everything that is not statically
15392 // (i.e., at compile time) bitcasted.
15393 unsigned NumOfBitCastedElts
= 0;
15394 unsigned NumElts
= VT
.getVectorNumElements();
15395 unsigned NumOfRelevantElts
= NumElts
;
15396 for (unsigned Idx
= 0; Idx
< NumElts
; ++Idx
) {
15397 SDValue Elt
= N
->getOperand(Idx
);
15398 if (Elt
->getOpcode() == ISD::BITCAST
) {
15399 // Assume only bit cast to i32 will go away.
15400 if (Elt
->getOperand(0).getValueType() == MVT::i32
)
15401 ++NumOfBitCastedElts
;
15402 } else if (Elt
.isUndef() || isa
<ConstantSDNode
>(Elt
))
15403 // Constants are statically casted, thus do not count them as
15404 // relevant operands.
15405 --NumOfRelevantElts
;
15408 // Check if more than half of the elements require a non-free bitcast.
15409 if (NumOfBitCastedElts
<= NumOfRelevantElts
/ 2)
15412 SelectionDAG
&DAG
= DCI
.DAG
;
15413 // Create the new vector type.
15414 EVT VecVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::i32
, NumElts
);
15415 // Check if the type is legal.
15416 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
15417 if (!TLI
.isTypeLegal(VecVT
))
15421 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
15422 // => BITCAST INSERT_VECTOR_ELT
15423 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
15424 // (BITCAST EN), N.
15425 SDValue Vec
= DAG
.getUNDEF(VecVT
);
15427 for (unsigned Idx
= 0 ; Idx
< NumElts
; ++Idx
) {
15428 SDValue V
= N
->getOperand(Idx
);
15431 if (V
.getOpcode() == ISD::BITCAST
&&
15432 V
->getOperand(0).getValueType() == MVT::i32
)
15433 // Fold obvious case.
15434 V
= V
.getOperand(0);
15436 V
= DAG
.getNode(ISD::BITCAST
, SDLoc(V
), MVT::i32
, V
);
15437 // Make the DAGCombiner fold the bitcasts.
15438 DCI
.AddToWorklist(V
.getNode());
15440 SDValue LaneIdx
= DAG
.getConstant(Idx
, dl
, MVT::i32
);
15441 Vec
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, VecVT
, Vec
, V
, LaneIdx
);
15443 Vec
= DAG
.getNode(ISD::BITCAST
, dl
, VT
, Vec
);
15444 // Make the DAGCombiner fold the bitcasts.
15445 DCI
.AddToWorklist(Vec
.getNode());
15450 PerformPREDICATE_CASTCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
15451 EVT VT
= N
->getValueType(0);
15452 SDValue Op
= N
->getOperand(0);
15455 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
15456 if (Op
->getOpcode() == ARMISD::PREDICATE_CAST
) {
15457 // If the valuetypes are the same, we can remove the cast entirely.
15458 if (Op
->getOperand(0).getValueType() == VT
)
15459 return Op
->getOperand(0);
15460 return DCI
.DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, Op
->getOperand(0));
15463 // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
15464 // more VPNOT which might get folded as else predicates.
15465 if (Op
.getValueType() == MVT::i32
&& isBitwiseNot(Op
)) {
15467 DCI
.DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
, Op
->getOperand(0));
15468 SDValue C
= DCI
.DAG
.getNode(ARMISD::PREDICATE_CAST
, dl
, VT
,
15469 DCI
.DAG
.getConstant(65535, dl
, MVT::i32
));
15470 return DCI
.DAG
.getNode(ISD::XOR
, dl
, VT
, X
, C
);
15473 // Only the bottom 16 bits of the source register are used.
15474 if (Op
.getValueType() == MVT::i32
) {
15475 APInt DemandedMask
= APInt::getLowBitsSet(32, 16);
15476 const TargetLowering
&TLI
= DCI
.DAG
.getTargetLoweringInfo();
15477 if (TLI
.SimplifyDemandedBits(Op
, DemandedMask
, DCI
))
15478 return SDValue(N
, 0);
15483 static SDValue
PerformVECTOR_REG_CASTCombine(SDNode
*N
, SelectionDAG
&DAG
,
15484 const ARMSubtarget
*ST
) {
15485 EVT VT
= N
->getValueType(0);
15486 SDValue Op
= N
->getOperand(0);
15489 // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
15490 if (ST
->isLittle())
15491 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, Op
);
15493 // VT VECTOR_REG_CAST (VT Op) -> Op
15494 if (Op
.getValueType() == VT
)
15496 // VECTOR_REG_CAST undef -> undef
15498 return DAG
.getUNDEF(VT
);
15500 // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
15501 if (Op
->getOpcode() == ARMISD::VECTOR_REG_CAST
) {
15502 // If the valuetypes are the same, we can remove the cast entirely.
15503 if (Op
->getOperand(0).getValueType() == VT
)
15504 return Op
->getOperand(0);
15505 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, VT
, Op
->getOperand(0));
15511 static SDValue
PerformVCMPCombine(SDNode
*N
, SelectionDAG
&DAG
,
15512 const ARMSubtarget
*Subtarget
) {
15513 if (!Subtarget
->hasMVEIntegerOps())
15516 EVT VT
= N
->getValueType(0);
15517 SDValue Op0
= N
->getOperand(0);
15518 SDValue Op1
= N
->getOperand(1);
15519 ARMCC::CondCodes Cond
= (ARMCC::CondCodes
)N
->getConstantOperandVal(2);
15522 // vcmp X, 0, cc -> vcmpz X, cc
15523 if (isZeroVector(Op1
))
15524 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Op0
, N
->getOperand(2));
15526 unsigned SwappedCond
= getSwappedCondition(Cond
);
15527 if (isValidMVECond(SwappedCond
, VT
.isFloatingPoint())) {
15528 // vcmp 0, X, cc -> vcmpz X, reversed(cc)
15529 if (isZeroVector(Op0
))
15530 return DAG
.getNode(ARMISD::VCMPZ
, dl
, VT
, Op1
,
15531 DAG
.getConstant(SwappedCond
, dl
, MVT::i32
));
15532 // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
15533 if (Op0
->getOpcode() == ARMISD::VDUP
&& Op1
->getOpcode() != ARMISD::VDUP
)
15534 return DAG
.getNode(ARMISD::VCMP
, dl
, VT
, Op1
, Op0
,
15535 DAG
.getConstant(SwappedCond
, dl
, MVT::i32
));
15541 /// PerformInsertEltCombine - Target-specific dag combine xforms for
15542 /// ISD::INSERT_VECTOR_ELT.
15543 static SDValue
PerformInsertEltCombine(SDNode
*N
,
15544 TargetLowering::DAGCombinerInfo
&DCI
) {
15545 // Bitcast an i64 load inserted into a vector to f64.
15546 // Otherwise, the i64 value will be legalized to a pair of i32 values.
15547 EVT VT
= N
->getValueType(0);
15548 SDNode
*Elt
= N
->getOperand(1).getNode();
15549 if (VT
.getVectorElementType() != MVT::i64
||
15550 !ISD::isNormalLoad(Elt
) || cast
<LoadSDNode
>(Elt
)->isVolatile())
15553 SelectionDAG
&DAG
= DCI
.DAG
;
15555 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
15556 VT
.getVectorNumElements());
15557 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, N
->getOperand(0));
15558 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::f64
, N
->getOperand(1));
15559 // Make the DAGCombiner fold the bitcasts.
15560 DCI
.AddToWorklist(Vec
.getNode());
15561 DCI
.AddToWorklist(V
.getNode());
15562 SDValue InsElt
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, dl
, FloatVT
,
15563 Vec
, V
, N
->getOperand(2));
15564 return DAG
.getNode(ISD::BITCAST
, dl
, VT
, InsElt
);
15567 // Convert a pair of extracts from the same base vector to a VMOVRRD. Either
15568 // directly or bitcast to an integer if the original is a float vector.
15569 // extract(x, n); extract(x, n+1) -> VMOVRRD(extract v2f64 x, n/2)
15570 // bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD(extract x, n/2)
15572 PerformExtractEltToVMOVRRD(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
15573 EVT VT
= N
->getValueType(0);
15576 if (!DCI
.isAfterLegalizeDAG() || VT
!= MVT::i32
||
15577 !DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(MVT::f64
))
15580 SDValue Ext
= SDValue(N
, 0);
15581 if (Ext
.getOpcode() == ISD::BITCAST
&&
15582 Ext
.getOperand(0).getValueType() == MVT::f32
)
15583 Ext
= Ext
.getOperand(0);
15584 if (Ext
.getOpcode() != ISD::EXTRACT_VECTOR_ELT
||
15585 !isa
<ConstantSDNode
>(Ext
.getOperand(1)) ||
15586 Ext
.getConstantOperandVal(1) % 2 != 0)
15588 if (Ext
->hasOneUse() && (Ext
->user_begin()->getOpcode() == ISD::SINT_TO_FP
||
15589 Ext
->user_begin()->getOpcode() == ISD::UINT_TO_FP
))
15592 SDValue Op0
= Ext
.getOperand(0);
15593 EVT VecVT
= Op0
.getValueType();
15594 unsigned ResNo
= Op0
.getResNo();
15595 unsigned Lane
= Ext
.getConstantOperandVal(1);
15596 if (VecVT
.getVectorNumElements() != 4)
15599 // Find another extract, of Lane + 1
15600 auto OtherIt
= find_if(Op0
->users(), [&](SDNode
*V
) {
15601 return V
->getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
15602 isa
<ConstantSDNode
>(V
->getOperand(1)) &&
15603 V
->getConstantOperandVal(1) == Lane
+ 1 &&
15604 V
->getOperand(0).getResNo() == ResNo
;
15606 if (OtherIt
== Op0
->users().end())
15609 // For float extracts, we need to be converting to a i32 for both vector
15611 SDValue
OtherExt(*OtherIt
, 0);
15612 if (OtherExt
.getValueType() != MVT::i32
) {
15613 if (!OtherExt
->hasOneUse() ||
15614 OtherExt
->user_begin()->getOpcode() != ISD::BITCAST
||
15615 OtherExt
->user_begin()->getValueType(0) != MVT::i32
)
15617 OtherExt
= SDValue(*OtherExt
->user_begin(), 0);
15620 // Convert the type to a f64 and extract with a VMOVRRD.
15621 SDValue F64
= DCI
.DAG
.getNode(
15622 ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
15623 DCI
.DAG
.getNode(ARMISD::VECTOR_REG_CAST
, dl
, MVT::v2f64
, Op0
),
15624 DCI
.DAG
.getConstant(Ext
.getConstantOperandVal(1) / 2, dl
, MVT::i32
));
15626 DCI
.DAG
.getNode(ARMISD::VMOVRRD
, dl
, {MVT::i32
, MVT::i32
}, F64
);
15628 DCI
.CombineTo(OtherExt
.getNode(), SDValue(VMOVRRD
.getNode(), 1));
15632 static SDValue
PerformExtractEltCombine(SDNode
*N
,
15633 TargetLowering::DAGCombinerInfo
&DCI
,
15634 const ARMSubtarget
*ST
) {
15635 SDValue Op0
= N
->getOperand(0);
15636 EVT VT
= N
->getValueType(0);
15639 // extract (vdup x) -> x
15640 if (Op0
->getOpcode() == ARMISD::VDUP
) {
15641 SDValue X
= Op0
->getOperand(0);
15642 if (VT
== MVT::f16
&& X
.getValueType() == MVT::i32
)
15643 return DCI
.DAG
.getNode(ARMISD::VMOVhr
, dl
, VT
, X
);
15644 if (VT
== MVT::i32
&& X
.getValueType() == MVT::f16
)
15645 return DCI
.DAG
.getNode(ARMISD::VMOVrh
, dl
, VT
, X
);
15646 if (VT
== MVT::f32
&& X
.getValueType() == MVT::i32
)
15647 return DCI
.DAG
.getNode(ISD::BITCAST
, dl
, VT
, X
);
15649 while (X
.getValueType() != VT
&& X
->getOpcode() == ISD::BITCAST
)
15650 X
= X
->getOperand(0);
15651 if (X
.getValueType() == VT
)
15655 // extract ARM_BUILD_VECTOR -> x
15656 if (Op0
->getOpcode() == ARMISD::BUILD_VECTOR
&&
15657 isa
<ConstantSDNode
>(N
->getOperand(1)) &&
15658 N
->getConstantOperandVal(1) < Op0
.getNumOperands()) {
15659 return Op0
.getOperand(N
->getConstantOperandVal(1));
15662 // extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b
15663 if (Op0
.getValueType() == MVT::v4i32
&&
15664 isa
<ConstantSDNode
>(N
->getOperand(1)) &&
15665 Op0
.getOpcode() == ISD::BITCAST
&&
15666 Op0
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
15667 Op0
.getOperand(0).getValueType() == MVT::v2f64
) {
15668 SDValue BV
= Op0
.getOperand(0);
15669 unsigned Offset
= N
->getConstantOperandVal(1);
15670 SDValue MOV
= BV
.getOperand(Offset
< 2 ? 0 : 1);
15671 if (MOV
.getOpcode() == ARMISD::VMOVDRR
)
15672 return MOV
.getOperand(ST
->isLittle() ? Offset
% 2 : 1 - Offset
% 2);
15675 // extract x, n; extract x, n+1 -> VMOVRRD x
15676 if (SDValue R
= PerformExtractEltToVMOVRRD(N
, DCI
))
15679 // extract (MVETrunc(x)) -> extract x
15680 if (Op0
->getOpcode() == ARMISD::MVETRUNC
) {
15681 unsigned Idx
= N
->getConstantOperandVal(1);
15683 Idx
/ Op0
->getOperand(0).getValueType().getVectorNumElements();
15685 Idx
% Op0
->getOperand(0).getValueType().getVectorNumElements();
15686 return DCI
.DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, VT
, Op0
.getOperand(Vec
),
15687 DCI
.DAG
.getConstant(SubIdx
, dl
, MVT::i32
));
15693 static SDValue
PerformSignExtendInregCombine(SDNode
*N
, SelectionDAG
&DAG
) {
15694 SDValue Op
= N
->getOperand(0);
15695 EVT VT
= N
->getValueType(0);
15697 // sext_inreg(VGETLANEu) -> VGETLANEs
15698 if (Op
.getOpcode() == ARMISD::VGETLANEu
&&
15699 cast
<VTSDNode
>(N
->getOperand(1))->getVT() ==
15700 Op
.getOperand(0).getValueType().getScalarType())
15701 return DAG
.getNode(ARMISD::VGETLANEs
, SDLoc(N
), VT
, Op
.getOperand(0),
15708 PerformInsertSubvectorCombine(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
15709 SDValue Vec
= N
->getOperand(0);
15710 SDValue SubVec
= N
->getOperand(1);
15711 uint64_t IdxVal
= N
->getConstantOperandVal(2);
15712 EVT VecVT
= Vec
.getValueType();
15713 EVT SubVT
= SubVec
.getValueType();
15715 // Only do this for legal fixed vector types.
15716 if (!VecVT
.isFixedLengthVector() ||
15717 !DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VecVT
) ||
15718 !DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(SubVT
))
15721 // Ignore widening patterns.
15722 if (IdxVal
== 0 && Vec
.isUndef())
15725 // Subvector must be half the width and an "aligned" insertion.
15726 unsigned NumSubElts
= SubVT
.getVectorNumElements();
15727 if ((SubVT
.getSizeInBits() * 2) != VecVT
.getSizeInBits() ||
15728 (IdxVal
!= 0 && IdxVal
!= NumSubElts
))
15731 // Fold insert_subvector -> concat_vectors
15732 // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
15733 // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
15738 Hi
= DCI
.DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SubVT
, Vec
,
15739 DCI
.DAG
.getVectorIdxConstant(NumSubElts
, DL
));
15741 Lo
= DCI
.DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, SubVT
, Vec
,
15742 DCI
.DAG
.getVectorIdxConstant(0, DL
));
15745 return DCI
.DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VecVT
, Lo
, Hi
);
15748 // shuffle(MVETrunc(x, y)) -> VMOVN(x, y)
15749 static SDValue
PerformShuffleVMOVNCombine(ShuffleVectorSDNode
*N
,
15750 SelectionDAG
&DAG
) {
15751 SDValue Trunc
= N
->getOperand(0);
15752 EVT VT
= Trunc
.getValueType();
15753 if (Trunc
.getOpcode() != ARMISD::MVETRUNC
|| !N
->getOperand(1).isUndef())
15757 if (isVMOVNTruncMask(N
->getMask(), VT
, false))
15758 return DAG
.getNode(
15759 ARMISD::VMOVN
, DL
, VT
,
15760 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, Trunc
.getOperand(0)),
15761 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, Trunc
.getOperand(1)),
15762 DAG
.getConstant(1, DL
, MVT::i32
));
15763 else if (isVMOVNTruncMask(N
->getMask(), VT
, true))
15764 return DAG
.getNode(
15765 ARMISD::VMOVN
, DL
, VT
,
15766 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, Trunc
.getOperand(1)),
15767 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, Trunc
.getOperand(0)),
15768 DAG
.getConstant(1, DL
, MVT::i32
));
15772 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
15773 /// ISD::VECTOR_SHUFFLE.
15774 static SDValue
PerformVECTOR_SHUFFLECombine(SDNode
*N
, SelectionDAG
&DAG
) {
15775 if (SDValue R
= PerformShuffleVMOVNCombine(cast
<ShuffleVectorSDNode
>(N
), DAG
))
15778 // The LLVM shufflevector instruction does not require the shuffle mask
15779 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
15780 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
15781 // operands do not match the mask length, they are extended by concatenating
15782 // them with undef vectors. That is probably the right thing for other
15783 // targets, but for NEON it is better to concatenate two double-register
15784 // size vector operands into a single quad-register size vector. Do that
15785 // transformation here:
15786 // shuffle(concat(v1, undef), concat(v2, undef)) ->
15787 // shuffle(concat(v1, v2), undef)
15788 SDValue Op0
= N
->getOperand(0);
15789 SDValue Op1
= N
->getOperand(1);
15790 if (Op0
.getOpcode() != ISD::CONCAT_VECTORS
||
15791 Op1
.getOpcode() != ISD::CONCAT_VECTORS
||
15792 Op0
.getNumOperands() != 2 ||
15793 Op1
.getNumOperands() != 2)
15795 SDValue Concat0Op1
= Op0
.getOperand(1);
15796 SDValue Concat1Op1
= Op1
.getOperand(1);
15797 if (!Concat0Op1
.isUndef() || !Concat1Op1
.isUndef())
15799 // Skip the transformation if any of the types are illegal.
15800 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
15801 EVT VT
= N
->getValueType(0);
15802 if (!TLI
.isTypeLegal(VT
) ||
15803 !TLI
.isTypeLegal(Concat0Op1
.getValueType()) ||
15804 !TLI
.isTypeLegal(Concat1Op1
.getValueType()))
15807 SDValue NewConcat
= DAG
.getNode(ISD::CONCAT_VECTORS
, SDLoc(N
), VT
,
15808 Op0
.getOperand(0), Op1
.getOperand(0));
15809 // Translate the shuffle mask.
15810 SmallVector
<int, 16> NewMask
;
15811 unsigned NumElts
= VT
.getVectorNumElements();
15812 unsigned HalfElts
= NumElts
/2;
15813 ShuffleVectorSDNode
*SVN
= cast
<ShuffleVectorSDNode
>(N
);
15814 for (unsigned n
= 0; n
< NumElts
; ++n
) {
15815 int MaskElt
= SVN
->getMaskElt(n
);
15817 if (MaskElt
< (int)HalfElts
)
15819 else if (MaskElt
>= (int)NumElts
&& MaskElt
< (int)(NumElts
+ HalfElts
))
15820 NewElt
= HalfElts
+ MaskElt
- NumElts
;
15821 NewMask
.push_back(NewElt
);
15823 return DAG
.getVectorShuffle(VT
, SDLoc(N
), NewConcat
,
15824 DAG
.getUNDEF(VT
), NewMask
);
15827 /// Load/store instruction that can be merged with a base address
15829 struct BaseUpdateTarget
{
15833 unsigned AddrOpIdx
;
15836 struct BaseUpdateUser
{
15837 /// Instruction that updates a pointer
15839 /// Pointer increment operand
15841 /// Pointer increment value if it is a constant, or 0 otherwise
15845 static bool TryCombineBaseUpdate(struct BaseUpdateTarget
&Target
,
15846 struct BaseUpdateUser
&User
,
15847 bool SimpleConstIncOnly
,
15848 TargetLowering::DAGCombinerInfo
&DCI
) {
15849 SelectionDAG
&DAG
= DCI
.DAG
;
15850 SDNode
*N
= Target
.N
;
15851 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
15854 // Find the new opcode for the updating load/store.
15855 bool isLoadOp
= true;
15856 bool isLaneOp
= false;
15857 // Workaround for vst1x and vld1x intrinsics which do not have alignment
15859 bool hasAlignment
= true;
15860 unsigned NewOpc
= 0;
15861 unsigned NumVecs
= 0;
15862 if (Target
.isIntrinsic
) {
15863 unsigned IntNo
= N
->getConstantOperandVal(1);
15866 llvm_unreachable("unexpected intrinsic for Neon base update");
15867 case Intrinsic::arm_neon_vld1
:
15868 NewOpc
= ARMISD::VLD1_UPD
;
15871 case Intrinsic::arm_neon_vld2
:
15872 NewOpc
= ARMISD::VLD2_UPD
;
15875 case Intrinsic::arm_neon_vld3
:
15876 NewOpc
= ARMISD::VLD3_UPD
;
15879 case Intrinsic::arm_neon_vld4
:
15880 NewOpc
= ARMISD::VLD4_UPD
;
15883 case Intrinsic::arm_neon_vld1x2
:
15884 NewOpc
= ARMISD::VLD1x2_UPD
;
15886 hasAlignment
= false;
15888 case Intrinsic::arm_neon_vld1x3
:
15889 NewOpc
= ARMISD::VLD1x3_UPD
;
15891 hasAlignment
= false;
15893 case Intrinsic::arm_neon_vld1x4
:
15894 NewOpc
= ARMISD::VLD1x4_UPD
;
15896 hasAlignment
= false;
15898 case Intrinsic::arm_neon_vld2dup
:
15899 NewOpc
= ARMISD::VLD2DUP_UPD
;
15902 case Intrinsic::arm_neon_vld3dup
:
15903 NewOpc
= ARMISD::VLD3DUP_UPD
;
15906 case Intrinsic::arm_neon_vld4dup
:
15907 NewOpc
= ARMISD::VLD4DUP_UPD
;
15910 case Intrinsic::arm_neon_vld2lane
:
15911 NewOpc
= ARMISD::VLD2LN_UPD
;
15915 case Intrinsic::arm_neon_vld3lane
:
15916 NewOpc
= ARMISD::VLD3LN_UPD
;
15920 case Intrinsic::arm_neon_vld4lane
:
15921 NewOpc
= ARMISD::VLD4LN_UPD
;
15925 case Intrinsic::arm_neon_vst1
:
15926 NewOpc
= ARMISD::VST1_UPD
;
15930 case Intrinsic::arm_neon_vst2
:
15931 NewOpc
= ARMISD::VST2_UPD
;
15935 case Intrinsic::arm_neon_vst3
:
15936 NewOpc
= ARMISD::VST3_UPD
;
15940 case Intrinsic::arm_neon_vst4
:
15941 NewOpc
= ARMISD::VST4_UPD
;
15945 case Intrinsic::arm_neon_vst2lane
:
15946 NewOpc
= ARMISD::VST2LN_UPD
;
15951 case Intrinsic::arm_neon_vst3lane
:
15952 NewOpc
= ARMISD::VST3LN_UPD
;
15957 case Intrinsic::arm_neon_vst4lane
:
15958 NewOpc
= ARMISD::VST4LN_UPD
;
15963 case Intrinsic::arm_neon_vst1x2
:
15964 NewOpc
= ARMISD::VST1x2_UPD
;
15967 hasAlignment
= false;
15969 case Intrinsic::arm_neon_vst1x3
:
15970 NewOpc
= ARMISD::VST1x3_UPD
;
15973 hasAlignment
= false;
15975 case Intrinsic::arm_neon_vst1x4
:
15976 NewOpc
= ARMISD::VST1x4_UPD
;
15979 hasAlignment
= false;
15984 switch (N
->getOpcode()) {
15986 llvm_unreachable("unexpected opcode for Neon base update");
15987 case ARMISD::VLD1DUP
:
15988 NewOpc
= ARMISD::VLD1DUP_UPD
;
15991 case ARMISD::VLD2DUP
:
15992 NewOpc
= ARMISD::VLD2DUP_UPD
;
15995 case ARMISD::VLD3DUP
:
15996 NewOpc
= ARMISD::VLD3DUP_UPD
;
15999 case ARMISD::VLD4DUP
:
16000 NewOpc
= ARMISD::VLD4DUP_UPD
;
16004 NewOpc
= ARMISD::VLD1_UPD
;
16009 NewOpc
= ARMISD::VST1_UPD
;
16017 // Find the size of memory referenced by the load/store.
16020 VecTy
= N
->getValueType(0);
16021 } else if (Target
.isIntrinsic
) {
16022 VecTy
= N
->getOperand(Target
.AddrOpIdx
+ 1).getValueType();
16024 assert(Target
.isStore
&&
16025 "Node has to be a load, a store, or an intrinsic!");
16026 VecTy
= N
->getOperand(1).getValueType();
16030 NewOpc
== ARMISD::VLD1DUP_UPD
|| NewOpc
== ARMISD::VLD2DUP_UPD
||
16031 NewOpc
== ARMISD::VLD3DUP_UPD
|| NewOpc
== ARMISD::VLD4DUP_UPD
;
16033 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
16034 if (isLaneOp
|| isVLDDUPOp
)
16035 NumBytes
/= VecTy
.getVectorNumElements();
16037 if (NumBytes
>= 3 * 16 && User
.ConstInc
!= NumBytes
) {
16038 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
16039 // separate instructions that make it harder to use a non-constant update.
16043 if (SimpleConstIncOnly
&& User
.ConstInc
!= NumBytes
)
16046 // OK, we found an ADD we can fold into the base update.
16047 // Now, create a _UPD node, taking care of not breaking alignment.
16049 EVT AlignedVecTy
= VecTy
;
16050 Align Alignment
= MemN
->getAlign();
16052 // If this is a less-than-standard-aligned load/store, change the type to
16053 // match the standard alignment.
16054 // The alignment is overlooked when selecting _UPD variants; and it's
16055 // easier to introduce bitcasts here than fix that.
16056 // There are 3 ways to get to this base-update combine:
16057 // - intrinsics: they are assumed to be properly aligned (to the standard
16058 // alignment of the memory type), so we don't need to do anything.
16059 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
16060 // intrinsics, so, likewise, there's nothing to do.
16061 // - generic load/store instructions: the alignment is specified as an
16062 // explicit operand, rather than implicitly as the standard alignment
16063 // of the memory type (like the intrisics). We need to change the
16064 // memory type to match the explicit alignment. That way, we don't
16065 // generate non-standard-aligned ARMISD::VLDx nodes.
16066 if (isa
<LSBaseSDNode
>(N
)) {
16067 if (Alignment
.value() < VecTy
.getScalarSizeInBits() / 8) {
16068 MVT EltTy
= MVT::getIntegerVT(Alignment
.value() * 8);
16069 assert(NumVecs
== 1 && "Unexpected multi-element generic load/store.");
16070 assert(!isLaneOp
&& "Unexpected generic load/store lane.");
16071 unsigned NumElts
= NumBytes
/ (EltTy
.getSizeInBits() / 8);
16072 AlignedVecTy
= MVT::getVectorVT(EltTy
, NumElts
);
16074 // Don't set an explicit alignment on regular load/stores that we want
16075 // to transform to VLD/VST 1_UPD nodes.
16076 // This matches the behavior of regular load/stores, which only get an
16077 // explicit alignment if the MMO alignment is larger than the standard
16078 // alignment of the memory type.
16079 // Intrinsics, however, always get an explicit alignment, set to the
16080 // alignment of the MMO.
16081 Alignment
= Align(1);
16084 // Create the new updating load/store node.
16085 // First, create an SDVTList for the new updating node's results.
16087 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
16089 for (n
= 0; n
< NumResultVecs
; ++n
)
16090 Tys
[n
] = AlignedVecTy
;
16091 Tys
[n
++] = MVT::i32
;
16092 Tys
[n
] = MVT::Other
;
16093 SDVTList SDTys
= DAG
.getVTList(ArrayRef(Tys
, NumResultVecs
+ 2));
16095 // Then, gather the new node's operands.
16096 SmallVector
<SDValue
, 8> Ops
;
16097 Ops
.push_back(N
->getOperand(0)); // incoming chain
16098 Ops
.push_back(N
->getOperand(Target
.AddrOpIdx
));
16099 Ops
.push_back(User
.Inc
);
16101 if (StoreSDNode
*StN
= dyn_cast
<StoreSDNode
>(N
)) {
16102 // Try to match the intrinsic's signature
16103 Ops
.push_back(StN
->getValue());
16105 // Loads (and of course intrinsics) match the intrinsics' signature,
16106 // so just add all but the alignment operand.
16107 unsigned LastOperand
=
16108 hasAlignment
? N
->getNumOperands() - 1 : N
->getNumOperands();
16109 for (unsigned i
= Target
.AddrOpIdx
+ 1; i
< LastOperand
; ++i
)
16110 Ops
.push_back(N
->getOperand(i
));
16113 // For all node types, the alignment operand is always the last one.
16114 Ops
.push_back(DAG
.getConstant(Alignment
.value(), dl
, MVT::i32
));
16116 // If this is a non-standard-aligned STORE, the penultimate operand is the
16117 // stored value. Bitcast it to the aligned type.
16118 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::STORE
) {
16119 SDValue
&StVal
= Ops
[Ops
.size() - 2];
16120 StVal
= DAG
.getNode(ISD::BITCAST
, dl
, AlignedVecTy
, StVal
);
16123 EVT LoadVT
= isLaneOp
? VecTy
.getVectorElementType() : AlignedVecTy
;
16124 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, LoadVT
,
16125 MemN
->getMemOperand());
16127 // Update the uses.
16128 SmallVector
<SDValue
, 5> NewResults
;
16129 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
16130 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
16132 // If this is an non-standard-aligned LOAD, the first result is the loaded
16133 // value. Bitcast it to the expected result type.
16134 if (AlignedVecTy
!= VecTy
&& N
->getOpcode() == ISD::LOAD
) {
16135 SDValue
&LdVal
= NewResults
[0];
16136 LdVal
= DAG
.getNode(ISD::BITCAST
, dl
, VecTy
, LdVal
);
16139 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+ 1)); // chain
16140 DCI
.CombineTo(N
, NewResults
);
16141 DCI
.CombineTo(User
.N
, SDValue(UpdN
.getNode(), NumResultVecs
));
16146 // If (opcode ptr inc) is and ADD-like instruction, return the
16147 // increment value. Otherwise return 0.
16148 static unsigned getPointerConstIncrement(unsigned Opcode
, SDValue Ptr
,
16149 SDValue Inc
, const SelectionDAG
&DAG
) {
16150 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
16155 case ARMISD::VLD1_UPD
:
16157 return CInc
->getZExtValue();
16159 if (DAG
.haveNoCommonBitsSet(Ptr
, Inc
)) {
16160 // (OR ptr inc) is the same as (ADD ptr inc)
16161 return CInc
->getZExtValue();
16170 static bool findPointerConstIncrement(SDNode
*N
, SDValue
*Ptr
, SDValue
*CInc
) {
16171 switch (N
->getOpcode()) {
16174 if (isa
<ConstantSDNode
>(N
->getOperand(1))) {
16175 *Ptr
= N
->getOperand(0);
16176 *CInc
= N
->getOperand(1);
16181 case ARMISD::VLD1_UPD
: {
16182 if (isa
<ConstantSDNode
>(N
->getOperand(2))) {
16183 *Ptr
= N
->getOperand(1);
16184 *CInc
= N
->getOperand(2);
16194 static bool isValidBaseUpdate(SDNode
*N
, SDNode
*User
) {
16195 // Check that the add is independent of the load/store.
16196 // Otherwise, folding it would create a cycle. Search through Addr
16197 // as well, since the User may not be a direct user of Addr and
16198 // only share a base pointer.
16199 SmallPtrSet
<const SDNode
*, 32> Visited
;
16200 SmallVector
<const SDNode
*, 16> Worklist
;
16201 Worklist
.push_back(N
);
16202 Worklist
.push_back(User
);
16203 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
16204 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
16209 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
16210 /// NEON load/store intrinsics, and generic vector load/stores, to merge
16211 /// base address updates.
16212 /// For generic load/stores, the memory type is assumed to be a vector.
16213 /// The caller is assumed to have checked legality.
16214 static SDValue
CombineBaseUpdate(SDNode
*N
,
16215 TargetLowering::DAGCombinerInfo
&DCI
) {
16216 const bool isIntrinsic
= (N
->getOpcode() == ISD::INTRINSIC_VOID
||
16217 N
->getOpcode() == ISD::INTRINSIC_W_CHAIN
);
16218 const bool isStore
= N
->getOpcode() == ISD::STORE
;
16219 const unsigned AddrOpIdx
= ((isIntrinsic
|| isStore
) ? 2 : 1);
16220 BaseUpdateTarget Target
= {N
, isIntrinsic
, isStore
, AddrOpIdx
};
16222 SDValue Addr
= N
->getOperand(AddrOpIdx
);
16224 SmallVector
<BaseUpdateUser
, 8> BaseUpdates
;
16226 // Search for a use of the address operand that is an increment.
16227 for (SDUse
&Use
: Addr
->uses()) {
16228 SDNode
*User
= Use
.getUser();
16229 if (Use
.getResNo() != Addr
.getResNo() || User
->getNumOperands() != 2)
16232 SDValue Inc
= User
->getOperand(Use
.getOperandNo() == 1 ? 0 : 1);
16233 unsigned ConstInc
=
16234 getPointerConstIncrement(User
->getOpcode(), Addr
, Inc
, DCI
.DAG
);
16236 if (ConstInc
|| User
->getOpcode() == ISD::ADD
)
16237 BaseUpdates
.push_back({User
, Inc
, ConstInc
});
16240 // If the address is a constant pointer increment itself, find
16241 // another constant increment that has the same base operand
16244 if (findPointerConstIncrement(Addr
.getNode(), &Base
, &CInc
)) {
16246 getPointerConstIncrement(Addr
->getOpcode(), Base
, CInc
, DCI
.DAG
);
16247 for (SDUse
&Use
: Base
->uses()) {
16249 SDNode
*User
= Use
.getUser();
16250 if (Use
.getResNo() != Base
.getResNo() || User
== Addr
.getNode() ||
16251 User
->getNumOperands() != 2)
16254 SDValue UserInc
= User
->getOperand(Use
.getOperandNo() == 0 ? 1 : 0);
16255 unsigned UserOffset
=
16256 getPointerConstIncrement(User
->getOpcode(), Base
, UserInc
, DCI
.DAG
);
16258 if (!UserOffset
|| UserOffset
<= Offset
)
16261 unsigned NewConstInc
= UserOffset
- Offset
;
16262 SDValue NewInc
= DCI
.DAG
.getConstant(NewConstInc
, SDLoc(N
), MVT::i32
);
16263 BaseUpdates
.push_back({User
, NewInc
, NewConstInc
});
16267 // Try to fold the load/store with an update that matches memory
16268 // access size. This should work well for sequential loads.
16270 // Filter out invalid updates as well.
16271 unsigned NumValidUpd
= BaseUpdates
.size();
16272 for (unsigned I
= 0; I
< NumValidUpd
;) {
16273 BaseUpdateUser
&User
= BaseUpdates
[I
];
16274 if (!isValidBaseUpdate(N
, User
.N
)) {
16276 std::swap(BaseUpdates
[I
], BaseUpdates
[NumValidUpd
]);
16280 if (TryCombineBaseUpdate(Target
, User
, /*SimpleConstIncOnly=*/true, DCI
))
16284 BaseUpdates
.resize(NumValidUpd
);
16286 // Try to fold with other users. Non-constant updates are considered
16287 // first, and constant updates are sorted to not break a sequence of
16288 // strided accesses (if there is any).
16289 std::stable_sort(BaseUpdates
.begin(), BaseUpdates
.end(),
16290 [](const BaseUpdateUser
&LHS
, const BaseUpdateUser
&RHS
) {
16291 return LHS
.ConstInc
< RHS
.ConstInc
;
16293 for (BaseUpdateUser
&User
: BaseUpdates
) {
16294 if (TryCombineBaseUpdate(Target
, User
, /*SimpleConstIncOnly=*/false, DCI
))
16300 static SDValue
PerformVLDCombine(SDNode
*N
,
16301 TargetLowering::DAGCombinerInfo
&DCI
) {
16302 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
16305 return CombineBaseUpdate(N
, DCI
);
16308 static SDValue
PerformMVEVLDCombine(SDNode
*N
,
16309 TargetLowering::DAGCombinerInfo
&DCI
) {
16310 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
16313 SelectionDAG
&DAG
= DCI
.DAG
;
16314 SDValue Addr
= N
->getOperand(2);
16315 MemSDNode
*MemN
= cast
<MemSDNode
>(N
);
16318 // For the stores, where there are multiple intrinsics we only actually want
16319 // to post-inc the last of the them.
16320 unsigned IntNo
= N
->getConstantOperandVal(1);
16321 if (IntNo
== Intrinsic::arm_mve_vst2q
&& N
->getConstantOperandVal(5) != 1)
16323 if (IntNo
== Intrinsic::arm_mve_vst4q
&& N
->getConstantOperandVal(7) != 3)
16326 // Search for a use of the address operand that is an increment.
16327 for (SDUse
&Use
: Addr
->uses()) {
16328 SDNode
*User
= Use
.getUser();
16329 if (User
->getOpcode() != ISD::ADD
|| Use
.getResNo() != Addr
.getResNo())
16332 // Check that the add is independent of the load/store. Otherwise, folding
16333 // it would create a cycle. We can avoid searching through Addr as it's a
16334 // predecessor to both.
16335 SmallPtrSet
<const SDNode
*, 32> Visited
;
16336 SmallVector
<const SDNode
*, 16> Worklist
;
16337 Visited
.insert(Addr
.getNode());
16338 Worklist
.push_back(N
);
16339 Worklist
.push_back(User
);
16340 if (SDNode::hasPredecessorHelper(N
, Visited
, Worklist
) ||
16341 SDNode::hasPredecessorHelper(User
, Visited
, Worklist
))
16344 // Find the new opcode for the updating load/store.
16345 bool isLoadOp
= true;
16346 unsigned NewOpc
= 0;
16347 unsigned NumVecs
= 0;
16350 llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
16351 case Intrinsic::arm_mve_vld2q
:
16352 NewOpc
= ARMISD::VLD2_UPD
;
16355 case Intrinsic::arm_mve_vld4q
:
16356 NewOpc
= ARMISD::VLD4_UPD
;
16359 case Intrinsic::arm_mve_vst2q
:
16360 NewOpc
= ARMISD::VST2_UPD
;
16364 case Intrinsic::arm_mve_vst4q
:
16365 NewOpc
= ARMISD::VST4_UPD
;
16371 // Find the size of memory referenced by the load/store.
16374 VecTy
= N
->getValueType(0);
16376 VecTy
= N
->getOperand(3).getValueType();
16379 unsigned NumBytes
= NumVecs
* VecTy
.getSizeInBits() / 8;
16381 // If the increment is a constant, it must match the memory ref size.
16382 SDValue Inc
= User
->getOperand(User
->getOperand(0) == Addr
? 1 : 0);
16383 ConstantSDNode
*CInc
= dyn_cast
<ConstantSDNode
>(Inc
.getNode());
16384 if (!CInc
|| CInc
->getZExtValue() != NumBytes
)
16387 // Create the new updating load/store node.
16388 // First, create an SDVTList for the new updating node's results.
16390 unsigned NumResultVecs
= (isLoadOp
? NumVecs
: 0);
16392 for (n
= 0; n
< NumResultVecs
; ++n
)
16394 Tys
[n
++] = MVT::i32
;
16395 Tys
[n
] = MVT::Other
;
16396 SDVTList SDTys
= DAG
.getVTList(ArrayRef(Tys
, NumResultVecs
+ 2));
16398 // Then, gather the new node's operands.
16399 SmallVector
<SDValue
, 8> Ops
;
16400 Ops
.push_back(N
->getOperand(0)); // incoming chain
16401 Ops
.push_back(N
->getOperand(2)); // ptr
16402 Ops
.push_back(Inc
);
16404 for (unsigned i
= 3; i
< N
->getNumOperands(); ++i
)
16405 Ops
.push_back(N
->getOperand(i
));
16407 SDValue UpdN
= DAG
.getMemIntrinsicNode(NewOpc
, dl
, SDTys
, Ops
, VecTy
,
16408 MemN
->getMemOperand());
16410 // Update the uses.
16411 SmallVector
<SDValue
, 5> NewResults
;
16412 for (unsigned i
= 0; i
< NumResultVecs
; ++i
)
16413 NewResults
.push_back(SDValue(UpdN
.getNode(), i
));
16415 NewResults
.push_back(SDValue(UpdN
.getNode(), NumResultVecs
+ 1)); // chain
16416 DCI
.CombineTo(N
, NewResults
);
16417 DCI
.CombineTo(User
, SDValue(UpdN
.getNode(), NumResultVecs
));
16425 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
16426 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
16427 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
16429 static bool CombineVLDDUP(SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) {
16430 SelectionDAG
&DAG
= DCI
.DAG
;
16431 EVT VT
= N
->getValueType(0);
16432 // vldN-dup instructions only support 64-bit vectors for N > 1.
16433 if (!VT
.is64BitVector())
16436 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
16437 SDNode
*VLD
= N
->getOperand(0).getNode();
16438 if (VLD
->getOpcode() != ISD::INTRINSIC_W_CHAIN
)
16440 unsigned NumVecs
= 0;
16441 unsigned NewOpc
= 0;
16442 unsigned IntNo
= VLD
->getConstantOperandVal(1);
16443 if (IntNo
== Intrinsic::arm_neon_vld2lane
) {
16445 NewOpc
= ARMISD::VLD2DUP
;
16446 } else if (IntNo
== Intrinsic::arm_neon_vld3lane
) {
16448 NewOpc
= ARMISD::VLD3DUP
;
16449 } else if (IntNo
== Intrinsic::arm_neon_vld4lane
) {
16451 NewOpc
= ARMISD::VLD4DUP
;
16456 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
16457 // numbers match the load.
16458 unsigned VLDLaneNo
= VLD
->getConstantOperandVal(NumVecs
+ 3);
16459 for (SDUse
&Use
: VLD
->uses()) {
16460 // Ignore uses of the chain result.
16461 if (Use
.getResNo() == NumVecs
)
16463 SDNode
*User
= Use
.getUser();
16464 if (User
->getOpcode() != ARMISD::VDUPLANE
||
16465 VLDLaneNo
!= User
->getConstantOperandVal(1))
16469 // Create the vldN-dup node.
16472 for (n
= 0; n
< NumVecs
; ++n
)
16474 Tys
[n
] = MVT::Other
;
16475 SDVTList SDTys
= DAG
.getVTList(ArrayRef(Tys
, NumVecs
+ 1));
16476 SDValue Ops
[] = { VLD
->getOperand(0), VLD
->getOperand(2) };
16477 MemIntrinsicSDNode
*VLDMemInt
= cast
<MemIntrinsicSDNode
>(VLD
);
16478 SDValue VLDDup
= DAG
.getMemIntrinsicNode(NewOpc
, SDLoc(VLD
), SDTys
,
16479 Ops
, VLDMemInt
->getMemoryVT(),
16480 VLDMemInt
->getMemOperand());
16482 // Update the uses.
16483 for (SDUse
&Use
: VLD
->uses()) {
16484 unsigned ResNo
= Use
.getResNo();
16485 // Ignore uses of the chain result.
16486 if (ResNo
== NumVecs
)
16488 DCI
.CombineTo(Use
.getUser(), SDValue(VLDDup
.getNode(), ResNo
));
16491 // Now the vldN-lane intrinsic is dead except for its chain result.
16492 // Update uses of the chain.
16493 std::vector
<SDValue
> VLDDupResults
;
16494 for (unsigned n
= 0; n
< NumVecs
; ++n
)
16495 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), n
));
16496 VLDDupResults
.push_back(SDValue(VLDDup
.getNode(), NumVecs
));
16497 DCI
.CombineTo(VLD
, VLDDupResults
);
16502 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
16503 /// ARMISD::VDUPLANE.
16504 static SDValue
PerformVDUPLANECombine(SDNode
*N
,
16505 TargetLowering::DAGCombinerInfo
&DCI
,
16506 const ARMSubtarget
*Subtarget
) {
16507 SDValue Op
= N
->getOperand(0);
16508 EVT VT
= N
->getValueType(0);
16510 // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
16511 if (Subtarget
->hasMVEIntegerOps()) {
16512 EVT ExtractVT
= VT
.getVectorElementType();
16513 // We need to ensure we are creating a legal type.
16514 if (!DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(ExtractVT
))
16515 ExtractVT
= MVT::i32
;
16516 SDValue Extract
= DCI
.DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, SDLoc(N
), ExtractVT
,
16517 N
->getOperand(0), N
->getOperand(1));
16518 return DCI
.DAG
.getNode(ARMISD::VDUP
, SDLoc(N
), VT
, Extract
);
16521 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
16522 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
16523 if (CombineVLDDUP(N
, DCI
))
16524 return SDValue(N
, 0);
16526 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
16527 // redundant. Ignore bit_converts for now; element sizes are checked below.
16528 while (Op
.getOpcode() == ISD::BITCAST
)
16529 Op
= Op
.getOperand(0);
16530 if (Op
.getOpcode() != ARMISD::VMOVIMM
&& Op
.getOpcode() != ARMISD::VMVNIMM
)
16533 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
16534 unsigned EltSize
= Op
.getScalarValueSizeInBits();
16535 // The canonical VMOV for a zero vector uses a 32-bit element size.
16536 unsigned Imm
= Op
.getConstantOperandVal(0);
16538 if (ARM_AM::decodeVMOVModImm(Imm
, EltBits
) == 0)
16540 if (EltSize
> VT
.getScalarSizeInBits())
16543 return DCI
.DAG
.getNode(ISD::BITCAST
, SDLoc(N
), VT
, Op
);
16546 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
16547 static SDValue
PerformVDUPCombine(SDNode
*N
, SelectionDAG
&DAG
,
16548 const ARMSubtarget
*Subtarget
) {
16549 SDValue Op
= N
->getOperand(0);
16552 if (Subtarget
->hasMVEIntegerOps()) {
16553 // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
16554 // need to come from a GPR.
16555 if (Op
.getValueType() == MVT::f32
)
16556 return DAG
.getNode(ARMISD::VDUP
, dl
, N
->getValueType(0),
16557 DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
));
16558 else if (Op
.getValueType() == MVT::f16
)
16559 return DAG
.getNode(ARMISD::VDUP
, dl
, N
->getValueType(0),
16560 DAG
.getNode(ARMISD::VMOVrh
, dl
, MVT::i32
, Op
));
16563 if (!Subtarget
->hasNEON())
16566 // Match VDUP(LOAD) -> VLD1DUP.
16567 // We match this pattern here rather than waiting for isel because the
16568 // transform is only legal for unindexed loads.
16569 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(Op
.getNode());
16570 if (LD
&& Op
.hasOneUse() && LD
->isUnindexed() &&
16571 LD
->getMemoryVT() == N
->getValueType(0).getVectorElementType()) {
16572 SDValue Ops
[] = {LD
->getOperand(0), LD
->getOperand(1),
16573 DAG
.getConstant(LD
->getAlign().value(), SDLoc(N
), MVT::i32
)};
16574 SDVTList SDTys
= DAG
.getVTList(N
->getValueType(0), MVT::Other
);
16576 DAG
.getMemIntrinsicNode(ARMISD::VLD1DUP
, SDLoc(N
), SDTys
, Ops
,
16577 LD
->getMemoryVT(), LD
->getMemOperand());
16578 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), VLDDup
.getValue(1));
16585 static SDValue
PerformLOADCombine(SDNode
*N
,
16586 TargetLowering::DAGCombinerInfo
&DCI
,
16587 const ARMSubtarget
*Subtarget
) {
16588 EVT VT
= N
->getValueType(0);
16590 // If this is a legal vector load, try to combine it into a VLD1_UPD.
16591 if (Subtarget
->hasNEON() && ISD::isNormalLoad(N
) && VT
.isVector() &&
16592 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
16593 return CombineBaseUpdate(N
, DCI
);
16598 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
16599 // pack all of the elements in one place. Next, store to memory in fewer
16601 static SDValue
PerformTruncatingStoreCombine(StoreSDNode
*St
,
16602 SelectionDAG
&DAG
) {
16603 SDValue StVal
= St
->getValue();
16604 EVT VT
= StVal
.getValueType();
16605 if (!St
->isTruncatingStore() || !VT
.isVector())
16607 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
16608 EVT StVT
= St
->getMemoryVT();
16609 unsigned NumElems
= VT
.getVectorNumElements();
16610 assert(StVT
!= VT
&& "Cannot truncate to the same type");
16611 unsigned FromEltSz
= VT
.getScalarSizeInBits();
16612 unsigned ToEltSz
= StVT
.getScalarSizeInBits();
16614 // From, To sizes and ElemCount must be pow of two
16615 if (!isPowerOf2_32(NumElems
* FromEltSz
* ToEltSz
))
16618 // We are going to use the original vector elt for storing.
16619 // Accumulated smaller vector elements must be a multiple of the store size.
16620 if (0 != (NumElems
* FromEltSz
) % ToEltSz
)
16623 unsigned SizeRatio
= FromEltSz
/ ToEltSz
;
16624 assert(SizeRatio
* NumElems
* ToEltSz
== VT
.getSizeInBits());
16626 // Create a type on which we perform the shuffle.
16627 EVT WideVecVT
= EVT::getVectorVT(*DAG
.getContext(), StVT
.getScalarType(),
16628 NumElems
* SizeRatio
);
16629 assert(WideVecVT
.getSizeInBits() == VT
.getSizeInBits());
16632 SDValue WideVec
= DAG
.getNode(ISD::BITCAST
, DL
, WideVecVT
, StVal
);
16633 SmallVector
<int, 8> ShuffleVec(NumElems
* SizeRatio
, -1);
16634 for (unsigned i
= 0; i
< NumElems
; ++i
)
16635 ShuffleVec
[i
] = DAG
.getDataLayout().isBigEndian() ? (i
+ 1) * SizeRatio
- 1
16638 // Can't shuffle using an illegal type.
16639 if (!TLI
.isTypeLegal(WideVecVT
))
16642 SDValue Shuff
= DAG
.getVectorShuffle(
16643 WideVecVT
, DL
, WideVec
, DAG
.getUNDEF(WideVec
.getValueType()), ShuffleVec
);
16644 // At this point all of the data is stored at the bottom of the
16645 // register. We now need to save it to mem.
16647 // Find the largest store unit
16648 MVT StoreType
= MVT::i8
;
16649 for (MVT Tp
: MVT::integer_valuetypes()) {
16650 if (TLI
.isTypeLegal(Tp
) && Tp
.getSizeInBits() <= NumElems
* ToEltSz
)
16653 // Didn't find a legal store type.
16654 if (!TLI
.isTypeLegal(StoreType
))
16657 // Bitcast the original vector into a vector of store-size units
16659 EVT::getVectorVT(*DAG
.getContext(), StoreType
,
16660 VT
.getSizeInBits() / EVT(StoreType
).getSizeInBits());
16661 assert(StoreVecVT
.getSizeInBits() == VT
.getSizeInBits());
16662 SDValue ShuffWide
= DAG
.getNode(ISD::BITCAST
, DL
, StoreVecVT
, Shuff
);
16663 SmallVector
<SDValue
, 8> Chains
;
16664 SDValue Increment
= DAG
.getConstant(StoreType
.getSizeInBits() / 8, DL
,
16665 TLI
.getPointerTy(DAG
.getDataLayout()));
16666 SDValue BasePtr
= St
->getBasePtr();
16668 // Perform one or more big stores into memory.
16669 unsigned E
= (ToEltSz
* NumElems
) / StoreType
.getSizeInBits();
16670 for (unsigned I
= 0; I
< E
; I
++) {
16671 SDValue SubVec
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, StoreType
,
16672 ShuffWide
, DAG
.getIntPtrConstant(I
, DL
));
16674 DAG
.getStore(St
->getChain(), DL
, SubVec
, BasePtr
, St
->getPointerInfo(),
16675 St
->getAlign(), St
->getMemOperand()->getFlags());
16677 DAG
.getNode(ISD::ADD
, DL
, BasePtr
.getValueType(), BasePtr
, Increment
);
16678 Chains
.push_back(Ch
);
16680 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
16683 // Try taking a single vector store from an fpround (which would otherwise turn
16684 // into an expensive buildvector) and splitting it into a series of narrowing
16686 static SDValue
PerformSplittingToNarrowingStores(StoreSDNode
*St
,
16687 SelectionDAG
&DAG
) {
16688 if (!St
->isSimple() || St
->isTruncatingStore() || !St
->isUnindexed())
16690 SDValue Trunc
= St
->getValue();
16691 if (Trunc
->getOpcode() != ISD::FP_ROUND
)
16693 EVT FromVT
= Trunc
->getOperand(0).getValueType();
16694 EVT ToVT
= Trunc
.getValueType();
16695 if (!ToVT
.isVector())
16697 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
16698 EVT ToEltVT
= ToVT
.getVectorElementType();
16699 EVT FromEltVT
= FromVT
.getVectorElementType();
16701 if (FromEltVT
!= MVT::f32
|| ToEltVT
!= MVT::f16
)
16704 unsigned NumElements
= 4;
16705 if (FromVT
.getVectorNumElements() % NumElements
!= 0)
16708 // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
16709 // use the VMOVN over splitting the store. We are looking for patterns of:
16710 // !rev: 0 N 1 N+1 2 N+2 ...
16711 // rev: N 0 N+1 1 N+2 2 ...
16712 // The shuffle may either be a single source (in which case N = NumElts/2) or
16713 // two inputs extended with concat to the same size (in which case N =
16715 auto isVMOVNShuffle
= [&](ShuffleVectorSDNode
*SVN
, bool Rev
) {
16716 ArrayRef
<int> M
= SVN
->getMask();
16717 unsigned NumElts
= ToVT
.getVectorNumElements();
16718 if (SVN
->getOperand(1).isUndef())
16721 unsigned Off0
= Rev
? NumElts
: 0;
16722 unsigned Off1
= Rev
? 0 : NumElts
;
16724 for (unsigned I
= 0; I
< NumElts
; I
+= 2) {
16725 if (M
[I
] >= 0 && M
[I
] != (int)(Off0
+ I
/ 2))
16727 if (M
[I
+ 1] >= 0 && M
[I
+ 1] != (int)(Off1
+ I
/ 2))
16734 if (auto *Shuffle
= dyn_cast
<ShuffleVectorSDNode
>(Trunc
.getOperand(0)))
16735 if (isVMOVNShuffle(Shuffle
, false) || isVMOVNShuffle(Shuffle
, true))
16738 LLVMContext
&C
= *DAG
.getContext();
16740 // Details about the old store
16741 SDValue Ch
= St
->getChain();
16742 SDValue BasePtr
= St
->getBasePtr();
16743 Align Alignment
= St
->getOriginalAlign();
16744 MachineMemOperand::Flags MMOFlags
= St
->getMemOperand()->getFlags();
16745 AAMDNodes AAInfo
= St
->getAAInfo();
16747 // We split the store into slices of NumElements. fp16 trunc stores are vcvt
16748 // and then stored as truncating integer stores.
16749 EVT NewFromVT
= EVT::getVectorVT(C
, FromEltVT
, NumElements
);
16750 EVT NewToVT
= EVT::getVectorVT(
16751 C
, EVT::getIntegerVT(C
, ToEltVT
.getSizeInBits()), NumElements
);
16753 SmallVector
<SDValue
, 4> Stores
;
16754 for (unsigned i
= 0; i
< FromVT
.getVectorNumElements() / NumElements
; i
++) {
16755 unsigned NewOffset
= i
* NumElements
* ToEltVT
.getSizeInBits() / 8;
16757 DAG
.getObjectPtrOffset(DL
, BasePtr
, TypeSize::getFixed(NewOffset
));
16760 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, NewFromVT
, Trunc
.getOperand(0),
16761 DAG
.getConstant(i
* NumElements
, DL
, MVT::i32
));
16764 DAG
.getNode(ARMISD::VCVTN
, DL
, MVT::v8f16
, DAG
.getUNDEF(MVT::v8f16
),
16765 Extract
, DAG
.getConstant(0, DL
, MVT::i32
));
16766 Extract
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, MVT::v4i32
, FPTrunc
);
16768 SDValue Store
= DAG
.getTruncStore(
16769 Ch
, DL
, Extract
, NewPtr
, St
->getPointerInfo().getWithOffset(NewOffset
),
16770 NewToVT
, Alignment
, MMOFlags
, AAInfo
);
16771 Stores
.push_back(Store
);
16773 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Stores
);
16776 // Try taking a single vector store from an MVETRUNC (which would otherwise turn
16777 // into an expensive buildvector) and splitting it into a series of narrowing
16779 static SDValue
PerformSplittingMVETruncToNarrowingStores(StoreSDNode
*St
,
16780 SelectionDAG
&DAG
) {
16781 if (!St
->isSimple() || St
->isTruncatingStore() || !St
->isUnindexed())
16783 SDValue Trunc
= St
->getValue();
16784 if (Trunc
->getOpcode() != ARMISD::MVETRUNC
)
16786 EVT FromVT
= Trunc
->getOperand(0).getValueType();
16787 EVT ToVT
= Trunc
.getValueType();
16789 LLVMContext
&C
= *DAG
.getContext();
16791 // Details about the old store
16792 SDValue Ch
= St
->getChain();
16793 SDValue BasePtr
= St
->getBasePtr();
16794 Align Alignment
= St
->getOriginalAlign();
16795 MachineMemOperand::Flags MMOFlags
= St
->getMemOperand()->getFlags();
16796 AAMDNodes AAInfo
= St
->getAAInfo();
16798 EVT NewToVT
= EVT::getVectorVT(C
, ToVT
.getVectorElementType(),
16799 FromVT
.getVectorNumElements());
16801 SmallVector
<SDValue
, 4> Stores
;
16802 for (unsigned i
= 0; i
< Trunc
.getNumOperands(); i
++) {
16803 unsigned NewOffset
=
16804 i
* FromVT
.getVectorNumElements() * ToVT
.getScalarSizeInBits() / 8;
16806 DAG
.getObjectPtrOffset(DL
, BasePtr
, TypeSize::getFixed(NewOffset
));
16808 SDValue Extract
= Trunc
.getOperand(i
);
16809 SDValue Store
= DAG
.getTruncStore(
16810 Ch
, DL
, Extract
, NewPtr
, St
->getPointerInfo().getWithOffset(NewOffset
),
16811 NewToVT
, Alignment
, MMOFlags
, AAInfo
);
16812 Stores
.push_back(Store
);
16814 return DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Stores
);
16817 // Given a floating point store from an extracted vector, with an integer
16818 // VGETLANE that already exists, store the existing VGETLANEu directly. This can
16819 // help reduce fp register pressure, doesn't require the fp extract and allows
16820 // use of more integer post-inc stores not available with vstr.
16821 static SDValue
PerformExtractFpToIntStores(StoreSDNode
*St
, SelectionDAG
&DAG
) {
16822 if (!St
->isSimple() || St
->isTruncatingStore() || !St
->isUnindexed())
16824 SDValue Extract
= St
->getValue();
16825 EVT VT
= Extract
.getValueType();
16826 // For now only uses f16. This may be useful for f32 too, but that will
16827 // be bitcast(extract), not the VGETLANEu we currently check here.
16828 if (VT
!= MVT::f16
|| Extract
->getOpcode() != ISD::EXTRACT_VECTOR_ELT
)
16832 DAG
.getNodeIfExists(ARMISD::VGETLANEu
, DAG
.getVTList(MVT::i32
),
16833 {Extract
.getOperand(0), Extract
.getOperand(1)});
16837 LLVMContext
&C
= *DAG
.getContext();
16839 // Create a new integer store to replace the existing floating point version.
16840 SDValue Ch
= St
->getChain();
16841 SDValue BasePtr
= St
->getBasePtr();
16842 Align Alignment
= St
->getOriginalAlign();
16843 MachineMemOperand::Flags MMOFlags
= St
->getMemOperand()->getFlags();
16844 AAMDNodes AAInfo
= St
->getAAInfo();
16845 EVT NewToVT
= EVT::getIntegerVT(C
, VT
.getSizeInBits());
16846 SDValue Store
= DAG
.getTruncStore(Ch
, DL
, SDValue(GetLane
, 0), BasePtr
,
16847 St
->getPointerInfo(), NewToVT
, Alignment
,
16853 /// PerformSTORECombine - Target-specific dag combine xforms for
16855 static SDValue
PerformSTORECombine(SDNode
*N
,
16856 TargetLowering::DAGCombinerInfo
&DCI
,
16857 const ARMSubtarget
*Subtarget
) {
16858 StoreSDNode
*St
= cast
<StoreSDNode
>(N
);
16859 if (St
->isVolatile())
16861 SDValue StVal
= St
->getValue();
16862 EVT VT
= StVal
.getValueType();
16864 if (Subtarget
->hasNEON())
16865 if (SDValue Store
= PerformTruncatingStoreCombine(St
, DCI
.DAG
))
16868 if (Subtarget
->hasMVEFloatOps())
16869 if (SDValue NewToken
= PerformSplittingToNarrowingStores(St
, DCI
.DAG
))
16872 if (Subtarget
->hasMVEIntegerOps()) {
16873 if (SDValue NewChain
= PerformExtractFpToIntStores(St
, DCI
.DAG
))
16875 if (SDValue NewToken
=
16876 PerformSplittingMVETruncToNarrowingStores(St
, DCI
.DAG
))
16880 if (!ISD::isNormalStore(St
))
16883 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
16884 // ARM stores of arguments in the same cache line.
16885 if (StVal
.getNode()->getOpcode() == ARMISD::VMOVDRR
&&
16886 StVal
.getNode()->hasOneUse()) {
16887 SelectionDAG
&DAG
= DCI
.DAG
;
16888 bool isBigEndian
= DAG
.getDataLayout().isBigEndian();
16890 SDValue BasePtr
= St
->getBasePtr();
16891 SDValue NewST1
= DAG
.getStore(
16892 St
->getChain(), DL
, StVal
.getNode()->getOperand(isBigEndian
? 1 : 0),
16893 BasePtr
, St
->getPointerInfo(), St
->getOriginalAlign(),
16894 St
->getMemOperand()->getFlags());
16896 SDValue OffsetPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
,
16897 DAG
.getConstant(4, DL
, MVT::i32
));
16898 return DAG
.getStore(NewST1
.getValue(0), DL
,
16899 StVal
.getNode()->getOperand(isBigEndian
? 0 : 1),
16900 OffsetPtr
, St
->getPointerInfo().getWithOffset(4),
16901 St
->getOriginalAlign(),
16902 St
->getMemOperand()->getFlags());
16905 if (StVal
.getValueType() == MVT::i64
&&
16906 StVal
.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
16908 // Bitcast an i64 store extracted from a vector to f64.
16909 // Otherwise, the i64 value will be legalized to a pair of i32 values.
16910 SelectionDAG
&DAG
= DCI
.DAG
;
16912 SDValue IntVec
= StVal
.getOperand(0);
16913 EVT FloatVT
= EVT::getVectorVT(*DAG
.getContext(), MVT::f64
,
16914 IntVec
.getValueType().getVectorNumElements());
16915 SDValue Vec
= DAG
.getNode(ISD::BITCAST
, dl
, FloatVT
, IntVec
);
16916 SDValue ExtElt
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, dl
, MVT::f64
,
16917 Vec
, StVal
.getOperand(1));
16919 SDValue V
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i64
, ExtElt
);
16920 // Make the DAGCombiner fold the bitcasts.
16921 DCI
.AddToWorklist(Vec
.getNode());
16922 DCI
.AddToWorklist(ExtElt
.getNode());
16923 DCI
.AddToWorklist(V
.getNode());
16924 return DAG
.getStore(St
->getChain(), dl
, V
, St
->getBasePtr(),
16925 St
->getPointerInfo(), St
->getAlign(),
16926 St
->getMemOperand()->getFlags(), St
->getAAInfo());
16929 // If this is a legal vector store, try to combine it into a VST1_UPD.
16930 if (Subtarget
->hasNEON() && ISD::isNormalStore(N
) && VT
.isVector() &&
16931 DCI
.DAG
.getTargetLoweringInfo().isTypeLegal(VT
))
16932 return CombineBaseUpdate(N
, DCI
);
16937 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
16938 /// can replace combinations of VMUL and VCVT (floating-point to integer)
16939 /// when the VMUL has a constant operand that is a power of 2.
16941 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16942 /// vmul.f32 d16, d17, d16
16943 /// vcvt.s32.f32 d16, d16
16945 /// vcvt.s32.f32 d16, d16, #3
16946 static SDValue
PerformVCVTCombine(SDNode
*N
, SelectionDAG
&DAG
,
16947 const ARMSubtarget
*Subtarget
) {
16948 if (!Subtarget
->hasNEON())
16951 SDValue Op
= N
->getOperand(0);
16952 if (!Op
.getValueType().isVector() || !Op
.getValueType().isSimple() ||
16953 Op
.getOpcode() != ISD::FMUL
)
16956 SDValue ConstVec
= Op
->getOperand(1);
16957 if (!isa
<BuildVectorSDNode
>(ConstVec
))
16960 MVT FloatTy
= Op
.getSimpleValueType().getVectorElementType();
16961 uint32_t FloatBits
= FloatTy
.getSizeInBits();
16962 MVT IntTy
= N
->getSimpleValueType(0).getVectorElementType();
16963 uint32_t IntBits
= IntTy
.getSizeInBits();
16964 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
16965 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
16966 // These instructions only exist converting from f32 to i32. We can handle
16967 // smaller integers by generating an extra truncate, but larger ones would
16968 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
16969 // these intructions only support v2i32/v4i32 types.
16973 BitVector UndefElements
;
16974 BuildVectorSDNode
*BV
= cast
<BuildVectorSDNode
>(ConstVec
);
16975 int32_t C
= BV
->getConstantFPSplatPow2ToLog2Int(&UndefElements
, 33);
16976 if (C
== -1 || C
== 0 || C
> 32)
16980 bool isSigned
= N
->getOpcode() == ISD::FP_TO_SINT
;
16981 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfp2fxs
:
16982 Intrinsic::arm_neon_vcvtfp2fxu
;
16983 SDValue FixConv
= DAG
.getNode(
16984 ISD::INTRINSIC_WO_CHAIN
, dl
, NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
,
16985 DAG
.getConstant(IntrinsicOpcode
, dl
, MVT::i32
), Op
->getOperand(0),
16986 DAG
.getConstant(C
, dl
, MVT::i32
));
16988 if (IntBits
< FloatBits
)
16989 FixConv
= DAG
.getNode(ISD::TRUNCATE
, dl
, N
->getValueType(0), FixConv
);
16994 static SDValue
PerformFAddVSelectCombine(SDNode
*N
, SelectionDAG
&DAG
,
16995 const ARMSubtarget
*Subtarget
) {
16996 if (!Subtarget
->hasMVEFloatOps())
16999 // Turn (fadd x, (vselect c, y, -0.0)) into (vselect c, (fadd x, y), x)
17000 // The second form can be more easily turned into a predicated vadd, and
17001 // possibly combined into a fma to become a predicated vfma.
17002 SDValue Op0
= N
->getOperand(0);
17003 SDValue Op1
= N
->getOperand(1);
17004 EVT VT
= N
->getValueType(0);
17007 // The identity element for a fadd is -0.0 or +0.0 when the nsz flag is set,
17008 // which these VMOV's represent.
17009 auto isIdentitySplat
= [&](SDValue Op
, bool NSZ
) {
17010 if (Op
.getOpcode() != ISD::BITCAST
||
17011 Op
.getOperand(0).getOpcode() != ARMISD::VMOVIMM
)
17013 uint64_t ImmVal
= Op
.getOperand(0).getConstantOperandVal(0);
17014 if (VT
== MVT::v4f32
&& (ImmVal
== 1664 || (ImmVal
== 0 && NSZ
)))
17016 if (VT
== MVT::v8f16
&& (ImmVal
== 2688 || (ImmVal
== 0 && NSZ
)))
17021 if (Op0
.getOpcode() == ISD::VSELECT
&& Op1
.getOpcode() != ISD::VSELECT
)
17022 std::swap(Op0
, Op1
);
17024 if (Op1
.getOpcode() != ISD::VSELECT
)
17027 SDNodeFlags FaddFlags
= N
->getFlags();
17028 bool NSZ
= FaddFlags
.hasNoSignedZeros();
17029 if (!isIdentitySplat(Op1
.getOperand(2), NSZ
))
17033 DAG
.getNode(ISD::FADD
, DL
, VT
, Op0
, Op1
.getOperand(1), FaddFlags
);
17034 return DAG
.getNode(ISD::VSELECT
, DL
, VT
, Op1
.getOperand(0), FAdd
, Op0
, FaddFlags
);
17037 static SDValue
PerformFADDVCMLACombine(SDNode
*N
, SelectionDAG
&DAG
) {
17038 SDValue LHS
= N
->getOperand(0);
17039 SDValue RHS
= N
->getOperand(1);
17040 EVT VT
= N
->getValueType(0);
17043 if (!N
->getFlags().hasAllowReassociation())
17046 // Combine fadd(a, vcmla(b, c, d)) -> vcmla(fadd(a, b), b, c)
17047 auto ReassocComplex
= [&](SDValue A
, SDValue B
) {
17048 if (A
.getOpcode() != ISD::INTRINSIC_WO_CHAIN
)
17050 unsigned Opc
= A
.getConstantOperandVal(0);
17051 if (Opc
!= Intrinsic::arm_mve_vcmlaq
)
17053 SDValue VCMLA
= DAG
.getNode(
17054 ISD::INTRINSIC_WO_CHAIN
, DL
, VT
, A
.getOperand(0), A
.getOperand(1),
17055 DAG
.getNode(ISD::FADD
, DL
, VT
, A
.getOperand(2), B
, N
->getFlags()),
17056 A
.getOperand(3), A
.getOperand(4));
17057 VCMLA
->setFlags(A
->getFlags());
17060 if (SDValue R
= ReassocComplex(LHS
, RHS
))
17062 if (SDValue R
= ReassocComplex(RHS
, LHS
))
17068 static SDValue
PerformFADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
17069 const ARMSubtarget
*Subtarget
) {
17070 if (SDValue S
= PerformFAddVSelectCombine(N
, DAG
, Subtarget
))
17072 if (SDValue S
= PerformFADDVCMLACombine(N
, DAG
))
17077 /// PerformVMulVCTPCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
17078 /// can replace combinations of VCVT (integer to floating-point) and VMUL
17079 /// when the VMUL has a constant operand that is a power of 2.
17081 /// Example (assume d17 = <float 0.125, float 0.125>):
17082 /// vcvt.f32.s32 d16, d16
17083 /// vmul.f32 d16, d16, d17
17085 /// vcvt.f32.s32 d16, d16, #3
17086 static SDValue
PerformVMulVCTPCombine(SDNode
*N
, SelectionDAG
&DAG
,
17087 const ARMSubtarget
*Subtarget
) {
17088 if (!Subtarget
->hasNEON())
17091 SDValue Op
= N
->getOperand(0);
17092 unsigned OpOpcode
= Op
.getNode()->getOpcode();
17093 if (!N
->getValueType(0).isVector() || !N
->getValueType(0).isSimple() ||
17094 (OpOpcode
!= ISD::SINT_TO_FP
&& OpOpcode
!= ISD::UINT_TO_FP
))
17097 SDValue ConstVec
= N
->getOperand(1);
17098 if (!isa
<BuildVectorSDNode
>(ConstVec
))
17101 MVT FloatTy
= N
->getSimpleValueType(0).getVectorElementType();
17102 uint32_t FloatBits
= FloatTy
.getSizeInBits();
17103 MVT IntTy
= Op
.getOperand(0).getSimpleValueType().getVectorElementType();
17104 uint32_t IntBits
= IntTy
.getSizeInBits();
17105 unsigned NumLanes
= Op
.getValueType().getVectorNumElements();
17106 if (FloatBits
!= 32 || IntBits
> 32 || (NumLanes
!= 4 && NumLanes
!= 2)) {
17107 // These instructions only exist converting from i32 to f32. We can handle
17108 // smaller integers by generating an extra extend, but larger ones would
17109 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
17110 // these intructions only support v2i32/v4i32 types.
17114 ConstantFPSDNode
*CN
= isConstOrConstSplatFP(ConstVec
, true);
17115 APFloat
Recip(0.0f
);
17116 if (!CN
|| !CN
->getValueAPF().getExactInverse(&Recip
))
17121 if (Recip
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &IsExact
) !=
17126 int32_t C
= IntVal
.exactLogBase2();
17127 if (C
== -1 || C
== 0 || C
> 32)
17131 bool isSigned
= OpOpcode
== ISD::SINT_TO_FP
;
17132 SDValue ConvInput
= Op
.getOperand(0);
17133 if (IntBits
< FloatBits
)
17134 ConvInput
= DAG
.getNode(isSigned
? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
, DL
,
17135 NumLanes
== 2 ? MVT::v2i32
: MVT::v4i32
, ConvInput
);
17137 unsigned IntrinsicOpcode
= isSigned
? Intrinsic::arm_neon_vcvtfxs2fp
17138 : Intrinsic::arm_neon_vcvtfxu2fp
;
17139 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DL
, Op
.getValueType(),
17140 DAG
.getConstant(IntrinsicOpcode
, DL
, MVT::i32
), ConvInput
,
17141 DAG
.getConstant(C
, DL
, MVT::i32
));
17144 static SDValue
PerformVECREDUCE_ADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
17145 const ARMSubtarget
*ST
) {
17146 if (!ST
->hasMVEIntegerOps())
17149 assert(N
->getOpcode() == ISD::VECREDUCE_ADD
);
17150 EVT ResVT
= N
->getValueType(0);
17151 SDValue N0
= N
->getOperand(0);
17154 // Try to turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y)
17155 if (ResVT
== MVT::i32
&& N0
.getOpcode() == ISD::ADD
&&
17156 (N0
.getValueType() == MVT::v4i32
|| N0
.getValueType() == MVT::v8i16
||
17157 N0
.getValueType() == MVT::v16i8
)) {
17158 SDValue Red0
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, ResVT
, N0
.getOperand(0));
17159 SDValue Red1
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, ResVT
, N0
.getOperand(1));
17160 return DAG
.getNode(ISD::ADD
, dl
, ResVT
, Red0
, Red1
);
17163 // We are looking for something that will have illegal types if left alone,
17164 // but that we can convert to a single instruction under MVE. For example
17165 // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
17167 // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
17169 // The legal cases are:
17170 // VADDV u/s 8/16/32
17171 // VMLAV u/s 8/16/32
17173 // VMLALV u/s 16/32
17175 // If the input vector is smaller than legal (v4i8/v4i16 for example) we can
17176 // extend it and use v4i32 instead.
17177 auto ExtTypeMatches
= [](SDValue A
, ArrayRef
<MVT
> ExtTypes
) {
17178 EVT AVT
= A
.getValueType();
17179 return any_of(ExtTypes
, [&](MVT Ty
) {
17180 return AVT
.getVectorNumElements() == Ty
.getVectorNumElements() &&
17184 auto ExtendIfNeeded
= [&](SDValue A
, unsigned ExtendCode
) {
17185 EVT AVT
= A
.getValueType();
17186 if (!AVT
.is128BitVector())
17187 A
= DAG
.getNode(ExtendCode
, dl
,
17188 AVT
.changeVectorElementType(MVT::getIntegerVT(
17189 128 / AVT
.getVectorMinNumElements())),
17193 auto IsVADDV
= [&](MVT RetTy
, unsigned ExtendCode
, ArrayRef
<MVT
> ExtTypes
) {
17194 if (ResVT
!= RetTy
|| N0
->getOpcode() != ExtendCode
)
17196 SDValue A
= N0
->getOperand(0);
17197 if (ExtTypeMatches(A
, ExtTypes
))
17198 return ExtendIfNeeded(A
, ExtendCode
);
17201 auto IsPredVADDV
= [&](MVT RetTy
, unsigned ExtendCode
,
17202 ArrayRef
<MVT
> ExtTypes
, SDValue
&Mask
) {
17203 if (ResVT
!= RetTy
|| N0
->getOpcode() != ISD::VSELECT
||
17204 !ISD::isBuildVectorAllZeros(N0
->getOperand(2).getNode()))
17206 Mask
= N0
->getOperand(0);
17207 SDValue Ext
= N0
->getOperand(1);
17208 if (Ext
->getOpcode() != ExtendCode
)
17210 SDValue A
= Ext
->getOperand(0);
17211 if (ExtTypeMatches(A
, ExtTypes
))
17212 return ExtendIfNeeded(A
, ExtendCode
);
17215 auto IsVMLAV
= [&](MVT RetTy
, unsigned ExtendCode
, ArrayRef
<MVT
> ExtTypes
,
17216 SDValue
&A
, SDValue
&B
) {
17217 // For a vmla we are trying to match a larger pattern:
17218 // ExtA = sext/zext A
17219 // ExtB = sext/zext B
17220 // Mul = mul ExtA, ExtB
17221 // vecreduce.add Mul
17222 // There might also be en extra extend between the mul and the addreduce, so
17223 // long as the bitwidth is high enough to make them equivalent (for example
17224 // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
17225 if (ResVT
!= RetTy
)
17228 if (Mul
->getOpcode() == ExtendCode
&&
17229 Mul
->getOperand(0).getScalarValueSizeInBits() * 2 >=
17230 ResVT
.getScalarSizeInBits())
17231 Mul
= Mul
->getOperand(0);
17232 if (Mul
->getOpcode() != ISD::MUL
)
17234 SDValue ExtA
= Mul
->getOperand(0);
17235 SDValue ExtB
= Mul
->getOperand(1);
17236 if (ExtA
->getOpcode() != ExtendCode
|| ExtB
->getOpcode() != ExtendCode
)
17238 A
= ExtA
->getOperand(0);
17239 B
= ExtB
->getOperand(0);
17240 if (ExtTypeMatches(A
, ExtTypes
) && ExtTypeMatches(B
, ExtTypes
)) {
17241 A
= ExtendIfNeeded(A
, ExtendCode
);
17242 B
= ExtendIfNeeded(B
, ExtendCode
);
17247 auto IsPredVMLAV
= [&](MVT RetTy
, unsigned ExtendCode
, ArrayRef
<MVT
> ExtTypes
,
17248 SDValue
&A
, SDValue
&B
, SDValue
&Mask
) {
17249 // Same as the pattern above with a select for the zero predicated lanes
17250 // ExtA = sext/zext A
17251 // ExtB = sext/zext B
17252 // Mul = mul ExtA, ExtB
17253 // N0 = select Mask, Mul, 0
17254 // vecreduce.add N0
17255 if (ResVT
!= RetTy
|| N0
->getOpcode() != ISD::VSELECT
||
17256 !ISD::isBuildVectorAllZeros(N0
->getOperand(2).getNode()))
17258 Mask
= N0
->getOperand(0);
17259 SDValue Mul
= N0
->getOperand(1);
17260 if (Mul
->getOpcode() == ExtendCode
&&
17261 Mul
->getOperand(0).getScalarValueSizeInBits() * 2 >=
17262 ResVT
.getScalarSizeInBits())
17263 Mul
= Mul
->getOperand(0);
17264 if (Mul
->getOpcode() != ISD::MUL
)
17266 SDValue ExtA
= Mul
->getOperand(0);
17267 SDValue ExtB
= Mul
->getOperand(1);
17268 if (ExtA
->getOpcode() != ExtendCode
|| ExtB
->getOpcode() != ExtendCode
)
17270 A
= ExtA
->getOperand(0);
17271 B
= ExtB
->getOperand(0);
17272 if (ExtTypeMatches(A
, ExtTypes
) && ExtTypeMatches(B
, ExtTypes
)) {
17273 A
= ExtendIfNeeded(A
, ExtendCode
);
17274 B
= ExtendIfNeeded(B
, ExtendCode
);
17279 auto Create64bitNode
= [&](unsigned Opcode
, ArrayRef
<SDValue
> Ops
) {
17280 // Split illegal MVT::v16i8->i64 vector reductions into two legal v8i16->i64
17281 // reductions. The operands are extended with MVEEXT, but as they are
17282 // reductions the lane orders do not matter. MVEEXT may be combined with
17283 // loads to produce two extending loads, or else they will be expanded to
17285 EVT VT
= Ops
[0].getValueType();
17286 if (VT
== MVT::v16i8
) {
17287 assert((Opcode
== ARMISD::VMLALVs
|| Opcode
== ARMISD::VMLALVu
) &&
17288 "Unexpected illegal long reduction opcode");
17289 bool IsUnsigned
= Opcode
== ARMISD::VMLALVu
;
17292 DAG
.getNode(IsUnsigned
? ARMISD::MVEZEXT
: ARMISD::MVESEXT
, dl
,
17293 DAG
.getVTList(MVT::v8i16
, MVT::v8i16
), Ops
[0]);
17295 DAG
.getNode(IsUnsigned
? ARMISD::MVEZEXT
: ARMISD::MVESEXT
, dl
,
17296 DAG
.getVTList(MVT::v8i16
, MVT::v8i16
), Ops
[1]);
17298 SDValue MLA0
= DAG
.getNode(Opcode
, dl
, DAG
.getVTList(MVT::i32
, MVT::i32
),
17301 DAG
.getNode(IsUnsigned
? ARMISD::VMLALVAu
: ARMISD::VMLALVAs
, dl
,
17302 DAG
.getVTList(MVT::i32
, MVT::i32
), MLA0
, MLA0
.getValue(1),
17303 Ext0
.getValue(1), Ext1
.getValue(1));
17304 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, MLA1
, MLA1
.getValue(1));
17306 SDValue Node
= DAG
.getNode(Opcode
, dl
, {MVT::i32
, MVT::i32
}, Ops
);
17307 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, Node
,
17308 SDValue(Node
.getNode(), 1));
17313 if (IsVMLAV(MVT::i32
, ISD::SIGN_EXTEND
, {MVT::v8i16
, MVT::v16i8
}, A
, B
))
17314 return DAG
.getNode(ARMISD::VMLAVs
, dl
, ResVT
, A
, B
);
17315 if (IsVMLAV(MVT::i32
, ISD::ZERO_EXTEND
, {MVT::v8i16
, MVT::v16i8
}, A
, B
))
17316 return DAG
.getNode(ARMISD::VMLAVu
, dl
, ResVT
, A
, B
);
17317 if (IsVMLAV(MVT::i64
, ISD::SIGN_EXTEND
, {MVT::v16i8
, MVT::v8i16
, MVT::v4i32
},
17319 return Create64bitNode(ARMISD::VMLALVs
, {A
, B
});
17320 if (IsVMLAV(MVT::i64
, ISD::ZERO_EXTEND
, {MVT::v16i8
, MVT::v8i16
, MVT::v4i32
},
17322 return Create64bitNode(ARMISD::VMLALVu
, {A
, B
});
17323 if (IsVMLAV(MVT::i16
, ISD::SIGN_EXTEND
, {MVT::v16i8
}, A
, B
))
17324 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17325 DAG
.getNode(ARMISD::VMLAVs
, dl
, MVT::i32
, A
, B
));
17326 if (IsVMLAV(MVT::i16
, ISD::ZERO_EXTEND
, {MVT::v16i8
}, A
, B
))
17327 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17328 DAG
.getNode(ARMISD::VMLAVu
, dl
, MVT::i32
, A
, B
));
17330 if (IsPredVMLAV(MVT::i32
, ISD::SIGN_EXTEND
, {MVT::v8i16
, MVT::v16i8
}, A
, B
,
17332 return DAG
.getNode(ARMISD::VMLAVps
, dl
, ResVT
, A
, B
, Mask
);
17333 if (IsPredVMLAV(MVT::i32
, ISD::ZERO_EXTEND
, {MVT::v8i16
, MVT::v16i8
}, A
, B
,
17335 return DAG
.getNode(ARMISD::VMLAVpu
, dl
, ResVT
, A
, B
, Mask
);
17336 if (IsPredVMLAV(MVT::i64
, ISD::SIGN_EXTEND
, {MVT::v8i16
, MVT::v4i32
}, A
, B
,
17338 return Create64bitNode(ARMISD::VMLALVps
, {A
, B
, Mask
});
17339 if (IsPredVMLAV(MVT::i64
, ISD::ZERO_EXTEND
, {MVT::v8i16
, MVT::v4i32
}, A
, B
,
17341 return Create64bitNode(ARMISD::VMLALVpu
, {A
, B
, Mask
});
17342 if (IsPredVMLAV(MVT::i16
, ISD::SIGN_EXTEND
, {MVT::v16i8
}, A
, B
, Mask
))
17343 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17344 DAG
.getNode(ARMISD::VMLAVps
, dl
, MVT::i32
, A
, B
, Mask
));
17345 if (IsPredVMLAV(MVT::i16
, ISD::ZERO_EXTEND
, {MVT::v16i8
}, A
, B
, Mask
))
17346 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17347 DAG
.getNode(ARMISD::VMLAVpu
, dl
, MVT::i32
, A
, B
, Mask
));
17349 if (SDValue A
= IsVADDV(MVT::i32
, ISD::SIGN_EXTEND
, {MVT::v8i16
, MVT::v16i8
}))
17350 return DAG
.getNode(ARMISD::VADDVs
, dl
, ResVT
, A
);
17351 if (SDValue A
= IsVADDV(MVT::i32
, ISD::ZERO_EXTEND
, {MVT::v8i16
, MVT::v16i8
}))
17352 return DAG
.getNode(ARMISD::VADDVu
, dl
, ResVT
, A
);
17353 if (SDValue A
= IsVADDV(MVT::i64
, ISD::SIGN_EXTEND
, {MVT::v4i32
}))
17354 return Create64bitNode(ARMISD::VADDLVs
, {A
});
17355 if (SDValue A
= IsVADDV(MVT::i64
, ISD::ZERO_EXTEND
, {MVT::v4i32
}))
17356 return Create64bitNode(ARMISD::VADDLVu
, {A
});
17357 if (SDValue A
= IsVADDV(MVT::i16
, ISD::SIGN_EXTEND
, {MVT::v16i8
}))
17358 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17359 DAG
.getNode(ARMISD::VADDVs
, dl
, MVT::i32
, A
));
17360 if (SDValue A
= IsVADDV(MVT::i16
, ISD::ZERO_EXTEND
, {MVT::v16i8
}))
17361 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17362 DAG
.getNode(ARMISD::VADDVu
, dl
, MVT::i32
, A
));
17364 if (SDValue A
= IsPredVADDV(MVT::i32
, ISD::SIGN_EXTEND
, {MVT::v8i16
, MVT::v16i8
}, Mask
))
17365 return DAG
.getNode(ARMISD::VADDVps
, dl
, ResVT
, A
, Mask
);
17366 if (SDValue A
= IsPredVADDV(MVT::i32
, ISD::ZERO_EXTEND
, {MVT::v8i16
, MVT::v16i8
}, Mask
))
17367 return DAG
.getNode(ARMISD::VADDVpu
, dl
, ResVT
, A
, Mask
);
17368 if (SDValue A
= IsPredVADDV(MVT::i64
, ISD::SIGN_EXTEND
, {MVT::v4i32
}, Mask
))
17369 return Create64bitNode(ARMISD::VADDLVps
, {A
, Mask
});
17370 if (SDValue A
= IsPredVADDV(MVT::i64
, ISD::ZERO_EXTEND
, {MVT::v4i32
}, Mask
))
17371 return Create64bitNode(ARMISD::VADDLVpu
, {A
, Mask
});
17372 if (SDValue A
= IsPredVADDV(MVT::i16
, ISD::SIGN_EXTEND
, {MVT::v16i8
}, Mask
))
17373 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17374 DAG
.getNode(ARMISD::VADDVps
, dl
, MVT::i32
, A
, Mask
));
17375 if (SDValue A
= IsPredVADDV(MVT::i16
, ISD::ZERO_EXTEND
, {MVT::v16i8
}, Mask
))
17376 return DAG
.getNode(ISD::TRUNCATE
, dl
, ResVT
,
17377 DAG
.getNode(ARMISD::VADDVpu
, dl
, MVT::i32
, A
, Mask
));
17379 // Some complications. We can get a case where the two inputs of the mul are
17380 // the same, then the output sext will have been helpfully converted to a
17381 // zext. Turn it back.
17383 if (Op
->getOpcode() == ISD::VSELECT
)
17384 Op
= Op
->getOperand(1);
17385 if (Op
->getOpcode() == ISD::ZERO_EXTEND
&&
17386 Op
->getOperand(0)->getOpcode() == ISD::MUL
) {
17387 SDValue Mul
= Op
->getOperand(0);
17388 if (Mul
->getOperand(0) == Mul
->getOperand(1) &&
17389 Mul
->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND
) {
17390 SDValue Ext
= DAG
.getNode(ISD::SIGN_EXTEND
, dl
, N0
->getValueType(0), Mul
);
17392 Ext
= DAG
.getNode(ISD::VSELECT
, dl
, N0
->getValueType(0),
17393 N0
->getOperand(0), Ext
, N0
->getOperand(2));
17394 return DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, ResVT
, Ext
);
17401 // Looks for vaddv(shuffle) or vmlav(shuffle, shuffle), with a shuffle where all
17402 // the lanes are used. Due to the reduction being commutative the shuffle can be
17404 static SDValue
PerformReduceShuffleCombine(SDNode
*N
, SelectionDAG
&DAG
) {
17405 unsigned VecOp
= N
->getOperand(0).getValueType().isVector() ? 0 : 2;
17406 auto *Shuf
= dyn_cast
<ShuffleVectorSDNode
>(N
->getOperand(VecOp
));
17407 if (!Shuf
|| !Shuf
->getOperand(1).isUndef())
17410 // Check all elements are used once in the mask.
17411 ArrayRef
<int> Mask
= Shuf
->getMask();
17412 APInt
SetElts(Mask
.size(), 0);
17413 for (int E
: Mask
) {
17414 if (E
< 0 || E
>= (int)Mask
.size())
17418 if (!SetElts
.isAllOnes())
17421 if (N
->getNumOperands() != VecOp
+ 1) {
17422 auto *Shuf2
= dyn_cast
<ShuffleVectorSDNode
>(N
->getOperand(VecOp
+ 1));
17423 if (!Shuf2
|| !Shuf2
->getOperand(1).isUndef() || Shuf2
->getMask() != Mask
)
17427 SmallVector
<SDValue
> Ops
;
17428 for (SDValue Op
: N
->ops()) {
17429 if (Op
.getValueType().isVector())
17430 Ops
.push_back(Op
.getOperand(0));
17434 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), N
->getVTList(), Ops
);
17437 static SDValue
PerformVMOVNCombine(SDNode
*N
,
17438 TargetLowering::DAGCombinerInfo
&DCI
) {
17439 SDValue Op0
= N
->getOperand(0);
17440 SDValue Op1
= N
->getOperand(1);
17441 unsigned IsTop
= N
->getConstantOperandVal(2);
17443 // VMOVNT a undef -> a
17444 // VMOVNB a undef -> a
17445 // VMOVNB undef a -> a
17446 if (Op1
->isUndef())
17448 if (Op0
->isUndef() && !IsTop
)
17451 // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
17452 // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
17453 if ((Op1
->getOpcode() == ARMISD::VQMOVNs
||
17454 Op1
->getOpcode() == ARMISD::VQMOVNu
) &&
17455 Op1
->getConstantOperandVal(2) == 0)
17456 return DCI
.DAG
.getNode(Op1
->getOpcode(), SDLoc(Op1
), N
->getValueType(0),
17457 Op0
, Op1
->getOperand(1), N
->getOperand(2));
17459 // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
17460 // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
17461 // into the top or bottom lanes.
17462 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
17463 APInt Op1DemandedElts
= APInt::getSplat(NumElts
, APInt::getLowBitsSet(2, 1));
17464 APInt Op0DemandedElts
=
17465 IsTop
? Op1DemandedElts
17466 : APInt::getSplat(NumElts
, APInt::getHighBitsSet(2, 1));
17468 const TargetLowering
&TLI
= DCI
.DAG
.getTargetLoweringInfo();
17469 if (TLI
.SimplifyDemandedVectorElts(Op0
, Op0DemandedElts
, DCI
))
17470 return SDValue(N
, 0);
17471 if (TLI
.SimplifyDemandedVectorElts(Op1
, Op1DemandedElts
, DCI
))
17472 return SDValue(N
, 0);
17477 static SDValue
PerformVQMOVNCombine(SDNode
*N
,
17478 TargetLowering::DAGCombinerInfo
&DCI
) {
17479 SDValue Op0
= N
->getOperand(0);
17480 unsigned IsTop
= N
->getConstantOperandVal(2);
17482 unsigned NumElts
= N
->getValueType(0).getVectorNumElements();
17483 APInt Op0DemandedElts
=
17484 APInt::getSplat(NumElts
, IsTop
? APInt::getLowBitsSet(2, 1)
17485 : APInt::getHighBitsSet(2, 1));
17487 const TargetLowering
&TLI
= DCI
.DAG
.getTargetLoweringInfo();
17488 if (TLI
.SimplifyDemandedVectorElts(Op0
, Op0DemandedElts
, DCI
))
17489 return SDValue(N
, 0);
17493 static SDValue
PerformVQDMULHCombine(SDNode
*N
,
17494 TargetLowering::DAGCombinerInfo
&DCI
) {
17495 EVT VT
= N
->getValueType(0);
17496 SDValue LHS
= N
->getOperand(0);
17497 SDValue RHS
= N
->getOperand(1);
17499 auto *Shuf0
= dyn_cast
<ShuffleVectorSDNode
>(LHS
);
17500 auto *Shuf1
= dyn_cast
<ShuffleVectorSDNode
>(RHS
);
17501 // Turn VQDMULH(shuffle, shuffle) -> shuffle(VQDMULH)
17502 if (Shuf0
&& Shuf1
&& Shuf0
->getMask().equals(Shuf1
->getMask()) &&
17503 LHS
.getOperand(1).isUndef() && RHS
.getOperand(1).isUndef() &&
17504 (LHS
.hasOneUse() || RHS
.hasOneUse() || LHS
== RHS
)) {
17506 SDValue NewBinOp
= DCI
.DAG
.getNode(N
->getOpcode(), DL
, VT
,
17507 LHS
.getOperand(0), RHS
.getOperand(0));
17508 SDValue UndefV
= LHS
.getOperand(1);
17509 return DCI
.DAG
.getVectorShuffle(VT
, DL
, NewBinOp
, UndefV
, Shuf0
->getMask());
17514 static SDValue
PerformLongShiftCombine(SDNode
*N
, SelectionDAG
&DAG
) {
17516 SDValue Op0
= N
->getOperand(0);
17517 SDValue Op1
= N
->getOperand(1);
17519 // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
17520 // uses of the intrinsics.
17521 if (auto C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2))) {
17522 int ShiftAmt
= C
->getSExtValue();
17523 if (ShiftAmt
== 0) {
17524 SDValue Merge
= DAG
.getMergeValues({Op0
, Op1
}, DL
);
17525 DAG
.ReplaceAllUsesWith(N
, Merge
.getNode());
17529 if (ShiftAmt
>= -32 && ShiftAmt
< 0) {
17530 unsigned NewOpcode
=
17531 N
->getOpcode() == ARMISD::LSLL
? ARMISD::LSRL
: ARMISD::LSLL
;
17532 SDValue NewShift
= DAG
.getNode(NewOpcode
, DL
, N
->getVTList(), Op0
, Op1
,
17533 DAG
.getConstant(-ShiftAmt
, DL
, MVT::i32
));
17534 DAG
.ReplaceAllUsesWith(N
, NewShift
.getNode());
17542 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
17543 SDValue
ARMTargetLowering::PerformIntrinsicCombine(SDNode
*N
,
17544 DAGCombinerInfo
&DCI
) const {
17545 SelectionDAG
&DAG
= DCI
.DAG
;
17546 unsigned IntNo
= N
->getConstantOperandVal(0);
17549 // Don't do anything for most intrinsics.
17552 // Vector shifts: check for immediate versions and lower them.
17553 // Note: This is done during DAG combining instead of DAG legalizing because
17554 // the build_vectors for 64-bit vector element shift counts are generally
17555 // not legal, and it is hard to see their values after they get legalized to
17556 // loads from a constant pool.
17557 case Intrinsic::arm_neon_vshifts
:
17558 case Intrinsic::arm_neon_vshiftu
:
17559 case Intrinsic::arm_neon_vrshifts
:
17560 case Intrinsic::arm_neon_vrshiftu
:
17561 case Intrinsic::arm_neon_vrshiftn
:
17562 case Intrinsic::arm_neon_vqshifts
:
17563 case Intrinsic::arm_neon_vqshiftu
:
17564 case Intrinsic::arm_neon_vqshiftsu
:
17565 case Intrinsic::arm_neon_vqshiftns
:
17566 case Intrinsic::arm_neon_vqshiftnu
:
17567 case Intrinsic::arm_neon_vqshiftnsu
:
17568 case Intrinsic::arm_neon_vqrshiftns
:
17569 case Intrinsic::arm_neon_vqrshiftnu
:
17570 case Intrinsic::arm_neon_vqrshiftnsu
: {
17571 EVT VT
= N
->getOperand(1).getValueType();
17573 unsigned VShiftOpc
= 0;
17576 case Intrinsic::arm_neon_vshifts
:
17577 case Intrinsic::arm_neon_vshiftu
:
17578 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
)) {
17579 VShiftOpc
= ARMISD::VSHLIMM
;
17582 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
)) {
17583 VShiftOpc
= (IntNo
== Intrinsic::arm_neon_vshifts
? ARMISD::VSHRsIMM
17584 : ARMISD::VSHRuIMM
);
17589 case Intrinsic::arm_neon_vrshifts
:
17590 case Intrinsic::arm_neon_vrshiftu
:
17591 if (isVShiftRImm(N
->getOperand(2), VT
, false, true, Cnt
))
17595 case Intrinsic::arm_neon_vqshifts
:
17596 case Intrinsic::arm_neon_vqshiftu
:
17597 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
17601 case Intrinsic::arm_neon_vqshiftsu
:
17602 if (isVShiftLImm(N
->getOperand(2), VT
, false, Cnt
))
17604 llvm_unreachable("invalid shift count for vqshlu intrinsic");
17606 case Intrinsic::arm_neon_vrshiftn
:
17607 case Intrinsic::arm_neon_vqshiftns
:
17608 case Intrinsic::arm_neon_vqshiftnu
:
17609 case Intrinsic::arm_neon_vqshiftnsu
:
17610 case Intrinsic::arm_neon_vqrshiftns
:
17611 case Intrinsic::arm_neon_vqrshiftnu
:
17612 case Intrinsic::arm_neon_vqrshiftnsu
:
17613 // Narrowing shifts require an immediate right shift.
17614 if (isVShiftRImm(N
->getOperand(2), VT
, true, true, Cnt
))
17616 llvm_unreachable("invalid shift count for narrowing vector shift "
17620 llvm_unreachable("unhandled vector shift");
17624 case Intrinsic::arm_neon_vshifts
:
17625 case Intrinsic::arm_neon_vshiftu
:
17626 // Opcode already set above.
17628 case Intrinsic::arm_neon_vrshifts
:
17629 VShiftOpc
= ARMISD::VRSHRsIMM
;
17631 case Intrinsic::arm_neon_vrshiftu
:
17632 VShiftOpc
= ARMISD::VRSHRuIMM
;
17634 case Intrinsic::arm_neon_vrshiftn
:
17635 VShiftOpc
= ARMISD::VRSHRNIMM
;
17637 case Intrinsic::arm_neon_vqshifts
:
17638 VShiftOpc
= ARMISD::VQSHLsIMM
;
17640 case Intrinsic::arm_neon_vqshiftu
:
17641 VShiftOpc
= ARMISD::VQSHLuIMM
;
17643 case Intrinsic::arm_neon_vqshiftsu
:
17644 VShiftOpc
= ARMISD::VQSHLsuIMM
;
17646 case Intrinsic::arm_neon_vqshiftns
:
17647 VShiftOpc
= ARMISD::VQSHRNsIMM
;
17649 case Intrinsic::arm_neon_vqshiftnu
:
17650 VShiftOpc
= ARMISD::VQSHRNuIMM
;
17652 case Intrinsic::arm_neon_vqshiftnsu
:
17653 VShiftOpc
= ARMISD::VQSHRNsuIMM
;
17655 case Intrinsic::arm_neon_vqrshiftns
:
17656 VShiftOpc
= ARMISD::VQRSHRNsIMM
;
17658 case Intrinsic::arm_neon_vqrshiftnu
:
17659 VShiftOpc
= ARMISD::VQRSHRNuIMM
;
17661 case Intrinsic::arm_neon_vqrshiftnsu
:
17662 VShiftOpc
= ARMISD::VQRSHRNsuIMM
;
17667 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
17668 N
->getOperand(1), DAG
.getConstant(Cnt
, dl
, MVT::i32
));
17671 case Intrinsic::arm_neon_vshiftins
: {
17672 EVT VT
= N
->getOperand(1).getValueType();
17674 unsigned VShiftOpc
= 0;
17676 if (isVShiftLImm(N
->getOperand(3), VT
, false, Cnt
))
17677 VShiftOpc
= ARMISD::VSLIIMM
;
17678 else if (isVShiftRImm(N
->getOperand(3), VT
, false, true, Cnt
))
17679 VShiftOpc
= ARMISD::VSRIIMM
;
17681 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
17685 return DAG
.getNode(VShiftOpc
, dl
, N
->getValueType(0),
17686 N
->getOperand(1), N
->getOperand(2),
17687 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
17690 case Intrinsic::arm_neon_vqrshifts
:
17691 case Intrinsic::arm_neon_vqrshiftu
:
17692 // No immediate versions of these to check for.
17695 case Intrinsic::arm_neon_vbsl
: {
17697 return DAG
.getNode(ARMISD::VBSP
, dl
, N
->getValueType(0), N
->getOperand(1),
17698 N
->getOperand(2), N
->getOperand(3));
17700 case Intrinsic::arm_mve_vqdmlah
:
17701 case Intrinsic::arm_mve_vqdmlash
:
17702 case Intrinsic::arm_mve_vqrdmlah
:
17703 case Intrinsic::arm_mve_vqrdmlash
:
17704 case Intrinsic::arm_mve_vmla_n_predicated
:
17705 case Intrinsic::arm_mve_vmlas_n_predicated
:
17706 case Intrinsic::arm_mve_vqdmlah_predicated
:
17707 case Intrinsic::arm_mve_vqdmlash_predicated
:
17708 case Intrinsic::arm_mve_vqrdmlah_predicated
:
17709 case Intrinsic::arm_mve_vqrdmlash_predicated
: {
17710 // These intrinsics all take an i32 scalar operand which is narrowed to the
17711 // size of a single lane of the vector type they return. So we don't need
17712 // any bits of that operand above that point, which allows us to eliminate
17714 unsigned BitWidth
= N
->getValueType(0).getScalarSizeInBits();
17715 APInt DemandedMask
= APInt::getLowBitsSet(32, BitWidth
);
17716 if (SimplifyDemandedBits(N
->getOperand(3), DemandedMask
, DCI
))
17721 case Intrinsic::arm_mve_minv
:
17722 case Intrinsic::arm_mve_maxv
:
17723 case Intrinsic::arm_mve_minav
:
17724 case Intrinsic::arm_mve_maxav
:
17725 case Intrinsic::arm_mve_minv_predicated
:
17726 case Intrinsic::arm_mve_maxv_predicated
:
17727 case Intrinsic::arm_mve_minav_predicated
:
17728 case Intrinsic::arm_mve_maxav_predicated
: {
17729 // These intrinsics all take an i32 scalar operand which is narrowed to the
17730 // size of a single lane of the vector type they take as the other input.
17731 unsigned BitWidth
= N
->getOperand(2)->getValueType(0).getScalarSizeInBits();
17732 APInt DemandedMask
= APInt::getLowBitsSet(32, BitWidth
);
17733 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
17738 case Intrinsic::arm_mve_addv
: {
17739 // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
17740 // which allow PerformADDVecReduce to turn it into VADDLV when possible.
17741 bool Unsigned
= N
->getConstantOperandVal(2);
17742 unsigned Opc
= Unsigned
? ARMISD::VADDVu
: ARMISD::VADDVs
;
17743 return DAG
.getNode(Opc
, SDLoc(N
), N
->getVTList(), N
->getOperand(1));
17746 case Intrinsic::arm_mve_addlv
:
17747 case Intrinsic::arm_mve_addlv_predicated
: {
17748 // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
17749 // which recombines the two outputs into an i64
17750 bool Unsigned
= N
->getConstantOperandVal(2);
17751 unsigned Opc
= IntNo
== Intrinsic::arm_mve_addlv
?
17752 (Unsigned
? ARMISD::VADDLVu
: ARMISD::VADDLVs
) :
17753 (Unsigned
? ARMISD::VADDLVpu
: ARMISD::VADDLVps
);
17755 SmallVector
<SDValue
, 4> Ops
;
17756 for (unsigned i
= 1, e
= N
->getNumOperands(); i
< e
; i
++)
17757 if (i
!= 2) // skip the unsigned flag
17758 Ops
.push_back(N
->getOperand(i
));
17761 SDValue val
= DAG
.getNode(Opc
, dl
, {MVT::i32
, MVT::i32
}, Ops
);
17762 return DAG
.getNode(ISD::BUILD_PAIR
, dl
, MVT::i64
, val
.getValue(0),
17770 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
17771 /// lowers them. As with the vector shift intrinsics, this is done during DAG
17772 /// combining instead of DAG legalizing because the build_vectors for 64-bit
17773 /// vector element shift counts are generally not legal, and it is hard to see
17774 /// their values after they get legalized to loads from a constant pool.
17775 static SDValue
PerformShiftCombine(SDNode
*N
,
17776 TargetLowering::DAGCombinerInfo
&DCI
,
17777 const ARMSubtarget
*ST
) {
17778 SelectionDAG
&DAG
= DCI
.DAG
;
17779 EVT VT
= N
->getValueType(0);
17781 if (ST
->isThumb1Only() && N
->getOpcode() == ISD::SHL
&& VT
== MVT::i32
&&
17782 N
->getOperand(0)->getOpcode() == ISD::AND
&&
17783 N
->getOperand(0)->hasOneUse()) {
17784 if (DCI
.isBeforeLegalize() || DCI
.isCalledByLegalizer())
17786 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
17787 // usually show up because instcombine prefers to canonicalize it to
17788 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
17789 // out of GEP lowering in some cases.
17790 SDValue N0
= N
->getOperand(0);
17791 ConstantSDNode
*ShiftAmtNode
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
17794 uint32_t ShiftAmt
= static_cast<uint32_t>(ShiftAmtNode
->getZExtValue());
17795 ConstantSDNode
*AndMaskNode
= dyn_cast
<ConstantSDNode
>(N0
->getOperand(1));
17798 uint32_t AndMask
= static_cast<uint32_t>(AndMaskNode
->getZExtValue());
17799 // Don't transform uxtb/uxth.
17800 if (AndMask
== 255 || AndMask
== 65535)
17802 if (isMask_32(AndMask
)) {
17803 uint32_t MaskedBits
= llvm::countl_zero(AndMask
);
17804 if (MaskedBits
> ShiftAmt
) {
17806 SDValue SHL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, N0
->getOperand(0),
17807 DAG
.getConstant(MaskedBits
, DL
, MVT::i32
));
17808 return DAG
.getNode(
17809 ISD::SRL
, DL
, MVT::i32
, SHL
,
17810 DAG
.getConstant(MaskedBits
- ShiftAmt
, DL
, MVT::i32
));
17815 // Nothing to be done for scalar shifts.
17816 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17817 if (!VT
.isVector() || !TLI
.isTypeLegal(VT
))
17819 if (ST
->hasMVEIntegerOps())
17824 switch (N
->getOpcode()) {
17825 default: llvm_unreachable("unexpected shift opcode");
17828 if (isVShiftLImm(N
->getOperand(1), VT
, false, Cnt
)) {
17830 return DAG
.getNode(ARMISD::VSHLIMM
, dl
, VT
, N
->getOperand(0),
17831 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
17837 if (isVShiftRImm(N
->getOperand(1), VT
, false, false, Cnt
)) {
17838 unsigned VShiftOpc
=
17839 (N
->getOpcode() == ISD::SRA
? ARMISD::VSHRsIMM
: ARMISD::VSHRuIMM
);
17841 return DAG
.getNode(VShiftOpc
, dl
, VT
, N
->getOperand(0),
17842 DAG
.getConstant(Cnt
, dl
, MVT::i32
));
17848 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
17849 // split into multiple extending loads, which are simpler to deal with than an
17850 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
17851 // to convert the type to an f32.
17852 static SDValue
PerformSplittingToWideningLoad(SDNode
*N
, SelectionDAG
&DAG
) {
17853 SDValue N0
= N
->getOperand(0);
17854 if (N0
.getOpcode() != ISD::LOAD
)
17856 LoadSDNode
*LD
= cast
<LoadSDNode
>(N0
.getNode());
17857 if (!LD
->isSimple() || !N0
.hasOneUse() || LD
->isIndexed() ||
17858 LD
->getExtensionType() != ISD::NON_EXTLOAD
)
17860 EVT FromVT
= LD
->getValueType(0);
17861 EVT ToVT
= N
->getValueType(0);
17862 if (!ToVT
.isVector())
17864 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements());
17865 EVT ToEltVT
= ToVT
.getVectorElementType();
17866 EVT FromEltVT
= FromVT
.getVectorElementType();
17868 unsigned NumElements
= 0;
17869 if (ToEltVT
== MVT::i32
&& FromEltVT
== MVT::i8
)
17871 if (ToEltVT
== MVT::f32
&& FromEltVT
== MVT::f16
)
17873 if (NumElements
== 0 ||
17874 (FromEltVT
!= MVT::f16
&& FromVT
.getVectorNumElements() == NumElements
) ||
17875 FromVT
.getVectorNumElements() % NumElements
!= 0 ||
17876 !isPowerOf2_32(NumElements
))
17879 LLVMContext
&C
= *DAG
.getContext();
17881 // Details about the old load
17882 SDValue Ch
= LD
->getChain();
17883 SDValue BasePtr
= LD
->getBasePtr();
17884 Align Alignment
= LD
->getOriginalAlign();
17885 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
17886 AAMDNodes AAInfo
= LD
->getAAInfo();
17888 ISD::LoadExtType NewExtType
=
17889 N
->getOpcode() == ISD::SIGN_EXTEND
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
17890 SDValue Offset
= DAG
.getUNDEF(BasePtr
.getValueType());
17891 EVT NewFromVT
= EVT::getVectorVT(
17892 C
, EVT::getIntegerVT(C
, FromEltVT
.getScalarSizeInBits()), NumElements
);
17893 EVT NewToVT
= EVT::getVectorVT(
17894 C
, EVT::getIntegerVT(C
, ToEltVT
.getScalarSizeInBits()), NumElements
);
17896 SmallVector
<SDValue
, 4> Loads
;
17897 SmallVector
<SDValue
, 4> Chains
;
17898 for (unsigned i
= 0; i
< FromVT
.getVectorNumElements() / NumElements
; i
++) {
17899 unsigned NewOffset
= (i
* NewFromVT
.getSizeInBits()) / 8;
17901 DAG
.getObjectPtrOffset(DL
, BasePtr
, TypeSize::getFixed(NewOffset
));
17904 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, NewPtr
, Offset
,
17905 LD
->getPointerInfo().getWithOffset(NewOffset
), NewFromVT
,
17906 Alignment
, MMOFlags
, AAInfo
);
17907 Loads
.push_back(NewLoad
);
17908 Chains
.push_back(SDValue(NewLoad
.getNode(), 1));
17911 // Float truncs need to extended with VCVTB's into their floating point types.
17912 if (FromEltVT
== MVT::f16
) {
17913 SmallVector
<SDValue
, 4> Extends
;
17915 for (unsigned i
= 0; i
< Loads
.size(); i
++) {
17917 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, MVT::v8f16
, Loads
[i
]);
17918 SDValue FPExt
= DAG
.getNode(ARMISD::VCVTL
, DL
, MVT::v4f32
, LoadBC
,
17919 DAG
.getConstant(0, DL
, MVT::i32
));
17920 Extends
.push_back(FPExt
);
17926 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
17927 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewChain
);
17928 return DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, ToVT
, Loads
);
17931 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
17932 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
17933 static SDValue
PerformExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
17934 const ARMSubtarget
*ST
) {
17935 SDValue N0
= N
->getOperand(0);
17937 // Check for sign- and zero-extensions of vector extract operations of 8- and
17938 // 16-bit vector elements. NEON and MVE support these directly. They are
17939 // handled during DAG combining because type legalization will promote them
17940 // to 32-bit types and it is messy to recognize the operations after that.
17941 if ((ST
->hasNEON() || ST
->hasMVEIntegerOps()) &&
17942 N0
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
17943 SDValue Vec
= N0
.getOperand(0);
17944 SDValue Lane
= N0
.getOperand(1);
17945 EVT VT
= N
->getValueType(0);
17946 EVT EltVT
= N0
.getValueType();
17947 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
17949 if (VT
== MVT::i32
&&
17950 (EltVT
== MVT::i8
|| EltVT
== MVT::i16
) &&
17951 TLI
.isTypeLegal(Vec
.getValueType()) &&
17952 isa
<ConstantSDNode
>(Lane
)) {
17955 switch (N
->getOpcode()) {
17956 default: llvm_unreachable("unexpected opcode");
17957 case ISD::SIGN_EXTEND
:
17958 Opc
= ARMISD::VGETLANEs
;
17960 case ISD::ZERO_EXTEND
:
17961 case ISD::ANY_EXTEND
:
17962 Opc
= ARMISD::VGETLANEu
;
17965 return DAG
.getNode(Opc
, SDLoc(N
), VT
, Vec
, Lane
);
17969 if (ST
->hasMVEIntegerOps())
17970 if (SDValue NewLoad
= PerformSplittingToWideningLoad(N
, DAG
))
17976 static SDValue
PerformFPExtendCombine(SDNode
*N
, SelectionDAG
&DAG
,
17977 const ARMSubtarget
*ST
) {
17978 if (ST
->hasMVEFloatOps())
17979 if (SDValue NewLoad
= PerformSplittingToWideningLoad(N
, DAG
))
17985 // Lower smin(smax(x, C1), C2) to ssat or usat, if they have saturating
17986 // constant bounds.
17987 static SDValue
PerformMinMaxToSatCombine(SDValue Op
, SelectionDAG
&DAG
,
17988 const ARMSubtarget
*Subtarget
) {
17989 if ((Subtarget
->isThumb() || !Subtarget
->hasV6Ops()) &&
17990 !Subtarget
->isThumb2())
17993 EVT VT
= Op
.getValueType();
17994 SDValue Op0
= Op
.getOperand(0);
17996 if (VT
!= MVT::i32
||
17997 (Op0
.getOpcode() != ISD::SMIN
&& Op0
.getOpcode() != ISD::SMAX
) ||
17998 !isa
<ConstantSDNode
>(Op
.getOperand(1)) ||
17999 !isa
<ConstantSDNode
>(Op0
.getOperand(1)))
18004 SDValue Input
= Op0
.getOperand(0);
18005 if (Min
.getOpcode() == ISD::SMAX
)
18006 std::swap(Min
, Max
);
18008 APInt MinC
= Min
.getConstantOperandAPInt(1);
18009 APInt MaxC
= Max
.getConstantOperandAPInt(1);
18011 if (Min
.getOpcode() != ISD::SMIN
|| Max
.getOpcode() != ISD::SMAX
||
18012 !(MinC
+ 1).isPowerOf2())
18017 return DAG
.getNode(ARMISD::SSAT
, DL
, VT
, Input
,
18018 DAG
.getConstant(MinC
.countr_one(), DL
, VT
));
18020 return DAG
.getNode(ARMISD::USAT
, DL
, VT
, Input
,
18021 DAG
.getConstant(MinC
.countr_one(), DL
, VT
));
18026 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
18028 static SDValue
PerformMinMaxCombine(SDNode
*N
, SelectionDAG
&DAG
,
18029 const ARMSubtarget
*ST
) {
18030 EVT VT
= N
->getValueType(0);
18031 SDValue N0
= N
->getOperand(0);
18033 if (VT
== MVT::i32
)
18034 return PerformMinMaxToSatCombine(SDValue(N
, 0), DAG
, ST
);
18036 if (!ST
->hasMVEIntegerOps())
18039 if (SDValue V
= PerformVQDMULHCombine(N
, DAG
))
18042 if (VT
!= MVT::v4i32
&& VT
!= MVT::v8i16
)
18045 auto IsSignedSaturate
= [&](SDNode
*Min
, SDNode
*Max
) {
18046 // Check one is a smin and the other is a smax
18047 if (Min
->getOpcode() != ISD::SMIN
)
18048 std::swap(Min
, Max
);
18049 if (Min
->getOpcode() != ISD::SMIN
|| Max
->getOpcode() != ISD::SMAX
)
18053 if (VT
== MVT::v4i32
)
18054 SaturateC
= APInt(32, (1 << 15) - 1, true);
18055 else //if (VT == MVT::v8i16)
18056 SaturateC
= APInt(16, (1 << 7) - 1, true);
18059 if (!ISD::isConstantSplatVector(Min
->getOperand(1).getNode(), MinC
) ||
18062 if (!ISD::isConstantSplatVector(Max
->getOperand(1).getNode(), MaxC
) ||
18063 MaxC
!= ~SaturateC
)
18068 if (IsSignedSaturate(N
, N0
.getNode())) {
18071 if (VT
== MVT::v4i32
) {
18072 HalfVT
= MVT::v8i16
;
18073 ExtVT
= MVT::v4i16
;
18074 } else { // if (VT == MVT::v8i16)
18075 HalfVT
= MVT::v16i8
;
18079 // Create a VQMOVNB with undef top lanes, then signed extended into the top
18080 // half. That extend will hopefully be removed if only the bottom bits are
18081 // demanded (though a truncating store, for example).
18083 DAG
.getNode(ARMISD::VQMOVNs
, DL
, HalfVT
, DAG
.getUNDEF(HalfVT
),
18084 N0
->getOperand(0), DAG
.getConstant(0, DL
, MVT::i32
));
18085 SDValue Bitcast
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, VQMOVN
);
18086 return DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, Bitcast
,
18087 DAG
.getValueType(ExtVT
));
18090 auto IsUnsignedSaturate
= [&](SDNode
*Min
) {
18091 // For unsigned, we just need to check for <= 0xffff
18092 if (Min
->getOpcode() != ISD::UMIN
)
18096 if (VT
== MVT::v4i32
)
18097 SaturateC
= APInt(32, (1 << 16) - 1, true);
18098 else //if (VT == MVT::v8i16)
18099 SaturateC
= APInt(16, (1 << 8) - 1, true);
18102 if (!ISD::isConstantSplatVector(Min
->getOperand(1).getNode(), MinC
) ||
18108 if (IsUnsignedSaturate(N
)) {
18112 if (VT
== MVT::v4i32
) {
18113 HalfVT
= MVT::v8i16
;
18114 ExtConst
= 0x0000FFFF;
18115 } else { //if (VT == MVT::v8i16)
18116 HalfVT
= MVT::v16i8
;
18120 // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
18121 // an AND. That extend will hopefully be removed if only the bottom bits are
18122 // demanded (though a truncating store, for example).
18124 DAG
.getNode(ARMISD::VQMOVNu
, DL
, HalfVT
, DAG
.getUNDEF(HalfVT
), N0
,
18125 DAG
.getConstant(0, DL
, MVT::i32
));
18126 SDValue Bitcast
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, VQMOVN
);
18127 return DAG
.getNode(ISD::AND
, DL
, VT
, Bitcast
,
18128 DAG
.getConstant(ExtConst
, DL
, VT
));
18134 static const APInt
*isPowerOf2Constant(SDValue V
) {
18135 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(V
);
18138 const APInt
*CV
= &C
->getAPIntValue();
18139 return CV
->isPowerOf2() ? CV
: nullptr;
18142 SDValue
ARMTargetLowering::PerformCMOVToBFICombine(SDNode
*CMOV
, SelectionDAG
&DAG
) const {
18143 // If we have a CMOV, OR and AND combination such as:
18148 // * CN is a single bit;
18149 // * All bits covered by CM are known zero in y
18151 // Then we can convert this into a sequence of BFI instructions. This will
18152 // always be a win if CM is a single bit, will always be no worse than the
18153 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
18154 // three bits (due to the extra IT instruction).
18156 SDValue Op0
= CMOV
->getOperand(0);
18157 SDValue Op1
= CMOV
->getOperand(1);
18158 auto CC
= CMOV
->getConstantOperandAPInt(2).getLimitedValue();
18159 SDValue CmpZ
= CMOV
->getOperand(3);
18161 // The compare must be against zero.
18162 if (!isNullConstant(CmpZ
->getOperand(1)))
18165 assert(CmpZ
->getOpcode() == ARMISD::CMPZ
);
18166 SDValue And
= CmpZ
->getOperand(0);
18167 if (And
->getOpcode() != ISD::AND
)
18169 const APInt
*AndC
= isPowerOf2Constant(And
->getOperand(1));
18172 SDValue X
= And
->getOperand(0);
18174 if (CC
== ARMCC::EQ
) {
18175 // We're performing an "equal to zero" compare. Swap the operands so we
18176 // canonicalize on a "not equal to zero" compare.
18177 std::swap(Op0
, Op1
);
18179 assert(CC
== ARMCC::NE
&& "How can a CMPZ node not be EQ or NE?");
18182 if (Op1
->getOpcode() != ISD::OR
)
18185 ConstantSDNode
*OrC
= dyn_cast
<ConstantSDNode
>(Op1
->getOperand(1));
18188 SDValue Y
= Op1
->getOperand(0);
18193 // Now, is it profitable to continue?
18194 APInt OrCI
= OrC
->getAPIntValue();
18195 unsigned Heuristic
= Subtarget
->isThumb() ? 3 : 2;
18196 if (OrCI
.popcount() > Heuristic
)
18199 // Lastly, can we determine that the bits defined by OrCI
18201 KnownBits Known
= DAG
.computeKnownBits(Y
);
18202 if ((OrCI
& Known
.Zero
) != OrCI
)
18205 // OK, we can do the combine.
18208 EVT VT
= X
.getValueType();
18209 unsigned BitInX
= AndC
->logBase2();
18212 // We must shift X first.
18213 X
= DAG
.getNode(ISD::SRL
, dl
, VT
, X
,
18214 DAG
.getConstant(BitInX
, dl
, VT
));
18217 for (unsigned BitInY
= 0, NumActiveBits
= OrCI
.getActiveBits();
18218 BitInY
< NumActiveBits
; ++BitInY
) {
18219 if (OrCI
[BitInY
] == 0)
18221 APInt
Mask(VT
.getSizeInBits(), 0);
18222 Mask
.setBit(BitInY
);
18223 V
= DAG
.getNode(ARMISD::BFI
, dl
, VT
, V
, X
,
18224 // Confusingly, the operand is an *inverted* mask.
18225 DAG
.getConstant(~Mask
, dl
, VT
));
18231 // Given N, the value controlling the conditional branch, search for the loop
18232 // intrinsic, returning it, along with how the value is used. We need to handle
18233 // patterns such as the following:
18234 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
18235 // (brcond (setcc (loop.decrement), 0, eq), exit)
18236 // (brcond (setcc (loop.decrement), 0, ne), header)
18237 static SDValue
SearchLoopIntrinsic(SDValue N
, ISD::CondCode
&CC
, int &Imm
,
18239 switch (N
->getOpcode()) {
18243 if (!isa
<ConstantSDNode
>(N
.getOperand(1)))
18245 if (!cast
<ConstantSDNode
>(N
.getOperand(1))->isOne())
18248 return SearchLoopIntrinsic(N
.getOperand(0), CC
, Imm
, Negate
);
18251 auto *Const
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
18254 if (Const
->isZero())
18256 else if (Const
->isOne())
18260 CC
= cast
<CondCodeSDNode
>(N
.getOperand(2))->get();
18261 return SearchLoopIntrinsic(N
->getOperand(0), CC
, Imm
, Negate
);
18263 case ISD::INTRINSIC_W_CHAIN
: {
18264 unsigned IntOp
= N
.getConstantOperandVal(1);
18265 if (IntOp
!= Intrinsic::test_start_loop_iterations
&&
18266 IntOp
!= Intrinsic::loop_decrement_reg
)
18274 static SDValue
PerformHWLoopCombine(SDNode
*N
,
18275 TargetLowering::DAGCombinerInfo
&DCI
,
18276 const ARMSubtarget
*ST
) {
18278 // The hwloop intrinsics that we're interested are used for control-flow,
18279 // either for entering or exiting the loop:
18280 // - test.start.loop.iterations will test whether its operand is zero. If it
18281 // is zero, the proceeding branch should not enter the loop.
18282 // - loop.decrement.reg also tests whether its operand is zero. If it is
18283 // zero, the proceeding branch should not branch back to the beginning of
18285 // So here, we need to check that how the brcond is using the result of each
18286 // of the intrinsics to ensure that we're branching to the right place at the
18292 bool Negate
= false;
18293 SDValue Chain
= N
->getOperand(0);
18296 if (N
->getOpcode() == ISD::BRCOND
) {
18298 Cond
= N
->getOperand(1);
18299 Dest
= N
->getOperand(2);
18301 assert(N
->getOpcode() == ISD::BR_CC
&& "Expected BRCOND or BR_CC!");
18302 CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
18303 Cond
= N
->getOperand(2);
18304 Dest
= N
->getOperand(4);
18305 if (auto *Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(3))) {
18306 if (!Const
->isOne() && !Const
->isZero())
18308 Imm
= Const
->getZExtValue();
18313 SDValue Int
= SearchLoopIntrinsic(Cond
, CC
, Imm
, Negate
);
18318 CC
= ISD::getSetCCInverse(CC
, /* Integer inverse */ MVT::i32
);
18320 auto IsTrueIfZero
= [](ISD::CondCode CC
, int Imm
) {
18321 return (CC
== ISD::SETEQ
&& Imm
== 0) ||
18322 (CC
== ISD::SETNE
&& Imm
== 1) ||
18323 (CC
== ISD::SETLT
&& Imm
== 1) ||
18324 (CC
== ISD::SETULT
&& Imm
== 1);
18327 auto IsFalseIfZero
= [](ISD::CondCode CC
, int Imm
) {
18328 return (CC
== ISD::SETEQ
&& Imm
== 1) ||
18329 (CC
== ISD::SETNE
&& Imm
== 0) ||
18330 (CC
== ISD::SETGT
&& Imm
== 0) ||
18331 (CC
== ISD::SETUGT
&& Imm
== 0) ||
18332 (CC
== ISD::SETGE
&& Imm
== 1) ||
18333 (CC
== ISD::SETUGE
&& Imm
== 1);
18336 assert((IsTrueIfZero(CC
, Imm
) || IsFalseIfZero(CC
, Imm
)) &&
18337 "unsupported condition");
18340 SelectionDAG
&DAG
= DCI
.DAG
;
18341 SDValue Elements
= Int
.getOperand(2);
18342 unsigned IntOp
= Int
->getConstantOperandVal(1);
18343 assert((N
->hasOneUse() && N
->user_begin()->getOpcode() == ISD::BR
) &&
18344 "expected single br user");
18345 SDNode
*Br
= *N
->user_begin();
18346 SDValue OtherTarget
= Br
->getOperand(1);
18348 // Update the unconditional branch to branch to the given Dest.
18349 auto UpdateUncondBr
= [](SDNode
*Br
, SDValue Dest
, SelectionDAG
&DAG
) {
18350 SDValue NewBrOps
[] = { Br
->getOperand(0), Dest
};
18351 SDValue NewBr
= DAG
.getNode(ISD::BR
, SDLoc(Br
), MVT::Other
, NewBrOps
);
18352 DAG
.ReplaceAllUsesOfValueWith(SDValue(Br
, 0), NewBr
);
18355 if (IntOp
== Intrinsic::test_start_loop_iterations
) {
18357 SDValue Setup
= DAG
.getNode(ARMISD::WLSSETUP
, dl
, MVT::i32
, Elements
);
18358 // We expect this 'instruction' to branch when the counter is zero.
18359 if (IsTrueIfZero(CC
, Imm
)) {
18360 SDValue Ops
[] = {Chain
, Setup
, Dest
};
18361 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
18363 // The logic is the reverse of what we need for WLS, so find the other
18364 // basic block target: the target of the proceeding br.
18365 UpdateUncondBr(Br
, Dest
, DAG
);
18367 SDValue Ops
[] = {Chain
, Setup
, OtherTarget
};
18368 Res
= DAG
.getNode(ARMISD::WLS
, dl
, MVT::Other
, Ops
);
18370 // Update LR count to the new value
18371 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(0), Setup
);
18373 DAG
.ReplaceAllUsesOfValueWith(Int
.getValue(2), Int
.getOperand(0));
18377 DAG
.getTargetConstant(Int
.getConstantOperandVal(3), dl
, MVT::i32
);
18378 SDValue Args
[] = { Int
.getOperand(0), Elements
, Size
, };
18379 SDValue LoopDec
= DAG
.getNode(ARMISD::LOOP_DEC
, dl
,
18380 DAG
.getVTList(MVT::i32
, MVT::Other
), Args
);
18381 DAG
.ReplaceAllUsesWith(Int
.getNode(), LoopDec
.getNode());
18383 // We expect this instruction to branch when the count is not zero.
18384 SDValue Target
= IsFalseIfZero(CC
, Imm
) ? Dest
: OtherTarget
;
18386 // Update the unconditional branch to target the loop preheader if we've
18387 // found the condition has been reversed.
18388 if (Target
== OtherTarget
)
18389 UpdateUncondBr(Br
, Dest
, DAG
);
18391 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
18392 SDValue(LoopDec
.getNode(), 1), Chain
);
18394 SDValue EndArgs
[] = { Chain
, SDValue(LoopDec
.getNode(), 0), Target
};
18395 return DAG
.getNode(ARMISD::LE
, dl
, MVT::Other
, EndArgs
);
18400 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
18402 ARMTargetLowering::PerformBRCONDCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
18403 SDValue Cmp
= N
->getOperand(3);
18404 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
18405 // Only looking at NE cases.
18409 SDValue LHS
= Cmp
.getOperand(0);
18410 SDValue RHS
= Cmp
.getOperand(1);
18411 SDValue Chain
= N
->getOperand(0);
18412 SDValue BB
= N
->getOperand(1);
18413 SDValue ARMcc
= N
->getOperand(2);
18414 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)ARMcc
->getAsZExtVal();
18416 // (brcond Chain BB ne (cmpz (and (cmov 0 1 CC Flags) 1) 0))
18417 // -> (brcond Chain BB CC Flags)
18418 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ISD::AND
&& LHS
->hasOneUse() &&
18419 LHS
->getOperand(0)->getOpcode() == ARMISD::CMOV
&&
18420 LHS
->getOperand(0)->hasOneUse() &&
18421 isNullConstant(LHS
->getOperand(0)->getOperand(0)) &&
18422 isOneConstant(LHS
->getOperand(0)->getOperand(1)) &&
18423 isOneConstant(LHS
->getOperand(1)) && isNullConstant(RHS
)) {
18424 return DAG
.getNode(ARMISD::BRCOND
, dl
, MVT::Other
, Chain
, BB
,
18425 LHS
->getOperand(0)->getOperand(2),
18426 LHS
->getOperand(0)->getOperand(3));
18432 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
18434 ARMTargetLowering::PerformCMOVCombine(SDNode
*N
, SelectionDAG
&DAG
) const {
18435 SDValue Cmp
= N
->getOperand(3);
18436 if (Cmp
.getOpcode() != ARMISD::CMPZ
)
18437 // Only looking at EQ and NE cases.
18440 EVT VT
= N
->getValueType(0);
18442 SDValue LHS
= Cmp
.getOperand(0);
18443 SDValue RHS
= Cmp
.getOperand(1);
18444 SDValue FalseVal
= N
->getOperand(0);
18445 SDValue TrueVal
= N
->getOperand(1);
18446 SDValue ARMcc
= N
->getOperand(2);
18447 ARMCC::CondCodes CC
= (ARMCC::CondCodes
)ARMcc
->getAsZExtVal();
18449 // BFI is only available on V6T2+.
18450 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV6T2Ops()) {
18451 SDValue R
= PerformCMOVToBFICombine(N
, DAG
);
18472 /// FIXME: Turn this into a target neutral optimization?
18474 if (CC
== ARMCC::NE
&& FalseVal
== RHS
&& FalseVal
!= LHS
) {
18475 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, TrueVal
, ARMcc
, Cmp
);
18476 } else if (CC
== ARMCC::EQ
&& TrueVal
== RHS
) {
18478 SDValue NewCmp
= getARMCmp(LHS
, RHS
, ISD::SETNE
, ARMcc
, DAG
, dl
);
18479 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, LHS
, FalseVal
, ARMcc
, NewCmp
);
18482 // (cmov F T ne (cmpz (cmov 0 1 CC Flags) 0))
18483 // -> (cmov F T CC Flags)
18484 if (CC
== ARMCC::NE
&& LHS
.getOpcode() == ARMISD::CMOV
&& LHS
->hasOneUse() &&
18485 isNullConstant(LHS
->getOperand(0)) && isOneConstant(LHS
->getOperand(1)) &&
18486 isNullConstant(RHS
)) {
18487 return DAG
.getNode(ARMISD::CMOV
, dl
, VT
, FalseVal
, TrueVal
,
18488 LHS
->getOperand(2), LHS
->getOperand(3));
18491 if (!VT
.isInteger())
18494 // Fold away an unneccessary CMPZ/CMOV
18495 // CMOV A, B, C1, (CMPZ (CMOV 1, 0, C2, D), 0) ->
18496 // if C1==EQ -> CMOV A, B, C2, D
18497 // if C1==NE -> CMOV A, B, NOT(C2), D
18498 if (N
->getConstantOperandVal(2) == ARMCC::EQ
||
18499 N
->getConstantOperandVal(2) == ARMCC::NE
) {
18500 ARMCC::CondCodes Cond
;
18501 if (SDValue C
= IsCMPZCSINC(N
->getOperand(3).getNode(), Cond
)) {
18502 if (N
->getConstantOperandVal(2) == ARMCC::NE
)
18503 Cond
= ARMCC::getOppositeCondition(Cond
);
18504 return DAG
.getNode(N
->getOpcode(), SDLoc(N
), MVT::i32
, N
->getOperand(0),
18506 DAG
.getConstant(Cond
, SDLoc(N
), MVT::i32
), C
);
18510 // Materialize a boolean comparison for integers so we can avoid branching.
18511 if (isNullConstant(FalseVal
)) {
18512 if (CC
== ARMCC::EQ
&& isOneConstant(TrueVal
)) {
18513 if (!Subtarget
->isThumb1Only() && Subtarget
->hasV5TOps()) {
18514 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
18515 // right 5 bits will make that 32 be 1, otherwise it will be 0.
18516 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
18517 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
18518 Res
= DAG
.getNode(ISD::SRL
, dl
, VT
, DAG
.getNode(ISD::CTLZ
, dl
, VT
, Sub
),
18519 DAG
.getConstant(5, dl
, MVT::i32
));
18521 // CMOV 0, 1, ==, (CMPZ x, y) ->
18522 // (UADDO_CARRY (SUB x, y), t:0, t:1)
18523 // where t = (USUBO_CARRY 0, (SUB x, y), 0)
18525 // The USUBO_CARRY computes 0 - (x - y) and this will give a borrow when
18526 // x != y. In other words, a carry C == 1 when x == y, C == 0
18528 // The final UADDO_CARRY computes
18529 // x - y + (0 - (x - y)) + C == C
18530 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, LHS
, RHS
);
18531 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
18532 SDValue Neg
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, Sub
);
18533 // ISD::USUBO_CARRY returns a borrow but we want the carry here
18536 DAG
.getNode(ISD::SUB
, dl
, MVT::i32
,
18537 DAG
.getConstant(1, dl
, MVT::i32
), Neg
.getValue(1));
18538 Res
= DAG
.getNode(ISD::UADDO_CARRY
, dl
, VTs
, Sub
, Neg
, Carry
);
18540 } else if (CC
== ARMCC::NE
&& !isNullConstant(RHS
) &&
18541 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(TrueVal
))) {
18542 // This seems pointless but will allow us to combine it further below.
18543 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1
18545 DAG
.getNode(ARMISD::SUBC
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
18546 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, TrueVal
, ARMcc
,
18550 } else if (isNullConstant(TrueVal
)) {
18551 if (CC
== ARMCC::EQ
&& !isNullConstant(RHS
) &&
18552 (!Subtarget
->isThumb1Only() || isPowerOf2Constant(FalseVal
))) {
18553 // This seems pointless but will allow us to combine it further below
18554 // Note that we change == for != as this is the dual for the case above.
18555 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1
18557 DAG
.getNode(ARMISD::SUBC
, dl
, DAG
.getVTList(VT
, MVT::i32
), LHS
, RHS
);
18558 Res
= DAG
.getNode(ARMISD::CMOV
, dl
, VT
, Sub
, FalseVal
,
18559 DAG
.getConstant(ARMCC::NE
, dl
, MVT::i32
),
18565 // On Thumb1, the DAG above may be further combined if z is a power of 2
18567 // CMOV (SUBC x, y), z, !=, (SUBC x, y):1 ->
18568 // t1 = (USUBO (SUB x, y), 1)
18569 // t2 = (USUBO_CARRY (SUB x, y), t1:0, t1:1)
18570 // Result = if K != 0 then (SHL t2:0, K) else t2:0
18572 // This also handles the special case of comparing against zero; it's
18573 // essentially, the same pattern, except there's no SUBC:
18574 // CMOV x, z, !=, (CMPZ x, 0) ->
18575 // t1 = (USUBO x, 1)
18576 // t2 = (USUBO_CARRY x, t1:0, t1:1)
18577 // Result = if K != 0 then (SHL t2:0, K) else t2:0
18578 const APInt
*TrueConst
;
18579 if (Subtarget
->isThumb1Only() && CC
== ARMCC::NE
&&
18580 ((FalseVal
.getOpcode() == ARMISD::SUBC
&& FalseVal
.getOperand(0) == LHS
&&
18581 FalseVal
.getOperand(1) == RHS
) ||
18582 (FalseVal
== LHS
&& isNullConstant(RHS
))) &&
18583 (TrueConst
= isPowerOf2Constant(TrueVal
))) {
18584 SDVTList VTs
= DAG
.getVTList(VT
, MVT::i32
);
18585 unsigned ShiftAmount
= TrueConst
->logBase2();
18587 TrueVal
= DAG
.getConstant(1, dl
, VT
);
18588 SDValue Subc
= DAG
.getNode(ISD::USUBO
, dl
, VTs
, FalseVal
, TrueVal
);
18589 Res
= DAG
.getNode(ISD::USUBO_CARRY
, dl
, VTs
, FalseVal
, Subc
,
18593 Res
= DAG
.getNode(ISD::SHL
, dl
, VT
, Res
,
18594 DAG
.getConstant(ShiftAmount
, dl
, MVT::i32
));
18597 if (Res
.getNode()) {
18598 KnownBits Known
= DAG
.computeKnownBits(SDValue(N
,0));
18599 // Capture demanded bits information that would be otherwise lost.
18600 if (Known
.Zero
== 0xfffffffe)
18601 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
18602 DAG
.getValueType(MVT::i1
));
18603 else if (Known
.Zero
== 0xffffff00)
18604 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
18605 DAG
.getValueType(MVT::i8
));
18606 else if (Known
.Zero
== 0xffff0000)
18607 Res
= DAG
.getNode(ISD::AssertZext
, dl
, MVT::i32
, Res
,
18608 DAG
.getValueType(MVT::i16
));
18614 static SDValue
PerformBITCASTCombine(SDNode
*N
,
18615 TargetLowering::DAGCombinerInfo
&DCI
,
18616 const ARMSubtarget
*ST
) {
18617 SelectionDAG
&DAG
= DCI
.DAG
;
18618 SDValue Src
= N
->getOperand(0);
18619 EVT DstVT
= N
->getValueType(0);
18621 // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
18622 if (ST
->hasMVEIntegerOps() && Src
.getOpcode() == ARMISD::VDUP
) {
18623 EVT SrcVT
= Src
.getValueType();
18624 if (SrcVT
.getScalarSizeInBits() == DstVT
.getScalarSizeInBits())
18625 return DAG
.getNode(ARMISD::VDUP
, SDLoc(N
), DstVT
, Src
.getOperand(0));
18628 // We may have a bitcast of something that has already had this bitcast
18629 // combine performed on it, so skip past any VECTOR_REG_CASTs.
18630 if (Src
.getOpcode() == ARMISD::VECTOR_REG_CAST
&&
18631 Src
.getOperand(0).getValueType().getScalarSizeInBits() <=
18632 Src
.getValueType().getScalarSizeInBits())
18633 Src
= Src
.getOperand(0);
18635 // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
18636 // would be generated is at least the width of the element type.
18637 EVT SrcVT
= Src
.getValueType();
18638 if ((Src
.getOpcode() == ARMISD::VMOVIMM
||
18639 Src
.getOpcode() == ARMISD::VMVNIMM
||
18640 Src
.getOpcode() == ARMISD::VMOVFPIMM
) &&
18641 SrcVT
.getScalarSizeInBits() <= DstVT
.getScalarSizeInBits() &&
18642 DAG
.getDataLayout().isBigEndian())
18643 return DAG
.getNode(ARMISD::VECTOR_REG_CAST
, SDLoc(N
), DstVT
, Src
);
18645 // bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD x
18646 if (SDValue R
= PerformExtractEltToVMOVRRD(N
, DCI
))
18652 // Some combines for the MVETrunc truncations legalizer helper. Also lowers the
18653 // node into stack operations after legalizeOps.
18654 SDValue
ARMTargetLowering::PerformMVETruncCombine(
18655 SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) const {
18656 SelectionDAG
&DAG
= DCI
.DAG
;
18657 EVT VT
= N
->getValueType(0);
18660 // MVETrunc(Undef, Undef) -> Undef
18661 if (all_of(N
->ops(), [](SDValue Op
) { return Op
.isUndef(); }))
18662 return DAG
.getUNDEF(VT
);
18664 // MVETrunc(MVETrunc a b, MVETrunc c, d) -> MVETrunc
18665 if (N
->getNumOperands() == 2 &&
18666 N
->getOperand(0).getOpcode() == ARMISD::MVETRUNC
&&
18667 N
->getOperand(1).getOpcode() == ARMISD::MVETRUNC
)
18668 return DAG
.getNode(ARMISD::MVETRUNC
, DL
, VT
, N
->getOperand(0).getOperand(0),
18669 N
->getOperand(0).getOperand(1),
18670 N
->getOperand(1).getOperand(0),
18671 N
->getOperand(1).getOperand(1));
18673 // MVETrunc(shuffle, shuffle) -> VMOVN
18674 if (N
->getNumOperands() == 2 &&
18675 N
->getOperand(0).getOpcode() == ISD::VECTOR_SHUFFLE
&&
18676 N
->getOperand(1).getOpcode() == ISD::VECTOR_SHUFFLE
) {
18677 auto *S0
= cast
<ShuffleVectorSDNode
>(N
->getOperand(0).getNode());
18678 auto *S1
= cast
<ShuffleVectorSDNode
>(N
->getOperand(1).getNode());
18680 if (S0
->getOperand(0) == S1
->getOperand(0) &&
18681 S0
->getOperand(1) == S1
->getOperand(1)) {
18682 // Construct complete shuffle mask
18683 SmallVector
<int, 8> Mask(S0
->getMask());
18684 Mask
.append(S1
->getMask().begin(), S1
->getMask().end());
18686 if (isVMOVNTruncMask(Mask
, VT
, false))
18687 return DAG
.getNode(
18688 ARMISD::VMOVN
, DL
, VT
,
18689 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, S0
->getOperand(0)),
18690 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, S0
->getOperand(1)),
18691 DAG
.getConstant(1, DL
, MVT::i32
));
18692 if (isVMOVNTruncMask(Mask
, VT
, true))
18693 return DAG
.getNode(
18694 ARMISD::VMOVN
, DL
, VT
,
18695 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, S0
->getOperand(1)),
18696 DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, S0
->getOperand(0)),
18697 DAG
.getConstant(1, DL
, MVT::i32
));
18701 // For MVETrunc of a buildvector or shuffle, it can be beneficial to lower the
18702 // truncate to a buildvector to allow the generic optimisations to kick in.
18703 if (all_of(N
->ops(), [](SDValue Op
) {
18704 return Op
.getOpcode() == ISD::BUILD_VECTOR
||
18705 Op
.getOpcode() == ISD::VECTOR_SHUFFLE
||
18706 (Op
.getOpcode() == ISD::BITCAST
&&
18707 Op
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
);
18709 SmallVector
<SDValue
, 8> Extracts
;
18710 for (unsigned Op
= 0; Op
< N
->getNumOperands(); Op
++) {
18711 SDValue O
= N
->getOperand(Op
);
18712 for (unsigned i
= 0; i
< O
.getValueType().getVectorNumElements(); i
++) {
18713 SDValue Ext
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
, O
,
18714 DAG
.getConstant(i
, DL
, MVT::i32
));
18715 Extracts
.push_back(Ext
);
18718 return DAG
.getBuildVector(VT
, DL
, Extracts
);
18721 // If we are late in the legalization process and nothing has optimised
18722 // the trunc to anything better, lower it to a stack store and reload,
18723 // performing the truncation whilst keeping the lanes in the correct order:
18724 // VSTRH.32 a, stack; VSTRH.32 b, stack+8; VLDRW.32 stack;
18725 if (!DCI
.isAfterLegalizeDAG())
18728 SDValue StackPtr
= DAG
.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18729 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
18730 int NumIns
= N
->getNumOperands();
18731 assert((NumIns
== 2 || NumIns
== 4) &&
18732 "Expected 2 or 4 inputs to an MVETrunc");
18733 EVT StoreVT
= VT
.getHalfNumVectorElementsVT(*DAG
.getContext());
18734 if (N
->getNumOperands() == 4)
18735 StoreVT
= StoreVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
18737 SmallVector
<SDValue
> Chains
;
18738 for (int I
= 0; I
< NumIns
; I
++) {
18739 SDValue Ptr
= DAG
.getNode(
18740 ISD::ADD
, DL
, StackPtr
.getValueType(), StackPtr
,
18741 DAG
.getConstant(I
* 16 / NumIns
, DL
, StackPtr
.getValueType()));
18742 MachinePointerInfo MPI
= MachinePointerInfo::getFixedStack(
18743 DAG
.getMachineFunction(), SPFI
, I
* 16 / NumIns
);
18744 SDValue Ch
= DAG
.getTruncStore(DAG
.getEntryNode(), DL
, N
->getOperand(I
),
18745 Ptr
, MPI
, StoreVT
, Align(4));
18746 Chains
.push_back(Ch
);
18749 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
18750 MachinePointerInfo MPI
=
18751 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
, 0);
18752 return DAG
.getLoad(VT
, DL
, Chain
, StackPtr
, MPI
, Align(4));
18755 // Take a MVEEXT(load x) and split that into (extload x, extload x+8)
18756 static SDValue
PerformSplittingMVEEXTToWideningLoad(SDNode
*N
,
18757 SelectionDAG
&DAG
) {
18758 SDValue N0
= N
->getOperand(0);
18759 LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N0
.getNode());
18760 if (!LD
|| !LD
->isSimple() || !N0
.hasOneUse() || LD
->isIndexed())
18763 EVT FromVT
= LD
->getMemoryVT();
18764 EVT ToVT
= N
->getValueType(0);
18765 if (!ToVT
.isVector())
18767 assert(FromVT
.getVectorNumElements() == ToVT
.getVectorNumElements() * 2);
18768 EVT ToEltVT
= ToVT
.getVectorElementType();
18769 EVT FromEltVT
= FromVT
.getVectorElementType();
18771 unsigned NumElements
= 0;
18772 if (ToEltVT
== MVT::i32
&& (FromEltVT
== MVT::i16
|| FromEltVT
== MVT::i8
))
18774 if (ToEltVT
== MVT::i16
&& FromEltVT
== MVT::i8
)
18776 assert(NumElements
!= 0);
18778 ISD::LoadExtType NewExtType
=
18779 N
->getOpcode() == ARMISD::MVESEXT
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
;
18780 if (LD
->getExtensionType() != ISD::NON_EXTLOAD
&&
18781 LD
->getExtensionType() != ISD::EXTLOAD
&&
18782 LD
->getExtensionType() != NewExtType
)
18785 LLVMContext
&C
= *DAG
.getContext();
18787 // Details about the old load
18788 SDValue Ch
= LD
->getChain();
18789 SDValue BasePtr
= LD
->getBasePtr();
18790 Align Alignment
= LD
->getOriginalAlign();
18791 MachineMemOperand::Flags MMOFlags
= LD
->getMemOperand()->getFlags();
18792 AAMDNodes AAInfo
= LD
->getAAInfo();
18794 SDValue Offset
= DAG
.getUNDEF(BasePtr
.getValueType());
18795 EVT NewFromVT
= EVT::getVectorVT(
18796 C
, EVT::getIntegerVT(C
, FromEltVT
.getScalarSizeInBits()), NumElements
);
18797 EVT NewToVT
= EVT::getVectorVT(
18798 C
, EVT::getIntegerVT(C
, ToEltVT
.getScalarSizeInBits()), NumElements
);
18800 SmallVector
<SDValue
, 4> Loads
;
18801 SmallVector
<SDValue
, 4> Chains
;
18802 for (unsigned i
= 0; i
< FromVT
.getVectorNumElements() / NumElements
; i
++) {
18803 unsigned NewOffset
= (i
* NewFromVT
.getSizeInBits()) / 8;
18805 DAG
.getObjectPtrOffset(DL
, BasePtr
, TypeSize::getFixed(NewOffset
));
18808 DAG
.getLoad(ISD::UNINDEXED
, NewExtType
, NewToVT
, DL
, Ch
, NewPtr
, Offset
,
18809 LD
->getPointerInfo().getWithOffset(NewOffset
), NewFromVT
,
18810 Alignment
, MMOFlags
, AAInfo
);
18811 Loads
.push_back(NewLoad
);
18812 Chains
.push_back(SDValue(NewLoad
.getNode(), 1));
18815 SDValue NewChain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Chains
);
18816 DAG
.ReplaceAllUsesOfValueWith(SDValue(LD
, 1), NewChain
);
18817 return DAG
.getMergeValues(Loads
, DL
);
18820 // Perform combines for MVEEXT. If it has not be optimized to anything better
18821 // before lowering, it gets converted to stack store and extloads performing the
18822 // extend whilst still keeping the same lane ordering.
18823 SDValue
ARMTargetLowering::PerformMVEExtCombine(
18824 SDNode
*N
, TargetLowering::DAGCombinerInfo
&DCI
) const {
18825 SelectionDAG
&DAG
= DCI
.DAG
;
18826 EVT VT
= N
->getValueType(0);
18828 assert(N
->getNumValues() == 2 && "Expected MVEEXT with 2 elements");
18829 assert((VT
== MVT::v4i32
|| VT
== MVT::v8i16
) && "Unexpected MVEEXT type");
18831 EVT ExtVT
= N
->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18832 *DAG
.getContext());
18833 auto Extend
= [&](SDValue V
) {
18834 SDValue VVT
= DAG
.getNode(ARMISD::VECTOR_REG_CAST
, DL
, VT
, V
);
18835 return N
->getOpcode() == ARMISD::MVESEXT
18836 ? DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, VVT
,
18837 DAG
.getValueType(ExtVT
))
18838 : DAG
.getZeroExtendInReg(VVT
, DL
, ExtVT
);
18841 // MVEEXT(VDUP) -> SIGN_EXTEND_INREG(VDUP)
18842 if (N
->getOperand(0).getOpcode() == ARMISD::VDUP
) {
18843 SDValue Ext
= Extend(N
->getOperand(0));
18844 return DAG
.getMergeValues({Ext
, Ext
}, DL
);
18847 // MVEEXT(shuffle) -> SIGN_EXTEND_INREG/ZERO_EXTEND_INREG
18848 if (auto *SVN
= dyn_cast
<ShuffleVectorSDNode
>(N
->getOperand(0))) {
18849 ArrayRef
<int> Mask
= SVN
->getMask();
18850 assert(Mask
.size() == 2 * VT
.getVectorNumElements());
18851 assert(Mask
.size() == SVN
->getValueType(0).getVectorNumElements());
18852 unsigned Rev
= VT
== MVT::v4i32
? ARMISD::VREV32
: ARMISD::VREV16
;
18853 SDValue Op0
= SVN
->getOperand(0);
18854 SDValue Op1
= SVN
->getOperand(1);
18856 auto CheckInregMask
= [&](int Start
, int Offset
) {
18857 for (int Idx
= 0, E
= VT
.getVectorNumElements(); Idx
< E
; ++Idx
)
18858 if (Mask
[Start
+ Idx
] >= 0 && Mask
[Start
+ Idx
] != Idx
* 2 + Offset
)
18862 SDValue V0
= SDValue(N
, 0);
18863 SDValue V1
= SDValue(N
, 1);
18864 if (CheckInregMask(0, 0))
18866 else if (CheckInregMask(0, 1))
18867 V0
= Extend(DAG
.getNode(Rev
, DL
, SVN
->getValueType(0), Op0
));
18868 else if (CheckInregMask(0, Mask
.size()))
18870 else if (CheckInregMask(0, Mask
.size() + 1))
18871 V0
= Extend(DAG
.getNode(Rev
, DL
, SVN
->getValueType(0), Op1
));
18873 if (CheckInregMask(VT
.getVectorNumElements(), Mask
.size()))
18875 else if (CheckInregMask(VT
.getVectorNumElements(), Mask
.size() + 1))
18876 V1
= Extend(DAG
.getNode(Rev
, DL
, SVN
->getValueType(0), Op1
));
18877 else if (CheckInregMask(VT
.getVectorNumElements(), 0))
18879 else if (CheckInregMask(VT
.getVectorNumElements(), 1))
18880 V1
= Extend(DAG
.getNode(Rev
, DL
, SVN
->getValueType(0), Op0
));
18882 if (V0
.getNode() != N
|| V1
.getNode() != N
)
18883 return DAG
.getMergeValues({V0
, V1
}, DL
);
18886 // MVEEXT(load) -> extload, extload
18887 if (N
->getOperand(0)->getOpcode() == ISD::LOAD
)
18888 if (SDValue L
= PerformSplittingMVEEXTToWideningLoad(N
, DAG
))
18891 if (!DCI
.isAfterLegalizeDAG())
18894 // Lower to a stack store and reload:
18895 // VSTRW.32 a, stack; VLDRH.32 stack; VLDRH.32 stack+8;
18896 SDValue StackPtr
= DAG
.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18897 int SPFI
= cast
<FrameIndexSDNode
>(StackPtr
.getNode())->getIndex();
18898 int NumOuts
= N
->getNumValues();
18899 assert((NumOuts
== 2 || NumOuts
== 4) &&
18900 "Expected 2 or 4 outputs to an MVEEXT");
18901 EVT LoadVT
= N
->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18902 *DAG
.getContext());
18903 if (N
->getNumOperands() == 4)
18904 LoadVT
= LoadVT
.getHalfNumVectorElementsVT(*DAG
.getContext());
18906 MachinePointerInfo MPI
=
18907 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), SPFI
, 0);
18908 SDValue Chain
= DAG
.getStore(DAG
.getEntryNode(), DL
, N
->getOperand(0),
18909 StackPtr
, MPI
, Align(4));
18911 SmallVector
<SDValue
> Loads
;
18912 for (int I
= 0; I
< NumOuts
; I
++) {
18913 SDValue Ptr
= DAG
.getNode(
18914 ISD::ADD
, DL
, StackPtr
.getValueType(), StackPtr
,
18915 DAG
.getConstant(I
* 16 / NumOuts
, DL
, StackPtr
.getValueType()));
18916 MachinePointerInfo MPI
= MachinePointerInfo::getFixedStack(
18917 DAG
.getMachineFunction(), SPFI
, I
* 16 / NumOuts
);
18918 SDValue Load
= DAG
.getExtLoad(
18919 N
->getOpcode() == ARMISD::MVESEXT
? ISD::SEXTLOAD
: ISD::ZEXTLOAD
, DL
,
18920 VT
, Chain
, Ptr
, MPI
, LoadVT
, Align(4));
18921 Loads
.push_back(Load
);
18924 return DAG
.getMergeValues(Loads
, DL
);
18927 SDValue
ARMTargetLowering::PerformDAGCombine(SDNode
*N
,
18928 DAGCombinerInfo
&DCI
) const {
18929 switch (N
->getOpcode()) {
18931 case ISD::SELECT_CC
:
18932 case ISD::SELECT
: return PerformSELECTCombine(N
, DCI
, Subtarget
);
18933 case ISD::VSELECT
: return PerformVSELECTCombine(N
, DCI
, Subtarget
);
18934 case ISD::SETCC
: return PerformVSetCCToVCTPCombine(N
, DCI
, Subtarget
);
18935 case ARMISD::ADDE
: return PerformADDECombine(N
, DCI
, Subtarget
);
18936 case ARMISD::UMLAL
: return PerformUMLALCombine(N
, DCI
.DAG
, Subtarget
);
18937 case ISD::ADD
: return PerformADDCombine(N
, DCI
, Subtarget
);
18938 case ISD::SUB
: return PerformSUBCombine(N
, DCI
, Subtarget
);
18939 case ISD::MUL
: return PerformMULCombine(N
, DCI
, Subtarget
);
18940 case ISD::OR
: return PerformORCombine(N
, DCI
, Subtarget
);
18941 case ISD::XOR
: return PerformXORCombine(N
, DCI
, Subtarget
);
18942 case ISD::AND
: return PerformANDCombine(N
, DCI
, Subtarget
);
18944 case ISD::BR_CC
: return PerformHWLoopCombine(N
, DCI
, Subtarget
);
18946 case ARMISD::SUBC
: return PerformAddcSubcCombine(N
, DCI
, Subtarget
);
18947 case ARMISD::SUBE
: return PerformAddeSubeCombine(N
, DCI
, Subtarget
);
18948 case ARMISD::BFI
: return PerformBFICombine(N
, DCI
.DAG
);
18949 case ARMISD::VMOVRRD
: return PerformVMOVRRDCombine(N
, DCI
, Subtarget
);
18950 case ARMISD::VMOVDRR
: return PerformVMOVDRRCombine(N
, DCI
.DAG
);
18951 case ARMISD::VMOVhr
: return PerformVMOVhrCombine(N
, DCI
);
18952 case ARMISD::VMOVrh
: return PerformVMOVrhCombine(N
, DCI
.DAG
);
18953 case ISD::STORE
: return PerformSTORECombine(N
, DCI
, Subtarget
);
18954 case ISD::BUILD_VECTOR
: return PerformBUILD_VECTORCombine(N
, DCI
, Subtarget
);
18955 case ISD::INSERT_VECTOR_ELT
: return PerformInsertEltCombine(N
, DCI
);
18956 case ISD::EXTRACT_VECTOR_ELT
:
18957 return PerformExtractEltCombine(N
, DCI
, Subtarget
);
18958 case ISD::SIGN_EXTEND_INREG
: return PerformSignExtendInregCombine(N
, DCI
.DAG
);
18959 case ISD::INSERT_SUBVECTOR
: return PerformInsertSubvectorCombine(N
, DCI
);
18960 case ISD::VECTOR_SHUFFLE
: return PerformVECTOR_SHUFFLECombine(N
, DCI
.DAG
);
18961 case ARMISD::VDUPLANE
: return PerformVDUPLANECombine(N
, DCI
, Subtarget
);
18962 case ARMISD::VDUP
: return PerformVDUPCombine(N
, DCI
.DAG
, Subtarget
);
18963 case ISD::FP_TO_SINT
:
18964 case ISD::FP_TO_UINT
:
18965 return PerformVCVTCombine(N
, DCI
.DAG
, Subtarget
);
18967 return PerformFADDCombine(N
, DCI
.DAG
, Subtarget
);
18969 return PerformVMulVCTPCombine(N
, DCI
.DAG
, Subtarget
);
18970 case ISD::INTRINSIC_WO_CHAIN
:
18971 return PerformIntrinsicCombine(N
, DCI
);
18975 return PerformShiftCombine(N
, DCI
, Subtarget
);
18976 case ISD::SIGN_EXTEND
:
18977 case ISD::ZERO_EXTEND
:
18978 case ISD::ANY_EXTEND
:
18979 return PerformExtendCombine(N
, DCI
.DAG
, Subtarget
);
18980 case ISD::FP_EXTEND
:
18981 return PerformFPExtendCombine(N
, DCI
.DAG
, Subtarget
);
18986 return PerformMinMaxCombine(N
, DCI
.DAG
, Subtarget
);
18988 return PerformCMOVCombine(N
, DCI
.DAG
);
18989 case ARMISD::BRCOND
:
18990 return PerformBRCONDCombine(N
, DCI
.DAG
);
18992 return PerformCMPZCombine(N
, DCI
.DAG
);
18993 case ARMISD::CSINC
:
18994 case ARMISD::CSINV
:
18995 case ARMISD::CSNEG
:
18996 return PerformCSETCombine(N
, DCI
.DAG
);
18998 return PerformLOADCombine(N
, DCI
, Subtarget
);
18999 case ARMISD::VLD1DUP
:
19000 case ARMISD::VLD2DUP
:
19001 case ARMISD::VLD3DUP
:
19002 case ARMISD::VLD4DUP
:
19003 return PerformVLDCombine(N
, DCI
);
19004 case ARMISD::BUILD_VECTOR
:
19005 return PerformARMBUILD_VECTORCombine(N
, DCI
);
19007 return PerformBITCASTCombine(N
, DCI
, Subtarget
);
19008 case ARMISD::PREDICATE_CAST
:
19009 return PerformPREDICATE_CASTCombine(N
, DCI
);
19010 case ARMISD::VECTOR_REG_CAST
:
19011 return PerformVECTOR_REG_CASTCombine(N
, DCI
.DAG
, Subtarget
);
19012 case ARMISD::MVETRUNC
:
19013 return PerformMVETruncCombine(N
, DCI
);
19014 case ARMISD::MVESEXT
:
19015 case ARMISD::MVEZEXT
:
19016 return PerformMVEExtCombine(N
, DCI
);
19018 return PerformVCMPCombine(N
, DCI
.DAG
, Subtarget
);
19019 case ISD::VECREDUCE_ADD
:
19020 return PerformVECREDUCE_ADDCombine(N
, DCI
.DAG
, Subtarget
);
19021 case ARMISD::VADDVs
:
19022 case ARMISD::VADDVu
:
19023 case ARMISD::VADDLVs
:
19024 case ARMISD::VADDLVu
:
19025 case ARMISD::VADDLVAs
:
19026 case ARMISD::VADDLVAu
:
19027 case ARMISD::VMLAVs
:
19028 case ARMISD::VMLAVu
:
19029 case ARMISD::VMLALVs
:
19030 case ARMISD::VMLALVu
:
19031 case ARMISD::VMLALVAs
:
19032 case ARMISD::VMLALVAu
:
19033 return PerformReduceShuffleCombine(N
, DCI
.DAG
);
19034 case ARMISD::VMOVN
:
19035 return PerformVMOVNCombine(N
, DCI
);
19036 case ARMISD::VQMOVNs
:
19037 case ARMISD::VQMOVNu
:
19038 return PerformVQMOVNCombine(N
, DCI
);
19039 case ARMISD::VQDMULH
:
19040 return PerformVQDMULHCombine(N
, DCI
);
19044 return PerformLongShiftCombine(N
, DCI
.DAG
);
19045 case ARMISD::SMULWB
: {
19046 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
19047 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
19048 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
19052 case ARMISD::SMULWT
: {
19053 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
19054 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
19055 if (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
))
19059 case ARMISD::SMLALBB
:
19060 case ARMISD::QADD16b
:
19061 case ARMISD::QSUB16b
:
19062 case ARMISD::UQADD16b
:
19063 case ARMISD::UQSUB16b
: {
19064 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
19065 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 16);
19066 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
19067 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
19071 case ARMISD::SMLALBT
: {
19072 unsigned LowWidth
= N
->getOperand(0).getValueType().getSizeInBits();
19073 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
19074 unsigned HighWidth
= N
->getOperand(1).getValueType().getSizeInBits();
19075 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
19076 if ((SimplifyDemandedBits(N
->getOperand(0), LowMask
, DCI
)) ||
19077 (SimplifyDemandedBits(N
->getOperand(1), HighMask
, DCI
)))
19081 case ARMISD::SMLALTB
: {
19082 unsigned HighWidth
= N
->getOperand(0).getValueType().getSizeInBits();
19083 APInt HighMask
= APInt::getHighBitsSet(HighWidth
, 16);
19084 unsigned LowWidth
= N
->getOperand(1).getValueType().getSizeInBits();
19085 APInt LowMask
= APInt::getLowBitsSet(LowWidth
, 16);
19086 if ((SimplifyDemandedBits(N
->getOperand(0), HighMask
, DCI
)) ||
19087 (SimplifyDemandedBits(N
->getOperand(1), LowMask
, DCI
)))
19091 case ARMISD::SMLALTT
: {
19092 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
19093 APInt DemandedMask
= APInt::getHighBitsSet(BitWidth
, 16);
19094 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
19095 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
19099 case ARMISD::QADD8b
:
19100 case ARMISD::QSUB8b
:
19101 case ARMISD::UQADD8b
:
19102 case ARMISD::UQSUB8b
: {
19103 unsigned BitWidth
= N
->getValueType(0).getSizeInBits();
19104 APInt DemandedMask
= APInt::getLowBitsSet(BitWidth
, 8);
19105 if ((SimplifyDemandedBits(N
->getOperand(0), DemandedMask
, DCI
)) ||
19106 (SimplifyDemandedBits(N
->getOperand(1), DemandedMask
, DCI
)))
19111 if (N
->getOperand(1) == N
->getOperand(2))
19112 return N
->getOperand(1);
19114 case ISD::INTRINSIC_VOID
:
19115 case ISD::INTRINSIC_W_CHAIN
:
19116 switch (N
->getConstantOperandVal(1)) {
19117 case Intrinsic::arm_neon_vld1
:
19118 case Intrinsic::arm_neon_vld1x2
:
19119 case Intrinsic::arm_neon_vld1x3
:
19120 case Intrinsic::arm_neon_vld1x4
:
19121 case Intrinsic::arm_neon_vld2
:
19122 case Intrinsic::arm_neon_vld3
:
19123 case Intrinsic::arm_neon_vld4
:
19124 case Intrinsic::arm_neon_vld2lane
:
19125 case Intrinsic::arm_neon_vld3lane
:
19126 case Intrinsic::arm_neon_vld4lane
:
19127 case Intrinsic::arm_neon_vld2dup
:
19128 case Intrinsic::arm_neon_vld3dup
:
19129 case Intrinsic::arm_neon_vld4dup
:
19130 case Intrinsic::arm_neon_vst1
:
19131 case Intrinsic::arm_neon_vst1x2
:
19132 case Intrinsic::arm_neon_vst1x3
:
19133 case Intrinsic::arm_neon_vst1x4
:
19134 case Intrinsic::arm_neon_vst2
:
19135 case Intrinsic::arm_neon_vst3
:
19136 case Intrinsic::arm_neon_vst4
:
19137 case Intrinsic::arm_neon_vst2lane
:
19138 case Intrinsic::arm_neon_vst3lane
:
19139 case Intrinsic::arm_neon_vst4lane
:
19140 return PerformVLDCombine(N
, DCI
);
19141 case Intrinsic::arm_mve_vld2q
:
19142 case Intrinsic::arm_mve_vld4q
:
19143 case Intrinsic::arm_mve_vst2q
:
19144 case Intrinsic::arm_mve_vst4q
:
19145 return PerformMVEVLDCombine(N
, DCI
);
19153 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc
,
19155 return (VT
== MVT::f32
) && (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
);
19158 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT
, unsigned,
19160 MachineMemOperand::Flags
,
19161 unsigned *Fast
) const {
19162 // Depends what it gets converted into if the type is weird.
19163 if (!VT
.isSimple())
19166 // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
19167 bool AllowsUnaligned
= Subtarget
->allowsUnalignedMem();
19168 auto Ty
= VT
.getSimpleVT().SimpleTy
;
19170 if (Ty
== MVT::i8
|| Ty
== MVT::i16
|| Ty
== MVT::i32
) {
19171 // Unaligned access can use (for example) LRDB, LRDH, LDR
19172 if (AllowsUnaligned
) {
19174 *Fast
= Subtarget
->hasV7Ops();
19179 if (Ty
== MVT::f64
|| Ty
== MVT::v2f64
) {
19180 // For any little-endian targets with neon, we can support unaligned ld/st
19181 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
19182 // A big-endian target may also explicitly support unaligned accesses
19183 if (Subtarget
->hasNEON() && (AllowsUnaligned
|| Subtarget
->isLittle())) {
19190 if (!Subtarget
->hasMVEIntegerOps())
19193 // These are for predicates
19194 if ((Ty
== MVT::v16i1
|| Ty
== MVT::v8i1
|| Ty
== MVT::v4i1
||
19195 Ty
== MVT::v2i1
)) {
19201 // These are for truncated stores/narrowing loads. They are fine so long as
19202 // the alignment is at least the size of the item being loaded
19203 if ((Ty
== MVT::v4i8
|| Ty
== MVT::v8i8
|| Ty
== MVT::v4i16
) &&
19204 Alignment
>= VT
.getScalarSizeInBits() / 8) {
19210 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
19211 // VSTRW.U32 all store the vector register in exactly the same format, and
19212 // differ only in the range of their immediate offset field and the required
19213 // alignment. So there is always a store that can be used, regardless of
19216 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
19217 // VREV64.8) pair and get the same effect. This will likely be better than
19218 // aligning the vector through the stack.
19219 if (Ty
== MVT::v16i8
|| Ty
== MVT::v8i16
|| Ty
== MVT::v8f16
||
19220 Ty
== MVT::v4i32
|| Ty
== MVT::v4f32
|| Ty
== MVT::v2i64
||
19221 Ty
== MVT::v2f64
) {
19231 EVT
ARMTargetLowering::getOptimalMemOpType(
19232 const MemOp
&Op
, const AttributeList
&FuncAttributes
) const {
19233 // See if we can use NEON instructions for this...
19234 if ((Op
.isMemcpy() || Op
.isZeroMemset()) && Subtarget
->hasNEON() &&
19235 !FuncAttributes
.hasFnAttr(Attribute::NoImplicitFloat
)) {
19237 if (Op
.size() >= 16 &&
19238 (Op
.isAligned(Align(16)) ||
19239 (allowsMisalignedMemoryAccesses(MVT::v2f64
, 0, Align(1),
19240 MachineMemOperand::MONone
, &Fast
) &&
19243 } else if (Op
.size() >= 8 &&
19244 (Op
.isAligned(Align(8)) ||
19245 (allowsMisalignedMemoryAccesses(
19246 MVT::f64
, 0, Align(1), MachineMemOperand::MONone
, &Fast
) &&
19252 // Let the target-independent logic figure it out.
19256 // 64-bit integers are split into their high and low parts and held in two
19257 // different registers, so the trunc is free since the low register can just
19259 bool ARMTargetLowering::isTruncateFree(Type
*SrcTy
, Type
*DstTy
) const {
19260 if (!SrcTy
->isIntegerTy() || !DstTy
->isIntegerTy())
19262 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits();
19263 unsigned DestBits
= DstTy
->getPrimitiveSizeInBits();
19264 return (SrcBits
== 64 && DestBits
== 32);
19267 bool ARMTargetLowering::isTruncateFree(EVT SrcVT
, EVT DstVT
) const {
19268 if (SrcVT
.isVector() || DstVT
.isVector() || !SrcVT
.isInteger() ||
19269 !DstVT
.isInteger())
19271 unsigned SrcBits
= SrcVT
.getSizeInBits();
19272 unsigned DestBits
= DstVT
.getSizeInBits();
19273 return (SrcBits
== 64 && DestBits
== 32);
19276 bool ARMTargetLowering::isZExtFree(SDValue Val
, EVT VT2
) const {
19277 if (Val
.getOpcode() != ISD::LOAD
)
19280 EVT VT1
= Val
.getValueType();
19281 if (!VT1
.isSimple() || !VT1
.isInteger() ||
19282 !VT2
.isSimple() || !VT2
.isInteger())
19285 switch (VT1
.getSimpleVT().SimpleTy
) {
19290 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
19297 bool ARMTargetLowering::isFNegFree(EVT VT
) const {
19298 if (!VT
.isSimple())
19301 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
19302 // negate values directly (fneg is free). So, we don't want to let the DAG
19303 // combiner rewrite fneg into xors and some other instructions. For f16 and
19304 // FullFP16 argument passing, some bitcast nodes may be introduced,
19305 // triggering this DAG combine rewrite, so we are avoiding that with this.
19306 switch (VT
.getSimpleVT().SimpleTy
) {
19309 return Subtarget
->hasFullFP16();
19315 Type
*ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst
*SVI
) const {
19316 if (!Subtarget
->hasMVEIntegerOps())
19318 Type
*SVIType
= SVI
->getType();
19319 Type
*ScalarType
= SVIType
->getScalarType();
19321 if (ScalarType
->isFloatTy())
19322 return Type::getInt32Ty(SVIType
->getContext());
19323 if (ScalarType
->isHalfTy())
19324 return Type::getInt16Ty(SVIType
->getContext());
19328 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal
) const {
19329 EVT VT
= ExtVal
.getValueType();
19331 if (!isTypeLegal(VT
))
19334 if (auto *Ld
= dyn_cast
<MaskedLoadSDNode
>(ExtVal
.getOperand(0))) {
19335 if (Ld
->isExpandingLoad())
19339 if (Subtarget
->hasMVEIntegerOps())
19342 // Don't create a loadext if we can fold the extension into a wide/long
19344 // If there's more than one user instruction, the loadext is desirable no
19345 // matter what. There can be two uses by the same instruction.
19346 if (ExtVal
->use_empty() ||
19347 !ExtVal
->user_begin()->isOnlyUserOf(ExtVal
.getNode()))
19350 SDNode
*U
= *ExtVal
->user_begin();
19351 if ((U
->getOpcode() == ISD::ADD
|| U
->getOpcode() == ISD::SUB
||
19352 U
->getOpcode() == ISD::SHL
|| U
->getOpcode() == ARMISD::VSHLIMM
))
19358 bool ARMTargetLowering::allowTruncateForTailCall(Type
*Ty1
, Type
*Ty2
) const {
19359 if (!Ty1
->isIntegerTy() || !Ty2
->isIntegerTy())
19362 if (!isTypeLegal(EVT::getEVT(Ty1
)))
19365 assert(Ty1
->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
19367 // Assuming the caller doesn't have a zeroext or signext return parameter,
19368 // truncation all the way down to i1 is valid.
19372 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
19373 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
19374 /// expanded to FMAs when this method returns true, otherwise fmuladd is
19375 /// expanded to fmul + fadd.
19377 /// ARM supports both fused and unfused multiply-add operations; we already
19378 /// lower a pair of fmul and fadd to the latter so it's not clear that there
19379 /// would be a gain or that the gain would be worthwhile enough to risk
19380 /// correctness bugs.
19382 /// For MVE, we set this to true as it helps simplify the need for some
19383 /// patterns (and we don't have the non-fused floating point instruction).
19384 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction
&MF
,
19386 if (Subtarget
->useSoftFloat())
19389 if (!VT
.isSimple())
19392 switch (VT
.getSimpleVT().SimpleTy
) {
19395 return Subtarget
->hasMVEFloatOps();
19397 return Subtarget
->useFPVFMx16();
19399 return Subtarget
->useFPVFMx();
19401 return Subtarget
->useFPVFMx64();
19409 static bool isLegalT1AddressImmediate(int64_t V
, EVT VT
) {
19413 unsigned Scale
= 1;
19414 switch (VT
.getSimpleVT().SimpleTy
) {
19424 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
19430 if ((V
& (Scale
- 1)) != 0)
19432 return isUInt
<5>(V
/ Scale
);
19435 static bool isLegalT2AddressImmediate(int64_t V
, EVT VT
,
19436 const ARMSubtarget
*Subtarget
) {
19437 if (!VT
.isInteger() && !VT
.isFloatingPoint())
19439 if (VT
.isVector() && Subtarget
->hasNEON())
19441 if (VT
.isVector() && VT
.isFloatingPoint() && Subtarget
->hasMVEIntegerOps() &&
19442 !Subtarget
->hasMVEFloatOps())
19445 bool IsNeg
= false;
19451 unsigned NumBytes
= std::max((unsigned)VT
.getSizeInBits() / 8, 1U);
19453 // MVE: size * imm7
19454 if (VT
.isVector() && Subtarget
->hasMVEIntegerOps()) {
19455 switch (VT
.getSimpleVT().getVectorElementType().SimpleTy
) {
19458 return isShiftedUInt
<7,2>(V
);
19461 return isShiftedUInt
<7,1>(V
);
19463 return isUInt
<7>(V
);
19469 // half VLDR: 2 * imm8
19470 if (VT
.isFloatingPoint() && NumBytes
== 2 && Subtarget
->hasFPRegs16())
19471 return isShiftedUInt
<8, 1>(V
);
19472 // VLDR and LDRD: 4 * imm8
19473 if ((VT
.isFloatingPoint() && Subtarget
->hasVFP2Base()) || NumBytes
== 8)
19474 return isShiftedUInt
<8, 2>(V
);
19476 if (NumBytes
== 1 || NumBytes
== 2 || NumBytes
== 4) {
19477 // + imm12 or - imm8
19479 return isUInt
<8>(V
);
19480 return isUInt
<12>(V
);
19486 /// isLegalAddressImmediate - Return true if the integer value can be used
19487 /// as the offset of the target addressing mode for load / store of the
19489 static bool isLegalAddressImmediate(int64_t V
, EVT VT
,
19490 const ARMSubtarget
*Subtarget
) {
19494 if (!VT
.isSimple())
19497 if (Subtarget
->isThumb1Only())
19498 return isLegalT1AddressImmediate(V
, VT
);
19499 else if (Subtarget
->isThumb2())
19500 return isLegalT2AddressImmediate(V
, VT
, Subtarget
);
19505 switch (VT
.getSimpleVT().SimpleTy
) {
19506 default: return false;
19511 return isUInt
<12>(V
);
19514 return isUInt
<8>(V
);
19517 if (!Subtarget
->hasVFP2Base()) // FIXME: NEON?
19519 return isShiftedUInt
<8, 2>(V
);
19523 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode
&AM
,
19525 int Scale
= AM
.Scale
;
19529 switch (VT
.getSimpleVT().SimpleTy
) {
19530 default: return false;
19538 Scale
= Scale
& ~1;
19539 return Scale
== 2 || Scale
== 4 || Scale
== 8;
19541 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
19542 // version in Thumb mode.
19546 // r * 2 (this can be lowered to r + r).
19547 if (!AM
.HasBaseReg
&& Scale
== 2)
19551 // Note, we allow "void" uses (basically, uses that aren't loads or
19552 // stores), because arm allows folding a scale into many arithmetic
19553 // operations. This should be made more precise and revisited later.
19555 // Allow r << imm, but the imm has to be a multiple of two.
19556 if (Scale
& 1) return false;
19557 return isPowerOf2_32(Scale
);
19561 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode
&AM
,
19563 const int Scale
= AM
.Scale
;
19565 // Negative scales are not supported in Thumb1.
19569 // Thumb1 addressing modes do not support register scaling excepting the
19570 // following cases:
19571 // 1. Scale == 1 means no scaling.
19572 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
19573 return (Scale
== 1) || (!AM
.HasBaseReg
&& Scale
== 2);
19576 /// isLegalAddressingMode - Return true if the addressing mode represented
19577 /// by AM is legal for this target, for a load/store of the specified type.
19578 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
19579 const AddrMode
&AM
, Type
*Ty
,
19580 unsigned AS
, Instruction
*I
) const {
19581 EVT VT
= getValueType(DL
, Ty
, true);
19582 if (!isLegalAddressImmediate(AM
.BaseOffs
, VT
, Subtarget
))
19585 // Can never fold addr of global into load/store.
19589 switch (AM
.Scale
) {
19590 case 0: // no scale reg, must be "r+i" or "r", or "i".
19593 // ARM doesn't support any R+R*scale+imm addr modes.
19597 if (!VT
.isSimple())
19600 if (Subtarget
->isThumb1Only())
19601 return isLegalT1ScaledAddressingMode(AM
, VT
);
19603 if (Subtarget
->isThumb2())
19604 return isLegalT2ScaledAddressingMode(AM
, VT
);
19606 int Scale
= AM
.Scale
;
19607 switch (VT
.getSimpleVT().SimpleTy
) {
19608 default: return false;
19612 if (Scale
< 0) Scale
= -Scale
;
19616 return isPowerOf2_32(Scale
& ~1);
19620 if (Scale
== 1 || (AM
.HasBaseReg
&& Scale
== -1))
19622 // r * 2 (this can be lowered to r + r).
19623 if (!AM
.HasBaseReg
&& Scale
== 2)
19628 // Note, we allow "void" uses (basically, uses that aren't loads or
19629 // stores), because arm allows folding a scale into many arithmetic
19630 // operations. This should be made more precise and revisited later.
19632 // Allow r << imm, but the imm has to be a multiple of two.
19633 if (Scale
& 1) return false;
19634 return isPowerOf2_32(Scale
);
19640 /// isLegalICmpImmediate - Return true if the specified immediate is legal
19641 /// icmp immediate, that is the target has icmp instructions which can compare
19642 /// a register against the immediate without having to materialize the
19643 /// immediate into a register.
19644 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm
) const {
19645 // Thumb2 and ARM modes can use cmn for negative immediates.
19646 if (!Subtarget
->isThumb())
19647 return ARM_AM::getSOImmVal((uint32_t)Imm
) != -1 ||
19648 ARM_AM::getSOImmVal(-(uint32_t)Imm
) != -1;
19649 if (Subtarget
->isThumb2())
19650 return ARM_AM::getT2SOImmVal((uint32_t)Imm
) != -1 ||
19651 ARM_AM::getT2SOImmVal(-(uint32_t)Imm
) != -1;
19652 // Thumb1 doesn't have cmn, and only 8-bit immediates.
19653 return Imm
>= 0 && Imm
<= 255;
19656 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
19657 /// *or sub* immediate, that is the target has add or sub instructions which can
19658 /// add a register with the immediate without having to materialize the
19659 /// immediate into a register.
19660 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm
) const {
19661 // Same encoding for add/sub, just flip the sign.
19662 int64_t AbsImm
= std::abs(Imm
);
19663 if (!Subtarget
->isThumb())
19664 return ARM_AM::getSOImmVal(AbsImm
) != -1;
19665 if (Subtarget
->isThumb2())
19666 return ARM_AM::getT2SOImmVal(AbsImm
) != -1;
19667 // Thumb1 only has 8-bit unsigned immediate.
19668 return AbsImm
>= 0 && AbsImm
<= 255;
19671 // Return false to prevent folding
19672 // (mul (add r, c0), c1) -> (add (mul r, c1), c0*c1) in DAGCombine,
19673 // if the folding leads to worse code.
19674 bool ARMTargetLowering::isMulAddWithConstProfitable(SDValue AddNode
,
19675 SDValue ConstNode
) const {
19676 // Let the DAGCombiner decide for vector types and large types.
19677 const EVT VT
= AddNode
.getValueType();
19678 if (VT
.isVector() || VT
.getScalarSizeInBits() > 32)
19681 // It is worse if c0 is legal add immediate, while c1*c0 is not
19682 // and has to be composed by at least two instructions.
19683 const ConstantSDNode
*C0Node
= cast
<ConstantSDNode
>(AddNode
.getOperand(1));
19684 const ConstantSDNode
*C1Node
= cast
<ConstantSDNode
>(ConstNode
);
19685 const int64_t C0
= C0Node
->getSExtValue();
19686 APInt CA
= C0Node
->getAPIntValue() * C1Node
->getAPIntValue();
19687 if (!isLegalAddImmediate(C0
) || isLegalAddImmediate(CA
.getSExtValue()))
19689 if (ConstantMaterializationCost((unsigned)CA
.getZExtValue(), Subtarget
) > 1)
19692 // Default to true and let the DAGCombiner decide.
19696 static bool getARMIndexedAddressParts(SDNode
*Ptr
, EVT VT
,
19697 bool isSEXTLoad
, SDValue
&Base
,
19698 SDValue
&Offset
, bool &isInc
,
19699 SelectionDAG
&DAG
) {
19700 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
19703 if (VT
== MVT::i16
|| ((VT
== MVT::i8
|| VT
== MVT::i1
) && isSEXTLoad
)) {
19704 // AddressingMode 3
19705 Base
= Ptr
->getOperand(0);
19706 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
19707 int RHSC
= (int)RHS
->getZExtValue();
19708 if (RHSC
< 0 && RHSC
> -256) {
19709 assert(Ptr
->getOpcode() == ISD::ADD
);
19711 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
19715 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
19716 Offset
= Ptr
->getOperand(1);
19718 } else if (VT
== MVT::i32
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
19719 // AddressingMode 2
19720 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
19721 int RHSC
= (int)RHS
->getZExtValue();
19722 if (RHSC
< 0 && RHSC
> -0x1000) {
19723 assert(Ptr
->getOpcode() == ISD::ADD
);
19725 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
19726 Base
= Ptr
->getOperand(0);
19731 if (Ptr
->getOpcode() == ISD::ADD
) {
19733 ARM_AM::ShiftOpc ShOpcVal
=
19734 ARM_AM::getShiftOpcForNode(Ptr
->getOperand(0).getOpcode());
19735 if (ShOpcVal
!= ARM_AM::no_shift
) {
19736 Base
= Ptr
->getOperand(1);
19737 Offset
= Ptr
->getOperand(0);
19739 Base
= Ptr
->getOperand(0);
19740 Offset
= Ptr
->getOperand(1);
19745 isInc
= (Ptr
->getOpcode() == ISD::ADD
);
19746 Base
= Ptr
->getOperand(0);
19747 Offset
= Ptr
->getOperand(1);
19751 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
19755 static bool getT2IndexedAddressParts(SDNode
*Ptr
, EVT VT
,
19756 bool isSEXTLoad
, SDValue
&Base
,
19757 SDValue
&Offset
, bool &isInc
,
19758 SelectionDAG
&DAG
) {
19759 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
19762 Base
= Ptr
->getOperand(0);
19763 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(Ptr
->getOperand(1))) {
19764 int RHSC
= (int)RHS
->getZExtValue();
19765 if (RHSC
< 0 && RHSC
> -0x100) { // 8 bits.
19766 assert(Ptr
->getOpcode() == ISD::ADD
);
19768 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
19770 } else if (RHSC
> 0 && RHSC
< 0x100) { // 8 bit, no zero.
19771 isInc
= Ptr
->getOpcode() == ISD::ADD
;
19772 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
19780 static bool getMVEIndexedAddressParts(SDNode
*Ptr
, EVT VT
, Align Alignment
,
19781 bool isSEXTLoad
, bool IsMasked
, bool isLE
,
19782 SDValue
&Base
, SDValue
&Offset
,
19783 bool &isInc
, SelectionDAG
&DAG
) {
19784 if (Ptr
->getOpcode() != ISD::ADD
&& Ptr
->getOpcode() != ISD::SUB
)
19786 if (!isa
<ConstantSDNode
>(Ptr
->getOperand(1)))
19789 // We allow LE non-masked loads to change the type (for example use a vldrb.8
19790 // as opposed to a vldrw.32). This can allow extra addressing modes or
19791 // alignments for what is otherwise an equivalent instruction.
19792 bool CanChangeType
= isLE
&& !IsMasked
;
19794 ConstantSDNode
*RHS
= cast
<ConstantSDNode
>(Ptr
->getOperand(1));
19795 int RHSC
= (int)RHS
->getZExtValue();
19797 auto IsInRange
= [&](int RHSC
, int Limit
, int Scale
) {
19798 if (RHSC
< 0 && RHSC
> -Limit
* Scale
&& RHSC
% Scale
== 0) {
19799 assert(Ptr
->getOpcode() == ISD::ADD
);
19801 Offset
= DAG
.getConstant(-RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
19803 } else if (RHSC
> 0 && RHSC
< Limit
* Scale
&& RHSC
% Scale
== 0) {
19804 isInc
= Ptr
->getOpcode() == ISD::ADD
;
19805 Offset
= DAG
.getConstant(RHSC
, SDLoc(Ptr
), RHS
->getValueType(0));
19811 // Try to find a matching instruction based on s/zext, Alignment, Offset and
19812 // (in BE/masked) type.
19813 Base
= Ptr
->getOperand(0);
19814 if (VT
== MVT::v4i16
) {
19815 if (Alignment
>= 2 && IsInRange(RHSC
, 0x80, 2))
19817 } else if (VT
== MVT::v4i8
|| VT
== MVT::v8i8
) {
19818 if (IsInRange(RHSC
, 0x80, 1))
19820 } else if (Alignment
>= 4 &&
19821 (CanChangeType
|| VT
== MVT::v4i32
|| VT
== MVT::v4f32
) &&
19822 IsInRange(RHSC
, 0x80, 4))
19824 else if (Alignment
>= 2 &&
19825 (CanChangeType
|| VT
== MVT::v8i16
|| VT
== MVT::v8f16
) &&
19826 IsInRange(RHSC
, 0x80, 2))
19828 else if ((CanChangeType
|| VT
== MVT::v16i8
) && IsInRange(RHSC
, 0x80, 1))
19833 /// getPreIndexedAddressParts - returns true by value, base pointer and
19834 /// offset pointer and addressing mode by reference if the node's address
19835 /// can be legally represented as pre-indexed load / store address.
19837 ARMTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDValue
&Base
,
19839 ISD::MemIndexedMode
&AM
,
19840 SelectionDAG
&DAG
) const {
19841 if (Subtarget
->isThumb1Only())
19847 bool isSEXTLoad
= false;
19848 bool IsMasked
= false;
19849 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
19850 Ptr
= LD
->getBasePtr();
19851 VT
= LD
->getMemoryVT();
19852 Alignment
= LD
->getAlign();
19853 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
19854 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
19855 Ptr
= ST
->getBasePtr();
19856 VT
= ST
->getMemoryVT();
19857 Alignment
= ST
->getAlign();
19858 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(N
)) {
19859 Ptr
= LD
->getBasePtr();
19860 VT
= LD
->getMemoryVT();
19861 Alignment
= LD
->getAlign();
19862 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
19864 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(N
)) {
19865 Ptr
= ST
->getBasePtr();
19866 VT
= ST
->getMemoryVT();
19867 Alignment
= ST
->getAlign();
19873 bool isLegal
= false;
19875 isLegal
= Subtarget
->hasMVEIntegerOps() &&
19876 getMVEIndexedAddressParts(
19877 Ptr
.getNode(), VT
, Alignment
, isSEXTLoad
, IsMasked
,
19878 Subtarget
->isLittle(), Base
, Offset
, isInc
, DAG
);
19880 if (Subtarget
->isThumb2())
19881 isLegal
= getT2IndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
19882 Offset
, isInc
, DAG
);
19884 isLegal
= getARMIndexedAddressParts(Ptr
.getNode(), VT
, isSEXTLoad
, Base
,
19885 Offset
, isInc
, DAG
);
19890 AM
= isInc
? ISD::PRE_INC
: ISD::PRE_DEC
;
19894 /// getPostIndexedAddressParts - returns true by value, base pointer and
19895 /// offset pointer and addressing mode by reference if this node can be
19896 /// combined with a load / store to form a post-indexed load / store.
19897 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode
*N
, SDNode
*Op
,
19900 ISD::MemIndexedMode
&AM
,
19901 SelectionDAG
&DAG
) const {
19905 bool isSEXTLoad
= false, isNonExt
;
19906 bool IsMasked
= false;
19907 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
19908 VT
= LD
->getMemoryVT();
19909 Ptr
= LD
->getBasePtr();
19910 Alignment
= LD
->getAlign();
19911 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
19912 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
19913 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
19914 VT
= ST
->getMemoryVT();
19915 Ptr
= ST
->getBasePtr();
19916 Alignment
= ST
->getAlign();
19917 isNonExt
= !ST
->isTruncatingStore();
19918 } else if (MaskedLoadSDNode
*LD
= dyn_cast
<MaskedLoadSDNode
>(N
)) {
19919 VT
= LD
->getMemoryVT();
19920 Ptr
= LD
->getBasePtr();
19921 Alignment
= LD
->getAlign();
19922 isSEXTLoad
= LD
->getExtensionType() == ISD::SEXTLOAD
;
19923 isNonExt
= LD
->getExtensionType() == ISD::NON_EXTLOAD
;
19925 } else if (MaskedStoreSDNode
*ST
= dyn_cast
<MaskedStoreSDNode
>(N
)) {
19926 VT
= ST
->getMemoryVT();
19927 Ptr
= ST
->getBasePtr();
19928 Alignment
= ST
->getAlign();
19929 isNonExt
= !ST
->isTruncatingStore();
19934 if (Subtarget
->isThumb1Only()) {
19935 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
19936 // must be non-extending/truncating, i32, with an offset of 4.
19937 assert(Op
->getValueType(0) == MVT::i32
&& "Non-i32 post-inc op?!");
19938 if (Op
->getOpcode() != ISD::ADD
|| !isNonExt
)
19940 auto *RHS
= dyn_cast
<ConstantSDNode
>(Op
->getOperand(1));
19941 if (!RHS
|| RHS
->getZExtValue() != 4)
19943 if (Alignment
< Align(4))
19946 Offset
= Op
->getOperand(1);
19947 Base
= Op
->getOperand(0);
19948 AM
= ISD::POST_INC
;
19953 bool isLegal
= false;
19955 isLegal
= Subtarget
->hasMVEIntegerOps() &&
19956 getMVEIndexedAddressParts(Op
, VT
, Alignment
, isSEXTLoad
, IsMasked
,
19957 Subtarget
->isLittle(), Base
, Offset
,
19960 if (Subtarget
->isThumb2())
19961 isLegal
= getT2IndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
19964 isLegal
= getARMIndexedAddressParts(Op
, VT
, isSEXTLoad
, Base
, Offset
,
19971 // Swap base ptr and offset to catch more post-index load / store when
19972 // it's legal. In Thumb2 mode, offset must be an immediate.
19973 if (Ptr
== Offset
&& Op
->getOpcode() == ISD::ADD
&&
19974 !Subtarget
->isThumb2())
19975 std::swap(Base
, Offset
);
19977 // Post-indexed load / store update the base pointer.
19982 AM
= isInc
? ISD::POST_INC
: ISD::POST_DEC
;
19986 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op
,
19988 const APInt
&DemandedElts
,
19989 const SelectionDAG
&DAG
,
19990 unsigned Depth
) const {
19991 unsigned BitWidth
= Known
.getBitWidth();
19993 switch (Op
.getOpcode()) {
19999 // Special cases when we convert a carry to a boolean.
20000 if (Op
.getResNo() == 0) {
20001 SDValue LHS
= Op
.getOperand(0);
20002 SDValue RHS
= Op
.getOperand(1);
20003 // (ADDE 0, 0, C) will give us a single bit.
20004 if (Op
->getOpcode() == ARMISD::ADDE
&& isNullConstant(LHS
) &&
20005 isNullConstant(RHS
)) {
20006 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- 1);
20011 case ARMISD::CMOV
: {
20012 // Bits are known zero/one if known on the LHS and RHS.
20013 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+1);
20014 if (Known
.isUnknown())
20017 KnownBits KnownRHS
= DAG
.computeKnownBits(Op
.getOperand(1), Depth
+1);
20018 Known
= Known
.intersectWith(KnownRHS
);
20021 case ISD::INTRINSIC_W_CHAIN
: {
20022 Intrinsic::ID IntID
=
20023 static_cast<Intrinsic::ID
>(Op
->getConstantOperandVal(1));
20026 case Intrinsic::arm_ldaex
:
20027 case Intrinsic::arm_ldrex
: {
20028 EVT VT
= cast
<MemIntrinsicSDNode
>(Op
)->getMemoryVT();
20029 unsigned MemBits
= VT
.getScalarSizeInBits();
20030 Known
.Zero
|= APInt::getHighBitsSet(BitWidth
, BitWidth
- MemBits
);
20035 case ARMISD::BFI
: {
20036 // Conservatively, we can recurse down the first operand
20037 // and just mask out all affected bits.
20038 Known
= DAG
.computeKnownBits(Op
.getOperand(0), Depth
+ 1);
20040 // The operand to BFI is already a mask suitable for removing the bits it
20042 const APInt
&Mask
= Op
.getConstantOperandAPInt(2);
20043 Known
.Zero
&= Mask
;
20047 case ARMISD::VGETLANEs
:
20048 case ARMISD::VGETLANEu
: {
20049 const SDValue
&SrcSV
= Op
.getOperand(0);
20050 EVT VecVT
= SrcSV
.getValueType();
20051 assert(VecVT
.isVector() && "VGETLANE expected a vector type");
20052 const unsigned NumSrcElts
= VecVT
.getVectorNumElements();
20053 ConstantSDNode
*Pos
= cast
<ConstantSDNode
>(Op
.getOperand(1).getNode());
20054 assert(Pos
->getAPIntValue().ult(NumSrcElts
) &&
20055 "VGETLANE index out of bounds");
20056 unsigned Idx
= Pos
->getZExtValue();
20057 APInt DemandedElt
= APInt::getOneBitSet(NumSrcElts
, Idx
);
20058 Known
= DAG
.computeKnownBits(SrcSV
, DemandedElt
, Depth
+ 1);
20060 EVT VT
= Op
.getValueType();
20061 const unsigned DstSz
= VT
.getScalarSizeInBits();
20062 const unsigned SrcSz
= VecVT
.getVectorElementType().getSizeInBits();
20064 assert(SrcSz
== Known
.getBitWidth());
20065 assert(DstSz
> SrcSz
);
20066 if (Op
.getOpcode() == ARMISD::VGETLANEs
)
20067 Known
= Known
.sext(DstSz
);
20069 Known
= Known
.zext(DstSz
);
20071 assert(DstSz
== Known
.getBitWidth());
20074 case ARMISD::VMOVrh
: {
20075 KnownBits KnownOp
= DAG
.computeKnownBits(Op
->getOperand(0), Depth
+ 1);
20076 assert(KnownOp
.getBitWidth() == 16);
20077 Known
= KnownOp
.zext(32);
20080 case ARMISD::CSINC
:
20081 case ARMISD::CSINV
:
20082 case ARMISD::CSNEG
: {
20083 KnownBits KnownOp0
= DAG
.computeKnownBits(Op
->getOperand(0), Depth
+ 1);
20084 KnownBits KnownOp1
= DAG
.computeKnownBits(Op
->getOperand(1), Depth
+ 1);
20086 // The result is either:
20087 // CSINC: KnownOp0 or KnownOp1 + 1
20088 // CSINV: KnownOp0 or ~KnownOp1
20089 // CSNEG: KnownOp0 or KnownOp1 * -1
20090 if (Op
.getOpcode() == ARMISD::CSINC
)
20092 KnownBits::add(KnownOp1
, KnownBits::makeConstant(APInt(32, 1)));
20093 else if (Op
.getOpcode() == ARMISD::CSINV
)
20094 std::swap(KnownOp1
.Zero
, KnownOp1
.One
);
20095 else if (Op
.getOpcode() == ARMISD::CSNEG
)
20096 KnownOp1
= KnownBits::mul(KnownOp1
,
20097 KnownBits::makeConstant(APInt::getAllOnes(32)));
20099 Known
= KnownOp0
.intersectWith(KnownOp1
);
20105 bool ARMTargetLowering::targetShrinkDemandedConstant(
20106 SDValue Op
, const APInt
&DemandedBits
, const APInt
&DemandedElts
,
20107 TargetLoweringOpt
&TLO
) const {
20108 // Delay optimization, so we don't have to deal with illegal types, or block
20113 // Only optimize AND for now.
20114 if (Op
.getOpcode() != ISD::AND
)
20117 EVT VT
= Op
.getValueType();
20123 assert(VT
== MVT::i32
&& "Unexpected integer type");
20125 // Make sure the RHS really is a constant.
20126 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1));
20130 unsigned Mask
= C
->getZExtValue();
20132 unsigned Demanded
= DemandedBits
.getZExtValue();
20133 unsigned ShrunkMask
= Mask
& Demanded
;
20134 unsigned ExpandedMask
= Mask
| ~Demanded
;
20136 // If the mask is all zeros, let the target-independent code replace the
20137 // result with zero.
20138 if (ShrunkMask
== 0)
20141 // If the mask is all ones, erase the AND. (Currently, the target-independent
20142 // code won't do this, so we have to do it explicitly to avoid an infinite
20143 // loop in obscure cases.)
20144 if (ExpandedMask
== ~0U)
20145 return TLO
.CombineTo(Op
, Op
.getOperand(0));
20147 auto IsLegalMask
= [ShrunkMask
, ExpandedMask
](unsigned Mask
) -> bool {
20148 return (ShrunkMask
& Mask
) == ShrunkMask
&& (~ExpandedMask
& Mask
) == 0;
20150 auto UseMask
= [Mask
, Op
, VT
, &TLO
](unsigned NewMask
) -> bool {
20151 if (NewMask
== Mask
)
20154 SDValue NewC
= TLO
.DAG
.getConstant(NewMask
, DL
, VT
);
20155 SDValue NewOp
= TLO
.DAG
.getNode(ISD::AND
, DL
, VT
, Op
.getOperand(0), NewC
);
20156 return TLO
.CombineTo(Op
, NewOp
);
20159 // Prefer uxtb mask.
20160 if (IsLegalMask(0xFF))
20161 return UseMask(0xFF);
20163 // Prefer uxth mask.
20164 if (IsLegalMask(0xFFFF))
20165 return UseMask(0xFFFF);
20167 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
20168 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20169 if (ShrunkMask
< 256)
20170 return UseMask(ShrunkMask
);
20172 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
20173 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20174 if ((int)ExpandedMask
<= -2 && (int)ExpandedMask
>= -256)
20175 return UseMask(ExpandedMask
);
20177 // Potential improvements:
20179 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
20180 // We could try to prefer Thumb1 immediates which can be lowered to a
20181 // two-instruction sequence.
20182 // We could try to recognize more legal ARM/Thumb2 immediates here.
20187 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
20188 SDValue Op
, const APInt
&OriginalDemandedBits
,
20189 const APInt
&OriginalDemandedElts
, KnownBits
&Known
, TargetLoweringOpt
&TLO
,
20190 unsigned Depth
) const {
20191 unsigned Opc
= Op
.getOpcode();
20195 case ARMISD::LSRL
: {
20196 // If this is result 0 and the other result is unused, see if the demand
20197 // bits allow us to shrink this long shift into a standard small shift in
20198 // the opposite direction.
20199 if (Op
.getResNo() == 0 && !Op
->hasAnyUseOfValue(1) &&
20200 isa
<ConstantSDNode
>(Op
->getOperand(2))) {
20201 unsigned ShAmt
= Op
->getConstantOperandVal(2);
20202 if (ShAmt
< 32 && OriginalDemandedBits
.isSubsetOf(APInt::getAllOnes(32)
20204 return TLO
.CombineTo(
20205 Op
, TLO
.DAG
.getNode(
20206 ISD::SHL
, SDLoc(Op
), MVT::i32
, Op
.getOperand(1),
20207 TLO
.DAG
.getConstant(32 - ShAmt
, SDLoc(Op
), MVT::i32
)));
20211 case ARMISD::VBICIMM
: {
20212 SDValue Op0
= Op
.getOperand(0);
20213 unsigned ModImm
= Op
.getConstantOperandVal(1);
20214 unsigned EltBits
= 0;
20215 uint64_t Mask
= ARM_AM::decodeVMOVModImm(ModImm
, EltBits
);
20216 if ((OriginalDemandedBits
& Mask
) == 0)
20217 return TLO
.CombineTo(Op
, Op0
);
20221 return TargetLowering::SimplifyDemandedBitsForTargetNode(
20222 Op
, OriginalDemandedBits
, OriginalDemandedElts
, Known
, TLO
, Depth
);
20225 //===----------------------------------------------------------------------===//
20226 // ARM Inline Assembly Support
20227 //===----------------------------------------------------------------------===//
20229 bool ARMTargetLowering::ExpandInlineAsm(CallInst
*CI
) const {
20230 // Looking for "rev" which is V6+.
20231 if (!Subtarget
->hasV6Ops())
20234 InlineAsm
*IA
= cast
<InlineAsm
>(CI
->getCalledOperand());
20235 StringRef AsmStr
= IA
->getAsmString();
20236 SmallVector
<StringRef
, 4> AsmPieces
;
20237 SplitString(AsmStr
, AsmPieces
, ";\n");
20239 switch (AsmPieces
.size()) {
20240 default: return false;
20242 AsmStr
= AsmPieces
[0];
20244 SplitString(AsmStr
, AsmPieces
, " \t,");
20247 if (AsmPieces
.size() == 3 &&
20248 AsmPieces
[0] == "rev" && AsmPieces
[1] == "$0" && AsmPieces
[2] == "$1" &&
20249 IA
->getConstraintString().compare(0, 4, "=l,l") == 0) {
20250 IntegerType
*Ty
= dyn_cast
<IntegerType
>(CI
->getType());
20251 if (Ty
&& Ty
->getBitWidth() == 32)
20252 return IntrinsicLowering::LowerToByteSwap(CI
);
20260 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT
) const {
20261 // At this point, we have to lower this constraint to something else, so we
20262 // lower it to an "r" or "w". However, by doing this we will force the result
20263 // to be in register, while the X constraint is much more permissive.
20265 // Although we are correct (we are free to emit anything, without
20266 // constraints), we might break use cases that would expect us to be more
20267 // efficient and emit something else.
20268 if (!Subtarget
->hasVFP2Base())
20270 if (ConstraintVT
.isFloatingPoint())
20272 if (ConstraintVT
.isVector() && Subtarget
->hasNEON() &&
20273 (ConstraintVT
.getSizeInBits() == 64 ||
20274 ConstraintVT
.getSizeInBits() == 128))
20280 /// getConstraintType - Given a constraint letter, return the type of
20281 /// constraint it is for this target.
20282 ARMTargetLowering::ConstraintType
20283 ARMTargetLowering::getConstraintType(StringRef Constraint
) const {
20284 unsigned S
= Constraint
.size();
20286 switch (Constraint
[0]) {
20288 case 'l': return C_RegisterClass
;
20289 case 'w': return C_RegisterClass
;
20290 case 'h': return C_RegisterClass
;
20291 case 'x': return C_RegisterClass
;
20292 case 't': return C_RegisterClass
;
20293 case 'j': return C_Immediate
; // Constant for movw.
20294 // An address with a single base register. Due to the way we
20295 // currently handle addresses it is the same as an 'r' memory constraint.
20296 case 'Q': return C_Memory
;
20298 } else if (S
== 2) {
20299 switch (Constraint
[0]) {
20301 case 'T': return C_RegisterClass
;
20302 // All 'U+' constraints are addresses.
20303 case 'U': return C_Memory
;
20306 return TargetLowering::getConstraintType(Constraint
);
20309 /// Examine constraint type and operand type and determine a weight value.
20310 /// This object must already have been set up with the operand type
20311 /// and the current alternative constraint selected.
20312 TargetLowering::ConstraintWeight
20313 ARMTargetLowering::getSingleConstraintMatchWeight(
20314 AsmOperandInfo
&info
, const char *constraint
) const {
20315 ConstraintWeight weight
= CW_Invalid
;
20316 Value
*CallOperandVal
= info
.CallOperandVal
;
20317 // If we don't have a value, we can't do a match,
20318 // but allow it at the lowest weight.
20319 if (!CallOperandVal
)
20321 Type
*type
= CallOperandVal
->getType();
20322 // Look at the constraint type.
20323 switch (*constraint
) {
20325 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
20328 if (type
->isIntegerTy()) {
20329 if (Subtarget
->isThumb())
20330 weight
= CW_SpecificReg
;
20332 weight
= CW_Register
;
20336 if (type
->isFloatingPointTy())
20337 weight
= CW_Register
;
20343 using RCPair
= std::pair
<unsigned, const TargetRegisterClass
*>;
20345 RCPair
ARMTargetLowering::getRegForInlineAsmConstraint(
20346 const TargetRegisterInfo
*TRI
, StringRef Constraint
, MVT VT
) const {
20347 switch (Constraint
.size()) {
20349 // GCC ARM Constraint Letters
20350 switch (Constraint
[0]) {
20351 case 'l': // Low regs or general regs.
20352 if (Subtarget
->isThumb())
20353 return RCPair(0U, &ARM::tGPRRegClass
);
20354 return RCPair(0U, &ARM::GPRRegClass
);
20355 case 'h': // High regs or no regs.
20356 if (Subtarget
->isThumb())
20357 return RCPair(0U, &ARM::hGPRRegClass
);
20360 if (Subtarget
->isThumb1Only())
20361 return RCPair(0U, &ARM::tGPRRegClass
);
20362 return RCPair(0U, &ARM::GPRRegClass
);
20364 if (VT
== MVT::Other
)
20366 if (VT
== MVT::f32
|| VT
== MVT::f16
|| VT
== MVT::bf16
)
20367 return RCPair(0U, &ARM::SPRRegClass
);
20368 if (VT
.getSizeInBits() == 64)
20369 return RCPair(0U, &ARM::DPRRegClass
);
20370 if (VT
.getSizeInBits() == 128)
20371 return RCPair(0U, &ARM::QPRRegClass
);
20374 if (VT
== MVT::Other
)
20376 if (VT
== MVT::f32
|| VT
== MVT::f16
|| VT
== MVT::bf16
)
20377 return RCPair(0U, &ARM::SPR_8RegClass
);
20378 if (VT
.getSizeInBits() == 64)
20379 return RCPair(0U, &ARM::DPR_8RegClass
);
20380 if (VT
.getSizeInBits() == 128)
20381 return RCPair(0U, &ARM::QPR_8RegClass
);
20384 if (VT
== MVT::Other
)
20386 if (VT
== MVT::f32
|| VT
== MVT::i32
|| VT
== MVT::f16
|| VT
== MVT::bf16
)
20387 return RCPair(0U, &ARM::SPRRegClass
);
20388 if (VT
.getSizeInBits() == 64)
20389 return RCPair(0U, &ARM::DPR_VFP2RegClass
);
20390 if (VT
.getSizeInBits() == 128)
20391 return RCPair(0U, &ARM::QPR_VFP2RegClass
);
20397 if (Constraint
[0] == 'T') {
20398 switch (Constraint
[1]) {
20402 return RCPair(0U, &ARM::tGPREvenRegClass
);
20404 return RCPair(0U, &ARM::tGPROddRegClass
);
20413 if (StringRef("{cc}").equals_insensitive(Constraint
))
20414 return std::make_pair(unsigned(ARM::CPSR
), &ARM::CCRRegClass
);
20416 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
20419 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
20420 /// vector. If it is invalid, don't add anything to Ops.
20421 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
20422 StringRef Constraint
,
20423 std::vector
<SDValue
> &Ops
,
20424 SelectionDAG
&DAG
) const {
20427 // Currently only support length 1 constraints.
20428 if (Constraint
.size() != 1)
20431 char ConstraintLetter
= Constraint
[0];
20432 switch (ConstraintLetter
) {
20435 case 'I': case 'J': case 'K': case 'L':
20436 case 'M': case 'N': case 'O':
20437 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
20441 int64_t CVal64
= C
->getSExtValue();
20442 int CVal
= (int) CVal64
;
20443 // None of these constraints allow values larger than 32 bits. Check
20444 // that the value fits in an int.
20445 if (CVal
!= CVal64
)
20448 switch (ConstraintLetter
) {
20450 // Constant suitable for movw, must be between 0 and
20452 if (Subtarget
->hasV6T2Ops() || (Subtarget
->hasV8MBaselineOps()))
20453 if (CVal
>= 0 && CVal
<= 65535)
20457 if (Subtarget
->isThumb1Only()) {
20458 // This must be a constant between 0 and 255, for ADD
20460 if (CVal
>= 0 && CVal
<= 255)
20462 } else if (Subtarget
->isThumb2()) {
20463 // A constant that can be used as an immediate value in a
20464 // data-processing instruction.
20465 if (ARM_AM::getT2SOImmVal(CVal
) != -1)
20468 // A constant that can be used as an immediate value in a
20469 // data-processing instruction.
20470 if (ARM_AM::getSOImmVal(CVal
) != -1)
20476 if (Subtarget
->isThumb1Only()) {
20477 // This must be a constant between -255 and -1, for negated ADD
20478 // immediates. This can be used in GCC with an "n" modifier that
20479 // prints the negated value, for use with SUB instructions. It is
20480 // not useful otherwise but is implemented for compatibility.
20481 if (CVal
>= -255 && CVal
<= -1)
20484 // This must be a constant between -4095 and 4095. It is not clear
20485 // what this constraint is intended for. Implemented for
20486 // compatibility with GCC.
20487 if (CVal
>= -4095 && CVal
<= 4095)
20493 if (Subtarget
->isThumb1Only()) {
20494 // A 32-bit value where only one byte has a nonzero value. Exclude
20495 // zero to match GCC. This constraint is used by GCC internally for
20496 // constants that can be loaded with a move/shift combination.
20497 // It is not useful otherwise but is implemented for compatibility.
20498 if (CVal
!= 0 && ARM_AM::isThumbImmShiftedVal(CVal
))
20500 } else if (Subtarget
->isThumb2()) {
20501 // A constant whose bitwise inverse can be used as an immediate
20502 // value in a data-processing instruction. This can be used in GCC
20503 // with a "B" modifier that prints the inverted value, for use with
20504 // BIC and MVN instructions. It is not useful otherwise but is
20505 // implemented for compatibility.
20506 if (ARM_AM::getT2SOImmVal(~CVal
) != -1)
20509 // A constant whose bitwise inverse can be used as an immediate
20510 // value in a data-processing instruction. This can be used in GCC
20511 // with a "B" modifier that prints the inverted value, for use with
20512 // BIC and MVN instructions. It is not useful otherwise but is
20513 // implemented for compatibility.
20514 if (ARM_AM::getSOImmVal(~CVal
) != -1)
20520 if (Subtarget
->isThumb1Only()) {
20521 // This must be a constant between -7 and 7,
20522 // for 3-operand ADD/SUB immediate instructions.
20523 if (CVal
>= -7 && CVal
< 7)
20525 } else if (Subtarget
->isThumb2()) {
20526 // A constant whose negation can be used as an immediate value in a
20527 // data-processing instruction. This can be used in GCC with an "n"
20528 // modifier that prints the negated value, for use with SUB
20529 // instructions. It is not useful otherwise but is implemented for
20531 if (ARM_AM::getT2SOImmVal(-CVal
) != -1)
20534 // A constant whose negation can be used as an immediate value in a
20535 // data-processing instruction. This can be used in GCC with an "n"
20536 // modifier that prints the negated value, for use with SUB
20537 // instructions. It is not useful otherwise but is implemented for
20539 if (ARM_AM::getSOImmVal(-CVal
) != -1)
20545 if (Subtarget
->isThumb1Only()) {
20546 // This must be a multiple of 4 between 0 and 1020, for
20547 // ADD sp + immediate.
20548 if ((CVal
>= 0 && CVal
<= 1020) && ((CVal
& 3) == 0))
20551 // A power of two or a constant between 0 and 32. This is used in
20552 // GCC for the shift amount on shifted register operands, but it is
20553 // useful in general for any shift amounts.
20554 if ((CVal
>= 0 && CVal
<= 32) || ((CVal
& (CVal
- 1)) == 0))
20560 if (Subtarget
->isThumb1Only()) {
20561 // This must be a constant between 0 and 31, for shift amounts.
20562 if (CVal
>= 0 && CVal
<= 31)
20568 if (Subtarget
->isThumb1Only()) {
20569 // This must be a multiple of 4 between -508 and 508, for
20570 // ADD/SUB sp = sp + immediate.
20571 if ((CVal
>= -508 && CVal
<= 508) && ((CVal
& 3) == 0))
20576 Result
= DAG
.getSignedTargetConstant(CVal
, SDLoc(Op
), Op
.getValueType());
20580 if (Result
.getNode()) {
20581 Ops
.push_back(Result
);
20584 return TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
20587 static RTLIB::Libcall
getDivRemLibcall(
20588 const SDNode
*N
, MVT::SimpleValueType SVT
) {
20589 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
20590 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
20591 "Unhandled Opcode in getDivRemLibcall");
20592 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
20593 N
->getOpcode() == ISD::SREM
;
20596 default: llvm_unreachable("Unexpected request for libcall!");
20597 case MVT::i8
: LC
= isSigned
? RTLIB::SDIVREM_I8
: RTLIB::UDIVREM_I8
; break;
20598 case MVT::i16
: LC
= isSigned
? RTLIB::SDIVREM_I16
: RTLIB::UDIVREM_I16
; break;
20599 case MVT::i32
: LC
= isSigned
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
; break;
20600 case MVT::i64
: LC
= isSigned
? RTLIB::SDIVREM_I64
: RTLIB::UDIVREM_I64
; break;
20605 static TargetLowering::ArgListTy
getDivRemArgList(
20606 const SDNode
*N
, LLVMContext
*Context
, const ARMSubtarget
*Subtarget
) {
20607 assert((N
->getOpcode() == ISD::SDIVREM
|| N
->getOpcode() == ISD::UDIVREM
||
20608 N
->getOpcode() == ISD::SREM
|| N
->getOpcode() == ISD::UREM
) &&
20609 "Unhandled Opcode in getDivRemArgList");
20610 bool isSigned
= N
->getOpcode() == ISD::SDIVREM
||
20611 N
->getOpcode() == ISD::SREM
;
20612 TargetLowering::ArgListTy Args
;
20613 TargetLowering::ArgListEntry Entry
;
20614 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
20615 EVT ArgVT
= N
->getOperand(i
).getValueType();
20616 Type
*ArgTy
= ArgVT
.getTypeForEVT(*Context
);
20617 Entry
.Node
= N
->getOperand(i
);
20619 Entry
.IsSExt
= isSigned
;
20620 Entry
.IsZExt
= !isSigned
;
20621 Args
.push_back(Entry
);
20623 if (Subtarget
->isTargetWindows() && Args
.size() >= 2)
20624 std::swap(Args
[0], Args
[1]);
20628 SDValue
ARMTargetLowering::LowerDivRem(SDValue Op
, SelectionDAG
&DAG
) const {
20629 assert((Subtarget
->isTargetAEABI() || Subtarget
->isTargetAndroid() ||
20630 Subtarget
->isTargetGNUAEABI() || Subtarget
->isTargetMuslAEABI() ||
20631 Subtarget
->isTargetWindows()) &&
20632 "Register-based DivRem lowering only");
20633 unsigned Opcode
= Op
->getOpcode();
20634 assert((Opcode
== ISD::SDIVREM
|| Opcode
== ISD::UDIVREM
) &&
20635 "Invalid opcode for Div/Rem lowering");
20636 bool isSigned
= (Opcode
== ISD::SDIVREM
);
20637 EVT VT
= Op
->getValueType(0);
20640 if (VT
== MVT::i64
&& isa
<ConstantSDNode
>(Op
.getOperand(1))) {
20641 SmallVector
<SDValue
> Result
;
20642 if (expandDIVREMByConstant(Op
.getNode(), Result
, MVT::i32
, DAG
)) {
20644 DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, Result
[0], Result
[1]);
20646 DAG
.getNode(ISD::BUILD_PAIR
, dl
, VT
, Result
[2], Result
[3]);
20647 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, Op
->getVTList(),
20652 Type
*Ty
= VT
.getTypeForEVT(*DAG
.getContext());
20654 // If the target has hardware divide, use divide + multiply + subtract:
20656 // rem = a - b * div
20657 // return {div, rem}
20658 // This should be lowered into UDIV/SDIV + MLS later on.
20659 bool hasDivide
= Subtarget
->isThumb() ? Subtarget
->hasDivideInThumbMode()
20660 : Subtarget
->hasDivideInARMMode();
20661 if (hasDivide
&& Op
->getValueType(0).isSimple() &&
20662 Op
->getSimpleValueType(0) == MVT::i32
) {
20663 unsigned DivOpcode
= isSigned
? ISD::SDIV
: ISD::UDIV
;
20664 const SDValue Dividend
= Op
->getOperand(0);
20665 const SDValue Divisor
= Op
->getOperand(1);
20666 SDValue Div
= DAG
.getNode(DivOpcode
, dl
, VT
, Dividend
, Divisor
);
20667 SDValue Mul
= DAG
.getNode(ISD::MUL
, dl
, VT
, Div
, Divisor
);
20668 SDValue Rem
= DAG
.getNode(ISD::SUB
, dl
, VT
, Dividend
, Mul
);
20670 SDValue Values
[2] = {Div
, Rem
};
20671 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(VT
, VT
), Values
);
20674 RTLIB::Libcall LC
= getDivRemLibcall(Op
.getNode(),
20675 VT
.getSimpleVT().SimpleTy
);
20676 SDValue InChain
= DAG
.getEntryNode();
20678 TargetLowering::ArgListTy Args
= getDivRemArgList(Op
.getNode(),
20682 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
20683 getPointerTy(DAG
.getDataLayout()));
20685 Type
*RetTy
= StructType::get(Ty
, Ty
);
20687 if (Subtarget
->isTargetWindows())
20688 InChain
= WinDBZCheckDenominator(DAG
, Op
.getNode(), InChain
);
20690 TargetLowering::CallLoweringInfo
CLI(DAG
);
20691 CLI
.setDebugLoc(dl
).setChain(InChain
)
20692 .setCallee(getLibcallCallingConv(LC
), RetTy
, Callee
, std::move(Args
))
20693 .setInRegister().setSExtResult(isSigned
).setZExtResult(!isSigned
);
20695 std::pair
<SDValue
, SDValue
> CallInfo
= LowerCallTo(CLI
);
20696 return CallInfo
.first
;
20699 // Lowers REM using divmod helpers
20700 // see RTABI section 4.2/4.3
20701 SDValue
ARMTargetLowering::LowerREM(SDNode
*N
, SelectionDAG
&DAG
) const {
20702 EVT VT
= N
->getValueType(0);
20704 if (VT
== MVT::i64
&& isa
<ConstantSDNode
>(N
->getOperand(1))) {
20705 SmallVector
<SDValue
> Result
;
20706 if (expandDIVREMByConstant(N
, Result
, MVT::i32
, DAG
))
20707 return DAG
.getNode(ISD::BUILD_PAIR
, SDLoc(N
), N
->getValueType(0),
20708 Result
[0], Result
[1]);
20711 // Build return types (div and rem)
20712 std::vector
<Type
*> RetTyParams
;
20713 Type
*RetTyElement
;
20715 switch (VT
.getSimpleVT().SimpleTy
) {
20716 default: llvm_unreachable("Unexpected request for libcall!");
20717 case MVT::i8
: RetTyElement
= Type::getInt8Ty(*DAG
.getContext()); break;
20718 case MVT::i16
: RetTyElement
= Type::getInt16Ty(*DAG
.getContext()); break;
20719 case MVT::i32
: RetTyElement
= Type::getInt32Ty(*DAG
.getContext()); break;
20720 case MVT::i64
: RetTyElement
= Type::getInt64Ty(*DAG
.getContext()); break;
20723 RetTyParams
.push_back(RetTyElement
);
20724 RetTyParams
.push_back(RetTyElement
);
20725 ArrayRef
<Type
*> ret
= ArrayRef
<Type
*>(RetTyParams
);
20726 Type
*RetTy
= StructType::get(*DAG
.getContext(), ret
);
20728 RTLIB::Libcall LC
= getDivRemLibcall(N
, N
->getValueType(0).getSimpleVT().
20730 SDValue InChain
= DAG
.getEntryNode();
20731 TargetLowering::ArgListTy Args
= getDivRemArgList(N
, DAG
.getContext(),
20733 bool isSigned
= N
->getOpcode() == ISD::SREM
;
20734 SDValue Callee
= DAG
.getExternalSymbol(getLibcallName(LC
),
20735 getPointerTy(DAG
.getDataLayout()));
20737 if (Subtarget
->isTargetWindows())
20738 InChain
= WinDBZCheckDenominator(DAG
, N
, InChain
);
20741 CallLoweringInfo
CLI(DAG
);
20742 CLI
.setChain(InChain
)
20743 .setCallee(CallingConv::ARM_AAPCS
, RetTy
, Callee
, std::move(Args
))
20744 .setSExtResult(isSigned
).setZExtResult(!isSigned
).setDebugLoc(SDLoc(N
));
20745 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
20747 // Return second (rem) result operand (first contains div)
20748 SDNode
*ResNode
= CallResult
.first
.getNode();
20749 assert(ResNode
->getNumOperands() == 2 && "divmod should return two operands");
20750 return ResNode
->getOperand(1);
20754 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op
, SelectionDAG
&DAG
) const {
20755 assert(Subtarget
->isTargetWindows() && "unsupported target platform");
20759 SDValue Chain
= Op
.getOperand(0);
20760 SDValue Size
= Op
.getOperand(1);
20762 if (DAG
.getMachineFunction().getFunction().hasFnAttribute(
20763 "no-stack-arg-probe")) {
20765 cast
<ConstantSDNode
>(Op
.getOperand(2))->getMaybeAlignValue();
20766 SDValue SP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
20767 Chain
= SP
.getValue(1);
20768 SP
= DAG
.getNode(ISD::SUB
, DL
, MVT::i32
, SP
, Size
);
20771 DAG
.getNode(ISD::AND
, DL
, MVT::i32
, SP
.getValue(0),
20772 DAG
.getConstant(-(uint64_t)Align
->value(), DL
, MVT::i32
));
20773 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::SP
, SP
);
20774 SDValue Ops
[2] = { SP
, Chain
};
20775 return DAG
.getMergeValues(Ops
, DL
);
20778 SDValue Words
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Size
,
20779 DAG
.getConstant(2, DL
, MVT::i32
));
20782 Chain
= DAG
.getCopyToReg(Chain
, DL
, ARM::R4
, Words
, Glue
);
20783 Glue
= Chain
.getValue(1);
20785 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
20786 Chain
= DAG
.getNode(ARMISD::WIN__CHKSTK
, DL
, NodeTys
, Chain
, Glue
);
20788 SDValue NewSP
= DAG
.getCopyFromReg(Chain
, DL
, ARM::SP
, MVT::i32
);
20789 Chain
= NewSP
.getValue(1);
20791 SDValue Ops
[2] = { NewSP
, Chain
};
20792 return DAG
.getMergeValues(Ops
, DL
);
20795 SDValue
ARMTargetLowering::LowerFP_EXTEND(SDValue Op
, SelectionDAG
&DAG
) const {
20796 bool IsStrict
= Op
->isStrictFPOpcode();
20797 SDValue SrcVal
= Op
.getOperand(IsStrict
? 1 : 0);
20798 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
20799 const unsigned SrcSz
= SrcVal
.getValueType().getSizeInBits();
20800 assert(DstSz
> SrcSz
&& DstSz
<= 64 && SrcSz
>= 16 &&
20801 "Unexpected type for custom-lowering FP_EXTEND");
20803 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
20804 "With both FP DP and 16, any FP conversion is legal!");
20806 assert(!(DstSz
== 32 && Subtarget
->hasFP16()) &&
20807 "With FP16, 16 to 32 conversion is legal!");
20809 // Converting from 32 -> 64 is valid if we have FP64.
20810 if (SrcSz
== 32 && DstSz
== 64 && Subtarget
->hasFP64()) {
20811 // FIXME: Remove this when we have strict fp instruction selection patterns
20814 SDValue Result
= DAG
.getNode(ISD::FP_EXTEND
,
20815 Loc
, Op
.getValueType(), SrcVal
);
20816 return DAG
.getMergeValues({Result
, Op
.getOperand(0)}, Loc
);
20821 // Either we are converting from 16 -> 64, without FP16 and/or
20822 // FP.double-precision or without Armv8-fp. So we must do it in two
20824 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
20825 // without FP16. So we must do a function call.
20828 MakeLibCallOptions CallOptions
;
20829 SDValue Chain
= IsStrict
? Op
.getOperand(0) : SDValue();
20830 for (unsigned Sz
= SrcSz
; Sz
<= 32 && Sz
< DstSz
; Sz
*= 2) {
20831 bool Supported
= (Sz
== 16 ? Subtarget
->hasFP16() : Subtarget
->hasFP64());
20832 MVT SrcVT
= (Sz
== 16 ? MVT::f16
: MVT::f32
);
20833 MVT DstVT
= (Sz
== 16 ? MVT::f32
: MVT::f64
);
20836 SrcVal
= DAG
.getNode(ISD::STRICT_FP_EXTEND
, Loc
,
20837 {DstVT
, MVT::Other
}, {Chain
, SrcVal
});
20838 Chain
= SrcVal
.getValue(1);
20840 SrcVal
= DAG
.getNode(ISD::FP_EXTEND
, Loc
, DstVT
, SrcVal
);
20843 LC
= RTLIB::getFPEXT(SrcVT
, DstVT
);
20844 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
20845 "Unexpected type for custom-lowering FP_EXTEND");
20846 std::tie(SrcVal
, Chain
) = makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
,
20851 return IsStrict
? DAG
.getMergeValues({SrcVal
, Chain
}, Loc
) : SrcVal
;
20854 SDValue
ARMTargetLowering::LowerFP_ROUND(SDValue Op
, SelectionDAG
&DAG
) const {
20855 bool IsStrict
= Op
->isStrictFPOpcode();
20857 SDValue SrcVal
= Op
.getOperand(IsStrict
? 1 : 0);
20858 EVT SrcVT
= SrcVal
.getValueType();
20859 EVT DstVT
= Op
.getValueType();
20860 const unsigned DstSz
= Op
.getValueType().getSizeInBits();
20861 const unsigned SrcSz
= SrcVT
.getSizeInBits();
20863 assert(DstSz
< SrcSz
&& SrcSz
<= 64 && DstSz
>= 16 &&
20864 "Unexpected type for custom-lowering FP_ROUND");
20866 assert((!Subtarget
->hasFP64() || !Subtarget
->hasFPARMv8Base()) &&
20867 "With both FP DP and 16, any FP conversion is legal!");
20871 // Instruction from 32 -> 16 if hasFP16 is valid
20872 if (SrcSz
== 32 && Subtarget
->hasFP16())
20875 // Lib call from 32 -> 16 / 64 -> [32, 16]
20876 RTLIB::Libcall LC
= RTLIB::getFPROUND(SrcVT
, DstVT
);
20877 assert(LC
!= RTLIB::UNKNOWN_LIBCALL
&&
20878 "Unexpected type for custom-lowering FP_ROUND");
20879 MakeLibCallOptions CallOptions
;
20880 SDValue Chain
= IsStrict
? Op
.getOperand(0) : SDValue();
20882 std::tie(Result
, Chain
) = makeLibCall(DAG
, LC
, DstVT
, SrcVal
, CallOptions
,
20884 return IsStrict
? DAG
.getMergeValues({Result
, Chain
}, Loc
) : Result
;
20888 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
20889 // The ARM target isn't yet aware of offsets.
20893 bool ARM::isBitFieldInvertedMask(unsigned v
) {
20894 if (v
== 0xffffffff)
20897 // there can be 1's on either or both "outsides", all the "inside"
20898 // bits must be 0's
20899 return isShiftedMask_32(~v
);
20902 /// isFPImmLegal - Returns true if the target can instruction select the
20903 /// specified FP immediate natively. If false, the legalizer will
20904 /// materialize the FP immediate as a load from a constant pool.
20905 bool ARMTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
20906 bool ForCodeSize
) const {
20907 if (!Subtarget
->hasVFP3Base())
20909 if (VT
== MVT::f16
&& Subtarget
->hasFullFP16())
20910 return ARM_AM::getFP16Imm(Imm
) != -1;
20911 if (VT
== MVT::f32
&& Subtarget
->hasFullFP16() &&
20912 ARM_AM::getFP32FP16Imm(Imm
) != -1)
20914 if (VT
== MVT::f32
)
20915 return ARM_AM::getFP32Imm(Imm
) != -1;
20916 if (VT
== MVT::f64
&& Subtarget
->hasFP64())
20917 return ARM_AM::getFP64Imm(Imm
) != -1;
20921 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
20922 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
20923 /// specified in the intrinsic calls.
20924 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo
&Info
,
20926 MachineFunction
&MF
,
20927 unsigned Intrinsic
) const {
20928 switch (Intrinsic
) {
20929 case Intrinsic::arm_neon_vld1
:
20930 case Intrinsic::arm_neon_vld2
:
20931 case Intrinsic::arm_neon_vld3
:
20932 case Intrinsic::arm_neon_vld4
:
20933 case Intrinsic::arm_neon_vld2lane
:
20934 case Intrinsic::arm_neon_vld3lane
:
20935 case Intrinsic::arm_neon_vld4lane
:
20936 case Intrinsic::arm_neon_vld2dup
:
20937 case Intrinsic::arm_neon_vld3dup
:
20938 case Intrinsic::arm_neon_vld4dup
: {
20939 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
20940 // Conservatively set memVT to the entire set of vectors loaded.
20941 auto &DL
= I
.getDataLayout();
20942 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
20943 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
20944 Info
.ptrVal
= I
.getArgOperand(0);
20946 Value
*AlignArg
= I
.getArgOperand(I
.arg_size() - 1);
20947 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getMaybeAlignValue();
20948 // volatile loads with NEON intrinsics not supported
20949 Info
.flags
= MachineMemOperand::MOLoad
;
20952 case Intrinsic::arm_neon_vld1x2
:
20953 case Intrinsic::arm_neon_vld1x3
:
20954 case Intrinsic::arm_neon_vld1x4
: {
20955 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
20956 // Conservatively set memVT to the entire set of vectors loaded.
20957 auto &DL
= I
.getDataLayout();
20958 uint64_t NumElts
= DL
.getTypeSizeInBits(I
.getType()) / 64;
20959 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
20960 Info
.ptrVal
= I
.getArgOperand(I
.arg_size() - 1);
20962 Info
.align
= I
.getParamAlign(I
.arg_size() - 1).valueOrOne();
20963 // volatile loads with NEON intrinsics not supported
20964 Info
.flags
= MachineMemOperand::MOLoad
;
20967 case Intrinsic::arm_neon_vst1
:
20968 case Intrinsic::arm_neon_vst2
:
20969 case Intrinsic::arm_neon_vst3
:
20970 case Intrinsic::arm_neon_vst4
:
20971 case Intrinsic::arm_neon_vst2lane
:
20972 case Intrinsic::arm_neon_vst3lane
:
20973 case Intrinsic::arm_neon_vst4lane
: {
20974 Info
.opc
= ISD::INTRINSIC_VOID
;
20975 // Conservatively set memVT to the entire set of vectors stored.
20976 auto &DL
= I
.getDataLayout();
20977 unsigned NumElts
= 0;
20978 for (unsigned ArgI
= 1, ArgE
= I
.arg_size(); ArgI
< ArgE
; ++ArgI
) {
20979 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
20980 if (!ArgTy
->isVectorTy())
20982 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
20984 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
20985 Info
.ptrVal
= I
.getArgOperand(0);
20987 Value
*AlignArg
= I
.getArgOperand(I
.arg_size() - 1);
20988 Info
.align
= cast
<ConstantInt
>(AlignArg
)->getMaybeAlignValue();
20989 // volatile stores with NEON intrinsics not supported
20990 Info
.flags
= MachineMemOperand::MOStore
;
20993 case Intrinsic::arm_neon_vst1x2
:
20994 case Intrinsic::arm_neon_vst1x3
:
20995 case Intrinsic::arm_neon_vst1x4
: {
20996 Info
.opc
= ISD::INTRINSIC_VOID
;
20997 // Conservatively set memVT to the entire set of vectors stored.
20998 auto &DL
= I
.getDataLayout();
20999 unsigned NumElts
= 0;
21000 for (unsigned ArgI
= 1, ArgE
= I
.arg_size(); ArgI
< ArgE
; ++ArgI
) {
21001 Type
*ArgTy
= I
.getArgOperand(ArgI
)->getType();
21002 if (!ArgTy
->isVectorTy())
21004 NumElts
+= DL
.getTypeSizeInBits(ArgTy
) / 64;
21006 Info
.memVT
= EVT::getVectorVT(I
.getType()->getContext(), MVT::i64
, NumElts
);
21007 Info
.ptrVal
= I
.getArgOperand(0);
21009 Info
.align
= I
.getParamAlign(0).valueOrOne();
21010 // volatile stores with NEON intrinsics not supported
21011 Info
.flags
= MachineMemOperand::MOStore
;
21014 case Intrinsic::arm_mve_vld2q
:
21015 case Intrinsic::arm_mve_vld4q
: {
21016 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21017 // Conservatively set memVT to the entire set of vectors loaded.
21018 Type
*VecTy
= cast
<StructType
>(I
.getType())->getElementType(1);
21019 unsigned Factor
= Intrinsic
== Intrinsic::arm_mve_vld2q
? 2 : 4;
21020 Info
.memVT
= EVT::getVectorVT(VecTy
->getContext(), MVT::i64
, Factor
* 2);
21021 Info
.ptrVal
= I
.getArgOperand(0);
21023 Info
.align
= Align(VecTy
->getScalarSizeInBits() / 8);
21024 // volatile loads with MVE intrinsics not supported
21025 Info
.flags
= MachineMemOperand::MOLoad
;
21028 case Intrinsic::arm_mve_vst2q
:
21029 case Intrinsic::arm_mve_vst4q
: {
21030 Info
.opc
= ISD::INTRINSIC_VOID
;
21031 // Conservatively set memVT to the entire set of vectors stored.
21032 Type
*VecTy
= I
.getArgOperand(1)->getType();
21033 unsigned Factor
= Intrinsic
== Intrinsic::arm_mve_vst2q
? 2 : 4;
21034 Info
.memVT
= EVT::getVectorVT(VecTy
->getContext(), MVT::i64
, Factor
* 2);
21035 Info
.ptrVal
= I
.getArgOperand(0);
21037 Info
.align
= Align(VecTy
->getScalarSizeInBits() / 8);
21038 // volatile stores with MVE intrinsics not supported
21039 Info
.flags
= MachineMemOperand::MOStore
;
21042 case Intrinsic::arm_mve_vldr_gather_base
:
21043 case Intrinsic::arm_mve_vldr_gather_base_predicated
: {
21044 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21045 Info
.ptrVal
= nullptr;
21046 Info
.memVT
= MVT::getVT(I
.getType());
21047 Info
.align
= Align(1);
21048 Info
.flags
|= MachineMemOperand::MOLoad
;
21051 case Intrinsic::arm_mve_vldr_gather_base_wb
:
21052 case Intrinsic::arm_mve_vldr_gather_base_wb_predicated
: {
21053 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21054 Info
.ptrVal
= nullptr;
21055 Info
.memVT
= MVT::getVT(I
.getType()->getContainedType(0));
21056 Info
.align
= Align(1);
21057 Info
.flags
|= MachineMemOperand::MOLoad
;
21060 case Intrinsic::arm_mve_vldr_gather_offset
:
21061 case Intrinsic::arm_mve_vldr_gather_offset_predicated
: {
21062 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21063 Info
.ptrVal
= nullptr;
21064 MVT DataVT
= MVT::getVT(I
.getType());
21065 unsigned MemSize
= cast
<ConstantInt
>(I
.getArgOperand(2))->getZExtValue();
21066 Info
.memVT
= MVT::getVectorVT(MVT::getIntegerVT(MemSize
),
21067 DataVT
.getVectorNumElements());
21068 Info
.align
= Align(1);
21069 Info
.flags
|= MachineMemOperand::MOLoad
;
21072 case Intrinsic::arm_mve_vstr_scatter_base
:
21073 case Intrinsic::arm_mve_vstr_scatter_base_predicated
: {
21074 Info
.opc
= ISD::INTRINSIC_VOID
;
21075 Info
.ptrVal
= nullptr;
21076 Info
.memVT
= MVT::getVT(I
.getArgOperand(2)->getType());
21077 Info
.align
= Align(1);
21078 Info
.flags
|= MachineMemOperand::MOStore
;
21081 case Intrinsic::arm_mve_vstr_scatter_base_wb
:
21082 case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated
: {
21083 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21084 Info
.ptrVal
= nullptr;
21085 Info
.memVT
= MVT::getVT(I
.getArgOperand(2)->getType());
21086 Info
.align
= Align(1);
21087 Info
.flags
|= MachineMemOperand::MOStore
;
21090 case Intrinsic::arm_mve_vstr_scatter_offset
:
21091 case Intrinsic::arm_mve_vstr_scatter_offset_predicated
: {
21092 Info
.opc
= ISD::INTRINSIC_VOID
;
21093 Info
.ptrVal
= nullptr;
21094 MVT DataVT
= MVT::getVT(I
.getArgOperand(2)->getType());
21095 unsigned MemSize
= cast
<ConstantInt
>(I
.getArgOperand(3))->getZExtValue();
21096 Info
.memVT
= MVT::getVectorVT(MVT::getIntegerVT(MemSize
),
21097 DataVT
.getVectorNumElements());
21098 Info
.align
= Align(1);
21099 Info
.flags
|= MachineMemOperand::MOStore
;
21102 case Intrinsic::arm_ldaex
:
21103 case Intrinsic::arm_ldrex
: {
21104 auto &DL
= I
.getDataLayout();
21105 Type
*ValTy
= I
.getParamElementType(0);
21106 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21107 Info
.memVT
= MVT::getVT(ValTy
);
21108 Info
.ptrVal
= I
.getArgOperand(0);
21110 Info
.align
= DL
.getABITypeAlign(ValTy
);
21111 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
21114 case Intrinsic::arm_stlex
:
21115 case Intrinsic::arm_strex
: {
21116 auto &DL
= I
.getDataLayout();
21117 Type
*ValTy
= I
.getParamElementType(1);
21118 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21119 Info
.memVT
= MVT::getVT(ValTy
);
21120 Info
.ptrVal
= I
.getArgOperand(1);
21122 Info
.align
= DL
.getABITypeAlign(ValTy
);
21123 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
21126 case Intrinsic::arm_stlexd
:
21127 case Intrinsic::arm_strexd
:
21128 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21129 Info
.memVT
= MVT::i64
;
21130 Info
.ptrVal
= I
.getArgOperand(2);
21132 Info
.align
= Align(8);
21133 Info
.flags
= MachineMemOperand::MOStore
| MachineMemOperand::MOVolatile
;
21136 case Intrinsic::arm_ldaexd
:
21137 case Intrinsic::arm_ldrexd
:
21138 Info
.opc
= ISD::INTRINSIC_W_CHAIN
;
21139 Info
.memVT
= MVT::i64
;
21140 Info
.ptrVal
= I
.getArgOperand(0);
21142 Info
.align
= Align(8);
21143 Info
.flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOVolatile
;
21153 /// Returns true if it is beneficial to convert a load of a constant
21154 /// to just the constant itself.
21155 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt
&Imm
,
21157 assert(Ty
->isIntegerTy());
21159 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
21160 if (Bits
== 0 || Bits
> 32)
21165 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT
, EVT SrcVT
,
21166 unsigned Index
) const {
21167 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR
, ResVT
))
21170 return (Index
== 0 || Index
== ResVT
.getVectorNumElements());
21173 Instruction
*ARMTargetLowering::makeDMB(IRBuilderBase
&Builder
,
21174 ARM_MB::MemBOpt Domain
) const {
21175 // First, if the target has no DMB, see what fallback we can use.
21176 if (!Subtarget
->hasDataBarrier()) {
21177 // Some ARMv6 cpus can support data barriers with an mcr instruction.
21178 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
21180 if (Subtarget
->hasV6Ops() && !Subtarget
->isThumb()) {
21181 Value
* args
[6] = {Builder
.getInt32(15), Builder
.getInt32(0),
21182 Builder
.getInt32(0), Builder
.getInt32(7),
21183 Builder
.getInt32(10), Builder
.getInt32(5)};
21184 return Builder
.CreateIntrinsic(Intrinsic::arm_mcr
, {}, args
);
21186 // Instead of using barriers, atomic accesses on these subtargets use
21188 llvm_unreachable("makeDMB on a target so old that it has no barriers");
21191 // Only a full system barrier exists in the M-class architectures.
21192 Domain
= Subtarget
->isMClass() ? ARM_MB::SY
: Domain
;
21193 Constant
*CDomain
= Builder
.getInt32(Domain
);
21194 return Builder
.CreateIntrinsic(Intrinsic::arm_dmb
, {}, CDomain
);
21198 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
21199 Instruction
*ARMTargetLowering::emitLeadingFence(IRBuilderBase
&Builder
,
21201 AtomicOrdering Ord
) const {
21203 case AtomicOrdering::NotAtomic
:
21204 case AtomicOrdering::Unordered
:
21205 llvm_unreachable("Invalid fence: unordered/non-atomic");
21206 case AtomicOrdering::Monotonic
:
21207 case AtomicOrdering::Acquire
:
21208 return nullptr; // Nothing to do
21209 case AtomicOrdering::SequentiallyConsistent
:
21210 if (!Inst
->hasAtomicStore())
21211 return nullptr; // Nothing to do
21213 case AtomicOrdering::Release
:
21214 case AtomicOrdering::AcquireRelease
:
21215 if (Subtarget
->preferISHSTBarriers())
21216 return makeDMB(Builder
, ARM_MB::ISHST
);
21217 // FIXME: add a comment with a link to documentation justifying this.
21219 return makeDMB(Builder
, ARM_MB::ISH
);
21221 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
21224 Instruction
*ARMTargetLowering::emitTrailingFence(IRBuilderBase
&Builder
,
21226 AtomicOrdering Ord
) const {
21228 case AtomicOrdering::NotAtomic
:
21229 case AtomicOrdering::Unordered
:
21230 llvm_unreachable("Invalid fence: unordered/not-atomic");
21231 case AtomicOrdering::Monotonic
:
21232 case AtomicOrdering::Release
:
21233 return nullptr; // Nothing to do
21234 case AtomicOrdering::Acquire
:
21235 case AtomicOrdering::AcquireRelease
:
21236 case AtomicOrdering::SequentiallyConsistent
:
21237 return makeDMB(Builder
, ARM_MB::ISH
);
21239 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
21242 // Loads and stores less than 64-bits are already atomic; ones above that
21243 // are doomed anyway, so defer to the default libcall and blame the OS when
21244 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21245 // anything for those.
21246 TargetLoweringBase::AtomicExpansionKind
21247 ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst
*SI
) const {
21248 bool has64BitAtomicStore
;
21249 if (Subtarget
->isMClass())
21250 has64BitAtomicStore
= false;
21251 else if (Subtarget
->isThumb())
21252 has64BitAtomicStore
= Subtarget
->hasV7Ops();
21254 has64BitAtomicStore
= Subtarget
->hasV6Ops();
21256 unsigned Size
= SI
->getValueOperand()->getType()->getPrimitiveSizeInBits();
21257 return Size
== 64 && has64BitAtomicStore
? AtomicExpansionKind::Expand
21258 : AtomicExpansionKind::None
;
21261 // Loads and stores less than 64-bits are already atomic; ones above that
21262 // are doomed anyway, so defer to the default libcall and blame the OS when
21263 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21264 // anything for those.
21265 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
21266 // guarantee, see DDI0406C ARM architecture reference manual,
21267 // sections A8.8.72-74 LDRD)
21268 TargetLowering::AtomicExpansionKind
21269 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst
*LI
) const {
21270 bool has64BitAtomicLoad
;
21271 if (Subtarget
->isMClass())
21272 has64BitAtomicLoad
= false;
21273 else if (Subtarget
->isThumb())
21274 has64BitAtomicLoad
= Subtarget
->hasV7Ops();
21276 has64BitAtomicLoad
= Subtarget
->hasV6Ops();
21278 unsigned Size
= LI
->getType()->getPrimitiveSizeInBits();
21279 return (Size
== 64 && has64BitAtomicLoad
) ? AtomicExpansionKind::LLOnly
21280 : AtomicExpansionKind::None
;
21283 // For the real atomic operations, we have ldrex/strex up to 32 bits,
21284 // and up to 64 bits on the non-M profiles
21285 TargetLowering::AtomicExpansionKind
21286 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst
*AI
) const {
21287 if (AI
->isFloatingPointOperation())
21288 return AtomicExpansionKind::CmpXChg
;
21290 unsigned Size
= AI
->getType()->getPrimitiveSizeInBits();
21292 if (Subtarget
->isMClass())
21293 hasAtomicRMW
= Subtarget
->hasV8MBaselineOps();
21294 else if (Subtarget
->isThumb())
21295 hasAtomicRMW
= Subtarget
->hasV7Ops();
21297 hasAtomicRMW
= Subtarget
->hasV6Ops();
21298 if (Size
<= (Subtarget
->isMClass() ? 32U : 64U) && hasAtomicRMW
) {
21299 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21300 // implement atomicrmw without spilling. If the target address is also on
21301 // the stack and close enough to the spill slot, this can lead to a
21302 // situation where the monitor always gets cleared and the atomic operation
21303 // can never succeed. So at -O0 lower this operation to a CAS loop.
21304 if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None
)
21305 return AtomicExpansionKind::CmpXChg
;
21306 return AtomicExpansionKind::LLSC
;
21308 return AtomicExpansionKind::None
;
21311 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used up to 32
21312 // bits, and up to 64 bits on the non-M profiles.
21313 TargetLowering::AtomicExpansionKind
21314 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst
*AI
) const {
21315 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21316 // implement cmpxchg without spilling. If the address being exchanged is also
21317 // on the stack and close enough to the spill slot, this can lead to a
21318 // situation where the monitor always gets cleared and the atomic operation
21319 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
21320 unsigned Size
= AI
->getOperand(1)->getType()->getPrimitiveSizeInBits();
21321 bool HasAtomicCmpXchg
;
21322 if (Subtarget
->isMClass())
21323 HasAtomicCmpXchg
= Subtarget
->hasV8MBaselineOps();
21324 else if (Subtarget
->isThumb())
21325 HasAtomicCmpXchg
= Subtarget
->hasV7Ops();
21327 HasAtomicCmpXchg
= Subtarget
->hasV6Ops();
21328 if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None
&&
21329 HasAtomicCmpXchg
&& Size
<= (Subtarget
->isMClass() ? 32U : 64U))
21330 return AtomicExpansionKind::LLSC
;
21331 return AtomicExpansionKind::None
;
21334 bool ARMTargetLowering::shouldInsertFencesForAtomic(
21335 const Instruction
*I
) const {
21336 return InsertFencesForAtomic
;
21339 bool ARMTargetLowering::useLoadStackGuardNode(const Module
&M
) const {
21340 // ROPI/RWPI are not supported currently.
21341 return !Subtarget
->isROPI() && !Subtarget
->isRWPI();
21344 void ARMTargetLowering::insertSSPDeclarations(Module
&M
) const {
21345 if (!Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
21346 return TargetLowering::insertSSPDeclarations(M
);
21348 // MSVC CRT has a global variable holding security cookie.
21349 M
.getOrInsertGlobal("__security_cookie",
21350 PointerType::getUnqual(M
.getContext()));
21352 // MSVC CRT has a function to validate security cookie.
21353 FunctionCallee SecurityCheckCookie
= M
.getOrInsertFunction(
21354 "__security_check_cookie", Type::getVoidTy(M
.getContext()),
21355 PointerType::getUnqual(M
.getContext()));
21356 if (Function
*F
= dyn_cast
<Function
>(SecurityCheckCookie
.getCallee()))
21357 F
->addParamAttr(0, Attribute::AttrKind::InReg
);
21360 Value
*ARMTargetLowering::getSDagStackGuard(const Module
&M
) const {
21361 // MSVC CRT has a global variable holding security cookie.
21362 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
21363 return M
.getGlobalVariable("__security_cookie");
21364 return TargetLowering::getSDagStackGuard(M
);
21367 Function
*ARMTargetLowering::getSSPStackGuardCheck(const Module
&M
) const {
21368 // MSVC CRT has a function to validate security cookie.
21369 if (Subtarget
->getTargetTriple().isWindowsMSVCEnvironment())
21370 return M
.getFunction("__security_check_cookie");
21371 return TargetLowering::getSSPStackGuardCheck(M
);
21374 bool ARMTargetLowering::canCombineStoreAndExtract(Type
*VectorTy
, Value
*Idx
,
21375 unsigned &Cost
) const {
21376 // If we do not have NEON, vector types are not natively supported.
21377 if (!Subtarget
->hasNEON())
21380 // Floating point values and vector values map to the same register file.
21381 // Therefore, although we could do a store extract of a vector type, this is
21382 // better to leave at float as we have more freedom in the addressing mode for
21384 if (VectorTy
->isFPOrFPVectorTy())
21387 // If the index is unknown at compile time, this is very expensive to lower
21388 // and it is not possible to combine the store with the extract.
21389 if (!isa
<ConstantInt
>(Idx
))
21392 assert(VectorTy
->isVectorTy() && "VectorTy is not a vector type");
21393 unsigned BitWidth
= VectorTy
->getPrimitiveSizeInBits().getFixedValue();
21394 // We can do a store + vector extract on any vector that fits perfectly in a D
21396 if (BitWidth
== 64 || BitWidth
== 128) {
21403 bool ARMTargetLowering::isCheapToSpeculateCttz(Type
*Ty
) const {
21404 return Subtarget
->hasV6T2Ops();
21407 bool ARMTargetLowering::isCheapToSpeculateCtlz(Type
*Ty
) const {
21408 return Subtarget
->hasV6T2Ops();
21411 bool ARMTargetLowering::isMaskAndCmp0FoldingBeneficial(
21412 const Instruction
&AndI
) const {
21413 if (!Subtarget
->hasV7Ops())
21416 // Sink the `and` instruction only if the mask would fit into a modified
21417 // immediate operand.
21418 ConstantInt
*Mask
= dyn_cast
<ConstantInt
>(AndI
.getOperand(1));
21419 if (!Mask
|| Mask
->getValue().getBitWidth() > 32u)
21421 auto MaskVal
= unsigned(Mask
->getValue().getZExtValue());
21422 return (Subtarget
->isThumb2() ? ARM_AM::getT2SOImmVal(MaskVal
)
21423 : ARM_AM::getSOImmVal(MaskVal
)) != -1;
21426 TargetLowering::ShiftLegalizationStrategy
21427 ARMTargetLowering::preferredShiftLegalizationStrategy(
21428 SelectionDAG
&DAG
, SDNode
*N
, unsigned ExpansionFactor
) const {
21429 if (Subtarget
->hasMinSize() && !Subtarget
->isTargetWindows())
21430 return ShiftLegalizationStrategy::LowerToLibcall
;
21431 return TargetLowering::preferredShiftLegalizationStrategy(DAG
, N
,
21435 Value
*ARMTargetLowering::emitLoadLinked(IRBuilderBase
&Builder
, Type
*ValueTy
,
21437 AtomicOrdering Ord
) const {
21438 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
21439 bool IsAcquire
= isAcquireOrStronger(Ord
);
21441 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
21442 // intrinsic must return {i32, i32} and we have to recombine them into a
21443 // single i64 here.
21444 if (ValueTy
->getPrimitiveSizeInBits() == 64) {
21445 Intrinsic::ID Int
=
21446 IsAcquire
? Intrinsic::arm_ldaexd
: Intrinsic::arm_ldrexd
;
21449 Builder
.CreateIntrinsic(Int
, {}, Addr
, /*FMFSource=*/nullptr, "lohi");
21451 Value
*Lo
= Builder
.CreateExtractValue(LoHi
, 0, "lo");
21452 Value
*Hi
= Builder
.CreateExtractValue(LoHi
, 1, "hi");
21453 if (!Subtarget
->isLittle())
21454 std::swap (Lo
, Hi
);
21455 Lo
= Builder
.CreateZExt(Lo
, ValueTy
, "lo64");
21456 Hi
= Builder
.CreateZExt(Hi
, ValueTy
, "hi64");
21457 return Builder
.CreateOr(
21458 Lo
, Builder
.CreateShl(Hi
, ConstantInt::get(ValueTy
, 32)), "val64");
21461 Type
*Tys
[] = { Addr
->getType() };
21462 Intrinsic::ID Int
= IsAcquire
? Intrinsic::arm_ldaex
: Intrinsic::arm_ldrex
;
21463 CallInst
*CI
= Builder
.CreateIntrinsic(Int
, Tys
, Addr
);
21466 0, Attribute::get(M
->getContext(), Attribute::ElementType
, ValueTy
));
21467 return Builder
.CreateTruncOrBitCast(CI
, ValueTy
);
21470 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
21471 IRBuilderBase
&Builder
) const {
21472 if (!Subtarget
->hasV7Ops())
21474 Builder
.CreateIntrinsic(Intrinsic::arm_clrex
, {}, {});
21477 Value
*ARMTargetLowering::emitStoreConditional(IRBuilderBase
&Builder
,
21478 Value
*Val
, Value
*Addr
,
21479 AtomicOrdering Ord
) const {
21480 Module
*M
= Builder
.GetInsertBlock()->getParent()->getParent();
21481 bool IsRelease
= isReleaseOrStronger(Ord
);
21483 // Since the intrinsics must have legal type, the i64 intrinsics take two
21484 // parameters: "i32, i32". We must marshal Val into the appropriate form
21485 // before the call.
21486 if (Val
->getType()->getPrimitiveSizeInBits() == 64) {
21487 Intrinsic::ID Int
=
21488 IsRelease
? Intrinsic::arm_stlexd
: Intrinsic::arm_strexd
;
21489 Type
*Int32Ty
= Type::getInt32Ty(M
->getContext());
21491 Value
*Lo
= Builder
.CreateTrunc(Val
, Int32Ty
, "lo");
21492 Value
*Hi
= Builder
.CreateTrunc(Builder
.CreateLShr(Val
, 32), Int32Ty
, "hi");
21493 if (!Subtarget
->isLittle())
21495 return Builder
.CreateIntrinsic(Int
, {}, {Lo
, Hi
, Addr
});
21498 Intrinsic::ID Int
= IsRelease
? Intrinsic::arm_stlex
: Intrinsic::arm_strex
;
21499 Type
*Tys
[] = { Addr
->getType() };
21500 Function
*Strex
= Intrinsic::getOrInsertDeclaration(M
, Int
, Tys
);
21502 CallInst
*CI
= Builder
.CreateCall(
21503 Strex
, {Builder
.CreateZExtOrBitCast(
21504 Val
, Strex
->getFunctionType()->getParamType(0)),
21506 CI
->addParamAttr(1, Attribute::get(M
->getContext(), Attribute::ElementType
,
21512 bool ARMTargetLowering::alignLoopsWithOptSize() const {
21513 return Subtarget
->isMClass();
21516 /// A helper function for determining the number of interleaved accesses we
21517 /// will generate when lowering accesses of the given type.
21519 ARMTargetLowering::getNumInterleavedAccesses(VectorType
*VecTy
,
21520 const DataLayout
&DL
) const {
21521 return (DL
.getTypeSizeInBits(VecTy
) + 127) / 128;
21524 bool ARMTargetLowering::isLegalInterleavedAccessType(
21525 unsigned Factor
, FixedVectorType
*VecTy
, Align Alignment
,
21526 const DataLayout
&DL
) const {
21528 unsigned VecSize
= DL
.getTypeSizeInBits(VecTy
);
21529 unsigned ElSize
= DL
.getTypeSizeInBits(VecTy
->getElementType());
21531 if (!Subtarget
->hasNEON() && !Subtarget
->hasMVEIntegerOps())
21534 // Ensure the vector doesn't have f16 elements. Even though we could do an
21535 // i16 vldN, we can't hold the f16 vectors and will end up converting via
21537 if (Subtarget
->hasNEON() && VecTy
->getElementType()->isHalfTy())
21539 if (Subtarget
->hasMVEIntegerOps() && Factor
== 3)
21542 // Ensure the number of vector elements is greater than 1.
21543 if (VecTy
->getNumElements() < 2)
21546 // Ensure the element type is legal.
21547 if (ElSize
!= 8 && ElSize
!= 16 && ElSize
!= 32)
21549 // And the alignment if high enough under MVE.
21550 if (Subtarget
->hasMVEIntegerOps() && Alignment
< ElSize
/ 8)
21553 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
21554 // 128 will be split into multiple interleaved accesses.
21555 if (Subtarget
->hasNEON() && VecSize
== 64)
21557 return VecSize
% 128 == 0;
21560 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
21561 if (Subtarget
->hasNEON())
21563 if (Subtarget
->hasMVEIntegerOps())
21564 return MVEMaxSupportedInterleaveFactor
;
21565 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
21568 /// Lower an interleaved load into a vldN intrinsic.
21570 /// E.g. Lower an interleaved load (Factor = 2):
21571 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
21572 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
21573 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
21576 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
21577 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
21578 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
21579 bool ARMTargetLowering::lowerInterleavedLoad(
21580 LoadInst
*LI
, ArrayRef
<ShuffleVectorInst
*> Shuffles
,
21581 ArrayRef
<unsigned> Indices
, unsigned Factor
) const {
21582 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
21583 "Invalid interleave factor");
21584 assert(!Shuffles
.empty() && "Empty shufflevector input");
21585 assert(Shuffles
.size() == Indices
.size() &&
21586 "Unmatched number of shufflevectors and indices");
21588 auto *VecTy
= cast
<FixedVectorType
>(Shuffles
[0]->getType());
21589 Type
*EltTy
= VecTy
->getElementType();
21591 const DataLayout
&DL
= LI
->getDataLayout();
21592 Align Alignment
= LI
->getAlign();
21594 // Skip if we do not have NEON and skip illegal vector types. We can
21595 // "legalize" wide vector types into multiple interleaved accesses as long as
21596 // the vector types are divisible by 128.
21597 if (!isLegalInterleavedAccessType(Factor
, VecTy
, Alignment
, DL
))
21600 unsigned NumLoads
= getNumInterleavedAccesses(VecTy
, DL
);
21602 // A pointer vector can not be the return type of the ldN intrinsics. Need to
21603 // load integer vectors first and then convert to pointer vectors.
21604 if (EltTy
->isPointerTy())
21605 VecTy
= FixedVectorType::get(DL
.getIntPtrType(EltTy
), VecTy
);
21607 IRBuilder
<> Builder(LI
);
21609 // The base address of the load.
21610 Value
*BaseAddr
= LI
->getPointerOperand();
21612 if (NumLoads
> 1) {
21613 // If we're going to generate more than one load, reset the sub-vector type
21614 // to something legal.
21615 VecTy
= FixedVectorType::get(VecTy
->getElementType(),
21616 VecTy
->getNumElements() / NumLoads
);
21619 assert(isTypeLegal(EVT::getEVT(VecTy
)) && "Illegal vldN vector type!");
21621 auto createLoadIntrinsic
= [&](Value
*BaseAddr
) {
21622 if (Subtarget
->hasNEON()) {
21623 Type
*PtrTy
= Builder
.getPtrTy(LI
->getPointerAddressSpace());
21624 Type
*Tys
[] = {VecTy
, PtrTy
};
21625 static const Intrinsic::ID LoadInts
[3] = {Intrinsic::arm_neon_vld2
,
21626 Intrinsic::arm_neon_vld3
,
21627 Intrinsic::arm_neon_vld4
};
21629 SmallVector
<Value
*, 2> Ops
;
21630 Ops
.push_back(BaseAddr
);
21631 Ops
.push_back(Builder
.getInt32(LI
->getAlign().value()));
21633 return Builder
.CreateIntrinsic(LoadInts
[Factor
- 2], Tys
, Ops
,
21634 /*FMFSource=*/nullptr, "vldN");
21636 assert((Factor
== 2 || Factor
== 4) &&
21637 "expected interleave factor of 2 or 4 for MVE");
21638 Intrinsic::ID LoadInts
=
21639 Factor
== 2 ? Intrinsic::arm_mve_vld2q
: Intrinsic::arm_mve_vld4q
;
21640 Type
*PtrTy
= Builder
.getPtrTy(LI
->getPointerAddressSpace());
21641 Type
*Tys
[] = {VecTy
, PtrTy
};
21643 SmallVector
<Value
*, 2> Ops
;
21644 Ops
.push_back(BaseAddr
);
21645 return Builder
.CreateIntrinsic(LoadInts
, Tys
, Ops
, /*FMFSource=*/nullptr,
21650 // Holds sub-vectors extracted from the load intrinsic return values. The
21651 // sub-vectors are associated with the shufflevector instructions they will
21653 DenseMap
<ShuffleVectorInst
*, SmallVector
<Value
*, 4>> SubVecs
;
21655 for (unsigned LoadCount
= 0; LoadCount
< NumLoads
; ++LoadCount
) {
21656 // If we're generating more than one load, compute the base address of
21657 // subsequent loads as an offset from the previous.
21659 BaseAddr
= Builder
.CreateConstGEP1_32(VecTy
->getElementType(), BaseAddr
,
21660 VecTy
->getNumElements() * Factor
);
21662 CallInst
*VldN
= createLoadIntrinsic(BaseAddr
);
21664 // Replace uses of each shufflevector with the corresponding vector loaded
21666 for (unsigned i
= 0; i
< Shuffles
.size(); i
++) {
21667 ShuffleVectorInst
*SV
= Shuffles
[i
];
21668 unsigned Index
= Indices
[i
];
21670 Value
*SubVec
= Builder
.CreateExtractValue(VldN
, Index
);
21672 // Convert the integer vector to pointer vector if the element is pointer.
21673 if (EltTy
->isPointerTy())
21674 SubVec
= Builder
.CreateIntToPtr(
21676 FixedVectorType::get(SV
->getType()->getElementType(), VecTy
));
21678 SubVecs
[SV
].push_back(SubVec
);
21682 // Replace uses of the shufflevector instructions with the sub-vectors
21683 // returned by the load intrinsic. If a shufflevector instruction is
21684 // associated with more than one sub-vector, those sub-vectors will be
21685 // concatenated into a single wide vector.
21686 for (ShuffleVectorInst
*SVI
: Shuffles
) {
21687 auto &SubVec
= SubVecs
[SVI
];
21689 SubVec
.size() > 1 ? concatenateVectors(Builder
, SubVec
) : SubVec
[0];
21690 SVI
->replaceAllUsesWith(WideVec
);
21696 /// Lower an interleaved store into a vstN intrinsic.
21698 /// E.g. Lower an interleaved store (Factor = 3):
21699 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
21700 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
21701 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
21704 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
21705 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
21706 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
21707 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21709 /// Note that the new shufflevectors will be removed and we'll only generate one
21710 /// vst3 instruction in CodeGen.
21712 /// Example for a more general valid mask (Factor 3). Lower:
21713 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
21714 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
21715 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
21718 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
21719 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
21720 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
21721 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21722 bool ARMTargetLowering::lowerInterleavedStore(StoreInst
*SI
,
21723 ShuffleVectorInst
*SVI
,
21724 unsigned Factor
) const {
21725 assert(Factor
>= 2 && Factor
<= getMaxSupportedInterleaveFactor() &&
21726 "Invalid interleave factor");
21728 auto *VecTy
= cast
<FixedVectorType
>(SVI
->getType());
21729 assert(VecTy
->getNumElements() % Factor
== 0 && "Invalid interleaved store");
21731 unsigned LaneLen
= VecTy
->getNumElements() / Factor
;
21732 Type
*EltTy
= VecTy
->getElementType();
21733 auto *SubVecTy
= FixedVectorType::get(EltTy
, LaneLen
);
21735 const DataLayout
&DL
= SI
->getDataLayout();
21736 Align Alignment
= SI
->getAlign();
21738 // Skip if we do not have NEON and skip illegal vector types. We can
21739 // "legalize" wide vector types into multiple interleaved accesses as long as
21740 // the vector types are divisible by 128.
21741 if (!isLegalInterleavedAccessType(Factor
, SubVecTy
, Alignment
, DL
))
21744 unsigned NumStores
= getNumInterleavedAccesses(SubVecTy
, DL
);
21746 Value
*Op0
= SVI
->getOperand(0);
21747 Value
*Op1
= SVI
->getOperand(1);
21748 IRBuilder
<> Builder(SI
);
21750 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
21751 // vectors to integer vectors.
21752 if (EltTy
->isPointerTy()) {
21753 Type
*IntTy
= DL
.getIntPtrType(EltTy
);
21755 // Convert to the corresponding integer vector.
21757 FixedVectorType::get(IntTy
, cast
<FixedVectorType
>(Op0
->getType()));
21758 Op0
= Builder
.CreatePtrToInt(Op0
, IntVecTy
);
21759 Op1
= Builder
.CreatePtrToInt(Op1
, IntVecTy
);
21761 SubVecTy
= FixedVectorType::get(IntTy
, LaneLen
);
21764 // The base address of the store.
21765 Value
*BaseAddr
= SI
->getPointerOperand();
21767 if (NumStores
> 1) {
21768 // If we're going to generate more than one store, reset the lane length
21769 // and sub-vector type to something legal.
21770 LaneLen
/= NumStores
;
21771 SubVecTy
= FixedVectorType::get(SubVecTy
->getElementType(), LaneLen
);
21774 assert(isTypeLegal(EVT::getEVT(SubVecTy
)) && "Illegal vstN vector type!");
21776 auto Mask
= SVI
->getShuffleMask();
21778 auto createStoreIntrinsic
= [&](Value
*BaseAddr
,
21779 SmallVectorImpl
<Value
*> &Shuffles
) {
21780 if (Subtarget
->hasNEON()) {
21781 static const Intrinsic::ID StoreInts
[3] = {Intrinsic::arm_neon_vst2
,
21782 Intrinsic::arm_neon_vst3
,
21783 Intrinsic::arm_neon_vst4
};
21784 Type
*PtrTy
= Builder
.getPtrTy(SI
->getPointerAddressSpace());
21785 Type
*Tys
[] = {PtrTy
, SubVecTy
};
21787 SmallVector
<Value
*, 6> Ops
;
21788 Ops
.push_back(BaseAddr
);
21789 append_range(Ops
, Shuffles
);
21790 Ops
.push_back(Builder
.getInt32(SI
->getAlign().value()));
21791 Builder
.CreateIntrinsic(StoreInts
[Factor
- 2], Tys
, Ops
);
21793 assert((Factor
== 2 || Factor
== 4) &&
21794 "expected interleave factor of 2 or 4 for MVE");
21795 Intrinsic::ID StoreInts
=
21796 Factor
== 2 ? Intrinsic::arm_mve_vst2q
: Intrinsic::arm_mve_vst4q
;
21797 Type
*PtrTy
= Builder
.getPtrTy(SI
->getPointerAddressSpace());
21798 Type
*Tys
[] = {PtrTy
, SubVecTy
};
21800 SmallVector
<Value
*, 6> Ops
;
21801 Ops
.push_back(BaseAddr
);
21802 append_range(Ops
, Shuffles
);
21803 for (unsigned F
= 0; F
< Factor
; F
++) {
21804 Ops
.push_back(Builder
.getInt32(F
));
21805 Builder
.CreateIntrinsic(StoreInts
, Tys
, Ops
);
21811 for (unsigned StoreCount
= 0; StoreCount
< NumStores
; ++StoreCount
) {
21812 // If we generating more than one store, we compute the base address of
21813 // subsequent stores as an offset from the previous.
21814 if (StoreCount
> 0)
21815 BaseAddr
= Builder
.CreateConstGEP1_32(SubVecTy
->getElementType(),
21816 BaseAddr
, LaneLen
* Factor
);
21818 SmallVector
<Value
*, 4> Shuffles
;
21820 // Split the shufflevector operands into sub vectors for the new vstN call.
21821 for (unsigned i
= 0; i
< Factor
; i
++) {
21822 unsigned IdxI
= StoreCount
* LaneLen
* Factor
+ i
;
21823 if (Mask
[IdxI
] >= 0) {
21824 Shuffles
.push_back(Builder
.CreateShuffleVector(
21825 Op0
, Op1
, createSequentialMask(Mask
[IdxI
], LaneLen
, 0)));
21827 unsigned StartMask
= 0;
21828 for (unsigned j
= 1; j
< LaneLen
; j
++) {
21829 unsigned IdxJ
= StoreCount
* LaneLen
* Factor
+ j
;
21830 if (Mask
[IdxJ
* Factor
+ IdxI
] >= 0) {
21831 StartMask
= Mask
[IdxJ
* Factor
+ IdxI
] - IdxJ
;
21835 // Note: If all elements in a chunk are undefs, StartMask=0!
21836 // Note: Filling undef gaps with random elements is ok, since
21837 // those elements were being written anyway (with undefs).
21838 // In the case of all undefs we're defaulting to using elems from 0
21839 // Note: StartMask cannot be negative, it's checked in
21840 // isReInterleaveMask
21841 Shuffles
.push_back(Builder
.CreateShuffleVector(
21842 Op0
, Op1
, createSequentialMask(StartMask
, LaneLen
, 0)));
21846 createStoreIntrinsic(BaseAddr
, Shuffles
);
21859 static bool isHomogeneousAggregate(Type
*Ty
, HABaseType
&Base
,
21860 uint64_t &Members
) {
21861 if (auto *ST
= dyn_cast
<StructType
>(Ty
)) {
21862 for (unsigned i
= 0; i
< ST
->getNumElements(); ++i
) {
21863 uint64_t SubMembers
= 0;
21864 if (!isHomogeneousAggregate(ST
->getElementType(i
), Base
, SubMembers
))
21866 Members
+= SubMembers
;
21868 } else if (auto *AT
= dyn_cast
<ArrayType
>(Ty
)) {
21869 uint64_t SubMembers
= 0;
21870 if (!isHomogeneousAggregate(AT
->getElementType(), Base
, SubMembers
))
21872 Members
+= SubMembers
* AT
->getNumElements();
21873 } else if (Ty
->isFloatTy()) {
21874 if (Base
!= HA_UNKNOWN
&& Base
!= HA_FLOAT
)
21878 } else if (Ty
->isDoubleTy()) {
21879 if (Base
!= HA_UNKNOWN
&& Base
!= HA_DOUBLE
)
21883 } else if (auto *VT
= dyn_cast
<VectorType
>(Ty
)) {
21890 return VT
->getPrimitiveSizeInBits().getFixedValue() == 64;
21892 return VT
->getPrimitiveSizeInBits().getFixedValue() == 128;
21894 switch (VT
->getPrimitiveSizeInBits().getFixedValue()) {
21907 return (Members
> 0 && Members
<= 4);
21910 /// Return the correct alignment for the current calling convention.
21911 Align
ARMTargetLowering::getABIAlignmentForCallingConv(
21912 Type
*ArgTy
, const DataLayout
&DL
) const {
21913 const Align ABITypeAlign
= DL
.getABITypeAlign(ArgTy
);
21914 if (!ArgTy
->isVectorTy())
21915 return ABITypeAlign
;
21917 // Avoid over-aligning vector parameters. It would require realigning the
21918 // stack and waste space for no real benefit.
21919 MaybeAlign StackAlign
= DL
.getStackAlignment();
21920 assert(StackAlign
&& "data layout string is missing stack alignment");
21921 return std::min(ABITypeAlign
, *StackAlign
);
21924 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
21925 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
21926 /// passing according to AAPCS rules.
21927 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
21928 Type
*Ty
, CallingConv::ID CallConv
, bool isVarArg
,
21929 const DataLayout
&DL
) const {
21930 if (getEffectiveCallingConv(CallConv
, isVarArg
) !=
21931 CallingConv::ARM_AAPCS_VFP
)
21934 HABaseType Base
= HA_UNKNOWN
;
21935 uint64_t Members
= 0;
21936 bool IsHA
= isHomogeneousAggregate(Ty
, Base
, Members
);
21937 LLVM_DEBUG(dbgs() << "isHA: " << IsHA
<< " "; Ty
->dump());
21939 bool IsIntArray
= Ty
->isArrayTy() && Ty
->getArrayElementType()->isIntegerTy();
21940 return IsHA
|| IsIntArray
;
21943 Register
ARMTargetLowering::getExceptionPointerRegister(
21944 const Constant
*PersonalityFn
) const {
21945 // Platforms which do not use SjLj EH may return values in these registers
21946 // via the personality function.
21947 return Subtarget
->useSjLjEH() ? Register() : ARM::R0
;
21950 Register
ARMTargetLowering::getExceptionSelectorRegister(
21951 const Constant
*PersonalityFn
) const {
21952 // Platforms which do not use SjLj EH may return values in these registers
21953 // via the personality function.
21954 return Subtarget
->useSjLjEH() ? Register() : ARM::R1
;
21957 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock
*Entry
) const {
21958 // Update IsSplitCSR in ARMFunctionInfo.
21959 ARMFunctionInfo
*AFI
= Entry
->getParent()->getInfo
<ARMFunctionInfo
>();
21960 AFI
->setIsSplitCSR(true);
21963 void ARMTargetLowering::insertCopiesSplitCSR(
21964 MachineBasicBlock
*Entry
,
21965 const SmallVectorImpl
<MachineBasicBlock
*> &Exits
) const {
21966 const ARMBaseRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
21967 const MCPhysReg
*IStart
= TRI
->getCalleeSavedRegsViaCopy(Entry
->getParent());
21971 const TargetInstrInfo
*TII
= Subtarget
->getInstrInfo();
21972 MachineRegisterInfo
*MRI
= &Entry
->getParent()->getRegInfo();
21973 MachineBasicBlock::iterator MBBI
= Entry
->begin();
21974 for (const MCPhysReg
*I
= IStart
; *I
; ++I
) {
21975 const TargetRegisterClass
*RC
= nullptr;
21976 if (ARM::GPRRegClass
.contains(*I
))
21977 RC
= &ARM::GPRRegClass
;
21978 else if (ARM::DPRRegClass
.contains(*I
))
21979 RC
= &ARM::DPRRegClass
;
21981 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
21983 Register NewVR
= MRI
->createVirtualRegister(RC
);
21984 // Create copy from CSR to a virtual register.
21985 // FIXME: this currently does not emit CFI pseudo-instructions, it works
21986 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
21987 // nounwind. If we want to generalize this later, we may need to emit
21988 // CFI pseudo-instructions.
21989 assert(Entry
->getParent()->getFunction().hasFnAttribute(
21990 Attribute::NoUnwind
) &&
21991 "Function should be nounwind in insertCopiesSplitCSR!");
21992 Entry
->addLiveIn(*I
);
21993 BuildMI(*Entry
, MBBI
, DebugLoc(), TII
->get(TargetOpcode::COPY
), NewVR
)
21996 // Insert the copy-back instructions right before the terminator.
21997 for (auto *Exit
: Exits
)
21998 BuildMI(*Exit
, Exit
->getFirstTerminator(), DebugLoc(),
21999 TII
->get(TargetOpcode::COPY
), *I
)
22004 void ARMTargetLowering::finalizeLowering(MachineFunction
&MF
) const {
22005 MF
.getFrameInfo().computeMaxCallFrameSize(MF
);
22006 TargetLoweringBase::finalizeLowering(MF
);
22009 bool ARMTargetLowering::isComplexDeinterleavingSupported() const {
22010 return Subtarget
->hasMVEIntegerOps();
22013 bool ARMTargetLowering::isComplexDeinterleavingOperationSupported(
22014 ComplexDeinterleavingOperation Operation
, Type
*Ty
) const {
22015 auto *VTy
= dyn_cast
<FixedVectorType
>(Ty
);
22019 auto *ScalarTy
= VTy
->getScalarType();
22020 unsigned NumElements
= VTy
->getNumElements();
22022 unsigned VTyWidth
= VTy
->getScalarSizeInBits() * NumElements
;
22023 if (VTyWidth
< 128 || !llvm::isPowerOf2_32(VTyWidth
))
22026 // Both VCADD and VCMUL/VCMLA support the same types, F16 and F32
22027 if (ScalarTy
->isHalfTy() || ScalarTy
->isFloatTy())
22028 return Subtarget
->hasMVEFloatOps();
22030 if (Operation
!= ComplexDeinterleavingOperation::CAdd
)
22033 return Subtarget
->hasMVEIntegerOps() &&
22034 (ScalarTy
->isIntegerTy(8) || ScalarTy
->isIntegerTy(16) ||
22035 ScalarTy
->isIntegerTy(32));
22038 Value
*ARMTargetLowering::createComplexDeinterleavingIR(
22039 IRBuilderBase
&B
, ComplexDeinterleavingOperation OperationType
,
22040 ComplexDeinterleavingRotation Rotation
, Value
*InputA
, Value
*InputB
,
22041 Value
*Accumulator
) const {
22043 FixedVectorType
*Ty
= cast
<FixedVectorType
>(InputA
->getType());
22045 unsigned TyWidth
= Ty
->getScalarSizeInBits() * Ty
->getNumElements();
22047 assert(TyWidth
>= 128 && "Width of vector type must be at least 128 bits");
22049 if (TyWidth
> 128) {
22050 int Stride
= Ty
->getNumElements() / 2;
22051 auto SplitSeq
= llvm::seq
<int>(0, Ty
->getNumElements());
22052 auto SplitSeqVec
= llvm::to_vector(SplitSeq
);
22053 ArrayRef
<int> LowerSplitMask(&SplitSeqVec
[0], Stride
);
22054 ArrayRef
<int> UpperSplitMask(&SplitSeqVec
[Stride
], Stride
);
22056 auto *LowerSplitA
= B
.CreateShuffleVector(InputA
, LowerSplitMask
);
22057 auto *LowerSplitB
= B
.CreateShuffleVector(InputB
, LowerSplitMask
);
22058 auto *UpperSplitA
= B
.CreateShuffleVector(InputA
, UpperSplitMask
);
22059 auto *UpperSplitB
= B
.CreateShuffleVector(InputB
, UpperSplitMask
);
22060 Value
*LowerSplitAcc
= nullptr;
22061 Value
*UpperSplitAcc
= nullptr;
22064 LowerSplitAcc
= B
.CreateShuffleVector(Accumulator
, LowerSplitMask
);
22065 UpperSplitAcc
= B
.CreateShuffleVector(Accumulator
, UpperSplitMask
);
22068 auto *LowerSplitInt
= createComplexDeinterleavingIR(
22069 B
, OperationType
, Rotation
, LowerSplitA
, LowerSplitB
, LowerSplitAcc
);
22070 auto *UpperSplitInt
= createComplexDeinterleavingIR(
22071 B
, OperationType
, Rotation
, UpperSplitA
, UpperSplitB
, UpperSplitAcc
);
22073 ArrayRef
<int> JoinMask(&SplitSeqVec
[0], Ty
->getNumElements());
22074 return B
.CreateShuffleVector(LowerSplitInt
, UpperSplitInt
, JoinMask
);
22077 auto *IntTy
= Type::getInt32Ty(B
.getContext());
22079 ConstantInt
*ConstRotation
= nullptr;
22080 if (OperationType
== ComplexDeinterleavingOperation::CMulPartial
) {
22081 ConstRotation
= ConstantInt::get(IntTy
, (int)Rotation
);
22084 return B
.CreateIntrinsic(Intrinsic::arm_mve_vcmlaq
, Ty
,
22085 {ConstRotation
, Accumulator
, InputB
, InputA
});
22086 return B
.CreateIntrinsic(Intrinsic::arm_mve_vcmulq
, Ty
,
22087 {ConstRotation
, InputB
, InputA
});
22090 if (OperationType
== ComplexDeinterleavingOperation::CAdd
) {
22091 // 1 means the value is not halved.
22092 auto *ConstHalving
= ConstantInt::get(IntTy
, 1);
22094 if (Rotation
== ComplexDeinterleavingRotation::Rotation_90
)
22095 ConstRotation
= ConstantInt::get(IntTy
, 0);
22096 else if (Rotation
== ComplexDeinterleavingRotation::Rotation_270
)
22097 ConstRotation
= ConstantInt::get(IntTy
, 1);
22099 if (!ConstRotation
)
22100 return nullptr; // Invalid rotation for arm_mve_vcaddq
22102 return B
.CreateIntrinsic(Intrinsic::arm_mve_vcaddq
, Ty
,
22103 {ConstHalving
, ConstRotation
, InputA
, InputB
});