AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / ARM / ARMISelLowering.cpp
blob2e517c21fc4a8682316d5564eae98374a97fc6ac
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
12 //===----------------------------------------------------------------------===//
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "ARMTargetTransformInfo.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ComplexDeinterleavingPass.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
59 #include "llvm/CodeGen/SelectionDAGNodes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/CodeGen/TargetLowering.h"
62 #include "llvm/CodeGen/TargetOpcodes.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/CodeGen/TargetSubtargetInfo.h"
65 #include "llvm/CodeGen/ValueTypes.h"
66 #include "llvm/CodeGenTypes/MachineValueType.h"
67 #include "llvm/IR/Attributes.h"
68 #include "llvm/IR/CallingConv.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/Constants.h"
71 #include "llvm/IR/DataLayout.h"
72 #include "llvm/IR/DebugLoc.h"
73 #include "llvm/IR/DerivedTypes.h"
74 #include "llvm/IR/Function.h"
75 #include "llvm/IR/GlobalAlias.h"
76 #include "llvm/IR/GlobalValue.h"
77 #include "llvm/IR/GlobalVariable.h"
78 #include "llvm/IR/IRBuilder.h"
79 #include "llvm/IR/InlineAsm.h"
80 #include "llvm/IR/Instruction.h"
81 #include "llvm/IR/Instructions.h"
82 #include "llvm/IR/IntrinsicInst.h"
83 #include "llvm/IR/Intrinsics.h"
84 #include "llvm/IR/IntrinsicsARM.h"
85 #include "llvm/IR/Module.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/MC/MCInstrItineraries.h"
91 #include "llvm/MC/MCSchedule.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/BranchProbability.h"
94 #include "llvm/Support/Casting.h"
95 #include "llvm/Support/CodeGen.h"
96 #include "llvm/Support/CommandLine.h"
97 #include "llvm/Support/Compiler.h"
98 #include "llvm/Support/Debug.h"
99 #include "llvm/Support/ErrorHandling.h"
100 #include "llvm/Support/KnownBits.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include "llvm/TargetParser/Triple.h"
106 #include <algorithm>
107 #include <cassert>
108 #include <cstdint>
109 #include <cstdlib>
110 #include <iterator>
111 #include <limits>
112 #include <optional>
113 #include <tuple>
114 #include <utility>
115 #include <vector>
117 using namespace llvm;
118 using namespace llvm::PatternMatch;
120 #define DEBUG_TYPE "arm-isel"
122 STATISTIC(NumTailCalls, "Number of tail calls");
123 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
124 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
125 STATISTIC(NumConstpoolPromoted,
126 "Number of constants with their storage promoted into constant pools");
128 static cl::opt<bool>
129 ARMInterworking("arm-interworking", cl::Hidden,
130 cl::desc("Enable / disable ARM interworking (for debugging only)"),
131 cl::init(true));
133 static cl::opt<bool> EnableConstpoolPromotion(
134 "arm-promote-constant", cl::Hidden,
135 cl::desc("Enable / disable promotion of unnamed_addr constants into "
136 "constant pools"),
137 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
138 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
139 "arm-promote-constant-max-size", cl::Hidden,
140 cl::desc("Maximum size of constant to promote into a constant pool"),
141 cl::init(64));
142 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
143 "arm-promote-constant-max-total", cl::Hidden,
144 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
145 cl::init(128));
147 cl::opt<unsigned>
148 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
149 cl::desc("Maximum interleave factor for MVE VLDn to generate."),
150 cl::init(2));
152 /// Value type used for "flags" operands / results (either CPSR or FPSCR_NZCV).
153 constexpr MVT FlagsVT = MVT::i32;
155 // The APCS parameter registers.
156 static const MCPhysReg GPRArgRegs[] = {
157 ARM::R0, ARM::R1, ARM::R2, ARM::R3
160 static SDValue handleCMSEValue(const SDValue &Value, const ISD::InputArg &Arg,
161 SelectionDAG &DAG, const SDLoc &DL) {
162 assert(Arg.ArgVT.isScalarInteger());
163 assert(Arg.ArgVT.bitsLT(MVT::i32));
164 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, Arg.ArgVT, Value);
165 SDValue Ext =
166 DAG.getNode(Arg.Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
167 MVT::i32, Trunc);
168 return Ext;
171 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) {
172 if (VT != PromotedLdStVT) {
173 setOperationAction(ISD::LOAD, VT, Promote);
174 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
176 setOperationAction(ISD::STORE, VT, Promote);
177 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
180 MVT ElemTy = VT.getVectorElementType();
181 if (ElemTy != MVT::f64)
182 setOperationAction(ISD::SETCC, VT, Custom);
183 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
184 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
185 if (ElemTy == MVT::i32) {
186 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
187 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
188 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
189 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
190 } else {
191 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
192 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
193 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
194 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
196 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
197 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
198 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
199 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
200 setOperationAction(ISD::SELECT, VT, Expand);
201 setOperationAction(ISD::SELECT_CC, VT, Expand);
202 setOperationAction(ISD::VSELECT, VT, Expand);
203 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
204 if (VT.isInteger()) {
205 setOperationAction(ISD::SHL, VT, Custom);
206 setOperationAction(ISD::SRA, VT, Custom);
207 setOperationAction(ISD::SRL, VT, Custom);
210 // Neon does not support vector divide/remainder operations.
211 setOperationAction(ISD::SDIV, VT, Expand);
212 setOperationAction(ISD::UDIV, VT, Expand);
213 setOperationAction(ISD::FDIV, VT, Expand);
214 setOperationAction(ISD::SREM, VT, Expand);
215 setOperationAction(ISD::UREM, VT, Expand);
216 setOperationAction(ISD::FREM, VT, Expand);
217 setOperationAction(ISD::SDIVREM, VT, Expand);
218 setOperationAction(ISD::UDIVREM, VT, Expand);
220 if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64)
221 for (auto Opcode : {ISD::ABS, ISD::ABDS, ISD::ABDU, ISD::SMIN, ISD::SMAX,
222 ISD::UMIN, ISD::UMAX})
223 setOperationAction(Opcode, VT, Legal);
224 if (!VT.isFloatingPoint())
225 for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
226 setOperationAction(Opcode, VT, Legal);
229 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
230 addRegisterClass(VT, &ARM::DPRRegClass);
231 addTypeForNEON(VT, MVT::f64);
234 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
235 addRegisterClass(VT, &ARM::DPairRegClass);
236 addTypeForNEON(VT, MVT::v2f64);
239 void ARMTargetLowering::setAllExpand(MVT VT) {
240 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
241 setOperationAction(Opc, VT, Expand);
243 // We support these really simple operations even on types where all
244 // the actual arithmetic has to be broken down into simpler
245 // operations or turned into library calls.
246 setOperationAction(ISD::BITCAST, VT, Legal);
247 setOperationAction(ISD::LOAD, VT, Legal);
248 setOperationAction(ISD::STORE, VT, Legal);
249 setOperationAction(ISD::UNDEF, VT, Legal);
252 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
253 LegalizeAction Action) {
254 setLoadExtAction(ISD::EXTLOAD, From, To, Action);
255 setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
256 setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
259 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
260 const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
262 for (auto VT : IntTypes) {
263 addRegisterClass(VT, &ARM::MQPRRegClass);
264 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
265 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
266 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
267 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
268 setOperationAction(ISD::SHL, VT, Custom);
269 setOperationAction(ISD::SRA, VT, Custom);
270 setOperationAction(ISD::SRL, VT, Custom);
271 setOperationAction(ISD::SMIN, VT, Legal);
272 setOperationAction(ISD::SMAX, VT, Legal);
273 setOperationAction(ISD::UMIN, VT, Legal);
274 setOperationAction(ISD::UMAX, VT, Legal);
275 setOperationAction(ISD::ABS, VT, Legal);
276 setOperationAction(ISD::SETCC, VT, Custom);
277 setOperationAction(ISD::MLOAD, VT, Custom);
278 setOperationAction(ISD::MSTORE, VT, Legal);
279 setOperationAction(ISD::CTLZ, VT, Legal);
280 setOperationAction(ISD::CTTZ, VT, Custom);
281 setOperationAction(ISD::BITREVERSE, VT, Legal);
282 setOperationAction(ISD::BSWAP, VT, Legal);
283 setOperationAction(ISD::SADDSAT, VT, Legal);
284 setOperationAction(ISD::UADDSAT, VT, Legal);
285 setOperationAction(ISD::SSUBSAT, VT, Legal);
286 setOperationAction(ISD::USUBSAT, VT, Legal);
287 setOperationAction(ISD::ABDS, VT, Legal);
288 setOperationAction(ISD::ABDU, VT, Legal);
289 setOperationAction(ISD::AVGFLOORS, VT, Legal);
290 setOperationAction(ISD::AVGFLOORU, VT, Legal);
291 setOperationAction(ISD::AVGCEILS, VT, Legal);
292 setOperationAction(ISD::AVGCEILU, VT, Legal);
294 // No native support for these.
295 setOperationAction(ISD::UDIV, VT, Expand);
296 setOperationAction(ISD::SDIV, VT, Expand);
297 setOperationAction(ISD::UREM, VT, Expand);
298 setOperationAction(ISD::SREM, VT, Expand);
299 setOperationAction(ISD::UDIVREM, VT, Expand);
300 setOperationAction(ISD::SDIVREM, VT, Expand);
301 setOperationAction(ISD::CTPOP, VT, Expand);
302 setOperationAction(ISD::SELECT, VT, Expand);
303 setOperationAction(ISD::SELECT_CC, VT, Expand);
305 // Vector reductions
306 setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
307 setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
308 setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
309 setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
310 setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
311 setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
312 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
313 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
314 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
316 if (!HasMVEFP) {
317 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
318 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
319 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
320 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
321 } else {
322 setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom);
323 setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom);
326 // Pre and Post inc are supported on loads and stores
327 for (unsigned im = (unsigned)ISD::PRE_INC;
328 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
329 setIndexedLoadAction(im, VT, Legal);
330 setIndexedStoreAction(im, VT, Legal);
331 setIndexedMaskedLoadAction(im, VT, Legal);
332 setIndexedMaskedStoreAction(im, VT, Legal);
336 const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
337 for (auto VT : FloatTypes) {
338 addRegisterClass(VT, &ARM::MQPRRegClass);
339 if (!HasMVEFP)
340 setAllExpand(VT);
342 // These are legal or custom whether we have MVE.fp or not
343 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
344 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
345 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
346 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
347 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
348 setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
349 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
350 setOperationAction(ISD::SETCC, VT, Custom);
351 setOperationAction(ISD::MLOAD, VT, Custom);
352 setOperationAction(ISD::MSTORE, VT, Legal);
353 setOperationAction(ISD::SELECT, VT, Expand);
354 setOperationAction(ISD::SELECT_CC, VT, Expand);
356 // Pre and Post inc are supported on loads and stores
357 for (unsigned im = (unsigned)ISD::PRE_INC;
358 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
359 setIndexedLoadAction(im, VT, Legal);
360 setIndexedStoreAction(im, VT, Legal);
361 setIndexedMaskedLoadAction(im, VT, Legal);
362 setIndexedMaskedStoreAction(im, VT, Legal);
365 if (HasMVEFP) {
366 setOperationAction(ISD::FMINNUM, VT, Legal);
367 setOperationAction(ISD::FMAXNUM, VT, Legal);
368 setOperationAction(ISD::FROUND, VT, Legal);
369 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
370 setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
371 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
372 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
374 // No native support for these.
375 setOperationAction(ISD::FDIV, VT, Expand);
376 setOperationAction(ISD::FREM, VT, Expand);
377 setOperationAction(ISD::FSQRT, VT, Expand);
378 setOperationAction(ISD::FSIN, VT, Expand);
379 setOperationAction(ISD::FCOS, VT, Expand);
380 setOperationAction(ISD::FTAN, VT, Expand);
381 setOperationAction(ISD::FPOW, VT, Expand);
382 setOperationAction(ISD::FLOG, VT, Expand);
383 setOperationAction(ISD::FLOG2, VT, Expand);
384 setOperationAction(ISD::FLOG10, VT, Expand);
385 setOperationAction(ISD::FEXP, VT, Expand);
386 setOperationAction(ISD::FEXP2, VT, Expand);
387 setOperationAction(ISD::FEXP10, VT, Expand);
388 setOperationAction(ISD::FNEARBYINT, VT, Expand);
392 // Custom Expand smaller than legal vector reductions to prevent false zero
393 // items being added.
394 setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
395 setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
396 setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
397 setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
398 setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
399 setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
400 setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
401 setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
403 // We 'support' these types up to bitcast/load/store level, regardless of
404 // MVE integer-only / float support. Only doing FP data processing on the FP
405 // vector types is inhibited at integer-only level.
406 const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
407 for (auto VT : LongTypes) {
408 addRegisterClass(VT, &ARM::MQPRRegClass);
409 setAllExpand(VT);
410 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
411 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
412 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
413 setOperationAction(ISD::VSELECT, VT, Legal);
414 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
416 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
418 // We can do bitwise operations on v2i64 vectors
419 setOperationAction(ISD::AND, MVT::v2i64, Legal);
420 setOperationAction(ISD::OR, MVT::v2i64, Legal);
421 setOperationAction(ISD::XOR, MVT::v2i64, Legal);
423 // It is legal to extload from v4i8 to v4i16 or v4i32.
424 addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
425 addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
426 addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
428 // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
429 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal);
430 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
431 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
432 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal);
433 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
435 // Some truncating stores are legal too.
436 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
437 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
438 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
440 // Pre and Post inc on these are legal, given the correct extends
441 for (unsigned im = (unsigned)ISD::PRE_INC;
442 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
443 for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
444 setIndexedLoadAction(im, VT, Legal);
445 setIndexedStoreAction(im, VT, Legal);
446 setIndexedMaskedLoadAction(im, VT, Legal);
447 setIndexedMaskedStoreAction(im, VT, Legal);
451 // Predicate types
452 const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1};
453 for (auto VT : pTypes) {
454 addRegisterClass(VT, &ARM::VCCRRegClass);
455 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
456 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
457 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
458 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
459 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
460 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
461 setOperationAction(ISD::SETCC, VT, Custom);
462 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
463 setOperationAction(ISD::LOAD, VT, Custom);
464 setOperationAction(ISD::STORE, VT, Custom);
465 setOperationAction(ISD::TRUNCATE, VT, Custom);
466 setOperationAction(ISD::VSELECT, VT, Expand);
467 setOperationAction(ISD::SELECT, VT, Expand);
468 setOperationAction(ISD::SELECT_CC, VT, Expand);
470 if (!HasMVEFP) {
471 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
472 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
473 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
474 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
477 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
478 setOperationAction(ISD::TRUNCATE, MVT::v2i1, Expand);
479 setOperationAction(ISD::AND, MVT::v2i1, Expand);
480 setOperationAction(ISD::OR, MVT::v2i1, Expand);
481 setOperationAction(ISD::XOR, MVT::v2i1, Expand);
482 setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Expand);
483 setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Expand);
484 setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Expand);
485 setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Expand);
487 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
488 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
489 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
490 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
491 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
492 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
493 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
494 setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
497 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
498 const ARMSubtarget &STI)
499 : TargetLowering(TM), Subtarget(&STI) {
500 RegInfo = Subtarget->getRegisterInfo();
501 Itins = Subtarget->getInstrItineraryData();
503 setBooleanContents(ZeroOrOneBooleanContent);
504 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
506 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
507 !Subtarget->isTargetWatchOS() && !Subtarget->isTargetDriverKit()) {
508 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
509 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
510 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
511 IsHFTarget ? CallingConv::ARM_AAPCS_VFP
512 : CallingConv::ARM_AAPCS);
515 if (Subtarget->isTargetMachO()) {
516 // Uses VFP for Thumb libfuncs if available.
517 if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
518 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
519 static const struct {
520 const RTLIB::Libcall Op;
521 const char * const Name;
522 const ISD::CondCode Cond;
523 } LibraryCalls[] = {
524 // Single-precision floating-point arithmetic.
525 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
526 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
527 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
528 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
530 // Double-precision floating-point arithmetic.
531 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
532 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
533 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
534 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
536 // Single-precision comparisons.
537 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
538 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
539 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
540 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
541 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
542 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
543 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
545 // Double-precision comparisons.
546 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
547 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
548 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
549 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
550 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
551 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
552 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
554 // Floating-point to integer conversions.
555 // i64 conversions are done via library routines even when generating VFP
556 // instructions, so use the same ones.
557 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
558 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
559 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
560 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
562 // Conversions between floating types.
563 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
564 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
566 // Integer to floating-point conversions.
567 // i64 conversions are done via library routines even when generating VFP
568 // instructions, so use the same ones.
569 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
570 // e.g., __floatunsidf vs. __floatunssidfvfp.
571 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
572 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
573 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
574 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
577 for (const auto &LC : LibraryCalls) {
578 setLibcallName(LC.Op, LC.Name);
579 if (LC.Cond != ISD::SETCC_INVALID)
580 setCmpLibcallCC(LC.Op, LC.Cond);
585 // RTLIB
586 if (Subtarget->isAAPCS_ABI() &&
587 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
588 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
589 static const struct {
590 const RTLIB::Libcall Op;
591 const char * const Name;
592 const CallingConv::ID CC;
593 const ISD::CondCode Cond;
594 } LibraryCalls[] = {
595 // Double-precision floating-point arithmetic helper functions
596 // RTABI chapter 4.1.2, Table 2
597 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
598 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
599 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
600 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
602 // Double-precision floating-point comparison helper functions
603 // RTABI chapter 4.1.2, Table 3
604 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
605 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
606 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
607 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
608 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
609 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
610 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
612 // Single-precision floating-point arithmetic helper functions
613 // RTABI chapter 4.1.2, Table 4
614 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
615 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
616 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
617 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
619 // Single-precision floating-point comparison helper functions
620 // RTABI chapter 4.1.2, Table 5
621 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
622 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
623 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
624 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
625 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
626 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
627 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
629 // Floating-point to integer conversions.
630 // RTABI chapter 4.1.2, Table 6
631 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
634 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
635 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
636 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
637 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
638 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
640 // Conversions between floating types.
641 // RTABI chapter 4.1.2, Table 7
642 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
643 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
644 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
646 // Integer to floating-point conversions.
647 // RTABI chapter 4.1.2, Table 8
648 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
649 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
650 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
651 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
652 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
653 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
654 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
655 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
657 // Long long helper functions
658 // RTABI chapter 4.2, Table 9
659 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
660 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
661 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
662 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
664 // Integer division functions
665 // RTABI chapter 4.3.1
666 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
667 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
668 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
669 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
670 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
671 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
672 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
673 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
676 for (const auto &LC : LibraryCalls) {
677 setLibcallName(LC.Op, LC.Name);
678 setLibcallCallingConv(LC.Op, LC.CC);
679 if (LC.Cond != ISD::SETCC_INVALID)
680 setCmpLibcallCC(LC.Op, LC.Cond);
683 // EABI dependent RTLIB
684 if (TM.Options.EABIVersion == EABI::EABI4 ||
685 TM.Options.EABIVersion == EABI::EABI5) {
686 static const struct {
687 const RTLIB::Libcall Op;
688 const char *const Name;
689 const CallingConv::ID CC;
690 const ISD::CondCode Cond;
691 } MemOpsLibraryCalls[] = {
692 // Memory operations
693 // RTABI chapter 4.3.4
694 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
695 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
696 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
699 for (const auto &LC : MemOpsLibraryCalls) {
700 setLibcallName(LC.Op, LC.Name);
701 setLibcallCallingConv(LC.Op, LC.CC);
702 if (LC.Cond != ISD::SETCC_INVALID)
703 setCmpLibcallCC(LC.Op, LC.Cond);
708 if (Subtarget->isTargetWindows()) {
709 static const struct {
710 const RTLIB::Libcall Op;
711 const char * const Name;
712 const CallingConv::ID CC;
713 } LibraryCalls[] = {
714 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
715 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
716 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
717 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
718 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
719 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
720 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
721 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
724 for (const auto &LC : LibraryCalls) {
725 setLibcallName(LC.Op, LC.Name);
726 setLibcallCallingConv(LC.Op, LC.CC);
730 // Use divmod compiler-rt calls for iOS 5.0 and later.
731 if (Subtarget->isTargetMachO() &&
732 !(Subtarget->isTargetIOS() &&
733 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
734 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
735 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
738 // The half <-> float conversion functions are always soft-float on
739 // non-watchos platforms, but are needed for some targets which use a
740 // hard-float calling convention by default.
741 if (!Subtarget->isTargetWatchABI()) {
742 if (Subtarget->isAAPCS_ABI()) {
743 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
744 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
745 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
746 } else {
747 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
748 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
749 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
753 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
754 // a __gnu_ prefix (which is the default).
755 if (Subtarget->isTargetAEABI()) {
756 static const struct {
757 const RTLIB::Libcall Op;
758 const char * const Name;
759 const CallingConv::ID CC;
760 } LibraryCalls[] = {
761 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
762 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
763 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
766 for (const auto &LC : LibraryCalls) {
767 setLibcallName(LC.Op, LC.Name);
768 setLibcallCallingConv(LC.Op, LC.CC);
772 if (Subtarget->isThumb1Only())
773 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
774 else
775 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
777 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
778 Subtarget->hasFPRegs()) {
779 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
780 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
782 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
783 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
784 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
785 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
787 if (!Subtarget->hasVFP2Base())
788 setAllExpand(MVT::f32);
789 if (!Subtarget->hasFP64())
790 setAllExpand(MVT::f64);
793 if (Subtarget->hasFullFP16()) {
794 addRegisterClass(MVT::f16, &ARM::HPRRegClass);
795 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
796 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
798 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
799 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
802 if (Subtarget->hasBF16()) {
803 addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
804 setAllExpand(MVT::bf16);
805 if (!Subtarget->hasFullFP16())
806 setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
807 } else {
808 setOperationAction(ISD::BF16_TO_FP, MVT::f32, Expand);
809 setOperationAction(ISD::BF16_TO_FP, MVT::f64, Expand);
810 setOperationAction(ISD::FP_TO_BF16, MVT::f32, Custom);
811 setOperationAction(ISD::FP_TO_BF16, MVT::f64, Custom);
814 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
815 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
816 setTruncStoreAction(VT, InnerVT, Expand);
817 addAllExtLoads(VT, InnerVT, Expand);
820 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
821 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
823 setOperationAction(ISD::BSWAP, VT, Expand);
826 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
827 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
829 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
830 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
832 if (Subtarget->hasMVEIntegerOps())
833 addMVEVectorTypes(Subtarget->hasMVEFloatOps());
835 // Combine low-overhead loop intrinsics so that we can lower i1 types.
836 if (Subtarget->hasLOB()) {
837 setTargetDAGCombine({ISD::BRCOND, ISD::BR_CC});
840 if (Subtarget->hasNEON()) {
841 addDRTypeForNEON(MVT::v2f32);
842 addDRTypeForNEON(MVT::v8i8);
843 addDRTypeForNEON(MVT::v4i16);
844 addDRTypeForNEON(MVT::v2i32);
845 addDRTypeForNEON(MVT::v1i64);
847 addQRTypeForNEON(MVT::v4f32);
848 addQRTypeForNEON(MVT::v2f64);
849 addQRTypeForNEON(MVT::v16i8);
850 addQRTypeForNEON(MVT::v8i16);
851 addQRTypeForNEON(MVT::v4i32);
852 addQRTypeForNEON(MVT::v2i64);
854 if (Subtarget->hasFullFP16()) {
855 addQRTypeForNEON(MVT::v8f16);
856 addDRTypeForNEON(MVT::v4f16);
859 if (Subtarget->hasBF16()) {
860 addQRTypeForNEON(MVT::v8bf16);
861 addDRTypeForNEON(MVT::v4bf16);
865 if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
866 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
867 // none of Neon, MVE or VFP supports any arithmetic operations on it.
868 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
869 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
870 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
871 // FIXME: Code duplication: FDIV and FREM are expanded always, see
872 // ARMTargetLowering::addTypeForNEON method for details.
873 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
874 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
875 // FIXME: Create unittest.
876 // In another words, find a way when "copysign" appears in DAG with vector
877 // operands.
878 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
879 // FIXME: Code duplication: SETCC has custom operation action, see
880 // ARMTargetLowering::addTypeForNEON method for details.
881 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
882 // FIXME: Create unittest for FNEG and for FABS.
883 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
884 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
885 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
886 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
887 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
888 setOperationAction(ISD::FTAN, MVT::v2f64, Expand);
889 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
890 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
891 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
892 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
893 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
894 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
895 setOperationAction(ISD::FEXP10, MVT::v2f64, Expand);
896 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
897 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
898 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
899 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
900 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
901 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
902 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
905 if (Subtarget->hasNEON()) {
906 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
907 // supported for v4f32.
908 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
909 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
910 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
911 setOperationAction(ISD::FTAN, MVT::v4f32, Expand);
912 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
913 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
914 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
915 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
916 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
917 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
918 setOperationAction(ISD::FEXP10, MVT::v4f32, Expand);
919 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
920 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
921 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
922 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
923 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
925 // Mark v2f32 intrinsics.
926 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
927 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
928 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
929 setOperationAction(ISD::FTAN, MVT::v2f32, Expand);
930 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
931 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
932 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
933 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
934 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
935 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
936 setOperationAction(ISD::FEXP10, MVT::v2f32, Expand);
937 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
938 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
939 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
940 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
941 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
943 // Neon does not support some operations on v1i64 and v2i64 types.
944 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
945 // Custom handling for some quad-vector types to detect VMULL.
946 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
947 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
948 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
949 // Custom handling for some vector types to avoid expensive expansions
950 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
951 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
952 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
953 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
954 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
955 // a destination type that is wider than the source, and nor does
956 // it have a FP_TO_[SU]INT instruction with a narrower destination than
957 // source.
958 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
959 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
960 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
961 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
962 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
963 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
964 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
965 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
967 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
968 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
970 // NEON does not have single instruction CTPOP for vectors with element
971 // types wider than 8-bits. However, custom lowering can leverage the
972 // v8i8/v16i8 vcnt instruction.
973 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
974 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
975 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
976 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
977 setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
978 setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
980 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
981 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
983 // NEON does not have single instruction CTTZ for vectors.
984 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
985 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
986 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
987 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
989 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
990 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
991 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
992 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
994 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
995 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
996 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
997 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
999 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
1000 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
1001 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
1002 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
1004 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1005 setOperationAction(ISD::MULHS, VT, Expand);
1006 setOperationAction(ISD::MULHU, VT, Expand);
1009 // NEON only has FMA instructions as of VFP4.
1010 if (!Subtarget->hasVFP4Base()) {
1011 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
1012 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
1015 setTargetDAGCombine({ISD::SHL, ISD::SRL, ISD::SRA, ISD::FP_TO_SINT,
1016 ISD::FP_TO_UINT, ISD::FMUL, ISD::LOAD});
1018 // It is legal to extload from v4i8 to v4i16 or v4i32.
1019 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
1020 MVT::v2i32}) {
1021 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1022 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
1023 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
1024 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
1028 for (auto VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16,
1029 MVT::v4i32}) {
1030 setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom);
1031 setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom);
1032 setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom);
1033 setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom);
1037 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1038 setTargetDAGCombine(
1039 {ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE, ISD::INSERT_SUBVECTOR,
1040 ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
1041 ISD::SIGN_EXTEND_INREG, ISD::STORE, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND,
1042 ISD::ANY_EXTEND, ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN,
1043 ISD::INTRINSIC_VOID, ISD::VECREDUCE_ADD, ISD::ADD, ISD::BITCAST});
1045 if (Subtarget->hasMVEIntegerOps()) {
1046 setTargetDAGCombine({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
1047 ISD::FP_EXTEND, ISD::SELECT, ISD::SELECT_CC,
1048 ISD::SETCC});
1050 if (Subtarget->hasMVEFloatOps()) {
1051 setTargetDAGCombine(ISD::FADD);
1054 if (!Subtarget->hasFP64()) {
1055 // When targeting a floating-point unit with only single-precision
1056 // operations, f64 is legal for the few double-precision instructions which
1057 // are present However, no double-precision operations other than moves,
1058 // loads and stores are provided by the hardware.
1059 setOperationAction(ISD::FADD, MVT::f64, Expand);
1060 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1061 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1062 setOperationAction(ISD::FMA, MVT::f64, Expand);
1063 setOperationAction(ISD::FDIV, MVT::f64, Expand);
1064 setOperationAction(ISD::FREM, MVT::f64, Expand);
1065 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1066 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
1067 setOperationAction(ISD::FNEG, MVT::f64, Expand);
1068 setOperationAction(ISD::FABS, MVT::f64, Expand);
1069 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
1070 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1071 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1072 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1073 setOperationAction(ISD::FLOG, MVT::f64, Expand);
1074 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
1075 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
1076 setOperationAction(ISD::FEXP, MVT::f64, Expand);
1077 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
1078 setOperationAction(ISD::FEXP10, MVT::f64, Expand);
1079 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
1080 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
1081 setOperationAction(ISD::FRINT, MVT::f64, Expand);
1082 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1083 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
1084 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1085 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1086 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1087 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1088 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1089 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1090 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
1091 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1092 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1093 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1094 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1095 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
1098 if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1099 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
1100 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1101 if (Subtarget->hasFullFP16()) {
1102 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
1103 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1107 if (!Subtarget->hasFP16()) {
1108 setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
1109 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1112 computeRegisterProperties(Subtarget->getRegisterInfo());
1114 // ARM does not have floating-point extending loads.
1115 for (MVT VT : MVT::fp_valuetypes()) {
1116 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1117 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1118 setLoadExtAction(ISD::EXTLOAD, VT, MVT::bf16, Expand);
1121 // ... or truncating stores
1122 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1123 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1124 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1125 setTruncStoreAction(MVT::f32, MVT::bf16, Expand);
1126 setTruncStoreAction(MVT::f64, MVT::bf16, Expand);
1128 // ARM does not have i1 sign extending load.
1129 for (MVT VT : MVT::integer_valuetypes())
1130 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1132 // ARM supports all 4 flavors of integer indexed load / store.
1133 if (!Subtarget->isThumb1Only()) {
1134 for (unsigned im = (unsigned)ISD::PRE_INC;
1135 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1136 setIndexedLoadAction(im, MVT::i1, Legal);
1137 setIndexedLoadAction(im, MVT::i8, Legal);
1138 setIndexedLoadAction(im, MVT::i16, Legal);
1139 setIndexedLoadAction(im, MVT::i32, Legal);
1140 setIndexedStoreAction(im, MVT::i1, Legal);
1141 setIndexedStoreAction(im, MVT::i8, Legal);
1142 setIndexedStoreAction(im, MVT::i16, Legal);
1143 setIndexedStoreAction(im, MVT::i32, Legal);
1145 } else {
1146 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1147 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1148 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1151 setOperationAction(ISD::SADDO, MVT::i32, Custom);
1152 setOperationAction(ISD::UADDO, MVT::i32, Custom);
1153 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1154 setOperationAction(ISD::USUBO, MVT::i32, Custom);
1156 setOperationAction(ISD::UADDO_CARRY, MVT::i32, Custom);
1157 setOperationAction(ISD::USUBO_CARRY, MVT::i32, Custom);
1158 if (Subtarget->hasDSP()) {
1159 setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1160 setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1161 setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1162 setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1163 setOperationAction(ISD::UADDSAT, MVT::i8, Custom);
1164 setOperationAction(ISD::USUBSAT, MVT::i8, Custom);
1165 setOperationAction(ISD::UADDSAT, MVT::i16, Custom);
1166 setOperationAction(ISD::USUBSAT, MVT::i16, Custom);
1168 if (Subtarget->hasBaseDSP()) {
1169 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1170 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1173 // i64 operation support.
1174 setOperationAction(ISD::MUL, MVT::i64, Expand);
1175 setOperationAction(ISD::MULHU, MVT::i32, Expand);
1176 if (Subtarget->isThumb1Only()) {
1177 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1178 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1180 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1181 || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1182 setOperationAction(ISD::MULHS, MVT::i32, Expand);
1184 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1185 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1186 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1187 setOperationAction(ISD::SRL, MVT::i64, Custom);
1188 setOperationAction(ISD::SRA, MVT::i64, Custom);
1189 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1190 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1191 setOperationAction(ISD::LOAD, MVT::i64, Custom);
1192 setOperationAction(ISD::STORE, MVT::i64, Custom);
1194 // MVE lowers 64 bit shifts to lsll and lsrl
1195 // assuming that ISD::SRL and SRA of i64 are already marked custom
1196 if (Subtarget->hasMVEIntegerOps())
1197 setOperationAction(ISD::SHL, MVT::i64, Custom);
1199 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1200 if (Subtarget->isThumb1Only()) {
1201 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1202 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1203 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1206 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1207 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1209 // ARM does not have ROTL.
1210 setOperationAction(ISD::ROTL, MVT::i32, Expand);
1211 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1212 setOperationAction(ISD::ROTL, VT, Expand);
1213 setOperationAction(ISD::ROTR, VT, Expand);
1215 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
1216 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1217 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1218 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1219 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1222 // @llvm.readcyclecounter requires the Performance Monitors extension.
1223 // Default to the 0 expansion on unsupported platforms.
1224 // FIXME: Technically there are older ARM CPUs that have
1225 // implementation-specific ways of obtaining this information.
1226 if (Subtarget->hasPerfMon())
1227 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1229 // Only ARMv6 has BSWAP.
1230 if (!Subtarget->hasV6Ops())
1231 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1233 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1234 : Subtarget->hasDivideInARMMode();
1235 if (!hasDivide) {
1236 // These are expanded into libcalls if the cpu doesn't have HW divider.
1237 setOperationAction(ISD::SDIV, MVT::i32, LibCall);
1238 setOperationAction(ISD::UDIV, MVT::i32, LibCall);
1241 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1242 setOperationAction(ISD::SDIV, MVT::i32, Custom);
1243 setOperationAction(ISD::UDIV, MVT::i32, Custom);
1245 setOperationAction(ISD::SDIV, MVT::i64, Custom);
1246 setOperationAction(ISD::UDIV, MVT::i64, Custom);
1249 setOperationAction(ISD::SREM, MVT::i32, Expand);
1250 setOperationAction(ISD::UREM, MVT::i32, Expand);
1252 // Register based DivRem for AEABI (RTABI 4.2)
1253 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1254 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1255 Subtarget->isTargetWindows()) {
1256 setOperationAction(ISD::SREM, MVT::i64, Custom);
1257 setOperationAction(ISD::UREM, MVT::i64, Custom);
1258 HasStandaloneRem = false;
1260 if (Subtarget->isTargetWindows()) {
1261 const struct {
1262 const RTLIB::Libcall Op;
1263 const char * const Name;
1264 const CallingConv::ID CC;
1265 } LibraryCalls[] = {
1266 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1267 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1268 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1269 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1271 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1272 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1273 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1274 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1277 for (const auto &LC : LibraryCalls) {
1278 setLibcallName(LC.Op, LC.Name);
1279 setLibcallCallingConv(LC.Op, LC.CC);
1281 } else {
1282 const struct {
1283 const RTLIB::Libcall Op;
1284 const char * const Name;
1285 const CallingConv::ID CC;
1286 } LibraryCalls[] = {
1287 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1288 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1289 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1290 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1292 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1293 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1294 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1295 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1298 for (const auto &LC : LibraryCalls) {
1299 setLibcallName(LC.Op, LC.Name);
1300 setLibcallCallingConv(LC.Op, LC.CC);
1304 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1305 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1306 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1307 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1308 } else {
1309 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1310 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1313 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1314 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1315 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1316 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1318 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1319 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1321 // Use the default implementation.
1322 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1323 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1324 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1325 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1326 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1327 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1329 if (Subtarget->isTargetWindows())
1330 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1331 else
1332 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1334 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1335 // the default expansion.
1336 InsertFencesForAtomic = false;
1337 if (Subtarget->hasAnyDataBarrier() &&
1338 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1339 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1340 // to ldrex/strex loops already.
1341 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1342 if (!Subtarget->isThumb() || !Subtarget->isMClass())
1343 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
1345 // On v8, we have particularly efficient implementations of atomic fences
1346 // if they can be combined with nearby atomic loads and stores.
1347 if (!Subtarget->hasAcquireRelease() ||
1348 getTargetMachine().getOptLevel() == CodeGenOptLevel::None) {
1349 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1350 InsertFencesForAtomic = true;
1352 } else {
1353 // If there's anything we can use as a barrier, go through custom lowering
1354 // for ATOMIC_FENCE.
1355 // If target has DMB in thumb, Fences can be inserted.
1356 if (Subtarget->hasDataBarrier())
1357 InsertFencesForAtomic = true;
1359 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
1360 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1362 // Set them all for libcall, which will force libcalls.
1363 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall);
1364 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall);
1365 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall);
1366 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, LibCall);
1367 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, LibCall);
1368 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall);
1369 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall);
1370 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, LibCall);
1371 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, LibCall);
1372 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, LibCall);
1373 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, LibCall);
1374 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, LibCall);
1375 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1376 // Unordered/Monotonic case.
1377 if (!InsertFencesForAtomic) {
1378 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1379 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1383 // Compute supported atomic widths.
1384 if (Subtarget->isTargetLinux() ||
1385 (!Subtarget->isMClass() && Subtarget->hasV6Ops())) {
1386 // For targets where __sync_* routines are reliably available, we use them
1387 // if necessary.
1389 // ARM Linux always supports 64-bit atomics through kernel-assisted atomic
1390 // routines (kernel 3.1 or later). FIXME: Not with compiler-rt?
1392 // ARMv6 targets have native instructions in ARM mode. For Thumb mode,
1393 // such targets should provide __sync_* routines, which use the ARM mode
1394 // instructions. (ARMv6 doesn't have dmb, but it has an equivalent
1395 // encoding; see ARMISD::MEMBARRIER_MCR.)
1396 setMaxAtomicSizeInBitsSupported(64);
1397 } else if ((Subtarget->isMClass() && Subtarget->hasV8MBaselineOps()) ||
1398 Subtarget->hasForced32BitAtomics()) {
1399 // Cortex-M (besides Cortex-M0) have 32-bit atomics.
1400 setMaxAtomicSizeInBitsSupported(32);
1401 } else {
1402 // We can't assume anything about other targets; just use libatomic
1403 // routines.
1404 setMaxAtomicSizeInBitsSupported(0);
1407 setMaxDivRemBitWidthSupported(64);
1409 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1411 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1412 if (!Subtarget->hasV6Ops()) {
1413 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1414 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1416 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1418 if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1419 !Subtarget->isThumb1Only()) {
1420 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1421 // iff target supports vfp2.
1422 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1423 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
1424 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
1425 setOperationAction(ISD::GET_FPENV, MVT::i32, Legal);
1426 setOperationAction(ISD::SET_FPENV, MVT::i32, Legal);
1427 setOperationAction(ISD::RESET_FPENV, MVT::Other, Legal);
1428 setOperationAction(ISD::GET_FPMODE, MVT::i32, Legal);
1429 setOperationAction(ISD::SET_FPMODE, MVT::i32, Custom);
1430 setOperationAction(ISD::RESET_FPMODE, MVT::Other, Custom);
1433 // We want to custom lower some of our intrinsics.
1434 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1435 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1436 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1437 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1438 if (Subtarget->useSjLjEH())
1439 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1441 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1442 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1443 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1444 setOperationAction(ISD::SELECT, MVT::i32, Custom);
1445 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1446 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1447 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1448 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1449 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1450 if (Subtarget->hasFullFP16()) {
1451 setOperationAction(ISD::SETCC, MVT::f16, Expand);
1452 setOperationAction(ISD::SELECT, MVT::f16, Custom);
1453 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1456 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1458 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1459 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1460 if (Subtarget->hasFullFP16())
1461 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1462 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1463 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1464 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1466 // We don't support sin/cos/fmod/copysign/pow
1467 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1468 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1469 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1470 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1471 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1472 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1473 setOperationAction(ISD::FREM, MVT::f64, Expand);
1474 setOperationAction(ISD::FREM, MVT::f32, Expand);
1475 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1476 !Subtarget->isThumb1Only()) {
1477 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1478 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1480 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1481 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1483 if (!Subtarget->hasVFP4Base()) {
1484 setOperationAction(ISD::FMA, MVT::f64, Expand);
1485 setOperationAction(ISD::FMA, MVT::f32, Expand);
1488 // Various VFP goodness
1489 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1490 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1491 if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1492 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1493 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1496 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1497 if (!Subtarget->hasFP16()) {
1498 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1499 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1502 // Strict floating-point comparisons need custom lowering.
1503 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
1504 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1505 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
1506 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1507 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
1508 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1511 // Use __sincos_stret if available.
1512 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1513 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1514 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1515 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1518 // FP-ARMv8 implements a lot of rounding-like FP operations.
1519 if (Subtarget->hasFPARMv8Base()) {
1520 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1521 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1522 setOperationAction(ISD::FROUND, MVT::f32, Legal);
1523 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1524 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1525 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1526 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1527 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1528 if (Subtarget->hasNEON()) {
1529 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1530 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1531 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1532 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1535 if (Subtarget->hasFP64()) {
1536 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1537 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1538 setOperationAction(ISD::FROUND, MVT::f64, Legal);
1539 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1540 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1541 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1542 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1543 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1547 // FP16 often need to be promoted to call lib functions
1548 if (Subtarget->hasFullFP16()) {
1549 setOperationAction(ISD::FREM, MVT::f16, Promote);
1550 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1551 setOperationAction(ISD::FSIN, MVT::f16, Promote);
1552 setOperationAction(ISD::FCOS, MVT::f16, Promote);
1553 setOperationAction(ISD::FTAN, MVT::f16, Promote);
1554 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1555 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1556 setOperationAction(ISD::FPOW, MVT::f16, Promote);
1557 setOperationAction(ISD::FEXP, MVT::f16, Promote);
1558 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1559 setOperationAction(ISD::FEXP10, MVT::f16, Promote);
1560 setOperationAction(ISD::FLOG, MVT::f16, Promote);
1561 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1562 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1564 setOperationAction(ISD::FROUND, MVT::f16, Legal);
1567 if (Subtarget->hasNEON()) {
1568 // vmin and vmax aren't available in a scalar form, so we can use
1569 // a NEON instruction with an undef lane instead.
1570 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1571 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1572 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1573 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1574 setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1575 setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1576 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1577 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1579 if (Subtarget->hasFullFP16()) {
1580 setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1581 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1582 setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1583 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1585 setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1586 setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1587 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1588 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1592 // On MSVC, both 32-bit and 64-bit, ldexpf(f32) is not defined. MinGW has
1593 // it, but it's just a wrapper around ldexp.
1594 if (Subtarget->isTargetWindows()) {
1595 for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP})
1596 if (isOperationExpand(Op, MVT::f32))
1597 setOperationAction(Op, MVT::f32, Promote);
1600 // LegalizeDAG currently can't expand fp16 LDEXP/FREXP on targets where i16
1601 // isn't legal.
1602 for (ISD::NodeType Op : {ISD::FLDEXP, ISD::STRICT_FLDEXP, ISD::FFREXP})
1603 if (isOperationExpand(Op, MVT::f16))
1604 setOperationAction(Op, MVT::f16, Promote);
1606 // We have target-specific dag combine patterns for the following nodes:
1607 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1608 setTargetDAGCombine(
1609 {ISD::ADD, ISD::SUB, ISD::MUL, ISD::AND, ISD::OR, ISD::XOR});
1611 if (Subtarget->hasMVEIntegerOps())
1612 setTargetDAGCombine(ISD::VSELECT);
1614 if (Subtarget->hasV6Ops())
1615 setTargetDAGCombine(ISD::SRL);
1616 if (Subtarget->isThumb1Only())
1617 setTargetDAGCombine(ISD::SHL);
1618 // Attempt to lower smin/smax to ssat/usat
1619 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) ||
1620 Subtarget->isThumb2()) {
1621 setTargetDAGCombine({ISD::SMIN, ISD::SMAX});
1624 setStackPointerRegisterToSaveRestore(ARM::SP);
1626 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1627 !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1628 setSchedulingPreference(Sched::RegPressure);
1629 else
1630 setSchedulingPreference(Sched::Hybrid);
1632 //// temporary - rewrite interface to use type
1633 MaxStoresPerMemset = 8;
1634 MaxStoresPerMemsetOptSize = 4;
1635 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1636 MaxStoresPerMemcpyOptSize = 2;
1637 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1638 MaxStoresPerMemmoveOptSize = 2;
1640 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1641 // are at least 4 bytes aligned.
1642 setMinStackArgumentAlignment(Align(4));
1644 // Prefer likely predicted branches to selects on out-of-order cores.
1645 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1647 setPrefLoopAlignment(Align(1ULL << Subtarget->getPreferBranchLogAlignment()));
1648 setPrefFunctionAlignment(
1649 Align(1ULL << Subtarget->getPreferBranchLogAlignment()));
1651 setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1654 bool ARMTargetLowering::useSoftFloat() const {
1655 return Subtarget->useSoftFloat();
1658 // FIXME: It might make sense to define the representative register class as the
1659 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1660 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1661 // SPR's representative would be DPR_VFP2. This should work well if register
1662 // pressure tracking were modified such that a register use would increment the
1663 // pressure of the register class's representative and all of it's super
1664 // classes' representatives transitively. We have not implemented this because
1665 // of the difficulty prior to coalescing of modeling operand register classes
1666 // due to the common occurrence of cross class copies and subregister insertions
1667 // and extractions.
1668 std::pair<const TargetRegisterClass *, uint8_t>
1669 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1670 MVT VT) const {
1671 const TargetRegisterClass *RRC = nullptr;
1672 uint8_t Cost = 1;
1673 switch (VT.SimpleTy) {
1674 default:
1675 return TargetLowering::findRepresentativeClass(TRI, VT);
1676 // Use DPR as representative register class for all floating point
1677 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1678 // the cost is 1 for both f32 and f64.
1679 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1680 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1681 RRC = &ARM::DPRRegClass;
1682 // When NEON is used for SP, only half of the register file is available
1683 // because operations that define both SP and DP results will be constrained
1684 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1685 // coalescing by double-counting the SP regs. See the FIXME above.
1686 if (Subtarget->useNEONForSinglePrecisionFP())
1687 Cost = 2;
1688 break;
1689 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1690 case MVT::v4f32: case MVT::v2f64:
1691 RRC = &ARM::DPRRegClass;
1692 Cost = 2;
1693 break;
1694 case MVT::v4i64:
1695 RRC = &ARM::DPRRegClass;
1696 Cost = 4;
1697 break;
1698 case MVT::v8i64:
1699 RRC = &ARM::DPRRegClass;
1700 Cost = 8;
1701 break;
1703 return std::make_pair(RRC, Cost);
1706 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1707 #define MAKE_CASE(V) \
1708 case V: \
1709 return #V;
1710 switch ((ARMISD::NodeType)Opcode) {
1711 case ARMISD::FIRST_NUMBER:
1712 break;
1713 MAKE_CASE(ARMISD::Wrapper)
1714 MAKE_CASE(ARMISD::WrapperPIC)
1715 MAKE_CASE(ARMISD::WrapperJT)
1716 MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
1717 MAKE_CASE(ARMISD::CALL)
1718 MAKE_CASE(ARMISD::CALL_PRED)
1719 MAKE_CASE(ARMISD::CALL_NOLINK)
1720 MAKE_CASE(ARMISD::tSECALL)
1721 MAKE_CASE(ARMISD::t2CALL_BTI)
1722 MAKE_CASE(ARMISD::BRCOND)
1723 MAKE_CASE(ARMISD::BR_JT)
1724 MAKE_CASE(ARMISD::BR2_JT)
1725 MAKE_CASE(ARMISD::RET_GLUE)
1726 MAKE_CASE(ARMISD::SERET_GLUE)
1727 MAKE_CASE(ARMISD::INTRET_GLUE)
1728 MAKE_CASE(ARMISD::PIC_ADD)
1729 MAKE_CASE(ARMISD::CMP)
1730 MAKE_CASE(ARMISD::CMN)
1731 MAKE_CASE(ARMISD::CMPZ)
1732 MAKE_CASE(ARMISD::CMPFP)
1733 MAKE_CASE(ARMISD::CMPFPE)
1734 MAKE_CASE(ARMISD::CMPFPw0)
1735 MAKE_CASE(ARMISD::CMPFPEw0)
1736 MAKE_CASE(ARMISD::BCC_i64)
1737 MAKE_CASE(ARMISD::FMSTAT)
1738 MAKE_CASE(ARMISD::CMOV)
1739 MAKE_CASE(ARMISD::SSAT)
1740 MAKE_CASE(ARMISD::USAT)
1741 MAKE_CASE(ARMISD::ASRL)
1742 MAKE_CASE(ARMISD::LSRL)
1743 MAKE_CASE(ARMISD::LSLL)
1744 MAKE_CASE(ARMISD::LSLS)
1745 MAKE_CASE(ARMISD::LSRS1)
1746 MAKE_CASE(ARMISD::ASRS1)
1747 MAKE_CASE(ARMISD::RRX)
1748 MAKE_CASE(ARMISD::ADDC)
1749 MAKE_CASE(ARMISD::ADDE)
1750 MAKE_CASE(ARMISD::SUBC)
1751 MAKE_CASE(ARMISD::SUBE)
1752 MAKE_CASE(ARMISD::VMOVRRD)
1753 MAKE_CASE(ARMISD::VMOVDRR)
1754 MAKE_CASE(ARMISD::VMOVhr)
1755 MAKE_CASE(ARMISD::VMOVrh)
1756 MAKE_CASE(ARMISD::VMOVSR)
1757 MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
1758 MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
1759 MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
1760 MAKE_CASE(ARMISD::TC_RETURN)
1761 MAKE_CASE(ARMISD::THREAD_POINTER)
1762 MAKE_CASE(ARMISD::DYN_ALLOC)
1763 MAKE_CASE(ARMISD::MEMBARRIER_MCR)
1764 MAKE_CASE(ARMISD::PRELOAD)
1765 MAKE_CASE(ARMISD::LDRD)
1766 MAKE_CASE(ARMISD::STRD)
1767 MAKE_CASE(ARMISD::WIN__CHKSTK)
1768 MAKE_CASE(ARMISD::WIN__DBZCHK)
1769 MAKE_CASE(ARMISD::PREDICATE_CAST)
1770 MAKE_CASE(ARMISD::VECTOR_REG_CAST)
1771 MAKE_CASE(ARMISD::MVESEXT)
1772 MAKE_CASE(ARMISD::MVEZEXT)
1773 MAKE_CASE(ARMISD::MVETRUNC)
1774 MAKE_CASE(ARMISD::VCMP)
1775 MAKE_CASE(ARMISD::VCMPZ)
1776 MAKE_CASE(ARMISD::VTST)
1777 MAKE_CASE(ARMISD::VSHLs)
1778 MAKE_CASE(ARMISD::VSHLu)
1779 MAKE_CASE(ARMISD::VSHLIMM)
1780 MAKE_CASE(ARMISD::VSHRsIMM)
1781 MAKE_CASE(ARMISD::VSHRuIMM)
1782 MAKE_CASE(ARMISD::VRSHRsIMM)
1783 MAKE_CASE(ARMISD::VRSHRuIMM)
1784 MAKE_CASE(ARMISD::VRSHRNIMM)
1785 MAKE_CASE(ARMISD::VQSHLsIMM)
1786 MAKE_CASE(ARMISD::VQSHLuIMM)
1787 MAKE_CASE(ARMISD::VQSHLsuIMM)
1788 MAKE_CASE(ARMISD::VQSHRNsIMM)
1789 MAKE_CASE(ARMISD::VQSHRNuIMM)
1790 MAKE_CASE(ARMISD::VQSHRNsuIMM)
1791 MAKE_CASE(ARMISD::VQRSHRNsIMM)
1792 MAKE_CASE(ARMISD::VQRSHRNuIMM)
1793 MAKE_CASE(ARMISD::VQRSHRNsuIMM)
1794 MAKE_CASE(ARMISD::VSLIIMM)
1795 MAKE_CASE(ARMISD::VSRIIMM)
1796 MAKE_CASE(ARMISD::VGETLANEu)
1797 MAKE_CASE(ARMISD::VGETLANEs)
1798 MAKE_CASE(ARMISD::VMOVIMM)
1799 MAKE_CASE(ARMISD::VMVNIMM)
1800 MAKE_CASE(ARMISD::VMOVFPIMM)
1801 MAKE_CASE(ARMISD::VDUP)
1802 MAKE_CASE(ARMISD::VDUPLANE)
1803 MAKE_CASE(ARMISD::VEXT)
1804 MAKE_CASE(ARMISD::VREV64)
1805 MAKE_CASE(ARMISD::VREV32)
1806 MAKE_CASE(ARMISD::VREV16)
1807 MAKE_CASE(ARMISD::VZIP)
1808 MAKE_CASE(ARMISD::VUZP)
1809 MAKE_CASE(ARMISD::VTRN)
1810 MAKE_CASE(ARMISD::VTBL1)
1811 MAKE_CASE(ARMISD::VTBL2)
1812 MAKE_CASE(ARMISD::VMOVN)
1813 MAKE_CASE(ARMISD::VQMOVNs)
1814 MAKE_CASE(ARMISD::VQMOVNu)
1815 MAKE_CASE(ARMISD::VCVTN)
1816 MAKE_CASE(ARMISD::VCVTL)
1817 MAKE_CASE(ARMISD::VIDUP)
1818 MAKE_CASE(ARMISD::VMULLs)
1819 MAKE_CASE(ARMISD::VMULLu)
1820 MAKE_CASE(ARMISD::VQDMULH)
1821 MAKE_CASE(ARMISD::VADDVs)
1822 MAKE_CASE(ARMISD::VADDVu)
1823 MAKE_CASE(ARMISD::VADDVps)
1824 MAKE_CASE(ARMISD::VADDVpu)
1825 MAKE_CASE(ARMISD::VADDLVs)
1826 MAKE_CASE(ARMISD::VADDLVu)
1827 MAKE_CASE(ARMISD::VADDLVAs)
1828 MAKE_CASE(ARMISD::VADDLVAu)
1829 MAKE_CASE(ARMISD::VADDLVps)
1830 MAKE_CASE(ARMISD::VADDLVpu)
1831 MAKE_CASE(ARMISD::VADDLVAps)
1832 MAKE_CASE(ARMISD::VADDLVApu)
1833 MAKE_CASE(ARMISD::VMLAVs)
1834 MAKE_CASE(ARMISD::VMLAVu)
1835 MAKE_CASE(ARMISD::VMLAVps)
1836 MAKE_CASE(ARMISD::VMLAVpu)
1837 MAKE_CASE(ARMISD::VMLALVs)
1838 MAKE_CASE(ARMISD::VMLALVu)
1839 MAKE_CASE(ARMISD::VMLALVps)
1840 MAKE_CASE(ARMISD::VMLALVpu)
1841 MAKE_CASE(ARMISD::VMLALVAs)
1842 MAKE_CASE(ARMISD::VMLALVAu)
1843 MAKE_CASE(ARMISD::VMLALVAps)
1844 MAKE_CASE(ARMISD::VMLALVApu)
1845 MAKE_CASE(ARMISD::VMINVu)
1846 MAKE_CASE(ARMISD::VMINVs)
1847 MAKE_CASE(ARMISD::VMAXVu)
1848 MAKE_CASE(ARMISD::VMAXVs)
1849 MAKE_CASE(ARMISD::UMAAL)
1850 MAKE_CASE(ARMISD::UMLAL)
1851 MAKE_CASE(ARMISD::SMLAL)
1852 MAKE_CASE(ARMISD::SMLALBB)
1853 MAKE_CASE(ARMISD::SMLALBT)
1854 MAKE_CASE(ARMISD::SMLALTB)
1855 MAKE_CASE(ARMISD::SMLALTT)
1856 MAKE_CASE(ARMISD::SMULWB)
1857 MAKE_CASE(ARMISD::SMULWT)
1858 MAKE_CASE(ARMISD::SMLALD)
1859 MAKE_CASE(ARMISD::SMLALDX)
1860 MAKE_CASE(ARMISD::SMLSLD)
1861 MAKE_CASE(ARMISD::SMLSLDX)
1862 MAKE_CASE(ARMISD::SMMLAR)
1863 MAKE_CASE(ARMISD::SMMLSR)
1864 MAKE_CASE(ARMISD::QADD16b)
1865 MAKE_CASE(ARMISD::QSUB16b)
1866 MAKE_CASE(ARMISD::QADD8b)
1867 MAKE_CASE(ARMISD::QSUB8b)
1868 MAKE_CASE(ARMISD::UQADD16b)
1869 MAKE_CASE(ARMISD::UQSUB16b)
1870 MAKE_CASE(ARMISD::UQADD8b)
1871 MAKE_CASE(ARMISD::UQSUB8b)
1872 MAKE_CASE(ARMISD::BUILD_VECTOR)
1873 MAKE_CASE(ARMISD::BFI)
1874 MAKE_CASE(ARMISD::VORRIMM)
1875 MAKE_CASE(ARMISD::VBICIMM)
1876 MAKE_CASE(ARMISD::VBSP)
1877 MAKE_CASE(ARMISD::MEMCPY)
1878 MAKE_CASE(ARMISD::VLD1DUP)
1879 MAKE_CASE(ARMISD::VLD2DUP)
1880 MAKE_CASE(ARMISD::VLD3DUP)
1881 MAKE_CASE(ARMISD::VLD4DUP)
1882 MAKE_CASE(ARMISD::VLD1_UPD)
1883 MAKE_CASE(ARMISD::VLD2_UPD)
1884 MAKE_CASE(ARMISD::VLD3_UPD)
1885 MAKE_CASE(ARMISD::VLD4_UPD)
1886 MAKE_CASE(ARMISD::VLD1x2_UPD)
1887 MAKE_CASE(ARMISD::VLD1x3_UPD)
1888 MAKE_CASE(ARMISD::VLD1x4_UPD)
1889 MAKE_CASE(ARMISD::VLD2LN_UPD)
1890 MAKE_CASE(ARMISD::VLD3LN_UPD)
1891 MAKE_CASE(ARMISD::VLD4LN_UPD)
1892 MAKE_CASE(ARMISD::VLD1DUP_UPD)
1893 MAKE_CASE(ARMISD::VLD2DUP_UPD)
1894 MAKE_CASE(ARMISD::VLD3DUP_UPD)
1895 MAKE_CASE(ARMISD::VLD4DUP_UPD)
1896 MAKE_CASE(ARMISD::VST1_UPD)
1897 MAKE_CASE(ARMISD::VST2_UPD)
1898 MAKE_CASE(ARMISD::VST3_UPD)
1899 MAKE_CASE(ARMISD::VST4_UPD)
1900 MAKE_CASE(ARMISD::VST1x2_UPD)
1901 MAKE_CASE(ARMISD::VST1x3_UPD)
1902 MAKE_CASE(ARMISD::VST1x4_UPD)
1903 MAKE_CASE(ARMISD::VST2LN_UPD)
1904 MAKE_CASE(ARMISD::VST3LN_UPD)
1905 MAKE_CASE(ARMISD::VST4LN_UPD)
1906 MAKE_CASE(ARMISD::WLS)
1907 MAKE_CASE(ARMISD::WLSSETUP)
1908 MAKE_CASE(ARMISD::LE)
1909 MAKE_CASE(ARMISD::LOOP_DEC)
1910 MAKE_CASE(ARMISD::CSINV)
1911 MAKE_CASE(ARMISD::CSNEG)
1912 MAKE_CASE(ARMISD::CSINC)
1913 MAKE_CASE(ARMISD::MEMCPYLOOP)
1914 MAKE_CASE(ARMISD::MEMSETLOOP)
1915 #undef MAKE_CASE
1917 return nullptr;
1920 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1921 EVT VT) const {
1922 if (!VT.isVector())
1923 return getPointerTy(DL);
1925 // MVE has a predicate register.
1926 if ((Subtarget->hasMVEIntegerOps() &&
1927 (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
1928 VT == MVT::v16i8)) ||
1929 (Subtarget->hasMVEFloatOps() &&
1930 (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16)))
1931 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1932 return VT.changeVectorElementTypeToInteger();
1935 /// getRegClassFor - Return the register class that should be used for the
1936 /// specified value type.
1937 const TargetRegisterClass *
1938 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1939 (void)isDivergent;
1940 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1941 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1942 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1943 // MVE Q registers.
1944 if (Subtarget->hasNEON()) {
1945 if (VT == MVT::v4i64)
1946 return &ARM::QQPRRegClass;
1947 if (VT == MVT::v8i64)
1948 return &ARM::QQQQPRRegClass;
1950 if (Subtarget->hasMVEIntegerOps()) {
1951 if (VT == MVT::v4i64)
1952 return &ARM::MQQPRRegClass;
1953 if (VT == MVT::v8i64)
1954 return &ARM::MQQQQPRRegClass;
1956 return TargetLowering::getRegClassFor(VT);
1959 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1960 // source/dest is aligned and the copy size is large enough. We therefore want
1961 // to align such objects passed to memory intrinsics.
1962 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1963 Align &PrefAlign) const {
1964 if (!isa<MemIntrinsic>(CI))
1965 return false;
1966 MinSize = 8;
1967 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1968 // cycle faster than 4-byte aligned LDM.
1969 PrefAlign =
1970 (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? Align(8) : Align(4));
1971 return true;
1974 // Create a fast isel object.
1975 FastISel *
1976 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1977 const TargetLibraryInfo *libInfo) const {
1978 return ARM::createFastISel(funcInfo, libInfo);
1981 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1982 unsigned NumVals = N->getNumValues();
1983 if (!NumVals)
1984 return Sched::RegPressure;
1986 for (unsigned i = 0; i != NumVals; ++i) {
1987 EVT VT = N->getValueType(i);
1988 if (VT == MVT::Glue || VT == MVT::Other)
1989 continue;
1990 if (VT.isFloatingPoint() || VT.isVector())
1991 return Sched::ILP;
1994 if (!N->isMachineOpcode())
1995 return Sched::RegPressure;
1997 // Load are scheduled for latency even if there instruction itinerary
1998 // is not available.
1999 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2000 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
2002 if (MCID.getNumDefs() == 0)
2003 return Sched::RegPressure;
2004 if (!Itins->isEmpty() &&
2005 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2U)
2006 return Sched::ILP;
2008 return Sched::RegPressure;
2011 //===----------------------------------------------------------------------===//
2012 // Lowering Code
2013 //===----------------------------------------------------------------------===//
2015 static bool isSRL16(const SDValue &Op) {
2016 if (Op.getOpcode() != ISD::SRL)
2017 return false;
2018 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2019 return Const->getZExtValue() == 16;
2020 return false;
2023 static bool isSRA16(const SDValue &Op) {
2024 if (Op.getOpcode() != ISD::SRA)
2025 return false;
2026 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2027 return Const->getZExtValue() == 16;
2028 return false;
2031 static bool isSHL16(const SDValue &Op) {
2032 if (Op.getOpcode() != ISD::SHL)
2033 return false;
2034 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2035 return Const->getZExtValue() == 16;
2036 return false;
2039 // Check for a signed 16-bit value. We special case SRA because it makes it
2040 // more simple when also looking for SRAs that aren't sign extending a
2041 // smaller value. Without the check, we'd need to take extra care with
2042 // checking order for some operations.
2043 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
2044 if (isSRA16(Op))
2045 return isSHL16(Op.getOperand(0));
2046 return DAG.ComputeNumSignBits(Op) == 17;
2049 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
2050 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
2051 switch (CC) {
2052 default: llvm_unreachable("Unknown condition code!");
2053 case ISD::SETNE: return ARMCC::NE;
2054 case ISD::SETEQ: return ARMCC::EQ;
2055 case ISD::SETGT: return ARMCC::GT;
2056 case ISD::SETGE: return ARMCC::GE;
2057 case ISD::SETLT: return ARMCC::LT;
2058 case ISD::SETLE: return ARMCC::LE;
2059 case ISD::SETUGT: return ARMCC::HI;
2060 case ISD::SETUGE: return ARMCC::HS;
2061 case ISD::SETULT: return ARMCC::LO;
2062 case ISD::SETULE: return ARMCC::LS;
2066 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
2067 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
2068 ARMCC::CondCodes &CondCode2) {
2069 CondCode2 = ARMCC::AL;
2070 switch (CC) {
2071 default: llvm_unreachable("Unknown FP condition!");
2072 case ISD::SETEQ:
2073 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
2074 case ISD::SETGT:
2075 case ISD::SETOGT: CondCode = ARMCC::GT; break;
2076 case ISD::SETGE:
2077 case ISD::SETOGE: CondCode = ARMCC::GE; break;
2078 case ISD::SETOLT: CondCode = ARMCC::MI; break;
2079 case ISD::SETOLE: CondCode = ARMCC::LS; break;
2080 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
2081 case ISD::SETO: CondCode = ARMCC::VC; break;
2082 case ISD::SETUO: CondCode = ARMCC::VS; break;
2083 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
2084 case ISD::SETUGT: CondCode = ARMCC::HI; break;
2085 case ISD::SETUGE: CondCode = ARMCC::PL; break;
2086 case ISD::SETLT:
2087 case ISD::SETULT: CondCode = ARMCC::LT; break;
2088 case ISD::SETLE:
2089 case ISD::SETULE: CondCode = ARMCC::LE; break;
2090 case ISD::SETNE:
2091 case ISD::SETUNE: CondCode = ARMCC::NE; break;
2095 //===----------------------------------------------------------------------===//
2096 // Calling Convention Implementation
2097 //===----------------------------------------------------------------------===//
2099 /// getEffectiveCallingConv - Get the effective calling convention, taking into
2100 /// account presence of floating point hardware and calling convention
2101 /// limitations, such as support for variadic functions.
2102 CallingConv::ID
2103 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
2104 bool isVarArg) const {
2105 switch (CC) {
2106 default:
2107 report_fatal_error("Unsupported calling convention");
2108 case CallingConv::ARM_AAPCS:
2109 case CallingConv::ARM_APCS:
2110 case CallingConv::GHC:
2111 case CallingConv::CFGuard_Check:
2112 return CC;
2113 case CallingConv::PreserveMost:
2114 return CallingConv::PreserveMost;
2115 case CallingConv::PreserveAll:
2116 return CallingConv::PreserveAll;
2117 case CallingConv::ARM_AAPCS_VFP:
2118 case CallingConv::Swift:
2119 case CallingConv::SwiftTail:
2120 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2121 case CallingConv::C:
2122 case CallingConv::Tail:
2123 if (!Subtarget->isAAPCS_ABI())
2124 return CallingConv::ARM_APCS;
2125 else if (Subtarget->hasFPRegs() && !Subtarget->isThumb1Only() &&
2126 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2127 !isVarArg)
2128 return CallingConv::ARM_AAPCS_VFP;
2129 else
2130 return CallingConv::ARM_AAPCS;
2131 case CallingConv::Fast:
2132 case CallingConv::CXX_FAST_TLS:
2133 if (!Subtarget->isAAPCS_ABI()) {
2134 if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2135 return CallingConv::Fast;
2136 return CallingConv::ARM_APCS;
2137 } else if (Subtarget->hasVFP2Base() &&
2138 !Subtarget->isThumb1Only() && !isVarArg)
2139 return CallingConv::ARM_AAPCS_VFP;
2140 else
2141 return CallingConv::ARM_AAPCS;
2145 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2146 bool isVarArg) const {
2147 return CCAssignFnForNode(CC, false, isVarArg);
2150 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2151 bool isVarArg) const {
2152 return CCAssignFnForNode(CC, true, isVarArg);
2155 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2156 /// CallingConvention.
2157 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2158 bool Return,
2159 bool isVarArg) const {
2160 switch (getEffectiveCallingConv(CC, isVarArg)) {
2161 default:
2162 report_fatal_error("Unsupported calling convention");
2163 case CallingConv::ARM_APCS:
2164 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2165 case CallingConv::ARM_AAPCS:
2166 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2167 case CallingConv::ARM_AAPCS_VFP:
2168 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2169 case CallingConv::Fast:
2170 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2171 case CallingConv::GHC:
2172 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2173 case CallingConv::PreserveMost:
2174 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2175 case CallingConv::PreserveAll:
2176 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2177 case CallingConv::CFGuard_Check:
2178 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2182 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2183 MVT LocVT, MVT ValVT, SDValue Val) const {
2184 Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2185 Val);
2186 if (Subtarget->hasFullFP16()) {
2187 Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2188 } else {
2189 Val = DAG.getNode(ISD::TRUNCATE, dl,
2190 MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2191 Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2193 return Val;
2196 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2197 MVT LocVT, MVT ValVT,
2198 SDValue Val) const {
2199 if (Subtarget->hasFullFP16()) {
2200 Val = DAG.getNode(ARMISD::VMOVrh, dl,
2201 MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2202 } else {
2203 Val = DAG.getNode(ISD::BITCAST, dl,
2204 MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2205 Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2206 MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2208 return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2211 /// LowerCallResult - Lower the result values of a call into the
2212 /// appropriate copies out of appropriate physical registers.
2213 SDValue ARMTargetLowering::LowerCallResult(
2214 SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
2215 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2216 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2217 SDValue ThisVal, bool isCmseNSCall) const {
2218 // Assign locations to each value returned by this call.
2219 SmallVector<CCValAssign, 16> RVLocs;
2220 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2221 *DAG.getContext());
2222 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2224 // Copy all of the result registers out of their specified physreg.
2225 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2226 CCValAssign VA = RVLocs[i];
2228 // Pass 'this' value directly from the argument to return value, to avoid
2229 // reg unit interference
2230 if (i == 0 && isThisReturn) {
2231 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2232 "unexpected return calling convention register assignment");
2233 InVals.push_back(ThisVal);
2234 continue;
2237 SDValue Val;
2238 if (VA.needsCustom() &&
2239 (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2240 // Handle f64 or half of a v2f64.
2241 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2242 InGlue);
2243 Chain = Lo.getValue(1);
2244 InGlue = Lo.getValue(2);
2245 VA = RVLocs[++i]; // skip ahead to next loc
2246 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2247 InGlue);
2248 Chain = Hi.getValue(1);
2249 InGlue = Hi.getValue(2);
2250 if (!Subtarget->isLittle())
2251 std::swap (Lo, Hi);
2252 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2254 if (VA.getLocVT() == MVT::v2f64) {
2255 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2256 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2257 DAG.getConstant(0, dl, MVT::i32));
2259 VA = RVLocs[++i]; // skip ahead to next loc
2260 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue);
2261 Chain = Lo.getValue(1);
2262 InGlue = Lo.getValue(2);
2263 VA = RVLocs[++i]; // skip ahead to next loc
2264 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue);
2265 Chain = Hi.getValue(1);
2266 InGlue = Hi.getValue(2);
2267 if (!Subtarget->isLittle())
2268 std::swap (Lo, Hi);
2269 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2270 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2271 DAG.getConstant(1, dl, MVT::i32));
2273 } else {
2274 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2275 InGlue);
2276 Chain = Val.getValue(1);
2277 InGlue = Val.getValue(2);
2280 switch (VA.getLocInfo()) {
2281 default: llvm_unreachable("Unknown loc info!");
2282 case CCValAssign::Full: break;
2283 case CCValAssign::BCvt:
2284 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2285 break;
2288 // f16 arguments have their size extended to 4 bytes and passed as if they
2289 // had been copied to the LSBs of a 32-bit register.
2290 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2291 if (VA.needsCustom() &&
2292 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2293 Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2295 // On CMSE Non-secure Calls, call results (returned values) whose bitwidth
2296 // is less than 32 bits must be sign- or zero-extended after the call for
2297 // security reasons. Although the ABI mandates an extension done by the
2298 // callee, the latter cannot be trusted to follow the rules of the ABI.
2299 const ISD::InputArg &Arg = Ins[VA.getValNo()];
2300 if (isCmseNSCall && Arg.ArgVT.isScalarInteger() &&
2301 VA.getLocVT().isScalarInteger() && Arg.ArgVT.bitsLT(MVT::i32))
2302 Val = handleCMSEValue(Val, Arg, DAG, dl);
2304 InVals.push_back(Val);
2307 return Chain;
2310 std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
2311 const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr,
2312 bool IsTailCall, int SPDiff) const {
2313 SDValue DstAddr;
2314 MachinePointerInfo DstInfo;
2315 int32_t Offset = VA.getLocMemOffset();
2316 MachineFunction &MF = DAG.getMachineFunction();
2318 if (IsTailCall) {
2319 Offset += SPDiff;
2320 auto PtrVT = getPointerTy(DAG.getDataLayout());
2321 int Size = VA.getLocVT().getFixedSizeInBits() / 8;
2322 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
2323 DstAddr = DAG.getFrameIndex(FI, PtrVT);
2324 DstInfo =
2325 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
2326 } else {
2327 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
2328 DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2329 StackPtr, PtrOff);
2330 DstInfo =
2331 MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset);
2334 return std::make_pair(DstAddr, DstInfo);
2337 // Returns the type of copying which is required to set up a byval argument to
2338 // a tail-called function. This isn't needed for non-tail calls, because they
2339 // always need the equivalent of CopyOnce, but tail-calls sometimes need two to
2340 // avoid clobbering another argument (CopyViaTemp), and sometimes can be
2341 // optimised to zero copies when forwarding an argument from the caller's
2342 // caller (NoCopy).
2343 ARMTargetLowering::ByValCopyKind ARMTargetLowering::ByValNeedsCopyForTailCall(
2344 SelectionDAG &DAG, SDValue Src, SDValue Dst, ISD::ArgFlagsTy Flags) const {
2345 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2346 ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
2348 // Globals are always safe to copy from.
2349 if (isa<GlobalAddressSDNode>(Src) || isa<ExternalSymbolSDNode>(Src))
2350 return CopyOnce;
2352 // Can only analyse frame index nodes, conservatively assume we need a
2353 // temporary.
2354 auto *SrcFrameIdxNode = dyn_cast<FrameIndexSDNode>(Src);
2355 auto *DstFrameIdxNode = dyn_cast<FrameIndexSDNode>(Dst);
2356 if (!SrcFrameIdxNode || !DstFrameIdxNode)
2357 return CopyViaTemp;
2359 int SrcFI = SrcFrameIdxNode->getIndex();
2360 int DstFI = DstFrameIdxNode->getIndex();
2361 assert(MFI.isFixedObjectIndex(DstFI) &&
2362 "byval passed in non-fixed stack slot");
2364 int64_t SrcOffset = MFI.getObjectOffset(SrcFI);
2365 int64_t DstOffset = MFI.getObjectOffset(DstFI);
2367 // If the source is in the local frame, then the copy to the argument memory
2368 // is always valid.
2369 bool FixedSrc = MFI.isFixedObjectIndex(SrcFI);
2370 if (!FixedSrc ||
2371 (FixedSrc && SrcOffset < -(int64_t)AFI->getArgRegsSaveSize()))
2372 return CopyOnce;
2374 // In the case of byval arguments split between registers and the stack,
2375 // computeAddrForCallArg returns a FrameIndex which corresponds only to the
2376 // stack portion, but the Src SDValue will refer to the full value, including
2377 // the local stack memory that the register portion gets stored into. We only
2378 // need to compare them for equality, so normalise on the full value version.
2379 uint64_t RegSize = Flags.getByValSize() - MFI.getObjectSize(DstFI);
2380 DstOffset -= RegSize;
2382 // If the value is already in the correct location, then no copying is
2383 // needed. If not, then we need to copy via a temporary.
2384 if (SrcOffset == DstOffset)
2385 return NoCopy;
2386 else
2387 return CopyViaTemp;
2390 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2391 SDValue Chain, SDValue &Arg,
2392 RegsToPassVector &RegsToPass,
2393 CCValAssign &VA, CCValAssign &NextVA,
2394 SDValue &StackPtr,
2395 SmallVectorImpl<SDValue> &MemOpChains,
2396 bool IsTailCall,
2397 int SPDiff) const {
2398 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2399 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2400 unsigned id = Subtarget->isLittle() ? 0 : 1;
2401 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2403 if (NextVA.isRegLoc())
2404 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2405 else {
2406 assert(NextVA.isMemLoc());
2407 if (!StackPtr.getNode())
2408 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2409 getPointerTy(DAG.getDataLayout()));
2411 SDValue DstAddr;
2412 MachinePointerInfo DstInfo;
2413 std::tie(DstAddr, DstInfo) =
2414 computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
2415 MemOpChains.push_back(
2416 DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo));
2420 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
2421 return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
2422 CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
2425 /// LowerCall - Lowering a call into a callseq_start <-
2426 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2427 /// nodes.
2428 SDValue
2429 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2430 SmallVectorImpl<SDValue> &InVals) const {
2431 SelectionDAG &DAG = CLI.DAG;
2432 SDLoc &dl = CLI.DL;
2433 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2434 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2435 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2436 SDValue Chain = CLI.Chain;
2437 SDValue Callee = CLI.Callee;
2438 bool &isTailCall = CLI.IsTailCall;
2439 CallingConv::ID CallConv = CLI.CallConv;
2440 bool doesNotRet = CLI.DoesNotReturn;
2441 bool isVarArg = CLI.IsVarArg;
2443 MachineFunction &MF = DAG.getMachineFunction();
2444 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2445 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
2446 MachineFunction::CallSiteInfo CSInfo;
2447 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2448 bool isThisReturn = false;
2449 bool isCmseNSCall = false;
2450 bool isSibCall = false;
2451 bool PreferIndirect = false;
2452 bool GuardWithBTI = false;
2454 // Analyze operands of the call, assigning locations to each operand.
2455 SmallVector<CCValAssign, 16> ArgLocs;
2456 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2457 *DAG.getContext());
2458 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2460 // Lower 'returns_twice' calls to a pseudo-instruction.
2461 if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
2462 !Subtarget->noBTIAtReturnTwice())
2463 GuardWithBTI = AFI->branchTargetEnforcement();
2465 // Determine whether this is a non-secure function call.
2466 if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call"))
2467 isCmseNSCall = true;
2469 // Disable tail calls if they're not supported.
2470 if (!Subtarget->supportsTailCall())
2471 isTailCall = false;
2473 // For both the non-secure calls and the returns from a CMSE entry function,
2474 // the function needs to do some extra work after the call, or before the
2475 // return, respectively, thus it cannot end with a tail call
2476 if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2477 isTailCall = false;
2479 if (isa<GlobalAddressSDNode>(Callee)) {
2480 // If we're optimizing for minimum size and the function is called three or
2481 // more times in this block, we can improve codesize by calling indirectly
2482 // as BLXr has a 16-bit encoding.
2483 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2484 if (CLI.CB) {
2485 auto *BB = CLI.CB->getParent();
2486 PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2487 count_if(GV->users(), [&BB](const User *U) {
2488 return isa<Instruction>(U) &&
2489 cast<Instruction>(U)->getParent() == BB;
2490 }) > 2;
2493 if (isTailCall) {
2494 // Check if it's really possible to do a tail call.
2495 isTailCall =
2496 IsEligibleForTailCallOptimization(CLI, CCInfo, ArgLocs, PreferIndirect);
2498 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt &&
2499 CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail)
2500 isSibCall = true;
2502 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2503 // detected sibcalls.
2504 if (isTailCall)
2505 ++NumTailCalls;
2508 if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2509 report_fatal_error("failed to perform tail call elimination on a call "
2510 "site marked musttail");
2512 // Get a count of how many bytes are to be pushed on the stack.
2513 unsigned NumBytes = CCInfo.getStackSize();
2515 // SPDiff is the byte offset of the call's argument area from the callee's.
2516 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2517 // by this amount for a tail call. In a sibling call it must be 0 because the
2518 // caller will deallocate the entire stack and the callee still expects its
2519 // arguments to begin at SP+0. Completely unused for non-tail calls.
2520 int SPDiff = 0;
2522 if (isTailCall && !isSibCall) {
2523 auto FuncInfo = MF.getInfo<ARMFunctionInfo>();
2524 unsigned NumReusableBytes = FuncInfo->getArgumentStackSize();
2526 // Since callee will pop argument stack as a tail call, we must keep the
2527 // popped size 16-byte aligned.
2528 MaybeAlign StackAlign = DAG.getDataLayout().getStackAlignment();
2529 assert(StackAlign && "data layout string is missing stack alignment");
2530 NumBytes = alignTo(NumBytes, *StackAlign);
2532 // SPDiff will be negative if this tail call requires more space than we
2533 // would automatically have in our incoming argument space. Positive if we
2534 // can actually shrink the stack.
2535 SPDiff = NumReusableBytes - NumBytes;
2537 // If this call requires more stack than we have available from
2538 // LowerFormalArguments, tell FrameLowering to reserve space for it.
2539 if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff)
2540 AFI->setArgRegsSaveSize(-SPDiff);
2543 if (isSibCall) {
2544 // For sibling tail calls, memory operands are available in our caller's stack.
2545 NumBytes = 0;
2546 } else {
2547 // Adjust the stack pointer for the new arguments...
2548 // These operations are automatically eliminated by the prolog/epilog pass
2549 Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl);
2552 SDValue StackPtr =
2553 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2555 RegsToPassVector RegsToPass;
2556 SmallVector<SDValue, 8> MemOpChains;
2558 // If we are doing a tail-call, any byval arguments will be written to stack
2559 // space which was used for incoming arguments. If any the values being used
2560 // are incoming byval arguments to this function, then they might be
2561 // overwritten by the stores of the outgoing arguments. To avoid this, we
2562 // need to make a temporary copy of them in local stack space, then copy back
2563 // to the argument area.
2564 DenseMap<unsigned, SDValue> ByValTemporaries;
2565 SDValue ByValTempChain;
2566 if (isTailCall) {
2567 SmallVector<SDValue, 8> ByValCopyChains;
2568 for (const CCValAssign &VA : ArgLocs) {
2569 unsigned ArgIdx = VA.getValNo();
2570 SDValue Src = OutVals[ArgIdx];
2571 ISD::ArgFlagsTy Flags = Outs[ArgIdx].Flags;
2573 if (!Flags.isByVal())
2574 continue;
2576 SDValue Dst;
2577 MachinePointerInfo DstInfo;
2578 std::tie(Dst, DstInfo) =
2579 computeAddrForCallArg(dl, DAG, VA, SDValue(), true, SPDiff);
2580 ByValCopyKind Copy = ByValNeedsCopyForTailCall(DAG, Src, Dst, Flags);
2582 if (Copy == NoCopy) {
2583 // If the argument is already at the correct offset on the stack
2584 // (because we are forwarding a byval argument from our caller), we
2585 // don't need any copying.
2586 continue;
2587 } else if (Copy == CopyOnce) {
2588 // If the argument is in our local stack frame, no other argument
2589 // preparation can clobber it, so we can copy it to the final location
2590 // later.
2591 ByValTemporaries[ArgIdx] = Src;
2592 } else {
2593 assert(Copy == CopyViaTemp && "unexpected enum value");
2594 // If we might be copying this argument from the outgoing argument
2595 // stack area, we need to copy via a temporary in the local stack
2596 // frame.
2597 int TempFrameIdx = MFI.CreateStackObject(
2598 Flags.getByValSize(), Flags.getNonZeroByValAlign(), false);
2599 SDValue Temp =
2600 DAG.getFrameIndex(TempFrameIdx, getPointerTy(DAG.getDataLayout()));
2602 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
2603 SDValue AlignNode =
2604 DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2606 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2607 SDValue Ops[] = {Chain, Temp, Src, SizeNode, AlignNode};
2608 ByValCopyChains.push_back(
2609 DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, Ops));
2610 ByValTemporaries[ArgIdx] = Temp;
2613 if (!ByValCopyChains.empty())
2614 ByValTempChain =
2615 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, ByValCopyChains);
2618 // During a tail call, stores to the argument area must happen after all of
2619 // the function's incoming arguments have been loaded because they may alias.
2620 // This is done by folding in a TokenFactor from LowerFormalArguments, but
2621 // there's no point in doing so repeatedly so this tracks whether that's
2622 // happened yet.
2623 bool AfterFormalArgLoads = false;
2625 // Walk the register/memloc assignments, inserting copies/loads. In the case
2626 // of tail call optimization, arguments are handled later.
2627 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2628 i != e;
2629 ++i, ++realArgIdx) {
2630 CCValAssign &VA = ArgLocs[i];
2631 SDValue Arg = OutVals[realArgIdx];
2632 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2633 bool isByVal = Flags.isByVal();
2635 // Promote the value if needed.
2636 switch (VA.getLocInfo()) {
2637 default: llvm_unreachable("Unknown loc info!");
2638 case CCValAssign::Full: break;
2639 case CCValAssign::SExt:
2640 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2641 break;
2642 case CCValAssign::ZExt:
2643 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2644 break;
2645 case CCValAssign::AExt:
2646 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2647 break;
2648 case CCValAssign::BCvt:
2649 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2650 break;
2653 if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) {
2654 Chain = DAG.getStackArgumentTokenFactor(Chain);
2655 if (ByValTempChain)
2656 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chain,
2657 ByValTempChain);
2658 AfterFormalArgLoads = true;
2661 // f16 arguments have their size extended to 4 bytes and passed as if they
2662 // had been copied to the LSBs of a 32-bit register.
2663 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2664 if (VA.needsCustom() &&
2665 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2666 Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2667 } else {
2668 // f16 arguments could have been extended prior to argument lowering.
2669 // Mask them arguments if this is a CMSE nonsecure call.
2670 auto ArgVT = Outs[realArgIdx].ArgVT;
2671 if (isCmseNSCall && (ArgVT == MVT::f16)) {
2672 auto LocBits = VA.getLocVT().getSizeInBits();
2673 auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2674 SDValue Mask =
2675 DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2676 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2677 Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2678 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2682 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2683 if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2684 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2685 DAG.getConstant(0, dl, MVT::i32));
2686 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2687 DAG.getConstant(1, dl, MVT::i32));
2689 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2690 StackPtr, MemOpChains, isTailCall, SPDiff);
2692 VA = ArgLocs[++i]; // skip ahead to next loc
2693 if (VA.isRegLoc()) {
2694 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2695 StackPtr, MemOpChains, isTailCall, SPDiff);
2696 } else {
2697 assert(VA.isMemLoc());
2698 SDValue DstAddr;
2699 MachinePointerInfo DstInfo;
2700 std::tie(DstAddr, DstInfo) =
2701 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2702 MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo));
2704 } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2705 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2706 StackPtr, MemOpChains, isTailCall, SPDiff);
2707 } else if (VA.isRegLoc()) {
2708 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2709 Outs[0].VT == MVT::i32) {
2710 assert(VA.getLocVT() == MVT::i32 &&
2711 "unexpected calling convention register assignment");
2712 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2713 "unexpected use of 'returned'");
2714 isThisReturn = true;
2716 const TargetOptions &Options = DAG.getTarget().Options;
2717 if (Options.EmitCallSiteInfo)
2718 CSInfo.ArgRegPairs.emplace_back(VA.getLocReg(), i);
2719 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2720 } else if (isByVal) {
2721 assert(VA.isMemLoc());
2722 unsigned offset = 0;
2724 // True if this byval aggregate will be split between registers
2725 // and memory.
2726 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2727 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2729 SDValue ByValSrc;
2730 bool NeedsStackCopy;
2731 if (ByValTemporaries.contains(realArgIdx)) {
2732 ByValSrc = ByValTemporaries[realArgIdx];
2733 NeedsStackCopy = true;
2734 } else {
2735 ByValSrc = Arg;
2736 NeedsStackCopy = !isTailCall;
2739 // If part of the argument is in registers, load them.
2740 if (CurByValIdx < ByValArgsCount) {
2741 unsigned RegBegin, RegEnd;
2742 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2744 EVT PtrVT =
2745 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2746 unsigned int i, j;
2747 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2748 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2749 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, ByValSrc, Const);
2750 SDValue Load =
2751 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2752 DAG.InferPtrAlign(AddArg));
2753 MemOpChains.push_back(Load.getValue(1));
2754 RegsToPass.push_back(std::make_pair(j, Load));
2757 // If parameter size outsides register area, "offset" value
2758 // helps us to calculate stack slot for remained part properly.
2759 offset = RegEnd - RegBegin;
2761 CCInfo.nextInRegsParam();
2764 // If the memory part of the argument isn't already in the correct place
2765 // (which can happen with tail calls), copy it into the argument area.
2766 if (NeedsStackCopy && Flags.getByValSize() > 4 * offset) {
2767 auto PtrVT = getPointerTy(DAG.getDataLayout());
2768 SDValue Dst;
2769 MachinePointerInfo DstInfo;
2770 std::tie(Dst, DstInfo) =
2771 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2772 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2773 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, ByValSrc, SrcOffset);
2774 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2775 MVT::i32);
2776 SDValue AlignNode =
2777 DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2779 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2780 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2781 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2782 Ops));
2784 } else {
2785 assert(VA.isMemLoc());
2786 SDValue DstAddr;
2787 MachinePointerInfo DstInfo;
2788 std::tie(DstAddr, DstInfo) =
2789 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2791 SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo);
2792 MemOpChains.push_back(Store);
2796 if (!MemOpChains.empty())
2797 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2799 // Build a sequence of copy-to-reg nodes chained together with token chain
2800 // and flag operands which copy the outgoing args into the appropriate regs.
2801 SDValue InGlue;
2802 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2803 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2804 RegsToPass[i].second, InGlue);
2805 InGlue = Chain.getValue(1);
2808 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2809 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2810 // node so that legalize doesn't hack it.
2811 bool isDirect = false;
2813 const TargetMachine &TM = getTargetMachine();
2814 const GlobalValue *GVal = nullptr;
2815 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2816 GVal = G->getGlobal();
2817 bool isStub = !TM.shouldAssumeDSOLocal(GVal) && Subtarget->isTargetMachO();
2819 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2820 bool isLocalARMFunc = false;
2821 auto PtrVt = getPointerTy(DAG.getDataLayout());
2823 if (Subtarget->genLongCalls()) {
2824 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2825 "long-calls codegen is not position independent!");
2826 // Handle a global address or an external symbol. If it's not one of
2827 // those, the target's already in a register, so we don't need to do
2828 // anything extra.
2829 if (isa<GlobalAddressSDNode>(Callee)) {
2830 if (Subtarget->genExecuteOnly()) {
2831 if (Subtarget->useMovt())
2832 ++NumMovwMovt;
2833 Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2834 DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2835 } else {
2836 // Create a constant pool entry for the callee address
2837 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2838 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2839 GVal, ARMPCLabelIndex, ARMCP::CPValue, 0);
2841 // Get the address of the callee into a register
2842 SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2843 Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2844 Callee = DAG.getLoad(
2845 PtrVt, dl, DAG.getEntryNode(), Addr,
2846 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2848 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2849 const char *Sym = S->getSymbol();
2851 if (Subtarget->genExecuteOnly()) {
2852 if (Subtarget->useMovt())
2853 ++NumMovwMovt;
2854 Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2855 DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2856 } else {
2857 // Create a constant pool entry for the callee address
2858 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2859 ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(
2860 *DAG.getContext(), Sym, ARMPCLabelIndex, 0);
2862 // Get the address of the callee into a register
2863 SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2864 Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2865 Callee = DAG.getLoad(
2866 PtrVt, dl, DAG.getEntryNode(), Addr,
2867 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2870 } else if (isa<GlobalAddressSDNode>(Callee)) {
2871 if (!PreferIndirect) {
2872 isDirect = true;
2873 bool isDef = GVal->isStrongDefinitionForLinker();
2875 // ARM call to a local ARM function is predicable.
2876 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2877 // tBX takes a register source operand.
2878 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2879 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2880 Callee = DAG.getNode(
2881 ARMISD::WrapperPIC, dl, PtrVt,
2882 DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2883 Callee = DAG.getLoad(
2884 PtrVt, dl, DAG.getEntryNode(), Callee,
2885 MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2886 MachineMemOperand::MODereferenceable |
2887 MachineMemOperand::MOInvariant);
2888 } else if (Subtarget->isTargetCOFF()) {
2889 assert(Subtarget->isTargetWindows() &&
2890 "Windows is the only supported COFF target");
2891 unsigned TargetFlags = ARMII::MO_NO_FLAG;
2892 if (GVal->hasDLLImportStorageClass())
2893 TargetFlags = ARMII::MO_DLLIMPORT;
2894 else if (!TM.shouldAssumeDSOLocal(GVal))
2895 TargetFlags = ARMII::MO_COFFSTUB;
2896 Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, /*offset=*/0,
2897 TargetFlags);
2898 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2899 Callee =
2900 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2901 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2902 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2903 } else {
2904 Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, 0);
2907 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2908 isDirect = true;
2909 // tBX takes a register source operand.
2910 const char *Sym = S->getSymbol();
2911 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2912 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2913 ARMConstantPoolValue *CPV =
2914 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2915 ARMPCLabelIndex, 4);
2916 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2917 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2918 Callee = DAG.getLoad(
2919 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2920 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2921 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2922 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2923 } else {
2924 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2928 if (isCmseNSCall) {
2929 assert(!isARMFunc && !isDirect &&
2930 "Cannot handle call to ARM function or direct call");
2931 if (NumBytes > 0) {
2932 DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2933 "call to non-secure function would "
2934 "require passing arguments on stack",
2935 dl.getDebugLoc());
2936 DAG.getContext()->diagnose(Diag);
2938 if (isStructRet) {
2939 DiagnosticInfoUnsupported Diag(
2940 DAG.getMachineFunction().getFunction(),
2941 "call to non-secure function would return value through pointer",
2942 dl.getDebugLoc());
2943 DAG.getContext()->diagnose(Diag);
2947 // FIXME: handle tail calls differently.
2948 unsigned CallOpc;
2949 if (Subtarget->isThumb()) {
2950 if (GuardWithBTI)
2951 CallOpc = ARMISD::t2CALL_BTI;
2952 else if (isCmseNSCall)
2953 CallOpc = ARMISD::tSECALL;
2954 else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2955 CallOpc = ARMISD::CALL_NOLINK;
2956 else
2957 CallOpc = ARMISD::CALL;
2958 } else {
2959 if (!isDirect && !Subtarget->hasV5TOps())
2960 CallOpc = ARMISD::CALL_NOLINK;
2961 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2962 // Emit regular call when code size is the priority
2963 !Subtarget->hasMinSize())
2964 // "mov lr, pc; b _foo" to avoid confusing the RSP
2965 CallOpc = ARMISD::CALL_NOLINK;
2966 else
2967 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2970 // We don't usually want to end the call-sequence here because we would tidy
2971 // the frame up *after* the call, however in the ABI-changing tail-call case
2972 // we've carefully laid out the parameters so that when sp is reset they'll be
2973 // in the correct location.
2974 if (isTailCall && !isSibCall) {
2975 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, dl);
2976 InGlue = Chain.getValue(1);
2979 std::vector<SDValue> Ops;
2980 Ops.push_back(Chain);
2981 Ops.push_back(Callee);
2983 if (isTailCall) {
2984 Ops.push_back(DAG.getSignedTargetConstant(SPDiff, dl, MVT::i32));
2987 // Add argument registers to the end of the list so that they are known live
2988 // into the call.
2989 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2990 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2991 RegsToPass[i].second.getValueType()));
2993 // Add a register mask operand representing the call-preserved registers.
2994 const uint32_t *Mask;
2995 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2996 if (isThisReturn) {
2997 // For 'this' returns, use the R0-preserving mask if applicable
2998 Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2999 if (!Mask) {
3000 // Set isThisReturn to false if the calling convention is not one that
3001 // allows 'returned' to be modeled in this way, so LowerCallResult does
3002 // not try to pass 'this' straight through
3003 isThisReturn = false;
3004 Mask = ARI->getCallPreservedMask(MF, CallConv);
3006 } else
3007 Mask = ARI->getCallPreservedMask(MF, CallConv);
3009 assert(Mask && "Missing call preserved mask for calling convention");
3010 Ops.push_back(DAG.getRegisterMask(Mask));
3012 if (InGlue.getNode())
3013 Ops.push_back(InGlue);
3015 if (isTailCall) {
3016 MF.getFrameInfo().setHasTailCall();
3017 SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, MVT::Other, Ops);
3018 DAG.addNoMergeSiteInfo(Ret.getNode(), CLI.NoMerge);
3019 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
3020 return Ret;
3023 // Returns a chain and a flag for retval copy to use.
3024 Chain = DAG.getNode(CallOpc, dl, {MVT::Other, MVT::Glue}, Ops);
3025 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
3026 InGlue = Chain.getValue(1);
3027 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
3029 // If we're guaranteeing tail-calls will be honoured, the callee must
3030 // pop its own argument stack on return. But this call is *not* a tail call so
3031 // we need to undo that after it returns to restore the status-quo.
3032 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
3033 uint64_t CalleePopBytes =
3034 canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1U;
3036 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InGlue, dl);
3037 if (!Ins.empty())
3038 InGlue = Chain.getValue(1);
3040 // Handle result values, copying them out of physregs into vregs that we
3041 // return.
3042 return LowerCallResult(Chain, InGlue, CallConv, isVarArg, Ins, dl, DAG,
3043 InVals, isThisReturn,
3044 isThisReturn ? OutVals[0] : SDValue(), isCmseNSCall);
3047 /// HandleByVal - Every parameter *after* a byval parameter is passed
3048 /// on the stack. Remember the next parameter register to allocate,
3049 /// and then confiscate the rest of the parameter registers to insure
3050 /// this.
3051 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
3052 Align Alignment) const {
3053 // Byval (as with any stack) slots are always at least 4 byte aligned.
3054 Alignment = std::max(Alignment, Align(4));
3056 MCRegister Reg = State->AllocateReg(GPRArgRegs);
3057 if (!Reg)
3058 return;
3060 unsigned AlignInRegs = Alignment.value() / 4;
3061 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
3062 for (unsigned i = 0; i < Waste; ++i)
3063 Reg = State->AllocateReg(GPRArgRegs);
3065 if (!Reg)
3066 return;
3068 unsigned Excess = 4 * (ARM::R4 - Reg);
3070 // Special case when NSAA != SP and parameter size greater than size of
3071 // all remained GPR regs. In that case we can't split parameter, we must
3072 // send it to stack. We also must set NCRN to R4, so waste all
3073 // remained registers.
3074 const unsigned NSAAOffset = State->getStackSize();
3075 if (NSAAOffset != 0 && Size > Excess) {
3076 while (State->AllocateReg(GPRArgRegs))
3078 return;
3081 // First register for byval parameter is the first register that wasn't
3082 // allocated before this method call, so it would be "reg".
3083 // If parameter is small enough to be saved in range [reg, r4), then
3084 // the end (first after last) register would be reg + param-size-in-regs,
3085 // else parameter would be splitted between registers and stack,
3086 // end register would be r4 in this case.
3087 unsigned ByValRegBegin = Reg;
3088 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
3089 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
3090 // Note, first register is allocated in the beginning of function already,
3091 // allocate remained amount of registers we need.
3092 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
3093 State->AllocateReg(GPRArgRegs);
3094 // A byval parameter that is split between registers and memory needs its
3095 // size truncated here.
3096 // In the case where the entire structure fits in registers, we set the
3097 // size in memory to zero.
3098 Size = std::max<int>(Size - Excess, 0);
3101 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
3102 /// for tail call optimization. Targets which want to do tail call
3103 /// optimization should implement this function. Note that this function also
3104 /// processes musttail calls, so when this function returns false on a valid
3105 /// musttail call, a fatal backend error occurs.
3106 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
3107 TargetLowering::CallLoweringInfo &CLI, CCState &CCInfo,
3108 SmallVectorImpl<CCValAssign> &ArgLocs, const bool isIndirect) const {
3109 CallingConv::ID CalleeCC = CLI.CallConv;
3110 SDValue Callee = CLI.Callee;
3111 bool isVarArg = CLI.IsVarArg;
3112 const SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
3113 const SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
3114 const SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
3115 const SelectionDAG &DAG = CLI.DAG;
3116 MachineFunction &MF = DAG.getMachineFunction();
3117 const Function &CallerF = MF.getFunction();
3118 CallingConv::ID CallerCC = CallerF.getCallingConv();
3120 assert(Subtarget->supportsTailCall());
3122 // Indirect tail-calls require a register to hold the target address. That
3123 // register must be:
3124 // * Allocatable (i.e. r0-r7 if the target is Thumb1).
3125 // * Not callee-saved, so must be one of r0-r3 or r12.
3126 // * Not used to hold an argument to the tail-called function, which might be
3127 // in r0-r3.
3128 // * Not used to hold the return address authentication code, which is in r12
3129 // if enabled.
3130 // Sometimes, no register matches all of these conditions, so we can't do a
3131 // tail-call.
3132 if (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect) {
3133 SmallSet<MCPhysReg, 5> AddressRegisters;
3134 for (Register R : {ARM::R0, ARM::R1, ARM::R2, ARM::R3})
3135 AddressRegisters.insert(R);
3136 if (!(Subtarget->isThumb1Only() ||
3137 MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true)))
3138 AddressRegisters.insert(ARM::R12);
3139 for (const CCValAssign &AL : ArgLocs)
3140 if (AL.isRegLoc())
3141 AddressRegisters.erase(AL.getLocReg());
3142 if (AddressRegisters.empty()) {
3143 LLVM_DEBUG(dbgs() << "false (no reg to hold function pointer)\n");
3144 return false;
3148 // Look for obvious safe cases to perform tail call optimization that do not
3149 // require ABI changes. This is what gcc calls sibcall.
3151 // Exception-handling functions need a special set of instructions to indicate
3152 // a return to the hardware. Tail-calling another function would probably
3153 // break this.
3154 if (CallerF.hasFnAttribute("interrupt")) {
3155 LLVM_DEBUG(dbgs() << "false (interrupt attribute)\n");
3156 return false;
3159 if (canGuaranteeTCO(CalleeCC,
3160 getTargetMachine().Options.GuaranteedTailCallOpt)) {
3161 LLVM_DEBUG(dbgs() << (CalleeCC == CallerCC ? "true" : "false")
3162 << " (guaranteed tail-call CC)\n");
3163 return CalleeCC == CallerCC;
3166 // Also avoid sibcall optimization if either caller or callee uses struct
3167 // return semantics.
3168 bool isCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
3169 bool isCallerStructRet = MF.getFunction().hasStructRetAttr();
3170 if (isCalleeStructRet != isCallerStructRet) {
3171 LLVM_DEBUG(dbgs() << "false (struct-ret)\n");
3172 return false;
3175 // Externally-defined functions with weak linkage should not be
3176 // tail-called on ARM when the OS does not support dynamic
3177 // pre-emption of symbols, as the AAELF spec requires normal calls
3178 // to undefined weak functions to be replaced with a NOP or jump to the
3179 // next instruction. The behaviour of branch instructions in this
3180 // situation (as used for tail calls) is implementation-defined, so we
3181 // cannot rely on the linker replacing the tail call with a return.
3182 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3183 const GlobalValue *GV = G->getGlobal();
3184 const Triple &TT = getTargetMachine().getTargetTriple();
3185 if (GV->hasExternalWeakLinkage() &&
3186 (!TT.isOSWindows() || TT.isOSBinFormatELF() ||
3187 TT.isOSBinFormatMachO())) {
3188 LLVM_DEBUG(dbgs() << "false (external weak linkage)\n");
3189 return false;
3193 // Check that the call results are passed in the same way.
3194 LLVMContext &C = *DAG.getContext();
3195 if (!CCState::resultsCompatible(
3196 getEffectiveCallingConv(CalleeCC, isVarArg),
3197 getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
3198 CCAssignFnForReturn(CalleeCC, isVarArg),
3199 CCAssignFnForReturn(CallerCC, CallerF.isVarArg()))) {
3200 LLVM_DEBUG(dbgs() << "false (incompatible results)\n");
3201 return false;
3203 // The callee has to preserve all registers the caller needs to preserve.
3204 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3205 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3206 if (CalleeCC != CallerCC) {
3207 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3208 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) {
3209 LLVM_DEBUG(dbgs() << "false (not all registers preserved)\n");
3210 return false;
3214 // If Caller's vararg argument has been split between registers and stack, do
3215 // not perform tail call, since part of the argument is in caller's local
3216 // frame.
3217 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
3218 if (CLI.IsVarArg && AFI_Caller->getArgRegsSaveSize()) {
3219 LLVM_DEBUG(dbgs() << "false (arg reg save area)\n");
3220 return false;
3223 // If the callee takes no arguments then go on to check the results of the
3224 // call.
3225 const MachineRegisterInfo &MRI = MF.getRegInfo();
3226 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) {
3227 LLVM_DEBUG(dbgs() << "false (parameters in CSRs do not match)\n");
3228 return false;
3231 // If the stack arguments for this call do not fit into our own save area then
3232 // the call cannot be made tail.
3233 if (CCInfo.getStackSize() > AFI_Caller->getArgumentStackSize())
3234 return false;
3236 LLVM_DEBUG(dbgs() << "true\n");
3237 return true;
3240 bool
3241 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3242 MachineFunction &MF, bool isVarArg,
3243 const SmallVectorImpl<ISD::OutputArg> &Outs,
3244 LLVMContext &Context) const {
3245 SmallVector<CCValAssign, 16> RVLocs;
3246 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3247 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3250 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3251 const SDLoc &DL, SelectionDAG &DAG) {
3252 const MachineFunction &MF = DAG.getMachineFunction();
3253 const Function &F = MF.getFunction();
3255 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
3257 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
3258 // version of the "preferred return address". These offsets affect the return
3259 // instruction if this is a return from PL1 without hypervisor extensions.
3260 // IRQ/FIQ: +4 "subs pc, lr, #4"
3261 // SWI: 0 "subs pc, lr, #0"
3262 // ABORT: +4 "subs pc, lr, #4"
3263 // UNDEF: +4/+2 "subs pc, lr, #0"
3264 // UNDEF varies depending on where the exception came from ARM or Thumb
3265 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
3267 int64_t LROffset;
3268 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
3269 IntKind == "ABORT")
3270 LROffset = 4;
3271 else if (IntKind == "SWI" || IntKind == "UNDEF")
3272 LROffset = 0;
3273 else
3274 report_fatal_error("Unsupported interrupt attribute. If present, value "
3275 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3277 RetOps.insert(RetOps.begin() + 1,
3278 DAG.getConstant(LROffset, DL, MVT::i32, false));
3280 return DAG.getNode(ARMISD::INTRET_GLUE, DL, MVT::Other, RetOps);
3283 SDValue
3284 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3285 bool isVarArg,
3286 const SmallVectorImpl<ISD::OutputArg> &Outs,
3287 const SmallVectorImpl<SDValue> &OutVals,
3288 const SDLoc &dl, SelectionDAG &DAG) const {
3289 // CCValAssign - represent the assignment of the return value to a location.
3290 SmallVector<CCValAssign, 16> RVLocs;
3292 // CCState - Info about the registers and stack slots.
3293 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3294 *DAG.getContext());
3296 // Analyze outgoing return values.
3297 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3299 SDValue Glue;
3300 SmallVector<SDValue, 4> RetOps;
3301 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3302 bool isLittleEndian = Subtarget->isLittle();
3304 MachineFunction &MF = DAG.getMachineFunction();
3305 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3306 AFI->setReturnRegsCount(RVLocs.size());
3308 // Report error if cmse entry function returns structure through first ptr arg.
3309 if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
3310 // Note: using an empty SDLoc(), as the first line of the function is a
3311 // better place to report than the last line.
3312 DiagnosticInfoUnsupported Diag(
3313 DAG.getMachineFunction().getFunction(),
3314 "secure entry function would return value through pointer",
3315 SDLoc().getDebugLoc());
3316 DAG.getContext()->diagnose(Diag);
3319 // Copy the result values into the output registers.
3320 for (unsigned i = 0, realRVLocIdx = 0;
3321 i != RVLocs.size();
3322 ++i, ++realRVLocIdx) {
3323 CCValAssign &VA = RVLocs[i];
3324 assert(VA.isRegLoc() && "Can only return in registers!");
3326 SDValue Arg = OutVals[realRVLocIdx];
3327 bool ReturnF16 = false;
3329 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
3330 // Half-precision return values can be returned like this:
3332 // t11 f16 = fadd ...
3333 // t12: i16 = bitcast t11
3334 // t13: i32 = zero_extend t12
3335 // t14: f32 = bitcast t13 <~~~~~~~ Arg
3337 // to avoid code generation for bitcasts, we simply set Arg to the node
3338 // that produces the f16 value, t11 in this case.
3340 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3341 SDValue ZE = Arg.getOperand(0);
3342 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3343 SDValue BC = ZE.getOperand(0);
3344 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3345 Arg = BC.getOperand(0);
3346 ReturnF16 = true;
3352 switch (VA.getLocInfo()) {
3353 default: llvm_unreachable("Unknown loc info!");
3354 case CCValAssign::Full: break;
3355 case CCValAssign::BCvt:
3356 if (!ReturnF16)
3357 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3358 break;
3361 // Mask f16 arguments if this is a CMSE nonsecure entry.
3362 auto RetVT = Outs[realRVLocIdx].ArgVT;
3363 if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3364 if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3365 Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3366 } else {
3367 auto LocBits = VA.getLocVT().getSizeInBits();
3368 auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3369 SDValue Mask =
3370 DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3371 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3372 Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3373 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3377 if (VA.needsCustom() &&
3378 (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3379 if (VA.getLocVT() == MVT::v2f64) {
3380 // Extract the first half and return it in two registers.
3381 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3382 DAG.getConstant(0, dl, MVT::i32));
3383 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3384 DAG.getVTList(MVT::i32, MVT::i32), Half);
3386 Chain =
3387 DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3388 HalfGPRs.getValue(isLittleEndian ? 0 : 1), Glue);
3389 Glue = Chain.getValue(1);
3390 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3391 VA = RVLocs[++i]; // skip ahead to next loc
3392 Chain =
3393 DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3394 HalfGPRs.getValue(isLittleEndian ? 1 : 0), Glue);
3395 Glue = Chain.getValue(1);
3396 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3397 VA = RVLocs[++i]; // skip ahead to next loc
3399 // Extract the 2nd half and fall through to handle it as an f64 value.
3400 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3401 DAG.getConstant(1, dl, MVT::i32));
3403 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
3404 // available.
3405 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3406 DAG.getVTList(MVT::i32, MVT::i32), Arg);
3407 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3408 fmrrd.getValue(isLittleEndian ? 0 : 1), Glue);
3409 Glue = Chain.getValue(1);
3410 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3411 VA = RVLocs[++i]; // skip ahead to next loc
3412 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3413 fmrrd.getValue(isLittleEndian ? 1 : 0), Glue);
3414 } else
3415 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue);
3417 // Guarantee that all emitted copies are
3418 // stuck together, avoiding something bad.
3419 Glue = Chain.getValue(1);
3420 RetOps.push_back(DAG.getRegister(
3421 VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3423 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3424 const MCPhysReg *I =
3425 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3426 if (I) {
3427 for (; *I; ++I) {
3428 if (ARM::GPRRegClass.contains(*I))
3429 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3430 else if (ARM::DPRRegClass.contains(*I))
3431 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3432 else
3433 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3437 // Update chain and glue.
3438 RetOps[0] = Chain;
3439 if (Glue.getNode())
3440 RetOps.push_back(Glue);
3442 // CPUs which aren't M-class use a special sequence to return from
3443 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3444 // though we use "subs pc, lr, #N").
3446 // M-class CPUs actually use a normal return sequence with a special
3447 // (hardware-provided) value in LR, so the normal code path works.
3448 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3449 !Subtarget->isMClass()) {
3450 if (Subtarget->isThumb1Only())
3451 report_fatal_error("interrupt attribute is not supported in Thumb1");
3452 return LowerInterruptReturn(RetOps, dl, DAG);
3455 ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_GLUE :
3456 ARMISD::RET_GLUE;
3457 return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3460 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3461 if (N->getNumValues() != 1)
3462 return false;
3463 if (!N->hasNUsesOfValue(1, 0))
3464 return false;
3466 SDValue TCChain = Chain;
3467 SDNode *Copy = *N->user_begin();
3468 if (Copy->getOpcode() == ISD::CopyToReg) {
3469 // If the copy has a glue operand, we conservatively assume it isn't safe to
3470 // perform a tail call.
3471 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3472 return false;
3473 TCChain = Copy->getOperand(0);
3474 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3475 SDNode *VMov = Copy;
3476 // f64 returned in a pair of GPRs.
3477 SmallPtrSet<SDNode*, 2> Copies;
3478 for (SDNode *U : VMov->users()) {
3479 if (U->getOpcode() != ISD::CopyToReg)
3480 return false;
3481 Copies.insert(U);
3483 if (Copies.size() > 2)
3484 return false;
3486 for (SDNode *U : VMov->users()) {
3487 SDValue UseChain = U->getOperand(0);
3488 if (Copies.count(UseChain.getNode()))
3489 // Second CopyToReg
3490 Copy = U;
3491 else {
3492 // We are at the top of this chain.
3493 // If the copy has a glue operand, we conservatively assume it
3494 // isn't safe to perform a tail call.
3495 if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue)
3496 return false;
3497 // First CopyToReg
3498 TCChain = UseChain;
3501 } else if (Copy->getOpcode() == ISD::BITCAST) {
3502 // f32 returned in a single GPR.
3503 if (!Copy->hasOneUse())
3504 return false;
3505 Copy = *Copy->user_begin();
3506 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3507 return false;
3508 // If the copy has a glue operand, we conservatively assume it isn't safe to
3509 // perform a tail call.
3510 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3511 return false;
3512 TCChain = Copy->getOperand(0);
3513 } else {
3514 return false;
3517 bool HasRet = false;
3518 for (const SDNode *U : Copy->users()) {
3519 if (U->getOpcode() != ARMISD::RET_GLUE &&
3520 U->getOpcode() != ARMISD::INTRET_GLUE)
3521 return false;
3522 HasRet = true;
3525 if (!HasRet)
3526 return false;
3528 Chain = TCChain;
3529 return true;
3532 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3533 if (!Subtarget->supportsTailCall())
3534 return false;
3536 if (!CI->isTailCall())
3537 return false;
3539 return true;
3542 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3543 // and pass the lower and high parts through.
3544 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3545 SDLoc DL(Op);
3546 SDValue WriteValue = Op->getOperand(2);
3548 // This function is only supposed to be called for i64 type argument.
3549 assert(WriteValue.getValueType() == MVT::i64
3550 && "LowerWRITE_REGISTER called for non-i64 type argument.");
3552 SDValue Lo, Hi;
3553 std::tie(Lo, Hi) = DAG.SplitScalar(WriteValue, DL, MVT::i32, MVT::i32);
3554 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3555 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3558 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3559 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3560 // one of the above mentioned nodes. It has to be wrapped because otherwise
3561 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3562 // be used to form addressing mode. These wrapped nodes will be selected
3563 // into MOVi.
3564 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3565 SelectionDAG &DAG) const {
3566 EVT PtrVT = Op.getValueType();
3567 // FIXME there is no actual debug info here
3568 SDLoc dl(Op);
3569 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3570 SDValue Res;
3572 // When generating execute-only code Constant Pools must be promoted to the
3573 // global data section. It's a bit ugly that we can't share them across basic
3574 // blocks, but this way we guarantee that execute-only behaves correct with
3575 // position-independent addressing modes.
3576 if (Subtarget->genExecuteOnly()) {
3577 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3578 auto T = const_cast<Type*>(CP->getType());
3579 auto C = const_cast<Constant*>(CP->getConstVal());
3580 auto M = const_cast<Module*>(DAG.getMachineFunction().
3581 getFunction().getParent());
3582 auto GV = new GlobalVariable(
3583 *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3584 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3585 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3586 Twine(AFI->createPICLabelUId())
3588 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3589 dl, PtrVT);
3590 return LowerGlobalAddress(GA, DAG);
3593 // The 16-bit ADR instruction can only encode offsets that are multiples of 4,
3594 // so we need to align to at least 4 bytes when we don't have 32-bit ADR.
3595 Align CPAlign = CP->getAlign();
3596 if (Subtarget->isThumb1Only())
3597 CPAlign = std::max(CPAlign, Align(4));
3598 if (CP->isMachineConstantPoolEntry())
3599 Res =
3600 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CPAlign);
3601 else
3602 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CPAlign);
3603 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3606 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3607 // If we don't have a 32-bit pc-relative branch instruction then the jump
3608 // table consists of block addresses. Usually this is inline, but for
3609 // execute-only it must be placed out-of-line.
3610 if (Subtarget->genExecuteOnly() && !Subtarget->hasV8MBaselineOps())
3611 return MachineJumpTableInfo::EK_BlockAddress;
3612 return MachineJumpTableInfo::EK_Inline;
3615 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3616 SelectionDAG &DAG) const {
3617 MachineFunction &MF = DAG.getMachineFunction();
3618 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3619 unsigned ARMPCLabelIndex = 0;
3620 SDLoc DL(Op);
3621 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3622 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3623 SDValue CPAddr;
3624 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3625 if (!IsPositionIndependent) {
3626 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3627 } else {
3628 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3629 ARMPCLabelIndex = AFI->createPICLabelUId();
3630 ARMConstantPoolValue *CPV =
3631 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3632 ARMCP::CPBlockAddress, PCAdj);
3633 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3635 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3636 SDValue Result = DAG.getLoad(
3637 PtrVT, DL, DAG.getEntryNode(), CPAddr,
3638 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3639 if (!IsPositionIndependent)
3640 return Result;
3641 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3642 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3645 /// Convert a TLS address reference into the correct sequence of loads
3646 /// and calls to compute the variable's address for Darwin, and return an
3647 /// SDValue containing the final node.
3649 /// Darwin only has one TLS scheme which must be capable of dealing with the
3650 /// fully general situation, in the worst case. This means:
3651 /// + "extern __thread" declaration.
3652 /// + Defined in a possibly unknown dynamic library.
3654 /// The general system is that each __thread variable has a [3 x i32] descriptor
3655 /// which contains information used by the runtime to calculate the address. The
3656 /// only part of this the compiler needs to know about is the first word, which
3657 /// contains a function pointer that must be called with the address of the
3658 /// entire descriptor in "r0".
3660 /// Since this descriptor may be in a different unit, in general access must
3661 /// proceed along the usual ARM rules. A common sequence to produce is:
3663 /// movw rT1, :lower16:_var$non_lazy_ptr
3664 /// movt rT1, :upper16:_var$non_lazy_ptr
3665 /// ldr r0, [rT1]
3666 /// ldr rT2, [r0]
3667 /// blx rT2
3668 /// [...address now in r0...]
3669 SDValue
3670 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3671 SelectionDAG &DAG) const {
3672 assert(Subtarget->isTargetDarwin() &&
3673 "This function expects a Darwin target");
3674 SDLoc DL(Op);
3676 // First step is to get the address of the actua global symbol. This is where
3677 // the TLS descriptor lives.
3678 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3680 // The first entry in the descriptor is a function pointer that we must call
3681 // to obtain the address of the variable.
3682 SDValue Chain = DAG.getEntryNode();
3683 SDValue FuncTLVGet = DAG.getLoad(
3684 MVT::i32, DL, Chain, DescAddr,
3685 MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3686 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3687 MachineMemOperand::MOInvariant);
3688 Chain = FuncTLVGet.getValue(1);
3690 MachineFunction &F = DAG.getMachineFunction();
3691 MachineFrameInfo &MFI = F.getFrameInfo();
3692 MFI.setAdjustsStack(true);
3694 // TLS calls preserve all registers except those that absolutely must be
3695 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3696 // silly).
3697 auto TRI =
3698 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3699 auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3700 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3702 // Finally, we can make the call. This is just a degenerate version of a
3703 // normal AArch64 call node: r0 takes the address of the descriptor, and
3704 // returns the address of the variable in this thread.
3705 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3706 Chain =
3707 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3708 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3709 DAG.getRegisterMask(Mask), Chain.getValue(1));
3710 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3713 SDValue
3714 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3715 SelectionDAG &DAG) const {
3716 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3718 SDValue Chain = DAG.getEntryNode();
3719 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3720 SDLoc DL(Op);
3722 // Load the current TEB (thread environment block)
3723 SDValue Ops[] = {Chain,
3724 DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3725 DAG.getTargetConstant(15, DL, MVT::i32),
3726 DAG.getTargetConstant(0, DL, MVT::i32),
3727 DAG.getTargetConstant(13, DL, MVT::i32),
3728 DAG.getTargetConstant(0, DL, MVT::i32),
3729 DAG.getTargetConstant(2, DL, MVT::i32)};
3730 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3731 DAG.getVTList(MVT::i32, MVT::Other), Ops);
3733 SDValue TEB = CurrentTEB.getValue(0);
3734 Chain = CurrentTEB.getValue(1);
3736 // Load the ThreadLocalStoragePointer from the TEB
3737 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3738 SDValue TLSArray =
3739 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3740 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3742 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3743 // offset into the TLSArray.
3745 // Load the TLS index from the C runtime
3746 SDValue TLSIndex =
3747 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3748 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3749 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3751 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3752 DAG.getConstant(2, DL, MVT::i32));
3753 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3754 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3755 MachinePointerInfo());
3757 // Get the offset of the start of the .tls section (section base)
3758 const auto *GA = cast<GlobalAddressSDNode>(Op);
3759 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3760 SDValue Offset = DAG.getLoad(
3761 PtrVT, DL, Chain,
3762 DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3763 DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3764 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3766 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3769 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3770 SDValue
3771 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3772 SelectionDAG &DAG) const {
3773 SDLoc dl(GA);
3774 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3775 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3776 MachineFunction &MF = DAG.getMachineFunction();
3777 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3778 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3779 ARMConstantPoolValue *CPV =
3780 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3781 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3782 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3783 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3784 Argument = DAG.getLoad(
3785 PtrVT, dl, DAG.getEntryNode(), Argument,
3786 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3787 SDValue Chain = Argument.getValue(1);
3789 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3790 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3792 // call __tls_get_addr.
3793 ArgListTy Args;
3794 ArgListEntry Entry;
3795 Entry.Node = Argument;
3796 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3797 Args.push_back(Entry);
3799 // FIXME: is there useful debug info available here?
3800 TargetLowering::CallLoweringInfo CLI(DAG);
3801 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3802 CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3803 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3805 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3806 return CallResult.first;
3809 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3810 // "local exec" model.
3811 SDValue
3812 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3813 SelectionDAG &DAG,
3814 TLSModel::Model model) const {
3815 const GlobalValue *GV = GA->getGlobal();
3816 SDLoc dl(GA);
3817 SDValue Offset;
3818 SDValue Chain = DAG.getEntryNode();
3819 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3820 // Get the Thread Pointer
3821 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3823 if (model == TLSModel::InitialExec) {
3824 MachineFunction &MF = DAG.getMachineFunction();
3825 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3826 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3827 // Initial exec model.
3828 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3829 ARMConstantPoolValue *CPV =
3830 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3831 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3832 true);
3833 Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3834 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3835 Offset = DAG.getLoad(
3836 PtrVT, dl, Chain, Offset,
3837 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3838 Chain = Offset.getValue(1);
3840 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3841 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3843 Offset = DAG.getLoad(
3844 PtrVT, dl, Chain, Offset,
3845 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3846 } else {
3847 // local exec model
3848 assert(model == TLSModel::LocalExec);
3849 ARMConstantPoolValue *CPV =
3850 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3851 Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3852 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3853 Offset = DAG.getLoad(
3854 PtrVT, dl, Chain, Offset,
3855 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3858 // The address of the thread local variable is the add of the thread
3859 // pointer with the offset of the variable.
3860 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3863 SDValue
3864 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3865 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3866 if (DAG.getTarget().useEmulatedTLS())
3867 return LowerToTLSEmulatedModel(GA, DAG);
3869 if (Subtarget->isTargetDarwin())
3870 return LowerGlobalTLSAddressDarwin(Op, DAG);
3872 if (Subtarget->isTargetWindows())
3873 return LowerGlobalTLSAddressWindows(Op, DAG);
3875 // TODO: implement the "local dynamic" model
3876 assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3877 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3879 switch (model) {
3880 case TLSModel::GeneralDynamic:
3881 case TLSModel::LocalDynamic:
3882 return LowerToTLSGeneralDynamicModel(GA, DAG);
3883 case TLSModel::InitialExec:
3884 case TLSModel::LocalExec:
3885 return LowerToTLSExecModels(GA, DAG, model);
3887 llvm_unreachable("bogus TLS model");
3890 /// Return true if all users of V are within function F, looking through
3891 /// ConstantExprs.
3892 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3893 SmallVector<const User*,4> Worklist(V->users());
3894 while (!Worklist.empty()) {
3895 auto *U = Worklist.pop_back_val();
3896 if (isa<ConstantExpr>(U)) {
3897 append_range(Worklist, U->users());
3898 continue;
3901 auto *I = dyn_cast<Instruction>(U);
3902 if (!I || I->getParent()->getParent() != F)
3903 return false;
3905 return true;
3908 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3909 const GlobalValue *GV, SelectionDAG &DAG,
3910 EVT PtrVT, const SDLoc &dl) {
3911 // If we're creating a pool entry for a constant global with unnamed address,
3912 // and the global is small enough, we can emit it inline into the constant pool
3913 // to save ourselves an indirection.
3915 // This is a win if the constant is only used in one function (so it doesn't
3916 // need to be duplicated) or duplicating the constant wouldn't increase code
3917 // size (implying the constant is no larger than 4 bytes).
3918 const Function &F = DAG.getMachineFunction().getFunction();
3920 // We rely on this decision to inline being idemopotent and unrelated to the
3921 // use-site. We know that if we inline a variable at one use site, we'll
3922 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3923 // doesn't know about this optimization, so bail out if it's enabled else
3924 // we could decide to inline here (and thus never emit the GV) but require
3925 // the GV from fast-isel generated code.
3926 if (!EnableConstpoolPromotion ||
3927 DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3928 return SDValue();
3930 auto *GVar = dyn_cast<GlobalVariable>(GV);
3931 if (!GVar || !GVar->hasInitializer() ||
3932 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3933 !GVar->hasLocalLinkage())
3934 return SDValue();
3936 // If we inline a value that contains relocations, we move the relocations
3937 // from .data to .text. This is not allowed in position-independent code.
3938 auto *Init = GVar->getInitializer();
3939 if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3940 Init->needsDynamicRelocation())
3941 return SDValue();
3943 // The constant islands pass can only really deal with alignment requests
3944 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3945 // any type wanting greater alignment requirements than 4 bytes. We also
3946 // can only promote constants that are multiples of 4 bytes in size or
3947 // are paddable to a multiple of 4. Currently we only try and pad constants
3948 // that are strings for simplicity.
3949 auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3950 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3951 Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3952 unsigned RequiredPadding = 4 - (Size % 4);
3953 bool PaddingPossible =
3954 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3955 if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3956 Size == 0)
3957 return SDValue();
3959 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3960 MachineFunction &MF = DAG.getMachineFunction();
3961 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3963 // We can't bloat the constant pool too much, else the ConstantIslands pass
3964 // may fail to converge. If we haven't promoted this global yet (it may have
3965 // multiple uses), and promoting it would increase the constant pool size (Sz
3966 // > 4), ensure we have space to do so up to MaxTotal.
3967 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3968 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3969 ConstpoolPromotionMaxTotal)
3970 return SDValue();
3972 // This is only valid if all users are in a single function; we can't clone
3973 // the constant in general. The LLVM IR unnamed_addr allows merging
3974 // constants, but not cloning them.
3976 // We could potentially allow cloning if we could prove all uses of the
3977 // constant in the current function don't care about the address, like
3978 // printf format strings. But that isn't implemented for now.
3979 if (!allUsersAreInFunction(GVar, &F))
3980 return SDValue();
3982 // We're going to inline this global. Pad it out if needed.
3983 if (RequiredPadding != 4) {
3984 StringRef S = CDAInit->getAsString();
3986 SmallVector<uint8_t,16> V(S.size());
3987 std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3988 while (RequiredPadding--)
3989 V.push_back(0);
3990 Init = ConstantDataArray::get(*DAG.getContext(), V);
3993 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3994 SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3995 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3996 AFI->markGlobalAsPromotedToConstantPool(GVar);
3997 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3998 PaddedSize - 4);
4000 ++NumConstpoolPromoted;
4001 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4004 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
4005 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
4006 if (!(GV = GA->getAliaseeObject()))
4007 return false;
4008 if (const auto *V = dyn_cast<GlobalVariable>(GV))
4009 return V->isConstant();
4010 return isa<Function>(GV);
4013 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
4014 SelectionDAG &DAG) const {
4015 switch (Subtarget->getTargetTriple().getObjectFormat()) {
4016 default: llvm_unreachable("unknown object format");
4017 case Triple::COFF:
4018 return LowerGlobalAddressWindows(Op, DAG);
4019 case Triple::ELF:
4020 return LowerGlobalAddressELF(Op, DAG);
4021 case Triple::MachO:
4022 return LowerGlobalAddressDarwin(Op, DAG);
4026 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
4027 SelectionDAG &DAG) const {
4028 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4029 SDLoc dl(Op);
4030 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4031 bool IsRO = isReadOnly(GV);
4033 // promoteToConstantPool only if not generating XO text section
4034 if (GV->isDSOLocal() && !Subtarget->genExecuteOnly())
4035 if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
4036 return V;
4038 if (isPositionIndependent()) {
4039 SDValue G = DAG.getTargetGlobalAddress(
4040 GV, dl, PtrVT, 0, GV->isDSOLocal() ? 0 : ARMII::MO_GOT);
4041 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
4042 if (!GV->isDSOLocal())
4043 Result =
4044 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
4045 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4046 return Result;
4047 } else if (Subtarget->isROPI() && IsRO) {
4048 // PC-relative.
4049 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
4050 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
4051 return Result;
4052 } else if (Subtarget->isRWPI() && !IsRO) {
4053 // SB-relative.
4054 SDValue RelAddr;
4055 if (Subtarget->useMovt()) {
4056 ++NumMovwMovt;
4057 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
4058 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
4059 } else { // use literal pool for address constant
4060 ARMConstantPoolValue *CPV =
4061 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
4062 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
4063 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4064 RelAddr = DAG.getLoad(
4065 PtrVT, dl, DAG.getEntryNode(), CPAddr,
4066 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4068 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
4069 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
4070 return Result;
4073 // If we have T2 ops, we can materialize the address directly via movt/movw
4074 // pair. This is always cheaper. If need to generate Execute Only code, and we
4075 // only have Thumb1 available, we can't use a constant pool and are forced to
4076 // use immediate relocations.
4077 if (Subtarget->useMovt() || Subtarget->genExecuteOnly()) {
4078 if (Subtarget->useMovt())
4079 ++NumMovwMovt;
4080 // FIXME: Once remat is capable of dealing with instructions with register
4081 // operands, expand this into two nodes.
4082 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
4083 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
4084 } else {
4085 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
4086 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4087 return DAG.getLoad(
4088 PtrVT, dl, DAG.getEntryNode(), CPAddr,
4089 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4093 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
4094 SelectionDAG &DAG) const {
4095 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
4096 "ROPI/RWPI not currently supported for Darwin");
4097 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4098 SDLoc dl(Op);
4099 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4101 if (Subtarget->useMovt())
4102 ++NumMovwMovt;
4104 // FIXME: Once remat is capable of dealing with instructions with register
4105 // operands, expand this into multiple nodes
4106 unsigned Wrapper =
4107 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
4109 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
4110 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
4112 if (Subtarget->isGVIndirectSymbol(GV))
4113 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
4114 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4115 return Result;
4118 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
4119 SelectionDAG &DAG) const {
4120 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
4121 assert(Subtarget->useMovt() &&
4122 "Windows on ARM expects to use movw/movt");
4123 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
4124 "ROPI/RWPI not currently supported for Windows");
4126 const TargetMachine &TM = getTargetMachine();
4127 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
4128 ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
4129 if (GV->hasDLLImportStorageClass())
4130 TargetFlags = ARMII::MO_DLLIMPORT;
4131 else if (!TM.shouldAssumeDSOLocal(GV))
4132 TargetFlags = ARMII::MO_COFFSTUB;
4133 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4134 SDValue Result;
4135 SDLoc DL(Op);
4137 ++NumMovwMovt;
4139 // FIXME: Once remat is capable of dealing with instructions with register
4140 // operands, expand this into two nodes.
4141 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
4142 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
4143 TargetFlags));
4144 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
4145 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4146 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4147 return Result;
4150 SDValue
4151 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
4152 SDLoc dl(Op);
4153 SDValue Val = DAG.getConstant(0, dl, MVT::i32);
4154 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
4155 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
4156 Op.getOperand(1), Val);
4159 SDValue
4160 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
4161 SDLoc dl(Op);
4162 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
4163 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
4166 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
4167 SelectionDAG &DAG) const {
4168 SDLoc dl(Op);
4169 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
4170 Op.getOperand(0));
4173 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
4174 SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
4175 unsigned IntNo =
4176 Op.getConstantOperandVal(Op.getOperand(0).getValueType() == MVT::Other);
4177 switch (IntNo) {
4178 default:
4179 return SDValue(); // Don't custom lower most intrinsics.
4180 case Intrinsic::arm_gnu_eabi_mcount: {
4181 MachineFunction &MF = DAG.getMachineFunction();
4182 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4183 SDLoc dl(Op);
4184 SDValue Chain = Op.getOperand(0);
4185 // call "\01__gnu_mcount_nc"
4186 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
4187 const uint32_t *Mask =
4188 ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
4189 assert(Mask && "Missing call preserved mask for calling convention");
4190 // Mark LR an implicit live-in.
4191 Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4192 SDValue ReturnAddress =
4193 DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
4194 constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
4195 SDValue Callee =
4196 DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
4197 SDValue RegisterMask = DAG.getRegisterMask(Mask);
4198 if (Subtarget->isThumb())
4199 return SDValue(
4200 DAG.getMachineNode(
4201 ARM::tBL_PUSHLR, dl, ResultTys,
4202 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
4203 DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
4205 return SDValue(
4206 DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
4207 {ReturnAddress, Callee, RegisterMask, Chain}),
4213 SDValue
4214 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
4215 const ARMSubtarget *Subtarget) const {
4216 unsigned IntNo = Op.getConstantOperandVal(0);
4217 SDLoc dl(Op);
4218 switch (IntNo) {
4219 default: return SDValue(); // Don't custom lower most intrinsics.
4220 case Intrinsic::thread_pointer: {
4221 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4222 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
4224 case Intrinsic::arm_cls: {
4225 const SDValue &Operand = Op.getOperand(1);
4226 const EVT VTy = Op.getValueType();
4227 SDValue SRA =
4228 DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
4229 SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
4230 SDValue SHL =
4231 DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
4232 SDValue OR =
4233 DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
4234 SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
4235 return Result;
4237 case Intrinsic::arm_cls64: {
4238 // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
4239 // else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
4240 const SDValue &Operand = Op.getOperand(1);
4241 const EVT VTy = Op.getValueType();
4242 SDValue Lo, Hi;
4243 std::tie(Lo, Hi) = DAG.SplitScalar(Operand, dl, VTy, VTy);
4244 SDValue Constant0 = DAG.getConstant(0, dl, VTy);
4245 SDValue Constant1 = DAG.getConstant(1, dl, VTy);
4246 SDValue Constant31 = DAG.getConstant(31, dl, VTy);
4247 SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
4248 SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
4249 SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
4250 SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
4251 SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
4252 SDValue CheckLo =
4253 DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
4254 SDValue HiIsZero =
4255 DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
4256 SDValue AdjustedLo =
4257 DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
4258 SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
4259 SDValue Result =
4260 DAG.getSelect(dl, VTy, CheckLo,
4261 DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
4262 return Result;
4264 case Intrinsic::eh_sjlj_lsda: {
4265 MachineFunction &MF = DAG.getMachineFunction();
4266 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4267 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
4268 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4269 SDValue CPAddr;
4270 bool IsPositionIndependent = isPositionIndependent();
4271 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
4272 ARMConstantPoolValue *CPV =
4273 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
4274 ARMCP::CPLSDA, PCAdj);
4275 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
4276 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4277 SDValue Result = DAG.getLoad(
4278 PtrVT, dl, DAG.getEntryNode(), CPAddr,
4279 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4281 if (IsPositionIndependent) {
4282 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
4283 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
4285 return Result;
4287 case Intrinsic::arm_neon_vabs:
4288 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
4289 Op.getOperand(1));
4290 case Intrinsic::arm_neon_vabds:
4291 if (Op.getValueType().isInteger())
4292 return DAG.getNode(ISD::ABDS, SDLoc(Op), Op.getValueType(),
4293 Op.getOperand(1), Op.getOperand(2));
4294 return SDValue();
4295 case Intrinsic::arm_neon_vabdu:
4296 return DAG.getNode(ISD::ABDU, SDLoc(Op), Op.getValueType(),
4297 Op.getOperand(1), Op.getOperand(2));
4298 case Intrinsic::arm_neon_vmulls:
4299 case Intrinsic::arm_neon_vmullu: {
4300 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
4301 ? ARMISD::VMULLs : ARMISD::VMULLu;
4302 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4303 Op.getOperand(1), Op.getOperand(2));
4305 case Intrinsic::arm_neon_vminnm:
4306 case Intrinsic::arm_neon_vmaxnm: {
4307 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
4308 ? ISD::FMINNUM : ISD::FMAXNUM;
4309 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4310 Op.getOperand(1), Op.getOperand(2));
4312 case Intrinsic::arm_neon_vminu:
4313 case Intrinsic::arm_neon_vmaxu: {
4314 if (Op.getValueType().isFloatingPoint())
4315 return SDValue();
4316 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
4317 ? ISD::UMIN : ISD::UMAX;
4318 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4319 Op.getOperand(1), Op.getOperand(2));
4321 case Intrinsic::arm_neon_vmins:
4322 case Intrinsic::arm_neon_vmaxs: {
4323 // v{min,max}s is overloaded between signed integers and floats.
4324 if (!Op.getValueType().isFloatingPoint()) {
4325 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4326 ? ISD::SMIN : ISD::SMAX;
4327 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4328 Op.getOperand(1), Op.getOperand(2));
4330 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4331 ? ISD::FMINIMUM : ISD::FMAXIMUM;
4332 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4333 Op.getOperand(1), Op.getOperand(2));
4335 case Intrinsic::arm_neon_vtbl1:
4336 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
4337 Op.getOperand(1), Op.getOperand(2));
4338 case Intrinsic::arm_neon_vtbl2:
4339 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
4340 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4341 case Intrinsic::arm_mve_pred_i2v:
4342 case Intrinsic::arm_mve_pred_v2i:
4343 return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4344 Op.getOperand(1));
4345 case Intrinsic::arm_mve_vreinterpretq:
4346 return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4347 Op.getOperand(1));
4348 case Intrinsic::arm_mve_lsll:
4349 return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4350 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4351 case Intrinsic::arm_mve_asrl:
4352 return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4353 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4357 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4358 const ARMSubtarget *Subtarget) {
4359 SDLoc dl(Op);
4360 auto SSID = static_cast<SyncScope::ID>(Op.getConstantOperandVal(2));
4361 if (SSID == SyncScope::SingleThread)
4362 return Op;
4364 if (!Subtarget->hasDataBarrier()) {
4365 // Some ARMv6 cpus can support data barriers with an mcr instruction.
4366 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4367 // here.
4368 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4369 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4370 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4371 DAG.getConstant(0, dl, MVT::i32));
4374 AtomicOrdering Ord =
4375 static_cast<AtomicOrdering>(Op.getConstantOperandVal(1));
4376 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4377 if (Subtarget->isMClass()) {
4378 // Only a full system barrier exists in the M-class architectures.
4379 Domain = ARM_MB::SY;
4380 } else if (Subtarget->preferISHSTBarriers() &&
4381 Ord == AtomicOrdering::Release) {
4382 // Swift happens to implement ISHST barriers in a way that's compatible with
4383 // Release semantics but weaker than ISH so we'd be fools not to use
4384 // it. Beware: other processors probably don't!
4385 Domain = ARM_MB::ISHST;
4388 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4389 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4390 DAG.getConstant(Domain, dl, MVT::i32));
4393 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4394 const ARMSubtarget *Subtarget) {
4395 // ARM pre v5TE and Thumb1 does not have preload instructions.
4396 if (!(Subtarget->isThumb2() ||
4397 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4398 // Just preserve the chain.
4399 return Op.getOperand(0);
4401 SDLoc dl(Op);
4402 unsigned isRead = ~Op.getConstantOperandVal(2) & 1;
4403 if (!isRead &&
4404 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4405 // ARMv7 with MP extension has PLDW.
4406 return Op.getOperand(0);
4408 unsigned isData = Op.getConstantOperandVal(4);
4409 if (Subtarget->isThumb()) {
4410 // Invert the bits.
4411 isRead = ~isRead & 1;
4412 isData = ~isData & 1;
4415 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4416 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4417 DAG.getConstant(isData, dl, MVT::i32));
4420 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4421 MachineFunction &MF = DAG.getMachineFunction();
4422 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4424 // vastart just stores the address of the VarArgsFrameIndex slot into the
4425 // memory location argument.
4426 SDLoc dl(Op);
4427 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4428 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4429 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4430 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4431 MachinePointerInfo(SV));
4434 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4435 CCValAssign &NextVA,
4436 SDValue &Root,
4437 SelectionDAG &DAG,
4438 const SDLoc &dl) const {
4439 MachineFunction &MF = DAG.getMachineFunction();
4440 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4442 const TargetRegisterClass *RC;
4443 if (AFI->isThumb1OnlyFunction())
4444 RC = &ARM::tGPRRegClass;
4445 else
4446 RC = &ARM::GPRRegClass;
4448 // Transform the arguments stored in physical registers into virtual ones.
4449 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4450 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4452 SDValue ArgValue2;
4453 if (NextVA.isMemLoc()) {
4454 MachineFrameInfo &MFI = MF.getFrameInfo();
4455 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4457 // Create load node to retrieve arguments from the stack.
4458 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4459 ArgValue2 = DAG.getLoad(
4460 MVT::i32, dl, Root, FIN,
4461 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4462 } else {
4463 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4464 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4466 if (!Subtarget->isLittle())
4467 std::swap (ArgValue, ArgValue2);
4468 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4471 // The remaining GPRs hold either the beginning of variable-argument
4472 // data, or the beginning of an aggregate passed by value (usually
4473 // byval). Either way, we allocate stack slots adjacent to the data
4474 // provided by our caller, and store the unallocated registers there.
4475 // If this is a variadic function, the va_list pointer will begin with
4476 // these values; otherwise, this reassembles a (byval) structure that
4477 // was split between registers and memory.
4478 // Return: The frame index registers were stored into.
4479 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4480 const SDLoc &dl, SDValue &Chain,
4481 const Value *OrigArg,
4482 unsigned InRegsParamRecordIdx,
4483 int ArgOffset, unsigned ArgSize) const {
4484 // Currently, two use-cases possible:
4485 // Case #1. Non-var-args function, and we meet first byval parameter.
4486 // Setup first unallocated register as first byval register;
4487 // eat all remained registers
4488 // (these two actions are performed by HandleByVal method).
4489 // Then, here, we initialize stack frame with
4490 // "store-reg" instructions.
4491 // Case #2. Var-args function, that doesn't contain byval parameters.
4492 // The same: eat all remained unallocated registers,
4493 // initialize stack frame.
4495 MachineFunction &MF = DAG.getMachineFunction();
4496 MachineFrameInfo &MFI = MF.getFrameInfo();
4497 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4498 unsigned RBegin, REnd;
4499 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4500 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4501 } else {
4502 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4503 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4504 REnd = ARM::R4;
4507 if (REnd != RBegin)
4508 ArgOffset = -4 * (ARM::R4 - RBegin);
4510 auto PtrVT = getPointerTy(DAG.getDataLayout());
4511 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4512 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4514 SmallVector<SDValue, 4> MemOps;
4515 const TargetRegisterClass *RC =
4516 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4518 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4519 Register VReg = MF.addLiveIn(Reg, RC);
4520 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4521 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4522 MachinePointerInfo(OrigArg, 4 * i));
4523 MemOps.push_back(Store);
4524 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4527 if (!MemOps.empty())
4528 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4529 return FrameIndex;
4532 // Setup stack frame, the va_list pointer will start from.
4533 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4534 const SDLoc &dl, SDValue &Chain,
4535 unsigned ArgOffset,
4536 unsigned TotalArgRegsSaveSize,
4537 bool ForceMutable) const {
4538 MachineFunction &MF = DAG.getMachineFunction();
4539 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4541 // Try to store any remaining integer argument regs
4542 // to their spots on the stack so that they may be loaded by dereferencing
4543 // the result of va_next.
4544 // If there is no regs to be stored, just point address after last
4545 // argument passed via stack.
4546 int FrameIndex = StoreByValRegs(
4547 CCInfo, DAG, dl, Chain, nullptr, CCInfo.getInRegsParamsCount(),
4548 CCInfo.getStackSize(), std::max(4U, TotalArgRegsSaveSize));
4549 AFI->setVarArgsFrameIndex(FrameIndex);
4552 bool ARMTargetLowering::splitValueIntoRegisterParts(
4553 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4554 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4555 EVT ValueVT = Val.getValueType();
4556 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4557 unsigned ValueBits = ValueVT.getSizeInBits();
4558 unsigned PartBits = PartVT.getSizeInBits();
4559 Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4560 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4561 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4562 Parts[0] = Val;
4563 return true;
4565 return false;
4568 SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4569 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4570 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
4571 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4572 unsigned ValueBits = ValueVT.getSizeInBits();
4573 unsigned PartBits = PartVT.getSizeInBits();
4574 SDValue Val = Parts[0];
4576 Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4577 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4578 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4579 return Val;
4581 return SDValue();
4584 SDValue ARMTargetLowering::LowerFormalArguments(
4585 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4586 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4587 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4588 MachineFunction &MF = DAG.getMachineFunction();
4589 MachineFrameInfo &MFI = MF.getFrameInfo();
4591 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4593 // Assign locations to all of the incoming arguments.
4594 SmallVector<CCValAssign, 16> ArgLocs;
4595 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4596 *DAG.getContext());
4597 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4599 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4600 unsigned CurArgIdx = 0;
4602 // Initially ArgRegsSaveSize is zero.
4603 // Then we increase this value each time we meet byval parameter.
4604 // We also increase this value in case of varargs function.
4605 AFI->setArgRegsSaveSize(0);
4607 // Calculate the amount of stack space that we need to allocate to store
4608 // byval and variadic arguments that are passed in registers.
4609 // We need to know this before we allocate the first byval or variadic
4610 // argument, as they will be allocated a stack slot below the CFA (Canonical
4611 // Frame Address, the stack pointer at entry to the function).
4612 unsigned ArgRegBegin = ARM::R4;
4613 for (const CCValAssign &VA : ArgLocs) {
4614 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4615 break;
4617 unsigned Index = VA.getValNo();
4618 ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4619 if (!Flags.isByVal())
4620 continue;
4622 assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4623 unsigned RBegin, REnd;
4624 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4625 ArgRegBegin = std::min(ArgRegBegin, RBegin);
4627 CCInfo.nextInRegsParam();
4629 CCInfo.rewindByValRegsInfo();
4631 int lastInsIndex = -1;
4632 if (isVarArg && MFI.hasVAStart()) {
4633 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4634 if (RegIdx != std::size(GPRArgRegs))
4635 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4638 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4639 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4640 auto PtrVT = getPointerTy(DAG.getDataLayout());
4642 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4643 CCValAssign &VA = ArgLocs[i];
4644 if (Ins[VA.getValNo()].isOrigArg()) {
4645 std::advance(CurOrigArg,
4646 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4647 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4649 // Arguments stored in registers.
4650 if (VA.isRegLoc()) {
4651 EVT RegVT = VA.getLocVT();
4652 SDValue ArgValue;
4654 if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4655 // f64 and vector types are split up into multiple registers or
4656 // combinations of registers and stack slots.
4657 SDValue ArgValue1 =
4658 GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4659 VA = ArgLocs[++i]; // skip ahead to next loc
4660 SDValue ArgValue2;
4661 if (VA.isMemLoc()) {
4662 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4663 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4664 ArgValue2 = DAG.getLoad(
4665 MVT::f64, dl, Chain, FIN,
4666 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4667 } else {
4668 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4670 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4671 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4672 ArgValue1, DAG.getIntPtrConstant(0, dl));
4673 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4674 ArgValue2, DAG.getIntPtrConstant(1, dl));
4675 } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4676 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4677 } else {
4678 const TargetRegisterClass *RC;
4680 if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4681 RC = &ARM::HPRRegClass;
4682 else if (RegVT == MVT::f32)
4683 RC = &ARM::SPRRegClass;
4684 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4685 RegVT == MVT::v4bf16)
4686 RC = &ARM::DPRRegClass;
4687 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4688 RegVT == MVT::v8bf16)
4689 RC = &ARM::QPRRegClass;
4690 else if (RegVT == MVT::i32)
4691 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4692 : &ARM::GPRRegClass;
4693 else
4694 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4696 // Transform the arguments in physical registers into virtual ones.
4697 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4698 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4700 // If this value is passed in r0 and has the returned attribute (e.g.
4701 // C++ 'structors), record this fact for later use.
4702 if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4703 AFI->setPreservesR0();
4707 // If this is an 8 or 16-bit value, it is really passed promoted
4708 // to 32 bits. Insert an assert[sz]ext to capture this, then
4709 // truncate to the right size.
4710 switch (VA.getLocInfo()) {
4711 default: llvm_unreachable("Unknown loc info!");
4712 case CCValAssign::Full: break;
4713 case CCValAssign::BCvt:
4714 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4715 break;
4718 // f16 arguments have their size extended to 4 bytes and passed as if they
4719 // had been copied to the LSBs of a 32-bit register.
4720 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4721 if (VA.needsCustom() &&
4722 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4723 ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4725 // On CMSE Entry Functions, formal integer arguments whose bitwidth is
4726 // less than 32 bits must be sign- or zero-extended in the callee for
4727 // security reasons. Although the ABI mandates an extension done by the
4728 // caller, the latter cannot be trusted to follow the rules of the ABI.
4729 const ISD::InputArg &Arg = Ins[VA.getValNo()];
4730 if (AFI->isCmseNSEntryFunction() && Arg.ArgVT.isScalarInteger() &&
4731 RegVT.isScalarInteger() && Arg.ArgVT.bitsLT(MVT::i32))
4732 ArgValue = handleCMSEValue(ArgValue, Arg, DAG, dl);
4734 InVals.push_back(ArgValue);
4735 } else { // VA.isRegLoc()
4736 // Only arguments passed on the stack should make it here.
4737 assert(VA.isMemLoc());
4738 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4740 int index = VA.getValNo();
4742 // Some Ins[] entries become multiple ArgLoc[] entries.
4743 // Process them only once.
4744 if (index != lastInsIndex)
4746 ISD::ArgFlagsTy Flags = Ins[index].Flags;
4747 // FIXME: For now, all byval parameter objects are marked mutable.
4748 // This can be changed with more analysis.
4749 // In case of tail call optimization mark all arguments mutable.
4750 // Since they could be overwritten by lowering of arguments in case of
4751 // a tail call.
4752 if (Flags.isByVal()) {
4753 assert(Ins[index].isOrigArg() &&
4754 "Byval arguments cannot be implicit");
4755 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4757 int FrameIndex = StoreByValRegs(
4758 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4759 VA.getLocMemOffset(), Flags.getByValSize());
4760 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4761 CCInfo.nextInRegsParam();
4762 } else {
4763 unsigned FIOffset = VA.getLocMemOffset();
4764 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4765 FIOffset, true);
4767 // Create load nodes to retrieve arguments from the stack.
4768 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4769 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4770 MachinePointerInfo::getFixedStack(
4771 DAG.getMachineFunction(), FI)));
4773 lastInsIndex = index;
4778 // varargs
4779 if (isVarArg && MFI.hasVAStart()) {
4780 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getStackSize(),
4781 TotalArgRegsSaveSize);
4782 if (AFI->isCmseNSEntryFunction()) {
4783 DiagnosticInfoUnsupported Diag(
4784 DAG.getMachineFunction().getFunction(),
4785 "secure entry function must not be variadic", dl.getDebugLoc());
4786 DAG.getContext()->diagnose(Diag);
4790 unsigned StackArgSize = CCInfo.getStackSize();
4791 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
4792 if (canGuaranteeTCO(CallConv, TailCallOpt)) {
4793 // The only way to guarantee a tail call is if the callee restores its
4794 // argument area, but it must also keep the stack aligned when doing so.
4795 MaybeAlign StackAlign = DAG.getDataLayout().getStackAlignment();
4796 assert(StackAlign && "data layout string is missing stack alignment");
4797 StackArgSize = alignTo(StackArgSize, *StackAlign);
4799 AFI->setArgumentStackToRestore(StackArgSize);
4801 AFI->setArgumentStackSize(StackArgSize);
4803 if (CCInfo.getStackSize() > 0 && AFI->isCmseNSEntryFunction()) {
4804 DiagnosticInfoUnsupported Diag(
4805 DAG.getMachineFunction().getFunction(),
4806 "secure entry function requires arguments on stack", dl.getDebugLoc());
4807 DAG.getContext()->diagnose(Diag);
4810 return Chain;
4813 /// isFloatingPointZero - Return true if this is +0.0.
4814 static bool isFloatingPointZero(SDValue Op) {
4815 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4816 return CFP->getValueAPF().isPosZero();
4817 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4818 // Maybe this has already been legalized into the constant pool?
4819 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4820 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4821 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4822 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4823 return CFP->getValueAPF().isPosZero();
4825 } else if (Op->getOpcode() == ISD::BITCAST &&
4826 Op->getValueType(0) == MVT::f64) {
4827 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4828 // created by LowerConstantFP().
4829 SDValue BitcastOp = Op->getOperand(0);
4830 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4831 isNullConstant(BitcastOp->getOperand(0)))
4832 return true;
4834 return false;
4837 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4838 /// the given operands.
4839 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4840 SDValue &ARMcc, SelectionDAG &DAG,
4841 const SDLoc &dl) const {
4842 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4843 unsigned C = RHSC->getZExtValue();
4844 if (!isLegalICmpImmediate((int32_t)C)) {
4845 // Constant does not fit, try adjusting it by one.
4846 switch (CC) {
4847 default: break;
4848 case ISD::SETLT:
4849 case ISD::SETGE:
4850 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4851 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4852 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4854 break;
4855 case ISD::SETULT:
4856 case ISD::SETUGE:
4857 if (C != 0 && isLegalICmpImmediate(C-1)) {
4858 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4859 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4861 break;
4862 case ISD::SETLE:
4863 case ISD::SETGT:
4864 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4865 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4866 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4868 break;
4869 case ISD::SETULE:
4870 case ISD::SETUGT:
4871 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4872 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4873 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4875 break;
4878 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4879 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4880 // In ARM and Thumb-2, the compare instructions can shift their second
4881 // operand.
4882 CC = ISD::getSetCCSwappedOperands(CC);
4883 std::swap(LHS, RHS);
4886 // Thumb1 has very limited immediate modes, so turning an "and" into a
4887 // shift can save multiple instructions.
4889 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4890 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4891 // own. If it's the operand to an unsigned comparison with an immediate,
4892 // we can eliminate one of the shifts: we transform
4893 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4895 // We avoid transforming cases which aren't profitable due to encoding
4896 // details:
4898 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4899 // would not; in that case, we're essentially trading one immediate load for
4900 // another.
4901 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4902 // 3. C2 is zero; we have other code for this special case.
4904 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4905 // instruction, since the AND is always one instruction anyway, but we could
4906 // use narrow instructions in some cases.
4907 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4908 LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4909 LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4910 !isSignedIntSetCC(CC)) {
4911 unsigned Mask = LHS.getConstantOperandVal(1);
4912 auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4913 uint64_t RHSV = RHSC->getZExtValue();
4914 if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4915 unsigned ShiftBits = llvm::countl_zero(Mask);
4916 if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4917 SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4918 LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4919 RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4924 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4925 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4926 // way a cmp would.
4927 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4928 // some tweaks to the heuristics for the previous and->shift transform.
4929 // FIXME: Optimize cases where the LHS isn't a shift.
4930 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4931 isa<ConstantSDNode>(RHS) && RHS->getAsZExtVal() == 0x80000000U &&
4932 CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4933 LHS.getConstantOperandVal(1) < 31) {
4934 unsigned ShiftAmt = LHS.getConstantOperandVal(1) + 1;
4935 SDValue Shift =
4936 DAG.getNode(ARMISD::LSLS, dl, DAG.getVTList(MVT::i32, FlagsVT),
4937 LHS.getOperand(0), DAG.getConstant(ShiftAmt, dl, MVT::i32));
4938 ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4939 return Shift.getValue(1);
4942 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4944 // If the RHS is a constant zero then the V (overflow) flag will never be
4945 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4946 // simpler for other passes (like the peephole optimiser) to deal with.
4947 if (isNullConstant(RHS)) {
4948 switch (CondCode) {
4949 default: break;
4950 case ARMCC::GE:
4951 CondCode = ARMCC::PL;
4952 break;
4953 case ARMCC::LT:
4954 CondCode = ARMCC::MI;
4955 break;
4959 ARMISD::NodeType CompareType;
4960 switch (CondCode) {
4961 default:
4962 CompareType = ARMISD::CMP;
4963 break;
4964 case ARMCC::EQ:
4965 case ARMCC::NE:
4966 // Uses only Z Flag
4967 CompareType = ARMISD::CMPZ;
4968 break;
4970 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4971 return DAG.getNode(CompareType, dl, FlagsVT, LHS, RHS);
4974 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4975 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4976 SelectionDAG &DAG, const SDLoc &dl,
4977 bool Signaling) const {
4978 assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4979 SDValue Flags;
4980 if (!isFloatingPointZero(RHS))
4981 Flags = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP, dl, FlagsVT,
4982 LHS, RHS);
4983 else
4984 Flags = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0, dl,
4985 FlagsVT, LHS);
4986 return DAG.getNode(ARMISD::FMSTAT, dl, FlagsVT, Flags);
4989 // This function returns three things: the arithmetic computation itself
4990 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4991 // comparison and the condition code define the case in which the arithmetic
4992 // computation *does not* overflow.
4993 std::pair<SDValue, SDValue>
4994 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4995 SDValue &ARMcc) const {
4996 assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
4998 SDValue Value, OverflowCmp;
4999 SDValue LHS = Op.getOperand(0);
5000 SDValue RHS = Op.getOperand(1);
5001 SDLoc dl(Op);
5003 // FIXME: We are currently always generating CMPs because we don't support
5004 // generating CMN through the backend. This is not as good as the natural
5005 // CMP case because it causes a register dependency and cannot be folded
5006 // later.
5008 switch (Op.getOpcode()) {
5009 default:
5010 llvm_unreachable("Unknown overflow instruction!");
5011 case ISD::SADDO:
5012 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
5013 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
5014 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, FlagsVT, Value, LHS);
5015 break;
5016 case ISD::UADDO:
5017 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
5018 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
5019 // We do not use it in the USUBO case as Value may not be used.
5020 Value = DAG.getNode(ARMISD::ADDC, dl,
5021 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
5022 .getValue(0);
5023 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, FlagsVT, Value, LHS);
5024 break;
5025 case ISD::SSUBO:
5026 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
5027 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
5028 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, FlagsVT, LHS, RHS);
5029 break;
5030 case ISD::USUBO:
5031 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
5032 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
5033 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, FlagsVT, LHS, RHS);
5034 break;
5035 case ISD::UMULO:
5036 // We generate a UMUL_LOHI and then check if the high word is 0.
5037 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
5038 Value = DAG.getNode(ISD::UMUL_LOHI, dl,
5039 DAG.getVTList(Op.getValueType(), Op.getValueType()),
5040 LHS, RHS);
5041 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, FlagsVT, Value.getValue(1),
5042 DAG.getConstant(0, dl, MVT::i32));
5043 Value = Value.getValue(0); // We only want the low 32 bits for the result.
5044 break;
5045 case ISD::SMULO:
5046 // We generate a SMUL_LOHI and then check if all the bits of the high word
5047 // are the same as the sign bit of the low word.
5048 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
5049 Value = DAG.getNode(ISD::SMUL_LOHI, dl,
5050 DAG.getVTList(Op.getValueType(), Op.getValueType()),
5051 LHS, RHS);
5052 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, FlagsVT, Value.getValue(1),
5053 DAG.getNode(ISD::SRA, dl, Op.getValueType(),
5054 Value.getValue(0),
5055 DAG.getConstant(31, dl, MVT::i32)));
5056 Value = Value.getValue(0); // We only want the low 32 bits for the result.
5057 break;
5058 } // switch (...)
5060 return std::make_pair(Value, OverflowCmp);
5063 SDValue
5064 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
5065 // Let legalize expand this if it isn't a legal type yet.
5066 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
5067 return SDValue();
5069 SDValue Value, OverflowCmp;
5070 SDValue ARMcc;
5071 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
5072 SDLoc dl(Op);
5073 // We use 0 and 1 as false and true values.
5074 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
5075 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
5076 EVT VT = Op.getValueType();
5078 SDValue Overflow =
5079 DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal, ARMcc, OverflowCmp);
5081 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
5082 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5085 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
5086 SelectionDAG &DAG) {
5087 SDLoc DL(BoolCarry);
5088 EVT CarryVT = BoolCarry.getValueType();
5090 // This converts the boolean value carry into the carry flag by doing
5091 // ARMISD::SUBC Carry, 1
5092 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
5093 DAG.getVTList(CarryVT, MVT::i32),
5094 BoolCarry, DAG.getConstant(1, DL, CarryVT));
5095 return Carry.getValue(1);
5098 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
5099 SelectionDAG &DAG) {
5100 SDLoc DL(Flags);
5102 // Now convert the carry flag into a boolean carry. We do this
5103 // using ARMISD:ADDE 0, 0, Carry
5104 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
5105 DAG.getConstant(0, DL, MVT::i32),
5106 DAG.getConstant(0, DL, MVT::i32), Flags);
5109 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
5110 SelectionDAG &DAG) const {
5111 // Let legalize expand this if it isn't a legal type yet.
5112 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
5113 return SDValue();
5115 SDValue LHS = Op.getOperand(0);
5116 SDValue RHS = Op.getOperand(1);
5117 SDLoc dl(Op);
5119 EVT VT = Op.getValueType();
5120 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5121 SDValue Value;
5122 SDValue Overflow;
5123 switch (Op.getOpcode()) {
5124 default:
5125 llvm_unreachable("Unknown overflow instruction!");
5126 case ISD::UADDO:
5127 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
5128 // Convert the carry flag into a boolean value.
5129 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5130 break;
5131 case ISD::USUBO: {
5132 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
5133 // Convert the carry flag into a boolean value.
5134 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5135 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
5136 // value. So compute 1 - C.
5137 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
5138 DAG.getConstant(1, dl, MVT::i32), Overflow);
5139 break;
5143 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5146 static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG,
5147 const ARMSubtarget *Subtarget) {
5148 EVT VT = Op.getValueType();
5149 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP() || Subtarget->isThumb1Only())
5150 return SDValue();
5151 if (!VT.isSimple())
5152 return SDValue();
5154 unsigned NewOpcode;
5155 switch (VT.getSimpleVT().SimpleTy) {
5156 default:
5157 return SDValue();
5158 case MVT::i8:
5159 switch (Op->getOpcode()) {
5160 case ISD::UADDSAT:
5161 NewOpcode = ARMISD::UQADD8b;
5162 break;
5163 case ISD::SADDSAT:
5164 NewOpcode = ARMISD::QADD8b;
5165 break;
5166 case ISD::USUBSAT:
5167 NewOpcode = ARMISD::UQSUB8b;
5168 break;
5169 case ISD::SSUBSAT:
5170 NewOpcode = ARMISD::QSUB8b;
5171 break;
5173 break;
5174 case MVT::i16:
5175 switch (Op->getOpcode()) {
5176 case ISD::UADDSAT:
5177 NewOpcode = ARMISD::UQADD16b;
5178 break;
5179 case ISD::SADDSAT:
5180 NewOpcode = ARMISD::QADD16b;
5181 break;
5182 case ISD::USUBSAT:
5183 NewOpcode = ARMISD::UQSUB16b;
5184 break;
5185 case ISD::SSUBSAT:
5186 NewOpcode = ARMISD::QSUB16b;
5187 break;
5189 break;
5192 SDLoc dl(Op);
5193 SDValue Add =
5194 DAG.getNode(NewOpcode, dl, MVT::i32,
5195 DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
5196 DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
5197 return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
5200 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5201 SDValue Cond = Op.getOperand(0);
5202 SDValue SelectTrue = Op.getOperand(1);
5203 SDValue SelectFalse = Op.getOperand(2);
5204 SDLoc dl(Op);
5205 unsigned Opc = Cond.getOpcode();
5207 if (Cond.getResNo() == 1 &&
5208 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5209 Opc == ISD::USUBO)) {
5210 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5211 return SDValue();
5213 SDValue Value, OverflowCmp;
5214 SDValue ARMcc;
5215 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5216 EVT VT = Op.getValueType();
5218 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, OverflowCmp, DAG);
5221 // Convert:
5223 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
5224 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
5226 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
5227 const ConstantSDNode *CMOVTrue =
5228 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
5229 const ConstantSDNode *CMOVFalse =
5230 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
5232 if (CMOVTrue && CMOVFalse) {
5233 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
5234 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
5236 SDValue True;
5237 SDValue False;
5238 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
5239 True = SelectTrue;
5240 False = SelectFalse;
5241 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
5242 True = SelectFalse;
5243 False = SelectTrue;
5246 if (True.getNode() && False.getNode())
5247 return getCMOV(dl, Op.getValueType(), True, False, Cond.getOperand(2),
5248 Cond.getOperand(3), DAG);
5252 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
5253 // undefined bits before doing a full-word comparison with zero.
5254 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
5255 DAG.getConstant(1, dl, Cond.getValueType()));
5257 return DAG.getSelectCC(dl, Cond,
5258 DAG.getConstant(0, dl, Cond.getValueType()),
5259 SelectTrue, SelectFalse, ISD::SETNE);
5262 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
5263 bool &swpCmpOps, bool &swpVselOps) {
5264 // Start by selecting the GE condition code for opcodes that return true for
5265 // 'equality'
5266 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
5267 CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
5268 CondCode = ARMCC::GE;
5270 // and GT for opcodes that return false for 'equality'.
5271 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
5272 CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
5273 CondCode = ARMCC::GT;
5275 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
5276 // to swap the compare operands.
5277 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
5278 CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
5279 swpCmpOps = true;
5281 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
5282 // If we have an unordered opcode, we need to swap the operands to the VSEL
5283 // instruction (effectively negating the condition).
5285 // This also has the effect of swapping which one of 'less' or 'greater'
5286 // returns true, so we also swap the compare operands. It also switches
5287 // whether we return true for 'equality', so we compensate by picking the
5288 // opposite condition code to our original choice.
5289 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
5290 CC == ISD::SETUGT) {
5291 swpCmpOps = !swpCmpOps;
5292 swpVselOps = !swpVselOps;
5293 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
5296 // 'ordered' is 'anything but unordered', so use the VS condition code and
5297 // swap the VSEL operands.
5298 if (CC == ISD::SETO) {
5299 CondCode = ARMCC::VS;
5300 swpVselOps = true;
5303 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
5304 // code and swap the VSEL operands. Also do this if we don't care about the
5305 // unordered case.
5306 if (CC == ISD::SETUNE || CC == ISD::SETNE) {
5307 CondCode = ARMCC::EQ;
5308 swpVselOps = true;
5312 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
5313 SDValue TrueVal, SDValue ARMcc,
5314 SDValue Flags, SelectionDAG &DAG) const {
5315 if (!Subtarget->hasFP64() && VT == MVT::f64) {
5316 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5317 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
5318 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5319 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
5321 SDValue TrueLow = TrueVal.getValue(0);
5322 SDValue TrueHigh = TrueVal.getValue(1);
5323 SDValue FalseLow = FalseVal.getValue(0);
5324 SDValue FalseHigh = FalseVal.getValue(1);
5326 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
5327 ARMcc, Flags);
5328 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
5329 ARMcc, Flags);
5331 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
5333 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, Flags);
5336 static bool isGTorGE(ISD::CondCode CC) {
5337 return CC == ISD::SETGT || CC == ISD::SETGE;
5340 static bool isLTorLE(ISD::CondCode CC) {
5341 return CC == ISD::SETLT || CC == ISD::SETLE;
5344 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5345 // All of these conditions (and their <= and >= counterparts) will do:
5346 // x < k ? k : x
5347 // x > k ? x : k
5348 // k < x ? x : k
5349 // k > x ? k : x
5350 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5351 const SDValue TrueVal, const SDValue FalseVal,
5352 const ISD::CondCode CC, const SDValue K) {
5353 return (isGTorGE(CC) &&
5354 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5355 (isLTorLE(CC) &&
5356 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5359 // Check if two chained conditionals could be converted into SSAT or USAT.
5361 // SSAT can replace a set of two conditional selectors that bound a number to an
5362 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5364 // x < -k ? -k : (x > k ? k : x)
5365 // x < -k ? -k : (x < k ? x : k)
5366 // x > -k ? (x > k ? k : x) : -k
5367 // x < k ? (x < -k ? -k : x) : k
5368 // etc.
5370 // LLVM canonicalizes these to either a min(max()) or a max(min())
5371 // pattern. This function tries to match one of these and will return a SSAT
5372 // node if successful.
5374 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5375 // is a power of 2.
5376 static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5377 EVT VT = Op.getValueType();
5378 SDValue V1 = Op.getOperand(0);
5379 SDValue K1 = Op.getOperand(1);
5380 SDValue TrueVal1 = Op.getOperand(2);
5381 SDValue FalseVal1 = Op.getOperand(3);
5382 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5384 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5385 if (Op2.getOpcode() != ISD::SELECT_CC)
5386 return SDValue();
5388 SDValue V2 = Op2.getOperand(0);
5389 SDValue K2 = Op2.getOperand(1);
5390 SDValue TrueVal2 = Op2.getOperand(2);
5391 SDValue FalseVal2 = Op2.getOperand(3);
5392 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5394 SDValue V1Tmp = V1;
5395 SDValue V2Tmp = V2;
5397 // Check that the registers and the constants match a max(min()) or min(max())
5398 // pattern
5399 if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5400 K2 != FalseVal2 ||
5401 !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5402 return SDValue();
5404 // Check that the constant in the lower-bound check is
5405 // the opposite of the constant in the upper-bound check
5406 // in 1's complement.
5407 if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5408 return SDValue();
5410 int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5411 int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5412 int64_t PosVal = std::max(Val1, Val2);
5413 int64_t NegVal = std::min(Val1, Val2);
5415 if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5416 !isPowerOf2_64(PosVal + 1))
5417 return SDValue();
5419 // Handle the difference between USAT (unsigned) and SSAT (signed)
5420 // saturation
5421 // At this point, PosVal is guaranteed to be positive
5422 uint64_t K = PosVal;
5423 SDLoc dl(Op);
5424 if (Val1 == ~Val2)
5425 return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5426 DAG.getConstant(llvm::countr_one(K), dl, VT));
5427 if (NegVal == 0)
5428 return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5429 DAG.getConstant(llvm::countr_one(K), dl, VT));
5431 return SDValue();
5434 // Check if a condition of the type x < k ? k : x can be converted into a
5435 // bit operation instead of conditional moves.
5436 // Currently this is allowed given:
5437 // - The conditions and values match up
5438 // - k is 0 or -1 (all ones)
5439 // This function will not check the last condition, thats up to the caller
5440 // It returns true if the transformation can be made, and in such case
5441 // returns x in V, and k in SatK.
5442 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5443 SDValue &SatK)
5445 SDValue LHS = Op.getOperand(0);
5446 SDValue RHS = Op.getOperand(1);
5447 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5448 SDValue TrueVal = Op.getOperand(2);
5449 SDValue FalseVal = Op.getOperand(3);
5451 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5452 ? &RHS
5453 : nullptr;
5455 // No constant operation in comparison, early out
5456 if (!K)
5457 return false;
5459 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5460 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5461 SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5463 // If the constant on left and right side, or variable on left and right,
5464 // does not match, early out
5465 if (*K != KTmp || V != VTmp)
5466 return false;
5468 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5469 SatK = *K;
5470 return true;
5473 return false;
5476 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5477 if (VT == MVT::f32)
5478 return !Subtarget->hasVFP2Base();
5479 if (VT == MVT::f64)
5480 return !Subtarget->hasFP64();
5481 if (VT == MVT::f16)
5482 return !Subtarget->hasFullFP16();
5483 return false;
5486 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5487 EVT VT = Op.getValueType();
5488 SDLoc dl(Op);
5490 // Try to convert two saturating conditional selects into a single SSAT
5491 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5492 if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5493 return SatValue;
5495 // Try to convert expressions of the form x < k ? k : x (and similar forms)
5496 // into more efficient bit operations, which is possible when k is 0 or -1
5497 // On ARM and Thumb-2 which have flexible operand 2 this will result in
5498 // single instructions. On Thumb the shift and the bit operation will be two
5499 // instructions.
5500 // Only allow this transformation on full-width (32-bit) operations
5501 SDValue LowerSatConstant;
5502 SDValue SatValue;
5503 if (VT == MVT::i32 &&
5504 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5505 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5506 DAG.getConstant(31, dl, VT));
5507 if (isNullConstant(LowerSatConstant)) {
5508 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5509 DAG.getAllOnesConstant(dl, VT));
5510 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5511 } else if (isAllOnesConstant(LowerSatConstant))
5512 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5515 SDValue LHS = Op.getOperand(0);
5516 SDValue RHS = Op.getOperand(1);
5517 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5518 SDValue TrueVal = Op.getOperand(2);
5519 SDValue FalseVal = Op.getOperand(3);
5520 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5521 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5523 if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5524 LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5525 unsigned TVal = CTVal->getZExtValue();
5526 unsigned FVal = CFVal->getZExtValue();
5527 unsigned Opcode = 0;
5529 if (TVal == ~FVal) {
5530 Opcode = ARMISD::CSINV;
5531 } else if (TVal == ~FVal + 1) {
5532 Opcode = ARMISD::CSNEG;
5533 } else if (TVal + 1 == FVal) {
5534 Opcode = ARMISD::CSINC;
5535 } else if (TVal == FVal + 1) {
5536 Opcode = ARMISD::CSINC;
5537 std::swap(TrueVal, FalseVal);
5538 std::swap(TVal, FVal);
5539 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5542 if (Opcode) {
5543 // If one of the constants is cheaper than another, materialise the
5544 // cheaper one and let the csel generate the other.
5545 if (Opcode != ARMISD::CSINC &&
5546 HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5547 std::swap(TrueVal, FalseVal);
5548 std::swap(TVal, FVal);
5549 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5552 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5553 // to get there. CSINC not is invertable like the other two (~(~a) == a,
5554 // -(-a) == a, but (a+1)+1 != a).
5555 if (FVal == 0 && Opcode != ARMISD::CSINC) {
5556 std::swap(TrueVal, FalseVal);
5557 std::swap(TVal, FVal);
5558 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5561 // Drops F's value because we can get it by inverting/negating TVal.
5562 FalseVal = TrueVal;
5564 SDValue ARMcc;
5565 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5566 EVT VT = TrueVal.getValueType();
5567 return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5571 if (isUnsupportedFloatingType(LHS.getValueType())) {
5572 DAG.getTargetLoweringInfo().softenSetCCOperands(
5573 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5575 // If softenSetCCOperands only returned one value, we should compare it to
5576 // zero.
5577 if (!RHS.getNode()) {
5578 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5579 CC = ISD::SETNE;
5583 if (LHS.getValueType() == MVT::i32) {
5584 // Try to generate VSEL on ARMv8.
5585 // The VSEL instruction can't use all the usual ARM condition
5586 // codes: it only has two bits to select the condition code, so it's
5587 // constrained to use only GE, GT, VS and EQ.
5589 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5590 // swap the operands of the previous compare instruction (effectively
5591 // inverting the compare condition, swapping 'less' and 'greater') and
5592 // sometimes need to swap the operands to the VSEL (which inverts the
5593 // condition in the sense of firing whenever the previous condition didn't)
5594 if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5595 TrueVal.getValueType() == MVT::f32 ||
5596 TrueVal.getValueType() == MVT::f64)) {
5597 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5598 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5599 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5600 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5601 std::swap(TrueVal, FalseVal);
5605 SDValue ARMcc;
5606 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5607 // Choose GE over PL, which vsel does now support
5608 if (ARMcc->getAsZExtVal() == ARMCC::PL)
5609 ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5610 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, Cmp, DAG);
5613 ARMCC::CondCodes CondCode, CondCode2;
5614 FPCCToARMCC(CC, CondCode, CondCode2);
5616 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5617 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5618 // must use VSEL (limited condition codes), due to not having conditional f16
5619 // moves.
5620 if (Subtarget->hasFPARMv8Base() &&
5621 !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5622 (TrueVal.getValueType() == MVT::f16 ||
5623 TrueVal.getValueType() == MVT::f32 ||
5624 TrueVal.getValueType() == MVT::f64)) {
5625 bool swpCmpOps = false;
5626 bool swpVselOps = false;
5627 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5629 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5630 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5631 if (swpCmpOps)
5632 std::swap(LHS, RHS);
5633 if (swpVselOps)
5634 std::swap(TrueVal, FalseVal);
5638 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5639 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5640 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, Cmp, DAG);
5641 if (CondCode2 != ARMCC::AL) {
5642 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5643 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, Cmp, DAG);
5645 return Result;
5648 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5649 /// to morph to an integer compare sequence.
5650 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5651 const ARMSubtarget *Subtarget) {
5652 SDNode *N = Op.getNode();
5653 if (!N->hasOneUse())
5654 // Otherwise it requires moving the value from fp to integer registers.
5655 return false;
5656 if (!N->getNumValues())
5657 return false;
5658 EVT VT = Op.getValueType();
5659 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5660 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5661 // vmrs are very slow, e.g. cortex-a8.
5662 return false;
5664 if (isFloatingPointZero(Op)) {
5665 SeenZero = true;
5666 return true;
5668 return ISD::isNormalLoad(N);
5671 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5672 if (isFloatingPointZero(Op))
5673 return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5675 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5676 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5677 Ld->getPointerInfo(), Ld->getAlign(),
5678 Ld->getMemOperand()->getFlags());
5680 llvm_unreachable("Unknown VFP cmp argument!");
5683 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5684 SDValue &RetVal1, SDValue &RetVal2) {
5685 SDLoc dl(Op);
5687 if (isFloatingPointZero(Op)) {
5688 RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5689 RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5690 return;
5693 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5694 SDValue Ptr = Ld->getBasePtr();
5695 RetVal1 =
5696 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5697 Ld->getAlign(), Ld->getMemOperand()->getFlags());
5699 EVT PtrType = Ptr.getValueType();
5700 SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5701 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5702 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5703 Ld->getPointerInfo().getWithOffset(4),
5704 commonAlignment(Ld->getAlign(), 4),
5705 Ld->getMemOperand()->getFlags());
5706 return;
5709 llvm_unreachable("Unknown VFP cmp argument!");
5712 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5713 /// f32 and even f64 comparisons to integer ones.
5714 SDValue
5715 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5716 SDValue Chain = Op.getOperand(0);
5717 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5718 SDValue LHS = Op.getOperand(2);
5719 SDValue RHS = Op.getOperand(3);
5720 SDValue Dest = Op.getOperand(4);
5721 SDLoc dl(Op);
5723 bool LHSSeenZero = false;
5724 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5725 bool RHSSeenZero = false;
5726 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5727 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5728 // If unsafe fp math optimization is enabled and there are no other uses of
5729 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5730 // to an integer comparison.
5731 if (CC == ISD::SETOEQ)
5732 CC = ISD::SETEQ;
5733 else if (CC == ISD::SETUNE)
5734 CC = ISD::SETNE;
5736 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5737 SDValue ARMcc;
5738 if (LHS.getValueType() == MVT::f32) {
5739 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5740 bitcastf32Toi32(LHS, DAG), Mask);
5741 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5742 bitcastf32Toi32(RHS, DAG), Mask);
5743 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5744 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc,
5745 Cmp);
5748 SDValue LHS1, LHS2;
5749 SDValue RHS1, RHS2;
5750 expandf64Toi32(LHS, DAG, LHS1, LHS2);
5751 expandf64Toi32(RHS, DAG, RHS1, RHS2);
5752 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5753 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5754 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5755 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5756 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5757 return DAG.getNode(ARMISD::BCC_i64, dl, MVT::Other, Ops);
5760 return SDValue();
5763 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5764 SDValue Chain = Op.getOperand(0);
5765 SDValue Cond = Op.getOperand(1);
5766 SDValue Dest = Op.getOperand(2);
5767 SDLoc dl(Op);
5769 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5770 // instruction.
5771 unsigned Opc = Cond.getOpcode();
5772 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5773 !Subtarget->isThumb1Only();
5774 if (Cond.getResNo() == 1 &&
5775 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5776 Opc == ISD::USUBO || OptimizeMul)) {
5777 // Only lower legal XALUO ops.
5778 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5779 return SDValue();
5781 // The actual operation with overflow check.
5782 SDValue Value, OverflowCmp;
5783 SDValue ARMcc;
5784 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5786 // Reverse the condition code.
5787 ARMCC::CondCodes CondCode =
5788 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5789 CondCode = ARMCC::getOppositeCondition(CondCode);
5790 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5792 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc,
5793 OverflowCmp);
5796 return SDValue();
5799 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5800 SDValue Chain = Op.getOperand(0);
5801 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5802 SDValue LHS = Op.getOperand(2);
5803 SDValue RHS = Op.getOperand(3);
5804 SDValue Dest = Op.getOperand(4);
5805 SDLoc dl(Op);
5807 if (isUnsupportedFloatingType(LHS.getValueType())) {
5808 DAG.getTargetLoweringInfo().softenSetCCOperands(
5809 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5811 // If softenSetCCOperands only returned one value, we should compare it to
5812 // zero.
5813 if (!RHS.getNode()) {
5814 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5815 CC = ISD::SETNE;
5819 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5820 // instruction.
5821 unsigned Opc = LHS.getOpcode();
5822 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5823 !Subtarget->isThumb1Only();
5824 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5825 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5826 Opc == ISD::USUBO || OptimizeMul) &&
5827 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5828 // Only lower legal XALUO ops.
5829 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5830 return SDValue();
5832 // The actual operation with overflow check.
5833 SDValue Value, OverflowCmp;
5834 SDValue ARMcc;
5835 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5837 if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5838 // Reverse the condition code.
5839 ARMCC::CondCodes CondCode =
5840 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5841 CondCode = ARMCC::getOppositeCondition(CondCode);
5842 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5845 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc,
5846 OverflowCmp);
5849 if (LHS.getValueType() == MVT::i32) {
5850 SDValue ARMcc;
5851 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5852 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, Cmp);
5855 if (getTargetMachine().Options.UnsafeFPMath &&
5856 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5857 CC == ISD::SETNE || CC == ISD::SETUNE)) {
5858 if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5859 return Result;
5862 ARMCC::CondCodes CondCode, CondCode2;
5863 FPCCToARMCC(CC, CondCode, CondCode2);
5865 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5866 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5867 SDValue Ops[] = {Chain, Dest, ARMcc, Cmp};
5868 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Ops);
5869 if (CondCode2 != ARMCC::AL) {
5870 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5871 SDValue Ops[] = {Res, Dest, ARMcc, Cmp};
5872 Res = DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Ops);
5874 return Res;
5877 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5878 SDValue Chain = Op.getOperand(0);
5879 SDValue Table = Op.getOperand(1);
5880 SDValue Index = Op.getOperand(2);
5881 SDLoc dl(Op);
5883 EVT PTy = getPointerTy(DAG.getDataLayout());
5884 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5885 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5886 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5887 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5888 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5889 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5890 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5891 // which does another jump to the destination. This also makes it easier
5892 // to translate it to TBB / TBH later (Thumb2 only).
5893 // FIXME: This might not work if the function is extremely large.
5894 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5895 Addr, Op.getOperand(2), JTI);
5897 if (isPositionIndependent() || Subtarget->isROPI()) {
5898 Addr =
5899 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5900 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5901 Chain = Addr.getValue(1);
5902 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5903 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5904 } else {
5905 Addr =
5906 DAG.getLoad(PTy, dl, Chain, Addr,
5907 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5908 Chain = Addr.getValue(1);
5909 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5913 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5914 EVT VT = Op.getValueType();
5915 SDLoc dl(Op);
5917 if (Op.getValueType().getVectorElementType() == MVT::i32) {
5918 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5919 return Op;
5920 return DAG.UnrollVectorOp(Op.getNode());
5923 const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5925 EVT NewTy;
5926 const EVT OpTy = Op.getOperand(0).getValueType();
5927 if (OpTy == MVT::v4f32)
5928 NewTy = MVT::v4i32;
5929 else if (OpTy == MVT::v4f16 && HasFullFP16)
5930 NewTy = MVT::v4i16;
5931 else if (OpTy == MVT::v8f16 && HasFullFP16)
5932 NewTy = MVT::v8i16;
5933 else
5934 llvm_unreachable("Invalid type for custom lowering!");
5936 if (VT != MVT::v4i16 && VT != MVT::v8i16)
5937 return DAG.UnrollVectorOp(Op.getNode());
5939 Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5940 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5943 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5944 EVT VT = Op.getValueType();
5945 if (VT.isVector())
5946 return LowerVectorFP_TO_INT(Op, DAG);
5948 bool IsStrict = Op->isStrictFPOpcode();
5949 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5951 if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5952 RTLIB::Libcall LC;
5953 if (Op.getOpcode() == ISD::FP_TO_SINT ||
5954 Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5955 LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5956 Op.getValueType());
5957 else
5958 LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5959 Op.getValueType());
5960 SDLoc Loc(Op);
5961 MakeLibCallOptions CallOptions;
5962 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5963 SDValue Result;
5964 std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5965 CallOptions, Loc, Chain);
5966 return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5969 // FIXME: Remove this when we have strict fp instruction selection patterns
5970 if (IsStrict) {
5971 SDLoc Loc(Op);
5972 SDValue Result =
5973 DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5974 : ISD::FP_TO_UINT,
5975 Loc, Op.getValueType(), SrcVal);
5976 return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5979 return Op;
5982 static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
5983 const ARMSubtarget *Subtarget) {
5984 EVT VT = Op.getValueType();
5985 EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
5986 EVT FromVT = Op.getOperand(0).getValueType();
5988 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
5989 return Op;
5990 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
5991 Subtarget->hasFP64())
5992 return Op;
5993 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
5994 Subtarget->hasFullFP16())
5995 return Op;
5996 if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
5997 Subtarget->hasMVEFloatOps())
5998 return Op;
5999 if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
6000 Subtarget->hasMVEFloatOps())
6001 return Op;
6003 if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
6004 return SDValue();
6006 SDLoc DL(Op);
6007 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
6008 unsigned BW = ToVT.getScalarSizeInBits() - IsSigned;
6009 SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
6010 DAG.getValueType(VT.getScalarType()));
6011 SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT,
6012 DAG.getConstant((1 << BW) - 1, DL, VT));
6013 if (IsSigned)
6014 Max = DAG.getNode(ISD::SMAX, DL, VT, Max,
6015 DAG.getSignedConstant(-(1 << BW), DL, VT));
6016 return Max;
6019 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
6020 EVT VT = Op.getValueType();
6021 SDLoc dl(Op);
6023 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
6024 if (VT.getVectorElementType() == MVT::f32)
6025 return Op;
6026 return DAG.UnrollVectorOp(Op.getNode());
6029 assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
6030 Op.getOperand(0).getValueType() == MVT::v8i16) &&
6031 "Invalid type for custom lowering!");
6033 const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
6035 EVT DestVecType;
6036 if (VT == MVT::v4f32)
6037 DestVecType = MVT::v4i32;
6038 else if (VT == MVT::v4f16 && HasFullFP16)
6039 DestVecType = MVT::v4i16;
6040 else if (VT == MVT::v8f16 && HasFullFP16)
6041 DestVecType = MVT::v8i16;
6042 else
6043 return DAG.UnrollVectorOp(Op.getNode());
6045 unsigned CastOpc;
6046 unsigned Opc;
6047 switch (Op.getOpcode()) {
6048 default: llvm_unreachable("Invalid opcode!");
6049 case ISD::SINT_TO_FP:
6050 CastOpc = ISD::SIGN_EXTEND;
6051 Opc = ISD::SINT_TO_FP;
6052 break;
6053 case ISD::UINT_TO_FP:
6054 CastOpc = ISD::ZERO_EXTEND;
6055 Opc = ISD::UINT_TO_FP;
6056 break;
6059 Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
6060 return DAG.getNode(Opc, dl, VT, Op);
6063 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
6064 EVT VT = Op.getValueType();
6065 if (VT.isVector())
6066 return LowerVectorINT_TO_FP(Op, DAG);
6067 if (isUnsupportedFloatingType(VT)) {
6068 RTLIB::Libcall LC;
6069 if (Op.getOpcode() == ISD::SINT_TO_FP)
6070 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
6071 Op.getValueType());
6072 else
6073 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
6074 Op.getValueType());
6075 MakeLibCallOptions CallOptions;
6076 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
6077 CallOptions, SDLoc(Op)).first;
6080 return Op;
6083 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6084 // Implement fcopysign with a fabs and a conditional fneg.
6085 SDValue Tmp0 = Op.getOperand(0);
6086 SDValue Tmp1 = Op.getOperand(1);
6087 SDLoc dl(Op);
6088 EVT VT = Op.getValueType();
6089 EVT SrcVT = Tmp1.getValueType();
6090 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
6091 Tmp0.getOpcode() == ARMISD::VMOVDRR;
6092 bool UseNEON = !InGPR && Subtarget->hasNEON();
6094 if (UseNEON) {
6095 // Use VBSL to copy the sign bit.
6096 unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
6097 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
6098 DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
6099 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
6100 if (VT == MVT::f64)
6101 Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6102 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
6103 DAG.getConstant(32, dl, MVT::i32));
6104 else /*if (VT == MVT::f32)*/
6105 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
6106 if (SrcVT == MVT::f32) {
6107 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
6108 if (VT == MVT::f64)
6109 Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6110 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
6111 DAG.getConstant(32, dl, MVT::i32));
6112 } else if (VT == MVT::f32)
6113 Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
6114 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
6115 DAG.getConstant(32, dl, MVT::i32));
6116 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
6117 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
6119 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
6120 dl, MVT::i32);
6121 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
6122 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
6123 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
6125 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
6126 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
6127 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
6128 if (VT == MVT::f32) {
6129 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
6130 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
6131 DAG.getConstant(0, dl, MVT::i32));
6132 } else {
6133 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
6136 return Res;
6139 // Bitcast operand 1 to i32.
6140 if (SrcVT == MVT::f64)
6141 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6142 Tmp1).getValue(1);
6143 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
6145 // Or in the signbit with integer operations.
6146 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
6147 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
6148 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
6149 if (VT == MVT::f32) {
6150 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
6151 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
6152 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
6153 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
6156 // f64: Or the high part with signbit and then combine two parts.
6157 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6158 Tmp0);
6159 SDValue Lo = Tmp0.getValue(0);
6160 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
6161 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
6162 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
6165 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
6166 MachineFunction &MF = DAG.getMachineFunction();
6167 MachineFrameInfo &MFI = MF.getFrameInfo();
6168 MFI.setReturnAddressIsTaken(true);
6170 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
6171 return SDValue();
6173 EVT VT = Op.getValueType();
6174 SDLoc dl(Op);
6175 unsigned Depth = Op.getConstantOperandVal(0);
6176 if (Depth) {
6177 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6178 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
6179 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
6180 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
6181 MachinePointerInfo());
6184 // Return LR, which contains the return address. Mark it an implicit live-in.
6185 Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
6186 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
6189 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
6190 const ARMBaseRegisterInfo &ARI =
6191 *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
6192 MachineFunction &MF = DAG.getMachineFunction();
6193 MachineFrameInfo &MFI = MF.getFrameInfo();
6194 MFI.setFrameAddressIsTaken(true);
6196 EVT VT = Op.getValueType();
6197 SDLoc dl(Op); // FIXME probably not meaningful
6198 unsigned Depth = Op.getConstantOperandVal(0);
6199 Register FrameReg = ARI.getFrameRegister(MF);
6200 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6201 while (Depth--)
6202 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
6203 MachinePointerInfo());
6204 return FrameAddr;
6207 // FIXME? Maybe this could be a TableGen attribute on some registers and
6208 // this table could be generated automatically from RegInfo.
6209 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
6210 const MachineFunction &MF) const {
6211 Register Reg = StringSwitch<unsigned>(RegName)
6212 .Case("sp", ARM::SP)
6213 .Default(0);
6214 if (Reg)
6215 return Reg;
6216 report_fatal_error(Twine("Invalid register name \""
6217 + StringRef(RegName) + "\"."));
6220 // Result is 64 bit value so split into two 32 bit values and return as a
6221 // pair of values.
6222 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
6223 SelectionDAG &DAG) {
6224 SDLoc DL(N);
6226 // This function is only supposed to be called for i64 type destination.
6227 assert(N->getValueType(0) == MVT::i64
6228 && "ExpandREAD_REGISTER called for non-i64 type result.");
6230 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
6231 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
6232 N->getOperand(0),
6233 N->getOperand(1));
6235 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
6236 Read.getValue(1)));
6237 Results.push_back(Read.getOperand(0));
6240 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
6241 /// When \p DstVT, the destination type of \p BC, is on the vector
6242 /// register bank and the source of bitcast, \p Op, operates on the same bank,
6243 /// it might be possible to combine them, such that everything stays on the
6244 /// vector register bank.
6245 /// \p return The node that would replace \p BT, if the combine
6246 /// is possible.
6247 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
6248 SelectionDAG &DAG) {
6249 SDValue Op = BC->getOperand(0);
6250 EVT DstVT = BC->getValueType(0);
6252 // The only vector instruction that can produce a scalar (remember,
6253 // since the bitcast was about to be turned into VMOVDRR, the source
6254 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
6255 // Moreover, we can do this combine only if there is one use.
6256 // Finally, if the destination type is not a vector, there is not
6257 // much point on forcing everything on the vector bank.
6258 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6259 !Op.hasOneUse())
6260 return SDValue();
6262 // If the index is not constant, we will introduce an additional
6263 // multiply that will stick.
6264 // Give up in that case.
6265 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6266 if (!Index)
6267 return SDValue();
6268 unsigned DstNumElt = DstVT.getVectorNumElements();
6270 // Compute the new index.
6271 const APInt &APIntIndex = Index->getAPIntValue();
6272 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
6273 NewIndex *= APIntIndex;
6274 // Check if the new constant index fits into i32.
6275 if (NewIndex.getBitWidth() > 32)
6276 return SDValue();
6278 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
6279 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
6280 SDLoc dl(Op);
6281 SDValue ExtractSrc = Op.getOperand(0);
6282 EVT VecVT = EVT::getVectorVT(
6283 *DAG.getContext(), DstVT.getScalarType(),
6284 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
6285 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
6286 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
6287 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
6290 /// ExpandBITCAST - If the target supports VFP, this function is called to
6291 /// expand a bit convert where either the source or destination type is i64 to
6292 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
6293 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
6294 /// vectors), since the legalizer won't know what to do with that.
6295 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
6296 const ARMSubtarget *Subtarget) const {
6297 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6298 SDLoc dl(N);
6299 SDValue Op = N->getOperand(0);
6301 // This function is only supposed to be called for i16 and i64 types, either
6302 // as the source or destination of the bit convert.
6303 EVT SrcVT = Op.getValueType();
6304 EVT DstVT = N->getValueType(0);
6306 if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
6307 (DstVT == MVT::f16 || DstVT == MVT::bf16))
6308 return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
6309 DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
6311 if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
6312 (SrcVT == MVT::f16 || SrcVT == MVT::bf16)) {
6313 if (Subtarget->hasFullFP16() && !Subtarget->hasBF16())
6314 Op = DAG.getBitcast(MVT::f16, Op);
6315 return DAG.getNode(
6316 ISD::TRUNCATE, SDLoc(N), DstVT,
6317 MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
6320 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
6321 return SDValue();
6323 // Turn i64->f64 into VMOVDRR.
6324 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
6325 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
6326 // if we can combine the bitcast with its source.
6327 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
6328 return Val;
6329 SDValue Lo, Hi;
6330 std::tie(Lo, Hi) = DAG.SplitScalar(Op, dl, MVT::i32, MVT::i32);
6331 return DAG.getNode(ISD::BITCAST, dl, DstVT,
6332 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
6335 // Turn f64->i64 into VMOVRRD.
6336 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
6337 SDValue Cvt;
6338 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
6339 SrcVT.getVectorNumElements() > 1)
6340 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6341 DAG.getVTList(MVT::i32, MVT::i32),
6342 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
6343 else
6344 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6345 DAG.getVTList(MVT::i32, MVT::i32), Op);
6346 // Merge the pieces into a single i64 value.
6347 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
6350 return SDValue();
6353 /// getZeroVector - Returns a vector of specified type with all zero elements.
6354 /// Zero vectors are used to represent vector negation and in those cases
6355 /// will be implemented with the NEON VNEG instruction. However, VNEG does
6356 /// not support i64 elements, so sometimes the zero vectors will need to be
6357 /// explicitly constructed. Regardless, use a canonical VMOV to create the
6358 /// zero vector.
6359 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6360 assert(VT.isVector() && "Expected a vector type");
6361 // The canonical modified immediate encoding of a zero vector is....0!
6362 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6363 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6364 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6365 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6368 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6369 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6370 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6371 SelectionDAG &DAG) const {
6372 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6373 EVT VT = Op.getValueType();
6374 unsigned VTBits = VT.getSizeInBits();
6375 SDLoc dl(Op);
6376 SDValue ShOpLo = Op.getOperand(0);
6377 SDValue ShOpHi = Op.getOperand(1);
6378 SDValue ShAmt = Op.getOperand(2);
6379 SDValue ARMcc;
6380 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6382 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6384 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6385 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6386 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6387 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6388 DAG.getConstant(VTBits, dl, MVT::i32));
6389 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6390 SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6391 SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6392 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6393 ISD::SETGE, ARMcc, DAG, dl);
6394 SDValue Lo =
6395 DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift, ARMcc, CmpLo);
6397 SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6398 SDValue HiBigShift = Opc == ISD::SRA
6399 ? DAG.getNode(Opc, dl, VT, ShOpHi,
6400 DAG.getConstant(VTBits - 1, dl, VT))
6401 : DAG.getConstant(0, dl, VT);
6402 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6403 ISD::SETGE, ARMcc, DAG, dl);
6404 SDValue Hi =
6405 DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, ARMcc, CmpHi);
6407 SDValue Ops[2] = { Lo, Hi };
6408 return DAG.getMergeValues(Ops, dl);
6411 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6412 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6413 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6414 SelectionDAG &DAG) const {
6415 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6416 EVT VT = Op.getValueType();
6417 unsigned VTBits = VT.getSizeInBits();
6418 SDLoc dl(Op);
6419 SDValue ShOpLo = Op.getOperand(0);
6420 SDValue ShOpHi = Op.getOperand(1);
6421 SDValue ShAmt = Op.getOperand(2);
6422 SDValue ARMcc;
6424 assert(Op.getOpcode() == ISD::SHL_PARTS);
6425 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6426 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6427 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6428 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6429 SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6431 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6432 DAG.getConstant(VTBits, dl, MVT::i32));
6433 SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6434 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6435 ISD::SETGE, ARMcc, DAG, dl);
6436 SDValue Hi =
6437 DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift, ARMcc, CmpHi);
6439 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6440 ISD::SETGE, ARMcc, DAG, dl);
6441 SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6442 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6443 DAG.getConstant(0, dl, VT), ARMcc, CmpLo);
6445 SDValue Ops[2] = { Lo, Hi };
6446 return DAG.getMergeValues(Ops, dl);
6449 SDValue ARMTargetLowering::LowerGET_ROUNDING(SDValue Op,
6450 SelectionDAG &DAG) const {
6451 // The rounding mode is in bits 23:22 of the FPSCR.
6452 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6453 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6454 // so that the shift + and get folded into a bitfield extract.
6455 SDLoc dl(Op);
6456 SDValue Chain = Op.getOperand(0);
6457 SDValue Ops[] = {Chain,
6458 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6460 SDValue FPSCR =
6461 DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6462 Chain = FPSCR.getValue(1);
6463 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6464 DAG.getConstant(1U << 22, dl, MVT::i32));
6465 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6466 DAG.getConstant(22, dl, MVT::i32));
6467 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6468 DAG.getConstant(3, dl, MVT::i32));
6469 return DAG.getMergeValues({And, Chain}, dl);
6472 SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op,
6473 SelectionDAG &DAG) const {
6474 SDLoc DL(Op);
6475 SDValue Chain = Op->getOperand(0);
6476 SDValue RMValue = Op->getOperand(1);
6478 // The rounding mode is in bits 23:22 of the FPSCR.
6479 // The llvm.set.rounding argument value to ARM rounding mode value mapping
6480 // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
6481 // ((arg - 1) & 3) << 22).
6483 // It is expected that the argument of llvm.set.rounding is within the
6484 // segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
6485 // responsibility of the code generated llvm.set.rounding to ensure this
6486 // condition.
6488 // Calculate new value of FPSCR[23:22].
6489 RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
6490 DAG.getConstant(1, DL, MVT::i32));
6491 RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
6492 DAG.getConstant(0x3, DL, MVT::i32));
6493 RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
6494 DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32));
6496 // Get current value of FPSCR.
6497 SDValue Ops[] = {Chain,
6498 DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6499 SDValue FPSCR =
6500 DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6501 Chain = FPSCR.getValue(1);
6502 FPSCR = FPSCR.getValue(0);
6504 // Put new rounding mode into FPSCR[23:22].
6505 const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos);
6506 FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6507 DAG.getConstant(RMMask, DL, MVT::i32));
6508 FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue);
6509 SDValue Ops2[] = {
6510 Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6511 return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6514 SDValue ARMTargetLowering::LowerSET_FPMODE(SDValue Op,
6515 SelectionDAG &DAG) const {
6516 SDLoc DL(Op);
6517 SDValue Chain = Op->getOperand(0);
6518 SDValue Mode = Op->getOperand(1);
6520 // Generate nodes to build:
6521 // FPSCR = (FPSCR & FPStatusBits) | (Mode & ~FPStatusBits)
6522 SDValue Ops[] = {Chain,
6523 DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6524 SDValue FPSCR =
6525 DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6526 Chain = FPSCR.getValue(1);
6527 FPSCR = FPSCR.getValue(0);
6529 SDValue FPSCRMasked =
6530 DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6531 DAG.getConstant(ARM::FPStatusBits, DL, MVT::i32));
6532 SDValue InputMasked =
6533 DAG.getNode(ISD::AND, DL, MVT::i32, Mode,
6534 DAG.getConstant(~ARM::FPStatusBits, DL, MVT::i32));
6535 FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCRMasked, InputMasked);
6537 SDValue Ops2[] = {
6538 Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6539 return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6542 SDValue ARMTargetLowering::LowerRESET_FPMODE(SDValue Op,
6543 SelectionDAG &DAG) const {
6544 SDLoc DL(Op);
6545 SDValue Chain = Op->getOperand(0);
6547 // To get the default FP mode all control bits are cleared:
6548 // FPSCR = FPSCR & (FPStatusBits | FPReservedBits)
6549 SDValue Ops[] = {Chain,
6550 DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6551 SDValue FPSCR =
6552 DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6553 Chain = FPSCR.getValue(1);
6554 FPSCR = FPSCR.getValue(0);
6556 SDValue FPSCRMasked = DAG.getNode(
6557 ISD::AND, DL, MVT::i32, FPSCR,
6558 DAG.getConstant(ARM::FPStatusBits | ARM::FPReservedBits, DL, MVT::i32));
6559 SDValue Ops2[] = {Chain,
6560 DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32),
6561 FPSCRMasked};
6562 return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6565 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6566 const ARMSubtarget *ST) {
6567 SDLoc dl(N);
6568 EVT VT = N->getValueType(0);
6569 if (VT.isVector() && ST->hasNEON()) {
6571 // Compute the least significant set bit: LSB = X & -X
6572 SDValue X = N->getOperand(0);
6573 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6574 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6576 EVT ElemTy = VT.getVectorElementType();
6578 if (ElemTy == MVT::i8) {
6579 // Compute with: cttz(x) = ctpop(lsb - 1)
6580 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6581 DAG.getTargetConstant(1, dl, ElemTy));
6582 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6583 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6586 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6587 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6588 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6589 unsigned NumBits = ElemTy.getSizeInBits();
6590 SDValue WidthMinus1 =
6591 DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6592 DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6593 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6594 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6597 // Compute with: cttz(x) = ctpop(lsb - 1)
6599 // Compute LSB - 1.
6600 SDValue Bits;
6601 if (ElemTy == MVT::i64) {
6602 // Load constant 0xffff'ffff'ffff'ffff to register.
6603 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6604 DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6605 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6606 } else {
6607 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6608 DAG.getTargetConstant(1, dl, ElemTy));
6609 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6611 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6614 if (!ST->hasV6T2Ops())
6615 return SDValue();
6617 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6618 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6621 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6622 const ARMSubtarget *ST) {
6623 EVT VT = N->getValueType(0);
6624 SDLoc DL(N);
6626 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6627 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6628 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6629 "Unexpected type for custom ctpop lowering");
6631 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6632 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6633 SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6634 Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6636 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6637 unsigned EltSize = 8;
6638 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6639 while (EltSize != VT.getScalarSizeInBits()) {
6640 SmallVector<SDValue, 8> Ops;
6641 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6642 TLI.getPointerTy(DAG.getDataLayout())));
6643 Ops.push_back(Res);
6645 EltSize *= 2;
6646 NumElts /= 2;
6647 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6648 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6651 return Res;
6654 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6655 /// operand of a vector shift operation, where all the elements of the
6656 /// build_vector must have the same constant integer value.
6657 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6658 // Ignore bit_converts.
6659 while (Op.getOpcode() == ISD::BITCAST)
6660 Op = Op.getOperand(0);
6661 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6662 APInt SplatBits, SplatUndef;
6663 unsigned SplatBitSize;
6664 bool HasAnyUndefs;
6665 if (!BVN ||
6666 !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6667 ElementBits) ||
6668 SplatBitSize > ElementBits)
6669 return false;
6670 Cnt = SplatBits.getSExtValue();
6671 return true;
6674 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6675 /// operand of a vector shift left operation. That value must be in the range:
6676 /// 0 <= Value < ElementBits for a left shift; or
6677 /// 0 <= Value <= ElementBits for a long left shift.
6678 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6679 assert(VT.isVector() && "vector shift count is not a vector type");
6680 int64_t ElementBits = VT.getScalarSizeInBits();
6681 if (!getVShiftImm(Op, ElementBits, Cnt))
6682 return false;
6683 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6686 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6687 /// operand of a vector shift right operation. For a shift opcode, the value
6688 /// is positive, but for an intrinsic the value count must be negative. The
6689 /// absolute value must be in the range:
6690 /// 1 <= |Value| <= ElementBits for a right shift; or
6691 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
6692 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6693 int64_t &Cnt) {
6694 assert(VT.isVector() && "vector shift count is not a vector type");
6695 int64_t ElementBits = VT.getScalarSizeInBits();
6696 if (!getVShiftImm(Op, ElementBits, Cnt))
6697 return false;
6698 if (!isIntrinsic)
6699 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6700 if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6701 Cnt = -Cnt;
6702 return true;
6704 return false;
6707 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6708 const ARMSubtarget *ST) {
6709 EVT VT = N->getValueType(0);
6710 SDLoc dl(N);
6711 int64_t Cnt;
6713 if (!VT.isVector())
6714 return SDValue();
6716 // We essentially have two forms here. Shift by an immediate and shift by a
6717 // vector register (there are also shift by a gpr, but that is just handled
6718 // with a tablegen pattern). We cannot easily match shift by an immediate in
6719 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6720 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6721 // signed or unsigned, and a negative shift indicates a shift right).
6722 if (N->getOpcode() == ISD::SHL) {
6723 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6724 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6725 DAG.getConstant(Cnt, dl, MVT::i32));
6726 return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6727 N->getOperand(1));
6730 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6731 "unexpected vector shift opcode");
6733 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6734 unsigned VShiftOpc =
6735 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6736 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6737 DAG.getConstant(Cnt, dl, MVT::i32));
6740 // Other right shifts we don't have operations for (we use a shift left by a
6741 // negative number).
6742 EVT ShiftVT = N->getOperand(1).getValueType();
6743 SDValue NegatedCount = DAG.getNode(
6744 ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6745 unsigned VShiftOpc =
6746 (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6747 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6750 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6751 const ARMSubtarget *ST) {
6752 EVT VT = N->getValueType(0);
6753 SDLoc dl(N);
6755 // We can get here for a node like i32 = ISD::SHL i32, i64
6756 if (VT != MVT::i64)
6757 return SDValue();
6759 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6760 N->getOpcode() == ISD::SHL) &&
6761 "Unknown shift to lower!");
6763 unsigned ShOpc = N->getOpcode();
6764 if (ST->hasMVEIntegerOps()) {
6765 SDValue ShAmt = N->getOperand(1);
6766 unsigned ShPartsOpc = ARMISD::LSLL;
6767 ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6769 // If the shift amount is greater than 32 or has a greater bitwidth than 64
6770 // then do the default optimisation
6771 if ((!Con && ShAmt->getValueType(0).getSizeInBits() > 64) ||
6772 (Con && (Con->getAPIntValue() == 0 || Con->getAPIntValue().uge(32))))
6773 return SDValue();
6775 // Extract the lower 32 bits of the shift amount if it's not an i32
6776 if (ShAmt->getValueType(0) != MVT::i32)
6777 ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6779 if (ShOpc == ISD::SRL) {
6780 if (!Con)
6781 // There is no t2LSRLr instruction so negate and perform an lsll if the
6782 // shift amount is in a register, emulating a right shift.
6783 ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6784 DAG.getConstant(0, dl, MVT::i32), ShAmt);
6785 else
6786 // Else generate an lsrl on the immediate shift amount
6787 ShPartsOpc = ARMISD::LSRL;
6788 } else if (ShOpc == ISD::SRA)
6789 ShPartsOpc = ARMISD::ASRL;
6791 // Split Lower/Upper 32 bits of the destination/source
6792 SDValue Lo, Hi;
6793 std::tie(Lo, Hi) =
6794 DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32);
6795 // Generate the shift operation as computed above
6796 Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6797 ShAmt);
6798 // The upper 32 bits come from the second return value of lsll
6799 Hi = SDValue(Lo.getNode(), 1);
6800 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6803 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6804 if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6805 return SDValue();
6807 // If we are in thumb mode, we don't have RRX.
6808 if (ST->isThumb1Only())
6809 return SDValue();
6811 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6812 SDValue Lo, Hi;
6813 std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(0), dl, MVT::i32, MVT::i32);
6815 // First, build a LSRS1/ASRS1 op, which shifts the top part by one and
6816 // captures the shifted out bit into a carry flag.
6817 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::LSRS1 : ARMISD::ASRS1;
6818 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, FlagsVT), Hi);
6820 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6821 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6823 // Merge the pieces into a single i64 value.
6824 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6827 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6828 const ARMSubtarget *ST) {
6829 bool Invert = false;
6830 bool Swap = false;
6831 unsigned Opc = ARMCC::AL;
6833 SDValue Op0 = Op.getOperand(0);
6834 SDValue Op1 = Op.getOperand(1);
6835 SDValue CC = Op.getOperand(2);
6836 EVT VT = Op.getValueType();
6837 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6838 SDLoc dl(Op);
6840 EVT CmpVT;
6841 if (ST->hasNEON())
6842 CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6843 else {
6844 assert(ST->hasMVEIntegerOps() &&
6845 "No hardware support for integer vector comparison!");
6847 if (Op.getValueType().getVectorElementType() != MVT::i1)
6848 return SDValue();
6850 // Make sure we expand floating point setcc to scalar if we do not have
6851 // mve.fp, so that we can handle them from there.
6852 if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6853 return SDValue();
6855 CmpVT = VT;
6858 if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6859 (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6860 // Special-case integer 64-bit equality comparisons. They aren't legal,
6861 // but they can be lowered with a few vector instructions.
6862 unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6863 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6864 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6865 SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6866 SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6867 DAG.getCondCode(ISD::SETEQ));
6868 SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6869 SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6870 Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6871 if (SetCCOpcode == ISD::SETNE)
6872 Merged = DAG.getNOT(dl, Merged, CmpVT);
6873 Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6874 return Merged;
6877 if (CmpVT.getVectorElementType() == MVT::i64)
6878 // 64-bit comparisons are not legal in general.
6879 return SDValue();
6881 if (Op1.getValueType().isFloatingPoint()) {
6882 switch (SetCCOpcode) {
6883 default: llvm_unreachable("Illegal FP comparison");
6884 case ISD::SETUNE:
6885 case ISD::SETNE:
6886 if (ST->hasMVEFloatOps()) {
6887 Opc = ARMCC::NE; break;
6888 } else {
6889 Invert = true; [[fallthrough]];
6891 case ISD::SETOEQ:
6892 case ISD::SETEQ: Opc = ARMCC::EQ; break;
6893 case ISD::SETOLT:
6894 case ISD::SETLT: Swap = true; [[fallthrough]];
6895 case ISD::SETOGT:
6896 case ISD::SETGT: Opc = ARMCC::GT; break;
6897 case ISD::SETOLE:
6898 case ISD::SETLE: Swap = true; [[fallthrough]];
6899 case ISD::SETOGE:
6900 case ISD::SETGE: Opc = ARMCC::GE; break;
6901 case ISD::SETUGE: Swap = true; [[fallthrough]];
6902 case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6903 case ISD::SETUGT: Swap = true; [[fallthrough]];
6904 case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6905 case ISD::SETUEQ: Invert = true; [[fallthrough]];
6906 case ISD::SETONE: {
6907 // Expand this to (OLT | OGT).
6908 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6909 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6910 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6911 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6912 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6913 if (Invert)
6914 Result = DAG.getNOT(dl, Result, VT);
6915 return Result;
6917 case ISD::SETUO: Invert = true; [[fallthrough]];
6918 case ISD::SETO: {
6919 // Expand this to (OLT | OGE).
6920 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6921 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6922 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6923 DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6924 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6925 if (Invert)
6926 Result = DAG.getNOT(dl, Result, VT);
6927 return Result;
6930 } else {
6931 // Integer comparisons.
6932 switch (SetCCOpcode) {
6933 default: llvm_unreachable("Illegal integer comparison");
6934 case ISD::SETNE:
6935 if (ST->hasMVEIntegerOps()) {
6936 Opc = ARMCC::NE; break;
6937 } else {
6938 Invert = true; [[fallthrough]];
6940 case ISD::SETEQ: Opc = ARMCC::EQ; break;
6941 case ISD::SETLT: Swap = true; [[fallthrough]];
6942 case ISD::SETGT: Opc = ARMCC::GT; break;
6943 case ISD::SETLE: Swap = true; [[fallthrough]];
6944 case ISD::SETGE: Opc = ARMCC::GE; break;
6945 case ISD::SETULT: Swap = true; [[fallthrough]];
6946 case ISD::SETUGT: Opc = ARMCC::HI; break;
6947 case ISD::SETULE: Swap = true; [[fallthrough]];
6948 case ISD::SETUGE: Opc = ARMCC::HS; break;
6951 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6952 if (ST->hasNEON() && Opc == ARMCC::EQ) {
6953 SDValue AndOp;
6954 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6955 AndOp = Op0;
6956 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6957 AndOp = Op1;
6959 // Ignore bitconvert.
6960 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6961 AndOp = AndOp.getOperand(0);
6963 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6964 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6965 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6966 SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6967 if (!Invert)
6968 Result = DAG.getNOT(dl, Result, VT);
6969 return Result;
6974 if (Swap)
6975 std::swap(Op0, Op1);
6977 // If one of the operands is a constant vector zero, attempt to fold the
6978 // comparison to a specialized compare-against-zero form.
6979 if (ISD::isBuildVectorAllZeros(Op0.getNode()) &&
6980 (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::EQ ||
6981 Opc == ARMCC::NE)) {
6982 if (Opc == ARMCC::GE)
6983 Opc = ARMCC::LE;
6984 else if (Opc == ARMCC::GT)
6985 Opc = ARMCC::LT;
6986 std::swap(Op0, Op1);
6989 SDValue Result;
6990 if (ISD::isBuildVectorAllZeros(Op1.getNode()) &&
6991 (Opc == ARMCC::GE || Opc == ARMCC::GT || Opc == ARMCC::LE ||
6992 Opc == ARMCC::LT || Opc == ARMCC::NE || Opc == ARMCC::EQ))
6993 Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, Op0,
6994 DAG.getConstant(Opc, dl, MVT::i32));
6995 else
6996 Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6997 DAG.getConstant(Opc, dl, MVT::i32));
6999 Result = DAG.getSExtOrTrunc(Result, dl, VT);
7001 if (Invert)
7002 Result = DAG.getNOT(dl, Result, VT);
7004 return Result;
7007 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
7008 SDValue LHS = Op.getOperand(0);
7009 SDValue RHS = Op.getOperand(1);
7010 SDValue Carry = Op.getOperand(2);
7011 SDValue Cond = Op.getOperand(3);
7012 SDLoc DL(Op);
7014 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
7016 // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
7017 // have to invert the carry first.
7018 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
7019 DAG.getConstant(1, DL, MVT::i32), Carry);
7020 // This converts the boolean value carry into the carry flag.
7021 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
7023 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
7024 SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
7026 SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
7027 SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
7028 SDValue ARMcc = DAG.getConstant(
7029 IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
7030 return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
7031 Cmp.getValue(1));
7034 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
7035 /// valid vector constant for a NEON or MVE instruction with a "modified
7036 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
7037 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
7038 unsigned SplatBitSize, SelectionDAG &DAG,
7039 const SDLoc &dl, EVT &VT, EVT VectorVT,
7040 VMOVModImmType type) {
7041 unsigned OpCmode, Imm;
7042 bool is128Bits = VectorVT.is128BitVector();
7044 // SplatBitSize is set to the smallest size that splats the vector, so a
7045 // zero vector will always have SplatBitSize == 8. However, NEON modified
7046 // immediate instructions others than VMOV do not support the 8-bit encoding
7047 // of a zero vector, and the default encoding of zero is supposed to be the
7048 // 32-bit version.
7049 if (SplatBits == 0)
7050 SplatBitSize = 32;
7052 switch (SplatBitSize) {
7053 case 8:
7054 if (type != VMOVModImm)
7055 return SDValue();
7056 // Any 1-byte value is OK. Op=0, Cmode=1110.
7057 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
7058 OpCmode = 0xe;
7059 Imm = SplatBits;
7060 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
7061 break;
7063 case 16:
7064 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
7065 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
7066 if ((SplatBits & ~0xff) == 0) {
7067 // Value = 0x00nn: Op=x, Cmode=100x.
7068 OpCmode = 0x8;
7069 Imm = SplatBits;
7070 break;
7072 if ((SplatBits & ~0xff00) == 0) {
7073 // Value = 0xnn00: Op=x, Cmode=101x.
7074 OpCmode = 0xa;
7075 Imm = SplatBits >> 8;
7076 break;
7078 return SDValue();
7080 case 32:
7081 // NEON's 32-bit VMOV supports splat values where:
7082 // * only one byte is nonzero, or
7083 // * the least significant byte is 0xff and the second byte is nonzero, or
7084 // * the least significant 2 bytes are 0xff and the third is nonzero.
7085 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
7086 if ((SplatBits & ~0xff) == 0) {
7087 // Value = 0x000000nn: Op=x, Cmode=000x.
7088 OpCmode = 0;
7089 Imm = SplatBits;
7090 break;
7092 if ((SplatBits & ~0xff00) == 0) {
7093 // Value = 0x0000nn00: Op=x, Cmode=001x.
7094 OpCmode = 0x2;
7095 Imm = SplatBits >> 8;
7096 break;
7098 if ((SplatBits & ~0xff0000) == 0) {
7099 // Value = 0x00nn0000: Op=x, Cmode=010x.
7100 OpCmode = 0x4;
7101 Imm = SplatBits >> 16;
7102 break;
7104 if ((SplatBits & ~0xff000000) == 0) {
7105 // Value = 0xnn000000: Op=x, Cmode=011x.
7106 OpCmode = 0x6;
7107 Imm = SplatBits >> 24;
7108 break;
7111 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
7112 if (type == OtherModImm) return SDValue();
7114 if ((SplatBits & ~0xffff) == 0 &&
7115 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
7116 // Value = 0x0000nnff: Op=x, Cmode=1100.
7117 OpCmode = 0xc;
7118 Imm = SplatBits >> 8;
7119 break;
7122 // cmode == 0b1101 is not supported for MVE VMVN
7123 if (type == MVEVMVNModImm)
7124 return SDValue();
7126 if ((SplatBits & ~0xffffff) == 0 &&
7127 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
7128 // Value = 0x00nnffff: Op=x, Cmode=1101.
7129 OpCmode = 0xd;
7130 Imm = SplatBits >> 16;
7131 break;
7134 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
7135 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
7136 // VMOV.I32. A (very) minor optimization would be to replicate the value
7137 // and fall through here to test for a valid 64-bit splat. But, then the
7138 // caller would also need to check and handle the change in size.
7139 return SDValue();
7141 case 64: {
7142 if (type != VMOVModImm)
7143 return SDValue();
7144 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
7145 uint64_t BitMask = 0xff;
7146 unsigned ImmMask = 1;
7147 Imm = 0;
7148 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
7149 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
7150 Imm |= ImmMask;
7151 } else if ((SplatBits & BitMask) != 0) {
7152 return SDValue();
7154 BitMask <<= 8;
7155 ImmMask <<= 1;
7158 // Op=1, Cmode=1110.
7159 OpCmode = 0x1e;
7160 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
7161 break;
7164 default:
7165 llvm_unreachable("unexpected size for isVMOVModifiedImm");
7168 unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
7169 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
7172 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
7173 const ARMSubtarget *ST) const {
7174 EVT VT = Op.getValueType();
7175 bool IsDouble = (VT == MVT::f64);
7176 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
7177 const APFloat &FPVal = CFP->getValueAPF();
7179 // Prevent floating-point constants from using literal loads
7180 // when execute-only is enabled.
7181 if (ST->genExecuteOnly()) {
7182 // We shouldn't trigger this for v6m execute-only
7183 assert((!ST->isThumb1Only() || ST->hasV8MBaselineOps()) &&
7184 "Unexpected architecture");
7186 // If we can represent the constant as an immediate, don't lower it
7187 if (isFPImmLegal(FPVal, VT))
7188 return Op;
7189 // Otherwise, construct as integer, and move to float register
7190 APInt INTVal = FPVal.bitcastToAPInt();
7191 SDLoc DL(CFP);
7192 switch (VT.getSimpleVT().SimpleTy) {
7193 default:
7194 llvm_unreachable("Unknown floating point type!");
7195 break;
7196 case MVT::f64: {
7197 SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
7198 SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
7199 return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
7201 case MVT::f32:
7202 return DAG.getNode(ARMISD::VMOVSR, DL, VT,
7203 DAG.getConstant(INTVal, DL, MVT::i32));
7207 if (!ST->hasVFP3Base())
7208 return SDValue();
7210 // Use the default (constant pool) lowering for double constants when we have
7211 // an SP-only FPU
7212 if (IsDouble && !Subtarget->hasFP64())
7213 return SDValue();
7215 // Try splatting with a VMOV.f32...
7216 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
7218 if (ImmVal != -1) {
7219 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
7220 // We have code in place to select a valid ConstantFP already, no need to
7221 // do any mangling.
7222 return Op;
7225 // It's a float and we are trying to use NEON operations where
7226 // possible. Lower it to a splat followed by an extract.
7227 SDLoc DL(Op);
7228 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
7229 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
7230 NewVal);
7231 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
7232 DAG.getConstant(0, DL, MVT::i32));
7235 // The rest of our options are NEON only, make sure that's allowed before
7236 // proceeding..
7237 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
7238 return SDValue();
7240 EVT VMovVT;
7241 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
7243 // It wouldn't really be worth bothering for doubles except for one very
7244 // important value, which does happen to match: 0.0. So make sure we don't do
7245 // anything stupid.
7246 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
7247 return SDValue();
7249 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
7250 SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
7251 VMovVT, VT, VMOVModImm);
7252 if (NewVal != SDValue()) {
7253 SDLoc DL(Op);
7254 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
7255 NewVal);
7256 if (IsDouble)
7257 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7259 // It's a float: cast and extract a vector element.
7260 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7261 VecConstant);
7262 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7263 DAG.getConstant(0, DL, MVT::i32));
7266 // Finally, try a VMVN.i32
7267 NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
7268 VT, VMVNModImm);
7269 if (NewVal != SDValue()) {
7270 SDLoc DL(Op);
7271 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
7273 if (IsDouble)
7274 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7276 // It's a float: cast and extract a vector element.
7277 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7278 VecConstant);
7279 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7280 DAG.getConstant(0, DL, MVT::i32));
7283 return SDValue();
7286 // check if an VEXT instruction can handle the shuffle mask when the
7287 // vector sources of the shuffle are the same.
7288 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
7289 unsigned NumElts = VT.getVectorNumElements();
7291 // Assume that the first shuffle index is not UNDEF. Fail if it is.
7292 if (M[0] < 0)
7293 return false;
7295 Imm = M[0];
7297 // If this is a VEXT shuffle, the immediate value is the index of the first
7298 // element. The other shuffle indices must be the successive elements after
7299 // the first one.
7300 unsigned ExpectedElt = Imm;
7301 for (unsigned i = 1; i < NumElts; ++i) {
7302 // Increment the expected index. If it wraps around, just follow it
7303 // back to index zero and keep going.
7304 ++ExpectedElt;
7305 if (ExpectedElt == NumElts)
7306 ExpectedElt = 0;
7308 if (M[i] < 0) continue; // ignore UNDEF indices
7309 if (ExpectedElt != static_cast<unsigned>(M[i]))
7310 return false;
7313 return true;
7316 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
7317 bool &ReverseVEXT, unsigned &Imm) {
7318 unsigned NumElts = VT.getVectorNumElements();
7319 ReverseVEXT = false;
7321 // Assume that the first shuffle index is not UNDEF. Fail if it is.
7322 if (M[0] < 0)
7323 return false;
7325 Imm = M[0];
7327 // If this is a VEXT shuffle, the immediate value is the index of the first
7328 // element. The other shuffle indices must be the successive elements after
7329 // the first one.
7330 unsigned ExpectedElt = Imm;
7331 for (unsigned i = 1; i < NumElts; ++i) {
7332 // Increment the expected index. If it wraps around, it may still be
7333 // a VEXT but the source vectors must be swapped.
7334 ExpectedElt += 1;
7335 if (ExpectedElt == NumElts * 2) {
7336 ExpectedElt = 0;
7337 ReverseVEXT = true;
7340 if (M[i] < 0) continue; // ignore UNDEF indices
7341 if (ExpectedElt != static_cast<unsigned>(M[i]))
7342 return false;
7345 // Adjust the index value if the source operands will be swapped.
7346 if (ReverseVEXT)
7347 Imm -= NumElts;
7349 return true;
7352 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
7353 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
7354 // range, then 0 is placed into the resulting vector. So pretty much any mask
7355 // of 8 elements can work here.
7356 return VT == MVT::v8i8 && M.size() == 8;
7359 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
7360 unsigned Index) {
7361 if (Mask.size() == Elements * 2)
7362 return Index / Elements;
7363 return Mask[Index] == 0 ? 0 : 1;
7366 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
7367 // checking that pairs of elements in the shuffle mask represent the same index
7368 // in each vector, incrementing the expected index by 2 at each step.
7369 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
7370 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
7371 // v2={e,f,g,h}
7372 // WhichResult gives the offset for each element in the mask based on which
7373 // of the two results it belongs to.
7375 // The transpose can be represented either as:
7376 // result1 = shufflevector v1, v2, result1_shuffle_mask
7377 // result2 = shufflevector v1, v2, result2_shuffle_mask
7378 // where v1/v2 and the shuffle masks have the same number of elements
7379 // (here WhichResult (see below) indicates which result is being checked)
7381 // or as:
7382 // results = shufflevector v1, v2, shuffle_mask
7383 // where both results are returned in one vector and the shuffle mask has twice
7384 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
7385 // want to check the low half and high half of the shuffle mask as if it were
7386 // the other case
7387 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7388 unsigned EltSz = VT.getScalarSizeInBits();
7389 if (EltSz == 64)
7390 return false;
7392 unsigned NumElts = VT.getVectorNumElements();
7393 if (M.size() != NumElts && M.size() != NumElts*2)
7394 return false;
7396 // If the mask is twice as long as the input vector then we need to check the
7397 // upper and lower parts of the mask with a matching value for WhichResult
7398 // FIXME: A mask with only even values will be rejected in case the first
7399 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7400 // M[0] is used to determine WhichResult
7401 for (unsigned i = 0; i < M.size(); i += NumElts) {
7402 WhichResult = SelectPairHalf(NumElts, M, i);
7403 for (unsigned j = 0; j < NumElts; j += 2) {
7404 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7405 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7406 return false;
7410 if (M.size() == NumElts*2)
7411 WhichResult = 0;
7413 return true;
7416 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7417 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7418 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
7419 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7420 unsigned EltSz = VT.getScalarSizeInBits();
7421 if (EltSz == 64)
7422 return false;
7424 unsigned NumElts = VT.getVectorNumElements();
7425 if (M.size() != NumElts && M.size() != NumElts*2)
7426 return false;
7428 for (unsigned i = 0; i < M.size(); i += NumElts) {
7429 WhichResult = SelectPairHalf(NumElts, M, i);
7430 for (unsigned j = 0; j < NumElts; j += 2) {
7431 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7432 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7433 return false;
7437 if (M.size() == NumElts*2)
7438 WhichResult = 0;
7440 return true;
7443 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7444 // that the mask elements are either all even and in steps of size 2 or all odd
7445 // and in steps of size 2.
7446 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7447 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7448 // v2={e,f,g,h}
7449 // Requires similar checks to that of isVTRNMask with
7450 // respect the how results are returned.
7451 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7452 unsigned EltSz = VT.getScalarSizeInBits();
7453 if (EltSz == 64)
7454 return false;
7456 unsigned NumElts = VT.getVectorNumElements();
7457 if (M.size() != NumElts && M.size() != NumElts*2)
7458 return false;
7460 for (unsigned i = 0; i < M.size(); i += NumElts) {
7461 WhichResult = SelectPairHalf(NumElts, M, i);
7462 for (unsigned j = 0; j < NumElts; ++j) {
7463 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7464 return false;
7468 if (M.size() == NumElts*2)
7469 WhichResult = 0;
7471 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7472 if (VT.is64BitVector() && EltSz == 32)
7473 return false;
7475 return true;
7478 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7479 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7480 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
7481 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7482 unsigned EltSz = VT.getScalarSizeInBits();
7483 if (EltSz == 64)
7484 return false;
7486 unsigned NumElts = VT.getVectorNumElements();
7487 if (M.size() != NumElts && M.size() != NumElts*2)
7488 return false;
7490 unsigned Half = NumElts / 2;
7491 for (unsigned i = 0; i < M.size(); i += NumElts) {
7492 WhichResult = SelectPairHalf(NumElts, M, i);
7493 for (unsigned j = 0; j < NumElts; j += Half) {
7494 unsigned Idx = WhichResult;
7495 for (unsigned k = 0; k < Half; ++k) {
7496 int MIdx = M[i + j + k];
7497 if (MIdx >= 0 && (unsigned) MIdx != Idx)
7498 return false;
7499 Idx += 2;
7504 if (M.size() == NumElts*2)
7505 WhichResult = 0;
7507 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7508 if (VT.is64BitVector() && EltSz == 32)
7509 return false;
7511 return true;
7514 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7515 // that pairs of elements of the shufflemask represent the same index in each
7516 // vector incrementing sequentially through the vectors.
7517 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7518 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7519 // v2={e,f,g,h}
7520 // Requires similar checks to that of isVTRNMask with respect the how results
7521 // are returned.
7522 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7523 unsigned EltSz = VT.getScalarSizeInBits();
7524 if (EltSz == 64)
7525 return false;
7527 unsigned NumElts = VT.getVectorNumElements();
7528 if (M.size() != NumElts && M.size() != NumElts*2)
7529 return false;
7531 for (unsigned i = 0; i < M.size(); i += NumElts) {
7532 WhichResult = SelectPairHalf(NumElts, M, i);
7533 unsigned Idx = WhichResult * NumElts / 2;
7534 for (unsigned j = 0; j < NumElts; j += 2) {
7535 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7536 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7537 return false;
7538 Idx += 1;
7542 if (M.size() == NumElts*2)
7543 WhichResult = 0;
7545 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7546 if (VT.is64BitVector() && EltSz == 32)
7547 return false;
7549 return true;
7552 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7553 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7554 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
7555 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7556 unsigned EltSz = VT.getScalarSizeInBits();
7557 if (EltSz == 64)
7558 return false;
7560 unsigned NumElts = VT.getVectorNumElements();
7561 if (M.size() != NumElts && M.size() != NumElts*2)
7562 return false;
7564 for (unsigned i = 0; i < M.size(); i += NumElts) {
7565 WhichResult = SelectPairHalf(NumElts, M, i);
7566 unsigned Idx = WhichResult * NumElts / 2;
7567 for (unsigned j = 0; j < NumElts; j += 2) {
7568 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7569 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7570 return false;
7571 Idx += 1;
7575 if (M.size() == NumElts*2)
7576 WhichResult = 0;
7578 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7579 if (VT.is64BitVector() && EltSz == 32)
7580 return false;
7582 return true;
7585 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7586 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
7587 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7588 unsigned &WhichResult,
7589 bool &isV_UNDEF) {
7590 isV_UNDEF = false;
7591 if (isVTRNMask(ShuffleMask, VT, WhichResult))
7592 return ARMISD::VTRN;
7593 if (isVUZPMask(ShuffleMask, VT, WhichResult))
7594 return ARMISD::VUZP;
7595 if (isVZIPMask(ShuffleMask, VT, WhichResult))
7596 return ARMISD::VZIP;
7598 isV_UNDEF = true;
7599 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7600 return ARMISD::VTRN;
7601 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7602 return ARMISD::VUZP;
7603 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7604 return ARMISD::VZIP;
7606 return 0;
7609 /// \return true if this is a reverse operation on an vector.
7610 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7611 unsigned NumElts = VT.getVectorNumElements();
7612 // Make sure the mask has the right size.
7613 if (NumElts != M.size())
7614 return false;
7616 // Look for <15, ..., 3, -1, 1, 0>.
7617 for (unsigned i = 0; i != NumElts; ++i)
7618 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7619 return false;
7621 return true;
7624 static bool isTruncMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7625 unsigned NumElts = VT.getVectorNumElements();
7626 // Make sure the mask has the right size.
7627 if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7628 return false;
7630 // Half-width truncation patterns (e.g. v4i32 -> v8i16):
7631 // !Top && SingleSource: <0, 2, 4, 6, 0, 2, 4, 6>
7632 // !Top && !SingleSource: <0, 2, 4, 6, 8, 10, 12, 14>
7633 // Top && SingleSource: <1, 3, 5, 7, 1, 3, 5, 7>
7634 // Top && !SingleSource: <1, 3, 5, 7, 9, 11, 13, 15>
7635 int Ofs = Top ? 1 : 0;
7636 int Upper = SingleSource ? 0 : NumElts;
7637 for (int i = 0, e = NumElts / 2; i != e; ++i) {
7638 if (M[i] >= 0 && M[i] != (i * 2) + Ofs)
7639 return false;
7640 if (M[i + e] >= 0 && M[i + e] != (i * 2) + Ofs + Upper)
7641 return false;
7643 return true;
7646 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7647 unsigned NumElts = VT.getVectorNumElements();
7648 // Make sure the mask has the right size.
7649 if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7650 return false;
7652 // If Top
7653 // Look for <0, N, 2, N+2, 4, N+4, ..>.
7654 // This inserts Input2 into Input1
7655 // else if not Top
7656 // Look for <0, N+1, 2, N+3, 4, N+5, ..>
7657 // This inserts Input1 into Input2
7658 unsigned Offset = Top ? 0 : 1;
7659 unsigned N = SingleSource ? 0 : NumElts;
7660 for (unsigned i = 0; i < NumElts; i += 2) {
7661 if (M[i] >= 0 && M[i] != (int)i)
7662 return false;
7663 if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset))
7664 return false;
7667 return true;
7670 static bool isVMOVNTruncMask(ArrayRef<int> M, EVT ToVT, bool rev) {
7671 unsigned NumElts = ToVT.getVectorNumElements();
7672 if (NumElts != M.size())
7673 return false;
7675 // Test if the Trunc can be convertable to a VMOVN with this shuffle. We are
7676 // looking for patterns of:
7677 // !rev: 0 N/2 1 N/2+1 2 N/2+2 ...
7678 // rev: N/2 0 N/2+1 1 N/2+2 2 ...
7680 unsigned Off0 = rev ? NumElts / 2 : 0;
7681 unsigned Off1 = rev ? 0 : NumElts / 2;
7682 for (unsigned i = 0; i < NumElts; i += 2) {
7683 if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2))
7684 return false;
7685 if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2))
7686 return false;
7689 return true;
7692 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7693 // from a pair of inputs. For example:
7694 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7695 // FP_ROUND(EXTRACT_ELT(Y, 0),
7696 // FP_ROUND(EXTRACT_ELT(X, 1),
7697 // FP_ROUND(EXTRACT_ELT(Y, 1), ...)
7698 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7699 const ARMSubtarget *ST) {
7700 assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7701 if (!ST->hasMVEFloatOps())
7702 return SDValue();
7704 SDLoc dl(BV);
7705 EVT VT = BV.getValueType();
7706 if (VT != MVT::v8f16)
7707 return SDValue();
7709 // We are looking for a buildvector of fptrunc elements, where all the
7710 // elements are interleavingly extracted from two sources. Check the first two
7711 // items are valid enough and extract some info from them (they are checked
7712 // properly in the loop below).
7713 if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7714 BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7715 BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7716 return SDValue();
7717 if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7718 BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7719 BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7720 return SDValue();
7721 SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7722 SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7723 if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7724 return SDValue();
7726 // Check all the values in the BuildVector line up with our expectations.
7727 for (unsigned i = 1; i < 4; i++) {
7728 auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7729 return Trunc.getOpcode() == ISD::FP_ROUND &&
7730 Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7731 Trunc.getOperand(0).getOperand(0) == Op &&
7732 Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7734 if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7735 return SDValue();
7736 if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7737 return SDValue();
7740 SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7741 DAG.getConstant(0, dl, MVT::i32));
7742 return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7743 DAG.getConstant(1, dl, MVT::i32));
7746 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7747 // from a single input on alternating lanes. For example:
7748 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7749 // FP_ROUND(EXTRACT_ELT(X, 2),
7750 // FP_ROUND(EXTRACT_ELT(X, 4), ...)
7751 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7752 const ARMSubtarget *ST) {
7753 assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7754 if (!ST->hasMVEFloatOps())
7755 return SDValue();
7757 SDLoc dl(BV);
7758 EVT VT = BV.getValueType();
7759 if (VT != MVT::v4f32)
7760 return SDValue();
7762 // We are looking for a buildvector of fptext elements, where all the
7763 // elements are alternating lanes from a single source. For example <0,2,4,6>
7764 // or <1,3,5,7>. Check the first two items are valid enough and extract some
7765 // info from them (they are checked properly in the loop below).
7766 if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7767 BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7768 return SDValue();
7769 SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7770 int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7771 if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7772 return SDValue();
7774 // Check all the values in the BuildVector line up with our expectations.
7775 for (unsigned i = 1; i < 4; i++) {
7776 auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7777 return Trunc.getOpcode() == ISD::FP_EXTEND &&
7778 Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7779 Trunc.getOperand(0).getOperand(0) == Op &&
7780 Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7782 if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7783 return SDValue();
7786 return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7787 DAG.getConstant(Offset, dl, MVT::i32));
7790 // If N is an integer constant that can be moved into a register in one
7791 // instruction, return an SDValue of such a constant (will become a MOV
7792 // instruction). Otherwise return null.
7793 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7794 const ARMSubtarget *ST, const SDLoc &dl) {
7795 uint64_t Val;
7796 if (!isa<ConstantSDNode>(N))
7797 return SDValue();
7798 Val = N->getAsZExtVal();
7800 if (ST->isThumb1Only()) {
7801 if (Val <= 255 || ~Val <= 255)
7802 return DAG.getConstant(Val, dl, MVT::i32);
7803 } else {
7804 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7805 return DAG.getConstant(Val, dl, MVT::i32);
7807 return SDValue();
7810 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7811 const ARMSubtarget *ST) {
7812 SDLoc dl(Op);
7813 EVT VT = Op.getValueType();
7815 assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7817 unsigned NumElts = VT.getVectorNumElements();
7818 unsigned BoolMask;
7819 unsigned BitsPerBool;
7820 if (NumElts == 2) {
7821 BitsPerBool = 8;
7822 BoolMask = 0xff;
7823 } else if (NumElts == 4) {
7824 BitsPerBool = 4;
7825 BoolMask = 0xf;
7826 } else if (NumElts == 8) {
7827 BitsPerBool = 2;
7828 BoolMask = 0x3;
7829 } else if (NumElts == 16) {
7830 BitsPerBool = 1;
7831 BoolMask = 0x1;
7832 } else
7833 return SDValue();
7835 // If this is a single value copied into all lanes (a splat), we can just sign
7836 // extend that single value
7837 SDValue FirstOp = Op.getOperand(0);
7838 if (!isa<ConstantSDNode>(FirstOp) &&
7839 llvm::all_of(llvm::drop_begin(Op->ops()), [&FirstOp](const SDUse &U) {
7840 return U.get().isUndef() || U.get() == FirstOp;
7841 })) {
7842 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7843 DAG.getValueType(MVT::i1));
7844 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7847 // First create base with bits set where known
7848 unsigned Bits32 = 0;
7849 for (unsigned i = 0; i < NumElts; ++i) {
7850 SDValue V = Op.getOperand(i);
7851 if (!isa<ConstantSDNode>(V) && !V.isUndef())
7852 continue;
7853 bool BitSet = V.isUndef() ? false : V->getAsZExtVal();
7854 if (BitSet)
7855 Bits32 |= BoolMask << (i * BitsPerBool);
7858 // Add in unknown nodes
7859 SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7860 DAG.getConstant(Bits32, dl, MVT::i32));
7861 for (unsigned i = 0; i < NumElts; ++i) {
7862 SDValue V = Op.getOperand(i);
7863 if (isa<ConstantSDNode>(V) || V.isUndef())
7864 continue;
7865 Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7866 DAG.getConstant(i, dl, MVT::i32));
7869 return Base;
7872 static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG,
7873 const ARMSubtarget *ST) {
7874 if (!ST->hasMVEIntegerOps())
7875 return SDValue();
7877 // We are looking for a buildvector where each element is Op[0] + i*N
7878 EVT VT = Op.getValueType();
7879 SDValue Op0 = Op.getOperand(0);
7880 unsigned NumElts = VT.getVectorNumElements();
7882 // Get the increment value from operand 1
7883 SDValue Op1 = Op.getOperand(1);
7884 if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 ||
7885 !isa<ConstantSDNode>(Op1.getOperand(1)))
7886 return SDValue();
7887 unsigned N = Op1.getConstantOperandVal(1);
7888 if (N != 1 && N != 2 && N != 4 && N != 8)
7889 return SDValue();
7891 // Check that each other operand matches
7892 for (unsigned I = 2; I < NumElts; I++) {
7893 SDValue OpI = Op.getOperand(I);
7894 if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 ||
7895 !isa<ConstantSDNode>(OpI.getOperand(1)) ||
7896 OpI.getConstantOperandVal(1) != I * N)
7897 return SDValue();
7900 SDLoc DL(Op);
7901 return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0,
7902 DAG.getConstant(N, DL, MVT::i32));
7905 // Returns true if the operation N can be treated as qr instruction variant at
7906 // operand Op.
7907 static bool IsQRMVEInstruction(const SDNode *N, const SDNode *Op) {
7908 switch (N->getOpcode()) {
7909 case ISD::ADD:
7910 case ISD::MUL:
7911 case ISD::SADDSAT:
7912 case ISD::UADDSAT:
7913 case ISD::AVGFLOORS:
7914 case ISD::AVGFLOORU:
7915 return true;
7916 case ISD::SUB:
7917 case ISD::SSUBSAT:
7918 case ISD::USUBSAT:
7919 return N->getOperand(1).getNode() == Op;
7920 case ISD::INTRINSIC_WO_CHAIN:
7921 switch (N->getConstantOperandVal(0)) {
7922 case Intrinsic::arm_mve_add_predicated:
7923 case Intrinsic::arm_mve_mul_predicated:
7924 case Intrinsic::arm_mve_qadd_predicated:
7925 case Intrinsic::arm_mve_vhadd:
7926 case Intrinsic::arm_mve_hadd_predicated:
7927 case Intrinsic::arm_mve_vqdmulh:
7928 case Intrinsic::arm_mve_qdmulh_predicated:
7929 case Intrinsic::arm_mve_vqrdmulh:
7930 case Intrinsic::arm_mve_qrdmulh_predicated:
7931 case Intrinsic::arm_mve_vqdmull:
7932 case Intrinsic::arm_mve_vqdmull_predicated:
7933 return true;
7934 case Intrinsic::arm_mve_sub_predicated:
7935 case Intrinsic::arm_mve_qsub_predicated:
7936 case Intrinsic::arm_mve_vhsub:
7937 case Intrinsic::arm_mve_hsub_predicated:
7938 return N->getOperand(2).getNode() == Op;
7939 default:
7940 return false;
7942 default:
7943 return false;
7947 // If this is a case we can't handle, return null and let the default
7948 // expansion code take care of it.
7949 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7950 const ARMSubtarget *ST) const {
7951 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7952 SDLoc dl(Op);
7953 EVT VT = Op.getValueType();
7955 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7956 return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7958 if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST))
7959 return R;
7961 APInt SplatBits, SplatUndef;
7962 unsigned SplatBitSize;
7963 bool HasAnyUndefs;
7964 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7965 if (SplatUndef.isAllOnes())
7966 return DAG.getUNDEF(VT);
7968 // If all the users of this constant splat are qr instruction variants,
7969 // generate a vdup of the constant.
7970 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == SplatBitSize &&
7971 (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32) &&
7972 all_of(BVN->users(),
7973 [BVN](const SDNode *U) { return IsQRMVEInstruction(U, BVN); })) {
7974 EVT DupVT = SplatBitSize == 32 ? MVT::v4i32
7975 : SplatBitSize == 16 ? MVT::v8i16
7976 : MVT::v16i8;
7977 SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7978 SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7979 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7982 if ((ST->hasNEON() && SplatBitSize <= 64) ||
7983 (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7984 // Check if an immediate VMOV works.
7985 EVT VmovVT;
7986 SDValue Val =
7987 isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7988 SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7990 if (Val.getNode()) {
7991 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7992 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Vmov);
7995 // Try an immediate VMVN.
7996 uint64_t NegatedImm = (~SplatBits).getZExtValue();
7997 Val = isVMOVModifiedImm(
7998 NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7999 VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
8000 if (Val.getNode()) {
8001 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
8002 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Vmov);
8005 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
8006 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
8007 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
8008 if (ImmVal != -1) {
8009 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
8010 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
8014 // If we are under MVE, generate a VDUP(constant), bitcast to the original
8015 // type.
8016 if (ST->hasMVEIntegerOps() &&
8017 (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) {
8018 EVT DupVT = SplatBitSize == 32 ? MVT::v4i32
8019 : SplatBitSize == 16 ? MVT::v8i16
8020 : MVT::v16i8;
8021 SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
8022 SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
8023 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
8028 // Scan through the operands to see if only one value is used.
8030 // As an optimisation, even if more than one value is used it may be more
8031 // profitable to splat with one value then change some lanes.
8033 // Heuristically we decide to do this if the vector has a "dominant" value,
8034 // defined as splatted to more than half of the lanes.
8035 unsigned NumElts = VT.getVectorNumElements();
8036 bool isOnlyLowElement = true;
8037 bool usesOnlyOneValue = true;
8038 bool hasDominantValue = false;
8039 bool isConstant = true;
8041 // Map of the number of times a particular SDValue appears in the
8042 // element list.
8043 DenseMap<SDValue, unsigned> ValueCounts;
8044 SDValue Value;
8045 for (unsigned i = 0; i < NumElts; ++i) {
8046 SDValue V = Op.getOperand(i);
8047 if (V.isUndef())
8048 continue;
8049 if (i > 0)
8050 isOnlyLowElement = false;
8051 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
8052 isConstant = false;
8054 unsigned &Count = ValueCounts[V];
8056 // Is this value dominant? (takes up more than half of the lanes)
8057 if (++Count > (NumElts / 2)) {
8058 hasDominantValue = true;
8059 Value = V;
8062 if (ValueCounts.size() != 1)
8063 usesOnlyOneValue = false;
8064 if (!Value.getNode() && !ValueCounts.empty())
8065 Value = ValueCounts.begin()->first;
8067 if (ValueCounts.empty())
8068 return DAG.getUNDEF(VT);
8070 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
8071 // Keep going if we are hitting this case.
8072 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
8073 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
8075 unsigned EltSize = VT.getScalarSizeInBits();
8077 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
8078 // i32 and try again.
8079 if (hasDominantValue && EltSize <= 32) {
8080 if (!isConstant) {
8081 SDValue N;
8083 // If we are VDUPing a value that comes directly from a vector, that will
8084 // cause an unnecessary move to and from a GPR, where instead we could
8085 // just use VDUPLANE. We can only do this if the lane being extracted
8086 // is at a constant index, as the VDUP from lane instructions only have
8087 // constant-index forms.
8088 ConstantSDNode *constIndex;
8089 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
8090 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
8091 // We need to create a new undef vector to use for the VDUPLANE if the
8092 // size of the vector from which we get the value is different than the
8093 // size of the vector that we need to create. We will insert the element
8094 // such that the register coalescer will remove unnecessary copies.
8095 if (VT != Value->getOperand(0).getValueType()) {
8096 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
8097 VT.getVectorNumElements();
8098 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8099 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
8100 Value, DAG.getConstant(index, dl, MVT::i32)),
8101 DAG.getConstant(index, dl, MVT::i32));
8102 } else
8103 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8104 Value->getOperand(0), Value->getOperand(1));
8105 } else
8106 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
8108 if (!usesOnlyOneValue) {
8109 // The dominant value was splatted as 'N', but we now have to insert
8110 // all differing elements.
8111 for (unsigned I = 0; I < NumElts; ++I) {
8112 if (Op.getOperand(I) == Value)
8113 continue;
8114 SmallVector<SDValue, 3> Ops;
8115 Ops.push_back(N);
8116 Ops.push_back(Op.getOperand(I));
8117 Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
8118 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
8121 return N;
8123 if (VT.getVectorElementType().isFloatingPoint()) {
8124 SmallVector<SDValue, 8> Ops;
8125 MVT FVT = VT.getVectorElementType().getSimpleVT();
8126 assert(FVT == MVT::f32 || FVT == MVT::f16);
8127 MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
8128 for (unsigned i = 0; i < NumElts; ++i)
8129 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
8130 Op.getOperand(i)));
8131 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
8132 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
8133 Val = LowerBUILD_VECTOR(Val, DAG, ST);
8134 if (Val.getNode())
8135 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8137 if (usesOnlyOneValue) {
8138 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
8139 if (isConstant && Val.getNode())
8140 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
8144 // If all elements are constants and the case above didn't get hit, fall back
8145 // to the default expansion, which will generate a load from the constant
8146 // pool.
8147 if (isConstant)
8148 return SDValue();
8150 // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
8151 // vmovn). Empirical tests suggest this is rarely worth it for vectors of
8152 // length <= 2.
8153 if (NumElts >= 4)
8154 if (SDValue shuffle = ReconstructShuffle(Op, DAG))
8155 return shuffle;
8157 // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
8158 // VCVT's
8159 if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
8160 return VCVT;
8161 if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
8162 return VCVT;
8164 if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
8165 // If we haven't found an efficient lowering, try splitting a 128-bit vector
8166 // into two 64-bit vectors; we might discover a better way to lower it.
8167 SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
8168 EVT ExtVT = VT.getVectorElementType();
8169 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
8170 SDValue Lower = DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[0], NumElts / 2));
8171 if (Lower.getOpcode() == ISD::BUILD_VECTOR)
8172 Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
8173 SDValue Upper =
8174 DAG.getBuildVector(HVT, dl, ArrayRef(&Ops[NumElts / 2], NumElts / 2));
8175 if (Upper.getOpcode() == ISD::BUILD_VECTOR)
8176 Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
8177 if (Lower && Upper)
8178 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
8181 // Vectors with 32- or 64-bit elements can be built by directly assigning
8182 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
8183 // will be legalized.
8184 if (EltSize >= 32) {
8185 // Do the expansion with floating-point types, since that is what the VFP
8186 // registers are defined to use, and since i64 is not legal.
8187 EVT EltVT = EVT::getFloatingPointVT(EltSize);
8188 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8189 SmallVector<SDValue, 8> Ops;
8190 for (unsigned i = 0; i < NumElts; ++i)
8191 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
8192 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8193 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8196 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8197 // know the default expansion would otherwise fall back on something even
8198 // worse. For a vector with one or two non-undef values, that's
8199 // scalar_to_vector for the elements followed by a shuffle (provided the
8200 // shuffle is valid for the target) and materialization element by element
8201 // on the stack followed by a load for everything else.
8202 if (!isConstant && !usesOnlyOneValue) {
8203 SDValue Vec = DAG.getUNDEF(VT);
8204 for (unsigned i = 0 ; i < NumElts; ++i) {
8205 SDValue V = Op.getOperand(i);
8206 if (V.isUndef())
8207 continue;
8208 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
8209 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
8211 return Vec;
8214 return SDValue();
8217 // Gather data to see if the operation can be modelled as a
8218 // shuffle in combination with VEXTs.
8219 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
8220 SelectionDAG &DAG) const {
8221 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
8222 SDLoc dl(Op);
8223 EVT VT = Op.getValueType();
8224 unsigned NumElts = VT.getVectorNumElements();
8226 struct ShuffleSourceInfo {
8227 SDValue Vec;
8228 unsigned MinElt = std::numeric_limits<unsigned>::max();
8229 unsigned MaxElt = 0;
8231 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
8232 // be compatible with the shuffle we intend to construct. As a result
8233 // ShuffleVec will be some sliding window into the original Vec.
8234 SDValue ShuffleVec;
8236 // Code should guarantee that element i in Vec starts at element "WindowBase
8237 // + i * WindowScale in ShuffleVec".
8238 int WindowBase = 0;
8239 int WindowScale = 1;
8241 ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
8243 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
8246 // First gather all vectors used as an immediate source for this BUILD_VECTOR
8247 // node.
8248 SmallVector<ShuffleSourceInfo, 2> Sources;
8249 for (unsigned i = 0; i < NumElts; ++i) {
8250 SDValue V = Op.getOperand(i);
8251 if (V.isUndef())
8252 continue;
8253 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
8254 // A shuffle can only come from building a vector from various
8255 // elements of other vectors.
8256 return SDValue();
8257 } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
8258 // Furthermore, shuffles require a constant mask, whereas extractelts
8259 // accept variable indices.
8260 return SDValue();
8263 // Add this element source to the list if it's not already there.
8264 SDValue SourceVec = V.getOperand(0);
8265 auto Source = llvm::find(Sources, SourceVec);
8266 if (Source == Sources.end())
8267 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
8269 // Update the minimum and maximum lane number seen.
8270 unsigned EltNo = V.getConstantOperandVal(1);
8271 Source->MinElt = std::min(Source->MinElt, EltNo);
8272 Source->MaxElt = std::max(Source->MaxElt, EltNo);
8275 // Currently only do something sane when at most two source vectors
8276 // are involved.
8277 if (Sources.size() > 2)
8278 return SDValue();
8280 // Find out the smallest element size among result and two sources, and use
8281 // it as element size to build the shuffle_vector.
8282 EVT SmallestEltTy = VT.getVectorElementType();
8283 for (auto &Source : Sources) {
8284 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
8285 if (SrcEltTy.bitsLT(SmallestEltTy))
8286 SmallestEltTy = SrcEltTy;
8288 unsigned ResMultiplier =
8289 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
8290 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
8291 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
8293 // If the source vector is too wide or too narrow, we may nevertheless be able
8294 // to construct a compatible shuffle either by concatenating it with UNDEF or
8295 // extracting a suitable range of elements.
8296 for (auto &Src : Sources) {
8297 EVT SrcVT = Src.ShuffleVec.getValueType();
8299 uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
8300 uint64_t VTSize = VT.getFixedSizeInBits();
8301 if (SrcVTSize == VTSize)
8302 continue;
8304 // This stage of the search produces a source with the same element type as
8305 // the original, but with a total width matching the BUILD_VECTOR output.
8306 EVT EltVT = SrcVT.getVectorElementType();
8307 unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
8308 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
8310 if (SrcVTSize < VTSize) {
8311 if (2 * SrcVTSize != VTSize)
8312 return SDValue();
8313 // We can pad out the smaller vector for free, so if it's part of a
8314 // shuffle...
8315 Src.ShuffleVec =
8316 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
8317 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
8318 continue;
8321 if (SrcVTSize != 2 * VTSize)
8322 return SDValue();
8324 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
8325 // Span too large for a VEXT to cope
8326 return SDValue();
8329 if (Src.MinElt >= NumSrcElts) {
8330 // The extraction can just take the second half
8331 Src.ShuffleVec =
8332 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8333 DAG.getConstant(NumSrcElts, dl, MVT::i32));
8334 Src.WindowBase = -NumSrcElts;
8335 } else if (Src.MaxElt < NumSrcElts) {
8336 // The extraction can just take the first half
8337 Src.ShuffleVec =
8338 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8339 DAG.getConstant(0, dl, MVT::i32));
8340 } else {
8341 // An actual VEXT is needed
8342 SDValue VEXTSrc1 =
8343 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8344 DAG.getConstant(0, dl, MVT::i32));
8345 SDValue VEXTSrc2 =
8346 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8347 DAG.getConstant(NumSrcElts, dl, MVT::i32));
8349 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
8350 VEXTSrc2,
8351 DAG.getConstant(Src.MinElt, dl, MVT::i32));
8352 Src.WindowBase = -Src.MinElt;
8356 // Another possible incompatibility occurs from the vector element types. We
8357 // can fix this by bitcasting the source vectors to the same type we intend
8358 // for the shuffle.
8359 for (auto &Src : Sources) {
8360 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
8361 if (SrcEltTy == SmallestEltTy)
8362 continue;
8363 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
8364 Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
8365 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
8366 Src.WindowBase *= Src.WindowScale;
8369 // Final check before we try to actually produce a shuffle.
8370 LLVM_DEBUG({
8371 for (auto Src : Sources)
8372 assert(Src.ShuffleVec.getValueType() == ShuffleVT);
8375 // The stars all align, our next step is to produce the mask for the shuffle.
8376 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
8377 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
8378 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
8379 SDValue Entry = Op.getOperand(i);
8380 if (Entry.isUndef())
8381 continue;
8383 auto Src = llvm::find(Sources, Entry.getOperand(0));
8384 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
8386 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
8387 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
8388 // segment.
8389 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
8390 int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
8391 VT.getScalarSizeInBits());
8392 int LanesDefined = BitsDefined / BitsPerShuffleLane;
8394 // This source is expected to fill ResMultiplier lanes of the final shuffle,
8395 // starting at the appropriate offset.
8396 int *LaneMask = &Mask[i * ResMultiplier];
8398 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
8399 ExtractBase += NumElts * (Src - Sources.begin());
8400 for (int j = 0; j < LanesDefined; ++j)
8401 LaneMask[j] = ExtractBase + j;
8405 // We can't handle more than two sources. This should have already
8406 // been checked before this point.
8407 assert(Sources.size() <= 2 && "Too many sources!");
8409 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
8410 for (unsigned i = 0; i < Sources.size(); ++i)
8411 ShuffleOps[i] = Sources[i].ShuffleVec;
8413 SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
8414 ShuffleOps[1], Mask, DAG);
8415 if (!Shuffle)
8416 return SDValue();
8417 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
8420 enum ShuffleOpCodes {
8421 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8422 OP_VREV,
8423 OP_VDUP0,
8424 OP_VDUP1,
8425 OP_VDUP2,
8426 OP_VDUP3,
8427 OP_VEXT1,
8428 OP_VEXT2,
8429 OP_VEXT3,
8430 OP_VUZPL, // VUZP, left result
8431 OP_VUZPR, // VUZP, right result
8432 OP_VZIPL, // VZIP, left result
8433 OP_VZIPR, // VZIP, right result
8434 OP_VTRNL, // VTRN, left result
8435 OP_VTRNR // VTRN, right result
8438 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
8439 unsigned OpNum = (PFEntry >> 26) & 0x0F;
8440 switch (OpNum) {
8441 case OP_COPY:
8442 case OP_VREV:
8443 case OP_VDUP0:
8444 case OP_VDUP1:
8445 case OP_VDUP2:
8446 case OP_VDUP3:
8447 return true;
8449 return false;
8452 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8453 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8454 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8455 /// are assumed to be legal.
8456 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
8457 if (VT.getVectorNumElements() == 4 &&
8458 (VT.is128BitVector() || VT.is64BitVector())) {
8459 unsigned PFIndexes[4];
8460 for (unsigned i = 0; i != 4; ++i) {
8461 if (M[i] < 0)
8462 PFIndexes[i] = 8;
8463 else
8464 PFIndexes[i] = M[i];
8467 // Compute the index in the perfect shuffle table.
8468 unsigned PFTableIndex =
8469 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8470 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8471 unsigned Cost = (PFEntry >> 30);
8473 if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
8474 return true;
8477 bool ReverseVEXT, isV_UNDEF;
8478 unsigned Imm, WhichResult;
8480 unsigned EltSize = VT.getScalarSizeInBits();
8481 if (EltSize >= 32 ||
8482 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8483 ShuffleVectorInst::isIdentityMask(M, M.size()) ||
8484 isVREVMask(M, VT, 64) ||
8485 isVREVMask(M, VT, 32) ||
8486 isVREVMask(M, VT, 16))
8487 return true;
8488 else if (Subtarget->hasNEON() &&
8489 (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
8490 isVTBLMask(M, VT) ||
8491 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
8492 return true;
8493 else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8494 isReverseMask(M, VT))
8495 return true;
8496 else if (Subtarget->hasMVEIntegerOps() &&
8497 (isVMOVNMask(M, VT, true, false) ||
8498 isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true)))
8499 return true;
8500 else if (Subtarget->hasMVEIntegerOps() &&
8501 (isTruncMask(M, VT, false, false) ||
8502 isTruncMask(M, VT, false, true) ||
8503 isTruncMask(M, VT, true, false) || isTruncMask(M, VT, true, true)))
8504 return true;
8505 else
8506 return false;
8509 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8510 /// the specified operations to build the shuffle.
8511 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8512 SDValue RHS, SelectionDAG &DAG,
8513 const SDLoc &dl) {
8514 unsigned OpNum = (PFEntry >> 26) & 0x0F;
8515 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8516 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8518 if (OpNum == OP_COPY) {
8519 if (LHSID == (1*9+2)*9+3) return LHS;
8520 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8521 return RHS;
8524 SDValue OpLHS, OpRHS;
8525 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8526 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8527 EVT VT = OpLHS.getValueType();
8529 switch (OpNum) {
8530 default: llvm_unreachable("Unknown shuffle opcode!");
8531 case OP_VREV:
8532 // VREV divides the vector in half and swaps within the half.
8533 if (VT.getScalarSizeInBits() == 32)
8534 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
8535 // vrev <4 x i16> -> VREV32
8536 if (VT.getScalarSizeInBits() == 16)
8537 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
8538 // vrev <4 x i8> -> VREV16
8539 assert(VT.getScalarSizeInBits() == 8);
8540 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
8541 case OP_VDUP0:
8542 case OP_VDUP1:
8543 case OP_VDUP2:
8544 case OP_VDUP3:
8545 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8546 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
8547 case OP_VEXT1:
8548 case OP_VEXT2:
8549 case OP_VEXT3:
8550 return DAG.getNode(ARMISD::VEXT, dl, VT,
8551 OpLHS, OpRHS,
8552 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8553 case OP_VUZPL:
8554 case OP_VUZPR:
8555 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8556 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8557 case OP_VZIPL:
8558 case OP_VZIPR:
8559 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8560 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8561 case OP_VTRNL:
8562 case OP_VTRNR:
8563 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8564 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8568 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8569 ArrayRef<int> ShuffleMask,
8570 SelectionDAG &DAG) {
8571 // Check to see if we can use the VTBL instruction.
8572 SDValue V1 = Op.getOperand(0);
8573 SDValue V2 = Op.getOperand(1);
8574 SDLoc DL(Op);
8576 SmallVector<SDValue, 8> VTBLMask;
8577 for (int I : ShuffleMask)
8578 VTBLMask.push_back(DAG.getSignedConstant(I, DL, MVT::i32));
8580 if (V2.getNode()->isUndef())
8581 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8582 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8584 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8585 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8588 static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
8589 SDLoc DL(Op);
8590 EVT VT = Op.getValueType();
8592 assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8593 "Expect an v8i16/v16i8 type");
8594 SDValue OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, Op.getOperand(0));
8595 // For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now,
8596 // extract the first 8 bytes into the top double word and the last 8 bytes
8597 // into the bottom double word, through a new vector shuffle that will be
8598 // turned into a VEXT on Neon, or a couple of VMOVDs on MVE.
8599 std::vector<int> NewMask;
8600 for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8601 NewMask.push_back(VT.getVectorNumElements() / 2 + i);
8602 for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8603 NewMask.push_back(i);
8604 return DAG.getVectorShuffle(VT, DL, OpLHS, OpLHS, NewMask);
8607 static EVT getVectorTyFromPredicateVector(EVT VT) {
8608 switch (VT.getSimpleVT().SimpleTy) {
8609 case MVT::v2i1:
8610 return MVT::v2f64;
8611 case MVT::v4i1:
8612 return MVT::v4i32;
8613 case MVT::v8i1:
8614 return MVT::v8i16;
8615 case MVT::v16i1:
8616 return MVT::v16i8;
8617 default:
8618 llvm_unreachable("Unexpected vector predicate type");
8622 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8623 SelectionDAG &DAG) {
8624 // Converting from boolean predicates to integers involves creating a vector
8625 // of all ones or all zeroes and selecting the lanes based upon the real
8626 // predicate.
8627 SDValue AllOnes =
8628 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8629 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8631 SDValue AllZeroes =
8632 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8633 AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8635 // Get full vector type from predicate type
8636 EVT NewVT = getVectorTyFromPredicateVector(VT);
8638 SDValue RecastV1;
8639 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8640 // this to a v16i1. This cannot be done with an ordinary bitcast because the
8641 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8642 // since we know in hardware the sizes are really the same.
8643 if (VT != MVT::v16i1)
8644 RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8645 else
8646 RecastV1 = Pred;
8648 // Select either all ones or zeroes depending upon the real predicate bits.
8649 SDValue PredAsVector =
8650 DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8652 // Recast our new predicate-as-integer v16i8 vector into something
8653 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8654 return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8657 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8658 const ARMSubtarget *ST) {
8659 EVT VT = Op.getValueType();
8660 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8661 ArrayRef<int> ShuffleMask = SVN->getMask();
8663 assert(ST->hasMVEIntegerOps() &&
8664 "No support for vector shuffle of boolean predicates");
8666 SDValue V1 = Op.getOperand(0);
8667 SDValue V2 = Op.getOperand(1);
8668 SDLoc dl(Op);
8669 if (isReverseMask(ShuffleMask, VT)) {
8670 SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8671 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8672 SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8673 DAG.getConstant(16, dl, MVT::i32));
8674 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8677 // Until we can come up with optimised cases for every single vector
8678 // shuffle in existence we have chosen the least painful strategy. This is
8679 // to essentially promote the boolean predicate to a 8-bit integer, where
8680 // each predicate represents a byte. Then we fall back on a normal integer
8681 // vector shuffle and convert the result back into a predicate vector. In
8682 // many cases the generated code might be even better than scalar code
8683 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8684 // fields in a register into 8 other arbitrary 2-bit fields!
8685 SDValue PredAsVector1 = PromoteMVEPredVector(dl, V1, VT, DAG);
8686 EVT NewVT = PredAsVector1.getValueType();
8687 SDValue PredAsVector2 = V2.isUndef() ? DAG.getUNDEF(NewVT)
8688 : PromoteMVEPredVector(dl, V2, VT, DAG);
8689 assert(PredAsVector2.getValueType() == NewVT &&
8690 "Expected identical vector type in expanded i1 shuffle!");
8692 // Do the shuffle!
8693 SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector1,
8694 PredAsVector2, ShuffleMask);
8696 // Now return the result of comparing the shuffled vector with zero,
8697 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1
8698 // we convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
8699 if (VT == MVT::v2i1) {
8700 SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Shuffled);
8701 SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC,
8702 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8703 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
8705 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8706 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8709 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8710 ArrayRef<int> ShuffleMask,
8711 SelectionDAG &DAG) {
8712 // Attempt to lower the vector shuffle using as many whole register movs as
8713 // possible. This is useful for types smaller than 32bits, which would
8714 // often otherwise become a series for grp movs.
8715 SDLoc dl(Op);
8716 EVT VT = Op.getValueType();
8717 if (VT.getScalarSizeInBits() >= 32)
8718 return SDValue();
8720 assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8721 "Unexpected vector type");
8722 int NumElts = VT.getVectorNumElements();
8723 int QuarterSize = NumElts / 4;
8724 // The four final parts of the vector, as i32's
8725 SDValue Parts[4];
8727 // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8728 // <u,u,u,u>), returning the vmov lane index
8729 auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8730 // Detect which mov lane this would be from the first non-undef element.
8731 int MovIdx = -1;
8732 for (int i = 0; i < Length; i++) {
8733 if (ShuffleMask[Start + i] >= 0) {
8734 if (ShuffleMask[Start + i] % Length != i)
8735 return -1;
8736 MovIdx = ShuffleMask[Start + i] / Length;
8737 break;
8740 // If all items are undef, leave this for other combines
8741 if (MovIdx == -1)
8742 return -1;
8743 // Check the remaining values are the correct part of the same mov
8744 for (int i = 1; i < Length; i++) {
8745 if (ShuffleMask[Start + i] >= 0 &&
8746 (ShuffleMask[Start + i] / Length != MovIdx ||
8747 ShuffleMask[Start + i] % Length != i))
8748 return -1;
8750 return MovIdx;
8753 for (int Part = 0; Part < 4; ++Part) {
8754 // Does this part look like a mov
8755 int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8756 if (Elt != -1) {
8757 SDValue Input = Op->getOperand(0);
8758 if (Elt >= 4) {
8759 Input = Op->getOperand(1);
8760 Elt -= 4;
8762 SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input);
8763 Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast,
8764 DAG.getConstant(Elt, dl, MVT::i32));
8768 // Nothing interesting found, just return
8769 if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8770 return SDValue();
8772 // The other parts need to be built with the old shuffle vector, cast to a
8773 // v4i32 and extract_vector_elts
8774 if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8775 SmallVector<int, 16> NewShuffleMask;
8776 for (int Part = 0; Part < 4; ++Part)
8777 for (int i = 0; i < QuarterSize; i++)
8778 NewShuffleMask.push_back(
8779 Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8780 SDValue NewShuffle = DAG.getVectorShuffle(
8781 VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8782 SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle);
8784 for (int Part = 0; Part < 4; ++Part)
8785 if (!Parts[Part])
8786 Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32,
8787 BitCast, DAG.getConstant(Part, dl, MVT::i32));
8789 // Build a vector out of the various parts and bitcast it back to the original
8790 // type.
8791 SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts);
8792 return DAG.getBitcast(VT, NewVec);
8795 static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,
8796 ArrayRef<int> ShuffleMask,
8797 SelectionDAG &DAG) {
8798 SDValue V1 = Op.getOperand(0);
8799 SDValue V2 = Op.getOperand(1);
8800 EVT VT = Op.getValueType();
8801 unsigned NumElts = VT.getVectorNumElements();
8803 // An One-Off Identity mask is one that is mostly an identity mask from as
8804 // single source but contains a single element out-of-place, either from a
8805 // different vector or from another position in the same vector. As opposed to
8806 // lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
8807 // pair directly.
8808 auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset,
8809 int &OffElement) {
8810 OffElement = -1;
8811 int NonUndef = 0;
8812 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
8813 if (Mask[i] == -1)
8814 continue;
8815 NonUndef++;
8816 if (Mask[i] != i + BaseOffset) {
8817 if (OffElement == -1)
8818 OffElement = i;
8819 else
8820 return false;
8823 return NonUndef > 2 && OffElement != -1;
8825 int OffElement;
8826 SDValue VInput;
8827 if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
8828 VInput = V1;
8829 else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
8830 VInput = V2;
8831 else
8832 return SDValue();
8834 SDLoc dl(Op);
8835 EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16
8836 ? MVT::i32
8837 : VT.getScalarType();
8838 SDValue Elt = DAG.getNode(
8839 ISD::EXTRACT_VECTOR_ELT, dl, SVT,
8840 ShuffleMask[OffElement] < (int)NumElts ? V1 : V2,
8841 DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl));
8842 return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt,
8843 DAG.getVectorIdxConstant(OffElement % NumElts, dl));
8846 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8847 const ARMSubtarget *ST) {
8848 SDValue V1 = Op.getOperand(0);
8849 SDValue V2 = Op.getOperand(1);
8850 SDLoc dl(Op);
8851 EVT VT = Op.getValueType();
8852 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8853 unsigned EltSize = VT.getScalarSizeInBits();
8855 if (ST->hasMVEIntegerOps() && EltSize == 1)
8856 return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8858 // Convert shuffles that are directly supported on NEON to target-specific
8859 // DAG nodes, instead of keeping them as shuffles and matching them again
8860 // during code selection. This is more efficient and avoids the possibility
8861 // of inconsistencies between legalization and selection.
8862 // FIXME: floating-point vectors should be canonicalized to integer vectors
8863 // of the same time so that they get CSEd properly.
8864 ArrayRef<int> ShuffleMask = SVN->getMask();
8866 if (EltSize <= 32) {
8867 if (SVN->isSplat()) {
8868 int Lane = SVN->getSplatIndex();
8869 // If this is undef splat, generate it via "just" vdup, if possible.
8870 if (Lane == -1) Lane = 0;
8872 // Test if V1 is a SCALAR_TO_VECTOR.
8873 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8874 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8876 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8877 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8878 // reaches it).
8879 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8880 !isa<ConstantSDNode>(V1.getOperand(0))) {
8881 bool IsScalarToVector = true;
8882 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8883 if (!V1.getOperand(i).isUndef()) {
8884 IsScalarToVector = false;
8885 break;
8887 if (IsScalarToVector)
8888 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8890 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8891 DAG.getConstant(Lane, dl, MVT::i32));
8894 bool ReverseVEXT = false;
8895 unsigned Imm = 0;
8896 if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8897 if (ReverseVEXT)
8898 std::swap(V1, V2);
8899 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8900 DAG.getConstant(Imm, dl, MVT::i32));
8903 if (isVREVMask(ShuffleMask, VT, 64))
8904 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8905 if (isVREVMask(ShuffleMask, VT, 32))
8906 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8907 if (isVREVMask(ShuffleMask, VT, 16))
8908 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8910 if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8911 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8912 DAG.getConstant(Imm, dl, MVT::i32));
8915 // Check for Neon shuffles that modify both input vectors in place.
8916 // If both results are used, i.e., if there are two shuffles with the same
8917 // source operands and with masks corresponding to both results of one of
8918 // these operations, DAG memoization will ensure that a single node is
8919 // used for both shuffles.
8920 unsigned WhichResult = 0;
8921 bool isV_UNDEF = false;
8922 if (ST->hasNEON()) {
8923 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8924 ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8925 if (isV_UNDEF)
8926 V2 = V1;
8927 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8928 .getValue(WhichResult);
8931 if (ST->hasMVEIntegerOps()) {
8932 if (isVMOVNMask(ShuffleMask, VT, false, false))
8933 return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8934 DAG.getConstant(0, dl, MVT::i32));
8935 if (isVMOVNMask(ShuffleMask, VT, true, false))
8936 return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8937 DAG.getConstant(1, dl, MVT::i32));
8938 if (isVMOVNMask(ShuffleMask, VT, true, true))
8939 return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1,
8940 DAG.getConstant(1, dl, MVT::i32));
8943 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8944 // shuffles that produce a result larger than their operands with:
8945 // shuffle(concat(v1, undef), concat(v2, undef))
8946 // ->
8947 // shuffle(concat(v1, v2), undef)
8948 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8950 // This is useful in the general case, but there are special cases where
8951 // native shuffles produce larger results: the two-result ops.
8953 // Look through the concat when lowering them:
8954 // shuffle(concat(v1, v2), undef)
8955 // ->
8956 // concat(VZIP(v1, v2):0, :1)
8958 if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8959 SDValue SubV1 = V1->getOperand(0);
8960 SDValue SubV2 = V1->getOperand(1);
8961 EVT SubVT = SubV1.getValueType();
8963 // We expect these to have been canonicalized to -1.
8964 assert(llvm::all_of(ShuffleMask, [&](int i) {
8965 return i < (int)VT.getVectorNumElements();
8966 }) && "Unexpected shuffle index into UNDEF operand!");
8968 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8969 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8970 if (isV_UNDEF)
8971 SubV2 = SubV1;
8972 assert((WhichResult == 0) &&
8973 "In-place shuffle of concat can only have one result!");
8974 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8975 SubV1, SubV2);
8976 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8977 Res.getValue(1));
8982 if (ST->hasMVEIntegerOps() && EltSize <= 32) {
8983 if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG))
8984 return V;
8986 for (bool Top : {false, true}) {
8987 for (bool SingleSource : {false, true}) {
8988 if (isTruncMask(ShuffleMask, VT, Top, SingleSource)) {
8989 MVT FromSVT = MVT::getIntegerVT(EltSize * 2);
8990 MVT FromVT = MVT::getVectorVT(FromSVT, ShuffleMask.size() / 2);
8991 SDValue Lo = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT, V1);
8992 SDValue Hi = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, FromVT,
8993 SingleSource ? V1 : V2);
8994 if (Top) {
8995 SDValue Amt = DAG.getConstant(EltSize, dl, FromVT);
8996 Lo = DAG.getNode(ISD::SRL, dl, FromVT, Lo, Amt);
8997 Hi = DAG.getNode(ISD::SRL, dl, FromVT, Hi, Amt);
8999 return DAG.getNode(ARMISD::MVETRUNC, dl, VT, Lo, Hi);
9005 // If the shuffle is not directly supported and it has 4 elements, use
9006 // the PerfectShuffle-generated table to synthesize it from other shuffles.
9007 unsigned NumElts = VT.getVectorNumElements();
9008 if (NumElts == 4) {
9009 unsigned PFIndexes[4];
9010 for (unsigned i = 0; i != 4; ++i) {
9011 if (ShuffleMask[i] < 0)
9012 PFIndexes[i] = 8;
9013 else
9014 PFIndexes[i] = ShuffleMask[i];
9017 // Compute the index in the perfect shuffle table.
9018 unsigned PFTableIndex =
9019 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9020 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9021 unsigned Cost = (PFEntry >> 30);
9023 if (Cost <= 4) {
9024 if (ST->hasNEON())
9025 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9026 else if (isLegalMVEShuffleOp(PFEntry)) {
9027 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9028 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
9029 unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
9030 unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
9031 if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
9032 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9037 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
9038 if (EltSize >= 32) {
9039 // Do the expansion with floating-point types, since that is what the VFP
9040 // registers are defined to use, and since i64 is not legal.
9041 EVT EltVT = EVT::getFloatingPointVT(EltSize);
9042 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
9043 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
9044 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
9045 SmallVector<SDValue, 8> Ops;
9046 for (unsigned i = 0; i < NumElts; ++i) {
9047 if (ShuffleMask[i] < 0)
9048 Ops.push_back(DAG.getUNDEF(EltVT));
9049 else
9050 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
9051 ShuffleMask[i] < (int)NumElts ? V1 : V2,
9052 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
9053 dl, MVT::i32)));
9055 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
9056 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
9059 if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
9060 isReverseMask(ShuffleMask, VT))
9061 return LowerReverse_VECTOR_SHUFFLE(Op, DAG);
9063 if (ST->hasNEON() && VT == MVT::v8i8)
9064 if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
9065 return NewOp;
9067 if (ST->hasMVEIntegerOps())
9068 if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
9069 return NewOp;
9071 return SDValue();
9074 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
9075 const ARMSubtarget *ST) {
9076 EVT VecVT = Op.getOperand(0).getValueType();
9077 SDLoc dl(Op);
9079 assert(ST->hasMVEIntegerOps() &&
9080 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9082 SDValue Conv =
9083 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
9084 unsigned Lane = Op.getConstantOperandVal(2);
9085 unsigned LaneWidth =
9086 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
9087 unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
9088 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
9089 Op.getOperand(1), DAG.getValueType(MVT::i1));
9090 SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
9091 DAG.getConstant(~Mask, dl, MVT::i32));
9092 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
9095 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9096 SelectionDAG &DAG) const {
9097 // INSERT_VECTOR_ELT is legal only for immediate indexes.
9098 SDValue Lane = Op.getOperand(2);
9099 if (!isa<ConstantSDNode>(Lane))
9100 return SDValue();
9102 SDValue Elt = Op.getOperand(1);
9103 EVT EltVT = Elt.getValueType();
9105 if (Subtarget->hasMVEIntegerOps() &&
9106 Op.getValueType().getScalarSizeInBits() == 1)
9107 return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
9109 if (getTypeAction(*DAG.getContext(), EltVT) ==
9110 TargetLowering::TypeSoftPromoteHalf) {
9111 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
9112 // but the type system will try to do that if we don't intervene.
9113 // Reinterpret any such vector-element insertion as one with the
9114 // corresponding integer types.
9116 SDLoc dl(Op);
9118 EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
9119 assert(getTypeAction(*DAG.getContext(), IEltVT) !=
9120 TargetLowering::TypeSoftPromoteHalf);
9122 SDValue VecIn = Op.getOperand(0);
9123 EVT VecVT = VecIn.getValueType();
9124 EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
9125 VecVT.getVectorNumElements());
9127 SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
9128 SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
9129 SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
9130 IVecIn, IElt, Lane);
9131 return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
9134 return Op;
9137 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
9138 const ARMSubtarget *ST) {
9139 EVT VecVT = Op.getOperand(0).getValueType();
9140 SDLoc dl(Op);
9142 assert(ST->hasMVEIntegerOps() &&
9143 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
9145 SDValue Conv =
9146 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
9147 unsigned Lane = Op.getConstantOperandVal(1);
9148 unsigned LaneWidth =
9149 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
9150 SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
9151 DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
9152 return Shift;
9155 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
9156 const ARMSubtarget *ST) {
9157 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
9158 SDValue Lane = Op.getOperand(1);
9159 if (!isa<ConstantSDNode>(Lane))
9160 return SDValue();
9162 SDValue Vec = Op.getOperand(0);
9163 EVT VT = Vec.getValueType();
9165 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9166 return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
9168 if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
9169 SDLoc dl(Op);
9170 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
9173 return Op;
9176 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
9177 const ARMSubtarget *ST) {
9178 SDLoc dl(Op);
9179 assert(Op.getValueType().getScalarSizeInBits() == 1 &&
9180 "Unexpected custom CONCAT_VECTORS lowering");
9181 assert(isPowerOf2_32(Op.getNumOperands()) &&
9182 "Unexpected custom CONCAT_VECTORS lowering");
9183 assert(ST->hasMVEIntegerOps() &&
9184 "CONCAT_VECTORS lowering only supported for MVE");
9186 auto ConcatPair = [&](SDValue V1, SDValue V2) {
9187 EVT Op1VT = V1.getValueType();
9188 EVT Op2VT = V2.getValueType();
9189 assert(Op1VT == Op2VT && "Operand types don't match!");
9190 assert((Op1VT == MVT::v2i1 || Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) &&
9191 "Unexpected i1 concat operations!");
9192 EVT VT = Op1VT.getDoubleNumVectorElementsVT(*DAG.getContext());
9194 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9195 SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
9197 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
9198 // promoted to v8i16, etc.
9199 MVT ElType =
9200 getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9201 unsigned NumElts = 2 * Op1VT.getVectorNumElements();
9203 EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
9204 if (Op1VT == MVT::v4i1 || Op1VT == MVT::v8i1) {
9205 // Use MVETRUNC to truncate the combined NewV1::NewV2 into the smaller
9206 // ConcatVT.
9207 SDValue ConVec =
9208 DAG.getNode(ARMISD::MVETRUNC, dl, ConcatVT, NewV1, NewV2);
9209 return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9210 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9213 // Extract the vector elements from Op1 and Op2 one by one and truncate them
9214 // to be the right size for the destination. For example, if Op1 is v4i1
9215 // then the promoted vector is v4i32. The result of concatenation gives a
9216 // v8i1, which when promoted is v8i16. That means each i32 element from Op1
9217 // needs truncating to i16 and inserting in the result.
9218 auto ExtractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
9219 EVT NewVT = NewV.getValueType();
9220 EVT ConcatVT = ConVec.getValueType();
9221 unsigned ExtScale = 1;
9222 if (NewVT == MVT::v2f64) {
9223 NewV = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, NewV);
9224 ExtScale = 2;
9226 for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
9227 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
9228 DAG.getIntPtrConstant(i * ExtScale, dl));
9229 ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
9230 DAG.getConstant(j, dl, MVT::i32));
9232 return ConVec;
9234 unsigned j = 0;
9235 SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
9236 ConVec = ExtractInto(NewV1, ConVec, j);
9237 ConVec = ExtractInto(NewV2, ConVec, j);
9239 // Now return the result of comparing the subvector with zero, which will
9240 // generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9241 return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9242 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9245 // Concat each pair of subvectors and pack into the lower half of the array.
9246 SmallVector<SDValue> ConcatOps(Op->ops());
9247 while (ConcatOps.size() > 1) {
9248 for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
9249 SDValue V1 = ConcatOps[I];
9250 SDValue V2 = ConcatOps[I + 1];
9251 ConcatOps[I / 2] = ConcatPair(V1, V2);
9253 ConcatOps.resize(ConcatOps.size() / 2);
9255 return ConcatOps[0];
9258 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
9259 const ARMSubtarget *ST) {
9260 EVT VT = Op->getValueType(0);
9261 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9262 return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
9264 // The only time a CONCAT_VECTORS operation can have legal types is when
9265 // two 64-bit vectors are concatenated to a 128-bit vector.
9266 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
9267 "unexpected CONCAT_VECTORS");
9268 SDLoc dl(Op);
9269 SDValue Val = DAG.getUNDEF(MVT::v2f64);
9270 SDValue Op0 = Op.getOperand(0);
9271 SDValue Op1 = Op.getOperand(1);
9272 if (!Op0.isUndef())
9273 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9274 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
9275 DAG.getIntPtrConstant(0, dl));
9276 if (!Op1.isUndef())
9277 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9278 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
9279 DAG.getIntPtrConstant(1, dl));
9280 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
9283 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
9284 const ARMSubtarget *ST) {
9285 SDValue V1 = Op.getOperand(0);
9286 SDValue V2 = Op.getOperand(1);
9287 SDLoc dl(Op);
9288 EVT VT = Op.getValueType();
9289 EVT Op1VT = V1.getValueType();
9290 unsigned NumElts = VT.getVectorNumElements();
9291 unsigned Index = V2->getAsZExtVal();
9293 assert(VT.getScalarSizeInBits() == 1 &&
9294 "Unexpected custom EXTRACT_SUBVECTOR lowering");
9295 assert(ST->hasMVEIntegerOps() &&
9296 "EXTRACT_SUBVECTOR lowering only supported for MVE");
9298 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9300 // We now have Op1 promoted to a vector of integers, where v8i1 gets
9301 // promoted to v8i16, etc.
9303 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9305 if (NumElts == 2) {
9306 EVT SubVT = MVT::v4i32;
9307 SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9308 for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j += 2) {
9309 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9310 DAG.getIntPtrConstant(i, dl));
9311 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9312 DAG.getConstant(j, dl, MVT::i32));
9313 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9314 DAG.getConstant(j + 1, dl, MVT::i32));
9316 SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, SubVec,
9317 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9318 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
9321 EVT SubVT = MVT::getVectorVT(ElType, NumElts);
9322 SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9323 for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
9324 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9325 DAG.getIntPtrConstant(i, dl));
9326 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9327 DAG.getConstant(j, dl, MVT::i32));
9330 // Now return the result of comparing the subvector with zero,
9331 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9332 return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
9333 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9336 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
9337 static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG,
9338 const ARMSubtarget *ST) {
9339 assert(ST->hasMVEIntegerOps() && "Expected MVE!");
9340 EVT VT = N->getValueType(0);
9341 assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
9342 "Expected a vector i1 type!");
9343 SDValue Op = N->getOperand(0);
9344 EVT FromVT = Op.getValueType();
9345 SDLoc DL(N);
9347 SDValue And =
9348 DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
9349 return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
9350 DAG.getCondCode(ISD::SETNE));
9353 static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG,
9354 const ARMSubtarget *Subtarget) {
9355 if (!Subtarget->hasMVEIntegerOps())
9356 return SDValue();
9358 EVT ToVT = N->getValueType(0);
9359 if (ToVT.getScalarType() == MVT::i1)
9360 return LowerTruncatei1(N, DAG, Subtarget);
9362 // MVE does not have a single instruction to perform the truncation of a v4i32
9363 // into the lower half of a v8i16, in the same way that a NEON vmovn would.
9364 // Most of the instructions in MVE follow the 'Beats' system, where moving
9365 // values from different lanes is usually something that the instructions
9366 // avoid.
9368 // Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B,
9369 // which take a the top/bottom half of a larger lane and extend it (or do the
9370 // opposite, truncating into the top/bottom lane from a larger lane). Note
9371 // that because of the way we widen lanes, a v4i16 is really a v4i32 using the
9372 // bottom 16bits from each vector lane. This works really well with T/B
9373 // instructions, but that doesn't extend to v8i32->v8i16 where the lanes need
9374 // to move order.
9376 // But truncates and sext/zext are always going to be fairly common from llvm.
9377 // We have several options for how to deal with them:
9378 // - Wherever possible combine them into an instruction that makes them
9379 // "free". This includes loads/stores, which can perform the trunc as part
9380 // of the memory operation. Or certain shuffles that can be turned into
9381 // VMOVN/VMOVL.
9382 // - Lane Interleaving to transform blocks surrounded by ext/trunc. So
9383 // trunc(mul(sext(a), sext(b))) may become
9384 // VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in
9385 // this case can use VMULL). This is performed in the
9386 // MVELaneInterleavingPass.
9387 // - Otherwise we have an option. By default we would expand the
9388 // zext/sext/trunc into a series of lane extract/inserts going via GPR
9389 // registers. One for each vector lane in the vector. This can obviously be
9390 // very expensive.
9391 // - The other option is to use the fact that loads/store can extend/truncate
9392 // to turn a trunc into two truncating stack stores and a stack reload. This
9393 // becomes 3 back-to-back memory operations, but at least that is less than
9394 // all the insert/extracts.
9396 // In order to do the last, we convert certain trunc's into MVETRUNC, which
9397 // are either optimized where they can be, or eventually lowered into stack
9398 // stores/loads. This prevents us from splitting a v8i16 trunc into two stores
9399 // two early, where other instructions would be better, and stops us from
9400 // having to reconstruct multiple buildvector shuffles into loads/stores.
9401 if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8)
9402 return SDValue();
9403 EVT FromVT = N->getOperand(0).getValueType();
9404 if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16)
9405 return SDValue();
9407 SDValue Lo, Hi;
9408 std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9409 SDLoc DL(N);
9410 return DAG.getNode(ARMISD::MVETRUNC, DL, ToVT, Lo, Hi);
9413 static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG,
9414 const ARMSubtarget *Subtarget) {
9415 if (!Subtarget->hasMVEIntegerOps())
9416 return SDValue();
9418 // See LowerTruncate above for an explanation of MVEEXT/MVETRUNC.
9420 EVT ToVT = N->getValueType(0);
9421 if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16)
9422 return SDValue();
9423 SDValue Op = N->getOperand(0);
9424 EVT FromVT = Op.getValueType();
9425 if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8)
9426 return SDValue();
9428 SDLoc DL(N);
9429 EVT ExtVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
9430 if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8)
9431 ExtVT = MVT::v8i16;
9433 unsigned Opcode =
9434 N->getOpcode() == ISD::SIGN_EXTEND ? ARMISD::MVESEXT : ARMISD::MVEZEXT;
9435 SDValue Ext = DAG.getNode(Opcode, DL, DAG.getVTList(ExtVT, ExtVT), Op);
9436 SDValue Ext1 = Ext.getValue(1);
9438 if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) {
9439 Ext = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext);
9440 Ext1 = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext1);
9443 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Ext, Ext1);
9446 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
9447 /// element has been zero/sign-extended, depending on the isSigned parameter,
9448 /// from an integer type half its size.
9449 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
9450 bool isSigned) {
9451 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
9452 EVT VT = N->getValueType(0);
9453 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
9454 SDNode *BVN = N->getOperand(0).getNode();
9455 if (BVN->getValueType(0) != MVT::v4i32 ||
9456 BVN->getOpcode() != ISD::BUILD_VECTOR)
9457 return false;
9458 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9459 unsigned HiElt = 1 - LoElt;
9460 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
9461 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
9462 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
9463 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
9464 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
9465 return false;
9466 if (isSigned) {
9467 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
9468 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
9469 return true;
9470 } else {
9471 if (Hi0->isZero() && Hi1->isZero())
9472 return true;
9474 return false;
9477 if (N->getOpcode() != ISD::BUILD_VECTOR)
9478 return false;
9480 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9481 SDNode *Elt = N->getOperand(i).getNode();
9482 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
9483 unsigned EltSize = VT.getScalarSizeInBits();
9484 unsigned HalfSize = EltSize / 2;
9485 if (isSigned) {
9486 if (!isIntN(HalfSize, C->getSExtValue()))
9487 return false;
9488 } else {
9489 if (!isUIntN(HalfSize, C->getZExtValue()))
9490 return false;
9492 continue;
9494 return false;
9497 return true;
9500 /// isSignExtended - Check if a node is a vector value that is sign-extended
9501 /// or a constant BUILD_VECTOR with sign-extended elements.
9502 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
9503 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
9504 return true;
9505 if (isExtendedBUILD_VECTOR(N, DAG, true))
9506 return true;
9507 return false;
9510 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or
9511 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
9512 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
9513 if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
9514 ISD::isZEXTLoad(N))
9515 return true;
9516 if (isExtendedBUILD_VECTOR(N, DAG, false))
9517 return true;
9518 return false;
9521 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
9522 if (OrigVT.getSizeInBits() >= 64)
9523 return OrigVT;
9525 assert(OrigVT.isSimple() && "Expecting a simple value type");
9527 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
9528 switch (OrigSimpleTy) {
9529 default: llvm_unreachable("Unexpected Vector Type");
9530 case MVT::v2i8:
9531 case MVT::v2i16:
9532 return MVT::v2i32;
9533 case MVT::v4i8:
9534 return MVT::v4i16;
9538 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
9539 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
9540 /// We insert the required extension here to get the vector to fill a D register.
9541 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
9542 const EVT &OrigTy,
9543 const EVT &ExtTy,
9544 unsigned ExtOpcode) {
9545 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
9546 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
9547 // 64-bits we need to insert a new extension so that it will be 64-bits.
9548 assert(ExtTy.is128BitVector() && "Unexpected extension size");
9549 if (OrigTy.getSizeInBits() >= 64)
9550 return N;
9552 // Must extend size to at least 64 bits to be used as an operand for VMULL.
9553 EVT NewVT = getExtensionTo64Bits(OrigTy);
9555 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
9558 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
9559 /// does not do any sign/zero extension. If the original vector is less
9560 /// than 64 bits, an appropriate extension will be added after the load to
9561 /// reach a total size of 64 bits. We have to add the extension separately
9562 /// because ARM does not have a sign/zero extending load for vectors.
9563 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
9564 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
9566 // The load already has the right type.
9567 if (ExtendedTy == LD->getMemoryVT())
9568 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
9569 LD->getBasePtr(), LD->getPointerInfo(), LD->getAlign(),
9570 LD->getMemOperand()->getFlags());
9572 // We need to create a zextload/sextload. We cannot just create a load
9573 // followed by a zext/zext node because LowerMUL is also run during normal
9574 // operation legalization where we can't create illegal types.
9575 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
9576 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
9577 LD->getMemoryVT(), LD->getAlign(),
9578 LD->getMemOperand()->getFlags());
9581 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
9582 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
9583 /// the unextended value. The unextended vector should be 64 bits so that it can
9584 /// be used as an operand to a VMULL instruction. If the original vector size
9585 /// before extension is less than 64 bits we add a an extension to resize
9586 /// the vector to 64 bits.
9587 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
9588 if (N->getOpcode() == ISD::SIGN_EXTEND ||
9589 N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
9590 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
9591 N->getOperand(0)->getValueType(0),
9592 N->getValueType(0),
9593 N->getOpcode());
9595 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9596 assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
9597 "Expected extending load");
9599 SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
9600 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
9601 unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9602 SDValue extLoad =
9603 DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
9604 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
9606 return newLoad;
9609 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
9610 // have been legalized as a BITCAST from v4i32.
9611 if (N->getOpcode() == ISD::BITCAST) {
9612 SDNode *BVN = N->getOperand(0).getNode();
9613 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
9614 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
9615 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9616 return DAG.getBuildVector(
9617 MVT::v2i32, SDLoc(N),
9618 {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
9620 // Construct a new BUILD_VECTOR with elements truncated to half the size.
9621 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
9622 EVT VT = N->getValueType(0);
9623 unsigned EltSize = VT.getScalarSizeInBits() / 2;
9624 unsigned NumElts = VT.getVectorNumElements();
9625 MVT TruncVT = MVT::getIntegerVT(EltSize);
9626 SmallVector<SDValue, 8> Ops;
9627 SDLoc dl(N);
9628 for (unsigned i = 0; i != NumElts; ++i) {
9629 const APInt &CInt = N->getConstantOperandAPInt(i);
9630 // Element types smaller than 32 bits are not legal, so use i32 elements.
9631 // The values are implicitly truncated so sext vs. zext doesn't matter.
9632 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
9634 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
9637 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
9638 unsigned Opcode = N->getOpcode();
9639 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9640 SDNode *N0 = N->getOperand(0).getNode();
9641 SDNode *N1 = N->getOperand(1).getNode();
9642 return N0->hasOneUse() && N1->hasOneUse() &&
9643 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
9645 return false;
9648 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
9649 unsigned Opcode = N->getOpcode();
9650 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9651 SDNode *N0 = N->getOperand(0).getNode();
9652 SDNode *N1 = N->getOperand(1).getNode();
9653 return N0->hasOneUse() && N1->hasOneUse() &&
9654 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
9656 return false;
9659 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
9660 // Multiplications are only custom-lowered for 128-bit vectors so that
9661 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
9662 EVT VT = Op.getValueType();
9663 assert(VT.is128BitVector() && VT.isInteger() &&
9664 "unexpected type for custom-lowering ISD::MUL");
9665 SDNode *N0 = Op.getOperand(0).getNode();
9666 SDNode *N1 = Op.getOperand(1).getNode();
9667 unsigned NewOpc = 0;
9668 bool isMLA = false;
9669 bool isN0SExt = isSignExtended(N0, DAG);
9670 bool isN1SExt = isSignExtended(N1, DAG);
9671 if (isN0SExt && isN1SExt)
9672 NewOpc = ARMISD::VMULLs;
9673 else {
9674 bool isN0ZExt = isZeroExtended(N0, DAG);
9675 bool isN1ZExt = isZeroExtended(N1, DAG);
9676 if (isN0ZExt && isN1ZExt)
9677 NewOpc = ARMISD::VMULLu;
9678 else if (isN1SExt || isN1ZExt) {
9679 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
9680 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
9681 if (isN1SExt && isAddSubSExt(N0, DAG)) {
9682 NewOpc = ARMISD::VMULLs;
9683 isMLA = true;
9684 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
9685 NewOpc = ARMISD::VMULLu;
9686 isMLA = true;
9687 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
9688 std::swap(N0, N1);
9689 NewOpc = ARMISD::VMULLu;
9690 isMLA = true;
9694 if (!NewOpc) {
9695 if (VT == MVT::v2i64)
9696 // Fall through to expand this. It is not legal.
9697 return SDValue();
9698 else
9699 // Other vector multiplications are legal.
9700 return Op;
9704 // Legalize to a VMULL instruction.
9705 SDLoc DL(Op);
9706 SDValue Op0;
9707 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
9708 if (!isMLA) {
9709 Op0 = SkipExtensionForVMULL(N0, DAG);
9710 assert(Op0.getValueType().is64BitVector() &&
9711 Op1.getValueType().is64BitVector() &&
9712 "unexpected types for extended operands to VMULL");
9713 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
9716 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
9717 // isel lowering to take advantage of no-stall back to back vmul + vmla.
9718 // vmull q0, d4, d6
9719 // vmlal q0, d5, d6
9720 // is faster than
9721 // vaddl q0, d4, d5
9722 // vmovl q1, d6
9723 // vmul q0, q0, q1
9724 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
9725 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
9726 EVT Op1VT = Op1.getValueType();
9727 return DAG.getNode(N0->getOpcode(), DL, VT,
9728 DAG.getNode(NewOpc, DL, VT,
9729 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
9730 DAG.getNode(NewOpc, DL, VT,
9731 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
9734 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
9735 SelectionDAG &DAG) {
9736 // TODO: Should this propagate fast-math-flags?
9738 // Convert to float
9739 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
9740 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
9741 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
9742 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
9743 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
9744 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
9745 // Get reciprocal estimate.
9746 // float4 recip = vrecpeq_f32(yf);
9747 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9748 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9750 // Because char has a smaller range than uchar, we can actually get away
9751 // without any newton steps. This requires that we use a weird bias
9752 // of 0xb000, however (again, this has been exhaustively tested).
9753 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
9754 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
9755 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
9756 Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
9757 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
9758 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
9759 // Convert back to short.
9760 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
9761 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
9762 return X;
9765 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
9766 SelectionDAG &DAG) {
9767 // TODO: Should this propagate fast-math-flags?
9769 SDValue N2;
9770 // Convert to float.
9771 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
9772 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
9773 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
9774 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
9775 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9776 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9778 // Use reciprocal estimate and one refinement step.
9779 // float4 recip = vrecpeq_f32(yf);
9780 // recip *= vrecpsq_f32(yf, recip);
9781 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9782 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9783 N1);
9784 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9785 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9786 N1, N2);
9787 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9788 // Because short has a smaller range than ushort, we can actually get away
9789 // with only a single newton step. This requires that we use a weird bias
9790 // of 89, however (again, this has been exhaustively tested).
9791 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9792 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9793 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9794 N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9795 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9796 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9797 // Convert back to integer and return.
9798 // return vmovn_s32(vcvt_s32_f32(result));
9799 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9800 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9801 return N0;
9804 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9805 const ARMSubtarget *ST) {
9806 EVT VT = Op.getValueType();
9807 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9808 "unexpected type for custom-lowering ISD::SDIV");
9810 SDLoc dl(Op);
9811 SDValue N0 = Op.getOperand(0);
9812 SDValue N1 = Op.getOperand(1);
9813 SDValue N2, N3;
9815 if (VT == MVT::v8i8) {
9816 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9817 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9819 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9820 DAG.getIntPtrConstant(4, dl));
9821 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9822 DAG.getIntPtrConstant(4, dl));
9823 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9824 DAG.getIntPtrConstant(0, dl));
9825 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9826 DAG.getIntPtrConstant(0, dl));
9828 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9829 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9831 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9832 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9834 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9835 return N0;
9837 return LowerSDIV_v4i16(N0, N1, dl, DAG);
9840 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9841 const ARMSubtarget *ST) {
9842 // TODO: Should this propagate fast-math-flags?
9843 EVT VT = Op.getValueType();
9844 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9845 "unexpected type for custom-lowering ISD::UDIV");
9847 SDLoc dl(Op);
9848 SDValue N0 = Op.getOperand(0);
9849 SDValue N1 = Op.getOperand(1);
9850 SDValue N2, N3;
9852 if (VT == MVT::v8i8) {
9853 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9854 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9856 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9857 DAG.getIntPtrConstant(4, dl));
9858 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9859 DAG.getIntPtrConstant(4, dl));
9860 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9861 DAG.getIntPtrConstant(0, dl));
9862 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9863 DAG.getIntPtrConstant(0, dl));
9865 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9866 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9868 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9869 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9871 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9872 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9873 MVT::i32),
9874 N0);
9875 return N0;
9878 // v4i16 sdiv ... Convert to float.
9879 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9880 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9881 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9882 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9883 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9884 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9886 // Use reciprocal estimate and two refinement steps.
9887 // float4 recip = vrecpeq_f32(yf);
9888 // recip *= vrecpsq_f32(yf, recip);
9889 // recip *= vrecpsq_f32(yf, recip);
9890 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9891 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9892 BN1);
9893 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9894 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9895 BN1, N2);
9896 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9897 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9898 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9899 BN1, N2);
9900 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9901 // Simply multiplying by the reciprocal estimate can leave us a few ulps
9902 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9903 // and that it will never cause us to return an answer too large).
9904 // float4 result = as_float4(as_int4(xf*recip) + 2);
9905 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9906 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9907 N1 = DAG.getConstant(2, dl, MVT::v4i32);
9908 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9909 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9910 // Convert back to integer and return.
9911 // return vmovn_u32(vcvt_s32_f32(result));
9912 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9913 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9914 return N0;
9917 static SDValue LowerUADDSUBO_CARRY(SDValue Op, SelectionDAG &DAG) {
9918 SDNode *N = Op.getNode();
9919 EVT VT = N->getValueType(0);
9920 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9922 SDValue Carry = Op.getOperand(2);
9924 SDLoc DL(Op);
9926 SDValue Result;
9927 if (Op.getOpcode() == ISD::UADDO_CARRY) {
9928 // This converts the boolean value carry into the carry flag.
9929 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9931 // Do the addition proper using the carry flag we wanted.
9932 Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9933 Op.getOperand(1), Carry);
9935 // Now convert the carry flag into a boolean value.
9936 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9937 } else {
9938 // ARMISD::SUBE expects a carry not a borrow like ISD::USUBO_CARRY so we
9939 // have to invert the carry first.
9940 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9941 DAG.getConstant(1, DL, MVT::i32), Carry);
9942 // This converts the boolean value carry into the carry flag.
9943 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9945 // Do the subtraction proper using the carry flag we wanted.
9946 Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9947 Op.getOperand(1), Carry);
9949 // Now convert the carry flag into a boolean value.
9950 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9951 // But the carry returned by ARMISD::SUBE is not a borrow as expected
9952 // by ISD::USUBO_CARRY, so compute 1 - C.
9953 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9954 DAG.getConstant(1, DL, MVT::i32), Carry);
9957 // Return both values.
9958 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9961 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9962 assert(Subtarget->isTargetDarwin());
9964 // For iOS, we want to call an alternative entry point: __sincos_stret,
9965 // return values are passed via sret.
9966 SDLoc dl(Op);
9967 SDValue Arg = Op.getOperand(0);
9968 EVT ArgVT = Arg.getValueType();
9969 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9970 auto PtrVT = getPointerTy(DAG.getDataLayout());
9972 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9973 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9975 // Pair of floats / doubles used to pass the result.
9976 Type *RetTy = StructType::get(ArgTy, ArgTy);
9977 auto &DL = DAG.getDataLayout();
9979 ArgListTy Args;
9980 bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9981 SDValue SRet;
9982 if (ShouldUseSRet) {
9983 // Create stack object for sret.
9984 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9985 const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9986 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9987 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9989 ArgListEntry Entry;
9990 Entry.Node = SRet;
9991 Entry.Ty = PointerType::getUnqual(RetTy->getContext());
9992 Entry.IsSExt = false;
9993 Entry.IsZExt = false;
9994 Entry.IsSRet = true;
9995 Args.push_back(Entry);
9996 RetTy = Type::getVoidTy(*DAG.getContext());
9999 ArgListEntry Entry;
10000 Entry.Node = Arg;
10001 Entry.Ty = ArgTy;
10002 Entry.IsSExt = false;
10003 Entry.IsZExt = false;
10004 Args.push_back(Entry);
10006 RTLIB::Libcall LC =
10007 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
10008 const char *LibcallName = getLibcallName(LC);
10009 CallingConv::ID CC = getLibcallCallingConv(LC);
10010 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
10012 TargetLowering::CallLoweringInfo CLI(DAG);
10013 CLI.setDebugLoc(dl)
10014 .setChain(DAG.getEntryNode())
10015 .setCallee(CC, RetTy, Callee, std::move(Args))
10016 .setDiscardResult(ShouldUseSRet);
10017 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
10019 if (!ShouldUseSRet)
10020 return CallResult.first;
10022 SDValue LoadSin =
10023 DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
10025 // Address of cos field.
10026 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
10027 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
10028 SDValue LoadCos =
10029 DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
10031 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
10032 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
10033 LoadSin.getValue(0), LoadCos.getValue(0));
10036 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
10037 bool Signed,
10038 SDValue &Chain) const {
10039 EVT VT = Op.getValueType();
10040 assert((VT == MVT::i32 || VT == MVT::i64) &&
10041 "unexpected type for custom lowering DIV");
10042 SDLoc dl(Op);
10044 const auto &DL = DAG.getDataLayout();
10045 const auto &TLI = DAG.getTargetLoweringInfo();
10047 const char *Name = nullptr;
10048 if (Signed)
10049 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
10050 else
10051 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
10053 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
10055 ARMTargetLowering::ArgListTy Args;
10057 for (auto AI : {1, 0}) {
10058 ArgListEntry Arg;
10059 Arg.Node = Op.getOperand(AI);
10060 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
10061 Args.push_back(Arg);
10064 CallLoweringInfo CLI(DAG);
10065 CLI.setDebugLoc(dl)
10066 .setChain(Chain)
10067 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
10068 ES, std::move(Args));
10070 return LowerCallTo(CLI).first;
10073 // This is a code size optimisation: return the original SDIV node to
10074 // DAGCombiner when we don't want to expand SDIV into a sequence of
10075 // instructions, and an empty node otherwise which will cause the
10076 // SDIV to be expanded in DAGCombine.
10077 SDValue
10078 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
10079 SelectionDAG &DAG,
10080 SmallVectorImpl<SDNode *> &Created) const {
10081 // TODO: Support SREM
10082 if (N->getOpcode() != ISD::SDIV)
10083 return SDValue();
10085 const auto &ST = DAG.getSubtarget<ARMSubtarget>();
10086 const bool MinSize = ST.hasMinSize();
10087 const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
10088 : ST.hasDivideInARMMode();
10090 // Don't touch vector types; rewriting this may lead to scalarizing
10091 // the int divs.
10092 if (N->getOperand(0).getValueType().isVector())
10093 return SDValue();
10095 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
10096 // hwdiv support for this to be really profitable.
10097 if (!(MinSize && HasDivide))
10098 return SDValue();
10100 // ARM mode is a bit simpler than Thumb: we can handle large power
10101 // of 2 immediates with 1 mov instruction; no further checks required,
10102 // just return the sdiv node.
10103 if (!ST.isThumb())
10104 return SDValue(N, 0);
10106 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
10107 // and thus lose the code size benefits of a MOVS that requires only 2.
10108 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
10109 // but as it's doing exactly this, it's not worth the trouble to get TTI.
10110 if (Divisor.sgt(128))
10111 return SDValue();
10113 return SDValue(N, 0);
10116 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
10117 bool Signed) const {
10118 assert(Op.getValueType() == MVT::i32 &&
10119 "unexpected type for custom lowering DIV");
10120 SDLoc dl(Op);
10122 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
10123 DAG.getEntryNode(), Op.getOperand(1));
10125 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10128 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
10129 SDLoc DL(N);
10130 SDValue Op = N->getOperand(1);
10131 if (N->getValueType(0) == MVT::i32)
10132 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
10133 SDValue Lo, Hi;
10134 std::tie(Lo, Hi) = DAG.SplitScalar(Op, DL, MVT::i32, MVT::i32);
10135 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
10136 DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
10139 void ARMTargetLowering::ExpandDIV_Windows(
10140 SDValue Op, SelectionDAG &DAG, bool Signed,
10141 SmallVectorImpl<SDValue> &Results) const {
10142 const auto &DL = DAG.getDataLayout();
10143 const auto &TLI = DAG.getTargetLoweringInfo();
10145 assert(Op.getValueType() == MVT::i64 &&
10146 "unexpected type for custom lowering DIV");
10147 SDLoc dl(Op);
10149 SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
10151 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
10153 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
10154 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
10155 DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
10156 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
10158 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
10161 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
10162 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
10163 EVT MemVT = LD->getMemoryVT();
10164 assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10165 MemVT == MVT::v16i1) &&
10166 "Expected a predicate type!");
10167 assert(MemVT == Op.getValueType());
10168 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
10169 "Expected a non-extending load");
10170 assert(LD->isUnindexed() && "Expected a unindexed load");
10172 // The basic MVE VLDR on a v2i1/v4i1/v8i1 actually loads the entire 16bit
10173 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
10174 // need to make sure that 8/4/2 bits are actually loaded into the correct
10175 // place, which means loading the value and then shuffling the values into
10176 // the bottom bits of the predicate.
10177 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
10178 // for BE).
10179 // Speaking of BE, apparently the rest of llvm will assume a reverse order to
10180 // a natural VMSR(load), so needs to be reversed.
10182 SDLoc dl(Op);
10183 SDValue Load = DAG.getExtLoad(
10184 ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
10185 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10186 LD->getMemOperand());
10187 SDValue Val = Load;
10188 if (DAG.getDataLayout().isBigEndian())
10189 Val = DAG.getNode(ISD::SRL, dl, MVT::i32,
10190 DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load),
10191 DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32));
10192 SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val);
10193 if (MemVT != MVT::v16i1)
10194 Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
10195 DAG.getConstant(0, dl, MVT::i32));
10196 return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
10199 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
10200 SelectionDAG &DAG) const {
10201 LoadSDNode *LD = cast<LoadSDNode>(N);
10202 EVT MemVT = LD->getMemoryVT();
10203 assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
10205 if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10206 !Subtarget->isThumb1Only() && LD->isVolatile() &&
10207 LD->getAlign() >= Subtarget->getDualLoadStoreAlignment()) {
10208 SDLoc dl(N);
10209 SDValue Result = DAG.getMemIntrinsicNode(
10210 ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
10211 {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
10212 SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
10213 SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
10214 SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
10215 Results.append({Pair, Result.getValue(2)});
10219 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
10220 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10221 EVT MemVT = ST->getMemoryVT();
10222 assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10223 MemVT == MVT::v16i1) &&
10224 "Expected a predicate type!");
10225 assert(MemVT == ST->getValue().getValueType());
10226 assert(!ST->isTruncatingStore() && "Expected a non-extending store");
10227 assert(ST->isUnindexed() && "Expected a unindexed store");
10229 // Only store the v2i1 or v4i1 or v8i1 worth of bits, via a buildvector with
10230 // top bits unset and a scalar store.
10231 SDLoc dl(Op);
10232 SDValue Build = ST->getValue();
10233 if (MemVT != MVT::v16i1) {
10234 SmallVector<SDValue, 16> Ops;
10235 for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) {
10236 unsigned Elt = DAG.getDataLayout().isBigEndian()
10237 ? MemVT.getVectorNumElements() - I - 1
10238 : I;
10239 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
10240 DAG.getConstant(Elt, dl, MVT::i32)));
10242 for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
10243 Ops.push_back(DAG.getUNDEF(MVT::i32));
10244 Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
10246 SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
10247 if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian())
10248 GRP = DAG.getNode(ISD::SRL, dl, MVT::i32,
10249 DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP),
10250 DAG.getConstant(16, dl, MVT::i32));
10251 return DAG.getTruncStore(
10252 ST->getChain(), dl, GRP, ST->getBasePtr(),
10253 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10254 ST->getMemOperand());
10257 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
10258 const ARMSubtarget *Subtarget) {
10259 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10260 EVT MemVT = ST->getMemoryVT();
10261 assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
10263 if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10264 !Subtarget->isThumb1Only() && ST->isVolatile() &&
10265 ST->getAlign() >= Subtarget->getDualLoadStoreAlignment()) {
10266 SDNode *N = Op.getNode();
10267 SDLoc dl(N);
10269 SDValue Lo = DAG.getNode(
10270 ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10271 DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
10272 MVT::i32));
10273 SDValue Hi = DAG.getNode(
10274 ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10275 DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
10276 MVT::i32));
10278 return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
10279 {ST->getChain(), Lo, Hi, ST->getBasePtr()},
10280 MemVT, ST->getMemOperand());
10281 } else if (Subtarget->hasMVEIntegerOps() &&
10282 ((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10283 MemVT == MVT::v16i1))) {
10284 return LowerPredicateStore(Op, DAG);
10287 return SDValue();
10290 static bool isZeroVector(SDValue N) {
10291 return (ISD::isBuildVectorAllZeros(N.getNode()) ||
10292 (N->getOpcode() == ARMISD::VMOVIMM &&
10293 isNullConstant(N->getOperand(0))));
10296 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
10297 MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
10298 MVT VT = Op.getSimpleValueType();
10299 SDValue Mask = N->getMask();
10300 SDValue PassThru = N->getPassThru();
10301 SDLoc dl(Op);
10303 if (isZeroVector(PassThru))
10304 return Op;
10306 // MVE Masked loads use zero as the passthru value. Here we convert undef to
10307 // zero too, and other values are lowered to a select.
10308 SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
10309 DAG.getTargetConstant(0, dl, MVT::i32));
10310 SDValue NewLoad = DAG.getMaskedLoad(
10311 VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
10312 N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
10313 N->getExtensionType(), N->isExpandingLoad());
10314 SDValue Combo = NewLoad;
10315 bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
10316 PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
10317 isZeroVector(PassThru->getOperand(0));
10318 if (!PassThru.isUndef() && !PassThruIsCastZero)
10319 Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
10320 return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
10323 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
10324 const ARMSubtarget *ST) {
10325 if (!ST->hasMVEIntegerOps())
10326 return SDValue();
10328 SDLoc dl(Op);
10329 unsigned BaseOpcode = 0;
10330 switch (Op->getOpcode()) {
10331 default: llvm_unreachable("Expected VECREDUCE opcode");
10332 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
10333 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
10334 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
10335 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
10336 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
10337 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
10338 case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
10339 case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
10342 SDValue Op0 = Op->getOperand(0);
10343 EVT VT = Op0.getValueType();
10344 EVT EltVT = VT.getVectorElementType();
10345 unsigned NumElts = VT.getVectorNumElements();
10346 unsigned NumActiveLanes = NumElts;
10348 assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10349 NumActiveLanes == 2) &&
10350 "Only expected a power 2 vector size");
10352 // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
10353 // allows us to easily extract vector elements from the lanes.
10354 while (NumActiveLanes > 4) {
10355 unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
10356 SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
10357 Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
10358 NumActiveLanes /= 2;
10361 SDValue Res;
10362 if (NumActiveLanes == 4) {
10363 // The remaining 4 elements are summed sequentially
10364 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10365 DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
10366 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10367 DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
10368 SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10369 DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
10370 SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10371 DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
10372 SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10373 SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
10374 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
10375 } else {
10376 SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10377 DAG.getConstant(0, dl, MVT::i32));
10378 SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10379 DAG.getConstant(1, dl, MVT::i32));
10380 Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10383 // Result type may be wider than element type.
10384 if (EltVT != Op->getValueType(0))
10385 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
10386 return Res;
10389 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
10390 const ARMSubtarget *ST) {
10391 if (!ST->hasMVEFloatOps())
10392 return SDValue();
10393 return LowerVecReduce(Op, DAG, ST);
10396 static SDValue LowerVecReduceMinMax(SDValue Op, SelectionDAG &DAG,
10397 const ARMSubtarget *ST) {
10398 if (!ST->hasNEON())
10399 return SDValue();
10401 SDLoc dl(Op);
10402 SDValue Op0 = Op->getOperand(0);
10403 EVT VT = Op0.getValueType();
10404 EVT EltVT = VT.getVectorElementType();
10406 unsigned PairwiseIntrinsic = 0;
10407 switch (Op->getOpcode()) {
10408 default:
10409 llvm_unreachable("Expected VECREDUCE opcode");
10410 case ISD::VECREDUCE_UMIN:
10411 PairwiseIntrinsic = Intrinsic::arm_neon_vpminu;
10412 break;
10413 case ISD::VECREDUCE_UMAX:
10414 PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxu;
10415 break;
10416 case ISD::VECREDUCE_SMIN:
10417 PairwiseIntrinsic = Intrinsic::arm_neon_vpmins;
10418 break;
10419 case ISD::VECREDUCE_SMAX:
10420 PairwiseIntrinsic = Intrinsic::arm_neon_vpmaxs;
10421 break;
10423 SDValue PairwiseOp = DAG.getConstant(PairwiseIntrinsic, dl, MVT::i32);
10425 unsigned NumElts = VT.getVectorNumElements();
10426 unsigned NumActiveLanes = NumElts;
10428 assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10429 NumActiveLanes == 2) &&
10430 "Only expected a power 2 vector size");
10432 // Split 128-bit vectors, since vpmin/max takes 2 64-bit vectors.
10433 if (VT.is128BitVector()) {
10434 SDValue Lo, Hi;
10435 std::tie(Lo, Hi) = DAG.SplitVector(Op0, dl);
10436 VT = Lo.getValueType();
10437 Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Lo, Hi});
10438 NumActiveLanes /= 2;
10441 // Use pairwise reductions until one lane remains
10442 while (NumActiveLanes > 1) {
10443 Op0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, {PairwiseOp, Op0, Op0});
10444 NumActiveLanes /= 2;
10447 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10448 DAG.getConstant(0, dl, MVT::i32));
10450 // Result type may be wider than element type.
10451 if (EltVT != Op.getValueType()) {
10452 unsigned Extend = 0;
10453 switch (Op->getOpcode()) {
10454 default:
10455 llvm_unreachable("Expected VECREDUCE opcode");
10456 case ISD::VECREDUCE_UMIN:
10457 case ISD::VECREDUCE_UMAX:
10458 Extend = ISD::ZERO_EXTEND;
10459 break;
10460 case ISD::VECREDUCE_SMIN:
10461 case ISD::VECREDUCE_SMAX:
10462 Extend = ISD::SIGN_EXTEND;
10463 break;
10465 Res = DAG.getNode(Extend, dl, Op.getValueType(), Res);
10467 return Res;
10470 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
10471 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering()))
10472 // Acquire/Release load/store is not legal for targets without a dmb or
10473 // equivalent available.
10474 return SDValue();
10476 // Monotonic load/store is legal for all targets.
10477 return Op;
10480 static void ReplaceREADCYCLECOUNTER(SDNode *N,
10481 SmallVectorImpl<SDValue> &Results,
10482 SelectionDAG &DAG,
10483 const ARMSubtarget *Subtarget) {
10484 SDLoc DL(N);
10485 // Under Power Management extensions, the cycle-count is:
10486 // mrc p15, #0, <Rt>, c9, c13, #0
10487 SDValue Ops[] = { N->getOperand(0), // Chain
10488 DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
10489 DAG.getTargetConstant(15, DL, MVT::i32),
10490 DAG.getTargetConstant(0, DL, MVT::i32),
10491 DAG.getTargetConstant(9, DL, MVT::i32),
10492 DAG.getTargetConstant(13, DL, MVT::i32),
10493 DAG.getTargetConstant(0, DL, MVT::i32)
10496 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
10497 DAG.getVTList(MVT::i32, MVT::Other), Ops);
10498 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
10499 DAG.getConstant(0, DL, MVT::i32)));
10500 Results.push_back(Cycles32.getValue(1));
10503 static SDValue createGPRPairNode2xi32(SelectionDAG &DAG, SDValue V0,
10504 SDValue V1) {
10505 SDLoc dl(V0.getNode());
10506 SDValue RegClass =
10507 DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
10508 SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
10509 SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
10510 const SDValue Ops[] = {RegClass, V0, SubReg0, V1, SubReg1};
10511 return SDValue(
10512 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
10515 static SDValue createGPRPairNodei64(SelectionDAG &DAG, SDValue V) {
10516 SDLoc dl(V.getNode());
10517 auto [VLo, VHi] = DAG.SplitScalar(V, dl, MVT::i32, MVT::i32);
10518 bool isBigEndian = DAG.getDataLayout().isBigEndian();
10519 if (isBigEndian)
10520 std::swap(VLo, VHi);
10521 return createGPRPairNode2xi32(DAG, VLo, VHi);
10524 static void ReplaceCMP_SWAP_64Results(SDNode *N,
10525 SmallVectorImpl<SDValue> &Results,
10526 SelectionDAG &DAG) {
10527 assert(N->getValueType(0) == MVT::i64 &&
10528 "AtomicCmpSwap on types less than 64 should be legal");
10529 SDValue Ops[] = {
10530 createGPRPairNode2xi32(DAG, N->getOperand(1),
10531 DAG.getUNDEF(MVT::i32)), // pointer, temp
10532 createGPRPairNodei64(DAG, N->getOperand(2)), // expected
10533 createGPRPairNodei64(DAG, N->getOperand(3)), // new
10534 N->getOperand(0), // chain in
10536 SDNode *CmpSwap = DAG.getMachineNode(
10537 ARM::CMP_SWAP_64, SDLoc(N),
10538 DAG.getVTList(MVT::Untyped, MVT::Untyped, MVT::Other), Ops);
10540 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
10541 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
10543 bool isBigEndian = DAG.getDataLayout().isBigEndian();
10545 SDValue Lo =
10546 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
10547 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10548 SDValue Hi =
10549 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
10550 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10551 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
10552 Results.push_back(SDValue(CmpSwap, 2));
10555 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
10556 SDLoc dl(Op);
10557 EVT VT = Op.getValueType();
10558 SDValue Chain = Op.getOperand(0);
10559 SDValue LHS = Op.getOperand(1);
10560 SDValue RHS = Op.getOperand(2);
10561 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
10562 bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
10564 // If we don't have instructions of this float type then soften to a libcall
10565 // and use SETCC instead.
10566 if (isUnsupportedFloatingType(LHS.getValueType())) {
10567 DAG.getTargetLoweringInfo().softenSetCCOperands(
10568 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
10569 if (!RHS.getNode()) {
10570 RHS = DAG.getConstant(0, dl, LHS.getValueType());
10571 CC = ISD::SETNE;
10573 SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
10574 DAG.getCondCode(CC));
10575 return DAG.getMergeValues({Result, Chain}, dl);
10578 ARMCC::CondCodes CondCode, CondCode2;
10579 FPCCToARMCC(CC, CondCode, CondCode2);
10581 SDValue True = DAG.getConstant(1, dl, VT);
10582 SDValue False = DAG.getConstant(0, dl, VT);
10583 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
10584 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10585 SDValue Result = getCMOV(dl, VT, False, True, ARMcc, Cmp, DAG);
10586 if (CondCode2 != ARMCC::AL) {
10587 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
10588 Result = getCMOV(dl, VT, Result, True, ARMcc, Cmp, DAG);
10590 return DAG.getMergeValues({Result, Chain}, dl);
10593 SDValue ARMTargetLowering::LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const {
10594 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10596 EVT VT = getPointerTy(DAG.getDataLayout());
10597 SDLoc DL(Op);
10598 int FI = MFI.CreateFixedObject(4, 0, false);
10599 return DAG.getFrameIndex(FI, VT);
10602 SDValue ARMTargetLowering::LowerFP_TO_BF16(SDValue Op,
10603 SelectionDAG &DAG) const {
10604 SDLoc DL(Op);
10605 MakeLibCallOptions CallOptions;
10606 MVT SVT = Op.getOperand(0).getSimpleValueType();
10607 RTLIB::Libcall LC = RTLIB::getFPROUND(SVT, MVT::bf16);
10608 SDValue Res =
10609 makeLibCall(DAG, LC, MVT::f32, Op.getOperand(0), CallOptions, DL).first;
10610 return DAG.getBitcast(MVT::i32, Res);
10613 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10614 LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
10615 switch (Op.getOpcode()) {
10616 default: llvm_unreachable("Don't know how to custom lower this!");
10617 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
10618 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10619 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10620 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10621 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10622 case ISD::SELECT: return LowerSELECT(Op, DAG);
10623 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
10624 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10625 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
10626 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
10627 case ISD::VASTART: return LowerVASTART(Op, DAG);
10628 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
10629 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
10630 case ISD::SINT_TO_FP:
10631 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
10632 case ISD::STRICT_FP_TO_SINT:
10633 case ISD::STRICT_FP_TO_UINT:
10634 case ISD::FP_TO_SINT:
10635 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
10636 case ISD::FP_TO_SINT_SAT:
10637 case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG, Subtarget);
10638 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10639 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10640 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10641 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
10642 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
10643 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
10644 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
10645 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
10646 Subtarget);
10647 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
10648 case ISD::SHL:
10649 case ISD::SRL:
10650 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
10651 case ISD::SREM: return LowerREM(Op.getNode(), DAG);
10652 case ISD::UREM: return LowerREM(Op.getNode(), DAG);
10653 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
10654 case ISD::SRL_PARTS:
10655 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
10656 case ISD::CTTZ:
10657 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
10658 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
10659 case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget);
10660 case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
10661 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
10662 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
10663 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
10664 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
10665 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10666 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
10667 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
10668 case ISD::TRUNCATE: return LowerTruncate(Op.getNode(), DAG, Subtarget);
10669 case ISD::SIGN_EXTEND:
10670 case ISD::ZERO_EXTEND: return LowerVectorExtend(Op.getNode(), DAG, Subtarget);
10671 case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG);
10672 case ISD::SET_ROUNDING: return LowerSET_ROUNDING(Op, DAG);
10673 case ISD::SET_FPMODE:
10674 return LowerSET_FPMODE(Op, DAG);
10675 case ISD::RESET_FPMODE:
10676 return LowerRESET_FPMODE(Op, DAG);
10677 case ISD::MUL: return LowerMUL(Op, DAG);
10678 case ISD::SDIV:
10679 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10680 return LowerDIV_Windows(Op, DAG, /* Signed */ true);
10681 return LowerSDIV(Op, DAG, Subtarget);
10682 case ISD::UDIV:
10683 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10684 return LowerDIV_Windows(Op, DAG, /* Signed */ false);
10685 return LowerUDIV(Op, DAG, Subtarget);
10686 case ISD::UADDO_CARRY:
10687 case ISD::USUBO_CARRY:
10688 return LowerUADDSUBO_CARRY(Op, DAG);
10689 case ISD::SADDO:
10690 case ISD::SSUBO:
10691 return LowerSignedALUO(Op, DAG);
10692 case ISD::UADDO:
10693 case ISD::USUBO:
10694 return LowerUnsignedALUO(Op, DAG);
10695 case ISD::SADDSAT:
10696 case ISD::SSUBSAT:
10697 case ISD::UADDSAT:
10698 case ISD::USUBSAT:
10699 return LowerADDSUBSAT(Op, DAG, Subtarget);
10700 case ISD::LOAD:
10701 return LowerPredicateLoad(Op, DAG);
10702 case ISD::STORE:
10703 return LowerSTORE(Op, DAG, Subtarget);
10704 case ISD::MLOAD:
10705 return LowerMLOAD(Op, DAG);
10706 case ISD::VECREDUCE_MUL:
10707 case ISD::VECREDUCE_AND:
10708 case ISD::VECREDUCE_OR:
10709 case ISD::VECREDUCE_XOR:
10710 return LowerVecReduce(Op, DAG, Subtarget);
10711 case ISD::VECREDUCE_FADD:
10712 case ISD::VECREDUCE_FMUL:
10713 case ISD::VECREDUCE_FMIN:
10714 case ISD::VECREDUCE_FMAX:
10715 return LowerVecReduceF(Op, DAG, Subtarget);
10716 case ISD::VECREDUCE_UMIN:
10717 case ISD::VECREDUCE_UMAX:
10718 case ISD::VECREDUCE_SMIN:
10719 case ISD::VECREDUCE_SMAX:
10720 return LowerVecReduceMinMax(Op, DAG, Subtarget);
10721 case ISD::ATOMIC_LOAD:
10722 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
10723 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
10724 case ISD::SDIVREM:
10725 case ISD::UDIVREM: return LowerDivRem(Op, DAG);
10726 case ISD::DYNAMIC_STACKALLOC:
10727 if (Subtarget->isTargetWindows())
10728 return LowerDYNAMIC_STACKALLOC(Op, DAG);
10729 llvm_unreachable("Don't know how to custom lower this!");
10730 case ISD::STRICT_FP_ROUND:
10731 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
10732 case ISD::STRICT_FP_EXTEND:
10733 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
10734 case ISD::STRICT_FSETCC:
10735 case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
10736 case ISD::SPONENTRY:
10737 return LowerSPONENTRY(Op, DAG);
10738 case ISD::FP_TO_BF16:
10739 return LowerFP_TO_BF16(Op, DAG);
10740 case ARMISD::WIN__DBZCHK: return SDValue();
10744 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
10745 SelectionDAG &DAG) {
10746 unsigned IntNo = N->getConstantOperandVal(0);
10747 unsigned Opc = 0;
10748 if (IntNo == Intrinsic::arm_smlald)
10749 Opc = ARMISD::SMLALD;
10750 else if (IntNo == Intrinsic::arm_smlaldx)
10751 Opc = ARMISD::SMLALDX;
10752 else if (IntNo == Intrinsic::arm_smlsld)
10753 Opc = ARMISD::SMLSLD;
10754 else if (IntNo == Intrinsic::arm_smlsldx)
10755 Opc = ARMISD::SMLSLDX;
10756 else
10757 return;
10759 SDLoc dl(N);
10760 SDValue Lo, Hi;
10761 std::tie(Lo, Hi) = DAG.SplitScalar(N->getOperand(3), dl, MVT::i32, MVT::i32);
10763 SDValue LongMul = DAG.getNode(Opc, dl,
10764 DAG.getVTList(MVT::i32, MVT::i32),
10765 N->getOperand(1), N->getOperand(2),
10766 Lo, Hi);
10767 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
10768 LongMul.getValue(0), LongMul.getValue(1)));
10771 /// ReplaceNodeResults - Replace the results of node with an illegal result
10772 /// type with new values built out of custom code.
10773 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
10774 SmallVectorImpl<SDValue> &Results,
10775 SelectionDAG &DAG) const {
10776 SDValue Res;
10777 switch (N->getOpcode()) {
10778 default:
10779 llvm_unreachable("Don't know how to custom expand this!");
10780 case ISD::READ_REGISTER:
10781 ExpandREAD_REGISTER(N, Results, DAG);
10782 break;
10783 case ISD::BITCAST:
10784 Res = ExpandBITCAST(N, DAG, Subtarget);
10785 break;
10786 case ISD::SRL:
10787 case ISD::SRA:
10788 case ISD::SHL:
10789 Res = Expand64BitShift(N, DAG, Subtarget);
10790 break;
10791 case ISD::SREM:
10792 case ISD::UREM:
10793 Res = LowerREM(N, DAG);
10794 break;
10795 case ISD::SDIVREM:
10796 case ISD::UDIVREM:
10797 Res = LowerDivRem(SDValue(N, 0), DAG);
10798 assert(Res.getNumOperands() == 2 && "DivRem needs two values");
10799 Results.push_back(Res.getValue(0));
10800 Results.push_back(Res.getValue(1));
10801 return;
10802 case ISD::SADDSAT:
10803 case ISD::SSUBSAT:
10804 case ISD::UADDSAT:
10805 case ISD::USUBSAT:
10806 Res = LowerADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
10807 break;
10808 case ISD::READCYCLECOUNTER:
10809 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
10810 return;
10811 case ISD::UDIV:
10812 case ISD::SDIV:
10813 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
10814 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
10815 Results);
10816 case ISD::ATOMIC_CMP_SWAP:
10817 ReplaceCMP_SWAP_64Results(N, Results, DAG);
10818 return;
10819 case ISD::INTRINSIC_WO_CHAIN:
10820 return ReplaceLongIntrinsic(N, Results, DAG);
10821 case ISD::LOAD:
10822 LowerLOAD(N, Results, DAG);
10823 break;
10824 case ISD::TRUNCATE:
10825 Res = LowerTruncate(N, DAG, Subtarget);
10826 break;
10827 case ISD::SIGN_EXTEND:
10828 case ISD::ZERO_EXTEND:
10829 Res = LowerVectorExtend(N, DAG, Subtarget);
10830 break;
10831 case ISD::FP_TO_SINT_SAT:
10832 case ISD::FP_TO_UINT_SAT:
10833 Res = LowerFP_TO_INT_SAT(SDValue(N, 0), DAG, Subtarget);
10834 break;
10836 if (Res.getNode())
10837 Results.push_back(Res);
10840 //===----------------------------------------------------------------------===//
10841 // ARM Scheduler Hooks
10842 //===----------------------------------------------------------------------===//
10844 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
10845 /// registers the function context.
10846 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
10847 MachineBasicBlock *MBB,
10848 MachineBasicBlock *DispatchBB,
10849 int FI) const {
10850 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
10851 "ROPI/RWPI not currently supported with SjLj");
10852 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10853 DebugLoc dl = MI.getDebugLoc();
10854 MachineFunction *MF = MBB->getParent();
10855 MachineRegisterInfo *MRI = &MF->getRegInfo();
10856 MachineConstantPool *MCP = MF->getConstantPool();
10857 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
10858 const Function &F = MF->getFunction();
10860 bool isThumb = Subtarget->isThumb();
10861 bool isThumb2 = Subtarget->isThumb2();
10863 unsigned PCLabelId = AFI->createPICLabelUId();
10864 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
10865 ARMConstantPoolValue *CPV =
10866 ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
10867 unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
10869 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
10870 : &ARM::GPRRegClass;
10872 // Grab constant pool and fixed stack memory operands.
10873 MachineMemOperand *CPMMO =
10874 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10875 MachineMemOperand::MOLoad, 4, Align(4));
10877 MachineMemOperand *FIMMOSt =
10878 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
10879 MachineMemOperand::MOStore, 4, Align(4));
10881 // Load the address of the dispatch MBB into the jump buffer.
10882 if (isThumb2) {
10883 // Incoming value: jbuf
10884 // ldr.n r5, LCPI1_1
10885 // orr r5, r5, #1
10886 // add r5, pc
10887 // str r5, [$jbuf, #+4] ; &jbuf[1]
10888 Register NewVReg1 = MRI->createVirtualRegister(TRC);
10889 BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
10890 .addConstantPoolIndex(CPI)
10891 .addMemOperand(CPMMO)
10892 .add(predOps(ARMCC::AL));
10893 // Set the low bit because of thumb mode.
10894 Register NewVReg2 = MRI->createVirtualRegister(TRC);
10895 BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
10896 .addReg(NewVReg1, RegState::Kill)
10897 .addImm(0x01)
10898 .add(predOps(ARMCC::AL))
10899 .add(condCodeOp());
10900 Register NewVReg3 = MRI->createVirtualRegister(TRC);
10901 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
10902 .addReg(NewVReg2, RegState::Kill)
10903 .addImm(PCLabelId);
10904 BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
10905 .addReg(NewVReg3, RegState::Kill)
10906 .addFrameIndex(FI)
10907 .addImm(36) // &jbuf[1] :: pc
10908 .addMemOperand(FIMMOSt)
10909 .add(predOps(ARMCC::AL));
10910 } else if (isThumb) {
10911 // Incoming value: jbuf
10912 // ldr.n r1, LCPI1_4
10913 // add r1, pc
10914 // mov r2, #1
10915 // orrs r1, r2
10916 // add r2, $jbuf, #+4 ; &jbuf[1]
10917 // str r1, [r2]
10918 Register NewVReg1 = MRI->createVirtualRegister(TRC);
10919 BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
10920 .addConstantPoolIndex(CPI)
10921 .addMemOperand(CPMMO)
10922 .add(predOps(ARMCC::AL));
10923 Register NewVReg2 = MRI->createVirtualRegister(TRC);
10924 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10925 .addReg(NewVReg1, RegState::Kill)
10926 .addImm(PCLabelId);
10927 // Set the low bit because of thumb mode.
10928 Register NewVReg3 = MRI->createVirtualRegister(TRC);
10929 BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10930 .addReg(ARM::CPSR, RegState::Define)
10931 .addImm(1)
10932 .add(predOps(ARMCC::AL));
10933 Register NewVReg4 = MRI->createVirtualRegister(TRC);
10934 BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10935 .addReg(ARM::CPSR, RegState::Define)
10936 .addReg(NewVReg2, RegState::Kill)
10937 .addReg(NewVReg3, RegState::Kill)
10938 .add(predOps(ARMCC::AL));
10939 Register NewVReg5 = MRI->createVirtualRegister(TRC);
10940 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10941 .addFrameIndex(FI)
10942 .addImm(36); // &jbuf[1] :: pc
10943 BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10944 .addReg(NewVReg4, RegState::Kill)
10945 .addReg(NewVReg5, RegState::Kill)
10946 .addImm(0)
10947 .addMemOperand(FIMMOSt)
10948 .add(predOps(ARMCC::AL));
10949 } else {
10950 // Incoming value: jbuf
10951 // ldr r1, LCPI1_1
10952 // add r1, pc, r1
10953 // str r1, [$jbuf, #+4] ; &jbuf[1]
10954 Register NewVReg1 = MRI->createVirtualRegister(TRC);
10955 BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10956 .addConstantPoolIndex(CPI)
10957 .addImm(0)
10958 .addMemOperand(CPMMO)
10959 .add(predOps(ARMCC::AL));
10960 Register NewVReg2 = MRI->createVirtualRegister(TRC);
10961 BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10962 .addReg(NewVReg1, RegState::Kill)
10963 .addImm(PCLabelId)
10964 .add(predOps(ARMCC::AL));
10965 BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10966 .addReg(NewVReg2, RegState::Kill)
10967 .addFrameIndex(FI)
10968 .addImm(36) // &jbuf[1] :: pc
10969 .addMemOperand(FIMMOSt)
10970 .add(predOps(ARMCC::AL));
10974 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10975 MachineBasicBlock *MBB) const {
10976 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10977 DebugLoc dl = MI.getDebugLoc();
10978 MachineFunction *MF = MBB->getParent();
10979 MachineRegisterInfo *MRI = &MF->getRegInfo();
10980 MachineFrameInfo &MFI = MF->getFrameInfo();
10981 int FI = MFI.getFunctionContextIndex();
10983 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10984 : &ARM::GPRnopcRegClass;
10986 // Get a mapping of the call site numbers to all of the landing pads they're
10987 // associated with.
10988 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10989 unsigned MaxCSNum = 0;
10990 for (MachineBasicBlock &BB : *MF) {
10991 if (!BB.isEHPad())
10992 continue;
10994 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10995 // pad.
10996 for (MachineInstr &II : BB) {
10997 if (!II.isEHLabel())
10998 continue;
11000 MCSymbol *Sym = II.getOperand(0).getMCSymbol();
11001 if (!MF->hasCallSiteLandingPad(Sym)) continue;
11003 SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
11004 for (unsigned Idx : CallSiteIdxs) {
11005 CallSiteNumToLPad[Idx].push_back(&BB);
11006 MaxCSNum = std::max(MaxCSNum, Idx);
11008 break;
11012 // Get an ordered list of the machine basic blocks for the jump table.
11013 std::vector<MachineBasicBlock*> LPadList;
11014 SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
11015 LPadList.reserve(CallSiteNumToLPad.size());
11016 for (unsigned I = 1; I <= MaxCSNum; ++I) {
11017 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
11018 for (MachineBasicBlock *MBB : MBBList) {
11019 LPadList.push_back(MBB);
11020 InvokeBBs.insert(MBB->pred_begin(), MBB->pred_end());
11024 assert(!LPadList.empty() &&
11025 "No landing pad destinations for the dispatch jump table!");
11027 // Create the jump table and associated information.
11028 MachineJumpTableInfo *JTI =
11029 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
11030 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
11032 // Create the MBBs for the dispatch code.
11034 // Shove the dispatch's address into the return slot in the function context.
11035 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
11036 DispatchBB->setIsEHPad();
11038 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
11039 unsigned trap_opcode;
11040 if (Subtarget->isThumb())
11041 trap_opcode = ARM::tTRAP;
11042 else
11043 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
11045 BuildMI(TrapBB, dl, TII->get(trap_opcode));
11046 DispatchBB->addSuccessor(TrapBB);
11048 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
11049 DispatchBB->addSuccessor(DispContBB);
11051 // Insert and MBBs.
11052 MF->insert(MF->end(), DispatchBB);
11053 MF->insert(MF->end(), DispContBB);
11054 MF->insert(MF->end(), TrapBB);
11056 // Insert code into the entry block that creates and registers the function
11057 // context.
11058 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
11060 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
11061 MachinePointerInfo::getFixedStack(*MF, FI),
11062 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
11064 MachineInstrBuilder MIB;
11065 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
11067 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
11068 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
11070 // Add a register mask with no preserved registers. This results in all
11071 // registers being marked as clobbered. This can't work if the dispatch block
11072 // is in a Thumb1 function and is linked with ARM code which uses the FP
11073 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
11074 MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
11076 bool IsPositionIndependent = isPositionIndependent();
11077 unsigned NumLPads = LPadList.size();
11078 if (Subtarget->isThumb2()) {
11079 Register NewVReg1 = MRI->createVirtualRegister(TRC);
11080 BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
11081 .addFrameIndex(FI)
11082 .addImm(4)
11083 .addMemOperand(FIMMOLd)
11084 .add(predOps(ARMCC::AL));
11086 if (NumLPads < 256) {
11087 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
11088 .addReg(NewVReg1)
11089 .addImm(LPadList.size())
11090 .add(predOps(ARMCC::AL));
11091 } else {
11092 Register VReg1 = MRI->createVirtualRegister(TRC);
11093 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
11094 .addImm(NumLPads & 0xFFFF)
11095 .add(predOps(ARMCC::AL));
11097 unsigned VReg2 = VReg1;
11098 if ((NumLPads & 0xFFFF0000) != 0) {
11099 VReg2 = MRI->createVirtualRegister(TRC);
11100 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
11101 .addReg(VReg1)
11102 .addImm(NumLPads >> 16)
11103 .add(predOps(ARMCC::AL));
11106 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
11107 .addReg(NewVReg1)
11108 .addReg(VReg2)
11109 .add(predOps(ARMCC::AL));
11112 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
11113 .addMBB(TrapBB)
11114 .addImm(ARMCC::HI)
11115 .addReg(ARM::CPSR);
11117 Register NewVReg3 = MRI->createVirtualRegister(TRC);
11118 BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
11119 .addJumpTableIndex(MJTI)
11120 .add(predOps(ARMCC::AL));
11122 Register NewVReg4 = MRI->createVirtualRegister(TRC);
11123 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
11124 .addReg(NewVReg3, RegState::Kill)
11125 .addReg(NewVReg1)
11126 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
11127 .add(predOps(ARMCC::AL))
11128 .add(condCodeOp());
11130 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
11131 .addReg(NewVReg4, RegState::Kill)
11132 .addReg(NewVReg1)
11133 .addJumpTableIndex(MJTI);
11134 } else if (Subtarget->isThumb()) {
11135 Register NewVReg1 = MRI->createVirtualRegister(TRC);
11136 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
11137 .addFrameIndex(FI)
11138 .addImm(1)
11139 .addMemOperand(FIMMOLd)
11140 .add(predOps(ARMCC::AL));
11142 if (NumLPads < 256) {
11143 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
11144 .addReg(NewVReg1)
11145 .addImm(NumLPads)
11146 .add(predOps(ARMCC::AL));
11147 } else {
11148 MachineConstantPool *ConstantPool = MF->getConstantPool();
11149 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11150 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
11152 // MachineConstantPool wants an explicit alignment.
11153 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11154 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11156 Register VReg1 = MRI->createVirtualRegister(TRC);
11157 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
11158 .addReg(VReg1, RegState::Define)
11159 .addConstantPoolIndex(Idx)
11160 .add(predOps(ARMCC::AL));
11161 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
11162 .addReg(NewVReg1)
11163 .addReg(VReg1)
11164 .add(predOps(ARMCC::AL));
11167 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
11168 .addMBB(TrapBB)
11169 .addImm(ARMCC::HI)
11170 .addReg(ARM::CPSR);
11172 Register NewVReg2 = MRI->createVirtualRegister(TRC);
11173 BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
11174 .addReg(ARM::CPSR, RegState::Define)
11175 .addReg(NewVReg1)
11176 .addImm(2)
11177 .add(predOps(ARMCC::AL));
11179 Register NewVReg3 = MRI->createVirtualRegister(TRC);
11180 BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
11181 .addJumpTableIndex(MJTI)
11182 .add(predOps(ARMCC::AL));
11184 Register NewVReg4 = MRI->createVirtualRegister(TRC);
11185 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
11186 .addReg(ARM::CPSR, RegState::Define)
11187 .addReg(NewVReg2, RegState::Kill)
11188 .addReg(NewVReg3)
11189 .add(predOps(ARMCC::AL));
11191 MachineMemOperand *JTMMOLd =
11192 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
11193 MachineMemOperand::MOLoad, 4, Align(4));
11195 Register NewVReg5 = MRI->createVirtualRegister(TRC);
11196 BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
11197 .addReg(NewVReg4, RegState::Kill)
11198 .addImm(0)
11199 .addMemOperand(JTMMOLd)
11200 .add(predOps(ARMCC::AL));
11202 unsigned NewVReg6 = NewVReg5;
11203 if (IsPositionIndependent) {
11204 NewVReg6 = MRI->createVirtualRegister(TRC);
11205 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
11206 .addReg(ARM::CPSR, RegState::Define)
11207 .addReg(NewVReg5, RegState::Kill)
11208 .addReg(NewVReg3)
11209 .add(predOps(ARMCC::AL));
11212 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
11213 .addReg(NewVReg6, RegState::Kill)
11214 .addJumpTableIndex(MJTI);
11215 } else {
11216 Register NewVReg1 = MRI->createVirtualRegister(TRC);
11217 BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
11218 .addFrameIndex(FI)
11219 .addImm(4)
11220 .addMemOperand(FIMMOLd)
11221 .add(predOps(ARMCC::AL));
11223 if (NumLPads < 256) {
11224 BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
11225 .addReg(NewVReg1)
11226 .addImm(NumLPads)
11227 .add(predOps(ARMCC::AL));
11228 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
11229 Register VReg1 = MRI->createVirtualRegister(TRC);
11230 BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
11231 .addImm(NumLPads & 0xFFFF)
11232 .add(predOps(ARMCC::AL));
11234 unsigned VReg2 = VReg1;
11235 if ((NumLPads & 0xFFFF0000) != 0) {
11236 VReg2 = MRI->createVirtualRegister(TRC);
11237 BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
11238 .addReg(VReg1)
11239 .addImm(NumLPads >> 16)
11240 .add(predOps(ARMCC::AL));
11243 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11244 .addReg(NewVReg1)
11245 .addReg(VReg2)
11246 .add(predOps(ARMCC::AL));
11247 } else {
11248 MachineConstantPool *ConstantPool = MF->getConstantPool();
11249 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11250 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
11252 // MachineConstantPool wants an explicit alignment.
11253 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11254 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11256 Register VReg1 = MRI->createVirtualRegister(TRC);
11257 BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
11258 .addReg(VReg1, RegState::Define)
11259 .addConstantPoolIndex(Idx)
11260 .addImm(0)
11261 .add(predOps(ARMCC::AL));
11262 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
11263 .addReg(NewVReg1)
11264 .addReg(VReg1, RegState::Kill)
11265 .add(predOps(ARMCC::AL));
11268 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
11269 .addMBB(TrapBB)
11270 .addImm(ARMCC::HI)
11271 .addReg(ARM::CPSR);
11273 Register NewVReg3 = MRI->createVirtualRegister(TRC);
11274 BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
11275 .addReg(NewVReg1)
11276 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
11277 .add(predOps(ARMCC::AL))
11278 .add(condCodeOp());
11279 Register NewVReg4 = MRI->createVirtualRegister(TRC);
11280 BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
11281 .addJumpTableIndex(MJTI)
11282 .add(predOps(ARMCC::AL));
11284 MachineMemOperand *JTMMOLd =
11285 MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
11286 MachineMemOperand::MOLoad, 4, Align(4));
11287 Register NewVReg5 = MRI->createVirtualRegister(TRC);
11288 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
11289 .addReg(NewVReg3, RegState::Kill)
11290 .addReg(NewVReg4)
11291 .addImm(0)
11292 .addMemOperand(JTMMOLd)
11293 .add(predOps(ARMCC::AL));
11295 if (IsPositionIndependent) {
11296 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
11297 .addReg(NewVReg5, RegState::Kill)
11298 .addReg(NewVReg4)
11299 .addJumpTableIndex(MJTI);
11300 } else {
11301 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
11302 .addReg(NewVReg5, RegState::Kill)
11303 .addJumpTableIndex(MJTI);
11307 // Add the jump table entries as successors to the MBB.
11308 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
11309 for (MachineBasicBlock *CurMBB : LPadList) {
11310 if (SeenMBBs.insert(CurMBB).second)
11311 DispContBB->addSuccessor(CurMBB);
11314 // N.B. the order the invoke BBs are processed in doesn't matter here.
11315 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
11316 SmallVector<MachineBasicBlock*, 64> MBBLPads;
11317 for (MachineBasicBlock *BB : InvokeBBs) {
11319 // Remove the landing pad successor from the invoke block and replace it
11320 // with the new dispatch block.
11321 SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
11322 while (!Successors.empty()) {
11323 MachineBasicBlock *SMBB = Successors.pop_back_val();
11324 if (SMBB->isEHPad()) {
11325 BB->removeSuccessor(SMBB);
11326 MBBLPads.push_back(SMBB);
11330 BB->addSuccessor(DispatchBB, BranchProbability::getZero());
11331 BB->normalizeSuccProbs();
11333 // Find the invoke call and mark all of the callee-saved registers as
11334 // 'implicit defined' so that they're spilled. This prevents code from
11335 // moving instructions to before the EH block, where they will never be
11336 // executed.
11337 for (MachineBasicBlock::reverse_iterator
11338 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
11339 if (!II->isCall()) continue;
11341 DenseMap<unsigned, bool> DefRegs;
11342 for (MachineInstr::mop_iterator
11343 OI = II->operands_begin(), OE = II->operands_end();
11344 OI != OE; ++OI) {
11345 if (!OI->isReg()) continue;
11346 DefRegs[OI->getReg()] = true;
11349 MachineInstrBuilder MIB(*MF, &*II);
11351 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
11352 unsigned Reg = SavedRegs[i];
11353 if (Subtarget->isThumb2() &&
11354 !ARM::tGPRRegClass.contains(Reg) &&
11355 !ARM::hGPRRegClass.contains(Reg))
11356 continue;
11357 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
11358 continue;
11359 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
11360 continue;
11361 if (!DefRegs[Reg])
11362 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
11365 break;
11369 // Mark all former landing pads as non-landing pads. The dispatch is the only
11370 // landing pad now.
11371 for (MachineBasicBlock *MBBLPad : MBBLPads)
11372 MBBLPad->setIsEHPad(false);
11374 // The instruction is gone now.
11375 MI.eraseFromParent();
11378 static
11379 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
11380 for (MachineBasicBlock *S : MBB->successors())
11381 if (S != Succ)
11382 return S;
11383 llvm_unreachable("Expecting a BB with two successors!");
11386 /// Return the load opcode for a given load size. If load size >= 8,
11387 /// neon opcode will be returned.
11388 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
11389 if (LdSize >= 8)
11390 return LdSize == 16 ? ARM::VLD1q32wb_fixed
11391 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
11392 if (IsThumb1)
11393 return LdSize == 4 ? ARM::tLDRi
11394 : LdSize == 2 ? ARM::tLDRHi
11395 : LdSize == 1 ? ARM::tLDRBi : 0;
11396 if (IsThumb2)
11397 return LdSize == 4 ? ARM::t2LDR_POST
11398 : LdSize == 2 ? ARM::t2LDRH_POST
11399 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
11400 return LdSize == 4 ? ARM::LDR_POST_IMM
11401 : LdSize == 2 ? ARM::LDRH_POST
11402 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
11405 /// Return the store opcode for a given store size. If store size >= 8,
11406 /// neon opcode will be returned.
11407 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
11408 if (StSize >= 8)
11409 return StSize == 16 ? ARM::VST1q32wb_fixed
11410 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
11411 if (IsThumb1)
11412 return StSize == 4 ? ARM::tSTRi
11413 : StSize == 2 ? ARM::tSTRHi
11414 : StSize == 1 ? ARM::tSTRBi : 0;
11415 if (IsThumb2)
11416 return StSize == 4 ? ARM::t2STR_POST
11417 : StSize == 2 ? ARM::t2STRH_POST
11418 : StSize == 1 ? ARM::t2STRB_POST : 0;
11419 return StSize == 4 ? ARM::STR_POST_IMM
11420 : StSize == 2 ? ARM::STRH_POST
11421 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
11424 /// Emit a post-increment load operation with given size. The instructions
11425 /// will be added to BB at Pos.
11426 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11427 const TargetInstrInfo *TII, const DebugLoc &dl,
11428 unsigned LdSize, unsigned Data, unsigned AddrIn,
11429 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11430 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
11431 assert(LdOpc != 0 && "Should have a load opcode");
11432 if (LdSize >= 8) {
11433 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11434 .addReg(AddrOut, RegState::Define)
11435 .addReg(AddrIn)
11436 .addImm(0)
11437 .add(predOps(ARMCC::AL));
11438 } else if (IsThumb1) {
11439 // load + update AddrIn
11440 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11441 .addReg(AddrIn)
11442 .addImm(0)
11443 .add(predOps(ARMCC::AL));
11444 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11445 .add(t1CondCodeOp())
11446 .addReg(AddrIn)
11447 .addImm(LdSize)
11448 .add(predOps(ARMCC::AL));
11449 } else if (IsThumb2) {
11450 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11451 .addReg(AddrOut, RegState::Define)
11452 .addReg(AddrIn)
11453 .addImm(LdSize)
11454 .add(predOps(ARMCC::AL));
11455 } else { // arm
11456 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11457 .addReg(AddrOut, RegState::Define)
11458 .addReg(AddrIn)
11459 .addReg(0)
11460 .addImm(LdSize)
11461 .add(predOps(ARMCC::AL));
11465 /// Emit a post-increment store operation with given size. The instructions
11466 /// will be added to BB at Pos.
11467 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11468 const TargetInstrInfo *TII, const DebugLoc &dl,
11469 unsigned StSize, unsigned Data, unsigned AddrIn,
11470 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11471 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
11472 assert(StOpc != 0 && "Should have a store opcode");
11473 if (StSize >= 8) {
11474 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11475 .addReg(AddrIn)
11476 .addImm(0)
11477 .addReg(Data)
11478 .add(predOps(ARMCC::AL));
11479 } else if (IsThumb1) {
11480 // store + update AddrIn
11481 BuildMI(*BB, Pos, dl, TII->get(StOpc))
11482 .addReg(Data)
11483 .addReg(AddrIn)
11484 .addImm(0)
11485 .add(predOps(ARMCC::AL));
11486 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11487 .add(t1CondCodeOp())
11488 .addReg(AddrIn)
11489 .addImm(StSize)
11490 .add(predOps(ARMCC::AL));
11491 } else if (IsThumb2) {
11492 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11493 .addReg(Data)
11494 .addReg(AddrIn)
11495 .addImm(StSize)
11496 .add(predOps(ARMCC::AL));
11497 } else { // arm
11498 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11499 .addReg(Data)
11500 .addReg(AddrIn)
11501 .addReg(0)
11502 .addImm(StSize)
11503 .add(predOps(ARMCC::AL));
11507 MachineBasicBlock *
11508 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
11509 MachineBasicBlock *BB) const {
11510 // This pseudo instruction has 3 operands: dst, src, size
11511 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
11512 // Otherwise, we will generate unrolled scalar copies.
11513 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11514 const BasicBlock *LLVM_BB = BB->getBasicBlock();
11515 MachineFunction::iterator It = ++BB->getIterator();
11517 Register dest = MI.getOperand(0).getReg();
11518 Register src = MI.getOperand(1).getReg();
11519 unsigned SizeVal = MI.getOperand(2).getImm();
11520 unsigned Alignment = MI.getOperand(3).getImm();
11521 DebugLoc dl = MI.getDebugLoc();
11523 MachineFunction *MF = BB->getParent();
11524 MachineRegisterInfo &MRI = MF->getRegInfo();
11525 unsigned UnitSize = 0;
11526 const TargetRegisterClass *TRC = nullptr;
11527 const TargetRegisterClass *VecTRC = nullptr;
11529 bool IsThumb1 = Subtarget->isThumb1Only();
11530 bool IsThumb2 = Subtarget->isThumb2();
11531 bool IsThumb = Subtarget->isThumb();
11533 if (Alignment & 1) {
11534 UnitSize = 1;
11535 } else if (Alignment & 2) {
11536 UnitSize = 2;
11537 } else {
11538 // Check whether we can use NEON instructions.
11539 if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
11540 Subtarget->hasNEON()) {
11541 if ((Alignment % 16 == 0) && SizeVal >= 16)
11542 UnitSize = 16;
11543 else if ((Alignment % 8 == 0) && SizeVal >= 8)
11544 UnitSize = 8;
11546 // Can't use NEON instructions.
11547 if (UnitSize == 0)
11548 UnitSize = 4;
11551 // Select the correct opcode and register class for unit size load/store
11552 bool IsNeon = UnitSize >= 8;
11553 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
11554 if (IsNeon)
11555 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
11556 : UnitSize == 8 ? &ARM::DPRRegClass
11557 : nullptr;
11559 unsigned BytesLeft = SizeVal % UnitSize;
11560 unsigned LoopSize = SizeVal - BytesLeft;
11562 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
11563 // Use LDR and STR to copy.
11564 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
11565 // [destOut] = STR_POST(scratch, destIn, UnitSize)
11566 unsigned srcIn = src;
11567 unsigned destIn = dest;
11568 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
11569 Register srcOut = MRI.createVirtualRegister(TRC);
11570 Register destOut = MRI.createVirtualRegister(TRC);
11571 Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11572 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
11573 IsThumb1, IsThumb2);
11574 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
11575 IsThumb1, IsThumb2);
11576 srcIn = srcOut;
11577 destIn = destOut;
11580 // Handle the leftover bytes with LDRB and STRB.
11581 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
11582 // [destOut] = STRB_POST(scratch, destIn, 1)
11583 for (unsigned i = 0; i < BytesLeft; i++) {
11584 Register srcOut = MRI.createVirtualRegister(TRC);
11585 Register destOut = MRI.createVirtualRegister(TRC);
11586 Register scratch = MRI.createVirtualRegister(TRC);
11587 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
11588 IsThumb1, IsThumb2);
11589 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
11590 IsThumb1, IsThumb2);
11591 srcIn = srcOut;
11592 destIn = destOut;
11594 MI.eraseFromParent(); // The instruction is gone now.
11595 return BB;
11598 // Expand the pseudo op to a loop.
11599 // thisMBB:
11600 // ...
11601 // movw varEnd, # --> with thumb2
11602 // movt varEnd, #
11603 // ldrcp varEnd, idx --> without thumb2
11604 // fallthrough --> loopMBB
11605 // loopMBB:
11606 // PHI varPhi, varEnd, varLoop
11607 // PHI srcPhi, src, srcLoop
11608 // PHI destPhi, dst, destLoop
11609 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11610 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
11611 // subs varLoop, varPhi, #UnitSize
11612 // bne loopMBB
11613 // fallthrough --> exitMBB
11614 // exitMBB:
11615 // epilogue to handle left-over bytes
11616 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11617 // [destOut] = STRB_POST(scratch, destLoop, 1)
11618 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11619 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11620 MF->insert(It, loopMBB);
11621 MF->insert(It, exitMBB);
11623 // Set the call frame size on entry to the new basic blocks.
11624 unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
11625 loopMBB->setCallFrameSize(CallFrameSize);
11626 exitMBB->setCallFrameSize(CallFrameSize);
11628 // Transfer the remainder of BB and its successor edges to exitMBB.
11629 exitMBB->splice(exitMBB->begin(), BB,
11630 std::next(MachineBasicBlock::iterator(MI)), BB->end());
11631 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11633 // Load an immediate to varEnd.
11634 Register varEnd = MRI.createVirtualRegister(TRC);
11635 if (Subtarget->useMovt()) {
11636 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi32imm : ARM::MOVi32imm),
11637 varEnd)
11638 .addImm(LoopSize);
11639 } else if (Subtarget->genExecuteOnly()) {
11640 assert(IsThumb && "Non-thumb expected to have used movt");
11641 BuildMI(BB, dl, TII->get(ARM::tMOVi32imm), varEnd).addImm(LoopSize);
11642 } else {
11643 MachineConstantPool *ConstantPool = MF->getConstantPool();
11644 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11645 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
11647 // MachineConstantPool wants an explicit alignment.
11648 Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11649 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11650 MachineMemOperand *CPMMO =
11651 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
11652 MachineMemOperand::MOLoad, 4, Align(4));
11654 if (IsThumb)
11655 BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
11656 .addReg(varEnd, RegState::Define)
11657 .addConstantPoolIndex(Idx)
11658 .add(predOps(ARMCC::AL))
11659 .addMemOperand(CPMMO);
11660 else
11661 BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
11662 .addReg(varEnd, RegState::Define)
11663 .addConstantPoolIndex(Idx)
11664 .addImm(0)
11665 .add(predOps(ARMCC::AL))
11666 .addMemOperand(CPMMO);
11668 BB->addSuccessor(loopMBB);
11670 // Generate the loop body:
11671 // varPhi = PHI(varLoop, varEnd)
11672 // srcPhi = PHI(srcLoop, src)
11673 // destPhi = PHI(destLoop, dst)
11674 MachineBasicBlock *entryBB = BB;
11675 BB = loopMBB;
11676 Register varLoop = MRI.createVirtualRegister(TRC);
11677 Register varPhi = MRI.createVirtualRegister(TRC);
11678 Register srcLoop = MRI.createVirtualRegister(TRC);
11679 Register srcPhi = MRI.createVirtualRegister(TRC);
11680 Register destLoop = MRI.createVirtualRegister(TRC);
11681 Register destPhi = MRI.createVirtualRegister(TRC);
11683 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
11684 .addReg(varLoop).addMBB(loopMBB)
11685 .addReg(varEnd).addMBB(entryBB);
11686 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
11687 .addReg(srcLoop).addMBB(loopMBB)
11688 .addReg(src).addMBB(entryBB);
11689 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
11690 .addReg(destLoop).addMBB(loopMBB)
11691 .addReg(dest).addMBB(entryBB);
11693 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11694 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
11695 Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11696 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
11697 IsThumb1, IsThumb2);
11698 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
11699 IsThumb1, IsThumb2);
11701 // Decrement loop variable by UnitSize.
11702 if (IsThumb1) {
11703 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
11704 .add(t1CondCodeOp())
11705 .addReg(varPhi)
11706 .addImm(UnitSize)
11707 .add(predOps(ARMCC::AL));
11708 } else {
11709 MachineInstrBuilder MIB =
11710 BuildMI(*BB, BB->end(), dl,
11711 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
11712 MIB.addReg(varPhi)
11713 .addImm(UnitSize)
11714 .add(predOps(ARMCC::AL))
11715 .add(condCodeOp());
11716 MIB->getOperand(5).setReg(ARM::CPSR);
11717 MIB->getOperand(5).setIsDef(true);
11719 BuildMI(*BB, BB->end(), dl,
11720 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
11721 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
11723 // loopMBB can loop back to loopMBB or fall through to exitMBB.
11724 BB->addSuccessor(loopMBB);
11725 BB->addSuccessor(exitMBB);
11727 // Add epilogue to handle BytesLeft.
11728 BB = exitMBB;
11729 auto StartOfExit = exitMBB->begin();
11731 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11732 // [destOut] = STRB_POST(scratch, destLoop, 1)
11733 unsigned srcIn = srcLoop;
11734 unsigned destIn = destLoop;
11735 for (unsigned i = 0; i < BytesLeft; i++) {
11736 Register srcOut = MRI.createVirtualRegister(TRC);
11737 Register destOut = MRI.createVirtualRegister(TRC);
11738 Register scratch = MRI.createVirtualRegister(TRC);
11739 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
11740 IsThumb1, IsThumb2);
11741 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
11742 IsThumb1, IsThumb2);
11743 srcIn = srcOut;
11744 destIn = destOut;
11747 MI.eraseFromParent(); // The instruction is gone now.
11748 return BB;
11751 MachineBasicBlock *
11752 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
11753 MachineBasicBlock *MBB) const {
11754 const TargetMachine &TM = getTargetMachine();
11755 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
11756 DebugLoc DL = MI.getDebugLoc();
11758 assert(Subtarget->isTargetWindows() &&
11759 "__chkstk is only supported on Windows");
11760 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
11762 // __chkstk takes the number of words to allocate on the stack in R4, and
11763 // returns the stack adjustment in number of bytes in R4. This will not
11764 // clober any other registers (other than the obvious lr).
11766 // Although, technically, IP should be considered a register which may be
11767 // clobbered, the call itself will not touch it. Windows on ARM is a pure
11768 // thumb-2 environment, so there is no interworking required. As a result, we
11769 // do not expect a veneer to be emitted by the linker, clobbering IP.
11771 // Each module receives its own copy of __chkstk, so no import thunk is
11772 // required, again, ensuring that IP is not clobbered.
11774 // Finally, although some linkers may theoretically provide a trampoline for
11775 // out of range calls (which is quite common due to a 32M range limitation of
11776 // branches for Thumb), we can generate the long-call version via
11777 // -mcmodel=large, alleviating the need for the trampoline which may clobber
11778 // IP.
11780 switch (TM.getCodeModel()) {
11781 case CodeModel::Tiny:
11782 llvm_unreachable("Tiny code model not available on ARM.");
11783 case CodeModel::Small:
11784 case CodeModel::Medium:
11785 case CodeModel::Kernel:
11786 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
11787 .add(predOps(ARMCC::AL))
11788 .addExternalSymbol("__chkstk")
11789 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11790 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11791 .addReg(ARM::R12,
11792 RegState::Implicit | RegState::Define | RegState::Dead)
11793 .addReg(ARM::CPSR,
11794 RegState::Implicit | RegState::Define | RegState::Dead);
11795 break;
11796 case CodeModel::Large: {
11797 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11798 Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11800 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
11801 .addExternalSymbol("__chkstk");
11802 BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
11803 .add(predOps(ARMCC::AL))
11804 .addReg(Reg, RegState::Kill)
11805 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11806 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11807 .addReg(ARM::R12,
11808 RegState::Implicit | RegState::Define | RegState::Dead)
11809 .addReg(ARM::CPSR,
11810 RegState::Implicit | RegState::Define | RegState::Dead);
11811 break;
11815 BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
11816 .addReg(ARM::SP, RegState::Kill)
11817 .addReg(ARM::R4, RegState::Kill)
11818 .setMIFlags(MachineInstr::FrameSetup)
11819 .add(predOps(ARMCC::AL))
11820 .add(condCodeOp());
11822 MI.eraseFromParent();
11823 return MBB;
11826 MachineBasicBlock *
11827 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
11828 MachineBasicBlock *MBB) const {
11829 DebugLoc DL = MI.getDebugLoc();
11830 MachineFunction *MF = MBB->getParent();
11831 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11833 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
11834 MF->insert(++MBB->getIterator(), ContBB);
11835 ContBB->splice(ContBB->begin(), MBB,
11836 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11837 ContBB->transferSuccessorsAndUpdatePHIs(MBB);
11838 MBB->addSuccessor(ContBB);
11840 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
11841 BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
11842 MF->push_back(TrapBB);
11843 MBB->addSuccessor(TrapBB);
11845 BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
11846 .addReg(MI.getOperand(0).getReg())
11847 .addImm(0)
11848 .add(predOps(ARMCC::AL));
11849 BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
11850 .addMBB(TrapBB)
11851 .addImm(ARMCC::EQ)
11852 .addReg(ARM::CPSR);
11854 MI.eraseFromParent();
11855 return ContBB;
11858 // The CPSR operand of SelectItr might be missing a kill marker
11859 // because there were multiple uses of CPSR, and ISel didn't know
11860 // which to mark. Figure out whether SelectItr should have had a
11861 // kill marker, and set it if it should. Returns the correct kill
11862 // marker value.
11863 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
11864 MachineBasicBlock* BB,
11865 const TargetRegisterInfo* TRI) {
11866 // Scan forward through BB for a use/def of CPSR.
11867 MachineBasicBlock::iterator miI(std::next(SelectItr));
11868 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11869 const MachineInstr& mi = *miI;
11870 if (mi.readsRegister(ARM::CPSR, /*TRI=*/nullptr))
11871 return false;
11872 if (mi.definesRegister(ARM::CPSR, /*TRI=*/nullptr))
11873 break; // Should have kill-flag - update below.
11876 // If we hit the end of the block, check whether CPSR is live into a
11877 // successor.
11878 if (miI == BB->end()) {
11879 for (MachineBasicBlock *Succ : BB->successors())
11880 if (Succ->isLiveIn(ARM::CPSR))
11881 return false;
11884 // We found a def, or hit the end of the basic block and CPSR wasn't live
11885 // out. SelectMI should have a kill flag on CPSR.
11886 SelectItr->addRegisterKilled(ARM::CPSR, TRI);
11887 return true;
11890 /// Adds logic in loop entry MBB to calculate loop iteration count and adds
11891 /// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
11892 static Register genTPEntry(MachineBasicBlock *TpEntry,
11893 MachineBasicBlock *TpLoopBody,
11894 MachineBasicBlock *TpExit, Register OpSizeReg,
11895 const TargetInstrInfo *TII, DebugLoc Dl,
11896 MachineRegisterInfo &MRI) {
11897 // Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4.
11898 Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11899 BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg)
11900 .addUse(OpSizeReg)
11901 .addImm(15)
11902 .add(predOps(ARMCC::AL))
11903 .addReg(0);
11905 Register LsrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11906 BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg)
11907 .addUse(AddDestReg, RegState::Kill)
11908 .addImm(4)
11909 .add(predOps(ARMCC::AL))
11910 .addReg(0);
11912 Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11913 BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
11914 .addUse(LsrDestReg, RegState::Kill);
11916 BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart))
11917 .addUse(TotalIterationsReg)
11918 .addMBB(TpExit);
11920 BuildMI(TpEntry, Dl, TII->get(ARM::t2B))
11921 .addMBB(TpLoopBody)
11922 .add(predOps(ARMCC::AL));
11924 return TotalIterationsReg;
11927 /// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
11928 /// t2DoLoopEnd. These are used by later passes to generate tail predicated
11929 /// loops.
11930 static void genTPLoopBody(MachineBasicBlock *TpLoopBody,
11931 MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit,
11932 const TargetInstrInfo *TII, DebugLoc Dl,
11933 MachineRegisterInfo &MRI, Register OpSrcReg,
11934 Register OpDestReg, Register ElementCountReg,
11935 Register TotalIterationsReg, bool IsMemcpy) {
11936 // First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
11937 // array, loop iteration counter, predication counter.
11939 Register SrcPhiReg, CurrSrcReg;
11940 if (IsMemcpy) {
11941 // Current position in the src array
11942 SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11943 CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11944 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg)
11945 .addUse(OpSrcReg)
11946 .addMBB(TpEntry)
11947 .addUse(CurrSrcReg)
11948 .addMBB(TpLoopBody);
11951 // Current position in the dest array
11952 Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11953 Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11954 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg)
11955 .addUse(OpDestReg)
11956 .addMBB(TpEntry)
11957 .addUse(CurrDestReg)
11958 .addMBB(TpLoopBody);
11960 // Current loop counter
11961 Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11962 Register RemainingLoopIterationsReg =
11963 MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11964 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg)
11965 .addUse(TotalIterationsReg)
11966 .addMBB(TpEntry)
11967 .addUse(RemainingLoopIterationsReg)
11968 .addMBB(TpLoopBody);
11970 // Predication counter
11971 Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11972 Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11973 BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg)
11974 .addUse(ElementCountReg)
11975 .addMBB(TpEntry)
11976 .addUse(RemainingElementsReg)
11977 .addMBB(TpLoopBody);
11979 // Pass predication counter to VCTP
11980 Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass);
11981 BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg)
11982 .addUse(PredCounterPhiReg)
11983 .addImm(ARMVCC::None)
11984 .addReg(0)
11985 .addReg(0);
11987 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg)
11988 .addUse(PredCounterPhiReg)
11989 .addImm(16)
11990 .add(predOps(ARMCC::AL))
11991 .addReg(0);
11993 // VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
11994 Register SrcValueReg;
11995 if (IsMemcpy) {
11996 SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass);
11997 BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post))
11998 .addDef(CurrSrcReg)
11999 .addDef(SrcValueReg)
12000 .addReg(SrcPhiReg)
12001 .addImm(16)
12002 .addImm(ARMVCC::Then)
12003 .addUse(VccrReg)
12004 .addReg(0);
12005 } else
12006 SrcValueReg = OpSrcReg;
12008 BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post))
12009 .addDef(CurrDestReg)
12010 .addUse(SrcValueReg)
12011 .addReg(DestPhiReg)
12012 .addImm(16)
12013 .addImm(ARMVCC::Then)
12014 .addUse(VccrReg)
12015 .addReg(0);
12017 // Add the pseudoInstrs for decrementing the loop counter and marking the
12018 // end:t2DoLoopDec and t2DoLoopEnd
12019 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
12020 .addUse(LoopCounterPhiReg)
12021 .addImm(1);
12023 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd))
12024 .addUse(RemainingLoopIterationsReg)
12025 .addMBB(TpLoopBody);
12027 BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B))
12028 .addMBB(TpExit)
12029 .add(predOps(ARMCC::AL));
12032 MachineBasicBlock *
12033 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12034 MachineBasicBlock *BB) const {
12035 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
12036 DebugLoc dl = MI.getDebugLoc();
12037 bool isThumb2 = Subtarget->isThumb2();
12038 switch (MI.getOpcode()) {
12039 default: {
12040 MI.print(errs());
12041 llvm_unreachable("Unexpected instr type to insert");
12044 // Thumb1 post-indexed loads are really just single-register LDMs.
12045 case ARM::tLDR_postidx: {
12046 MachineOperand Def(MI.getOperand(1));
12047 BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
12048 .add(Def) // Rn_wb
12049 .add(MI.getOperand(2)) // Rn
12050 .add(MI.getOperand(3)) // PredImm
12051 .add(MI.getOperand(4)) // PredReg
12052 .add(MI.getOperand(0)) // Rt
12053 .cloneMemRefs(MI);
12054 MI.eraseFromParent();
12055 return BB;
12058 case ARM::MVE_MEMCPYLOOPINST:
12059 case ARM::MVE_MEMSETLOOPINST: {
12061 // Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
12062 // into a Tail Predicated (TP) Loop. It adds the instructions to calculate
12063 // the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
12064 // adds the relevant instructions in the TP loop Body for generation of a
12065 // WLSTP loop.
12067 // Below is relevant portion of the CFG after the transformation.
12068 // The Machine Basic Blocks are shown along with branch conditions (in
12069 // brackets). Note that TP entry/exit MBBs depict the entry/exit of this
12070 // portion of the CFG and may not necessarily be the entry/exit of the
12071 // function.
12073 // (Relevant) CFG after transformation:
12074 // TP entry MBB
12075 // |
12076 // |-----------------|
12077 // (n <= 0) (n > 0)
12078 // | |
12079 // | TP loop Body MBB<--|
12080 // | | |
12081 // \ |___________|
12082 // \ /
12083 // TP exit MBB
12085 MachineFunction *MF = BB->getParent();
12086 MachineFunctionProperties &Properties = MF->getProperties();
12087 MachineRegisterInfo &MRI = MF->getRegInfo();
12089 Register OpDestReg = MI.getOperand(0).getReg();
12090 Register OpSrcReg = MI.getOperand(1).getReg();
12091 Register OpSizeReg = MI.getOperand(2).getReg();
12093 // Allocate the required MBBs and add to parent function.
12094 MachineBasicBlock *TpEntry = BB;
12095 MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock();
12096 MachineBasicBlock *TpExit;
12098 MF->push_back(TpLoopBody);
12100 // If any instructions are present in the current block after
12101 // MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
12102 // move the instructions into the newly created exit block. If there are no
12103 // instructions add an explicit branch to the FallThrough block and then
12104 // split.
12106 // The split is required for two reasons:
12107 // 1) A terminator(t2WhileLoopStart) will be placed at that site.
12108 // 2) Since a TPLoopBody will be added later, any phis in successive blocks
12109 // need to be updated. splitAt() already handles this.
12110 TpExit = BB->splitAt(MI, false);
12111 if (TpExit == BB) {
12112 assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the "
12113 "block containing memcpy/memset Pseudo");
12114 TpExit = BB->getFallThrough();
12115 BuildMI(BB, dl, TII->get(ARM::t2B))
12116 .addMBB(TpExit)
12117 .add(predOps(ARMCC::AL));
12118 TpExit = BB->splitAt(MI, false);
12121 // Add logic for iteration count
12122 Register TotalIterationsReg =
12123 genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI);
12125 // Add the vectorized (and predicated) loads/store instructions
12126 bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
12127 genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg,
12128 OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
12130 // Required to avoid conflict with the MachineVerifier during testing.
12131 Properties.reset(MachineFunctionProperties::Property::NoPHIs);
12133 // Connect the blocks
12134 TpEntry->addSuccessor(TpLoopBody);
12135 TpLoopBody->addSuccessor(TpLoopBody);
12136 TpLoopBody->addSuccessor(TpExit);
12138 // Reorder for a more natural layout
12139 TpLoopBody->moveAfter(TpEntry);
12140 TpExit->moveAfter(TpLoopBody);
12142 // Finally, remove the memcpy Pseudo Instruction
12143 MI.eraseFromParent();
12145 // Return the exit block as it may contain other instructions requiring a
12146 // custom inserter
12147 return TpExit;
12150 // The Thumb2 pre-indexed stores have the same MI operands, they just
12151 // define them differently in the .td files from the isel patterns, so
12152 // they need pseudos.
12153 case ARM::t2STR_preidx:
12154 MI.setDesc(TII->get(ARM::t2STR_PRE));
12155 return BB;
12156 case ARM::t2STRB_preidx:
12157 MI.setDesc(TII->get(ARM::t2STRB_PRE));
12158 return BB;
12159 case ARM::t2STRH_preidx:
12160 MI.setDesc(TII->get(ARM::t2STRH_PRE));
12161 return BB;
12163 case ARM::STRi_preidx:
12164 case ARM::STRBi_preidx: {
12165 unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
12166 : ARM::STRB_PRE_IMM;
12167 // Decode the offset.
12168 unsigned Offset = MI.getOperand(4).getImm();
12169 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
12170 Offset = ARM_AM::getAM2Offset(Offset);
12171 if (isSub)
12172 Offset = -Offset;
12174 MachineMemOperand *MMO = *MI.memoperands_begin();
12175 BuildMI(*BB, MI, dl, TII->get(NewOpc))
12176 .add(MI.getOperand(0)) // Rn_wb
12177 .add(MI.getOperand(1)) // Rt
12178 .add(MI.getOperand(2)) // Rn
12179 .addImm(Offset) // offset (skip GPR==zero_reg)
12180 .add(MI.getOperand(5)) // pred
12181 .add(MI.getOperand(6))
12182 .addMemOperand(MMO);
12183 MI.eraseFromParent();
12184 return BB;
12186 case ARM::STRr_preidx:
12187 case ARM::STRBr_preidx:
12188 case ARM::STRH_preidx: {
12189 unsigned NewOpc;
12190 switch (MI.getOpcode()) {
12191 default: llvm_unreachable("unexpected opcode!");
12192 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
12193 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
12194 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
12196 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
12197 for (const MachineOperand &MO : MI.operands())
12198 MIB.add(MO);
12199 MI.eraseFromParent();
12200 return BB;
12203 case ARM::tMOVCCr_pseudo: {
12204 // To "insert" a SELECT_CC instruction, we actually have to insert the
12205 // diamond control-flow pattern. The incoming instruction knows the
12206 // destination vreg to set, the condition code register to branch on, the
12207 // true/false values to select between, and a branch opcode to use.
12208 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12209 MachineFunction::iterator It = ++BB->getIterator();
12211 // thisMBB:
12212 // ...
12213 // TrueVal = ...
12214 // cmpTY ccX, r1, r2
12215 // bCC copy1MBB
12216 // fallthrough --> copy0MBB
12217 MachineBasicBlock *thisMBB = BB;
12218 MachineFunction *F = BB->getParent();
12219 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12220 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12221 F->insert(It, copy0MBB);
12222 F->insert(It, sinkMBB);
12224 // Set the call frame size on entry to the new basic blocks.
12225 unsigned CallFrameSize = TII->getCallFrameSizeAt(MI);
12226 copy0MBB->setCallFrameSize(CallFrameSize);
12227 sinkMBB->setCallFrameSize(CallFrameSize);
12229 // Check whether CPSR is live past the tMOVCCr_pseudo.
12230 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
12231 if (!MI.killsRegister(ARM::CPSR, /*TRI=*/nullptr) &&
12232 !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
12233 copy0MBB->addLiveIn(ARM::CPSR);
12234 sinkMBB->addLiveIn(ARM::CPSR);
12237 // Transfer the remainder of BB and its successor edges to sinkMBB.
12238 sinkMBB->splice(sinkMBB->begin(), BB,
12239 std::next(MachineBasicBlock::iterator(MI)), BB->end());
12240 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12242 BB->addSuccessor(copy0MBB);
12243 BB->addSuccessor(sinkMBB);
12245 BuildMI(BB, dl, TII->get(ARM::tBcc))
12246 .addMBB(sinkMBB)
12247 .addImm(MI.getOperand(3).getImm())
12248 .addReg(MI.getOperand(4).getReg());
12250 // copy0MBB:
12251 // %FalseValue = ...
12252 // # fallthrough to sinkMBB
12253 BB = copy0MBB;
12255 // Update machine-CFG edges
12256 BB->addSuccessor(sinkMBB);
12258 // sinkMBB:
12259 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12260 // ...
12261 BB = sinkMBB;
12262 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
12263 .addReg(MI.getOperand(1).getReg())
12264 .addMBB(copy0MBB)
12265 .addReg(MI.getOperand(2).getReg())
12266 .addMBB(thisMBB);
12268 MI.eraseFromParent(); // The pseudo instruction is gone now.
12269 return BB;
12272 case ARM::BCCi64:
12273 case ARM::BCCZi64: {
12274 // If there is an unconditional branch to the other successor, remove it.
12275 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
12277 // Compare both parts that make up the double comparison separately for
12278 // equality.
12279 bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
12281 Register LHS1 = MI.getOperand(1).getReg();
12282 Register LHS2 = MI.getOperand(2).getReg();
12283 if (RHSisZero) {
12284 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12285 .addReg(LHS1)
12286 .addImm(0)
12287 .add(predOps(ARMCC::AL));
12288 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12289 .addReg(LHS2).addImm(0)
12290 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
12291 } else {
12292 Register RHS1 = MI.getOperand(3).getReg();
12293 Register RHS2 = MI.getOperand(4).getReg();
12294 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12295 .addReg(LHS1)
12296 .addReg(RHS1)
12297 .add(predOps(ARMCC::AL));
12298 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
12299 .addReg(LHS2).addReg(RHS2)
12300 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
12303 MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
12304 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
12305 if (MI.getOperand(0).getImm() == ARMCC::NE)
12306 std::swap(destMBB, exitMBB);
12308 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
12309 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
12310 if (isThumb2)
12311 BuildMI(BB, dl, TII->get(ARM::t2B))
12312 .addMBB(exitMBB)
12313 .add(predOps(ARMCC::AL));
12314 else
12315 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
12317 MI.eraseFromParent(); // The pseudo instruction is gone now.
12318 return BB;
12321 case ARM::Int_eh_sjlj_setjmp:
12322 case ARM::Int_eh_sjlj_setjmp_nofp:
12323 case ARM::tInt_eh_sjlj_setjmp:
12324 case ARM::t2Int_eh_sjlj_setjmp:
12325 case ARM::t2Int_eh_sjlj_setjmp_nofp:
12326 return BB;
12328 case ARM::Int_eh_sjlj_setup_dispatch:
12329 EmitSjLjDispatchBlock(MI, BB);
12330 return BB;
12332 case ARM::ABS:
12333 case ARM::t2ABS: {
12334 // To insert an ABS instruction, we have to insert the
12335 // diamond control-flow pattern. The incoming instruction knows the
12336 // source vreg to test against 0, the destination vreg to set,
12337 // the condition code register to branch on, the
12338 // true/false values to select between, and a branch opcode to use.
12339 // It transforms
12340 // V1 = ABS V0
12341 // into
12342 // V2 = MOVS V0
12343 // BCC (branch to SinkBB if V0 >= 0)
12344 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
12345 // SinkBB: V1 = PHI(V2, V3)
12346 const BasicBlock *LLVM_BB = BB->getBasicBlock();
12347 MachineFunction::iterator BBI = ++BB->getIterator();
12348 MachineFunction *Fn = BB->getParent();
12349 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
12350 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
12351 Fn->insert(BBI, RSBBB);
12352 Fn->insert(BBI, SinkBB);
12354 Register ABSSrcReg = MI.getOperand(1).getReg();
12355 Register ABSDstReg = MI.getOperand(0).getReg();
12356 bool ABSSrcKIll = MI.getOperand(1).isKill();
12357 bool isThumb2 = Subtarget->isThumb2();
12358 MachineRegisterInfo &MRI = Fn->getRegInfo();
12359 // In Thumb mode S must not be specified if source register is the SP or
12360 // PC and if destination register is the SP, so restrict register class
12361 Register NewRsbDstReg = MRI.createVirtualRegister(
12362 isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
12364 // Transfer the remainder of BB and its successor edges to sinkMBB.
12365 SinkBB->splice(SinkBB->begin(), BB,
12366 std::next(MachineBasicBlock::iterator(MI)), BB->end());
12367 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
12369 BB->addSuccessor(RSBBB);
12370 BB->addSuccessor(SinkBB);
12372 // fall through to SinkMBB
12373 RSBBB->addSuccessor(SinkBB);
12375 // insert a cmp at the end of BB
12376 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12377 .addReg(ABSSrcReg)
12378 .addImm(0)
12379 .add(predOps(ARMCC::AL));
12381 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
12382 BuildMI(BB, dl,
12383 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
12384 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
12386 // insert rsbri in RSBBB
12387 // Note: BCC and rsbri will be converted into predicated rsbmi
12388 // by if-conversion pass
12389 BuildMI(*RSBBB, RSBBB->begin(), dl,
12390 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
12391 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
12392 .addImm(0)
12393 .add(predOps(ARMCC::AL))
12394 .add(condCodeOp());
12396 // insert PHI in SinkBB,
12397 // reuse ABSDstReg to not change uses of ABS instruction
12398 BuildMI(*SinkBB, SinkBB->begin(), dl,
12399 TII->get(ARM::PHI), ABSDstReg)
12400 .addReg(NewRsbDstReg).addMBB(RSBBB)
12401 .addReg(ABSSrcReg).addMBB(BB);
12403 // remove ABS instruction
12404 MI.eraseFromParent();
12406 // return last added BB
12407 return SinkBB;
12409 case ARM::COPY_STRUCT_BYVAL_I32:
12410 ++NumLoopByVals;
12411 return EmitStructByval(MI, BB);
12412 case ARM::WIN__CHKSTK:
12413 return EmitLowered__chkstk(MI, BB);
12414 case ARM::WIN__DBZCHK:
12415 return EmitLowered__dbzchk(MI, BB);
12419 /// Attaches vregs to MEMCPY that it will use as scratch registers
12420 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
12421 /// instead of as a custom inserter because we need the use list from the SDNode.
12422 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
12423 MachineInstr &MI, const SDNode *Node) {
12424 bool isThumb1 = Subtarget->isThumb1Only();
12426 DebugLoc DL = MI.getDebugLoc();
12427 MachineFunction *MF = MI.getParent()->getParent();
12428 MachineRegisterInfo &MRI = MF->getRegInfo();
12429 MachineInstrBuilder MIB(*MF, MI);
12431 // If the new dst/src is unused mark it as dead.
12432 if (!Node->hasAnyUseOfValue(0)) {
12433 MI.getOperand(0).setIsDead(true);
12435 if (!Node->hasAnyUseOfValue(1)) {
12436 MI.getOperand(1).setIsDead(true);
12439 // The MEMCPY both defines and kills the scratch registers.
12440 for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
12441 Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
12442 : &ARM::GPRRegClass);
12443 MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
12447 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
12448 SDNode *Node) const {
12449 if (MI.getOpcode() == ARM::MEMCPY) {
12450 attachMEMCPYScratchRegs(Subtarget, MI, Node);
12451 return;
12454 const MCInstrDesc *MCID = &MI.getDesc();
12455 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
12456 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
12457 // operand is still set to noreg. If needed, set the optional operand's
12458 // register to CPSR, and remove the redundant implicit def.
12460 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
12462 // Rename pseudo opcodes.
12463 unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
12464 unsigned ccOutIdx;
12465 if (NewOpc) {
12466 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
12467 MCID = &TII->get(NewOpc);
12469 assert(MCID->getNumOperands() ==
12470 MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
12471 && "converted opcode should be the same except for cc_out"
12472 " (and, on Thumb1, pred)");
12474 MI.setDesc(*MCID);
12476 // Add the optional cc_out operand
12477 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
12479 // On Thumb1, move all input operands to the end, then add the predicate
12480 if (Subtarget->isThumb1Only()) {
12481 for (unsigned c = MCID->getNumOperands() - 4; c--;) {
12482 MI.addOperand(MI.getOperand(1));
12483 MI.removeOperand(1);
12486 // Restore the ties
12487 for (unsigned i = MI.getNumOperands(); i--;) {
12488 const MachineOperand& op = MI.getOperand(i);
12489 if (op.isReg() && op.isUse()) {
12490 int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
12491 if (DefIdx != -1)
12492 MI.tieOperands(DefIdx, i);
12496 MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
12497 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
12498 ccOutIdx = 1;
12499 } else
12500 ccOutIdx = MCID->getNumOperands() - 1;
12501 } else
12502 ccOutIdx = MCID->getNumOperands() - 1;
12504 // Any ARM instruction that sets the 's' bit should specify an optional
12505 // "cc_out" operand in the last operand position.
12506 if (!MI.hasOptionalDef() || !MCID->operands()[ccOutIdx].isOptionalDef()) {
12507 assert(!NewOpc && "Optional cc_out operand required");
12508 return;
12510 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
12511 // since we already have an optional CPSR def.
12512 bool definesCPSR = false;
12513 bool deadCPSR = false;
12514 for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
12515 ++i) {
12516 const MachineOperand &MO = MI.getOperand(i);
12517 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
12518 definesCPSR = true;
12519 if (MO.isDead())
12520 deadCPSR = true;
12521 MI.removeOperand(i);
12522 break;
12525 if (!definesCPSR) {
12526 assert(!NewOpc && "Optional cc_out operand required");
12527 return;
12529 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
12530 if (deadCPSR) {
12531 assert(!MI.getOperand(ccOutIdx).getReg() &&
12532 "expect uninitialized optional cc_out operand");
12533 // Thumb1 instructions must have the S bit even if the CPSR is dead.
12534 if (!Subtarget->isThumb1Only())
12535 return;
12538 // If this instruction was defined with an optional CPSR def and its dag node
12539 // had a live implicit CPSR def, then activate the optional CPSR def.
12540 MachineOperand &MO = MI.getOperand(ccOutIdx);
12541 MO.setReg(ARM::CPSR);
12542 MO.setIsDef(true);
12545 //===----------------------------------------------------------------------===//
12546 // ARM Optimization Hooks
12547 //===----------------------------------------------------------------------===//
12549 // Helper function that checks if N is a null or all ones constant.
12550 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
12551 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
12554 // Return true if N is conditionally 0 or all ones.
12555 // Detects these expressions where cc is an i1 value:
12557 // (select cc 0, y) [AllOnes=0]
12558 // (select cc y, 0) [AllOnes=0]
12559 // (zext cc) [AllOnes=0]
12560 // (sext cc) [AllOnes=0/1]
12561 // (select cc -1, y) [AllOnes=1]
12562 // (select cc y, -1) [AllOnes=1]
12564 // Invert is set when N is the null/all ones constant when CC is false.
12565 // OtherOp is set to the alternative value of N.
12566 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
12567 SDValue &CC, bool &Invert,
12568 SDValue &OtherOp,
12569 SelectionDAG &DAG) {
12570 switch (N->getOpcode()) {
12571 default: return false;
12572 case ISD::SELECT: {
12573 CC = N->getOperand(0);
12574 SDValue N1 = N->getOperand(1);
12575 SDValue N2 = N->getOperand(2);
12576 if (isZeroOrAllOnes(N1, AllOnes)) {
12577 Invert = false;
12578 OtherOp = N2;
12579 return true;
12581 if (isZeroOrAllOnes(N2, AllOnes)) {
12582 Invert = true;
12583 OtherOp = N1;
12584 return true;
12586 return false;
12588 case ISD::ZERO_EXTEND:
12589 // (zext cc) can never be the all ones value.
12590 if (AllOnes)
12591 return false;
12592 [[fallthrough]];
12593 case ISD::SIGN_EXTEND: {
12594 SDLoc dl(N);
12595 EVT VT = N->getValueType(0);
12596 CC = N->getOperand(0);
12597 if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
12598 return false;
12599 Invert = !AllOnes;
12600 if (AllOnes)
12601 // When looking for an AllOnes constant, N is an sext, and the 'other'
12602 // value is 0.
12603 OtherOp = DAG.getConstant(0, dl, VT);
12604 else if (N->getOpcode() == ISD::ZERO_EXTEND)
12605 // When looking for a 0 constant, N can be zext or sext.
12606 OtherOp = DAG.getConstant(1, dl, VT);
12607 else
12608 OtherOp = DAG.getAllOnesConstant(dl, VT);
12609 return true;
12614 // Combine a constant select operand into its use:
12616 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
12617 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
12618 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
12619 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12620 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12622 // The transform is rejected if the select doesn't have a constant operand that
12623 // is null, or all ones when AllOnes is set.
12625 // Also recognize sext/zext from i1:
12627 // (add (zext cc), x) -> (select cc (add x, 1), x)
12628 // (add (sext cc), x) -> (select cc (add x, -1), x)
12630 // These transformations eventually create predicated instructions.
12632 // @param N The node to transform.
12633 // @param Slct The N operand that is a select.
12634 // @param OtherOp The other N operand (x above).
12635 // @param DCI Context.
12636 // @param AllOnes Require the select constant to be all ones instead of null.
12637 // @returns The new node, or SDValue() on failure.
12638 static
12639 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
12640 TargetLowering::DAGCombinerInfo &DCI,
12641 bool AllOnes = false) {
12642 SelectionDAG &DAG = DCI.DAG;
12643 EVT VT = N->getValueType(0);
12644 SDValue NonConstantVal;
12645 SDValue CCOp;
12646 bool SwapSelectOps;
12647 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
12648 NonConstantVal, DAG))
12649 return SDValue();
12651 // Slct is now know to be the desired identity constant when CC is true.
12652 SDValue TrueVal = OtherOp;
12653 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
12654 OtherOp, NonConstantVal);
12655 // Unless SwapSelectOps says CC should be false.
12656 if (SwapSelectOps)
12657 std::swap(TrueVal, FalseVal);
12659 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
12660 CCOp, TrueVal, FalseVal);
12663 // Attempt combineSelectAndUse on each operand of a commutative operator N.
12664 static
12665 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
12666 TargetLowering::DAGCombinerInfo &DCI) {
12667 SDValue N0 = N->getOperand(0);
12668 SDValue N1 = N->getOperand(1);
12669 if (N0.getNode()->hasOneUse())
12670 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
12671 return Result;
12672 if (N1.getNode()->hasOneUse())
12673 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
12674 return Result;
12675 return SDValue();
12678 static bool IsVUZPShuffleNode(SDNode *N) {
12679 // VUZP shuffle node.
12680 if (N->getOpcode() == ARMISD::VUZP)
12681 return true;
12683 // "VUZP" on i32 is an alias for VTRN.
12684 if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
12685 return true;
12687 return false;
12690 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
12691 TargetLowering::DAGCombinerInfo &DCI,
12692 const ARMSubtarget *Subtarget) {
12693 // Look for ADD(VUZP.0, VUZP.1).
12694 if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
12695 N0 == N1)
12696 return SDValue();
12698 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
12699 if (!N->getValueType(0).is64BitVector())
12700 return SDValue();
12702 // Generate vpadd.
12703 SelectionDAG &DAG = DCI.DAG;
12704 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12705 SDLoc dl(N);
12706 SDNode *Unzip = N0.getNode();
12707 EVT VT = N->getValueType(0);
12709 SmallVector<SDValue, 8> Ops;
12710 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
12711 TLI.getPointerTy(DAG.getDataLayout())));
12712 Ops.push_back(Unzip->getOperand(0));
12713 Ops.push_back(Unzip->getOperand(1));
12715 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12718 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12719 TargetLowering::DAGCombinerInfo &DCI,
12720 const ARMSubtarget *Subtarget) {
12721 // Check for two extended operands.
12722 if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
12723 N1.getOpcode() == ISD::SIGN_EXTEND) &&
12724 !(N0.getOpcode() == ISD::ZERO_EXTEND &&
12725 N1.getOpcode() == ISD::ZERO_EXTEND))
12726 return SDValue();
12728 SDValue N00 = N0.getOperand(0);
12729 SDValue N10 = N1.getOperand(0);
12731 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
12732 if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
12733 N00 == N10)
12734 return SDValue();
12736 // We only recognize Q register paddl here; this can't be reached until
12737 // after type legalization.
12738 if (!N00.getValueType().is64BitVector() ||
12739 !N0.getValueType().is128BitVector())
12740 return SDValue();
12742 // Generate vpaddl.
12743 SelectionDAG &DAG = DCI.DAG;
12744 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12745 SDLoc dl(N);
12746 EVT VT = N->getValueType(0);
12748 SmallVector<SDValue, 8> Ops;
12749 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
12750 unsigned Opcode;
12751 if (N0.getOpcode() == ISD::SIGN_EXTEND)
12752 Opcode = Intrinsic::arm_neon_vpaddls;
12753 else
12754 Opcode = Intrinsic::arm_neon_vpaddlu;
12755 Ops.push_back(DAG.getConstant(Opcode, dl,
12756 TLI.getPointerTy(DAG.getDataLayout())));
12757 EVT ElemTy = N00.getValueType().getVectorElementType();
12758 unsigned NumElts = VT.getVectorNumElements();
12759 EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
12760 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
12761 N00.getOperand(0), N00.getOperand(1));
12762 Ops.push_back(Concat);
12764 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12767 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
12768 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
12769 // much easier to match.
12770 static SDValue
12771 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12772 TargetLowering::DAGCombinerInfo &DCI,
12773 const ARMSubtarget *Subtarget) {
12774 // Only perform optimization if after legalize, and if NEON is available. We
12775 // also expected both operands to be BUILD_VECTORs.
12776 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
12777 || N0.getOpcode() != ISD::BUILD_VECTOR
12778 || N1.getOpcode() != ISD::BUILD_VECTOR)
12779 return SDValue();
12781 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
12782 EVT VT = N->getValueType(0);
12783 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
12784 return SDValue();
12786 // Check that the vector operands are of the right form.
12787 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
12788 // operands, where N is the size of the formed vector.
12789 // Each EXTRACT_VECTOR should have the same input vector and odd or even
12790 // index such that we have a pair wise add pattern.
12792 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
12793 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12794 return SDValue();
12795 SDValue Vec = N0->getOperand(0)->getOperand(0);
12796 SDNode *V = Vec.getNode();
12797 unsigned nextIndex = 0;
12799 // For each operands to the ADD which are BUILD_VECTORs,
12800 // check to see if each of their operands are an EXTRACT_VECTOR with
12801 // the same vector and appropriate index.
12802 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
12803 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
12804 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12806 SDValue ExtVec0 = N0->getOperand(i);
12807 SDValue ExtVec1 = N1->getOperand(i);
12809 // First operand is the vector, verify its the same.
12810 if (V != ExtVec0->getOperand(0).getNode() ||
12811 V != ExtVec1->getOperand(0).getNode())
12812 return SDValue();
12814 // Second is the constant, verify its correct.
12815 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
12816 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
12818 // For the constant, we want to see all the even or all the odd.
12819 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
12820 || C1->getZExtValue() != nextIndex+1)
12821 return SDValue();
12823 // Increment index.
12824 nextIndex+=2;
12825 } else
12826 return SDValue();
12829 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
12830 // we're using the entire input vector, otherwise there's a size/legality
12831 // mismatch somewhere.
12832 if (nextIndex != Vec.getValueType().getVectorNumElements() ||
12833 Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
12834 return SDValue();
12836 // Create VPADDL node.
12837 SelectionDAG &DAG = DCI.DAG;
12838 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12840 SDLoc dl(N);
12842 // Build operand list.
12843 SmallVector<SDValue, 8> Ops;
12844 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
12845 TLI.getPointerTy(DAG.getDataLayout())));
12847 // Input is the vector.
12848 Ops.push_back(Vec);
12850 // Get widened type and narrowed type.
12851 MVT widenType;
12852 unsigned numElem = VT.getVectorNumElements();
12854 EVT inputLaneType = Vec.getValueType().getVectorElementType();
12855 switch (inputLaneType.getSimpleVT().SimpleTy) {
12856 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
12857 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
12858 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
12859 default:
12860 llvm_unreachable("Invalid vector element type for padd optimization.");
12863 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
12864 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
12865 return DAG.getNode(ExtOp, dl, VT, tmp);
12868 static SDValue findMUL_LOHI(SDValue V) {
12869 if (V->getOpcode() == ISD::UMUL_LOHI ||
12870 V->getOpcode() == ISD::SMUL_LOHI)
12871 return V;
12872 return SDValue();
12875 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
12876 TargetLowering::DAGCombinerInfo &DCI,
12877 const ARMSubtarget *Subtarget) {
12878 if (!Subtarget->hasBaseDSP())
12879 return SDValue();
12881 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
12882 // accumulates the product into a 64-bit value. The 16-bit values will
12883 // be sign extended somehow or SRA'd into 32-bit values
12884 // (addc (adde (mul 16bit, 16bit), lo), hi)
12885 SDValue Mul = AddcNode->getOperand(0);
12886 SDValue Lo = AddcNode->getOperand(1);
12887 if (Mul.getOpcode() != ISD::MUL) {
12888 Lo = AddcNode->getOperand(0);
12889 Mul = AddcNode->getOperand(1);
12890 if (Mul.getOpcode() != ISD::MUL)
12891 return SDValue();
12894 SDValue SRA = AddeNode->getOperand(0);
12895 SDValue Hi = AddeNode->getOperand(1);
12896 if (SRA.getOpcode() != ISD::SRA) {
12897 SRA = AddeNode->getOperand(1);
12898 Hi = AddeNode->getOperand(0);
12899 if (SRA.getOpcode() != ISD::SRA)
12900 return SDValue();
12902 if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
12903 if (Const->getZExtValue() != 31)
12904 return SDValue();
12905 } else
12906 return SDValue();
12908 if (SRA.getOperand(0) != Mul)
12909 return SDValue();
12911 SelectionDAG &DAG = DCI.DAG;
12912 SDLoc dl(AddcNode);
12913 unsigned Opcode = 0;
12914 SDValue Op0;
12915 SDValue Op1;
12917 if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
12918 Opcode = ARMISD::SMLALBB;
12919 Op0 = Mul.getOperand(0);
12920 Op1 = Mul.getOperand(1);
12921 } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
12922 Opcode = ARMISD::SMLALBT;
12923 Op0 = Mul.getOperand(0);
12924 Op1 = Mul.getOperand(1).getOperand(0);
12925 } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
12926 Opcode = ARMISD::SMLALTB;
12927 Op0 = Mul.getOperand(0).getOperand(0);
12928 Op1 = Mul.getOperand(1);
12929 } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
12930 Opcode = ARMISD::SMLALTT;
12931 Op0 = Mul->getOperand(0).getOperand(0);
12932 Op1 = Mul->getOperand(1).getOperand(0);
12935 if (!Op0 || !Op1)
12936 return SDValue();
12938 SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
12939 Op0, Op1, Lo, Hi);
12940 // Replace the ADDs' nodes uses by the MLA node's values.
12941 SDValue HiMLALResult(SMLAL.getNode(), 1);
12942 SDValue LoMLALResult(SMLAL.getNode(), 0);
12944 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
12945 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
12947 // Return original node to notify the driver to stop replacing.
12948 SDValue resNode(AddcNode, 0);
12949 return resNode;
12952 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
12953 TargetLowering::DAGCombinerInfo &DCI,
12954 const ARMSubtarget *Subtarget) {
12955 // Look for multiply add opportunities.
12956 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
12957 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
12958 // a glue link from the first add to the second add.
12959 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
12960 // a S/UMLAL instruction.
12961 // UMUL_LOHI
12962 // / :lo \ :hi
12963 // V \ [no multiline comment]
12964 // loAdd -> ADDC |
12965 // \ :carry /
12966 // V V
12967 // ADDE <- hiAdd
12969 // In the special case where only the higher part of a signed result is used
12970 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
12971 // a constant with the exact value of 0x80000000, we recognize we are dealing
12972 // with a "rounded multiply and add" (or subtract) and transform it into
12973 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
12975 assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
12976 AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
12977 "Expect an ADDE or SUBE");
12979 assert(AddeSubeNode->getNumOperands() == 3 &&
12980 AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
12981 "ADDE node has the wrong inputs");
12983 // Check that we are chained to the right ADDC or SUBC node.
12984 SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
12985 if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12986 AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
12987 (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
12988 AddcSubcNode->getOpcode() != ARMISD::SUBC))
12989 return SDValue();
12991 SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
12992 SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
12994 // Check if the two operands are from the same mul_lohi node.
12995 if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
12996 return SDValue();
12998 assert(AddcSubcNode->getNumValues() == 2 &&
12999 AddcSubcNode->getValueType(0) == MVT::i32 &&
13000 "Expect ADDC with two result values. First: i32");
13002 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
13003 // maybe a SMLAL which multiplies two 16-bit values.
13004 if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
13005 AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
13006 AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
13007 AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
13008 AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
13009 return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
13011 // Check for the triangle shape.
13012 SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
13013 SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
13015 // Make sure that the ADDE/SUBE operands are not coming from the same node.
13016 if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
13017 return SDValue();
13019 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
13020 bool IsLeftOperandMUL = false;
13021 SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
13022 if (MULOp == SDValue())
13023 MULOp = findMUL_LOHI(AddeSubeOp1);
13024 else
13025 IsLeftOperandMUL = true;
13026 if (MULOp == SDValue())
13027 return SDValue();
13029 // Figure out the right opcode.
13030 unsigned Opc = MULOp->getOpcode();
13031 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
13033 // Figure out the high and low input values to the MLAL node.
13034 SDValue *HiAddSub = nullptr;
13035 SDValue *LoMul = nullptr;
13036 SDValue *LowAddSub = nullptr;
13038 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
13039 if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
13040 return SDValue();
13042 if (IsLeftOperandMUL)
13043 HiAddSub = &AddeSubeOp1;
13044 else
13045 HiAddSub = &AddeSubeOp0;
13047 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
13048 // whose low result is fed to the ADDC/SUBC we are checking.
13050 if (AddcSubcOp0 == MULOp.getValue(0)) {
13051 LoMul = &AddcSubcOp0;
13052 LowAddSub = &AddcSubcOp1;
13054 if (AddcSubcOp1 == MULOp.getValue(0)) {
13055 LoMul = &AddcSubcOp1;
13056 LowAddSub = &AddcSubcOp0;
13059 if (!LoMul)
13060 return SDValue();
13062 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
13063 // the replacement below will create a cycle.
13064 if (AddcSubcNode == HiAddSub->getNode() ||
13065 AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
13066 return SDValue();
13068 // Create the merged node.
13069 SelectionDAG &DAG = DCI.DAG;
13071 // Start building operand list.
13072 SmallVector<SDValue, 8> Ops;
13073 Ops.push_back(LoMul->getOperand(0));
13074 Ops.push_back(LoMul->getOperand(1));
13076 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
13077 // the case, we must be doing signed multiplication and only use the higher
13078 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
13079 // addition or subtraction with the value of 0x800000.
13080 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
13081 FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
13082 LowAddSub->getNode()->getOpcode() == ISD::Constant &&
13083 static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
13084 0x80000000) {
13085 Ops.push_back(*HiAddSub);
13086 if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
13087 FinalOpc = ARMISD::SMMLSR;
13088 } else {
13089 FinalOpc = ARMISD::SMMLAR;
13091 SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
13092 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
13094 return SDValue(AddeSubeNode, 0);
13095 } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
13096 // SMMLS is generated during instruction selection and the rest of this
13097 // function can not handle the case where AddcSubcNode is a SUBC.
13098 return SDValue();
13100 // Finish building the operand list for {U/S}MLAL
13101 Ops.push_back(*LowAddSub);
13102 Ops.push_back(*HiAddSub);
13104 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
13105 DAG.getVTList(MVT::i32, MVT::i32), Ops);
13107 // Replace the ADDs' nodes uses by the MLA node's values.
13108 SDValue HiMLALResult(MLALNode.getNode(), 1);
13109 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
13111 SDValue LoMLALResult(MLALNode.getNode(), 0);
13112 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
13114 // Return original node to notify the driver to stop replacing.
13115 return SDValue(AddeSubeNode, 0);
13118 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
13119 TargetLowering::DAGCombinerInfo &DCI,
13120 const ARMSubtarget *Subtarget) {
13121 // UMAAL is similar to UMLAL except that it adds two unsigned values.
13122 // While trying to combine for the other MLAL nodes, first search for the
13123 // chance to use UMAAL. Check if Addc uses a node which has already
13124 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
13125 // as the addend, and it's handled in PerformUMLALCombine.
13127 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13128 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
13130 // Check that we have a glued ADDC node.
13131 SDNode* AddcNode = AddeNode->getOperand(2).getNode();
13132 if (AddcNode->getOpcode() != ARMISD::ADDC)
13133 return SDValue();
13135 // Find the converted UMAAL or quit if it doesn't exist.
13136 SDNode *UmlalNode = nullptr;
13137 SDValue AddHi;
13138 if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
13139 UmlalNode = AddcNode->getOperand(0).getNode();
13140 AddHi = AddcNode->getOperand(1);
13141 } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
13142 UmlalNode = AddcNode->getOperand(1).getNode();
13143 AddHi = AddcNode->getOperand(0);
13144 } else {
13145 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
13148 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
13149 // the ADDC as well as Zero.
13150 if (!isNullConstant(UmlalNode->getOperand(3)))
13151 return SDValue();
13153 if ((isNullConstant(AddeNode->getOperand(0)) &&
13154 AddeNode->getOperand(1).getNode() == UmlalNode) ||
13155 (AddeNode->getOperand(0).getNode() == UmlalNode &&
13156 isNullConstant(AddeNode->getOperand(1)))) {
13157 SelectionDAG &DAG = DCI.DAG;
13158 SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
13159 UmlalNode->getOperand(2), AddHi };
13160 SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
13161 DAG.getVTList(MVT::i32, MVT::i32), Ops);
13163 // Replace the ADDs' nodes uses by the UMAAL node's values.
13164 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
13165 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
13167 // Return original node to notify the driver to stop replacing.
13168 return SDValue(AddeNode, 0);
13170 return SDValue();
13173 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
13174 const ARMSubtarget *Subtarget) {
13175 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
13176 return SDValue();
13178 // Check that we have a pair of ADDC and ADDE as operands.
13179 // Both addends of the ADDE must be zero.
13180 SDNode* AddcNode = N->getOperand(2).getNode();
13181 SDNode* AddeNode = N->getOperand(3).getNode();
13182 if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
13183 (AddeNode->getOpcode() == ARMISD::ADDE) &&
13184 isNullConstant(AddeNode->getOperand(0)) &&
13185 isNullConstant(AddeNode->getOperand(1)) &&
13186 (AddeNode->getOperand(2).getNode() == AddcNode))
13187 return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
13188 DAG.getVTList(MVT::i32, MVT::i32),
13189 {N->getOperand(0), N->getOperand(1),
13190 AddcNode->getOperand(0), AddcNode->getOperand(1)});
13191 else
13192 return SDValue();
13195 static SDValue PerformAddcSubcCombine(SDNode *N,
13196 TargetLowering::DAGCombinerInfo &DCI,
13197 const ARMSubtarget *Subtarget) {
13198 SelectionDAG &DAG(DCI.DAG);
13200 if (N->getOpcode() == ARMISD::SUBC && N->hasAnyUseOfValue(1)) {
13201 // (SUBC (ADDE 0, 0, C), 1) -> C
13202 SDValue LHS = N->getOperand(0);
13203 SDValue RHS = N->getOperand(1);
13204 if (LHS->getOpcode() == ARMISD::ADDE &&
13205 isNullConstant(LHS->getOperand(0)) &&
13206 isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
13207 return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
13211 if (Subtarget->isThumb1Only()) {
13212 SDValue RHS = N->getOperand(1);
13213 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13214 int32_t imm = C->getSExtValue();
13215 if (imm < 0 && imm > std::numeric_limits<int>::min()) {
13216 SDLoc DL(N);
13217 RHS = DAG.getConstant(-imm, DL, MVT::i32);
13218 unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
13219 : ARMISD::ADDC;
13220 return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
13225 return SDValue();
13228 static SDValue PerformAddeSubeCombine(SDNode *N,
13229 TargetLowering::DAGCombinerInfo &DCI,
13230 const ARMSubtarget *Subtarget) {
13231 if (Subtarget->isThumb1Only()) {
13232 SelectionDAG &DAG = DCI.DAG;
13233 SDValue RHS = N->getOperand(1);
13234 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
13235 int64_t imm = C->getSExtValue();
13236 if (imm < 0) {
13237 SDLoc DL(N);
13239 // The with-carry-in form matches bitwise not instead of the negation.
13240 // Effectively, the inverse interpretation of the carry flag already
13241 // accounts for part of the negation.
13242 RHS = DAG.getConstant(~imm, DL, MVT::i32);
13244 unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
13245 : ARMISD::ADDE;
13246 return DAG.getNode(Opcode, DL, N->getVTList(),
13247 N->getOperand(0), RHS, N->getOperand(2));
13250 } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
13251 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
13253 return SDValue();
13256 static SDValue PerformSELECTCombine(SDNode *N,
13257 TargetLowering::DAGCombinerInfo &DCI,
13258 const ARMSubtarget *Subtarget) {
13259 if (!Subtarget->hasMVEIntegerOps())
13260 return SDValue();
13262 SDLoc dl(N);
13263 SDValue SetCC;
13264 SDValue LHS;
13265 SDValue RHS;
13266 ISD::CondCode CC;
13267 SDValue TrueVal;
13268 SDValue FalseVal;
13270 if (N->getOpcode() == ISD::SELECT &&
13271 N->getOperand(0)->getOpcode() == ISD::SETCC) {
13272 SetCC = N->getOperand(0);
13273 LHS = SetCC->getOperand(0);
13274 RHS = SetCC->getOperand(1);
13275 CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
13276 TrueVal = N->getOperand(1);
13277 FalseVal = N->getOperand(2);
13278 } else if (N->getOpcode() == ISD::SELECT_CC) {
13279 LHS = N->getOperand(0);
13280 RHS = N->getOperand(1);
13281 CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
13282 TrueVal = N->getOperand(2);
13283 FalseVal = N->getOperand(3);
13284 } else {
13285 return SDValue();
13288 unsigned int Opcode = 0;
13289 if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
13290 FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
13291 (CC == ISD::SETULT || CC == ISD::SETUGT)) {
13292 Opcode = ARMISD::VMINVu;
13293 if (CC == ISD::SETUGT)
13294 std::swap(TrueVal, FalseVal);
13295 } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
13296 FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
13297 (CC == ISD::SETLT || CC == ISD::SETGT)) {
13298 Opcode = ARMISD::VMINVs;
13299 if (CC == ISD::SETGT)
13300 std::swap(TrueVal, FalseVal);
13301 } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
13302 FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
13303 (CC == ISD::SETUGT || CC == ISD::SETULT)) {
13304 Opcode = ARMISD::VMAXVu;
13305 if (CC == ISD::SETULT)
13306 std::swap(TrueVal, FalseVal);
13307 } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
13308 FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
13309 (CC == ISD::SETGT || CC == ISD::SETLT)) {
13310 Opcode = ARMISD::VMAXVs;
13311 if (CC == ISD::SETLT)
13312 std::swap(TrueVal, FalseVal);
13313 } else
13314 return SDValue();
13316 // Normalise to the right hand side being the vector reduction
13317 switch (TrueVal->getOpcode()) {
13318 case ISD::VECREDUCE_UMIN:
13319 case ISD::VECREDUCE_SMIN:
13320 case ISD::VECREDUCE_UMAX:
13321 case ISD::VECREDUCE_SMAX:
13322 std::swap(LHS, RHS);
13323 std::swap(TrueVal, FalseVal);
13324 break;
13327 EVT VectorType = FalseVal->getOperand(0).getValueType();
13329 if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
13330 VectorType != MVT::v4i32)
13331 return SDValue();
13333 EVT VectorScalarType = VectorType.getVectorElementType();
13335 // The values being selected must also be the ones being compared
13336 if (TrueVal != LHS || FalseVal != RHS)
13337 return SDValue();
13339 EVT LeftType = LHS->getValueType(0);
13340 EVT RightType = RHS->getValueType(0);
13342 // The types must match the reduced type too
13343 if (LeftType != VectorScalarType || RightType != VectorScalarType)
13344 return SDValue();
13346 // Legalise the scalar to an i32
13347 if (VectorScalarType != MVT::i32)
13348 LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
13350 // Generate the reduction as an i32 for legalisation purposes
13351 auto Reduction =
13352 DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
13354 // The result isn't actually an i32 so truncate it back to its original type
13355 if (VectorScalarType != MVT::i32)
13356 Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
13358 return Reduction;
13361 // A special combine for the vqdmulh family of instructions. This is one of the
13362 // potential set of patterns that could patch this instruction. The base pattern
13363 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
13364 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
13365 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
13366 // the max is unnecessary.
13367 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
13368 EVT VT = N->getValueType(0);
13369 SDValue Shft;
13370 ConstantSDNode *Clamp;
13372 if (!VT.isVector() || VT.getScalarSizeInBits() > 64)
13373 return SDValue();
13375 if (N->getOpcode() == ISD::SMIN) {
13376 Shft = N->getOperand(0);
13377 Clamp = isConstOrConstSplat(N->getOperand(1));
13378 } else if (N->getOpcode() == ISD::VSELECT) {
13379 // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
13380 SDValue Cmp = N->getOperand(0);
13381 if (Cmp.getOpcode() != ISD::SETCC ||
13382 cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
13383 Cmp.getOperand(0) != N->getOperand(1) ||
13384 Cmp.getOperand(1) != N->getOperand(2))
13385 return SDValue();
13386 Shft = N->getOperand(1);
13387 Clamp = isConstOrConstSplat(N->getOperand(2));
13388 } else
13389 return SDValue();
13391 if (!Clamp)
13392 return SDValue();
13394 MVT ScalarType;
13395 int ShftAmt = 0;
13396 switch (Clamp->getSExtValue()) {
13397 case (1 << 7) - 1:
13398 ScalarType = MVT::i8;
13399 ShftAmt = 7;
13400 break;
13401 case (1 << 15) - 1:
13402 ScalarType = MVT::i16;
13403 ShftAmt = 15;
13404 break;
13405 case (1ULL << 31) - 1:
13406 ScalarType = MVT::i32;
13407 ShftAmt = 31;
13408 break;
13409 default:
13410 return SDValue();
13413 if (Shft.getOpcode() != ISD::SRA)
13414 return SDValue();
13415 ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
13416 if (!N1 || N1->getSExtValue() != ShftAmt)
13417 return SDValue();
13419 SDValue Mul = Shft.getOperand(0);
13420 if (Mul.getOpcode() != ISD::MUL)
13421 return SDValue();
13423 SDValue Ext0 = Mul.getOperand(0);
13424 SDValue Ext1 = Mul.getOperand(1);
13425 if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
13426 Ext1.getOpcode() != ISD::SIGN_EXTEND)
13427 return SDValue();
13428 EVT VecVT = Ext0.getOperand(0).getValueType();
13429 if (!VecVT.isPow2VectorType() || VecVT.getVectorNumElements() == 1)
13430 return SDValue();
13431 if (Ext1.getOperand(0).getValueType() != VecVT ||
13432 VecVT.getScalarType() != ScalarType ||
13433 VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
13434 return SDValue();
13436 SDLoc DL(Mul);
13437 unsigned LegalLanes = 128 / (ShftAmt + 1);
13438 EVT LegalVecVT = MVT::getVectorVT(ScalarType, LegalLanes);
13439 // For types smaller than legal vectors extend to be legal and only use needed
13440 // lanes.
13441 if (VecVT.getSizeInBits() < 128) {
13442 EVT ExtVecVT =
13443 MVT::getVectorVT(MVT::getIntegerVT(128 / VecVT.getVectorNumElements()),
13444 VecVT.getVectorNumElements());
13445 SDValue Inp0 =
13446 DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext0.getOperand(0));
13447 SDValue Inp1 =
13448 DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext1.getOperand(0));
13449 Inp0 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp0);
13450 Inp1 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp1);
13451 SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13452 SDValue Trunc = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, ExtVecVT, VQDMULH);
13453 Trunc = DAG.getNode(ISD::TRUNCATE, DL, VecVT, Trunc);
13454 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Trunc);
13457 // For larger types, split into legal sized chunks.
13458 assert(VecVT.getSizeInBits() % 128 == 0 && "Expected a power2 type");
13459 unsigned NumParts = VecVT.getSizeInBits() / 128;
13460 SmallVector<SDValue> Parts;
13461 for (unsigned I = 0; I < NumParts; ++I) {
13462 SDValue Inp0 =
13463 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext0.getOperand(0),
13464 DAG.getVectorIdxConstant(I * LegalLanes, DL));
13465 SDValue Inp1 =
13466 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext1.getOperand(0),
13467 DAG.getVectorIdxConstant(I * LegalLanes, DL));
13468 SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13469 Parts.push_back(VQDMULH);
13471 return DAG.getNode(ISD::SIGN_EXTEND, DL, VT,
13472 DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Parts));
13475 static SDValue PerformVSELECTCombine(SDNode *N,
13476 TargetLowering::DAGCombinerInfo &DCI,
13477 const ARMSubtarget *Subtarget) {
13478 if (!Subtarget->hasMVEIntegerOps())
13479 return SDValue();
13481 if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
13482 return V;
13484 // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
13486 // We need to re-implement this optimization here as the implementation in the
13487 // Target-Independent DAGCombiner does not handle the kind of constant we make
13488 // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
13489 // good reason, allowing truncation there would break other targets).
13491 // Currently, this is only done for MVE, as it's the only target that benefits
13492 // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
13493 if (N->getOperand(0).getOpcode() != ISD::XOR)
13494 return SDValue();
13495 SDValue XOR = N->getOperand(0);
13497 // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
13498 // It is important to check with truncation allowed as the BUILD_VECTORs we
13499 // generate in those situations will truncate their operands.
13500 ConstantSDNode *Const =
13501 isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
13502 /*AllowTruncation*/ true);
13503 if (!Const || !Const->isOne())
13504 return SDValue();
13506 // Rewrite into vselect(cond, rhs, lhs).
13507 SDValue Cond = XOR->getOperand(0);
13508 SDValue LHS = N->getOperand(1);
13509 SDValue RHS = N->getOperand(2);
13510 EVT Type = N->getValueType(0);
13511 return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
13514 // Convert vsetcc([0,1,2,..], splat(n), ult) -> vctp n
13515 static SDValue PerformVSetCCToVCTPCombine(SDNode *N,
13516 TargetLowering::DAGCombinerInfo &DCI,
13517 const ARMSubtarget *Subtarget) {
13518 SDValue Op0 = N->getOperand(0);
13519 SDValue Op1 = N->getOperand(1);
13520 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13521 EVT VT = N->getValueType(0);
13523 if (!Subtarget->hasMVEIntegerOps() ||
13524 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13525 return SDValue();
13527 if (CC == ISD::SETUGE) {
13528 std::swap(Op0, Op1);
13529 CC = ISD::SETULT;
13532 if (CC != ISD::SETULT || VT.getScalarSizeInBits() != 1 ||
13533 Op0.getOpcode() != ISD::BUILD_VECTOR)
13534 return SDValue();
13536 // Check first operand is BuildVector of 0,1,2,...
13537 for (unsigned I = 0; I < VT.getVectorNumElements(); I++) {
13538 if (!Op0.getOperand(I).isUndef() &&
13539 !(isa<ConstantSDNode>(Op0.getOperand(I)) &&
13540 Op0.getConstantOperandVal(I) == I))
13541 return SDValue();
13544 // The second is a Splat of Op1S
13545 SDValue Op1S = DCI.DAG.getSplatValue(Op1);
13546 if (!Op1S)
13547 return SDValue();
13549 unsigned Opc;
13550 switch (VT.getVectorNumElements()) {
13551 case 2:
13552 Opc = Intrinsic::arm_mve_vctp64;
13553 break;
13554 case 4:
13555 Opc = Intrinsic::arm_mve_vctp32;
13556 break;
13557 case 8:
13558 Opc = Intrinsic::arm_mve_vctp16;
13559 break;
13560 case 16:
13561 Opc = Intrinsic::arm_mve_vctp8;
13562 break;
13563 default:
13564 return SDValue();
13567 SDLoc DL(N);
13568 return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13569 DCI.DAG.getConstant(Opc, DL, MVT::i32),
13570 DCI.DAG.getZExtOrTrunc(Op1S, DL, MVT::i32));
13573 /// PerformADDECombine - Target-specific dag combine transform from
13574 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
13575 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
13576 static SDValue PerformADDECombine(SDNode *N,
13577 TargetLowering::DAGCombinerInfo &DCI,
13578 const ARMSubtarget *Subtarget) {
13579 // Only ARM and Thumb2 support UMLAL/SMLAL.
13580 if (Subtarget->isThumb1Only())
13581 return PerformAddeSubeCombine(N, DCI, Subtarget);
13583 // Only perform the checks after legalize when the pattern is available.
13584 if (DCI.isBeforeLegalize()) return SDValue();
13586 return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
13589 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
13590 /// operands N0 and N1. This is a helper for PerformADDCombine that is
13591 /// called with the default operands, and if that fails, with commuted
13592 /// operands.
13593 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
13594 TargetLowering::DAGCombinerInfo &DCI,
13595 const ARMSubtarget *Subtarget){
13596 // Attempt to create vpadd for this add.
13597 if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
13598 return Result;
13600 // Attempt to create vpaddl for this add.
13601 if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
13602 return Result;
13603 if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
13604 Subtarget))
13605 return Result;
13607 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
13608 if (N0.getNode()->hasOneUse())
13609 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
13610 return Result;
13611 return SDValue();
13614 static SDValue TryDistrubutionADDVecReduce(SDNode *N, SelectionDAG &DAG) {
13615 EVT VT = N->getValueType(0);
13616 SDValue N0 = N->getOperand(0);
13617 SDValue N1 = N->getOperand(1);
13618 SDLoc dl(N);
13620 auto IsVecReduce = [](SDValue Op) {
13621 switch (Op.getOpcode()) {
13622 case ISD::VECREDUCE_ADD:
13623 case ARMISD::VADDVs:
13624 case ARMISD::VADDVu:
13625 case ARMISD::VMLAVs:
13626 case ARMISD::VMLAVu:
13627 return true;
13629 return false;
13632 auto DistrubuteAddAddVecReduce = [&](SDValue N0, SDValue N1) {
13633 // Distribute add(X, add(vecreduce(Y), vecreduce(Z))) ->
13634 // add(add(X, vecreduce(Y)), vecreduce(Z))
13635 // to make better use of vaddva style instructions.
13636 if (VT == MVT::i32 && N1.getOpcode() == ISD::ADD && !IsVecReduce(N0) &&
13637 IsVecReduce(N1.getOperand(0)) && IsVecReduce(N1.getOperand(1)) &&
13638 !isa<ConstantSDNode>(N0) && N1->hasOneUse()) {
13639 SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0, N1.getOperand(0));
13640 return DAG.getNode(ISD::ADD, dl, VT, Add0, N1.getOperand(1));
13642 // And turn add(add(A, reduce(B)), add(C, reduce(D))) ->
13643 // add(add(add(A, C), reduce(B)), reduce(D))
13644 if (VT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
13645 N1.getOpcode() == ISD::ADD && N0->hasOneUse() && N1->hasOneUse()) {
13646 unsigned N0RedOp = 0;
13647 if (!IsVecReduce(N0.getOperand(N0RedOp))) {
13648 N0RedOp = 1;
13649 if (!IsVecReduce(N0.getOperand(N0RedOp)))
13650 return SDValue();
13653 unsigned N1RedOp = 0;
13654 if (!IsVecReduce(N1.getOperand(N1RedOp)))
13655 N1RedOp = 1;
13656 if (!IsVecReduce(N1.getOperand(N1RedOp)))
13657 return SDValue();
13659 SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0.getOperand(1 - N0RedOp),
13660 N1.getOperand(1 - N1RedOp));
13661 SDValue Add1 =
13662 DAG.getNode(ISD::ADD, dl, VT, Add0, N0.getOperand(N0RedOp));
13663 return DAG.getNode(ISD::ADD, dl, VT, Add1, N1.getOperand(N1RedOp));
13665 return SDValue();
13667 if (SDValue R = DistrubuteAddAddVecReduce(N0, N1))
13668 return R;
13669 if (SDValue R = DistrubuteAddAddVecReduce(N1, N0))
13670 return R;
13672 // Distribute add(vecreduce(load(Y)), vecreduce(load(Z)))
13673 // Or add(add(X, vecreduce(load(Y))), vecreduce(load(Z)))
13674 // by ascending load offsets. This can help cores prefetch if the order of
13675 // loads is more predictable.
13676 auto DistrubuteVecReduceLoad = [&](SDValue N0, SDValue N1, bool IsForward) {
13677 // Check if two reductions are known to load data where one is before/after
13678 // another. Return negative if N0 loads data before N1, positive if N1 is
13679 // before N0 and 0 otherwise if nothing is known.
13680 auto IsKnownOrderedLoad = [&](SDValue N0, SDValue N1) {
13681 // Look through to the first operand of a MUL, for the VMLA case.
13682 // Currently only looks at the first operand, in the hope they are equal.
13683 if (N0.getOpcode() == ISD::MUL)
13684 N0 = N0.getOperand(0);
13685 if (N1.getOpcode() == ISD::MUL)
13686 N1 = N1.getOperand(0);
13688 // Return true if the two operands are loads to the same object and the
13689 // offset of the first is known to be less than the offset of the second.
13690 LoadSDNode *Load0 = dyn_cast<LoadSDNode>(N0);
13691 LoadSDNode *Load1 = dyn_cast<LoadSDNode>(N1);
13692 if (!Load0 || !Load1 || Load0->getChain() != Load1->getChain() ||
13693 !Load0->isSimple() || !Load1->isSimple() || Load0->isIndexed() ||
13694 Load1->isIndexed())
13695 return 0;
13697 auto BaseLocDecomp0 = BaseIndexOffset::match(Load0, DAG);
13698 auto BaseLocDecomp1 = BaseIndexOffset::match(Load1, DAG);
13700 if (!BaseLocDecomp0.getBase() ||
13701 BaseLocDecomp0.getBase() != BaseLocDecomp1.getBase() ||
13702 !BaseLocDecomp0.hasValidOffset() || !BaseLocDecomp1.hasValidOffset())
13703 return 0;
13704 if (BaseLocDecomp0.getOffset() < BaseLocDecomp1.getOffset())
13705 return -1;
13706 if (BaseLocDecomp0.getOffset() > BaseLocDecomp1.getOffset())
13707 return 1;
13708 return 0;
13711 SDValue X;
13712 if (N0.getOpcode() == ISD::ADD && N0->hasOneUse()) {
13713 if (IsVecReduce(N0.getOperand(0)) && IsVecReduce(N0.getOperand(1))) {
13714 int IsBefore = IsKnownOrderedLoad(N0.getOperand(0).getOperand(0),
13715 N0.getOperand(1).getOperand(0));
13716 if (IsBefore < 0) {
13717 X = N0.getOperand(0);
13718 N0 = N0.getOperand(1);
13719 } else if (IsBefore > 0) {
13720 X = N0.getOperand(1);
13721 N0 = N0.getOperand(0);
13722 } else
13723 return SDValue();
13724 } else if (IsVecReduce(N0.getOperand(0))) {
13725 X = N0.getOperand(1);
13726 N0 = N0.getOperand(0);
13727 } else if (IsVecReduce(N0.getOperand(1))) {
13728 X = N0.getOperand(0);
13729 N0 = N0.getOperand(1);
13730 } else
13731 return SDValue();
13732 } else if (IsForward && IsVecReduce(N0) && IsVecReduce(N1) &&
13733 IsKnownOrderedLoad(N0.getOperand(0), N1.getOperand(0)) < 0) {
13734 // Note this is backward to how you would expect. We create
13735 // add(reduce(load + 16), reduce(load + 0)) so that the
13736 // add(reduce(load+16), X) is combined into VADDVA(X, load+16)), leaving
13737 // the X as VADDV(load + 0)
13738 return DAG.getNode(ISD::ADD, dl, VT, N1, N0);
13739 } else
13740 return SDValue();
13742 if (!IsVecReduce(N0) || !IsVecReduce(N1))
13743 return SDValue();
13745 if (IsKnownOrderedLoad(N1.getOperand(0), N0.getOperand(0)) >= 0)
13746 return SDValue();
13748 // Switch from add(add(X, N0), N1) to add(add(X, N1), N0)
13749 SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, X, N1);
13750 return DAG.getNode(ISD::ADD, dl, VT, Add0, N0);
13752 if (SDValue R = DistrubuteVecReduceLoad(N0, N1, true))
13753 return R;
13754 if (SDValue R = DistrubuteVecReduceLoad(N1, N0, false))
13755 return R;
13756 return SDValue();
13759 static SDValue PerformADDVecReduce(SDNode *N, SelectionDAG &DAG,
13760 const ARMSubtarget *Subtarget) {
13761 if (!Subtarget->hasMVEIntegerOps())
13762 return SDValue();
13764 if (SDValue R = TryDistrubutionADDVecReduce(N, DAG))
13765 return R;
13767 EVT VT = N->getValueType(0);
13768 SDValue N0 = N->getOperand(0);
13769 SDValue N1 = N->getOperand(1);
13770 SDLoc dl(N);
13772 if (VT != MVT::i64)
13773 return SDValue();
13775 // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
13776 // will look like:
13777 // t1: i32,i32 = ARMISD::VADDLVs x
13778 // t2: i64 = build_pair t1, t1:1
13779 // t3: i64 = add t2, y
13780 // Otherwise we try to push the add up above VADDLVAx, to potentially allow
13781 // the add to be simplified separately.
13782 // We also need to check for sext / zext and commutitive adds.
13783 auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
13784 SDValue NB) {
13785 if (NB->getOpcode() != ISD::BUILD_PAIR)
13786 return SDValue();
13787 SDValue VecRed = NB->getOperand(0);
13788 if ((VecRed->getOpcode() != Opcode && VecRed->getOpcode() != OpcodeA) ||
13789 VecRed.getResNo() != 0 ||
13790 NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
13791 return SDValue();
13793 if (VecRed->getOpcode() == OpcodeA) {
13794 // add(NA, VADDLVA(Inp), Y) -> VADDLVA(add(NA, Inp), Y)
13795 SDValue Inp = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
13796 VecRed.getOperand(0), VecRed.getOperand(1));
13797 NA = DAG.getNode(ISD::ADD, dl, MVT::i64, Inp, NA);
13800 SmallVector<SDValue, 4> Ops(2);
13801 std::tie(Ops[0], Ops[1]) = DAG.SplitScalar(NA, dl, MVT::i32, MVT::i32);
13803 unsigned S = VecRed->getOpcode() == OpcodeA ? 2 : 0;
13804 for (unsigned I = S, E = VecRed.getNumOperands(); I < E; I++)
13805 Ops.push_back(VecRed->getOperand(I));
13806 SDValue Red =
13807 DAG.getNode(OpcodeA, dl, DAG.getVTList({MVT::i32, MVT::i32}), Ops);
13808 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
13809 SDValue(Red.getNode(), 1));
13812 if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
13813 return M;
13814 if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
13815 return M;
13816 if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
13817 return M;
13818 if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
13819 return M;
13820 if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
13821 return M;
13822 if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
13823 return M;
13824 if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
13825 return M;
13826 if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
13827 return M;
13828 if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
13829 return M;
13830 if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
13831 return M;
13832 if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
13833 return M;
13834 if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
13835 return M;
13836 if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
13837 return M;
13838 if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
13839 return M;
13840 if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
13841 return M;
13842 if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
13843 return M;
13844 return SDValue();
13847 bool
13848 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
13849 CombineLevel Level) const {
13850 assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||
13851 N->getOpcode() == ISD::SRL) &&
13852 "Expected shift op");
13854 SDValue ShiftLHS = N->getOperand(0);
13855 if (!ShiftLHS->hasOneUse())
13856 return false;
13858 if (ShiftLHS.getOpcode() == ISD::SIGN_EXTEND &&
13859 !ShiftLHS.getOperand(0)->hasOneUse())
13860 return false;
13862 if (Level == BeforeLegalizeTypes)
13863 return true;
13865 if (N->getOpcode() != ISD::SHL)
13866 return true;
13868 if (Subtarget->isThumb1Only()) {
13869 // Avoid making expensive immediates by commuting shifts. (This logic
13870 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
13871 // for free.)
13872 if (N->getOpcode() != ISD::SHL)
13873 return true;
13874 SDValue N1 = N->getOperand(0);
13875 if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
13876 N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
13877 return true;
13878 if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
13879 if (Const->getAPIntValue().ult(256))
13880 return false;
13881 if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
13882 Const->getAPIntValue().sgt(-256))
13883 return false;
13885 return true;
13888 // Turn off commute-with-shift transform after legalization, so it doesn't
13889 // conflict with PerformSHLSimplify. (We could try to detect when
13890 // PerformSHLSimplify would trigger more precisely, but it isn't
13891 // really necessary.)
13892 return false;
13895 bool ARMTargetLowering::isDesirableToCommuteXorWithShift(
13896 const SDNode *N) const {
13897 assert(N->getOpcode() == ISD::XOR &&
13898 (N->getOperand(0).getOpcode() == ISD::SHL ||
13899 N->getOperand(0).getOpcode() == ISD::SRL) &&
13900 "Expected XOR(SHIFT) pattern");
13902 // Only commute if the entire NOT mask is a hidden shifted mask.
13903 auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1));
13904 auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1));
13905 if (XorC && ShiftC) {
13906 unsigned MaskIdx, MaskLen;
13907 if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) {
13908 unsigned ShiftAmt = ShiftC->getZExtValue();
13909 unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
13910 if (N->getOperand(0).getOpcode() == ISD::SHL)
13911 return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt);
13912 return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt);
13916 return false;
13919 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
13920 const SDNode *N, CombineLevel Level) const {
13921 assert(((N->getOpcode() == ISD::SHL &&
13922 N->getOperand(0).getOpcode() == ISD::SRL) ||
13923 (N->getOpcode() == ISD::SRL &&
13924 N->getOperand(0).getOpcode() == ISD::SHL)) &&
13925 "Expected shift-shift mask");
13927 if (!Subtarget->isThumb1Only())
13928 return true;
13930 if (Level == BeforeLegalizeTypes)
13931 return true;
13933 return false;
13936 bool ARMTargetLowering::shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
13937 EVT VT) const {
13938 return Subtarget->hasMVEIntegerOps() && isTypeLegal(VT);
13941 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
13942 if (!Subtarget->hasNEON()) {
13943 if (Subtarget->isThumb1Only())
13944 return VT.getScalarSizeInBits() <= 32;
13945 return true;
13947 return VT.isScalarInteger();
13950 bool ARMTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
13951 EVT VT) const {
13952 if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
13953 return false;
13955 switch (FPVT.getSimpleVT().SimpleTy) {
13956 case MVT::f16:
13957 return Subtarget->hasVFP2Base();
13958 case MVT::f32:
13959 return Subtarget->hasVFP2Base();
13960 case MVT::f64:
13961 return Subtarget->hasFP64();
13962 case MVT::v4f32:
13963 case MVT::v8f16:
13964 return Subtarget->hasMVEFloatOps();
13965 default:
13966 return false;
13970 static SDValue PerformSHLSimplify(SDNode *N,
13971 TargetLowering::DAGCombinerInfo &DCI,
13972 const ARMSubtarget *ST) {
13973 // Allow the generic combiner to identify potential bswaps.
13974 if (DCI.isBeforeLegalize())
13975 return SDValue();
13977 // DAG combiner will fold:
13978 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
13979 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
13980 // Other code patterns that can be also be modified have the following form:
13981 // b + ((a << 1) | 510)
13982 // b + ((a << 1) & 510)
13983 // b + ((a << 1) ^ 510)
13984 // b + ((a << 1) + 510)
13986 // Many instructions can perform the shift for free, but it requires both
13987 // the operands to be registers. If c1 << c2 is too large, a mov immediate
13988 // instruction will needed. So, unfold back to the original pattern if:
13989 // - if c1 and c2 are small enough that they don't require mov imms.
13990 // - the user(s) of the node can perform an shl
13992 // No shifted operands for 16-bit instructions.
13993 if (ST->isThumb() && ST->isThumb1Only())
13994 return SDValue();
13996 // Check that all the users could perform the shl themselves.
13997 for (auto *U : N->users()) {
13998 switch(U->getOpcode()) {
13999 default:
14000 return SDValue();
14001 case ISD::SUB:
14002 case ISD::ADD:
14003 case ISD::AND:
14004 case ISD::OR:
14005 case ISD::XOR:
14006 case ISD::SETCC:
14007 case ARMISD::CMP:
14008 // Check that the user isn't already using a constant because there
14009 // aren't any instructions that support an immediate operand and a
14010 // shifted operand.
14011 if (isa<ConstantSDNode>(U->getOperand(0)) ||
14012 isa<ConstantSDNode>(U->getOperand(1)))
14013 return SDValue();
14015 // Check that it's not already using a shift.
14016 if (U->getOperand(0).getOpcode() == ISD::SHL ||
14017 U->getOperand(1).getOpcode() == ISD::SHL)
14018 return SDValue();
14019 break;
14023 if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
14024 N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
14025 return SDValue();
14027 if (N->getOperand(0).getOpcode() != ISD::SHL)
14028 return SDValue();
14030 SDValue SHL = N->getOperand(0);
14032 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
14033 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
14034 if (!C1ShlC2 || !C2)
14035 return SDValue();
14037 APInt C2Int = C2->getAPIntValue();
14038 APInt C1Int = C1ShlC2->getAPIntValue();
14039 unsigned C2Width = C2Int.getBitWidth();
14040 if (C2Int.uge(C2Width))
14041 return SDValue();
14042 uint64_t C2Value = C2Int.getZExtValue();
14044 // Check that performing a lshr will not lose any information.
14045 APInt Mask = APInt::getHighBitsSet(C2Width, C2Width - C2Value);
14046 if ((C1Int & Mask) != C1Int)
14047 return SDValue();
14049 // Shift the first constant.
14050 C1Int.lshrInPlace(C2Int);
14052 // The immediates are encoded as an 8-bit value that can be rotated.
14053 auto LargeImm = [](const APInt &Imm) {
14054 unsigned Zeros = Imm.countl_zero() + Imm.countr_zero();
14055 return Imm.getBitWidth() - Zeros > 8;
14058 if (LargeImm(C1Int) || LargeImm(C2Int))
14059 return SDValue();
14061 SelectionDAG &DAG = DCI.DAG;
14062 SDLoc dl(N);
14063 SDValue X = SHL.getOperand(0);
14064 SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
14065 DAG.getConstant(C1Int, dl, MVT::i32));
14066 // Shift left to compensate for the lshr of C1Int.
14067 SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
14069 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
14070 SHL.dump(); N->dump());
14071 LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
14072 return Res;
14076 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
14078 static SDValue PerformADDCombine(SDNode *N,
14079 TargetLowering::DAGCombinerInfo &DCI,
14080 const ARMSubtarget *Subtarget) {
14081 SDValue N0 = N->getOperand(0);
14082 SDValue N1 = N->getOperand(1);
14084 // Only works one way, because it needs an immediate operand.
14085 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14086 return Result;
14088 if (SDValue Result = PerformADDVecReduce(N, DCI.DAG, Subtarget))
14089 return Result;
14091 // First try with the default operand order.
14092 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
14093 return Result;
14095 // If that didn't work, try again with the operands commuted.
14096 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
14099 // Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC)
14100 // providing -X is as cheap as X (currently, just a constant).
14101 static SDValue PerformSubCSINCCombine(SDNode *N, SelectionDAG &DAG) {
14102 if (N->getValueType(0) != MVT::i32 || !isNullConstant(N->getOperand(0)))
14103 return SDValue();
14104 SDValue CSINC = N->getOperand(1);
14105 if (CSINC.getOpcode() != ARMISD::CSINC || !CSINC.hasOneUse())
14106 return SDValue();
14108 ConstantSDNode *X = dyn_cast<ConstantSDNode>(CSINC.getOperand(0));
14109 if (!X)
14110 return SDValue();
14112 return DAG.getNode(ARMISD::CSINV, SDLoc(N), MVT::i32,
14113 DAG.getNode(ISD::SUB, SDLoc(N), MVT::i32, N->getOperand(0),
14114 CSINC.getOperand(0)),
14115 CSINC.getOperand(1), CSINC.getOperand(2),
14116 CSINC.getOperand(3));
14119 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
14121 static SDValue PerformSUBCombine(SDNode *N,
14122 TargetLowering::DAGCombinerInfo &DCI,
14123 const ARMSubtarget *Subtarget) {
14124 SDValue N0 = N->getOperand(0);
14125 SDValue N1 = N->getOperand(1);
14127 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
14128 if (N1.getNode()->hasOneUse())
14129 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
14130 return Result;
14132 if (SDValue R = PerformSubCSINCCombine(N, DCI.DAG))
14133 return R;
14135 if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
14136 return SDValue();
14138 // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
14139 // so that we can readily pattern match more mve instructions which can use
14140 // a scalar operand.
14141 SDValue VDup = N->getOperand(1);
14142 if (VDup->getOpcode() != ARMISD::VDUP)
14143 return SDValue();
14145 SDValue VMov = N->getOperand(0);
14146 if (VMov->getOpcode() == ISD::BITCAST)
14147 VMov = VMov->getOperand(0);
14149 if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
14150 return SDValue();
14152 SDLoc dl(N);
14153 SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
14154 DCI.DAG.getConstant(0, dl, MVT::i32),
14155 VDup->getOperand(0));
14156 return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
14159 /// PerformVMULCombine
14160 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
14161 /// special multiplier accumulator forwarding.
14162 /// vmul d3, d0, d2
14163 /// vmla d3, d1, d2
14164 /// is faster than
14165 /// vadd d3, d0, d1
14166 /// vmul d3, d3, d2
14167 // However, for (A + B) * (A + B),
14168 // vadd d2, d0, d1
14169 // vmul d3, d0, d2
14170 // vmla d3, d1, d2
14171 // is slower than
14172 // vadd d2, d0, d1
14173 // vmul d3, d2, d2
14174 static SDValue PerformVMULCombine(SDNode *N,
14175 TargetLowering::DAGCombinerInfo &DCI,
14176 const ARMSubtarget *Subtarget) {
14177 if (!Subtarget->hasVMLxForwarding())
14178 return SDValue();
14180 SelectionDAG &DAG = DCI.DAG;
14181 SDValue N0 = N->getOperand(0);
14182 SDValue N1 = N->getOperand(1);
14183 unsigned Opcode = N0.getOpcode();
14184 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
14185 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
14186 Opcode = N1.getOpcode();
14187 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
14188 Opcode != ISD::FADD && Opcode != ISD::FSUB)
14189 return SDValue();
14190 std::swap(N0, N1);
14193 if (N0 == N1)
14194 return SDValue();
14196 EVT VT = N->getValueType(0);
14197 SDLoc DL(N);
14198 SDValue N00 = N0->getOperand(0);
14199 SDValue N01 = N0->getOperand(1);
14200 return DAG.getNode(Opcode, DL, VT,
14201 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
14202 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
14205 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
14206 const ARMSubtarget *Subtarget) {
14207 EVT VT = N->getValueType(0);
14208 if (VT != MVT::v2i64)
14209 return SDValue();
14211 SDValue N0 = N->getOperand(0);
14212 SDValue N1 = N->getOperand(1);
14214 auto IsSignExt = [&](SDValue Op) {
14215 if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
14216 return SDValue();
14217 EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
14218 if (VT.getScalarSizeInBits() == 32)
14219 return Op->getOperand(0);
14220 return SDValue();
14222 auto IsZeroExt = [&](SDValue Op) {
14223 // Zero extends are a little more awkward. At the point we are matching
14224 // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
14225 // That might be before of after a bitcast depending on how the and is
14226 // placed. Because this has to look through bitcasts, it is currently only
14227 // supported on LE.
14228 if (!Subtarget->isLittle())
14229 return SDValue();
14231 SDValue And = Op;
14232 if (And->getOpcode() == ISD::BITCAST)
14233 And = And->getOperand(0);
14234 if (And->getOpcode() != ISD::AND)
14235 return SDValue();
14236 SDValue Mask = And->getOperand(1);
14237 if (Mask->getOpcode() == ISD::BITCAST)
14238 Mask = Mask->getOperand(0);
14240 if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
14241 Mask.getValueType() != MVT::v4i32)
14242 return SDValue();
14243 if (isAllOnesConstant(Mask->getOperand(0)) &&
14244 isNullConstant(Mask->getOperand(1)) &&
14245 isAllOnesConstant(Mask->getOperand(2)) &&
14246 isNullConstant(Mask->getOperand(3)))
14247 return And->getOperand(0);
14248 return SDValue();
14251 SDLoc dl(N);
14252 if (SDValue Op0 = IsSignExt(N0)) {
14253 if (SDValue Op1 = IsSignExt(N1)) {
14254 SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14255 SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14256 return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
14259 if (SDValue Op0 = IsZeroExt(N0)) {
14260 if (SDValue Op1 = IsZeroExt(N1)) {
14261 SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
14262 SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
14263 return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
14267 return SDValue();
14270 static SDValue PerformMULCombine(SDNode *N,
14271 TargetLowering::DAGCombinerInfo &DCI,
14272 const ARMSubtarget *Subtarget) {
14273 SelectionDAG &DAG = DCI.DAG;
14275 EVT VT = N->getValueType(0);
14276 if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
14277 return PerformMVEVMULLCombine(N, DAG, Subtarget);
14279 if (Subtarget->isThumb1Only())
14280 return SDValue();
14282 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14283 return SDValue();
14285 if (VT.is64BitVector() || VT.is128BitVector())
14286 return PerformVMULCombine(N, DCI, Subtarget);
14287 if (VT != MVT::i32)
14288 return SDValue();
14290 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14291 if (!C)
14292 return SDValue();
14294 int64_t MulAmt = C->getSExtValue();
14295 unsigned ShiftAmt = llvm::countr_zero<uint64_t>(MulAmt);
14297 ShiftAmt = ShiftAmt & (32 - 1);
14298 SDValue V = N->getOperand(0);
14299 SDLoc DL(N);
14301 SDValue Res;
14302 MulAmt >>= ShiftAmt;
14304 if (MulAmt >= 0) {
14305 if (llvm::has_single_bit<uint32_t>(MulAmt - 1)) {
14306 // (mul x, 2^N + 1) => (add (shl x, N), x)
14307 Res = DAG.getNode(ISD::ADD, DL, VT,
14309 DAG.getNode(ISD::SHL, DL, VT,
14311 DAG.getConstant(Log2_32(MulAmt - 1), DL,
14312 MVT::i32)));
14313 } else if (llvm::has_single_bit<uint32_t>(MulAmt + 1)) {
14314 // (mul x, 2^N - 1) => (sub (shl x, N), x)
14315 Res = DAG.getNode(ISD::SUB, DL, VT,
14316 DAG.getNode(ISD::SHL, DL, VT,
14318 DAG.getConstant(Log2_32(MulAmt + 1), DL,
14319 MVT::i32)),
14321 } else
14322 return SDValue();
14323 } else {
14324 uint64_t MulAmtAbs = -MulAmt;
14325 if (llvm::has_single_bit<uint32_t>(MulAmtAbs + 1)) {
14326 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
14327 Res = DAG.getNode(ISD::SUB, DL, VT,
14329 DAG.getNode(ISD::SHL, DL, VT,
14331 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
14332 MVT::i32)));
14333 } else if (llvm::has_single_bit<uint32_t>(MulAmtAbs - 1)) {
14334 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
14335 Res = DAG.getNode(ISD::ADD, DL, VT,
14337 DAG.getNode(ISD::SHL, DL, VT,
14339 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
14340 MVT::i32)));
14341 Res = DAG.getNode(ISD::SUB, DL, VT,
14342 DAG.getConstant(0, DL, MVT::i32), Res);
14343 } else
14344 return SDValue();
14347 if (ShiftAmt != 0)
14348 Res = DAG.getNode(ISD::SHL, DL, VT,
14349 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
14351 // Do not add new nodes to DAG combiner worklist.
14352 DCI.CombineTo(N, Res, false);
14353 return SDValue();
14356 static SDValue CombineANDShift(SDNode *N,
14357 TargetLowering::DAGCombinerInfo &DCI,
14358 const ARMSubtarget *Subtarget) {
14359 // Allow DAGCombine to pattern-match before we touch the canonical form.
14360 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14361 return SDValue();
14363 if (N->getValueType(0) != MVT::i32)
14364 return SDValue();
14366 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14367 if (!N1C)
14368 return SDValue();
14370 uint32_t C1 = (uint32_t)N1C->getZExtValue();
14371 // Don't transform uxtb/uxth.
14372 if (C1 == 255 || C1 == 65535)
14373 return SDValue();
14375 SDNode *N0 = N->getOperand(0).getNode();
14376 if (!N0->hasOneUse())
14377 return SDValue();
14379 if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
14380 return SDValue();
14382 bool LeftShift = N0->getOpcode() == ISD::SHL;
14384 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14385 if (!N01C)
14386 return SDValue();
14388 uint32_t C2 = (uint32_t)N01C->getZExtValue();
14389 if (!C2 || C2 >= 32)
14390 return SDValue();
14392 // Clear irrelevant bits in the mask.
14393 if (LeftShift)
14394 C1 &= (-1U << C2);
14395 else
14396 C1 &= (-1U >> C2);
14398 SelectionDAG &DAG = DCI.DAG;
14399 SDLoc DL(N);
14401 // We have a pattern of the form "(and (shl x, c2) c1)" or
14402 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
14403 // transform to a pair of shifts, to save materializing c1.
14405 // First pattern: right shift, then mask off leading bits.
14406 // FIXME: Use demanded bits?
14407 if (!LeftShift && isMask_32(C1)) {
14408 uint32_t C3 = llvm::countl_zero(C1);
14409 if (C2 < C3) {
14410 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14411 DAG.getConstant(C3 - C2, DL, MVT::i32));
14412 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14413 DAG.getConstant(C3, DL, MVT::i32));
14417 // First pattern, reversed: left shift, then mask off trailing bits.
14418 if (LeftShift && isMask_32(~C1)) {
14419 uint32_t C3 = llvm::countr_zero(C1);
14420 if (C2 < C3) {
14421 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14422 DAG.getConstant(C3 - C2, DL, MVT::i32));
14423 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14424 DAG.getConstant(C3, DL, MVT::i32));
14428 // Second pattern: left shift, then mask off leading bits.
14429 // FIXME: Use demanded bits?
14430 if (LeftShift && isShiftedMask_32(C1)) {
14431 uint32_t Trailing = llvm::countr_zero(C1);
14432 uint32_t C3 = llvm::countl_zero(C1);
14433 if (Trailing == C2 && C2 + C3 < 32) {
14434 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14435 DAG.getConstant(C2 + C3, DL, MVT::i32));
14436 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14437 DAG.getConstant(C3, DL, MVT::i32));
14441 // Second pattern, reversed: right shift, then mask off trailing bits.
14442 // FIXME: Handle other patterns of known/demanded bits.
14443 if (!LeftShift && isShiftedMask_32(C1)) {
14444 uint32_t Leading = llvm::countl_zero(C1);
14445 uint32_t C3 = llvm::countr_zero(C1);
14446 if (Leading == C2 && C2 + C3 < 32) {
14447 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14448 DAG.getConstant(C2 + C3, DL, MVT::i32));
14449 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14450 DAG.getConstant(C3, DL, MVT::i32));
14454 // Transform "(and (shl x, c2) c1)" into "(shl (and x, c1>>c2), c2)"
14455 // if "c1 >> c2" is a cheaper immediate than "c1"
14456 if (LeftShift &&
14457 HasLowerConstantMaterializationCost(C1 >> C2, C1, Subtarget)) {
14459 SDValue And = DAG.getNode(ISD::AND, DL, MVT::i32, N0->getOperand(0),
14460 DAG.getConstant(C1 >> C2, DL, MVT::i32));
14461 return DAG.getNode(ISD::SHL, DL, MVT::i32, And,
14462 DAG.getConstant(C2, DL, MVT::i32));
14465 return SDValue();
14468 static SDValue PerformANDCombine(SDNode *N,
14469 TargetLowering::DAGCombinerInfo &DCI,
14470 const ARMSubtarget *Subtarget) {
14471 // Attempt to use immediate-form VBIC
14472 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14473 SDLoc dl(N);
14474 EVT VT = N->getValueType(0);
14475 SelectionDAG &DAG = DCI.DAG;
14477 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v2i1 ||
14478 VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1)
14479 return SDValue();
14481 APInt SplatBits, SplatUndef;
14482 unsigned SplatBitSize;
14483 bool HasAnyUndefs;
14484 if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14485 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14486 if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14487 SplatBitSize == 64) {
14488 EVT VbicVT;
14489 SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
14490 SplatUndef.getZExtValue(), SplatBitSize,
14491 DAG, dl, VbicVT, VT, OtherModImm);
14492 if (Val.getNode()) {
14493 SDValue Input =
14494 DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VbicVT, N->getOperand(0));
14495 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
14496 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Vbic);
14501 if (!Subtarget->isThumb1Only()) {
14502 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
14503 if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
14504 return Result;
14506 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14507 return Result;
14510 if (Subtarget->isThumb1Only())
14511 if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
14512 return Result;
14514 return SDValue();
14517 // Try combining OR nodes to SMULWB, SMULWT.
14518 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
14519 TargetLowering::DAGCombinerInfo &DCI,
14520 const ARMSubtarget *Subtarget) {
14521 if (!Subtarget->hasV6Ops() ||
14522 (Subtarget->isThumb() &&
14523 (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
14524 return SDValue();
14526 SDValue SRL = OR->getOperand(0);
14527 SDValue SHL = OR->getOperand(1);
14529 if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
14530 SRL = OR->getOperand(1);
14531 SHL = OR->getOperand(0);
14533 if (!isSRL16(SRL) || !isSHL16(SHL))
14534 return SDValue();
14536 // The first operands to the shifts need to be the two results from the
14537 // same smul_lohi node.
14538 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
14539 SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
14540 return SDValue();
14542 SDNode *SMULLOHI = SRL.getOperand(0).getNode();
14543 if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
14544 SHL.getOperand(0) != SDValue(SMULLOHI, 1))
14545 return SDValue();
14547 // Now we have:
14548 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
14549 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
14550 // For SMUWB the 16-bit value will signed extended somehow.
14551 // For SMULWT only the SRA is required.
14552 // Check both sides of SMUL_LOHI
14553 SDValue OpS16 = SMULLOHI->getOperand(0);
14554 SDValue OpS32 = SMULLOHI->getOperand(1);
14556 SelectionDAG &DAG = DCI.DAG;
14557 if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
14558 OpS16 = OpS32;
14559 OpS32 = SMULLOHI->getOperand(0);
14562 SDLoc dl(OR);
14563 unsigned Opcode = 0;
14564 if (isS16(OpS16, DAG))
14565 Opcode = ARMISD::SMULWB;
14566 else if (isSRA16(OpS16)) {
14567 Opcode = ARMISD::SMULWT;
14568 OpS16 = OpS16->getOperand(0);
14570 else
14571 return SDValue();
14573 SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
14574 DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
14575 return SDValue(OR, 0);
14578 static SDValue PerformORCombineToBFI(SDNode *N,
14579 TargetLowering::DAGCombinerInfo &DCI,
14580 const ARMSubtarget *Subtarget) {
14581 // BFI is only available on V6T2+
14582 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
14583 return SDValue();
14585 EVT VT = N->getValueType(0);
14586 SDValue N0 = N->getOperand(0);
14587 SDValue N1 = N->getOperand(1);
14588 SelectionDAG &DAG = DCI.DAG;
14589 SDLoc DL(N);
14590 // 1) or (and A, mask), val => ARMbfi A, val, mask
14591 // iff (val & mask) == val
14593 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14594 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
14595 // && mask == ~mask2
14596 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
14597 // && ~mask == mask2
14598 // (i.e., copy a bitfield value into another bitfield of the same width)
14600 if (VT != MVT::i32)
14601 return SDValue();
14603 SDValue N00 = N0.getOperand(0);
14605 // The value and the mask need to be constants so we can verify this is
14606 // actually a bitfield set. If the mask is 0xffff, we can do better
14607 // via a movt instruction, so don't use BFI in that case.
14608 SDValue MaskOp = N0.getOperand(1);
14609 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
14610 if (!MaskC)
14611 return SDValue();
14612 unsigned Mask = MaskC->getZExtValue();
14613 if (Mask == 0xffff)
14614 return SDValue();
14615 SDValue Res;
14616 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
14617 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14618 if (N1C) {
14619 unsigned Val = N1C->getZExtValue();
14620 if ((Val & ~Mask) != Val)
14621 return SDValue();
14623 if (ARM::isBitFieldInvertedMask(Mask)) {
14624 Val >>= llvm::countr_zero(~Mask);
14626 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
14627 DAG.getConstant(Val, DL, MVT::i32),
14628 DAG.getConstant(Mask, DL, MVT::i32));
14630 DCI.CombineTo(N, Res, false);
14631 // Return value from the original node to inform the combiner than N is
14632 // now dead.
14633 return SDValue(N, 0);
14635 } else if (N1.getOpcode() == ISD::AND) {
14636 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14637 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14638 if (!N11C)
14639 return SDValue();
14640 unsigned Mask2 = N11C->getZExtValue();
14642 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
14643 // as is to match.
14644 if (ARM::isBitFieldInvertedMask(Mask) &&
14645 (Mask == ~Mask2)) {
14646 // The pack halfword instruction works better for masks that fit it,
14647 // so use that when it's available.
14648 if (Subtarget->hasDSP() &&
14649 (Mask == 0xffff || Mask == 0xffff0000))
14650 return SDValue();
14651 // 2a
14652 unsigned amt = llvm::countr_zero(Mask2);
14653 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
14654 DAG.getConstant(amt, DL, MVT::i32));
14655 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
14656 DAG.getConstant(Mask, DL, MVT::i32));
14657 DCI.CombineTo(N, Res, false);
14658 // Return value from the original node to inform the combiner than N is
14659 // now dead.
14660 return SDValue(N, 0);
14661 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
14662 (~Mask == Mask2)) {
14663 // The pack halfword instruction works better for masks that fit it,
14664 // so use that when it's available.
14665 if (Subtarget->hasDSP() &&
14666 (Mask2 == 0xffff || Mask2 == 0xffff0000))
14667 return SDValue();
14668 // 2b
14669 unsigned lsb = llvm::countr_zero(Mask);
14670 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
14671 DAG.getConstant(lsb, DL, MVT::i32));
14672 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
14673 DAG.getConstant(Mask2, DL, MVT::i32));
14674 DCI.CombineTo(N, Res, false);
14675 // Return value from the original node to inform the combiner than N is
14676 // now dead.
14677 return SDValue(N, 0);
14681 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
14682 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
14683 ARM::isBitFieldInvertedMask(~Mask)) {
14684 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
14685 // where lsb(mask) == #shamt and masked bits of B are known zero.
14686 SDValue ShAmt = N00.getOperand(1);
14687 unsigned ShAmtC = ShAmt->getAsZExtVal();
14688 unsigned LSB = llvm::countr_zero(Mask);
14689 if (ShAmtC != LSB)
14690 return SDValue();
14692 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
14693 DAG.getConstant(~Mask, DL, MVT::i32));
14695 DCI.CombineTo(N, Res, false);
14696 // Return value from the original node to inform the combiner than N is
14697 // now dead.
14698 return SDValue(N, 0);
14701 return SDValue();
14704 static bool isValidMVECond(unsigned CC, bool IsFloat) {
14705 switch (CC) {
14706 case ARMCC::EQ:
14707 case ARMCC::NE:
14708 case ARMCC::LE:
14709 case ARMCC::GT:
14710 case ARMCC::GE:
14711 case ARMCC::LT:
14712 return true;
14713 case ARMCC::HS:
14714 case ARMCC::HI:
14715 return !IsFloat;
14716 default:
14717 return false;
14721 static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
14722 if (N->getOpcode() == ARMISD::VCMP)
14723 return (ARMCC::CondCodes)N->getConstantOperandVal(2);
14724 else if (N->getOpcode() == ARMISD::VCMPZ)
14725 return (ARMCC::CondCodes)N->getConstantOperandVal(1);
14726 else
14727 llvm_unreachable("Not a VCMP/VCMPZ!");
14730 static bool CanInvertMVEVCMP(SDValue N) {
14731 ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
14732 return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
14735 static SDValue PerformORCombine_i1(SDNode *N, SelectionDAG &DAG,
14736 const ARMSubtarget *Subtarget) {
14737 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
14738 // together with predicates
14739 EVT VT = N->getValueType(0);
14740 SDLoc DL(N);
14741 SDValue N0 = N->getOperand(0);
14742 SDValue N1 = N->getOperand(1);
14744 auto IsFreelyInvertable = [&](SDValue V) {
14745 if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
14746 return CanInvertMVEVCMP(V);
14747 return false;
14750 // At least one operand must be freely invertable.
14751 if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
14752 return SDValue();
14754 SDValue NewN0 = DAG.getLogicalNOT(DL, N0, VT);
14755 SDValue NewN1 = DAG.getLogicalNOT(DL, N1, VT);
14756 SDValue And = DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
14757 return DAG.getLogicalNOT(DL, And, VT);
14760 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
14761 static SDValue PerformORCombine(SDNode *N,
14762 TargetLowering::DAGCombinerInfo &DCI,
14763 const ARMSubtarget *Subtarget) {
14764 // Attempt to use immediate-form VORR
14765 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14766 SDLoc dl(N);
14767 EVT VT = N->getValueType(0);
14768 SelectionDAG &DAG = DCI.DAG;
14770 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14771 return SDValue();
14773 if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v2i1 || VT == MVT::v4i1 ||
14774 VT == MVT::v8i1 || VT == MVT::v16i1))
14775 return PerformORCombine_i1(N, DAG, Subtarget);
14777 APInt SplatBits, SplatUndef;
14778 unsigned SplatBitSize;
14779 bool HasAnyUndefs;
14780 if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14781 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14782 if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14783 SplatBitSize == 64) {
14784 EVT VorrVT;
14785 SDValue Val =
14786 isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
14787 SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
14788 if (Val.getNode()) {
14789 SDValue Input =
14790 DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VorrVT, N->getOperand(0));
14791 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
14792 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Vorr);
14797 if (!Subtarget->isThumb1Only()) {
14798 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
14799 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14800 return Result;
14801 if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
14802 return Result;
14805 SDValue N0 = N->getOperand(0);
14806 SDValue N1 = N->getOperand(1);
14808 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
14809 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
14810 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14812 // The code below optimizes (or (and X, Y), Z).
14813 // The AND operand needs to have a single user to make these optimizations
14814 // profitable.
14815 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
14816 return SDValue();
14818 APInt SplatUndef;
14819 unsigned SplatBitSize;
14820 bool HasAnyUndefs;
14822 APInt SplatBits0, SplatBits1;
14823 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
14824 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
14825 // Ensure that the second operand of both ands are constants
14826 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
14827 HasAnyUndefs) && !HasAnyUndefs) {
14828 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
14829 HasAnyUndefs) && !HasAnyUndefs) {
14830 // Ensure that the bit width of the constants are the same and that
14831 // the splat arguments are logical inverses as per the pattern we
14832 // are trying to simplify.
14833 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
14834 SplatBits0 == ~SplatBits1) {
14835 // Canonicalize the vector type to make instruction selection
14836 // simpler.
14837 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
14838 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
14839 N0->getOperand(1),
14840 N0->getOperand(0),
14841 N1->getOperand(0));
14842 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Result);
14848 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
14849 // reasonable.
14850 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
14851 if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
14852 return Res;
14855 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14856 return Result;
14858 return SDValue();
14861 static SDValue PerformXORCombine(SDNode *N,
14862 TargetLowering::DAGCombinerInfo &DCI,
14863 const ARMSubtarget *Subtarget) {
14864 EVT VT = N->getValueType(0);
14865 SelectionDAG &DAG = DCI.DAG;
14867 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14868 return SDValue();
14870 if (!Subtarget->isThumb1Only()) {
14871 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
14872 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14873 return Result;
14875 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14876 return Result;
14879 if (Subtarget->hasMVEIntegerOps()) {
14880 // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
14881 SDValue N0 = N->getOperand(0);
14882 SDValue N1 = N->getOperand(1);
14883 const TargetLowering *TLI = Subtarget->getTargetLowering();
14884 if (TLI->isConstTrueVal(N1) &&
14885 (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
14886 if (CanInvertMVEVCMP(N0)) {
14887 SDLoc DL(N0);
14888 ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
14890 SmallVector<SDValue, 4> Ops;
14891 Ops.push_back(N0->getOperand(0));
14892 if (N0->getOpcode() == ARMISD::VCMP)
14893 Ops.push_back(N0->getOperand(1));
14894 Ops.push_back(DAG.getConstant(CC, DL, MVT::i32));
14895 return DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
14900 return SDValue();
14903 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
14904 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
14905 // their position in "to" (Rd).
14906 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
14907 assert(N->getOpcode() == ARMISD::BFI);
14909 SDValue From = N->getOperand(1);
14910 ToMask = ~N->getConstantOperandAPInt(2);
14911 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.popcount());
14913 // If the Base came from a SHR #C, we can deduce that it is really testing bit
14914 // #C in the base of the SHR.
14915 if (From->getOpcode() == ISD::SRL &&
14916 isa<ConstantSDNode>(From->getOperand(1))) {
14917 APInt Shift = From->getConstantOperandAPInt(1);
14918 assert(Shift.getLimitedValue() < 32 && "Shift too large!");
14919 FromMask <<= Shift.getLimitedValue(31);
14920 From = From->getOperand(0);
14923 return From;
14926 // If A and B contain one contiguous set of bits, does A | B == A . B?
14928 // Neither A nor B must be zero.
14929 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
14930 unsigned LastActiveBitInA = A.countr_zero();
14931 unsigned FirstActiveBitInB = B.getBitWidth() - B.countl_zero() - 1;
14932 return LastActiveBitInA - 1 == FirstActiveBitInB;
14935 static SDValue FindBFIToCombineWith(SDNode *N) {
14936 // We have a BFI in N. Find a BFI it can combine with, if one exists.
14937 APInt ToMask, FromMask;
14938 SDValue From = ParseBFI(N, ToMask, FromMask);
14939 SDValue To = N->getOperand(0);
14941 SDValue V = To;
14942 if (V.getOpcode() != ARMISD::BFI)
14943 return SDValue();
14945 APInt NewToMask, NewFromMask;
14946 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
14947 if (NewFrom != From)
14948 return SDValue();
14950 // Do the written bits conflict with any we've seen so far?
14951 if ((NewToMask & ToMask).getBoolValue())
14952 // Conflicting bits.
14953 return SDValue();
14955 // Are the new bits contiguous when combined with the old bits?
14956 if (BitsProperlyConcatenate(ToMask, NewToMask) &&
14957 BitsProperlyConcatenate(FromMask, NewFromMask))
14958 return V;
14959 if (BitsProperlyConcatenate(NewToMask, ToMask) &&
14960 BitsProperlyConcatenate(NewFromMask, FromMask))
14961 return V;
14963 return SDValue();
14966 static SDValue PerformBFICombine(SDNode *N, SelectionDAG &DAG) {
14967 SDValue N0 = N->getOperand(0);
14968 SDValue N1 = N->getOperand(1);
14970 if (N1.getOpcode() == ISD::AND) {
14971 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
14972 // the bits being cleared by the AND are not demanded by the BFI.
14973 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14974 if (!N11C)
14975 return SDValue();
14976 unsigned InvMask = N->getConstantOperandVal(2);
14977 unsigned LSB = llvm::countr_zero(~InvMask);
14978 unsigned Width = llvm::bit_width<unsigned>(~InvMask) - LSB;
14979 assert(Width <
14980 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
14981 "undefined behavior");
14982 unsigned Mask = (1u << Width) - 1;
14983 unsigned Mask2 = N11C->getZExtValue();
14984 if ((Mask & (~Mask2)) == 0)
14985 return DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
14986 N->getOperand(0), N1.getOperand(0), N->getOperand(2));
14987 return SDValue();
14990 // Look for another BFI to combine with.
14991 if (SDValue CombineBFI = FindBFIToCombineWith(N)) {
14992 // We've found a BFI.
14993 APInt ToMask1, FromMask1;
14994 SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
14996 APInt ToMask2, FromMask2;
14997 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
14998 assert(From1 == From2);
14999 (void)From2;
15001 // Create a new BFI, combining the two together.
15002 APInt NewFromMask = FromMask1 | FromMask2;
15003 APInt NewToMask = ToMask1 | ToMask2;
15005 EVT VT = N->getValueType(0);
15006 SDLoc dl(N);
15008 if (NewFromMask[0] == 0)
15009 From1 = DAG.getNode(ISD::SRL, dl, VT, From1,
15010 DAG.getConstant(NewFromMask.countr_zero(), dl, VT));
15011 return DAG.getNode(ARMISD::BFI, dl, VT, CombineBFI.getOperand(0), From1,
15012 DAG.getConstant(~NewToMask, dl, VT));
15015 // Reassociate BFI(BFI (A, B, M1), C, M2) to BFI(BFI (A, C, M2), B, M1) so
15016 // that lower bit insertions are performed first, providing that M1 and M2
15017 // do no overlap. This can allow multiple BFI instructions to be combined
15018 // together by the other folds above.
15019 if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
15020 APInt ToMask1 = ~N->getConstantOperandAPInt(2);
15021 APInt ToMask2 = ~N0.getConstantOperandAPInt(2);
15023 if (!N0.hasOneUse() || (ToMask1 & ToMask2) != 0 ||
15024 ToMask1.countl_zero() < ToMask2.countl_zero())
15025 return SDValue();
15027 EVT VT = N->getValueType(0);
15028 SDLoc dl(N);
15029 SDValue BFI1 = DAG.getNode(ARMISD::BFI, dl, VT, N0.getOperand(0),
15030 N->getOperand(1), N->getOperand(2));
15031 return DAG.getNode(ARMISD::BFI, dl, VT, BFI1, N0.getOperand(1),
15032 N0.getOperand(2));
15035 return SDValue();
15038 // Check that N is CMPZ(CSINC(0, 0, CC, X)),
15039 // or CMPZ(CMOV(1, 0, CC, X))
15040 // return X if valid.
15041 static SDValue IsCMPZCSINC(SDNode *Cmp, ARMCC::CondCodes &CC) {
15042 if (Cmp->getOpcode() != ARMISD::CMPZ || !isNullConstant(Cmp->getOperand(1)))
15043 return SDValue();
15044 SDValue CSInc = Cmp->getOperand(0);
15046 // Ignore any `And 1` nodes that may not yet have been removed. We are
15047 // looking for a value that produces 1/0, so these have no effect on the
15048 // code.
15049 while (CSInc.getOpcode() == ISD::AND &&
15050 isa<ConstantSDNode>(CSInc.getOperand(1)) &&
15051 CSInc.getConstantOperandVal(1) == 1 && CSInc->hasOneUse())
15052 CSInc = CSInc.getOperand(0);
15054 if (CSInc.getOpcode() == ARMISD::CSINC &&
15055 isNullConstant(CSInc.getOperand(0)) &&
15056 isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
15057 CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
15058 return CSInc.getOperand(3);
15060 if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(0)) &&
15061 isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
15062 CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
15063 return CSInc.getOperand(3);
15065 if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(1)) &&
15066 isNullConstant(CSInc.getOperand(0)) && CSInc->hasOneUse()) {
15067 CC = ARMCC::getOppositeCondition(
15068 (ARMCC::CondCodes)CSInc.getConstantOperandVal(2));
15069 return CSInc.getOperand(3);
15071 return SDValue();
15074 static SDValue PerformCMPZCombine(SDNode *N, SelectionDAG &DAG) {
15075 // Given CMPZ(CSINC(C, 0, 0, EQ), 0), we can just use C directly. As in
15076 // t92: flags = ARMISD::CMPZ t74, 0
15077 // t93: i32 = ARMISD::CSINC 0, 0, 1, t92
15078 // t96: flags = ARMISD::CMPZ t93, 0
15079 // t114: i32 = ARMISD::CSINV 0, 0, 0, t96
15080 ARMCC::CondCodes Cond;
15081 if (SDValue C = IsCMPZCSINC(N, Cond))
15082 if (Cond == ARMCC::EQ)
15083 return C;
15084 return SDValue();
15087 static SDValue PerformCSETCombine(SDNode *N, SelectionDAG &DAG) {
15088 // Fold away an unneccessary CMPZ/CSINC
15089 // CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0) ->
15090 // if C1==EQ -> CSXYZ A, B, C2, D
15091 // if C1==NE -> CSXYZ A, B, NOT(C2), D
15092 ARMCC::CondCodes Cond;
15093 if (SDValue C = IsCMPZCSINC(N->getOperand(3).getNode(), Cond)) {
15094 if (N->getConstantOperandVal(2) == ARMCC::EQ)
15095 return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
15096 N->getOperand(1),
15097 DAG.getConstant(Cond, SDLoc(N), MVT::i32), C);
15098 if (N->getConstantOperandVal(2) == ARMCC::NE)
15099 return DAG.getNode(
15100 N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
15101 N->getOperand(1),
15102 DAG.getConstant(ARMCC::getOppositeCondition(Cond), SDLoc(N), MVT::i32), C);
15104 return SDValue();
15107 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
15108 /// ARMISD::VMOVRRD.
15109 static SDValue PerformVMOVRRDCombine(SDNode *N,
15110 TargetLowering::DAGCombinerInfo &DCI,
15111 const ARMSubtarget *Subtarget) {
15112 // vmovrrd(vmovdrr x, y) -> x,y
15113 SDValue InDouble = N->getOperand(0);
15114 if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
15115 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
15117 // vmovrrd(load f64) -> (load i32), (load i32)
15118 SDNode *InNode = InDouble.getNode();
15119 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
15120 InNode->getValueType(0) == MVT::f64 &&
15121 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
15122 !cast<LoadSDNode>(InNode)->isVolatile()) {
15123 // TODO: Should this be done for non-FrameIndex operands?
15124 LoadSDNode *LD = cast<LoadSDNode>(InNode);
15126 SelectionDAG &DAG = DCI.DAG;
15127 SDLoc DL(LD);
15128 SDValue BasePtr = LD->getBasePtr();
15129 SDValue NewLD1 =
15130 DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
15131 LD->getAlign(), LD->getMemOperand()->getFlags());
15133 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
15134 DAG.getConstant(4, DL, MVT::i32));
15136 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
15137 LD->getPointerInfo().getWithOffset(4),
15138 commonAlignment(LD->getAlign(), 4),
15139 LD->getMemOperand()->getFlags());
15141 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
15142 if (DCI.DAG.getDataLayout().isBigEndian())
15143 std::swap (NewLD1, NewLD2);
15144 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
15145 return Result;
15148 // VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d
15149 // VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b
15150 if (InDouble.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15151 isa<ConstantSDNode>(InDouble.getOperand(1))) {
15152 SDValue BV = InDouble.getOperand(0);
15153 // Look up through any nop bitcasts and vector_reg_casts. bitcasts may
15154 // change lane order under big endian.
15155 bool BVSwap = BV.getOpcode() == ISD::BITCAST;
15156 while (
15157 (BV.getOpcode() == ISD::BITCAST ||
15158 BV.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
15159 (BV.getValueType() == MVT::v2f64 || BV.getValueType() == MVT::v2i64)) {
15160 BVSwap = BV.getOpcode() == ISD::BITCAST;
15161 BV = BV.getOperand(0);
15163 if (BV.getValueType() != MVT::v4i32)
15164 return SDValue();
15166 // Handle buildvectors, pulling out the correct lane depending on
15167 // endianness.
15168 unsigned Offset = InDouble.getConstantOperandVal(1) == 1 ? 2 : 0;
15169 if (BV.getOpcode() == ISD::BUILD_VECTOR) {
15170 SDValue Op0 = BV.getOperand(Offset);
15171 SDValue Op1 = BV.getOperand(Offset + 1);
15172 if (!Subtarget->isLittle() && BVSwap)
15173 std::swap(Op0, Op1);
15175 return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
15178 // A chain of insert_vectors, grabbing the correct value of the chain of
15179 // inserts.
15180 SDValue Op0, Op1;
15181 while (BV.getOpcode() == ISD::INSERT_VECTOR_ELT) {
15182 if (isa<ConstantSDNode>(BV.getOperand(2))) {
15183 if (BV.getConstantOperandVal(2) == Offset && !Op0)
15184 Op0 = BV.getOperand(1);
15185 if (BV.getConstantOperandVal(2) == Offset + 1 && !Op1)
15186 Op1 = BV.getOperand(1);
15188 BV = BV.getOperand(0);
15190 if (!Subtarget->isLittle() && BVSwap)
15191 std::swap(Op0, Op1);
15192 if (Op0 && Op1)
15193 return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
15196 return SDValue();
15199 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
15200 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
15201 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
15202 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
15203 SDValue Op0 = N->getOperand(0);
15204 SDValue Op1 = N->getOperand(1);
15205 if (Op0.getOpcode() == ISD::BITCAST)
15206 Op0 = Op0.getOperand(0);
15207 if (Op1.getOpcode() == ISD::BITCAST)
15208 Op1 = Op1.getOperand(0);
15209 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
15210 Op0.getNode() == Op1.getNode() &&
15211 Op0.getResNo() == 0 && Op1.getResNo() == 1)
15212 return DAG.getNode(ISD::BITCAST, SDLoc(N),
15213 N->getValueType(0), Op0.getOperand(0));
15214 return SDValue();
15217 static SDValue PerformVMOVhrCombine(SDNode *N,
15218 TargetLowering::DAGCombinerInfo &DCI) {
15219 SDValue Op0 = N->getOperand(0);
15221 // VMOVhr (VMOVrh (X)) -> X
15222 if (Op0->getOpcode() == ARMISD::VMOVrh)
15223 return Op0->getOperand(0);
15225 // FullFP16: half values are passed in S-registers, and we don't
15226 // need any of the bitcast and moves:
15228 // t2: f32,ch1,gl1? = CopyFromReg ch, Register:f32 %0, gl?
15229 // t5: i32 = bitcast t2
15230 // t18: f16 = ARMISD::VMOVhr t5
15231 // =>
15232 // tN: f16,ch2,gl2? = CopyFromReg ch, Register::f32 %0, gl?
15233 if (Op0->getOpcode() == ISD::BITCAST) {
15234 SDValue Copy = Op0->getOperand(0);
15235 if (Copy.getValueType() == MVT::f32 &&
15236 Copy->getOpcode() == ISD::CopyFromReg) {
15237 bool HasGlue = Copy->getNumOperands() == 3;
15238 SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1),
15239 HasGlue ? Copy->getOperand(2) : SDValue()};
15240 EVT OutTys[] = {N->getValueType(0), MVT::Other, MVT::Glue};
15241 SDValue NewCopy =
15242 DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N),
15243 DCI.DAG.getVTList(ArrayRef(OutTys, HasGlue ? 3 : 2)),
15244 ArrayRef(Ops, HasGlue ? 3 : 2));
15246 // Update Users, Chains, and Potential Glue.
15247 DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), NewCopy.getValue(0));
15248 DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(1), NewCopy.getValue(1));
15249 if (HasGlue)
15250 DCI.DAG.ReplaceAllUsesOfValueWith(Copy.getValue(2),
15251 NewCopy.getValue(2));
15253 return NewCopy;
15257 // fold (VMOVhr (load x)) -> (load (f16*)x)
15258 if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
15259 if (LN0->hasOneUse() && LN0->isUnindexed() &&
15260 LN0->getMemoryVT() == MVT::i16) {
15261 SDValue Load =
15262 DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
15263 LN0->getBasePtr(), LN0->getMemOperand());
15264 DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15265 DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
15266 return Load;
15270 // Only the bottom 16 bits of the source register are used.
15271 APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15272 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15273 if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
15274 return SDValue(N, 0);
15276 return SDValue();
15279 static SDValue PerformVMOVrhCombine(SDNode *N, SelectionDAG &DAG) {
15280 SDValue N0 = N->getOperand(0);
15281 EVT VT = N->getValueType(0);
15283 // fold (VMOVrh (fpconst x)) -> const x
15284 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
15285 APFloat V = C->getValueAPF();
15286 return DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
15289 // fold (VMOVrh (load x)) -> (zextload (i16*)x)
15290 if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
15291 LoadSDNode *LN0 = cast<LoadSDNode>(N0);
15293 SDValue Load =
15294 DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
15295 LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
15296 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
15297 DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
15298 return Load;
15301 // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
15302 if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15303 isa<ConstantSDNode>(N0->getOperand(1)))
15304 return DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
15305 N0->getOperand(1));
15307 return SDValue();
15310 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
15311 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
15312 /// i64 vector to have f64 elements, since the value can then be loaded
15313 /// directly into a VFP register.
15314 static bool hasNormalLoadOperand(SDNode *N) {
15315 unsigned NumElts = N->getValueType(0).getVectorNumElements();
15316 for (unsigned i = 0; i < NumElts; ++i) {
15317 SDNode *Elt = N->getOperand(i).getNode();
15318 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
15319 return true;
15321 return false;
15324 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
15325 /// ISD::BUILD_VECTOR.
15326 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
15327 TargetLowering::DAGCombinerInfo &DCI,
15328 const ARMSubtarget *Subtarget) {
15329 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
15330 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
15331 // into a pair of GPRs, which is fine when the value is used as a scalar,
15332 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
15333 SelectionDAG &DAG = DCI.DAG;
15334 if (N->getNumOperands() == 2)
15335 if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
15336 return RV;
15338 // Load i64 elements as f64 values so that type legalization does not split
15339 // them up into i32 values.
15340 EVT VT = N->getValueType(0);
15341 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
15342 return SDValue();
15343 SDLoc dl(N);
15344 SmallVector<SDValue, 8> Ops;
15345 unsigned NumElts = VT.getVectorNumElements();
15346 for (unsigned i = 0; i < NumElts; ++i) {
15347 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
15348 Ops.push_back(V);
15349 // Make the DAGCombiner fold the bitcast.
15350 DCI.AddToWorklist(V.getNode());
15352 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
15353 SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
15354 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
15357 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
15358 static SDValue
15359 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15360 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
15361 // At that time, we may have inserted bitcasts from integer to float.
15362 // If these bitcasts have survived DAGCombine, change the lowering of this
15363 // BUILD_VECTOR in something more vector friendly, i.e., that does not
15364 // force to use floating point types.
15366 // Make sure we can change the type of the vector.
15367 // This is possible iff:
15368 // 1. The vector is only used in a bitcast to a integer type. I.e.,
15369 // 1.1. Vector is used only once.
15370 // 1.2. Use is a bit convert to an integer type.
15371 // 2. The size of its operands are 32-bits (64-bits are not legal).
15372 EVT VT = N->getValueType(0);
15373 EVT EltVT = VT.getVectorElementType();
15375 // Check 1.1. and 2.
15376 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
15377 return SDValue();
15379 // By construction, the input type must be float.
15380 assert(EltVT == MVT::f32 && "Unexpected type!");
15382 // Check 1.2.
15383 SDNode *Use = *N->user_begin();
15384 if (Use->getOpcode() != ISD::BITCAST ||
15385 Use->getValueType(0).isFloatingPoint())
15386 return SDValue();
15388 // Check profitability.
15389 // Model is, if more than half of the relevant operands are bitcast from
15390 // i32, turn the build_vector into a sequence of insert_vector_elt.
15391 // Relevant operands are everything that is not statically
15392 // (i.e., at compile time) bitcasted.
15393 unsigned NumOfBitCastedElts = 0;
15394 unsigned NumElts = VT.getVectorNumElements();
15395 unsigned NumOfRelevantElts = NumElts;
15396 for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
15397 SDValue Elt = N->getOperand(Idx);
15398 if (Elt->getOpcode() == ISD::BITCAST) {
15399 // Assume only bit cast to i32 will go away.
15400 if (Elt->getOperand(0).getValueType() == MVT::i32)
15401 ++NumOfBitCastedElts;
15402 } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
15403 // Constants are statically casted, thus do not count them as
15404 // relevant operands.
15405 --NumOfRelevantElts;
15408 // Check if more than half of the elements require a non-free bitcast.
15409 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
15410 return SDValue();
15412 SelectionDAG &DAG = DCI.DAG;
15413 // Create the new vector type.
15414 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
15415 // Check if the type is legal.
15416 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15417 if (!TLI.isTypeLegal(VecVT))
15418 return SDValue();
15420 // Combine:
15421 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
15422 // => BITCAST INSERT_VECTOR_ELT
15423 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
15424 // (BITCAST EN), N.
15425 SDValue Vec = DAG.getUNDEF(VecVT);
15426 SDLoc dl(N);
15427 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
15428 SDValue V = N->getOperand(Idx);
15429 if (V.isUndef())
15430 continue;
15431 if (V.getOpcode() == ISD::BITCAST &&
15432 V->getOperand(0).getValueType() == MVT::i32)
15433 // Fold obvious case.
15434 V = V.getOperand(0);
15435 else {
15436 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
15437 // Make the DAGCombiner fold the bitcasts.
15438 DCI.AddToWorklist(V.getNode());
15440 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
15441 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
15443 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
15444 // Make the DAGCombiner fold the bitcasts.
15445 DCI.AddToWorklist(Vec.getNode());
15446 return Vec;
15449 static SDValue
15450 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15451 EVT VT = N->getValueType(0);
15452 SDValue Op = N->getOperand(0);
15453 SDLoc dl(N);
15455 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
15456 if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
15457 // If the valuetypes are the same, we can remove the cast entirely.
15458 if (Op->getOperand(0).getValueType() == VT)
15459 return Op->getOperand(0);
15460 return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15463 // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
15464 // more VPNOT which might get folded as else predicates.
15465 if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
15466 SDValue X =
15467 DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15468 SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
15469 DCI.DAG.getConstant(65535, dl, MVT::i32));
15470 return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
15473 // Only the bottom 16 bits of the source register are used.
15474 if (Op.getValueType() == MVT::i32) {
15475 APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15476 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15477 if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
15478 return SDValue(N, 0);
15480 return SDValue();
15483 static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, SelectionDAG &DAG,
15484 const ARMSubtarget *ST) {
15485 EVT VT = N->getValueType(0);
15486 SDValue Op = N->getOperand(0);
15487 SDLoc dl(N);
15489 // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
15490 if (ST->isLittle())
15491 return DAG.getNode(ISD::BITCAST, dl, VT, Op);
15493 // VT VECTOR_REG_CAST (VT Op) -> Op
15494 if (Op.getValueType() == VT)
15495 return Op;
15496 // VECTOR_REG_CAST undef -> undef
15497 if (Op.isUndef())
15498 return DAG.getUNDEF(VT);
15500 // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
15501 if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
15502 // If the valuetypes are the same, we can remove the cast entirely.
15503 if (Op->getOperand(0).getValueType() == VT)
15504 return Op->getOperand(0);
15505 return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
15508 return SDValue();
15511 static SDValue PerformVCMPCombine(SDNode *N, SelectionDAG &DAG,
15512 const ARMSubtarget *Subtarget) {
15513 if (!Subtarget->hasMVEIntegerOps())
15514 return SDValue();
15516 EVT VT = N->getValueType(0);
15517 SDValue Op0 = N->getOperand(0);
15518 SDValue Op1 = N->getOperand(1);
15519 ARMCC::CondCodes Cond = (ARMCC::CondCodes)N->getConstantOperandVal(2);
15520 SDLoc dl(N);
15522 // vcmp X, 0, cc -> vcmpz X, cc
15523 if (isZeroVector(Op1))
15524 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0, N->getOperand(2));
15526 unsigned SwappedCond = getSwappedCondition(Cond);
15527 if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
15528 // vcmp 0, X, cc -> vcmpz X, reversed(cc)
15529 if (isZeroVector(Op0))
15530 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
15531 DAG.getConstant(SwappedCond, dl, MVT::i32));
15532 // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
15533 if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
15534 return DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
15535 DAG.getConstant(SwappedCond, dl, MVT::i32));
15538 return SDValue();
15541 /// PerformInsertEltCombine - Target-specific dag combine xforms for
15542 /// ISD::INSERT_VECTOR_ELT.
15543 static SDValue PerformInsertEltCombine(SDNode *N,
15544 TargetLowering::DAGCombinerInfo &DCI) {
15545 // Bitcast an i64 load inserted into a vector to f64.
15546 // Otherwise, the i64 value will be legalized to a pair of i32 values.
15547 EVT VT = N->getValueType(0);
15548 SDNode *Elt = N->getOperand(1).getNode();
15549 if (VT.getVectorElementType() != MVT::i64 ||
15550 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
15551 return SDValue();
15553 SelectionDAG &DAG = DCI.DAG;
15554 SDLoc dl(N);
15555 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
15556 VT.getVectorNumElements());
15557 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
15558 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
15559 // Make the DAGCombiner fold the bitcasts.
15560 DCI.AddToWorklist(Vec.getNode());
15561 DCI.AddToWorklist(V.getNode());
15562 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
15563 Vec, V, N->getOperand(2));
15564 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
15567 // Convert a pair of extracts from the same base vector to a VMOVRRD. Either
15568 // directly or bitcast to an integer if the original is a float vector.
15569 // extract(x, n); extract(x, n+1) -> VMOVRRD(extract v2f64 x, n/2)
15570 // bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD(extract x, n/2)
15571 static SDValue
15572 PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15573 EVT VT = N->getValueType(0);
15574 SDLoc dl(N);
15576 if (!DCI.isAfterLegalizeDAG() || VT != MVT::i32 ||
15577 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(MVT::f64))
15578 return SDValue();
15580 SDValue Ext = SDValue(N, 0);
15581 if (Ext.getOpcode() == ISD::BITCAST &&
15582 Ext.getOperand(0).getValueType() == MVT::f32)
15583 Ext = Ext.getOperand(0);
15584 if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
15585 !isa<ConstantSDNode>(Ext.getOperand(1)) ||
15586 Ext.getConstantOperandVal(1) % 2 != 0)
15587 return SDValue();
15588 if (Ext->hasOneUse() && (Ext->user_begin()->getOpcode() == ISD::SINT_TO_FP ||
15589 Ext->user_begin()->getOpcode() == ISD::UINT_TO_FP))
15590 return SDValue();
15592 SDValue Op0 = Ext.getOperand(0);
15593 EVT VecVT = Op0.getValueType();
15594 unsigned ResNo = Op0.getResNo();
15595 unsigned Lane = Ext.getConstantOperandVal(1);
15596 if (VecVT.getVectorNumElements() != 4)
15597 return SDValue();
15599 // Find another extract, of Lane + 1
15600 auto OtherIt = find_if(Op0->users(), [&](SDNode *V) {
15601 return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15602 isa<ConstantSDNode>(V->getOperand(1)) &&
15603 V->getConstantOperandVal(1) == Lane + 1 &&
15604 V->getOperand(0).getResNo() == ResNo;
15606 if (OtherIt == Op0->users().end())
15607 return SDValue();
15609 // For float extracts, we need to be converting to a i32 for both vector
15610 // lanes.
15611 SDValue OtherExt(*OtherIt, 0);
15612 if (OtherExt.getValueType() != MVT::i32) {
15613 if (!OtherExt->hasOneUse() ||
15614 OtherExt->user_begin()->getOpcode() != ISD::BITCAST ||
15615 OtherExt->user_begin()->getValueType(0) != MVT::i32)
15616 return SDValue();
15617 OtherExt = SDValue(*OtherExt->user_begin(), 0);
15620 // Convert the type to a f64 and extract with a VMOVRRD.
15621 SDValue F64 = DCI.DAG.getNode(
15622 ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
15623 DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v2f64, Op0),
15624 DCI.DAG.getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32));
15625 SDValue VMOVRRD =
15626 DCI.DAG.getNode(ARMISD::VMOVRRD, dl, {MVT::i32, MVT::i32}, F64);
15628 DCI.CombineTo(OtherExt.getNode(), SDValue(VMOVRRD.getNode(), 1));
15629 return VMOVRRD;
15632 static SDValue PerformExtractEltCombine(SDNode *N,
15633 TargetLowering::DAGCombinerInfo &DCI,
15634 const ARMSubtarget *ST) {
15635 SDValue Op0 = N->getOperand(0);
15636 EVT VT = N->getValueType(0);
15637 SDLoc dl(N);
15639 // extract (vdup x) -> x
15640 if (Op0->getOpcode() == ARMISD::VDUP) {
15641 SDValue X = Op0->getOperand(0);
15642 if (VT == MVT::f16 && X.getValueType() == MVT::i32)
15643 return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
15644 if (VT == MVT::i32 && X.getValueType() == MVT::f16)
15645 return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
15646 if (VT == MVT::f32 && X.getValueType() == MVT::i32)
15647 return DCI.DAG.getNode(ISD::BITCAST, dl, VT, X);
15649 while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
15650 X = X->getOperand(0);
15651 if (X.getValueType() == VT)
15652 return X;
15655 // extract ARM_BUILD_VECTOR -> x
15656 if (Op0->getOpcode() == ARMISD::BUILD_VECTOR &&
15657 isa<ConstantSDNode>(N->getOperand(1)) &&
15658 N->getConstantOperandVal(1) < Op0.getNumOperands()) {
15659 return Op0.getOperand(N->getConstantOperandVal(1));
15662 // extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b
15663 if (Op0.getValueType() == MVT::v4i32 &&
15664 isa<ConstantSDNode>(N->getOperand(1)) &&
15665 Op0.getOpcode() == ISD::BITCAST &&
15666 Op0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
15667 Op0.getOperand(0).getValueType() == MVT::v2f64) {
15668 SDValue BV = Op0.getOperand(0);
15669 unsigned Offset = N->getConstantOperandVal(1);
15670 SDValue MOV = BV.getOperand(Offset < 2 ? 0 : 1);
15671 if (MOV.getOpcode() == ARMISD::VMOVDRR)
15672 return MOV.getOperand(ST->isLittle() ? Offset % 2 : 1 - Offset % 2);
15675 // extract x, n; extract x, n+1 -> VMOVRRD x
15676 if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
15677 return R;
15679 // extract (MVETrunc(x)) -> extract x
15680 if (Op0->getOpcode() == ARMISD::MVETRUNC) {
15681 unsigned Idx = N->getConstantOperandVal(1);
15682 unsigned Vec =
15683 Idx / Op0->getOperand(0).getValueType().getVectorNumElements();
15684 unsigned SubIdx =
15685 Idx % Op0->getOperand(0).getValueType().getVectorNumElements();
15686 return DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Op0.getOperand(Vec),
15687 DCI.DAG.getConstant(SubIdx, dl, MVT::i32));
15690 return SDValue();
15693 static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG) {
15694 SDValue Op = N->getOperand(0);
15695 EVT VT = N->getValueType(0);
15697 // sext_inreg(VGETLANEu) -> VGETLANEs
15698 if (Op.getOpcode() == ARMISD::VGETLANEu &&
15699 cast<VTSDNode>(N->getOperand(1))->getVT() ==
15700 Op.getOperand(0).getValueType().getScalarType())
15701 return DAG.getNode(ARMISD::VGETLANEs, SDLoc(N), VT, Op.getOperand(0),
15702 Op.getOperand(1));
15704 return SDValue();
15707 static SDValue
15708 PerformInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15709 SDValue Vec = N->getOperand(0);
15710 SDValue SubVec = N->getOperand(1);
15711 uint64_t IdxVal = N->getConstantOperandVal(2);
15712 EVT VecVT = Vec.getValueType();
15713 EVT SubVT = SubVec.getValueType();
15715 // Only do this for legal fixed vector types.
15716 if (!VecVT.isFixedLengthVector() ||
15717 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VecVT) ||
15718 !DCI.DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
15719 return SDValue();
15721 // Ignore widening patterns.
15722 if (IdxVal == 0 && Vec.isUndef())
15723 return SDValue();
15725 // Subvector must be half the width and an "aligned" insertion.
15726 unsigned NumSubElts = SubVT.getVectorNumElements();
15727 if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() ||
15728 (IdxVal != 0 && IdxVal != NumSubElts))
15729 return SDValue();
15731 // Fold insert_subvector -> concat_vectors
15732 // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
15733 // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
15734 SDLoc DL(N);
15735 SDValue Lo, Hi;
15736 if (IdxVal == 0) {
15737 Lo = SubVec;
15738 Hi = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15739 DCI.DAG.getVectorIdxConstant(NumSubElts, DL));
15740 } else {
15741 Lo = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15742 DCI.DAG.getVectorIdxConstant(0, DL));
15743 Hi = SubVec;
15745 return DCI.DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi);
15748 // shuffle(MVETrunc(x, y)) -> VMOVN(x, y)
15749 static SDValue PerformShuffleVMOVNCombine(ShuffleVectorSDNode *N,
15750 SelectionDAG &DAG) {
15751 SDValue Trunc = N->getOperand(0);
15752 EVT VT = Trunc.getValueType();
15753 if (Trunc.getOpcode() != ARMISD::MVETRUNC || !N->getOperand(1).isUndef())
15754 return SDValue();
15756 SDLoc DL(Trunc);
15757 if (isVMOVNTruncMask(N->getMask(), VT, false))
15758 return DAG.getNode(
15759 ARMISD::VMOVN, DL, VT,
15760 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15761 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15762 DAG.getConstant(1, DL, MVT::i32));
15763 else if (isVMOVNTruncMask(N->getMask(), VT, true))
15764 return DAG.getNode(
15765 ARMISD::VMOVN, DL, VT,
15766 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15767 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15768 DAG.getConstant(1, DL, MVT::i32));
15769 return SDValue();
15772 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
15773 /// ISD::VECTOR_SHUFFLE.
15774 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
15775 if (SDValue R = PerformShuffleVMOVNCombine(cast<ShuffleVectorSDNode>(N), DAG))
15776 return R;
15778 // The LLVM shufflevector instruction does not require the shuffle mask
15779 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
15780 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
15781 // operands do not match the mask length, they are extended by concatenating
15782 // them with undef vectors. That is probably the right thing for other
15783 // targets, but for NEON it is better to concatenate two double-register
15784 // size vector operands into a single quad-register size vector. Do that
15785 // transformation here:
15786 // shuffle(concat(v1, undef), concat(v2, undef)) ->
15787 // shuffle(concat(v1, v2), undef)
15788 SDValue Op0 = N->getOperand(0);
15789 SDValue Op1 = N->getOperand(1);
15790 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
15791 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
15792 Op0.getNumOperands() != 2 ||
15793 Op1.getNumOperands() != 2)
15794 return SDValue();
15795 SDValue Concat0Op1 = Op0.getOperand(1);
15796 SDValue Concat1Op1 = Op1.getOperand(1);
15797 if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
15798 return SDValue();
15799 // Skip the transformation if any of the types are illegal.
15800 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15801 EVT VT = N->getValueType(0);
15802 if (!TLI.isTypeLegal(VT) ||
15803 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
15804 !TLI.isTypeLegal(Concat1Op1.getValueType()))
15805 return SDValue();
15807 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
15808 Op0.getOperand(0), Op1.getOperand(0));
15809 // Translate the shuffle mask.
15810 SmallVector<int, 16> NewMask;
15811 unsigned NumElts = VT.getVectorNumElements();
15812 unsigned HalfElts = NumElts/2;
15813 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
15814 for (unsigned n = 0; n < NumElts; ++n) {
15815 int MaskElt = SVN->getMaskElt(n);
15816 int NewElt = -1;
15817 if (MaskElt < (int)HalfElts)
15818 NewElt = MaskElt;
15819 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
15820 NewElt = HalfElts + MaskElt - NumElts;
15821 NewMask.push_back(NewElt);
15823 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
15824 DAG.getUNDEF(VT), NewMask);
15827 /// Load/store instruction that can be merged with a base address
15828 /// update
15829 struct BaseUpdateTarget {
15830 SDNode *N;
15831 bool isIntrinsic;
15832 bool isStore;
15833 unsigned AddrOpIdx;
15836 struct BaseUpdateUser {
15837 /// Instruction that updates a pointer
15838 SDNode *N;
15839 /// Pointer increment operand
15840 SDValue Inc;
15841 /// Pointer increment value if it is a constant, or 0 otherwise
15842 unsigned ConstInc;
15845 static bool TryCombineBaseUpdate(struct BaseUpdateTarget &Target,
15846 struct BaseUpdateUser &User,
15847 bool SimpleConstIncOnly,
15848 TargetLowering::DAGCombinerInfo &DCI) {
15849 SelectionDAG &DAG = DCI.DAG;
15850 SDNode *N = Target.N;
15851 MemSDNode *MemN = cast<MemSDNode>(N);
15852 SDLoc dl(N);
15854 // Find the new opcode for the updating load/store.
15855 bool isLoadOp = true;
15856 bool isLaneOp = false;
15857 // Workaround for vst1x and vld1x intrinsics which do not have alignment
15858 // as an operand.
15859 bool hasAlignment = true;
15860 unsigned NewOpc = 0;
15861 unsigned NumVecs = 0;
15862 if (Target.isIntrinsic) {
15863 unsigned IntNo = N->getConstantOperandVal(1);
15864 switch (IntNo) {
15865 default:
15866 llvm_unreachable("unexpected intrinsic for Neon base update");
15867 case Intrinsic::arm_neon_vld1:
15868 NewOpc = ARMISD::VLD1_UPD;
15869 NumVecs = 1;
15870 break;
15871 case Intrinsic::arm_neon_vld2:
15872 NewOpc = ARMISD::VLD2_UPD;
15873 NumVecs = 2;
15874 break;
15875 case Intrinsic::arm_neon_vld3:
15876 NewOpc = ARMISD::VLD3_UPD;
15877 NumVecs = 3;
15878 break;
15879 case Intrinsic::arm_neon_vld4:
15880 NewOpc = ARMISD::VLD4_UPD;
15881 NumVecs = 4;
15882 break;
15883 case Intrinsic::arm_neon_vld1x2:
15884 NewOpc = ARMISD::VLD1x2_UPD;
15885 NumVecs = 2;
15886 hasAlignment = false;
15887 break;
15888 case Intrinsic::arm_neon_vld1x3:
15889 NewOpc = ARMISD::VLD1x3_UPD;
15890 NumVecs = 3;
15891 hasAlignment = false;
15892 break;
15893 case Intrinsic::arm_neon_vld1x4:
15894 NewOpc = ARMISD::VLD1x4_UPD;
15895 NumVecs = 4;
15896 hasAlignment = false;
15897 break;
15898 case Intrinsic::arm_neon_vld2dup:
15899 NewOpc = ARMISD::VLD2DUP_UPD;
15900 NumVecs = 2;
15901 break;
15902 case Intrinsic::arm_neon_vld3dup:
15903 NewOpc = ARMISD::VLD3DUP_UPD;
15904 NumVecs = 3;
15905 break;
15906 case Intrinsic::arm_neon_vld4dup:
15907 NewOpc = ARMISD::VLD4DUP_UPD;
15908 NumVecs = 4;
15909 break;
15910 case Intrinsic::arm_neon_vld2lane:
15911 NewOpc = ARMISD::VLD2LN_UPD;
15912 NumVecs = 2;
15913 isLaneOp = true;
15914 break;
15915 case Intrinsic::arm_neon_vld3lane:
15916 NewOpc = ARMISD::VLD3LN_UPD;
15917 NumVecs = 3;
15918 isLaneOp = true;
15919 break;
15920 case Intrinsic::arm_neon_vld4lane:
15921 NewOpc = ARMISD::VLD4LN_UPD;
15922 NumVecs = 4;
15923 isLaneOp = true;
15924 break;
15925 case Intrinsic::arm_neon_vst1:
15926 NewOpc = ARMISD::VST1_UPD;
15927 NumVecs = 1;
15928 isLoadOp = false;
15929 break;
15930 case Intrinsic::arm_neon_vst2:
15931 NewOpc = ARMISD::VST2_UPD;
15932 NumVecs = 2;
15933 isLoadOp = false;
15934 break;
15935 case Intrinsic::arm_neon_vst3:
15936 NewOpc = ARMISD::VST3_UPD;
15937 NumVecs = 3;
15938 isLoadOp = false;
15939 break;
15940 case Intrinsic::arm_neon_vst4:
15941 NewOpc = ARMISD::VST4_UPD;
15942 NumVecs = 4;
15943 isLoadOp = false;
15944 break;
15945 case Intrinsic::arm_neon_vst2lane:
15946 NewOpc = ARMISD::VST2LN_UPD;
15947 NumVecs = 2;
15948 isLoadOp = false;
15949 isLaneOp = true;
15950 break;
15951 case Intrinsic::arm_neon_vst3lane:
15952 NewOpc = ARMISD::VST3LN_UPD;
15953 NumVecs = 3;
15954 isLoadOp = false;
15955 isLaneOp = true;
15956 break;
15957 case Intrinsic::arm_neon_vst4lane:
15958 NewOpc = ARMISD::VST4LN_UPD;
15959 NumVecs = 4;
15960 isLoadOp = false;
15961 isLaneOp = true;
15962 break;
15963 case Intrinsic::arm_neon_vst1x2:
15964 NewOpc = ARMISD::VST1x2_UPD;
15965 NumVecs = 2;
15966 isLoadOp = false;
15967 hasAlignment = false;
15968 break;
15969 case Intrinsic::arm_neon_vst1x3:
15970 NewOpc = ARMISD::VST1x3_UPD;
15971 NumVecs = 3;
15972 isLoadOp = false;
15973 hasAlignment = false;
15974 break;
15975 case Intrinsic::arm_neon_vst1x4:
15976 NewOpc = ARMISD::VST1x4_UPD;
15977 NumVecs = 4;
15978 isLoadOp = false;
15979 hasAlignment = false;
15980 break;
15982 } else {
15983 isLaneOp = true;
15984 switch (N->getOpcode()) {
15985 default:
15986 llvm_unreachable("unexpected opcode for Neon base update");
15987 case ARMISD::VLD1DUP:
15988 NewOpc = ARMISD::VLD1DUP_UPD;
15989 NumVecs = 1;
15990 break;
15991 case ARMISD::VLD2DUP:
15992 NewOpc = ARMISD::VLD2DUP_UPD;
15993 NumVecs = 2;
15994 break;
15995 case ARMISD::VLD3DUP:
15996 NewOpc = ARMISD::VLD3DUP_UPD;
15997 NumVecs = 3;
15998 break;
15999 case ARMISD::VLD4DUP:
16000 NewOpc = ARMISD::VLD4DUP_UPD;
16001 NumVecs = 4;
16002 break;
16003 case ISD::LOAD:
16004 NewOpc = ARMISD::VLD1_UPD;
16005 NumVecs = 1;
16006 isLaneOp = false;
16007 break;
16008 case ISD::STORE:
16009 NewOpc = ARMISD::VST1_UPD;
16010 NumVecs = 1;
16011 isLaneOp = false;
16012 isLoadOp = false;
16013 break;
16017 // Find the size of memory referenced by the load/store.
16018 EVT VecTy;
16019 if (isLoadOp) {
16020 VecTy = N->getValueType(0);
16021 } else if (Target.isIntrinsic) {
16022 VecTy = N->getOperand(Target.AddrOpIdx + 1).getValueType();
16023 } else {
16024 assert(Target.isStore &&
16025 "Node has to be a load, a store, or an intrinsic!");
16026 VecTy = N->getOperand(1).getValueType();
16029 bool isVLDDUPOp =
16030 NewOpc == ARMISD::VLD1DUP_UPD || NewOpc == ARMISD::VLD2DUP_UPD ||
16031 NewOpc == ARMISD::VLD3DUP_UPD || NewOpc == ARMISD::VLD4DUP_UPD;
16033 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
16034 if (isLaneOp || isVLDDUPOp)
16035 NumBytes /= VecTy.getVectorNumElements();
16037 if (NumBytes >= 3 * 16 && User.ConstInc != NumBytes) {
16038 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
16039 // separate instructions that make it harder to use a non-constant update.
16040 return false;
16043 if (SimpleConstIncOnly && User.ConstInc != NumBytes)
16044 return false;
16046 // OK, we found an ADD we can fold into the base update.
16047 // Now, create a _UPD node, taking care of not breaking alignment.
16049 EVT AlignedVecTy = VecTy;
16050 Align Alignment = MemN->getAlign();
16052 // If this is a less-than-standard-aligned load/store, change the type to
16053 // match the standard alignment.
16054 // The alignment is overlooked when selecting _UPD variants; and it's
16055 // easier to introduce bitcasts here than fix that.
16056 // There are 3 ways to get to this base-update combine:
16057 // - intrinsics: they are assumed to be properly aligned (to the standard
16058 // alignment of the memory type), so we don't need to do anything.
16059 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
16060 // intrinsics, so, likewise, there's nothing to do.
16061 // - generic load/store instructions: the alignment is specified as an
16062 // explicit operand, rather than implicitly as the standard alignment
16063 // of the memory type (like the intrisics). We need to change the
16064 // memory type to match the explicit alignment. That way, we don't
16065 // generate non-standard-aligned ARMISD::VLDx nodes.
16066 if (isa<LSBaseSDNode>(N)) {
16067 if (Alignment.value() < VecTy.getScalarSizeInBits() / 8) {
16068 MVT EltTy = MVT::getIntegerVT(Alignment.value() * 8);
16069 assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
16070 assert(!isLaneOp && "Unexpected generic load/store lane.");
16071 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
16072 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
16074 // Don't set an explicit alignment on regular load/stores that we want
16075 // to transform to VLD/VST 1_UPD nodes.
16076 // This matches the behavior of regular load/stores, which only get an
16077 // explicit alignment if the MMO alignment is larger than the standard
16078 // alignment of the memory type.
16079 // Intrinsics, however, always get an explicit alignment, set to the
16080 // alignment of the MMO.
16081 Alignment = Align(1);
16084 // Create the new updating load/store node.
16085 // First, create an SDVTList for the new updating node's results.
16086 EVT Tys[6];
16087 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16088 unsigned n;
16089 for (n = 0; n < NumResultVecs; ++n)
16090 Tys[n] = AlignedVecTy;
16091 Tys[n++] = MVT::i32;
16092 Tys[n] = MVT::Other;
16093 SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
16095 // Then, gather the new node's operands.
16096 SmallVector<SDValue, 8> Ops;
16097 Ops.push_back(N->getOperand(0)); // incoming chain
16098 Ops.push_back(N->getOperand(Target.AddrOpIdx));
16099 Ops.push_back(User.Inc);
16101 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
16102 // Try to match the intrinsic's signature
16103 Ops.push_back(StN->getValue());
16104 } else {
16105 // Loads (and of course intrinsics) match the intrinsics' signature,
16106 // so just add all but the alignment operand.
16107 unsigned LastOperand =
16108 hasAlignment ? N->getNumOperands() - 1 : N->getNumOperands();
16109 for (unsigned i = Target.AddrOpIdx + 1; i < LastOperand; ++i)
16110 Ops.push_back(N->getOperand(i));
16113 // For all node types, the alignment operand is always the last one.
16114 Ops.push_back(DAG.getConstant(Alignment.value(), dl, MVT::i32));
16116 // If this is a non-standard-aligned STORE, the penultimate operand is the
16117 // stored value. Bitcast it to the aligned type.
16118 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
16119 SDValue &StVal = Ops[Ops.size() - 2];
16120 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
16123 EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
16124 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
16125 MemN->getMemOperand());
16127 // Update the uses.
16128 SmallVector<SDValue, 5> NewResults;
16129 for (unsigned i = 0; i < NumResultVecs; ++i)
16130 NewResults.push_back(SDValue(UpdN.getNode(), i));
16132 // If this is an non-standard-aligned LOAD, the first result is the loaded
16133 // value. Bitcast it to the expected result type.
16134 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
16135 SDValue &LdVal = NewResults[0];
16136 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
16139 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16140 DCI.CombineTo(N, NewResults);
16141 DCI.CombineTo(User.N, SDValue(UpdN.getNode(), NumResultVecs));
16143 return true;
16146 // If (opcode ptr inc) is and ADD-like instruction, return the
16147 // increment value. Otherwise return 0.
16148 static unsigned getPointerConstIncrement(unsigned Opcode, SDValue Ptr,
16149 SDValue Inc, const SelectionDAG &DAG) {
16150 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16151 if (!CInc)
16152 return 0;
16154 switch (Opcode) {
16155 case ARMISD::VLD1_UPD:
16156 case ISD::ADD:
16157 return CInc->getZExtValue();
16158 case ISD::OR: {
16159 if (DAG.haveNoCommonBitsSet(Ptr, Inc)) {
16160 // (OR ptr inc) is the same as (ADD ptr inc)
16161 return CInc->getZExtValue();
16163 return 0;
16165 default:
16166 return 0;
16170 static bool findPointerConstIncrement(SDNode *N, SDValue *Ptr, SDValue *CInc) {
16171 switch (N->getOpcode()) {
16172 case ISD::ADD:
16173 case ISD::OR: {
16174 if (isa<ConstantSDNode>(N->getOperand(1))) {
16175 *Ptr = N->getOperand(0);
16176 *CInc = N->getOperand(1);
16177 return true;
16179 return false;
16181 case ARMISD::VLD1_UPD: {
16182 if (isa<ConstantSDNode>(N->getOperand(2))) {
16183 *Ptr = N->getOperand(1);
16184 *CInc = N->getOperand(2);
16185 return true;
16187 return false;
16189 default:
16190 return false;
16194 static bool isValidBaseUpdate(SDNode *N, SDNode *User) {
16195 // Check that the add is independent of the load/store.
16196 // Otherwise, folding it would create a cycle. Search through Addr
16197 // as well, since the User may not be a direct user of Addr and
16198 // only share a base pointer.
16199 SmallPtrSet<const SDNode *, 32> Visited;
16200 SmallVector<const SDNode *, 16> Worklist;
16201 Worklist.push_back(N);
16202 Worklist.push_back(User);
16203 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16204 SDNode::hasPredecessorHelper(User, Visited, Worklist))
16205 return false;
16206 return true;
16209 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
16210 /// NEON load/store intrinsics, and generic vector load/stores, to merge
16211 /// base address updates.
16212 /// For generic load/stores, the memory type is assumed to be a vector.
16213 /// The caller is assumed to have checked legality.
16214 static SDValue CombineBaseUpdate(SDNode *N,
16215 TargetLowering::DAGCombinerInfo &DCI) {
16216 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
16217 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
16218 const bool isStore = N->getOpcode() == ISD::STORE;
16219 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
16220 BaseUpdateTarget Target = {N, isIntrinsic, isStore, AddrOpIdx};
16222 SDValue Addr = N->getOperand(AddrOpIdx);
16224 SmallVector<BaseUpdateUser, 8> BaseUpdates;
16226 // Search for a use of the address operand that is an increment.
16227 for (SDUse &Use : Addr->uses()) {
16228 SDNode *User = Use.getUser();
16229 if (Use.getResNo() != Addr.getResNo() || User->getNumOperands() != 2)
16230 continue;
16232 SDValue Inc = User->getOperand(Use.getOperandNo() == 1 ? 0 : 1);
16233 unsigned ConstInc =
16234 getPointerConstIncrement(User->getOpcode(), Addr, Inc, DCI.DAG);
16236 if (ConstInc || User->getOpcode() == ISD::ADD)
16237 BaseUpdates.push_back({User, Inc, ConstInc});
16240 // If the address is a constant pointer increment itself, find
16241 // another constant increment that has the same base operand
16242 SDValue Base;
16243 SDValue CInc;
16244 if (findPointerConstIncrement(Addr.getNode(), &Base, &CInc)) {
16245 unsigned Offset =
16246 getPointerConstIncrement(Addr->getOpcode(), Base, CInc, DCI.DAG);
16247 for (SDUse &Use : Base->uses()) {
16249 SDNode *User = Use.getUser();
16250 if (Use.getResNo() != Base.getResNo() || User == Addr.getNode() ||
16251 User->getNumOperands() != 2)
16252 continue;
16254 SDValue UserInc = User->getOperand(Use.getOperandNo() == 0 ? 1 : 0);
16255 unsigned UserOffset =
16256 getPointerConstIncrement(User->getOpcode(), Base, UserInc, DCI.DAG);
16258 if (!UserOffset || UserOffset <= Offset)
16259 continue;
16261 unsigned NewConstInc = UserOffset - Offset;
16262 SDValue NewInc = DCI.DAG.getConstant(NewConstInc, SDLoc(N), MVT::i32);
16263 BaseUpdates.push_back({User, NewInc, NewConstInc});
16267 // Try to fold the load/store with an update that matches memory
16268 // access size. This should work well for sequential loads.
16270 // Filter out invalid updates as well.
16271 unsigned NumValidUpd = BaseUpdates.size();
16272 for (unsigned I = 0; I < NumValidUpd;) {
16273 BaseUpdateUser &User = BaseUpdates[I];
16274 if (!isValidBaseUpdate(N, User.N)) {
16275 --NumValidUpd;
16276 std::swap(BaseUpdates[I], BaseUpdates[NumValidUpd]);
16277 continue;
16280 if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/true, DCI))
16281 return SDValue();
16282 ++I;
16284 BaseUpdates.resize(NumValidUpd);
16286 // Try to fold with other users. Non-constant updates are considered
16287 // first, and constant updates are sorted to not break a sequence of
16288 // strided accesses (if there is any).
16289 std::stable_sort(BaseUpdates.begin(), BaseUpdates.end(),
16290 [](const BaseUpdateUser &LHS, const BaseUpdateUser &RHS) {
16291 return LHS.ConstInc < RHS.ConstInc;
16293 for (BaseUpdateUser &User : BaseUpdates) {
16294 if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/false, DCI))
16295 return SDValue();
16297 return SDValue();
16300 static SDValue PerformVLDCombine(SDNode *N,
16301 TargetLowering::DAGCombinerInfo &DCI) {
16302 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16303 return SDValue();
16305 return CombineBaseUpdate(N, DCI);
16308 static SDValue PerformMVEVLDCombine(SDNode *N,
16309 TargetLowering::DAGCombinerInfo &DCI) {
16310 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
16311 return SDValue();
16313 SelectionDAG &DAG = DCI.DAG;
16314 SDValue Addr = N->getOperand(2);
16315 MemSDNode *MemN = cast<MemSDNode>(N);
16316 SDLoc dl(N);
16318 // For the stores, where there are multiple intrinsics we only actually want
16319 // to post-inc the last of the them.
16320 unsigned IntNo = N->getConstantOperandVal(1);
16321 if (IntNo == Intrinsic::arm_mve_vst2q && N->getConstantOperandVal(5) != 1)
16322 return SDValue();
16323 if (IntNo == Intrinsic::arm_mve_vst4q && N->getConstantOperandVal(7) != 3)
16324 return SDValue();
16326 // Search for a use of the address operand that is an increment.
16327 for (SDUse &Use : Addr->uses()) {
16328 SDNode *User = Use.getUser();
16329 if (User->getOpcode() != ISD::ADD || Use.getResNo() != Addr.getResNo())
16330 continue;
16332 // Check that the add is independent of the load/store. Otherwise, folding
16333 // it would create a cycle. We can avoid searching through Addr as it's a
16334 // predecessor to both.
16335 SmallPtrSet<const SDNode *, 32> Visited;
16336 SmallVector<const SDNode *, 16> Worklist;
16337 Visited.insert(Addr.getNode());
16338 Worklist.push_back(N);
16339 Worklist.push_back(User);
16340 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16341 SDNode::hasPredecessorHelper(User, Visited, Worklist))
16342 continue;
16344 // Find the new opcode for the updating load/store.
16345 bool isLoadOp = true;
16346 unsigned NewOpc = 0;
16347 unsigned NumVecs = 0;
16348 switch (IntNo) {
16349 default:
16350 llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
16351 case Intrinsic::arm_mve_vld2q:
16352 NewOpc = ARMISD::VLD2_UPD;
16353 NumVecs = 2;
16354 break;
16355 case Intrinsic::arm_mve_vld4q:
16356 NewOpc = ARMISD::VLD4_UPD;
16357 NumVecs = 4;
16358 break;
16359 case Intrinsic::arm_mve_vst2q:
16360 NewOpc = ARMISD::VST2_UPD;
16361 NumVecs = 2;
16362 isLoadOp = false;
16363 break;
16364 case Intrinsic::arm_mve_vst4q:
16365 NewOpc = ARMISD::VST4_UPD;
16366 NumVecs = 4;
16367 isLoadOp = false;
16368 break;
16371 // Find the size of memory referenced by the load/store.
16372 EVT VecTy;
16373 if (isLoadOp) {
16374 VecTy = N->getValueType(0);
16375 } else {
16376 VecTy = N->getOperand(3).getValueType();
16379 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
16381 // If the increment is a constant, it must match the memory ref size.
16382 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
16383 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16384 if (!CInc || CInc->getZExtValue() != NumBytes)
16385 continue;
16387 // Create the new updating load/store node.
16388 // First, create an SDVTList for the new updating node's results.
16389 EVT Tys[6];
16390 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16391 unsigned n;
16392 for (n = 0; n < NumResultVecs; ++n)
16393 Tys[n] = VecTy;
16394 Tys[n++] = MVT::i32;
16395 Tys[n] = MVT::Other;
16396 SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumResultVecs + 2));
16398 // Then, gather the new node's operands.
16399 SmallVector<SDValue, 8> Ops;
16400 Ops.push_back(N->getOperand(0)); // incoming chain
16401 Ops.push_back(N->getOperand(2)); // ptr
16402 Ops.push_back(Inc);
16404 for (unsigned i = 3; i < N->getNumOperands(); ++i)
16405 Ops.push_back(N->getOperand(i));
16407 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
16408 MemN->getMemOperand());
16410 // Update the uses.
16411 SmallVector<SDValue, 5> NewResults;
16412 for (unsigned i = 0; i < NumResultVecs; ++i)
16413 NewResults.push_back(SDValue(UpdN.getNode(), i));
16415 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16416 DCI.CombineTo(N, NewResults);
16417 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
16419 break;
16422 return SDValue();
16425 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
16426 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
16427 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
16428 /// return true.
16429 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
16430 SelectionDAG &DAG = DCI.DAG;
16431 EVT VT = N->getValueType(0);
16432 // vldN-dup instructions only support 64-bit vectors for N > 1.
16433 if (!VT.is64BitVector())
16434 return false;
16436 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
16437 SDNode *VLD = N->getOperand(0).getNode();
16438 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
16439 return false;
16440 unsigned NumVecs = 0;
16441 unsigned NewOpc = 0;
16442 unsigned IntNo = VLD->getConstantOperandVal(1);
16443 if (IntNo == Intrinsic::arm_neon_vld2lane) {
16444 NumVecs = 2;
16445 NewOpc = ARMISD::VLD2DUP;
16446 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
16447 NumVecs = 3;
16448 NewOpc = ARMISD::VLD3DUP;
16449 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
16450 NumVecs = 4;
16451 NewOpc = ARMISD::VLD4DUP;
16452 } else {
16453 return false;
16456 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
16457 // numbers match the load.
16458 unsigned VLDLaneNo = VLD->getConstantOperandVal(NumVecs + 3);
16459 for (SDUse &Use : VLD->uses()) {
16460 // Ignore uses of the chain result.
16461 if (Use.getResNo() == NumVecs)
16462 continue;
16463 SDNode *User = Use.getUser();
16464 if (User->getOpcode() != ARMISD::VDUPLANE ||
16465 VLDLaneNo != User->getConstantOperandVal(1))
16466 return false;
16469 // Create the vldN-dup node.
16470 EVT Tys[5];
16471 unsigned n;
16472 for (n = 0; n < NumVecs; ++n)
16473 Tys[n] = VT;
16474 Tys[n] = MVT::Other;
16475 SDVTList SDTys = DAG.getVTList(ArrayRef(Tys, NumVecs + 1));
16476 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
16477 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
16478 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
16479 Ops, VLDMemInt->getMemoryVT(),
16480 VLDMemInt->getMemOperand());
16482 // Update the uses.
16483 for (SDUse &Use : VLD->uses()) {
16484 unsigned ResNo = Use.getResNo();
16485 // Ignore uses of the chain result.
16486 if (ResNo == NumVecs)
16487 continue;
16488 DCI.CombineTo(Use.getUser(), SDValue(VLDDup.getNode(), ResNo));
16491 // Now the vldN-lane intrinsic is dead except for its chain result.
16492 // Update uses of the chain.
16493 std::vector<SDValue> VLDDupResults;
16494 for (unsigned n = 0; n < NumVecs; ++n)
16495 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
16496 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
16497 DCI.CombineTo(VLD, VLDDupResults);
16499 return true;
16502 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
16503 /// ARMISD::VDUPLANE.
16504 static SDValue PerformVDUPLANECombine(SDNode *N,
16505 TargetLowering::DAGCombinerInfo &DCI,
16506 const ARMSubtarget *Subtarget) {
16507 SDValue Op = N->getOperand(0);
16508 EVT VT = N->getValueType(0);
16510 // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
16511 if (Subtarget->hasMVEIntegerOps()) {
16512 EVT ExtractVT = VT.getVectorElementType();
16513 // We need to ensure we are creating a legal type.
16514 if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
16515 ExtractVT = MVT::i32;
16516 SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
16517 N->getOperand(0), N->getOperand(1));
16518 return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
16521 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
16522 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
16523 if (CombineVLDDUP(N, DCI))
16524 return SDValue(N, 0);
16526 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
16527 // redundant. Ignore bit_converts for now; element sizes are checked below.
16528 while (Op.getOpcode() == ISD::BITCAST)
16529 Op = Op.getOperand(0);
16530 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
16531 return SDValue();
16533 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
16534 unsigned EltSize = Op.getScalarValueSizeInBits();
16535 // The canonical VMOV for a zero vector uses a 32-bit element size.
16536 unsigned Imm = Op.getConstantOperandVal(0);
16537 unsigned EltBits;
16538 if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
16539 EltSize = 8;
16540 if (EltSize > VT.getScalarSizeInBits())
16541 return SDValue();
16543 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
16546 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
16547 static SDValue PerformVDUPCombine(SDNode *N, SelectionDAG &DAG,
16548 const ARMSubtarget *Subtarget) {
16549 SDValue Op = N->getOperand(0);
16550 SDLoc dl(N);
16552 if (Subtarget->hasMVEIntegerOps()) {
16553 // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
16554 // need to come from a GPR.
16555 if (Op.getValueType() == MVT::f32)
16556 return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16557 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
16558 else if (Op.getValueType() == MVT::f16)
16559 return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16560 DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
16563 if (!Subtarget->hasNEON())
16564 return SDValue();
16566 // Match VDUP(LOAD) -> VLD1DUP.
16567 // We match this pattern here rather than waiting for isel because the
16568 // transform is only legal for unindexed loads.
16569 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
16570 if (LD && Op.hasOneUse() && LD->isUnindexed() &&
16571 LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
16572 SDValue Ops[] = {LD->getOperand(0), LD->getOperand(1),
16573 DAG.getConstant(LD->getAlign().value(), SDLoc(N), MVT::i32)};
16574 SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
16575 SDValue VLDDup =
16576 DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, Ops,
16577 LD->getMemoryVT(), LD->getMemOperand());
16578 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
16579 return VLDDup;
16582 return SDValue();
16585 static SDValue PerformLOADCombine(SDNode *N,
16586 TargetLowering::DAGCombinerInfo &DCI,
16587 const ARMSubtarget *Subtarget) {
16588 EVT VT = N->getValueType(0);
16590 // If this is a legal vector load, try to combine it into a VLD1_UPD.
16591 if (Subtarget->hasNEON() && ISD::isNormalLoad(N) && VT.isVector() &&
16592 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16593 return CombineBaseUpdate(N, DCI);
16595 return SDValue();
16598 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
16599 // pack all of the elements in one place. Next, store to memory in fewer
16600 // chunks.
16601 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
16602 SelectionDAG &DAG) {
16603 SDValue StVal = St->getValue();
16604 EVT VT = StVal.getValueType();
16605 if (!St->isTruncatingStore() || !VT.isVector())
16606 return SDValue();
16607 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16608 EVT StVT = St->getMemoryVT();
16609 unsigned NumElems = VT.getVectorNumElements();
16610 assert(StVT != VT && "Cannot truncate to the same type");
16611 unsigned FromEltSz = VT.getScalarSizeInBits();
16612 unsigned ToEltSz = StVT.getScalarSizeInBits();
16614 // From, To sizes and ElemCount must be pow of two
16615 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
16616 return SDValue();
16618 // We are going to use the original vector elt for storing.
16619 // Accumulated smaller vector elements must be a multiple of the store size.
16620 if (0 != (NumElems * FromEltSz) % ToEltSz)
16621 return SDValue();
16623 unsigned SizeRatio = FromEltSz / ToEltSz;
16624 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
16626 // Create a type on which we perform the shuffle.
16627 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
16628 NumElems * SizeRatio);
16629 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16631 SDLoc DL(St);
16632 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
16633 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16634 for (unsigned i = 0; i < NumElems; ++i)
16635 ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
16636 : i * SizeRatio;
16638 // Can't shuffle using an illegal type.
16639 if (!TLI.isTypeLegal(WideVecVT))
16640 return SDValue();
16642 SDValue Shuff = DAG.getVectorShuffle(
16643 WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
16644 // At this point all of the data is stored at the bottom of the
16645 // register. We now need to save it to mem.
16647 // Find the largest store unit
16648 MVT StoreType = MVT::i8;
16649 for (MVT Tp : MVT::integer_valuetypes()) {
16650 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
16651 StoreType = Tp;
16653 // Didn't find a legal store type.
16654 if (!TLI.isTypeLegal(StoreType))
16655 return SDValue();
16657 // Bitcast the original vector into a vector of store-size units
16658 EVT StoreVecVT =
16659 EVT::getVectorVT(*DAG.getContext(), StoreType,
16660 VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
16661 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16662 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
16663 SmallVector<SDValue, 8> Chains;
16664 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
16665 TLI.getPointerTy(DAG.getDataLayout()));
16666 SDValue BasePtr = St->getBasePtr();
16668 // Perform one or more big stores into memory.
16669 unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
16670 for (unsigned I = 0; I < E; I++) {
16671 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
16672 ShuffWide, DAG.getIntPtrConstant(I, DL));
16673 SDValue Ch =
16674 DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
16675 St->getAlign(), St->getMemOperand()->getFlags());
16676 BasePtr =
16677 DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
16678 Chains.push_back(Ch);
16680 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
16683 // Try taking a single vector store from an fpround (which would otherwise turn
16684 // into an expensive buildvector) and splitting it into a series of narrowing
16685 // stores.
16686 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
16687 SelectionDAG &DAG) {
16688 if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16689 return SDValue();
16690 SDValue Trunc = St->getValue();
16691 if (Trunc->getOpcode() != ISD::FP_ROUND)
16692 return SDValue();
16693 EVT FromVT = Trunc->getOperand(0).getValueType();
16694 EVT ToVT = Trunc.getValueType();
16695 if (!ToVT.isVector())
16696 return SDValue();
16697 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
16698 EVT ToEltVT = ToVT.getVectorElementType();
16699 EVT FromEltVT = FromVT.getVectorElementType();
16701 if (FromEltVT != MVT::f32 || ToEltVT != MVT::f16)
16702 return SDValue();
16704 unsigned NumElements = 4;
16705 if (FromVT.getVectorNumElements() % NumElements != 0)
16706 return SDValue();
16708 // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
16709 // use the VMOVN over splitting the store. We are looking for patterns of:
16710 // !rev: 0 N 1 N+1 2 N+2 ...
16711 // rev: N 0 N+1 1 N+2 2 ...
16712 // The shuffle may either be a single source (in which case N = NumElts/2) or
16713 // two inputs extended with concat to the same size (in which case N =
16714 // NumElts).
16715 auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) {
16716 ArrayRef<int> M = SVN->getMask();
16717 unsigned NumElts = ToVT.getVectorNumElements();
16718 if (SVN->getOperand(1).isUndef())
16719 NumElts /= 2;
16721 unsigned Off0 = Rev ? NumElts : 0;
16722 unsigned Off1 = Rev ? 0 : NumElts;
16724 for (unsigned I = 0; I < NumElts; I += 2) {
16725 if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2))
16726 return false;
16727 if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2))
16728 return false;
16731 return true;
16734 if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0)))
16735 if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true))
16736 return SDValue();
16738 LLVMContext &C = *DAG.getContext();
16739 SDLoc DL(St);
16740 // Details about the old store
16741 SDValue Ch = St->getChain();
16742 SDValue BasePtr = St->getBasePtr();
16743 Align Alignment = St->getOriginalAlign();
16744 MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16745 AAMDNodes AAInfo = St->getAAInfo();
16747 // We split the store into slices of NumElements. fp16 trunc stores are vcvt
16748 // and then stored as truncating integer stores.
16749 EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
16750 EVT NewToVT = EVT::getVectorVT(
16751 C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
16753 SmallVector<SDValue, 4> Stores;
16754 for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
16755 unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
16756 SDValue NewPtr =
16757 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
16759 SDValue Extract =
16760 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
16761 DAG.getConstant(i * NumElements, DL, MVT::i32));
16763 SDValue FPTrunc =
16764 DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
16765 Extract, DAG.getConstant(0, DL, MVT::i32));
16766 Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
16768 SDValue Store = DAG.getTruncStore(
16769 Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16770 NewToVT, Alignment, MMOFlags, AAInfo);
16771 Stores.push_back(Store);
16773 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16776 // Try taking a single vector store from an MVETRUNC (which would otherwise turn
16777 // into an expensive buildvector) and splitting it into a series of narrowing
16778 // stores.
16779 static SDValue PerformSplittingMVETruncToNarrowingStores(StoreSDNode *St,
16780 SelectionDAG &DAG) {
16781 if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16782 return SDValue();
16783 SDValue Trunc = St->getValue();
16784 if (Trunc->getOpcode() != ARMISD::MVETRUNC)
16785 return SDValue();
16786 EVT FromVT = Trunc->getOperand(0).getValueType();
16787 EVT ToVT = Trunc.getValueType();
16789 LLVMContext &C = *DAG.getContext();
16790 SDLoc DL(St);
16791 // Details about the old store
16792 SDValue Ch = St->getChain();
16793 SDValue BasePtr = St->getBasePtr();
16794 Align Alignment = St->getOriginalAlign();
16795 MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16796 AAMDNodes AAInfo = St->getAAInfo();
16798 EVT NewToVT = EVT::getVectorVT(C, ToVT.getVectorElementType(),
16799 FromVT.getVectorNumElements());
16801 SmallVector<SDValue, 4> Stores;
16802 for (unsigned i = 0; i < Trunc.getNumOperands(); i++) {
16803 unsigned NewOffset =
16804 i * FromVT.getVectorNumElements() * ToVT.getScalarSizeInBits() / 8;
16805 SDValue NewPtr =
16806 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
16808 SDValue Extract = Trunc.getOperand(i);
16809 SDValue Store = DAG.getTruncStore(
16810 Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16811 NewToVT, Alignment, MMOFlags, AAInfo);
16812 Stores.push_back(Store);
16814 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16817 // Given a floating point store from an extracted vector, with an integer
16818 // VGETLANE that already exists, store the existing VGETLANEu directly. This can
16819 // help reduce fp register pressure, doesn't require the fp extract and allows
16820 // use of more integer post-inc stores not available with vstr.
16821 static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG) {
16822 if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16823 return SDValue();
16824 SDValue Extract = St->getValue();
16825 EVT VT = Extract.getValueType();
16826 // For now only uses f16. This may be useful for f32 too, but that will
16827 // be bitcast(extract), not the VGETLANEu we currently check here.
16828 if (VT != MVT::f16 || Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16829 return SDValue();
16831 SDNode *GetLane =
16832 DAG.getNodeIfExists(ARMISD::VGETLANEu, DAG.getVTList(MVT::i32),
16833 {Extract.getOperand(0), Extract.getOperand(1)});
16834 if (!GetLane)
16835 return SDValue();
16837 LLVMContext &C = *DAG.getContext();
16838 SDLoc DL(St);
16839 // Create a new integer store to replace the existing floating point version.
16840 SDValue Ch = St->getChain();
16841 SDValue BasePtr = St->getBasePtr();
16842 Align Alignment = St->getOriginalAlign();
16843 MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16844 AAMDNodes AAInfo = St->getAAInfo();
16845 EVT NewToVT = EVT::getIntegerVT(C, VT.getSizeInBits());
16846 SDValue Store = DAG.getTruncStore(Ch, DL, SDValue(GetLane, 0), BasePtr,
16847 St->getPointerInfo(), NewToVT, Alignment,
16848 MMOFlags, AAInfo);
16850 return Store;
16853 /// PerformSTORECombine - Target-specific dag combine xforms for
16854 /// ISD::STORE.
16855 static SDValue PerformSTORECombine(SDNode *N,
16856 TargetLowering::DAGCombinerInfo &DCI,
16857 const ARMSubtarget *Subtarget) {
16858 StoreSDNode *St = cast<StoreSDNode>(N);
16859 if (St->isVolatile())
16860 return SDValue();
16861 SDValue StVal = St->getValue();
16862 EVT VT = StVal.getValueType();
16864 if (Subtarget->hasNEON())
16865 if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
16866 return Store;
16868 if (Subtarget->hasMVEFloatOps())
16869 if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
16870 return NewToken;
16872 if (Subtarget->hasMVEIntegerOps()) {
16873 if (SDValue NewChain = PerformExtractFpToIntStores(St, DCI.DAG))
16874 return NewChain;
16875 if (SDValue NewToken =
16876 PerformSplittingMVETruncToNarrowingStores(St, DCI.DAG))
16877 return NewToken;
16880 if (!ISD::isNormalStore(St))
16881 return SDValue();
16883 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
16884 // ARM stores of arguments in the same cache line.
16885 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
16886 StVal.getNode()->hasOneUse()) {
16887 SelectionDAG &DAG = DCI.DAG;
16888 bool isBigEndian = DAG.getDataLayout().isBigEndian();
16889 SDLoc DL(St);
16890 SDValue BasePtr = St->getBasePtr();
16891 SDValue NewST1 = DAG.getStore(
16892 St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
16893 BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
16894 St->getMemOperand()->getFlags());
16896 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
16897 DAG.getConstant(4, DL, MVT::i32));
16898 return DAG.getStore(NewST1.getValue(0), DL,
16899 StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
16900 OffsetPtr, St->getPointerInfo().getWithOffset(4),
16901 St->getOriginalAlign(),
16902 St->getMemOperand()->getFlags());
16905 if (StVal.getValueType() == MVT::i64 &&
16906 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16908 // Bitcast an i64 store extracted from a vector to f64.
16909 // Otherwise, the i64 value will be legalized to a pair of i32 values.
16910 SelectionDAG &DAG = DCI.DAG;
16911 SDLoc dl(StVal);
16912 SDValue IntVec = StVal.getOperand(0);
16913 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
16914 IntVec.getValueType().getVectorNumElements());
16915 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
16916 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
16917 Vec, StVal.getOperand(1));
16918 dl = SDLoc(N);
16919 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
16920 // Make the DAGCombiner fold the bitcasts.
16921 DCI.AddToWorklist(Vec.getNode());
16922 DCI.AddToWorklist(ExtElt.getNode());
16923 DCI.AddToWorklist(V.getNode());
16924 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
16925 St->getPointerInfo(), St->getAlign(),
16926 St->getMemOperand()->getFlags(), St->getAAInfo());
16929 // If this is a legal vector store, try to combine it into a VST1_UPD.
16930 if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
16931 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16932 return CombineBaseUpdate(N, DCI);
16934 return SDValue();
16937 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
16938 /// can replace combinations of VMUL and VCVT (floating-point to integer)
16939 /// when the VMUL has a constant operand that is a power of 2.
16941 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16942 /// vmul.f32 d16, d17, d16
16943 /// vcvt.s32.f32 d16, d16
16944 /// becomes:
16945 /// vcvt.s32.f32 d16, d16, #3
16946 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
16947 const ARMSubtarget *Subtarget) {
16948 if (!Subtarget->hasNEON())
16949 return SDValue();
16951 SDValue Op = N->getOperand(0);
16952 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
16953 Op.getOpcode() != ISD::FMUL)
16954 return SDValue();
16956 SDValue ConstVec = Op->getOperand(1);
16957 if (!isa<BuildVectorSDNode>(ConstVec))
16958 return SDValue();
16960 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
16961 uint32_t FloatBits = FloatTy.getSizeInBits();
16962 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
16963 uint32_t IntBits = IntTy.getSizeInBits();
16964 unsigned NumLanes = Op.getValueType().getVectorNumElements();
16965 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16966 // These instructions only exist converting from f32 to i32. We can handle
16967 // smaller integers by generating an extra truncate, but larger ones would
16968 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
16969 // these intructions only support v2i32/v4i32 types.
16970 return SDValue();
16973 BitVector UndefElements;
16974 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
16975 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
16976 if (C == -1 || C == 0 || C > 32)
16977 return SDValue();
16979 SDLoc dl(N);
16980 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
16981 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
16982 Intrinsic::arm_neon_vcvtfp2fxu;
16983 SDValue FixConv = DAG.getNode(
16984 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
16985 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
16986 DAG.getConstant(C, dl, MVT::i32));
16988 if (IntBits < FloatBits)
16989 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
16991 return FixConv;
16994 static SDValue PerformFAddVSelectCombine(SDNode *N, SelectionDAG &DAG,
16995 const ARMSubtarget *Subtarget) {
16996 if (!Subtarget->hasMVEFloatOps())
16997 return SDValue();
16999 // Turn (fadd x, (vselect c, y, -0.0)) into (vselect c, (fadd x, y), x)
17000 // The second form can be more easily turned into a predicated vadd, and
17001 // possibly combined into a fma to become a predicated vfma.
17002 SDValue Op0 = N->getOperand(0);
17003 SDValue Op1 = N->getOperand(1);
17004 EVT VT = N->getValueType(0);
17005 SDLoc DL(N);
17007 // The identity element for a fadd is -0.0 or +0.0 when the nsz flag is set,
17008 // which these VMOV's represent.
17009 auto isIdentitySplat = [&](SDValue Op, bool NSZ) {
17010 if (Op.getOpcode() != ISD::BITCAST ||
17011 Op.getOperand(0).getOpcode() != ARMISD::VMOVIMM)
17012 return false;
17013 uint64_t ImmVal = Op.getOperand(0).getConstantOperandVal(0);
17014 if (VT == MVT::v4f32 && (ImmVal == 1664 || (ImmVal == 0 && NSZ)))
17015 return true;
17016 if (VT == MVT::v8f16 && (ImmVal == 2688 || (ImmVal == 0 && NSZ)))
17017 return true;
17018 return false;
17021 if (Op0.getOpcode() == ISD::VSELECT && Op1.getOpcode() != ISD::VSELECT)
17022 std::swap(Op0, Op1);
17024 if (Op1.getOpcode() != ISD::VSELECT)
17025 return SDValue();
17027 SDNodeFlags FaddFlags = N->getFlags();
17028 bool NSZ = FaddFlags.hasNoSignedZeros();
17029 if (!isIdentitySplat(Op1.getOperand(2), NSZ))
17030 return SDValue();
17032 SDValue FAdd =
17033 DAG.getNode(ISD::FADD, DL, VT, Op0, Op1.getOperand(1), FaddFlags);
17034 return DAG.getNode(ISD::VSELECT, DL, VT, Op1.getOperand(0), FAdd, Op0, FaddFlags);
17037 static SDValue PerformFADDVCMLACombine(SDNode *N, SelectionDAG &DAG) {
17038 SDValue LHS = N->getOperand(0);
17039 SDValue RHS = N->getOperand(1);
17040 EVT VT = N->getValueType(0);
17041 SDLoc DL(N);
17043 if (!N->getFlags().hasAllowReassociation())
17044 return SDValue();
17046 // Combine fadd(a, vcmla(b, c, d)) -> vcmla(fadd(a, b), b, c)
17047 auto ReassocComplex = [&](SDValue A, SDValue B) {
17048 if (A.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
17049 return SDValue();
17050 unsigned Opc = A.getConstantOperandVal(0);
17051 if (Opc != Intrinsic::arm_mve_vcmlaq)
17052 return SDValue();
17053 SDValue VCMLA = DAG.getNode(
17054 ISD::INTRINSIC_WO_CHAIN, DL, VT, A.getOperand(0), A.getOperand(1),
17055 DAG.getNode(ISD::FADD, DL, VT, A.getOperand(2), B, N->getFlags()),
17056 A.getOperand(3), A.getOperand(4));
17057 VCMLA->setFlags(A->getFlags());
17058 return VCMLA;
17060 if (SDValue R = ReassocComplex(LHS, RHS))
17061 return R;
17062 if (SDValue R = ReassocComplex(RHS, LHS))
17063 return R;
17065 return SDValue();
17068 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
17069 const ARMSubtarget *Subtarget) {
17070 if (SDValue S = PerformFAddVSelectCombine(N, DAG, Subtarget))
17071 return S;
17072 if (SDValue S = PerformFADDVCMLACombine(N, DAG))
17073 return S;
17074 return SDValue();
17077 /// PerformVMulVCTPCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
17078 /// can replace combinations of VCVT (integer to floating-point) and VMUL
17079 /// when the VMUL has a constant operand that is a power of 2.
17081 /// Example (assume d17 = <float 0.125, float 0.125>):
17082 /// vcvt.f32.s32 d16, d16
17083 /// vmul.f32 d16, d16, d17
17084 /// becomes:
17085 /// vcvt.f32.s32 d16, d16, #3
17086 static SDValue PerformVMulVCTPCombine(SDNode *N, SelectionDAG &DAG,
17087 const ARMSubtarget *Subtarget) {
17088 if (!Subtarget->hasNEON())
17089 return SDValue();
17091 SDValue Op = N->getOperand(0);
17092 unsigned OpOpcode = Op.getNode()->getOpcode();
17093 if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
17094 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
17095 return SDValue();
17097 SDValue ConstVec = N->getOperand(1);
17098 if (!isa<BuildVectorSDNode>(ConstVec))
17099 return SDValue();
17101 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
17102 uint32_t FloatBits = FloatTy.getSizeInBits();
17103 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
17104 uint32_t IntBits = IntTy.getSizeInBits();
17105 unsigned NumLanes = Op.getValueType().getVectorNumElements();
17106 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
17107 // These instructions only exist converting from i32 to f32. We can handle
17108 // smaller integers by generating an extra extend, but larger ones would
17109 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
17110 // these intructions only support v2i32/v4i32 types.
17111 return SDValue();
17114 ConstantFPSDNode *CN = isConstOrConstSplatFP(ConstVec, true);
17115 APFloat Recip(0.0f);
17116 if (!CN || !CN->getValueAPF().getExactInverse(&Recip))
17117 return SDValue();
17119 bool IsExact;
17120 APSInt IntVal(33);
17121 if (Recip.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact) !=
17122 APFloat::opOK ||
17123 !IsExact)
17124 return SDValue();
17126 int32_t C = IntVal.exactLogBase2();
17127 if (C == -1 || C == 0 || C > 32)
17128 return SDValue();
17130 SDLoc DL(N);
17131 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
17132 SDValue ConvInput = Op.getOperand(0);
17133 if (IntBits < FloatBits)
17134 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL,
17135 NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, ConvInput);
17137 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp
17138 : Intrinsic::arm_neon_vcvtfxu2fp;
17139 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(),
17140 DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput,
17141 DAG.getConstant(C, DL, MVT::i32));
17144 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
17145 const ARMSubtarget *ST) {
17146 if (!ST->hasMVEIntegerOps())
17147 return SDValue();
17149 assert(N->getOpcode() == ISD::VECREDUCE_ADD);
17150 EVT ResVT = N->getValueType(0);
17151 SDValue N0 = N->getOperand(0);
17152 SDLoc dl(N);
17154 // Try to turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y)
17155 if (ResVT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
17156 (N0.getValueType() == MVT::v4i32 || N0.getValueType() == MVT::v8i16 ||
17157 N0.getValueType() == MVT::v16i8)) {
17158 SDValue Red0 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(0));
17159 SDValue Red1 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(1));
17160 return DAG.getNode(ISD::ADD, dl, ResVT, Red0, Red1);
17163 // We are looking for something that will have illegal types if left alone,
17164 // but that we can convert to a single instruction under MVE. For example
17165 // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
17166 // or
17167 // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
17169 // The legal cases are:
17170 // VADDV u/s 8/16/32
17171 // VMLAV u/s 8/16/32
17172 // VADDLV u/s 32
17173 // VMLALV u/s 16/32
17175 // If the input vector is smaller than legal (v4i8/v4i16 for example) we can
17176 // extend it and use v4i32 instead.
17177 auto ExtTypeMatches = [](SDValue A, ArrayRef<MVT> ExtTypes) {
17178 EVT AVT = A.getValueType();
17179 return any_of(ExtTypes, [&](MVT Ty) {
17180 return AVT.getVectorNumElements() == Ty.getVectorNumElements() &&
17181 AVT.bitsLE(Ty);
17184 auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) {
17185 EVT AVT = A.getValueType();
17186 if (!AVT.is128BitVector())
17187 A = DAG.getNode(ExtendCode, dl,
17188 AVT.changeVectorElementType(MVT::getIntegerVT(
17189 128 / AVT.getVectorMinNumElements())),
17191 return A;
17193 auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
17194 if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
17195 return SDValue();
17196 SDValue A = N0->getOperand(0);
17197 if (ExtTypeMatches(A, ExtTypes))
17198 return ExtendIfNeeded(A, ExtendCode);
17199 return SDValue();
17201 auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
17202 ArrayRef<MVT> ExtTypes, SDValue &Mask) {
17203 if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
17204 !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
17205 return SDValue();
17206 Mask = N0->getOperand(0);
17207 SDValue Ext = N0->getOperand(1);
17208 if (Ext->getOpcode() != ExtendCode)
17209 return SDValue();
17210 SDValue A = Ext->getOperand(0);
17211 if (ExtTypeMatches(A, ExtTypes))
17212 return ExtendIfNeeded(A, ExtendCode);
17213 return SDValue();
17215 auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
17216 SDValue &A, SDValue &B) {
17217 // For a vmla we are trying to match a larger pattern:
17218 // ExtA = sext/zext A
17219 // ExtB = sext/zext B
17220 // Mul = mul ExtA, ExtB
17221 // vecreduce.add Mul
17222 // There might also be en extra extend between the mul and the addreduce, so
17223 // long as the bitwidth is high enough to make them equivalent (for example
17224 // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
17225 if (ResVT != RetTy)
17226 return false;
17227 SDValue Mul = N0;
17228 if (Mul->getOpcode() == ExtendCode &&
17229 Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17230 ResVT.getScalarSizeInBits())
17231 Mul = Mul->getOperand(0);
17232 if (Mul->getOpcode() != ISD::MUL)
17233 return false;
17234 SDValue ExtA = Mul->getOperand(0);
17235 SDValue ExtB = Mul->getOperand(1);
17236 if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17237 return false;
17238 A = ExtA->getOperand(0);
17239 B = ExtB->getOperand(0);
17240 if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17241 A = ExtendIfNeeded(A, ExtendCode);
17242 B = ExtendIfNeeded(B, ExtendCode);
17243 return true;
17245 return false;
17247 auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
17248 SDValue &A, SDValue &B, SDValue &Mask) {
17249 // Same as the pattern above with a select for the zero predicated lanes
17250 // ExtA = sext/zext A
17251 // ExtB = sext/zext B
17252 // Mul = mul ExtA, ExtB
17253 // N0 = select Mask, Mul, 0
17254 // vecreduce.add N0
17255 if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
17256 !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
17257 return false;
17258 Mask = N0->getOperand(0);
17259 SDValue Mul = N0->getOperand(1);
17260 if (Mul->getOpcode() == ExtendCode &&
17261 Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
17262 ResVT.getScalarSizeInBits())
17263 Mul = Mul->getOperand(0);
17264 if (Mul->getOpcode() != ISD::MUL)
17265 return false;
17266 SDValue ExtA = Mul->getOperand(0);
17267 SDValue ExtB = Mul->getOperand(1);
17268 if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
17269 return false;
17270 A = ExtA->getOperand(0);
17271 B = ExtB->getOperand(0);
17272 if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
17273 A = ExtendIfNeeded(A, ExtendCode);
17274 B = ExtendIfNeeded(B, ExtendCode);
17275 return true;
17277 return false;
17279 auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
17280 // Split illegal MVT::v16i8->i64 vector reductions into two legal v8i16->i64
17281 // reductions. The operands are extended with MVEEXT, but as they are
17282 // reductions the lane orders do not matter. MVEEXT may be combined with
17283 // loads to produce two extending loads, or else they will be expanded to
17284 // VREV/VMOVL.
17285 EVT VT = Ops[0].getValueType();
17286 if (VT == MVT::v16i8) {
17287 assert((Opcode == ARMISD::VMLALVs || Opcode == ARMISD::VMLALVu) &&
17288 "Unexpected illegal long reduction opcode");
17289 bool IsUnsigned = Opcode == ARMISD::VMLALVu;
17291 SDValue Ext0 =
17292 DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17293 DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[0]);
17294 SDValue Ext1 =
17295 DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
17296 DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[1]);
17298 SDValue MLA0 = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
17299 Ext0, Ext1);
17300 SDValue MLA1 =
17301 DAG.getNode(IsUnsigned ? ARMISD::VMLALVAu : ARMISD::VMLALVAs, dl,
17302 DAG.getVTList(MVT::i32, MVT::i32), MLA0, MLA0.getValue(1),
17303 Ext0.getValue(1), Ext1.getValue(1));
17304 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, MLA1, MLA1.getValue(1));
17306 SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
17307 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
17308 SDValue(Node.getNode(), 1));
17311 SDValue A, B;
17312 SDValue Mask;
17313 if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17314 return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
17315 if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
17316 return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
17317 if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17318 A, B))
17319 return Create64bitNode(ARMISD::VMLALVs, {A, B});
17320 if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
17321 A, B))
17322 return Create64bitNode(ARMISD::VMLALVu, {A, B});
17323 if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
17324 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17325 DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
17326 if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
17327 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17328 DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
17330 if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17331 Mask))
17332 return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
17333 if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
17334 Mask))
17335 return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
17336 if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17337 Mask))
17338 return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
17339 if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
17340 Mask))
17341 return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
17342 if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
17343 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17344 DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
17345 if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
17346 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17347 DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
17349 if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
17350 return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
17351 if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
17352 return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
17353 if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}))
17354 return Create64bitNode(ARMISD::VADDLVs, {A});
17355 if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}))
17356 return Create64bitNode(ARMISD::VADDLVu, {A});
17357 if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
17358 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17359 DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
17360 if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
17361 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17362 DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
17364 if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17365 return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
17366 if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
17367 return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
17368 if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask))
17369 return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
17370 if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask))
17371 return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
17372 if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
17373 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17374 DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
17375 if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
17376 return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17377 DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
17379 // Some complications. We can get a case where the two inputs of the mul are
17380 // the same, then the output sext will have been helpfully converted to a
17381 // zext. Turn it back.
17382 SDValue Op = N0;
17383 if (Op->getOpcode() == ISD::VSELECT)
17384 Op = Op->getOperand(1);
17385 if (Op->getOpcode() == ISD::ZERO_EXTEND &&
17386 Op->getOperand(0)->getOpcode() == ISD::MUL) {
17387 SDValue Mul = Op->getOperand(0);
17388 if (Mul->getOperand(0) == Mul->getOperand(1) &&
17389 Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
17390 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
17391 if (Op != N0)
17392 Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
17393 N0->getOperand(0), Ext, N0->getOperand(2));
17394 return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
17398 return SDValue();
17401 // Looks for vaddv(shuffle) or vmlav(shuffle, shuffle), with a shuffle where all
17402 // the lanes are used. Due to the reduction being commutative the shuffle can be
17403 // removed.
17404 static SDValue PerformReduceShuffleCombine(SDNode *N, SelectionDAG &DAG) {
17405 unsigned VecOp = N->getOperand(0).getValueType().isVector() ? 0 : 2;
17406 auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp));
17407 if (!Shuf || !Shuf->getOperand(1).isUndef())
17408 return SDValue();
17410 // Check all elements are used once in the mask.
17411 ArrayRef<int> Mask = Shuf->getMask();
17412 APInt SetElts(Mask.size(), 0);
17413 for (int E : Mask) {
17414 if (E < 0 || E >= (int)Mask.size())
17415 return SDValue();
17416 SetElts.setBit(E);
17418 if (!SetElts.isAllOnes())
17419 return SDValue();
17421 if (N->getNumOperands() != VecOp + 1) {
17422 auto *Shuf2 = dyn_cast<ShuffleVectorSDNode>(N->getOperand(VecOp + 1));
17423 if (!Shuf2 || !Shuf2->getOperand(1).isUndef() || Shuf2->getMask() != Mask)
17424 return SDValue();
17427 SmallVector<SDValue> Ops;
17428 for (SDValue Op : N->ops()) {
17429 if (Op.getValueType().isVector())
17430 Ops.push_back(Op.getOperand(0));
17431 else
17432 Ops.push_back(Op);
17434 return DAG.getNode(N->getOpcode(), SDLoc(N), N->getVTList(), Ops);
17437 static SDValue PerformVMOVNCombine(SDNode *N,
17438 TargetLowering::DAGCombinerInfo &DCI) {
17439 SDValue Op0 = N->getOperand(0);
17440 SDValue Op1 = N->getOperand(1);
17441 unsigned IsTop = N->getConstantOperandVal(2);
17443 // VMOVNT a undef -> a
17444 // VMOVNB a undef -> a
17445 // VMOVNB undef a -> a
17446 if (Op1->isUndef())
17447 return Op0;
17448 if (Op0->isUndef() && !IsTop)
17449 return Op1;
17451 // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
17452 // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
17453 if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
17454 Op1->getOpcode() == ARMISD::VQMOVNu) &&
17455 Op1->getConstantOperandVal(2) == 0)
17456 return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
17457 Op0, Op1->getOperand(1), N->getOperand(2));
17459 // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
17460 // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
17461 // into the top or bottom lanes.
17462 unsigned NumElts = N->getValueType(0).getVectorNumElements();
17463 APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
17464 APInt Op0DemandedElts =
17465 IsTop ? Op1DemandedElts
17466 : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
17468 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17469 if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17470 return SDValue(N, 0);
17471 if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, DCI))
17472 return SDValue(N, 0);
17474 return SDValue();
17477 static SDValue PerformVQMOVNCombine(SDNode *N,
17478 TargetLowering::DAGCombinerInfo &DCI) {
17479 SDValue Op0 = N->getOperand(0);
17480 unsigned IsTop = N->getConstantOperandVal(2);
17482 unsigned NumElts = N->getValueType(0).getVectorNumElements();
17483 APInt Op0DemandedElts =
17484 APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
17485 : APInt::getHighBitsSet(2, 1));
17487 const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17488 if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, DCI))
17489 return SDValue(N, 0);
17490 return SDValue();
17493 static SDValue PerformVQDMULHCombine(SDNode *N,
17494 TargetLowering::DAGCombinerInfo &DCI) {
17495 EVT VT = N->getValueType(0);
17496 SDValue LHS = N->getOperand(0);
17497 SDValue RHS = N->getOperand(1);
17499 auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
17500 auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
17501 // Turn VQDMULH(shuffle, shuffle) -> shuffle(VQDMULH)
17502 if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
17503 LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
17504 (LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
17505 SDLoc DL(N);
17506 SDValue NewBinOp = DCI.DAG.getNode(N->getOpcode(), DL, VT,
17507 LHS.getOperand(0), RHS.getOperand(0));
17508 SDValue UndefV = LHS.getOperand(1);
17509 return DCI.DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
17511 return SDValue();
17514 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
17515 SDLoc DL(N);
17516 SDValue Op0 = N->getOperand(0);
17517 SDValue Op1 = N->getOperand(1);
17519 // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
17520 // uses of the intrinsics.
17521 if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
17522 int ShiftAmt = C->getSExtValue();
17523 if (ShiftAmt == 0) {
17524 SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
17525 DAG.ReplaceAllUsesWith(N, Merge.getNode());
17526 return SDValue();
17529 if (ShiftAmt >= -32 && ShiftAmt < 0) {
17530 unsigned NewOpcode =
17531 N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
17532 SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
17533 DAG.getConstant(-ShiftAmt, DL, MVT::i32));
17534 DAG.ReplaceAllUsesWith(N, NewShift.getNode());
17535 return NewShift;
17539 return SDValue();
17542 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
17543 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
17544 DAGCombinerInfo &DCI) const {
17545 SelectionDAG &DAG = DCI.DAG;
17546 unsigned IntNo = N->getConstantOperandVal(0);
17547 switch (IntNo) {
17548 default:
17549 // Don't do anything for most intrinsics.
17550 break;
17552 // Vector shifts: check for immediate versions and lower them.
17553 // Note: This is done during DAG combining instead of DAG legalizing because
17554 // the build_vectors for 64-bit vector element shift counts are generally
17555 // not legal, and it is hard to see their values after they get legalized to
17556 // loads from a constant pool.
17557 case Intrinsic::arm_neon_vshifts:
17558 case Intrinsic::arm_neon_vshiftu:
17559 case Intrinsic::arm_neon_vrshifts:
17560 case Intrinsic::arm_neon_vrshiftu:
17561 case Intrinsic::arm_neon_vrshiftn:
17562 case Intrinsic::arm_neon_vqshifts:
17563 case Intrinsic::arm_neon_vqshiftu:
17564 case Intrinsic::arm_neon_vqshiftsu:
17565 case Intrinsic::arm_neon_vqshiftns:
17566 case Intrinsic::arm_neon_vqshiftnu:
17567 case Intrinsic::arm_neon_vqshiftnsu:
17568 case Intrinsic::arm_neon_vqrshiftns:
17569 case Intrinsic::arm_neon_vqrshiftnu:
17570 case Intrinsic::arm_neon_vqrshiftnsu: {
17571 EVT VT = N->getOperand(1).getValueType();
17572 int64_t Cnt;
17573 unsigned VShiftOpc = 0;
17575 switch (IntNo) {
17576 case Intrinsic::arm_neon_vshifts:
17577 case Intrinsic::arm_neon_vshiftu:
17578 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
17579 VShiftOpc = ARMISD::VSHLIMM;
17580 break;
17582 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
17583 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
17584 : ARMISD::VSHRuIMM);
17585 break;
17587 return SDValue();
17589 case Intrinsic::arm_neon_vrshifts:
17590 case Intrinsic::arm_neon_vrshiftu:
17591 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
17592 break;
17593 return SDValue();
17595 case Intrinsic::arm_neon_vqshifts:
17596 case Intrinsic::arm_neon_vqshiftu:
17597 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17598 break;
17599 return SDValue();
17601 case Intrinsic::arm_neon_vqshiftsu:
17602 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17603 break;
17604 llvm_unreachable("invalid shift count for vqshlu intrinsic");
17606 case Intrinsic::arm_neon_vrshiftn:
17607 case Intrinsic::arm_neon_vqshiftns:
17608 case Intrinsic::arm_neon_vqshiftnu:
17609 case Intrinsic::arm_neon_vqshiftnsu:
17610 case Intrinsic::arm_neon_vqrshiftns:
17611 case Intrinsic::arm_neon_vqrshiftnu:
17612 case Intrinsic::arm_neon_vqrshiftnsu:
17613 // Narrowing shifts require an immediate right shift.
17614 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
17615 break;
17616 llvm_unreachable("invalid shift count for narrowing vector shift "
17617 "intrinsic");
17619 default:
17620 llvm_unreachable("unhandled vector shift");
17623 switch (IntNo) {
17624 case Intrinsic::arm_neon_vshifts:
17625 case Intrinsic::arm_neon_vshiftu:
17626 // Opcode already set above.
17627 break;
17628 case Intrinsic::arm_neon_vrshifts:
17629 VShiftOpc = ARMISD::VRSHRsIMM;
17630 break;
17631 case Intrinsic::arm_neon_vrshiftu:
17632 VShiftOpc = ARMISD::VRSHRuIMM;
17633 break;
17634 case Intrinsic::arm_neon_vrshiftn:
17635 VShiftOpc = ARMISD::VRSHRNIMM;
17636 break;
17637 case Intrinsic::arm_neon_vqshifts:
17638 VShiftOpc = ARMISD::VQSHLsIMM;
17639 break;
17640 case Intrinsic::arm_neon_vqshiftu:
17641 VShiftOpc = ARMISD::VQSHLuIMM;
17642 break;
17643 case Intrinsic::arm_neon_vqshiftsu:
17644 VShiftOpc = ARMISD::VQSHLsuIMM;
17645 break;
17646 case Intrinsic::arm_neon_vqshiftns:
17647 VShiftOpc = ARMISD::VQSHRNsIMM;
17648 break;
17649 case Intrinsic::arm_neon_vqshiftnu:
17650 VShiftOpc = ARMISD::VQSHRNuIMM;
17651 break;
17652 case Intrinsic::arm_neon_vqshiftnsu:
17653 VShiftOpc = ARMISD::VQSHRNsuIMM;
17654 break;
17655 case Intrinsic::arm_neon_vqrshiftns:
17656 VShiftOpc = ARMISD::VQRSHRNsIMM;
17657 break;
17658 case Intrinsic::arm_neon_vqrshiftnu:
17659 VShiftOpc = ARMISD::VQRSHRNuIMM;
17660 break;
17661 case Intrinsic::arm_neon_vqrshiftnsu:
17662 VShiftOpc = ARMISD::VQRSHRNsuIMM;
17663 break;
17666 SDLoc dl(N);
17667 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17668 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
17671 case Intrinsic::arm_neon_vshiftins: {
17672 EVT VT = N->getOperand(1).getValueType();
17673 int64_t Cnt;
17674 unsigned VShiftOpc = 0;
17676 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
17677 VShiftOpc = ARMISD::VSLIIMM;
17678 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
17679 VShiftOpc = ARMISD::VSRIIMM;
17680 else {
17681 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
17684 SDLoc dl(N);
17685 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17686 N->getOperand(1), N->getOperand(2),
17687 DAG.getConstant(Cnt, dl, MVT::i32));
17690 case Intrinsic::arm_neon_vqrshifts:
17691 case Intrinsic::arm_neon_vqrshiftu:
17692 // No immediate versions of these to check for.
17693 break;
17695 case Intrinsic::arm_neon_vbsl: {
17696 SDLoc dl(N);
17697 return DAG.getNode(ARMISD::VBSP, dl, N->getValueType(0), N->getOperand(1),
17698 N->getOperand(2), N->getOperand(3));
17700 case Intrinsic::arm_mve_vqdmlah:
17701 case Intrinsic::arm_mve_vqdmlash:
17702 case Intrinsic::arm_mve_vqrdmlah:
17703 case Intrinsic::arm_mve_vqrdmlash:
17704 case Intrinsic::arm_mve_vmla_n_predicated:
17705 case Intrinsic::arm_mve_vmlas_n_predicated:
17706 case Intrinsic::arm_mve_vqdmlah_predicated:
17707 case Intrinsic::arm_mve_vqdmlash_predicated:
17708 case Intrinsic::arm_mve_vqrdmlah_predicated:
17709 case Intrinsic::arm_mve_vqrdmlash_predicated: {
17710 // These intrinsics all take an i32 scalar operand which is narrowed to the
17711 // size of a single lane of the vector type they return. So we don't need
17712 // any bits of that operand above that point, which allows us to eliminate
17713 // uxth/sxth.
17714 unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
17715 APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17716 if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
17717 return SDValue();
17718 break;
17721 case Intrinsic::arm_mve_minv:
17722 case Intrinsic::arm_mve_maxv:
17723 case Intrinsic::arm_mve_minav:
17724 case Intrinsic::arm_mve_maxav:
17725 case Intrinsic::arm_mve_minv_predicated:
17726 case Intrinsic::arm_mve_maxv_predicated:
17727 case Intrinsic::arm_mve_minav_predicated:
17728 case Intrinsic::arm_mve_maxav_predicated: {
17729 // These intrinsics all take an i32 scalar operand which is narrowed to the
17730 // size of a single lane of the vector type they take as the other input.
17731 unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
17732 APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17733 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
17734 return SDValue();
17735 break;
17738 case Intrinsic::arm_mve_addv: {
17739 // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
17740 // which allow PerformADDVecReduce to turn it into VADDLV when possible.
17741 bool Unsigned = N->getConstantOperandVal(2);
17742 unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
17743 return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
17746 case Intrinsic::arm_mve_addlv:
17747 case Intrinsic::arm_mve_addlv_predicated: {
17748 // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
17749 // which recombines the two outputs into an i64
17750 bool Unsigned = N->getConstantOperandVal(2);
17751 unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
17752 (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
17753 (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
17755 SmallVector<SDValue, 4> Ops;
17756 for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
17757 if (i != 2) // skip the unsigned flag
17758 Ops.push_back(N->getOperand(i));
17760 SDLoc dl(N);
17761 SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
17762 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
17763 val.getValue(1));
17767 return SDValue();
17770 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
17771 /// lowers them. As with the vector shift intrinsics, this is done during DAG
17772 /// combining instead of DAG legalizing because the build_vectors for 64-bit
17773 /// vector element shift counts are generally not legal, and it is hard to see
17774 /// their values after they get legalized to loads from a constant pool.
17775 static SDValue PerformShiftCombine(SDNode *N,
17776 TargetLowering::DAGCombinerInfo &DCI,
17777 const ARMSubtarget *ST) {
17778 SelectionDAG &DAG = DCI.DAG;
17779 EVT VT = N->getValueType(0);
17781 if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
17782 N->getOperand(0)->getOpcode() == ISD::AND &&
17783 N->getOperand(0)->hasOneUse()) {
17784 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17785 return SDValue();
17786 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
17787 // usually show up because instcombine prefers to canonicalize it to
17788 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
17789 // out of GEP lowering in some cases.
17790 SDValue N0 = N->getOperand(0);
17791 ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
17792 if (!ShiftAmtNode)
17793 return SDValue();
17794 uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
17795 ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
17796 if (!AndMaskNode)
17797 return SDValue();
17798 uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
17799 // Don't transform uxtb/uxth.
17800 if (AndMask == 255 || AndMask == 65535)
17801 return SDValue();
17802 if (isMask_32(AndMask)) {
17803 uint32_t MaskedBits = llvm::countl_zero(AndMask);
17804 if (MaskedBits > ShiftAmt) {
17805 SDLoc DL(N);
17806 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
17807 DAG.getConstant(MaskedBits, DL, MVT::i32));
17808 return DAG.getNode(
17809 ISD::SRL, DL, MVT::i32, SHL,
17810 DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
17815 // Nothing to be done for scalar shifts.
17816 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17817 if (!VT.isVector() || !TLI.isTypeLegal(VT))
17818 return SDValue();
17819 if (ST->hasMVEIntegerOps())
17820 return SDValue();
17822 int64_t Cnt;
17824 switch (N->getOpcode()) {
17825 default: llvm_unreachable("unexpected shift opcode");
17827 case ISD::SHL:
17828 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
17829 SDLoc dl(N);
17830 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
17831 DAG.getConstant(Cnt, dl, MVT::i32));
17833 break;
17835 case ISD::SRA:
17836 case ISD::SRL:
17837 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
17838 unsigned VShiftOpc =
17839 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
17840 SDLoc dl(N);
17841 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
17842 DAG.getConstant(Cnt, dl, MVT::i32));
17845 return SDValue();
17848 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
17849 // split into multiple extending loads, which are simpler to deal with than an
17850 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
17851 // to convert the type to an f32.
17852 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
17853 SDValue N0 = N->getOperand(0);
17854 if (N0.getOpcode() != ISD::LOAD)
17855 return SDValue();
17856 LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
17857 if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
17858 LD->getExtensionType() != ISD::NON_EXTLOAD)
17859 return SDValue();
17860 EVT FromVT = LD->getValueType(0);
17861 EVT ToVT = N->getValueType(0);
17862 if (!ToVT.isVector())
17863 return SDValue();
17864 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
17865 EVT ToEltVT = ToVT.getVectorElementType();
17866 EVT FromEltVT = FromVT.getVectorElementType();
17868 unsigned NumElements = 0;
17869 if (ToEltVT == MVT::i32 && FromEltVT == MVT::i8)
17870 NumElements = 4;
17871 if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
17872 NumElements = 4;
17873 if (NumElements == 0 ||
17874 (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
17875 FromVT.getVectorNumElements() % NumElements != 0 ||
17876 !isPowerOf2_32(NumElements))
17877 return SDValue();
17879 LLVMContext &C = *DAG.getContext();
17880 SDLoc DL(LD);
17881 // Details about the old load
17882 SDValue Ch = LD->getChain();
17883 SDValue BasePtr = LD->getBasePtr();
17884 Align Alignment = LD->getOriginalAlign();
17885 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
17886 AAMDNodes AAInfo = LD->getAAInfo();
17888 ISD::LoadExtType NewExtType =
17889 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
17890 SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
17891 EVT NewFromVT = EVT::getVectorVT(
17892 C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
17893 EVT NewToVT = EVT::getVectorVT(
17894 C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
17896 SmallVector<SDValue, 4> Loads;
17897 SmallVector<SDValue, 4> Chains;
17898 for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
17899 unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
17900 SDValue NewPtr =
17901 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
17903 SDValue NewLoad =
17904 DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
17905 LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
17906 Alignment, MMOFlags, AAInfo);
17907 Loads.push_back(NewLoad);
17908 Chains.push_back(SDValue(NewLoad.getNode(), 1));
17911 // Float truncs need to extended with VCVTB's into their floating point types.
17912 if (FromEltVT == MVT::f16) {
17913 SmallVector<SDValue, 4> Extends;
17915 for (unsigned i = 0; i < Loads.size(); i++) {
17916 SDValue LoadBC =
17917 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
17918 SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
17919 DAG.getConstant(0, DL, MVT::i32));
17920 Extends.push_back(FPExt);
17923 Loads = Extends;
17926 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
17927 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
17928 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
17931 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
17932 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
17933 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
17934 const ARMSubtarget *ST) {
17935 SDValue N0 = N->getOperand(0);
17937 // Check for sign- and zero-extensions of vector extract operations of 8- and
17938 // 16-bit vector elements. NEON and MVE support these directly. They are
17939 // handled during DAG combining because type legalization will promote them
17940 // to 32-bit types and it is messy to recognize the operations after that.
17941 if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
17942 N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
17943 SDValue Vec = N0.getOperand(0);
17944 SDValue Lane = N0.getOperand(1);
17945 EVT VT = N->getValueType(0);
17946 EVT EltVT = N0.getValueType();
17947 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17949 if (VT == MVT::i32 &&
17950 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
17951 TLI.isTypeLegal(Vec.getValueType()) &&
17952 isa<ConstantSDNode>(Lane)) {
17954 unsigned Opc = 0;
17955 switch (N->getOpcode()) {
17956 default: llvm_unreachable("unexpected opcode");
17957 case ISD::SIGN_EXTEND:
17958 Opc = ARMISD::VGETLANEs;
17959 break;
17960 case ISD::ZERO_EXTEND:
17961 case ISD::ANY_EXTEND:
17962 Opc = ARMISD::VGETLANEu;
17963 break;
17965 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
17969 if (ST->hasMVEIntegerOps())
17970 if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17971 return NewLoad;
17973 return SDValue();
17976 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
17977 const ARMSubtarget *ST) {
17978 if (ST->hasMVEFloatOps())
17979 if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17980 return NewLoad;
17982 return SDValue();
17985 // Lower smin(smax(x, C1), C2) to ssat or usat, if they have saturating
17986 // constant bounds.
17987 static SDValue PerformMinMaxToSatCombine(SDValue Op, SelectionDAG &DAG,
17988 const ARMSubtarget *Subtarget) {
17989 if ((Subtarget->isThumb() || !Subtarget->hasV6Ops()) &&
17990 !Subtarget->isThumb2())
17991 return SDValue();
17993 EVT VT = Op.getValueType();
17994 SDValue Op0 = Op.getOperand(0);
17996 if (VT != MVT::i32 ||
17997 (Op0.getOpcode() != ISD::SMIN && Op0.getOpcode() != ISD::SMAX) ||
17998 !isa<ConstantSDNode>(Op.getOperand(1)) ||
17999 !isa<ConstantSDNode>(Op0.getOperand(1)))
18000 return SDValue();
18002 SDValue Min = Op;
18003 SDValue Max = Op0;
18004 SDValue Input = Op0.getOperand(0);
18005 if (Min.getOpcode() == ISD::SMAX)
18006 std::swap(Min, Max);
18008 APInt MinC = Min.getConstantOperandAPInt(1);
18009 APInt MaxC = Max.getConstantOperandAPInt(1);
18011 if (Min.getOpcode() != ISD::SMIN || Max.getOpcode() != ISD::SMAX ||
18012 !(MinC + 1).isPowerOf2())
18013 return SDValue();
18015 SDLoc DL(Op);
18016 if (MinC == ~MaxC)
18017 return DAG.getNode(ARMISD::SSAT, DL, VT, Input,
18018 DAG.getConstant(MinC.countr_one(), DL, VT));
18019 if (MaxC == 0)
18020 return DAG.getNode(ARMISD::USAT, DL, VT, Input,
18021 DAG.getConstant(MinC.countr_one(), DL, VT));
18023 return SDValue();
18026 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
18027 /// saturates.
18028 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
18029 const ARMSubtarget *ST) {
18030 EVT VT = N->getValueType(0);
18031 SDValue N0 = N->getOperand(0);
18033 if (VT == MVT::i32)
18034 return PerformMinMaxToSatCombine(SDValue(N, 0), DAG, ST);
18036 if (!ST->hasMVEIntegerOps())
18037 return SDValue();
18039 if (SDValue V = PerformVQDMULHCombine(N, DAG))
18040 return V;
18042 if (VT != MVT::v4i32 && VT != MVT::v8i16)
18043 return SDValue();
18045 auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
18046 // Check one is a smin and the other is a smax
18047 if (Min->getOpcode() != ISD::SMIN)
18048 std::swap(Min, Max);
18049 if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
18050 return false;
18052 APInt SaturateC;
18053 if (VT == MVT::v4i32)
18054 SaturateC = APInt(32, (1 << 15) - 1, true);
18055 else //if (VT == MVT::v8i16)
18056 SaturateC = APInt(16, (1 << 7) - 1, true);
18058 APInt MinC, MaxC;
18059 if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
18060 MinC != SaturateC)
18061 return false;
18062 if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
18063 MaxC != ~SaturateC)
18064 return false;
18065 return true;
18068 if (IsSignedSaturate(N, N0.getNode())) {
18069 SDLoc DL(N);
18070 MVT ExtVT, HalfVT;
18071 if (VT == MVT::v4i32) {
18072 HalfVT = MVT::v8i16;
18073 ExtVT = MVT::v4i16;
18074 } else { // if (VT == MVT::v8i16)
18075 HalfVT = MVT::v16i8;
18076 ExtVT = MVT::v8i8;
18079 // Create a VQMOVNB with undef top lanes, then signed extended into the top
18080 // half. That extend will hopefully be removed if only the bottom bits are
18081 // demanded (though a truncating store, for example).
18082 SDValue VQMOVN =
18083 DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
18084 N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
18085 SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
18086 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
18087 DAG.getValueType(ExtVT));
18090 auto IsUnsignedSaturate = [&](SDNode *Min) {
18091 // For unsigned, we just need to check for <= 0xffff
18092 if (Min->getOpcode() != ISD::UMIN)
18093 return false;
18095 APInt SaturateC;
18096 if (VT == MVT::v4i32)
18097 SaturateC = APInt(32, (1 << 16) - 1, true);
18098 else //if (VT == MVT::v8i16)
18099 SaturateC = APInt(16, (1 << 8) - 1, true);
18101 APInt MinC;
18102 if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
18103 MinC != SaturateC)
18104 return false;
18105 return true;
18108 if (IsUnsignedSaturate(N)) {
18109 SDLoc DL(N);
18110 MVT HalfVT;
18111 unsigned ExtConst;
18112 if (VT == MVT::v4i32) {
18113 HalfVT = MVT::v8i16;
18114 ExtConst = 0x0000FFFF;
18115 } else { //if (VT == MVT::v8i16)
18116 HalfVT = MVT::v16i8;
18117 ExtConst = 0x00FF;
18120 // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
18121 // an AND. That extend will hopefully be removed if only the bottom bits are
18122 // demanded (though a truncating store, for example).
18123 SDValue VQMOVN =
18124 DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
18125 DAG.getConstant(0, DL, MVT::i32));
18126 SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
18127 return DAG.getNode(ISD::AND, DL, VT, Bitcast,
18128 DAG.getConstant(ExtConst, DL, VT));
18131 return SDValue();
18134 static const APInt *isPowerOf2Constant(SDValue V) {
18135 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
18136 if (!C)
18137 return nullptr;
18138 const APInt *CV = &C->getAPIntValue();
18139 return CV->isPowerOf2() ? CV : nullptr;
18142 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
18143 // If we have a CMOV, OR and AND combination such as:
18144 // if (x & CN)
18145 // y |= CM;
18147 // And:
18148 // * CN is a single bit;
18149 // * All bits covered by CM are known zero in y
18151 // Then we can convert this into a sequence of BFI instructions. This will
18152 // always be a win if CM is a single bit, will always be no worse than the
18153 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
18154 // three bits (due to the extra IT instruction).
18156 SDValue Op0 = CMOV->getOperand(0);
18157 SDValue Op1 = CMOV->getOperand(1);
18158 auto CC = CMOV->getConstantOperandAPInt(2).getLimitedValue();
18159 SDValue CmpZ = CMOV->getOperand(3);
18161 // The compare must be against zero.
18162 if (!isNullConstant(CmpZ->getOperand(1)))
18163 return SDValue();
18165 assert(CmpZ->getOpcode() == ARMISD::CMPZ);
18166 SDValue And = CmpZ->getOperand(0);
18167 if (And->getOpcode() != ISD::AND)
18168 return SDValue();
18169 const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
18170 if (!AndC)
18171 return SDValue();
18172 SDValue X = And->getOperand(0);
18174 if (CC == ARMCC::EQ) {
18175 // We're performing an "equal to zero" compare. Swap the operands so we
18176 // canonicalize on a "not equal to zero" compare.
18177 std::swap(Op0, Op1);
18178 } else {
18179 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
18182 if (Op1->getOpcode() != ISD::OR)
18183 return SDValue();
18185 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
18186 if (!OrC)
18187 return SDValue();
18188 SDValue Y = Op1->getOperand(0);
18190 if (Op0 != Y)
18191 return SDValue();
18193 // Now, is it profitable to continue?
18194 APInt OrCI = OrC->getAPIntValue();
18195 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
18196 if (OrCI.popcount() > Heuristic)
18197 return SDValue();
18199 // Lastly, can we determine that the bits defined by OrCI
18200 // are zero in Y?
18201 KnownBits Known = DAG.computeKnownBits(Y);
18202 if ((OrCI & Known.Zero) != OrCI)
18203 return SDValue();
18205 // OK, we can do the combine.
18206 SDValue V = Y;
18207 SDLoc dl(X);
18208 EVT VT = X.getValueType();
18209 unsigned BitInX = AndC->logBase2();
18211 if (BitInX != 0) {
18212 // We must shift X first.
18213 X = DAG.getNode(ISD::SRL, dl, VT, X,
18214 DAG.getConstant(BitInX, dl, VT));
18217 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
18218 BitInY < NumActiveBits; ++BitInY) {
18219 if (OrCI[BitInY] == 0)
18220 continue;
18221 APInt Mask(VT.getSizeInBits(), 0);
18222 Mask.setBit(BitInY);
18223 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
18224 // Confusingly, the operand is an *inverted* mask.
18225 DAG.getConstant(~Mask, dl, VT));
18228 return V;
18231 // Given N, the value controlling the conditional branch, search for the loop
18232 // intrinsic, returning it, along with how the value is used. We need to handle
18233 // patterns such as the following:
18234 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
18235 // (brcond (setcc (loop.decrement), 0, eq), exit)
18236 // (brcond (setcc (loop.decrement), 0, ne), header)
18237 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
18238 bool &Negate) {
18239 switch (N->getOpcode()) {
18240 default:
18241 break;
18242 case ISD::XOR: {
18243 if (!isa<ConstantSDNode>(N.getOperand(1)))
18244 return SDValue();
18245 if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
18246 return SDValue();
18247 Negate = !Negate;
18248 return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
18250 case ISD::SETCC: {
18251 auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
18252 if (!Const)
18253 return SDValue();
18254 if (Const->isZero())
18255 Imm = 0;
18256 else if (Const->isOne())
18257 Imm = 1;
18258 else
18259 return SDValue();
18260 CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
18261 return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
18263 case ISD::INTRINSIC_W_CHAIN: {
18264 unsigned IntOp = N.getConstantOperandVal(1);
18265 if (IntOp != Intrinsic::test_start_loop_iterations &&
18266 IntOp != Intrinsic::loop_decrement_reg)
18267 return SDValue();
18268 return N;
18271 return SDValue();
18274 static SDValue PerformHWLoopCombine(SDNode *N,
18275 TargetLowering::DAGCombinerInfo &DCI,
18276 const ARMSubtarget *ST) {
18278 // The hwloop intrinsics that we're interested are used for control-flow,
18279 // either for entering or exiting the loop:
18280 // - test.start.loop.iterations will test whether its operand is zero. If it
18281 // is zero, the proceeding branch should not enter the loop.
18282 // - loop.decrement.reg also tests whether its operand is zero. If it is
18283 // zero, the proceeding branch should not branch back to the beginning of
18284 // the loop.
18285 // So here, we need to check that how the brcond is using the result of each
18286 // of the intrinsics to ensure that we're branching to the right place at the
18287 // right time.
18289 ISD::CondCode CC;
18290 SDValue Cond;
18291 int Imm = 1;
18292 bool Negate = false;
18293 SDValue Chain = N->getOperand(0);
18294 SDValue Dest;
18296 if (N->getOpcode() == ISD::BRCOND) {
18297 CC = ISD::SETEQ;
18298 Cond = N->getOperand(1);
18299 Dest = N->getOperand(2);
18300 } else {
18301 assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
18302 CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
18303 Cond = N->getOperand(2);
18304 Dest = N->getOperand(4);
18305 if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
18306 if (!Const->isOne() && !Const->isZero())
18307 return SDValue();
18308 Imm = Const->getZExtValue();
18309 } else
18310 return SDValue();
18313 SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
18314 if (!Int)
18315 return SDValue();
18317 if (Negate)
18318 CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
18320 auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
18321 return (CC == ISD::SETEQ && Imm == 0) ||
18322 (CC == ISD::SETNE && Imm == 1) ||
18323 (CC == ISD::SETLT && Imm == 1) ||
18324 (CC == ISD::SETULT && Imm == 1);
18327 auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
18328 return (CC == ISD::SETEQ && Imm == 1) ||
18329 (CC == ISD::SETNE && Imm == 0) ||
18330 (CC == ISD::SETGT && Imm == 0) ||
18331 (CC == ISD::SETUGT && Imm == 0) ||
18332 (CC == ISD::SETGE && Imm == 1) ||
18333 (CC == ISD::SETUGE && Imm == 1);
18336 assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
18337 "unsupported condition");
18339 SDLoc dl(Int);
18340 SelectionDAG &DAG = DCI.DAG;
18341 SDValue Elements = Int.getOperand(2);
18342 unsigned IntOp = Int->getConstantOperandVal(1);
18343 assert((N->hasOneUse() && N->user_begin()->getOpcode() == ISD::BR) &&
18344 "expected single br user");
18345 SDNode *Br = *N->user_begin();
18346 SDValue OtherTarget = Br->getOperand(1);
18348 // Update the unconditional branch to branch to the given Dest.
18349 auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
18350 SDValue NewBrOps[] = { Br->getOperand(0), Dest };
18351 SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
18352 DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
18355 if (IntOp == Intrinsic::test_start_loop_iterations) {
18356 SDValue Res;
18357 SDValue Setup = DAG.getNode(ARMISD::WLSSETUP, dl, MVT::i32, Elements);
18358 // We expect this 'instruction' to branch when the counter is zero.
18359 if (IsTrueIfZero(CC, Imm)) {
18360 SDValue Ops[] = {Chain, Setup, Dest};
18361 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18362 } else {
18363 // The logic is the reverse of what we need for WLS, so find the other
18364 // basic block target: the target of the proceeding br.
18365 UpdateUncondBr(Br, Dest, DAG);
18367 SDValue Ops[] = {Chain, Setup, OtherTarget};
18368 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
18370 // Update LR count to the new value
18371 DAG.ReplaceAllUsesOfValueWith(Int.getValue(0), Setup);
18372 // Update chain
18373 DAG.ReplaceAllUsesOfValueWith(Int.getValue(2), Int.getOperand(0));
18374 return Res;
18375 } else {
18376 SDValue Size =
18377 DAG.getTargetConstant(Int.getConstantOperandVal(3), dl, MVT::i32);
18378 SDValue Args[] = { Int.getOperand(0), Elements, Size, };
18379 SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
18380 DAG.getVTList(MVT::i32, MVT::Other), Args);
18381 DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
18383 // We expect this instruction to branch when the count is not zero.
18384 SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
18386 // Update the unconditional branch to target the loop preheader if we've
18387 // found the condition has been reversed.
18388 if (Target == OtherTarget)
18389 UpdateUncondBr(Br, Dest, DAG);
18391 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
18392 SDValue(LoopDec.getNode(), 1), Chain);
18394 SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
18395 return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
18397 return SDValue();
18400 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
18401 SDValue
18402 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
18403 SDValue Cmp = N->getOperand(3);
18404 if (Cmp.getOpcode() != ARMISD::CMPZ)
18405 // Only looking at NE cases.
18406 return SDValue();
18408 SDLoc dl(N);
18409 SDValue LHS = Cmp.getOperand(0);
18410 SDValue RHS = Cmp.getOperand(1);
18411 SDValue Chain = N->getOperand(0);
18412 SDValue BB = N->getOperand(1);
18413 SDValue ARMcc = N->getOperand(2);
18414 ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal();
18416 // (brcond Chain BB ne (cmpz (and (cmov 0 1 CC Flags) 1) 0))
18417 // -> (brcond Chain BB CC Flags)
18418 if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
18419 LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
18420 LHS->getOperand(0)->hasOneUse() &&
18421 isNullConstant(LHS->getOperand(0)->getOperand(0)) &&
18422 isOneConstant(LHS->getOperand(0)->getOperand(1)) &&
18423 isOneConstant(LHS->getOperand(1)) && isNullConstant(RHS)) {
18424 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, BB,
18425 LHS->getOperand(0)->getOperand(2),
18426 LHS->getOperand(0)->getOperand(3));
18429 return SDValue();
18432 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
18433 SDValue
18434 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
18435 SDValue Cmp = N->getOperand(3);
18436 if (Cmp.getOpcode() != ARMISD::CMPZ)
18437 // Only looking at EQ and NE cases.
18438 return SDValue();
18440 EVT VT = N->getValueType(0);
18441 SDLoc dl(N);
18442 SDValue LHS = Cmp.getOperand(0);
18443 SDValue RHS = Cmp.getOperand(1);
18444 SDValue FalseVal = N->getOperand(0);
18445 SDValue TrueVal = N->getOperand(1);
18446 SDValue ARMcc = N->getOperand(2);
18447 ARMCC::CondCodes CC = (ARMCC::CondCodes)ARMcc->getAsZExtVal();
18449 // BFI is only available on V6T2+.
18450 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
18451 SDValue R = PerformCMOVToBFICombine(N, DAG);
18452 if (R)
18453 return R;
18456 // Simplify
18457 // mov r1, r0
18458 // cmp r1, x
18459 // mov r0, y
18460 // moveq r0, x
18461 // to
18462 // cmp r0, x
18463 // movne r0, y
18465 // mov r1, r0
18466 // cmp r1, x
18467 // mov r0, x
18468 // movne r0, y
18469 // to
18470 // cmp r0, x
18471 // movne r0, y
18472 /// FIXME: Turn this into a target neutral optimization?
18473 SDValue Res;
18474 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
18475 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, Cmp);
18476 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
18477 SDValue ARMcc;
18478 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
18479 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, NewCmp);
18482 // (cmov F T ne (cmpz (cmov 0 1 CC Flags) 0))
18483 // -> (cmov F T CC Flags)
18484 if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse() &&
18485 isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) &&
18486 isNullConstant(RHS)) {
18487 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
18488 LHS->getOperand(2), LHS->getOperand(3));
18491 if (!VT.isInteger())
18492 return SDValue();
18494 // Fold away an unneccessary CMPZ/CMOV
18495 // CMOV A, B, C1, (CMPZ (CMOV 1, 0, C2, D), 0) ->
18496 // if C1==EQ -> CMOV A, B, C2, D
18497 // if C1==NE -> CMOV A, B, NOT(C2), D
18498 if (N->getConstantOperandVal(2) == ARMCC::EQ ||
18499 N->getConstantOperandVal(2) == ARMCC::NE) {
18500 ARMCC::CondCodes Cond;
18501 if (SDValue C = IsCMPZCSINC(N->getOperand(3).getNode(), Cond)) {
18502 if (N->getConstantOperandVal(2) == ARMCC::NE)
18503 Cond = ARMCC::getOppositeCondition(Cond);
18504 return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
18505 N->getOperand(1),
18506 DAG.getConstant(Cond, SDLoc(N), MVT::i32), C);
18510 // Materialize a boolean comparison for integers so we can avoid branching.
18511 if (isNullConstant(FalseVal)) {
18512 if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
18513 if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
18514 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
18515 // right 5 bits will make that 32 be 1, otherwise it will be 0.
18516 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
18517 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18518 Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
18519 DAG.getConstant(5, dl, MVT::i32));
18520 } else {
18521 // CMOV 0, 1, ==, (CMPZ x, y) ->
18522 // (UADDO_CARRY (SUB x, y), t:0, t:1)
18523 // where t = (USUBO_CARRY 0, (SUB x, y), 0)
18525 // The USUBO_CARRY computes 0 - (x - y) and this will give a borrow when
18526 // x != y. In other words, a carry C == 1 when x == y, C == 0
18527 // otherwise.
18528 // The final UADDO_CARRY computes
18529 // x - y + (0 - (x - y)) + C == C
18530 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18531 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18532 SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
18533 // ISD::USUBO_CARRY returns a borrow but we want the carry here
18534 // actually.
18535 SDValue Carry =
18536 DAG.getNode(ISD::SUB, dl, MVT::i32,
18537 DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
18538 Res = DAG.getNode(ISD::UADDO_CARRY, dl, VTs, Sub, Neg, Carry);
18540 } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
18541 (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
18542 // This seems pointless but will allow us to combine it further below.
18543 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1
18544 SDValue Sub =
18545 DAG.getNode(ARMISD::SUBC, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18546 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
18547 Sub.getValue(1));
18548 FalseVal = Sub;
18550 } else if (isNullConstant(TrueVal)) {
18551 if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
18552 (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
18553 // This seems pointless but will allow us to combine it further below
18554 // Note that we change == for != as this is the dual for the case above.
18555 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBC x, y), z, !=, (SUBC x, y):1
18556 SDValue Sub =
18557 DAG.getNode(ARMISD::SUBC, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18558 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
18559 DAG.getConstant(ARMCC::NE, dl, MVT::i32),
18560 Sub.getValue(1));
18561 FalseVal = Sub;
18565 // On Thumb1, the DAG above may be further combined if z is a power of 2
18566 // (z == 2 ^ K).
18567 // CMOV (SUBC x, y), z, !=, (SUBC x, y):1 ->
18568 // t1 = (USUBO (SUB x, y), 1)
18569 // t2 = (USUBO_CARRY (SUB x, y), t1:0, t1:1)
18570 // Result = if K != 0 then (SHL t2:0, K) else t2:0
18572 // This also handles the special case of comparing against zero; it's
18573 // essentially, the same pattern, except there's no SUBC:
18574 // CMOV x, z, !=, (CMPZ x, 0) ->
18575 // t1 = (USUBO x, 1)
18576 // t2 = (USUBO_CARRY x, t1:0, t1:1)
18577 // Result = if K != 0 then (SHL t2:0, K) else t2:0
18578 const APInt *TrueConst;
18579 if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
18580 ((FalseVal.getOpcode() == ARMISD::SUBC && FalseVal.getOperand(0) == LHS &&
18581 FalseVal.getOperand(1) == RHS) ||
18582 (FalseVal == LHS && isNullConstant(RHS))) &&
18583 (TrueConst = isPowerOf2Constant(TrueVal))) {
18584 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18585 unsigned ShiftAmount = TrueConst->logBase2();
18586 if (ShiftAmount)
18587 TrueVal = DAG.getConstant(1, dl, VT);
18588 SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
18589 Res = DAG.getNode(ISD::USUBO_CARRY, dl, VTs, FalseVal, Subc,
18590 Subc.getValue(1));
18592 if (ShiftAmount)
18593 Res = DAG.getNode(ISD::SHL, dl, VT, Res,
18594 DAG.getConstant(ShiftAmount, dl, MVT::i32));
18597 if (Res.getNode()) {
18598 KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
18599 // Capture demanded bits information that would be otherwise lost.
18600 if (Known.Zero == 0xfffffffe)
18601 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18602 DAG.getValueType(MVT::i1));
18603 else if (Known.Zero == 0xffffff00)
18604 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18605 DAG.getValueType(MVT::i8));
18606 else if (Known.Zero == 0xffff0000)
18607 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18608 DAG.getValueType(MVT::i16));
18611 return Res;
18614 static SDValue PerformBITCASTCombine(SDNode *N,
18615 TargetLowering::DAGCombinerInfo &DCI,
18616 const ARMSubtarget *ST) {
18617 SelectionDAG &DAG = DCI.DAG;
18618 SDValue Src = N->getOperand(0);
18619 EVT DstVT = N->getValueType(0);
18621 // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
18622 if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
18623 EVT SrcVT = Src.getValueType();
18624 if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
18625 return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
18628 // We may have a bitcast of something that has already had this bitcast
18629 // combine performed on it, so skip past any VECTOR_REG_CASTs.
18630 if (Src.getOpcode() == ARMISD::VECTOR_REG_CAST &&
18631 Src.getOperand(0).getValueType().getScalarSizeInBits() <=
18632 Src.getValueType().getScalarSizeInBits())
18633 Src = Src.getOperand(0);
18635 // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
18636 // would be generated is at least the width of the element type.
18637 EVT SrcVT = Src.getValueType();
18638 if ((Src.getOpcode() == ARMISD::VMOVIMM ||
18639 Src.getOpcode() == ARMISD::VMVNIMM ||
18640 Src.getOpcode() == ARMISD::VMOVFPIMM) &&
18641 SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
18642 DAG.getDataLayout().isBigEndian())
18643 return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
18645 // bitcast(extract(x, n)); bitcast(extract(x, n+1)) -> VMOVRRD x
18646 if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
18647 return R;
18649 return SDValue();
18652 // Some combines for the MVETrunc truncations legalizer helper. Also lowers the
18653 // node into stack operations after legalizeOps.
18654 SDValue ARMTargetLowering::PerformMVETruncCombine(
18655 SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18656 SelectionDAG &DAG = DCI.DAG;
18657 EVT VT = N->getValueType(0);
18658 SDLoc DL(N);
18660 // MVETrunc(Undef, Undef) -> Undef
18661 if (all_of(N->ops(), [](SDValue Op) { return Op.isUndef(); }))
18662 return DAG.getUNDEF(VT);
18664 // MVETrunc(MVETrunc a b, MVETrunc c, d) -> MVETrunc
18665 if (N->getNumOperands() == 2 &&
18666 N->getOperand(0).getOpcode() == ARMISD::MVETRUNC &&
18667 N->getOperand(1).getOpcode() == ARMISD::MVETRUNC)
18668 return DAG.getNode(ARMISD::MVETRUNC, DL, VT, N->getOperand(0).getOperand(0),
18669 N->getOperand(0).getOperand(1),
18670 N->getOperand(1).getOperand(0),
18671 N->getOperand(1).getOperand(1));
18673 // MVETrunc(shuffle, shuffle) -> VMOVN
18674 if (N->getNumOperands() == 2 &&
18675 N->getOperand(0).getOpcode() == ISD::VECTOR_SHUFFLE &&
18676 N->getOperand(1).getOpcode() == ISD::VECTOR_SHUFFLE) {
18677 auto *S0 = cast<ShuffleVectorSDNode>(N->getOperand(0).getNode());
18678 auto *S1 = cast<ShuffleVectorSDNode>(N->getOperand(1).getNode());
18680 if (S0->getOperand(0) == S1->getOperand(0) &&
18681 S0->getOperand(1) == S1->getOperand(1)) {
18682 // Construct complete shuffle mask
18683 SmallVector<int, 8> Mask(S0->getMask());
18684 Mask.append(S1->getMask().begin(), S1->getMask().end());
18686 if (isVMOVNTruncMask(Mask, VT, false))
18687 return DAG.getNode(
18688 ARMISD::VMOVN, DL, VT,
18689 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18690 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18691 DAG.getConstant(1, DL, MVT::i32));
18692 if (isVMOVNTruncMask(Mask, VT, true))
18693 return DAG.getNode(
18694 ARMISD::VMOVN, DL, VT,
18695 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18696 DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18697 DAG.getConstant(1, DL, MVT::i32));
18701 // For MVETrunc of a buildvector or shuffle, it can be beneficial to lower the
18702 // truncate to a buildvector to allow the generic optimisations to kick in.
18703 if (all_of(N->ops(), [](SDValue Op) {
18704 return Op.getOpcode() == ISD::BUILD_VECTOR ||
18705 Op.getOpcode() == ISD::VECTOR_SHUFFLE ||
18706 (Op.getOpcode() == ISD::BITCAST &&
18707 Op.getOperand(0).getOpcode() == ISD::BUILD_VECTOR);
18708 })) {
18709 SmallVector<SDValue, 8> Extracts;
18710 for (unsigned Op = 0; Op < N->getNumOperands(); Op++) {
18711 SDValue O = N->getOperand(Op);
18712 for (unsigned i = 0; i < O.getValueType().getVectorNumElements(); i++) {
18713 SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, O,
18714 DAG.getConstant(i, DL, MVT::i32));
18715 Extracts.push_back(Ext);
18718 return DAG.getBuildVector(VT, DL, Extracts);
18721 // If we are late in the legalization process and nothing has optimised
18722 // the trunc to anything better, lower it to a stack store and reload,
18723 // performing the truncation whilst keeping the lanes in the correct order:
18724 // VSTRH.32 a, stack; VSTRH.32 b, stack+8; VLDRW.32 stack;
18725 if (!DCI.isAfterLegalizeDAG())
18726 return SDValue();
18728 SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18729 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18730 int NumIns = N->getNumOperands();
18731 assert((NumIns == 2 || NumIns == 4) &&
18732 "Expected 2 or 4 inputs to an MVETrunc");
18733 EVT StoreVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
18734 if (N->getNumOperands() == 4)
18735 StoreVT = StoreVT.getHalfNumVectorElementsVT(*DAG.getContext());
18737 SmallVector<SDValue> Chains;
18738 for (int I = 0; I < NumIns; I++) {
18739 SDValue Ptr = DAG.getNode(
18740 ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18741 DAG.getConstant(I * 16 / NumIns, DL, StackPtr.getValueType()));
18742 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18743 DAG.getMachineFunction(), SPFI, I * 16 / NumIns);
18744 SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), DL, N->getOperand(I),
18745 Ptr, MPI, StoreVT, Align(4));
18746 Chains.push_back(Ch);
18749 SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18750 MachinePointerInfo MPI =
18751 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18752 return DAG.getLoad(VT, DL, Chain, StackPtr, MPI, Align(4));
18755 // Take a MVEEXT(load x) and split that into (extload x, extload x+8)
18756 static SDValue PerformSplittingMVEEXTToWideningLoad(SDNode *N,
18757 SelectionDAG &DAG) {
18758 SDValue N0 = N->getOperand(0);
18759 LoadSDNode *LD = dyn_cast<LoadSDNode>(N0.getNode());
18760 if (!LD || !LD->isSimple() || !N0.hasOneUse() || LD->isIndexed())
18761 return SDValue();
18763 EVT FromVT = LD->getMemoryVT();
18764 EVT ToVT = N->getValueType(0);
18765 if (!ToVT.isVector())
18766 return SDValue();
18767 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements() * 2);
18768 EVT ToEltVT = ToVT.getVectorElementType();
18769 EVT FromEltVT = FromVT.getVectorElementType();
18771 unsigned NumElements = 0;
18772 if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
18773 NumElements = 4;
18774 if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
18775 NumElements = 8;
18776 assert(NumElements != 0);
18778 ISD::LoadExtType NewExtType =
18779 N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
18780 if (LD->getExtensionType() != ISD::NON_EXTLOAD &&
18781 LD->getExtensionType() != ISD::EXTLOAD &&
18782 LD->getExtensionType() != NewExtType)
18783 return SDValue();
18785 LLVMContext &C = *DAG.getContext();
18786 SDLoc DL(LD);
18787 // Details about the old load
18788 SDValue Ch = LD->getChain();
18789 SDValue BasePtr = LD->getBasePtr();
18790 Align Alignment = LD->getOriginalAlign();
18791 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
18792 AAMDNodes AAInfo = LD->getAAInfo();
18794 SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
18795 EVT NewFromVT = EVT::getVectorVT(
18796 C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
18797 EVT NewToVT = EVT::getVectorVT(
18798 C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
18800 SmallVector<SDValue, 4> Loads;
18801 SmallVector<SDValue, 4> Chains;
18802 for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
18803 unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
18804 SDValue NewPtr =
18805 DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::getFixed(NewOffset));
18807 SDValue NewLoad =
18808 DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
18809 LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
18810 Alignment, MMOFlags, AAInfo);
18811 Loads.push_back(NewLoad);
18812 Chains.push_back(SDValue(NewLoad.getNode(), 1));
18815 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18816 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
18817 return DAG.getMergeValues(Loads, DL);
18820 // Perform combines for MVEEXT. If it has not be optimized to anything better
18821 // before lowering, it gets converted to stack store and extloads performing the
18822 // extend whilst still keeping the same lane ordering.
18823 SDValue ARMTargetLowering::PerformMVEExtCombine(
18824 SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18825 SelectionDAG &DAG = DCI.DAG;
18826 EVT VT = N->getValueType(0);
18827 SDLoc DL(N);
18828 assert(N->getNumValues() == 2 && "Expected MVEEXT with 2 elements");
18829 assert((VT == MVT::v4i32 || VT == MVT::v8i16) && "Unexpected MVEEXT type");
18831 EVT ExtVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18832 *DAG.getContext());
18833 auto Extend = [&](SDValue V) {
18834 SDValue VVT = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, V);
18835 return N->getOpcode() == ARMISD::MVESEXT
18836 ? DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, VVT,
18837 DAG.getValueType(ExtVT))
18838 : DAG.getZeroExtendInReg(VVT, DL, ExtVT);
18841 // MVEEXT(VDUP) -> SIGN_EXTEND_INREG(VDUP)
18842 if (N->getOperand(0).getOpcode() == ARMISD::VDUP) {
18843 SDValue Ext = Extend(N->getOperand(0));
18844 return DAG.getMergeValues({Ext, Ext}, DL);
18847 // MVEEXT(shuffle) -> SIGN_EXTEND_INREG/ZERO_EXTEND_INREG
18848 if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0))) {
18849 ArrayRef<int> Mask = SVN->getMask();
18850 assert(Mask.size() == 2 * VT.getVectorNumElements());
18851 assert(Mask.size() == SVN->getValueType(0).getVectorNumElements());
18852 unsigned Rev = VT == MVT::v4i32 ? ARMISD::VREV32 : ARMISD::VREV16;
18853 SDValue Op0 = SVN->getOperand(0);
18854 SDValue Op1 = SVN->getOperand(1);
18856 auto CheckInregMask = [&](int Start, int Offset) {
18857 for (int Idx = 0, E = VT.getVectorNumElements(); Idx < E; ++Idx)
18858 if (Mask[Start + Idx] >= 0 && Mask[Start + Idx] != Idx * 2 + Offset)
18859 return false;
18860 return true;
18862 SDValue V0 = SDValue(N, 0);
18863 SDValue V1 = SDValue(N, 1);
18864 if (CheckInregMask(0, 0))
18865 V0 = Extend(Op0);
18866 else if (CheckInregMask(0, 1))
18867 V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18868 else if (CheckInregMask(0, Mask.size()))
18869 V0 = Extend(Op1);
18870 else if (CheckInregMask(0, Mask.size() + 1))
18871 V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18873 if (CheckInregMask(VT.getVectorNumElements(), Mask.size()))
18874 V1 = Extend(Op1);
18875 else if (CheckInregMask(VT.getVectorNumElements(), Mask.size() + 1))
18876 V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18877 else if (CheckInregMask(VT.getVectorNumElements(), 0))
18878 V1 = Extend(Op0);
18879 else if (CheckInregMask(VT.getVectorNumElements(), 1))
18880 V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18882 if (V0.getNode() != N || V1.getNode() != N)
18883 return DAG.getMergeValues({V0, V1}, DL);
18886 // MVEEXT(load) -> extload, extload
18887 if (N->getOperand(0)->getOpcode() == ISD::LOAD)
18888 if (SDValue L = PerformSplittingMVEEXTToWideningLoad(N, DAG))
18889 return L;
18891 if (!DCI.isAfterLegalizeDAG())
18892 return SDValue();
18894 // Lower to a stack store and reload:
18895 // VSTRW.32 a, stack; VLDRH.32 stack; VLDRH.32 stack+8;
18896 SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::getFixed(16), Align(4));
18897 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18898 int NumOuts = N->getNumValues();
18899 assert((NumOuts == 2 || NumOuts == 4) &&
18900 "Expected 2 or 4 outputs to an MVEEXT");
18901 EVT LoadVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18902 *DAG.getContext());
18903 if (N->getNumOperands() == 4)
18904 LoadVT = LoadVT.getHalfNumVectorElementsVT(*DAG.getContext());
18906 MachinePointerInfo MPI =
18907 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18908 SDValue Chain = DAG.getStore(DAG.getEntryNode(), DL, N->getOperand(0),
18909 StackPtr, MPI, Align(4));
18911 SmallVector<SDValue> Loads;
18912 for (int I = 0; I < NumOuts; I++) {
18913 SDValue Ptr = DAG.getNode(
18914 ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18915 DAG.getConstant(I * 16 / NumOuts, DL, StackPtr.getValueType()));
18916 MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18917 DAG.getMachineFunction(), SPFI, I * 16 / NumOuts);
18918 SDValue Load = DAG.getExtLoad(
18919 N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL,
18920 VT, Chain, Ptr, MPI, LoadVT, Align(4));
18921 Loads.push_back(Load);
18924 return DAG.getMergeValues(Loads, DL);
18927 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
18928 DAGCombinerInfo &DCI) const {
18929 switch (N->getOpcode()) {
18930 default: break;
18931 case ISD::SELECT_CC:
18932 case ISD::SELECT: return PerformSELECTCombine(N, DCI, Subtarget);
18933 case ISD::VSELECT: return PerformVSELECTCombine(N, DCI, Subtarget);
18934 case ISD::SETCC: return PerformVSetCCToVCTPCombine(N, DCI, Subtarget);
18935 case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
18936 case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
18937 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
18938 case ISD::SUB: return PerformSUBCombine(N, DCI, Subtarget);
18939 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
18940 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
18941 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
18942 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
18943 case ISD::BRCOND:
18944 case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget);
18945 case ARMISD::ADDC:
18946 case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
18947 case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
18948 case ARMISD::BFI: return PerformBFICombine(N, DCI.DAG);
18949 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
18950 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
18951 case ARMISD::VMOVhr: return PerformVMOVhrCombine(N, DCI);
18952 case ARMISD::VMOVrh: return PerformVMOVrhCombine(N, DCI.DAG);
18953 case ISD::STORE: return PerformSTORECombine(N, DCI, Subtarget);
18954 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
18955 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
18956 case ISD::EXTRACT_VECTOR_ELT:
18957 return PerformExtractEltCombine(N, DCI, Subtarget);
18958 case ISD::SIGN_EXTEND_INREG: return PerformSignExtendInregCombine(N, DCI.DAG);
18959 case ISD::INSERT_SUBVECTOR: return PerformInsertSubvectorCombine(N, DCI);
18960 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
18961 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
18962 case ARMISD::VDUP: return PerformVDUPCombine(N, DCI.DAG, Subtarget);
18963 case ISD::FP_TO_SINT:
18964 case ISD::FP_TO_UINT:
18965 return PerformVCVTCombine(N, DCI.DAG, Subtarget);
18966 case ISD::FADD:
18967 return PerformFADDCombine(N, DCI.DAG, Subtarget);
18968 case ISD::FMUL:
18969 return PerformVMulVCTPCombine(N, DCI.DAG, Subtarget);
18970 case ISD::INTRINSIC_WO_CHAIN:
18971 return PerformIntrinsicCombine(N, DCI);
18972 case ISD::SHL:
18973 case ISD::SRA:
18974 case ISD::SRL:
18975 return PerformShiftCombine(N, DCI, Subtarget);
18976 case ISD::SIGN_EXTEND:
18977 case ISD::ZERO_EXTEND:
18978 case ISD::ANY_EXTEND:
18979 return PerformExtendCombine(N, DCI.DAG, Subtarget);
18980 case ISD::FP_EXTEND:
18981 return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
18982 case ISD::SMIN:
18983 case ISD::UMIN:
18984 case ISD::SMAX:
18985 case ISD::UMAX:
18986 return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
18987 case ARMISD::CMOV:
18988 return PerformCMOVCombine(N, DCI.DAG);
18989 case ARMISD::BRCOND:
18990 return PerformBRCONDCombine(N, DCI.DAG);
18991 case ARMISD::CMPZ:
18992 return PerformCMPZCombine(N, DCI.DAG);
18993 case ARMISD::CSINC:
18994 case ARMISD::CSINV:
18995 case ARMISD::CSNEG:
18996 return PerformCSETCombine(N, DCI.DAG);
18997 case ISD::LOAD:
18998 return PerformLOADCombine(N, DCI, Subtarget);
18999 case ARMISD::VLD1DUP:
19000 case ARMISD::VLD2DUP:
19001 case ARMISD::VLD3DUP:
19002 case ARMISD::VLD4DUP:
19003 return PerformVLDCombine(N, DCI);
19004 case ARMISD::BUILD_VECTOR:
19005 return PerformARMBUILD_VECTORCombine(N, DCI);
19006 case ISD::BITCAST:
19007 return PerformBITCASTCombine(N, DCI, Subtarget);
19008 case ARMISD::PREDICATE_CAST:
19009 return PerformPREDICATE_CASTCombine(N, DCI);
19010 case ARMISD::VECTOR_REG_CAST:
19011 return PerformVECTOR_REG_CASTCombine(N, DCI.DAG, Subtarget);
19012 case ARMISD::MVETRUNC:
19013 return PerformMVETruncCombine(N, DCI);
19014 case ARMISD::MVESEXT:
19015 case ARMISD::MVEZEXT:
19016 return PerformMVEExtCombine(N, DCI);
19017 case ARMISD::VCMP:
19018 return PerformVCMPCombine(N, DCI.DAG, Subtarget);
19019 case ISD::VECREDUCE_ADD:
19020 return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
19021 case ARMISD::VADDVs:
19022 case ARMISD::VADDVu:
19023 case ARMISD::VADDLVs:
19024 case ARMISD::VADDLVu:
19025 case ARMISD::VADDLVAs:
19026 case ARMISD::VADDLVAu:
19027 case ARMISD::VMLAVs:
19028 case ARMISD::VMLAVu:
19029 case ARMISD::VMLALVs:
19030 case ARMISD::VMLALVu:
19031 case ARMISD::VMLALVAs:
19032 case ARMISD::VMLALVAu:
19033 return PerformReduceShuffleCombine(N, DCI.DAG);
19034 case ARMISD::VMOVN:
19035 return PerformVMOVNCombine(N, DCI);
19036 case ARMISD::VQMOVNs:
19037 case ARMISD::VQMOVNu:
19038 return PerformVQMOVNCombine(N, DCI);
19039 case ARMISD::VQDMULH:
19040 return PerformVQDMULHCombine(N, DCI);
19041 case ARMISD::ASRL:
19042 case ARMISD::LSRL:
19043 case ARMISD::LSLL:
19044 return PerformLongShiftCombine(N, DCI.DAG);
19045 case ARMISD::SMULWB: {
19046 unsigned BitWidth = N->getValueType(0).getSizeInBits();
19047 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
19048 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
19049 return SDValue();
19050 break;
19052 case ARMISD::SMULWT: {
19053 unsigned BitWidth = N->getValueType(0).getSizeInBits();
19054 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
19055 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
19056 return SDValue();
19057 break;
19059 case ARMISD::SMLALBB:
19060 case ARMISD::QADD16b:
19061 case ARMISD::QSUB16b:
19062 case ARMISD::UQADD16b:
19063 case ARMISD::UQSUB16b: {
19064 unsigned BitWidth = N->getValueType(0).getSizeInBits();
19065 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
19066 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19067 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19068 return SDValue();
19069 break;
19071 case ARMISD::SMLALBT: {
19072 unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
19073 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
19074 unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
19075 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
19076 if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
19077 (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
19078 return SDValue();
19079 break;
19081 case ARMISD::SMLALTB: {
19082 unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
19083 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
19084 unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
19085 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
19086 if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
19087 (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
19088 return SDValue();
19089 break;
19091 case ARMISD::SMLALTT: {
19092 unsigned BitWidth = N->getValueType(0).getSizeInBits();
19093 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
19094 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19095 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19096 return SDValue();
19097 break;
19099 case ARMISD::QADD8b:
19100 case ARMISD::QSUB8b:
19101 case ARMISD::UQADD8b:
19102 case ARMISD::UQSUB8b: {
19103 unsigned BitWidth = N->getValueType(0).getSizeInBits();
19104 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
19105 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
19106 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
19107 return SDValue();
19108 break;
19110 case ARMISD::VBSP:
19111 if (N->getOperand(1) == N->getOperand(2))
19112 return N->getOperand(1);
19113 return SDValue();
19114 case ISD::INTRINSIC_VOID:
19115 case ISD::INTRINSIC_W_CHAIN:
19116 switch (N->getConstantOperandVal(1)) {
19117 case Intrinsic::arm_neon_vld1:
19118 case Intrinsic::arm_neon_vld1x2:
19119 case Intrinsic::arm_neon_vld1x3:
19120 case Intrinsic::arm_neon_vld1x4:
19121 case Intrinsic::arm_neon_vld2:
19122 case Intrinsic::arm_neon_vld3:
19123 case Intrinsic::arm_neon_vld4:
19124 case Intrinsic::arm_neon_vld2lane:
19125 case Intrinsic::arm_neon_vld3lane:
19126 case Intrinsic::arm_neon_vld4lane:
19127 case Intrinsic::arm_neon_vld2dup:
19128 case Intrinsic::arm_neon_vld3dup:
19129 case Intrinsic::arm_neon_vld4dup:
19130 case Intrinsic::arm_neon_vst1:
19131 case Intrinsic::arm_neon_vst1x2:
19132 case Intrinsic::arm_neon_vst1x3:
19133 case Intrinsic::arm_neon_vst1x4:
19134 case Intrinsic::arm_neon_vst2:
19135 case Intrinsic::arm_neon_vst3:
19136 case Intrinsic::arm_neon_vst4:
19137 case Intrinsic::arm_neon_vst2lane:
19138 case Intrinsic::arm_neon_vst3lane:
19139 case Intrinsic::arm_neon_vst4lane:
19140 return PerformVLDCombine(N, DCI);
19141 case Intrinsic::arm_mve_vld2q:
19142 case Intrinsic::arm_mve_vld4q:
19143 case Intrinsic::arm_mve_vst2q:
19144 case Intrinsic::arm_mve_vst4q:
19145 return PerformMVEVLDCombine(N, DCI);
19146 default: break;
19148 break;
19150 return SDValue();
19153 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
19154 EVT VT) const {
19155 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
19158 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
19159 Align Alignment,
19160 MachineMemOperand::Flags,
19161 unsigned *Fast) const {
19162 // Depends what it gets converted into if the type is weird.
19163 if (!VT.isSimple())
19164 return false;
19166 // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
19167 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
19168 auto Ty = VT.getSimpleVT().SimpleTy;
19170 if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
19171 // Unaligned access can use (for example) LRDB, LRDH, LDR
19172 if (AllowsUnaligned) {
19173 if (Fast)
19174 *Fast = Subtarget->hasV7Ops();
19175 return true;
19179 if (Ty == MVT::f64 || Ty == MVT::v2f64) {
19180 // For any little-endian targets with neon, we can support unaligned ld/st
19181 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
19182 // A big-endian target may also explicitly support unaligned accesses
19183 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
19184 if (Fast)
19185 *Fast = 1;
19186 return true;
19190 if (!Subtarget->hasMVEIntegerOps())
19191 return false;
19193 // These are for predicates
19194 if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1 ||
19195 Ty == MVT::v2i1)) {
19196 if (Fast)
19197 *Fast = 1;
19198 return true;
19201 // These are for truncated stores/narrowing loads. They are fine so long as
19202 // the alignment is at least the size of the item being loaded
19203 if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
19204 Alignment >= VT.getScalarSizeInBits() / 8) {
19205 if (Fast)
19206 *Fast = true;
19207 return true;
19210 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
19211 // VSTRW.U32 all store the vector register in exactly the same format, and
19212 // differ only in the range of their immediate offset field and the required
19213 // alignment. So there is always a store that can be used, regardless of
19214 // actual type.
19216 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
19217 // VREV64.8) pair and get the same effect. This will likely be better than
19218 // aligning the vector through the stack.
19219 if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
19220 Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
19221 Ty == MVT::v2f64) {
19222 if (Fast)
19223 *Fast = 1;
19224 return true;
19227 return false;
19231 EVT ARMTargetLowering::getOptimalMemOpType(
19232 const MemOp &Op, const AttributeList &FuncAttributes) const {
19233 // See if we can use NEON instructions for this...
19234 if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
19235 !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) {
19236 unsigned Fast;
19237 if (Op.size() >= 16 &&
19238 (Op.isAligned(Align(16)) ||
19239 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, Align(1),
19240 MachineMemOperand::MONone, &Fast) &&
19241 Fast))) {
19242 return MVT::v2f64;
19243 } else if (Op.size() >= 8 &&
19244 (Op.isAligned(Align(8)) ||
19245 (allowsMisalignedMemoryAccesses(
19246 MVT::f64, 0, Align(1), MachineMemOperand::MONone, &Fast) &&
19247 Fast))) {
19248 return MVT::f64;
19252 // Let the target-independent logic figure it out.
19253 return MVT::Other;
19256 // 64-bit integers are split into their high and low parts and held in two
19257 // different registers, so the trunc is free since the low register can just
19258 // be used.
19259 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
19260 if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
19261 return false;
19262 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
19263 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
19264 return (SrcBits == 64 && DestBits == 32);
19267 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
19268 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
19269 !DstVT.isInteger())
19270 return false;
19271 unsigned SrcBits = SrcVT.getSizeInBits();
19272 unsigned DestBits = DstVT.getSizeInBits();
19273 return (SrcBits == 64 && DestBits == 32);
19276 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
19277 if (Val.getOpcode() != ISD::LOAD)
19278 return false;
19280 EVT VT1 = Val.getValueType();
19281 if (!VT1.isSimple() || !VT1.isInteger() ||
19282 !VT2.isSimple() || !VT2.isInteger())
19283 return false;
19285 switch (VT1.getSimpleVT().SimpleTy) {
19286 default: break;
19287 case MVT::i1:
19288 case MVT::i8:
19289 case MVT::i16:
19290 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
19291 return true;
19294 return false;
19297 bool ARMTargetLowering::isFNegFree(EVT VT) const {
19298 if (!VT.isSimple())
19299 return false;
19301 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
19302 // negate values directly (fneg is free). So, we don't want to let the DAG
19303 // combiner rewrite fneg into xors and some other instructions. For f16 and
19304 // FullFP16 argument passing, some bitcast nodes may be introduced,
19305 // triggering this DAG combine rewrite, so we are avoiding that with this.
19306 switch (VT.getSimpleVT().SimpleTy) {
19307 default: break;
19308 case MVT::f16:
19309 return Subtarget->hasFullFP16();
19312 return false;
19315 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
19316 if (!Subtarget->hasMVEIntegerOps())
19317 return nullptr;
19318 Type *SVIType = SVI->getType();
19319 Type *ScalarType = SVIType->getScalarType();
19321 if (ScalarType->isFloatTy())
19322 return Type::getInt32Ty(SVIType->getContext());
19323 if (ScalarType->isHalfTy())
19324 return Type::getInt16Ty(SVIType->getContext());
19325 return nullptr;
19328 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
19329 EVT VT = ExtVal.getValueType();
19331 if (!isTypeLegal(VT))
19332 return false;
19334 if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
19335 if (Ld->isExpandingLoad())
19336 return false;
19339 if (Subtarget->hasMVEIntegerOps())
19340 return true;
19342 // Don't create a loadext if we can fold the extension into a wide/long
19343 // instruction.
19344 // If there's more than one user instruction, the loadext is desirable no
19345 // matter what. There can be two uses by the same instruction.
19346 if (ExtVal->use_empty() ||
19347 !ExtVal->user_begin()->isOnlyUserOf(ExtVal.getNode()))
19348 return true;
19350 SDNode *U = *ExtVal->user_begin();
19351 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
19352 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
19353 return false;
19355 return true;
19358 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
19359 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
19360 return false;
19362 if (!isTypeLegal(EVT::getEVT(Ty1)))
19363 return false;
19365 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
19367 // Assuming the caller doesn't have a zeroext or signext return parameter,
19368 // truncation all the way down to i1 is valid.
19369 return true;
19372 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
19373 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
19374 /// expanded to FMAs when this method returns true, otherwise fmuladd is
19375 /// expanded to fmul + fadd.
19377 /// ARM supports both fused and unfused multiply-add operations; we already
19378 /// lower a pair of fmul and fadd to the latter so it's not clear that there
19379 /// would be a gain or that the gain would be worthwhile enough to risk
19380 /// correctness bugs.
19382 /// For MVE, we set this to true as it helps simplify the need for some
19383 /// patterns (and we don't have the non-fused floating point instruction).
19384 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
19385 EVT VT) const {
19386 if (Subtarget->useSoftFloat())
19387 return false;
19389 if (!VT.isSimple())
19390 return false;
19392 switch (VT.getSimpleVT().SimpleTy) {
19393 case MVT::v4f32:
19394 case MVT::v8f16:
19395 return Subtarget->hasMVEFloatOps();
19396 case MVT::f16:
19397 return Subtarget->useFPVFMx16();
19398 case MVT::f32:
19399 return Subtarget->useFPVFMx();
19400 case MVT::f64:
19401 return Subtarget->useFPVFMx64();
19402 default:
19403 break;
19406 return false;
19409 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
19410 if (V < 0)
19411 return false;
19413 unsigned Scale = 1;
19414 switch (VT.getSimpleVT().SimpleTy) {
19415 case MVT::i1:
19416 case MVT::i8:
19417 // Scale == 1;
19418 break;
19419 case MVT::i16:
19420 // Scale == 2;
19421 Scale = 2;
19422 break;
19423 default:
19424 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
19425 // Scale == 4;
19426 Scale = 4;
19427 break;
19430 if ((V & (Scale - 1)) != 0)
19431 return false;
19432 return isUInt<5>(V / Scale);
19435 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
19436 const ARMSubtarget *Subtarget) {
19437 if (!VT.isInteger() && !VT.isFloatingPoint())
19438 return false;
19439 if (VT.isVector() && Subtarget->hasNEON())
19440 return false;
19441 if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
19442 !Subtarget->hasMVEFloatOps())
19443 return false;
19445 bool IsNeg = false;
19446 if (V < 0) {
19447 IsNeg = true;
19448 V = -V;
19451 unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
19453 // MVE: size * imm7
19454 if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
19455 switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
19456 case MVT::i32:
19457 case MVT::f32:
19458 return isShiftedUInt<7,2>(V);
19459 case MVT::i16:
19460 case MVT::f16:
19461 return isShiftedUInt<7,1>(V);
19462 case MVT::i8:
19463 return isUInt<7>(V);
19464 default:
19465 return false;
19469 // half VLDR: 2 * imm8
19470 if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
19471 return isShiftedUInt<8, 1>(V);
19472 // VLDR and LDRD: 4 * imm8
19473 if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
19474 return isShiftedUInt<8, 2>(V);
19476 if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
19477 // + imm12 or - imm8
19478 if (IsNeg)
19479 return isUInt<8>(V);
19480 return isUInt<12>(V);
19483 return false;
19486 /// isLegalAddressImmediate - Return true if the integer value can be used
19487 /// as the offset of the target addressing mode for load / store of the
19488 /// given type.
19489 static bool isLegalAddressImmediate(int64_t V, EVT VT,
19490 const ARMSubtarget *Subtarget) {
19491 if (V == 0)
19492 return true;
19494 if (!VT.isSimple())
19495 return false;
19497 if (Subtarget->isThumb1Only())
19498 return isLegalT1AddressImmediate(V, VT);
19499 else if (Subtarget->isThumb2())
19500 return isLegalT2AddressImmediate(V, VT, Subtarget);
19502 // ARM mode.
19503 if (V < 0)
19504 V = - V;
19505 switch (VT.getSimpleVT().SimpleTy) {
19506 default: return false;
19507 case MVT::i1:
19508 case MVT::i8:
19509 case MVT::i32:
19510 // +- imm12
19511 return isUInt<12>(V);
19512 case MVT::i16:
19513 // +- imm8
19514 return isUInt<8>(V);
19515 case MVT::f32:
19516 case MVT::f64:
19517 if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
19518 return false;
19519 return isShiftedUInt<8, 2>(V);
19523 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
19524 EVT VT) const {
19525 int Scale = AM.Scale;
19526 if (Scale < 0)
19527 return false;
19529 switch (VT.getSimpleVT().SimpleTy) {
19530 default: return false;
19531 case MVT::i1:
19532 case MVT::i8:
19533 case MVT::i16:
19534 case MVT::i32:
19535 if (Scale == 1)
19536 return true;
19537 // r + r << imm
19538 Scale = Scale & ~1;
19539 return Scale == 2 || Scale == 4 || Scale == 8;
19540 case MVT::i64:
19541 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
19542 // version in Thumb mode.
19543 // r + r
19544 if (Scale == 1)
19545 return true;
19546 // r * 2 (this can be lowered to r + r).
19547 if (!AM.HasBaseReg && Scale == 2)
19548 return true;
19549 return false;
19550 case MVT::isVoid:
19551 // Note, we allow "void" uses (basically, uses that aren't loads or
19552 // stores), because arm allows folding a scale into many arithmetic
19553 // operations. This should be made more precise and revisited later.
19555 // Allow r << imm, but the imm has to be a multiple of two.
19556 if (Scale & 1) return false;
19557 return isPowerOf2_32(Scale);
19561 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
19562 EVT VT) const {
19563 const int Scale = AM.Scale;
19565 // Negative scales are not supported in Thumb1.
19566 if (Scale < 0)
19567 return false;
19569 // Thumb1 addressing modes do not support register scaling excepting the
19570 // following cases:
19571 // 1. Scale == 1 means no scaling.
19572 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
19573 return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
19576 /// isLegalAddressingMode - Return true if the addressing mode represented
19577 /// by AM is legal for this target, for a load/store of the specified type.
19578 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
19579 const AddrMode &AM, Type *Ty,
19580 unsigned AS, Instruction *I) const {
19581 EVT VT = getValueType(DL, Ty, true);
19582 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
19583 return false;
19585 // Can never fold addr of global into load/store.
19586 if (AM.BaseGV)
19587 return false;
19589 switch (AM.Scale) {
19590 case 0: // no scale reg, must be "r+i" or "r", or "i".
19591 break;
19592 default:
19593 // ARM doesn't support any R+R*scale+imm addr modes.
19594 if (AM.BaseOffs)
19595 return false;
19597 if (!VT.isSimple())
19598 return false;
19600 if (Subtarget->isThumb1Only())
19601 return isLegalT1ScaledAddressingMode(AM, VT);
19603 if (Subtarget->isThumb2())
19604 return isLegalT2ScaledAddressingMode(AM, VT);
19606 int Scale = AM.Scale;
19607 switch (VT.getSimpleVT().SimpleTy) {
19608 default: return false;
19609 case MVT::i1:
19610 case MVT::i8:
19611 case MVT::i32:
19612 if (Scale < 0) Scale = -Scale;
19613 if (Scale == 1)
19614 return true;
19615 // r + r << imm
19616 return isPowerOf2_32(Scale & ~1);
19617 case MVT::i16:
19618 case MVT::i64:
19619 // r +/- r
19620 if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
19621 return true;
19622 // r * 2 (this can be lowered to r + r).
19623 if (!AM.HasBaseReg && Scale == 2)
19624 return true;
19625 return false;
19627 case MVT::isVoid:
19628 // Note, we allow "void" uses (basically, uses that aren't loads or
19629 // stores), because arm allows folding a scale into many arithmetic
19630 // operations. This should be made more precise and revisited later.
19632 // Allow r << imm, but the imm has to be a multiple of two.
19633 if (Scale & 1) return false;
19634 return isPowerOf2_32(Scale);
19637 return true;
19640 /// isLegalICmpImmediate - Return true if the specified immediate is legal
19641 /// icmp immediate, that is the target has icmp instructions which can compare
19642 /// a register against the immediate without having to materialize the
19643 /// immediate into a register.
19644 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
19645 // Thumb2 and ARM modes can use cmn for negative immediates.
19646 if (!Subtarget->isThumb())
19647 return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
19648 ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
19649 if (Subtarget->isThumb2())
19650 return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
19651 ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
19652 // Thumb1 doesn't have cmn, and only 8-bit immediates.
19653 return Imm >= 0 && Imm <= 255;
19656 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
19657 /// *or sub* immediate, that is the target has add or sub instructions which can
19658 /// add a register with the immediate without having to materialize the
19659 /// immediate into a register.
19660 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
19661 // Same encoding for add/sub, just flip the sign.
19662 int64_t AbsImm = std::abs(Imm);
19663 if (!Subtarget->isThumb())
19664 return ARM_AM::getSOImmVal(AbsImm) != -1;
19665 if (Subtarget->isThumb2())
19666 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
19667 // Thumb1 only has 8-bit unsigned immediate.
19668 return AbsImm >= 0 && AbsImm <= 255;
19671 // Return false to prevent folding
19672 // (mul (add r, c0), c1) -> (add (mul r, c1), c0*c1) in DAGCombine,
19673 // if the folding leads to worse code.
19674 bool ARMTargetLowering::isMulAddWithConstProfitable(SDValue AddNode,
19675 SDValue ConstNode) const {
19676 // Let the DAGCombiner decide for vector types and large types.
19677 const EVT VT = AddNode.getValueType();
19678 if (VT.isVector() || VT.getScalarSizeInBits() > 32)
19679 return true;
19681 // It is worse if c0 is legal add immediate, while c1*c0 is not
19682 // and has to be composed by at least two instructions.
19683 const ConstantSDNode *C0Node = cast<ConstantSDNode>(AddNode.getOperand(1));
19684 const ConstantSDNode *C1Node = cast<ConstantSDNode>(ConstNode);
19685 const int64_t C0 = C0Node->getSExtValue();
19686 APInt CA = C0Node->getAPIntValue() * C1Node->getAPIntValue();
19687 if (!isLegalAddImmediate(C0) || isLegalAddImmediate(CA.getSExtValue()))
19688 return true;
19689 if (ConstantMaterializationCost((unsigned)CA.getZExtValue(), Subtarget) > 1)
19690 return false;
19692 // Default to true and let the DAGCombiner decide.
19693 return true;
19696 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
19697 bool isSEXTLoad, SDValue &Base,
19698 SDValue &Offset, bool &isInc,
19699 SelectionDAG &DAG) {
19700 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19701 return false;
19703 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
19704 // AddressingMode 3
19705 Base = Ptr->getOperand(0);
19706 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19707 int RHSC = (int)RHS->getZExtValue();
19708 if (RHSC < 0 && RHSC > -256) {
19709 assert(Ptr->getOpcode() == ISD::ADD);
19710 isInc = false;
19711 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19712 return true;
19715 isInc = (Ptr->getOpcode() == ISD::ADD);
19716 Offset = Ptr->getOperand(1);
19717 return true;
19718 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
19719 // AddressingMode 2
19720 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19721 int RHSC = (int)RHS->getZExtValue();
19722 if (RHSC < 0 && RHSC > -0x1000) {
19723 assert(Ptr->getOpcode() == ISD::ADD);
19724 isInc = false;
19725 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19726 Base = Ptr->getOperand(0);
19727 return true;
19731 if (Ptr->getOpcode() == ISD::ADD) {
19732 isInc = true;
19733 ARM_AM::ShiftOpc ShOpcVal=
19734 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
19735 if (ShOpcVal != ARM_AM::no_shift) {
19736 Base = Ptr->getOperand(1);
19737 Offset = Ptr->getOperand(0);
19738 } else {
19739 Base = Ptr->getOperand(0);
19740 Offset = Ptr->getOperand(1);
19742 return true;
19745 isInc = (Ptr->getOpcode() == ISD::ADD);
19746 Base = Ptr->getOperand(0);
19747 Offset = Ptr->getOperand(1);
19748 return true;
19751 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
19752 return false;
19755 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
19756 bool isSEXTLoad, SDValue &Base,
19757 SDValue &Offset, bool &isInc,
19758 SelectionDAG &DAG) {
19759 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19760 return false;
19762 Base = Ptr->getOperand(0);
19763 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19764 int RHSC = (int)RHS->getZExtValue();
19765 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
19766 assert(Ptr->getOpcode() == ISD::ADD);
19767 isInc = false;
19768 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19769 return true;
19770 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
19771 isInc = Ptr->getOpcode() == ISD::ADD;
19772 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19773 return true;
19777 return false;
19780 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
19781 bool isSEXTLoad, bool IsMasked, bool isLE,
19782 SDValue &Base, SDValue &Offset,
19783 bool &isInc, SelectionDAG &DAG) {
19784 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19785 return false;
19786 if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
19787 return false;
19789 // We allow LE non-masked loads to change the type (for example use a vldrb.8
19790 // as opposed to a vldrw.32). This can allow extra addressing modes or
19791 // alignments for what is otherwise an equivalent instruction.
19792 bool CanChangeType = isLE && !IsMasked;
19794 ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
19795 int RHSC = (int)RHS->getZExtValue();
19797 auto IsInRange = [&](int RHSC, int Limit, int Scale) {
19798 if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
19799 assert(Ptr->getOpcode() == ISD::ADD);
19800 isInc = false;
19801 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19802 return true;
19803 } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
19804 isInc = Ptr->getOpcode() == ISD::ADD;
19805 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19806 return true;
19808 return false;
19811 // Try to find a matching instruction based on s/zext, Alignment, Offset and
19812 // (in BE/masked) type.
19813 Base = Ptr->getOperand(0);
19814 if (VT == MVT::v4i16) {
19815 if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
19816 return true;
19817 } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
19818 if (IsInRange(RHSC, 0x80, 1))
19819 return true;
19820 } else if (Alignment >= 4 &&
19821 (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
19822 IsInRange(RHSC, 0x80, 4))
19823 return true;
19824 else if (Alignment >= 2 &&
19825 (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
19826 IsInRange(RHSC, 0x80, 2))
19827 return true;
19828 else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
19829 return true;
19830 return false;
19833 /// getPreIndexedAddressParts - returns true by value, base pointer and
19834 /// offset pointer and addressing mode by reference if the node's address
19835 /// can be legally represented as pre-indexed load / store address.
19836 bool
19837 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
19838 SDValue &Offset,
19839 ISD::MemIndexedMode &AM,
19840 SelectionDAG &DAG) const {
19841 if (Subtarget->isThumb1Only())
19842 return false;
19844 EVT VT;
19845 SDValue Ptr;
19846 Align Alignment;
19847 bool isSEXTLoad = false;
19848 bool IsMasked = false;
19849 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19850 Ptr = LD->getBasePtr();
19851 VT = LD->getMemoryVT();
19852 Alignment = LD->getAlign();
19853 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19854 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19855 Ptr = ST->getBasePtr();
19856 VT = ST->getMemoryVT();
19857 Alignment = ST->getAlign();
19858 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19859 Ptr = LD->getBasePtr();
19860 VT = LD->getMemoryVT();
19861 Alignment = LD->getAlign();
19862 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19863 IsMasked = true;
19864 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19865 Ptr = ST->getBasePtr();
19866 VT = ST->getMemoryVT();
19867 Alignment = ST->getAlign();
19868 IsMasked = true;
19869 } else
19870 return false;
19872 bool isInc;
19873 bool isLegal = false;
19874 if (VT.isVector())
19875 isLegal = Subtarget->hasMVEIntegerOps() &&
19876 getMVEIndexedAddressParts(
19877 Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
19878 Subtarget->isLittle(), Base, Offset, isInc, DAG);
19879 else {
19880 if (Subtarget->isThumb2())
19881 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19882 Offset, isInc, DAG);
19883 else
19884 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19885 Offset, isInc, DAG);
19887 if (!isLegal)
19888 return false;
19890 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
19891 return true;
19894 /// getPostIndexedAddressParts - returns true by value, base pointer and
19895 /// offset pointer and addressing mode by reference if this node can be
19896 /// combined with a load / store to form a post-indexed load / store.
19897 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
19898 SDValue &Base,
19899 SDValue &Offset,
19900 ISD::MemIndexedMode &AM,
19901 SelectionDAG &DAG) const {
19902 EVT VT;
19903 SDValue Ptr;
19904 Align Alignment;
19905 bool isSEXTLoad = false, isNonExt;
19906 bool IsMasked = false;
19907 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19908 VT = LD->getMemoryVT();
19909 Ptr = LD->getBasePtr();
19910 Alignment = LD->getAlign();
19911 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19912 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19913 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19914 VT = ST->getMemoryVT();
19915 Ptr = ST->getBasePtr();
19916 Alignment = ST->getAlign();
19917 isNonExt = !ST->isTruncatingStore();
19918 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19919 VT = LD->getMemoryVT();
19920 Ptr = LD->getBasePtr();
19921 Alignment = LD->getAlign();
19922 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19923 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19924 IsMasked = true;
19925 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19926 VT = ST->getMemoryVT();
19927 Ptr = ST->getBasePtr();
19928 Alignment = ST->getAlign();
19929 isNonExt = !ST->isTruncatingStore();
19930 IsMasked = true;
19931 } else
19932 return false;
19934 if (Subtarget->isThumb1Only()) {
19935 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
19936 // must be non-extending/truncating, i32, with an offset of 4.
19937 assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
19938 if (Op->getOpcode() != ISD::ADD || !isNonExt)
19939 return false;
19940 auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
19941 if (!RHS || RHS->getZExtValue() != 4)
19942 return false;
19943 if (Alignment < Align(4))
19944 return false;
19946 Offset = Op->getOperand(1);
19947 Base = Op->getOperand(0);
19948 AM = ISD::POST_INC;
19949 return true;
19952 bool isInc;
19953 bool isLegal = false;
19954 if (VT.isVector())
19955 isLegal = Subtarget->hasMVEIntegerOps() &&
19956 getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
19957 Subtarget->isLittle(), Base, Offset,
19958 isInc, DAG);
19959 else {
19960 if (Subtarget->isThumb2())
19961 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
19962 isInc, DAG);
19963 else
19964 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
19965 isInc, DAG);
19967 if (!isLegal)
19968 return false;
19970 if (Ptr != Base) {
19971 // Swap base ptr and offset to catch more post-index load / store when
19972 // it's legal. In Thumb2 mode, offset must be an immediate.
19973 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
19974 !Subtarget->isThumb2())
19975 std::swap(Base, Offset);
19977 // Post-indexed load / store update the base pointer.
19978 if (Ptr != Base)
19979 return false;
19982 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
19983 return true;
19986 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
19987 KnownBits &Known,
19988 const APInt &DemandedElts,
19989 const SelectionDAG &DAG,
19990 unsigned Depth) const {
19991 unsigned BitWidth = Known.getBitWidth();
19992 Known.resetAll();
19993 switch (Op.getOpcode()) {
19994 default: break;
19995 case ARMISD::ADDC:
19996 case ARMISD::ADDE:
19997 case ARMISD::SUBC:
19998 case ARMISD::SUBE:
19999 // Special cases when we convert a carry to a boolean.
20000 if (Op.getResNo() == 0) {
20001 SDValue LHS = Op.getOperand(0);
20002 SDValue RHS = Op.getOperand(1);
20003 // (ADDE 0, 0, C) will give us a single bit.
20004 if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
20005 isNullConstant(RHS)) {
20006 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
20007 return;
20010 break;
20011 case ARMISD::CMOV: {
20012 // Bits are known zero/one if known on the LHS and RHS.
20013 Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
20014 if (Known.isUnknown())
20015 return;
20017 KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
20018 Known = Known.intersectWith(KnownRHS);
20019 return;
20021 case ISD::INTRINSIC_W_CHAIN: {
20022 Intrinsic::ID IntID =
20023 static_cast<Intrinsic::ID>(Op->getConstantOperandVal(1));
20024 switch (IntID) {
20025 default: return;
20026 case Intrinsic::arm_ldaex:
20027 case Intrinsic::arm_ldrex: {
20028 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
20029 unsigned MemBits = VT.getScalarSizeInBits();
20030 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
20031 return;
20035 case ARMISD::BFI: {
20036 // Conservatively, we can recurse down the first operand
20037 // and just mask out all affected bits.
20038 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
20040 // The operand to BFI is already a mask suitable for removing the bits it
20041 // sets.
20042 const APInt &Mask = Op.getConstantOperandAPInt(2);
20043 Known.Zero &= Mask;
20044 Known.One &= Mask;
20045 return;
20047 case ARMISD::VGETLANEs:
20048 case ARMISD::VGETLANEu: {
20049 const SDValue &SrcSV = Op.getOperand(0);
20050 EVT VecVT = SrcSV.getValueType();
20051 assert(VecVT.isVector() && "VGETLANE expected a vector type");
20052 const unsigned NumSrcElts = VecVT.getVectorNumElements();
20053 ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
20054 assert(Pos->getAPIntValue().ult(NumSrcElts) &&
20055 "VGETLANE index out of bounds");
20056 unsigned Idx = Pos->getZExtValue();
20057 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
20058 Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
20060 EVT VT = Op.getValueType();
20061 const unsigned DstSz = VT.getScalarSizeInBits();
20062 const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
20063 (void)SrcSz;
20064 assert(SrcSz == Known.getBitWidth());
20065 assert(DstSz > SrcSz);
20066 if (Op.getOpcode() == ARMISD::VGETLANEs)
20067 Known = Known.sext(DstSz);
20068 else {
20069 Known = Known.zext(DstSz);
20071 assert(DstSz == Known.getBitWidth());
20072 break;
20074 case ARMISD::VMOVrh: {
20075 KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
20076 assert(KnownOp.getBitWidth() == 16);
20077 Known = KnownOp.zext(32);
20078 break;
20080 case ARMISD::CSINC:
20081 case ARMISD::CSINV:
20082 case ARMISD::CSNEG: {
20083 KnownBits KnownOp0 = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
20084 KnownBits KnownOp1 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
20086 // The result is either:
20087 // CSINC: KnownOp0 or KnownOp1 + 1
20088 // CSINV: KnownOp0 or ~KnownOp1
20089 // CSNEG: KnownOp0 or KnownOp1 * -1
20090 if (Op.getOpcode() == ARMISD::CSINC)
20091 KnownOp1 =
20092 KnownBits::add(KnownOp1, KnownBits::makeConstant(APInt(32, 1)));
20093 else if (Op.getOpcode() == ARMISD::CSINV)
20094 std::swap(KnownOp1.Zero, KnownOp1.One);
20095 else if (Op.getOpcode() == ARMISD::CSNEG)
20096 KnownOp1 = KnownBits::mul(KnownOp1,
20097 KnownBits::makeConstant(APInt::getAllOnes(32)));
20099 Known = KnownOp0.intersectWith(KnownOp1);
20100 break;
20105 bool ARMTargetLowering::targetShrinkDemandedConstant(
20106 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
20107 TargetLoweringOpt &TLO) const {
20108 // Delay optimization, so we don't have to deal with illegal types, or block
20109 // optimizations.
20110 if (!TLO.LegalOps)
20111 return false;
20113 // Only optimize AND for now.
20114 if (Op.getOpcode() != ISD::AND)
20115 return false;
20117 EVT VT = Op.getValueType();
20119 // Ignore vectors.
20120 if (VT.isVector())
20121 return false;
20123 assert(VT == MVT::i32 && "Unexpected integer type");
20125 // Make sure the RHS really is a constant.
20126 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
20127 if (!C)
20128 return false;
20130 unsigned Mask = C->getZExtValue();
20132 unsigned Demanded = DemandedBits.getZExtValue();
20133 unsigned ShrunkMask = Mask & Demanded;
20134 unsigned ExpandedMask = Mask | ~Demanded;
20136 // If the mask is all zeros, let the target-independent code replace the
20137 // result with zero.
20138 if (ShrunkMask == 0)
20139 return false;
20141 // If the mask is all ones, erase the AND. (Currently, the target-independent
20142 // code won't do this, so we have to do it explicitly to avoid an infinite
20143 // loop in obscure cases.)
20144 if (ExpandedMask == ~0U)
20145 return TLO.CombineTo(Op, Op.getOperand(0));
20147 auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
20148 return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
20150 auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
20151 if (NewMask == Mask)
20152 return true;
20153 SDLoc DL(Op);
20154 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
20155 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
20156 return TLO.CombineTo(Op, NewOp);
20159 // Prefer uxtb mask.
20160 if (IsLegalMask(0xFF))
20161 return UseMask(0xFF);
20163 // Prefer uxth mask.
20164 if (IsLegalMask(0xFFFF))
20165 return UseMask(0xFFFF);
20167 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
20168 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20169 if (ShrunkMask < 256)
20170 return UseMask(ShrunkMask);
20172 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
20173 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
20174 if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
20175 return UseMask(ExpandedMask);
20177 // Potential improvements:
20179 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
20180 // We could try to prefer Thumb1 immediates which can be lowered to a
20181 // two-instruction sequence.
20182 // We could try to recognize more legal ARM/Thumb2 immediates here.
20184 return false;
20187 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
20188 SDValue Op, const APInt &OriginalDemandedBits,
20189 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
20190 unsigned Depth) const {
20191 unsigned Opc = Op.getOpcode();
20193 switch (Opc) {
20194 case ARMISD::ASRL:
20195 case ARMISD::LSRL: {
20196 // If this is result 0 and the other result is unused, see if the demand
20197 // bits allow us to shrink this long shift into a standard small shift in
20198 // the opposite direction.
20199 if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
20200 isa<ConstantSDNode>(Op->getOperand(2))) {
20201 unsigned ShAmt = Op->getConstantOperandVal(2);
20202 if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(APInt::getAllOnes(32)
20203 << (32 - ShAmt)))
20204 return TLO.CombineTo(
20205 Op, TLO.DAG.getNode(
20206 ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
20207 TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
20209 break;
20211 case ARMISD::VBICIMM: {
20212 SDValue Op0 = Op.getOperand(0);
20213 unsigned ModImm = Op.getConstantOperandVal(1);
20214 unsigned EltBits = 0;
20215 uint64_t Mask = ARM_AM::decodeVMOVModImm(ModImm, EltBits);
20216 if ((OriginalDemandedBits & Mask) == 0)
20217 return TLO.CombineTo(Op, Op0);
20221 return TargetLowering::SimplifyDemandedBitsForTargetNode(
20222 Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
20225 //===----------------------------------------------------------------------===//
20226 // ARM Inline Assembly Support
20227 //===----------------------------------------------------------------------===//
20229 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
20230 // Looking for "rev" which is V6+.
20231 if (!Subtarget->hasV6Ops())
20232 return false;
20234 InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
20235 StringRef AsmStr = IA->getAsmString();
20236 SmallVector<StringRef, 4> AsmPieces;
20237 SplitString(AsmStr, AsmPieces, ";\n");
20239 switch (AsmPieces.size()) {
20240 default: return false;
20241 case 1:
20242 AsmStr = AsmPieces[0];
20243 AsmPieces.clear();
20244 SplitString(AsmStr, AsmPieces, " \t,");
20246 // rev $0, $1
20247 if (AsmPieces.size() == 3 &&
20248 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
20249 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
20250 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
20251 if (Ty && Ty->getBitWidth() == 32)
20252 return IntrinsicLowering::LowerToByteSwap(CI);
20254 break;
20257 return false;
20260 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
20261 // At this point, we have to lower this constraint to something else, so we
20262 // lower it to an "r" or "w". However, by doing this we will force the result
20263 // to be in register, while the X constraint is much more permissive.
20265 // Although we are correct (we are free to emit anything, without
20266 // constraints), we might break use cases that would expect us to be more
20267 // efficient and emit something else.
20268 if (!Subtarget->hasVFP2Base())
20269 return "r";
20270 if (ConstraintVT.isFloatingPoint())
20271 return "w";
20272 if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
20273 (ConstraintVT.getSizeInBits() == 64 ||
20274 ConstraintVT.getSizeInBits() == 128))
20275 return "w";
20277 return "r";
20280 /// getConstraintType - Given a constraint letter, return the type of
20281 /// constraint it is for this target.
20282 ARMTargetLowering::ConstraintType
20283 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
20284 unsigned S = Constraint.size();
20285 if (S == 1) {
20286 switch (Constraint[0]) {
20287 default: break;
20288 case 'l': return C_RegisterClass;
20289 case 'w': return C_RegisterClass;
20290 case 'h': return C_RegisterClass;
20291 case 'x': return C_RegisterClass;
20292 case 't': return C_RegisterClass;
20293 case 'j': return C_Immediate; // Constant for movw.
20294 // An address with a single base register. Due to the way we
20295 // currently handle addresses it is the same as an 'r' memory constraint.
20296 case 'Q': return C_Memory;
20298 } else if (S == 2) {
20299 switch (Constraint[0]) {
20300 default: break;
20301 case 'T': return C_RegisterClass;
20302 // All 'U+' constraints are addresses.
20303 case 'U': return C_Memory;
20306 return TargetLowering::getConstraintType(Constraint);
20309 /// Examine constraint type and operand type and determine a weight value.
20310 /// This object must already have been set up with the operand type
20311 /// and the current alternative constraint selected.
20312 TargetLowering::ConstraintWeight
20313 ARMTargetLowering::getSingleConstraintMatchWeight(
20314 AsmOperandInfo &info, const char *constraint) const {
20315 ConstraintWeight weight = CW_Invalid;
20316 Value *CallOperandVal = info.CallOperandVal;
20317 // If we don't have a value, we can't do a match,
20318 // but allow it at the lowest weight.
20319 if (!CallOperandVal)
20320 return CW_Default;
20321 Type *type = CallOperandVal->getType();
20322 // Look at the constraint type.
20323 switch (*constraint) {
20324 default:
20325 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
20326 break;
20327 case 'l':
20328 if (type->isIntegerTy()) {
20329 if (Subtarget->isThumb())
20330 weight = CW_SpecificReg;
20331 else
20332 weight = CW_Register;
20334 break;
20335 case 'w':
20336 if (type->isFloatingPointTy())
20337 weight = CW_Register;
20338 break;
20340 return weight;
20343 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
20345 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
20346 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
20347 switch (Constraint.size()) {
20348 case 1:
20349 // GCC ARM Constraint Letters
20350 switch (Constraint[0]) {
20351 case 'l': // Low regs or general regs.
20352 if (Subtarget->isThumb())
20353 return RCPair(0U, &ARM::tGPRRegClass);
20354 return RCPair(0U, &ARM::GPRRegClass);
20355 case 'h': // High regs or no regs.
20356 if (Subtarget->isThumb())
20357 return RCPair(0U, &ARM::hGPRRegClass);
20358 break;
20359 case 'r':
20360 if (Subtarget->isThumb1Only())
20361 return RCPair(0U, &ARM::tGPRRegClass);
20362 return RCPair(0U, &ARM::GPRRegClass);
20363 case 'w':
20364 if (VT == MVT::Other)
20365 break;
20366 if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20367 return RCPair(0U, &ARM::SPRRegClass);
20368 if (VT.getSizeInBits() == 64)
20369 return RCPair(0U, &ARM::DPRRegClass);
20370 if (VT.getSizeInBits() == 128)
20371 return RCPair(0U, &ARM::QPRRegClass);
20372 break;
20373 case 'x':
20374 if (VT == MVT::Other)
20375 break;
20376 if (VT == MVT::f32 || VT == MVT::f16 || VT == MVT::bf16)
20377 return RCPair(0U, &ARM::SPR_8RegClass);
20378 if (VT.getSizeInBits() == 64)
20379 return RCPair(0U, &ARM::DPR_8RegClass);
20380 if (VT.getSizeInBits() == 128)
20381 return RCPair(0U, &ARM::QPR_8RegClass);
20382 break;
20383 case 't':
20384 if (VT == MVT::Other)
20385 break;
20386 if (VT == MVT::f32 || VT == MVT::i32 || VT == MVT::f16 || VT == MVT::bf16)
20387 return RCPair(0U, &ARM::SPRRegClass);
20388 if (VT.getSizeInBits() == 64)
20389 return RCPair(0U, &ARM::DPR_VFP2RegClass);
20390 if (VT.getSizeInBits() == 128)
20391 return RCPair(0U, &ARM::QPR_VFP2RegClass);
20392 break;
20394 break;
20396 case 2:
20397 if (Constraint[0] == 'T') {
20398 switch (Constraint[1]) {
20399 default:
20400 break;
20401 case 'e':
20402 return RCPair(0U, &ARM::tGPREvenRegClass);
20403 case 'o':
20404 return RCPair(0U, &ARM::tGPROddRegClass);
20407 break;
20409 default:
20410 break;
20413 if (StringRef("{cc}").equals_insensitive(Constraint))
20414 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
20416 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
20419 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
20420 /// vector. If it is invalid, don't add anything to Ops.
20421 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
20422 StringRef Constraint,
20423 std::vector<SDValue> &Ops,
20424 SelectionDAG &DAG) const {
20425 SDValue Result;
20427 // Currently only support length 1 constraints.
20428 if (Constraint.size() != 1)
20429 return;
20431 char ConstraintLetter = Constraint[0];
20432 switch (ConstraintLetter) {
20433 default: break;
20434 case 'j':
20435 case 'I': case 'J': case 'K': case 'L':
20436 case 'M': case 'N': case 'O':
20437 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
20438 if (!C)
20439 return;
20441 int64_t CVal64 = C->getSExtValue();
20442 int CVal = (int) CVal64;
20443 // None of these constraints allow values larger than 32 bits. Check
20444 // that the value fits in an int.
20445 if (CVal != CVal64)
20446 return;
20448 switch (ConstraintLetter) {
20449 case 'j':
20450 // Constant suitable for movw, must be between 0 and
20451 // 65535.
20452 if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
20453 if (CVal >= 0 && CVal <= 65535)
20454 break;
20455 return;
20456 case 'I':
20457 if (Subtarget->isThumb1Only()) {
20458 // This must be a constant between 0 and 255, for ADD
20459 // immediates.
20460 if (CVal >= 0 && CVal <= 255)
20461 break;
20462 } else if (Subtarget->isThumb2()) {
20463 // A constant that can be used as an immediate value in a
20464 // data-processing instruction.
20465 if (ARM_AM::getT2SOImmVal(CVal) != -1)
20466 break;
20467 } else {
20468 // A constant that can be used as an immediate value in a
20469 // data-processing instruction.
20470 if (ARM_AM::getSOImmVal(CVal) != -1)
20471 break;
20473 return;
20475 case 'J':
20476 if (Subtarget->isThumb1Only()) {
20477 // This must be a constant between -255 and -1, for negated ADD
20478 // immediates. This can be used in GCC with an "n" modifier that
20479 // prints the negated value, for use with SUB instructions. It is
20480 // not useful otherwise but is implemented for compatibility.
20481 if (CVal >= -255 && CVal <= -1)
20482 break;
20483 } else {
20484 // This must be a constant between -4095 and 4095. It is not clear
20485 // what this constraint is intended for. Implemented for
20486 // compatibility with GCC.
20487 if (CVal >= -4095 && CVal <= 4095)
20488 break;
20490 return;
20492 case 'K':
20493 if (Subtarget->isThumb1Only()) {
20494 // A 32-bit value where only one byte has a nonzero value. Exclude
20495 // zero to match GCC. This constraint is used by GCC internally for
20496 // constants that can be loaded with a move/shift combination.
20497 // It is not useful otherwise but is implemented for compatibility.
20498 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
20499 break;
20500 } else if (Subtarget->isThumb2()) {
20501 // A constant whose bitwise inverse can be used as an immediate
20502 // value in a data-processing instruction. This can be used in GCC
20503 // with a "B" modifier that prints the inverted value, for use with
20504 // BIC and MVN instructions. It is not useful otherwise but is
20505 // implemented for compatibility.
20506 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
20507 break;
20508 } else {
20509 // A constant whose bitwise inverse can be used as an immediate
20510 // value in a data-processing instruction. This can be used in GCC
20511 // with a "B" modifier that prints the inverted value, for use with
20512 // BIC and MVN instructions. It is not useful otherwise but is
20513 // implemented for compatibility.
20514 if (ARM_AM::getSOImmVal(~CVal) != -1)
20515 break;
20517 return;
20519 case 'L':
20520 if (Subtarget->isThumb1Only()) {
20521 // This must be a constant between -7 and 7,
20522 // for 3-operand ADD/SUB immediate instructions.
20523 if (CVal >= -7 && CVal < 7)
20524 break;
20525 } else if (Subtarget->isThumb2()) {
20526 // A constant whose negation can be used as an immediate value in a
20527 // data-processing instruction. This can be used in GCC with an "n"
20528 // modifier that prints the negated value, for use with SUB
20529 // instructions. It is not useful otherwise but is implemented for
20530 // compatibility.
20531 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
20532 break;
20533 } else {
20534 // A constant whose negation can be used as an immediate value in a
20535 // data-processing instruction. This can be used in GCC with an "n"
20536 // modifier that prints the negated value, for use with SUB
20537 // instructions. It is not useful otherwise but is implemented for
20538 // compatibility.
20539 if (ARM_AM::getSOImmVal(-CVal) != -1)
20540 break;
20542 return;
20544 case 'M':
20545 if (Subtarget->isThumb1Only()) {
20546 // This must be a multiple of 4 between 0 and 1020, for
20547 // ADD sp + immediate.
20548 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
20549 break;
20550 } else {
20551 // A power of two or a constant between 0 and 32. This is used in
20552 // GCC for the shift amount on shifted register operands, but it is
20553 // useful in general for any shift amounts.
20554 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
20555 break;
20557 return;
20559 case 'N':
20560 if (Subtarget->isThumb1Only()) {
20561 // This must be a constant between 0 and 31, for shift amounts.
20562 if (CVal >= 0 && CVal <= 31)
20563 break;
20565 return;
20567 case 'O':
20568 if (Subtarget->isThumb1Only()) {
20569 // This must be a multiple of 4 between -508 and 508, for
20570 // ADD/SUB sp = sp + immediate.
20571 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
20572 break;
20574 return;
20576 Result = DAG.getSignedTargetConstant(CVal, SDLoc(Op), Op.getValueType());
20577 break;
20580 if (Result.getNode()) {
20581 Ops.push_back(Result);
20582 return;
20584 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
20587 static RTLIB::Libcall getDivRemLibcall(
20588 const SDNode *N, MVT::SimpleValueType SVT) {
20589 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20590 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
20591 "Unhandled Opcode in getDivRemLibcall");
20592 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20593 N->getOpcode() == ISD::SREM;
20594 RTLIB::Libcall LC;
20595 switch (SVT) {
20596 default: llvm_unreachable("Unexpected request for libcall!");
20597 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
20598 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
20599 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
20600 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
20602 return LC;
20605 static TargetLowering::ArgListTy getDivRemArgList(
20606 const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
20607 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20608 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
20609 "Unhandled Opcode in getDivRemArgList");
20610 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20611 N->getOpcode() == ISD::SREM;
20612 TargetLowering::ArgListTy Args;
20613 TargetLowering::ArgListEntry Entry;
20614 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
20615 EVT ArgVT = N->getOperand(i).getValueType();
20616 Type *ArgTy = ArgVT.getTypeForEVT(*Context);
20617 Entry.Node = N->getOperand(i);
20618 Entry.Ty = ArgTy;
20619 Entry.IsSExt = isSigned;
20620 Entry.IsZExt = !isSigned;
20621 Args.push_back(Entry);
20623 if (Subtarget->isTargetWindows() && Args.size() >= 2)
20624 std::swap(Args[0], Args[1]);
20625 return Args;
20628 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
20629 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
20630 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
20631 Subtarget->isTargetWindows()) &&
20632 "Register-based DivRem lowering only");
20633 unsigned Opcode = Op->getOpcode();
20634 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
20635 "Invalid opcode for Div/Rem lowering");
20636 bool isSigned = (Opcode == ISD::SDIVREM);
20637 EVT VT = Op->getValueType(0);
20638 SDLoc dl(Op);
20640 if (VT == MVT::i64 && isa<ConstantSDNode>(Op.getOperand(1))) {
20641 SmallVector<SDValue> Result;
20642 if (expandDIVREMByConstant(Op.getNode(), Result, MVT::i32, DAG)) {
20643 SDValue Res0 =
20644 DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[0], Result[1]);
20645 SDValue Res1 =
20646 DAG.getNode(ISD::BUILD_PAIR, dl, VT, Result[2], Result[3]);
20647 return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
20648 {Res0, Res1});
20652 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
20654 // If the target has hardware divide, use divide + multiply + subtract:
20655 // div = a / b
20656 // rem = a - b * div
20657 // return {div, rem}
20658 // This should be lowered into UDIV/SDIV + MLS later on.
20659 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
20660 : Subtarget->hasDivideInARMMode();
20661 if (hasDivide && Op->getValueType(0).isSimple() &&
20662 Op->getSimpleValueType(0) == MVT::i32) {
20663 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
20664 const SDValue Dividend = Op->getOperand(0);
20665 const SDValue Divisor = Op->getOperand(1);
20666 SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
20667 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
20668 SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
20670 SDValue Values[2] = {Div, Rem};
20671 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
20674 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
20675 VT.getSimpleVT().SimpleTy);
20676 SDValue InChain = DAG.getEntryNode();
20678 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
20679 DAG.getContext(),
20680 Subtarget);
20682 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20683 getPointerTy(DAG.getDataLayout()));
20685 Type *RetTy = StructType::get(Ty, Ty);
20687 if (Subtarget->isTargetWindows())
20688 InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
20690 TargetLowering::CallLoweringInfo CLI(DAG);
20691 CLI.setDebugLoc(dl).setChain(InChain)
20692 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
20693 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
20695 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
20696 return CallInfo.first;
20699 // Lowers REM using divmod helpers
20700 // see RTABI section 4.2/4.3
20701 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
20702 EVT VT = N->getValueType(0);
20704 if (VT == MVT::i64 && isa<ConstantSDNode>(N->getOperand(1))) {
20705 SmallVector<SDValue> Result;
20706 if (expandDIVREMByConstant(N, Result, MVT::i32, DAG))
20707 return DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), N->getValueType(0),
20708 Result[0], Result[1]);
20711 // Build return types (div and rem)
20712 std::vector<Type*> RetTyParams;
20713 Type *RetTyElement;
20715 switch (VT.getSimpleVT().SimpleTy) {
20716 default: llvm_unreachable("Unexpected request for libcall!");
20717 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
20718 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
20719 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
20720 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
20723 RetTyParams.push_back(RetTyElement);
20724 RetTyParams.push_back(RetTyElement);
20725 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
20726 Type *RetTy = StructType::get(*DAG.getContext(), ret);
20728 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
20729 SimpleTy);
20730 SDValue InChain = DAG.getEntryNode();
20731 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
20732 Subtarget);
20733 bool isSigned = N->getOpcode() == ISD::SREM;
20734 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20735 getPointerTy(DAG.getDataLayout()));
20737 if (Subtarget->isTargetWindows())
20738 InChain = WinDBZCheckDenominator(DAG, N, InChain);
20740 // Lower call
20741 CallLoweringInfo CLI(DAG);
20742 CLI.setChain(InChain)
20743 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
20744 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
20745 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
20747 // Return second (rem) result operand (first contains div)
20748 SDNode *ResNode = CallResult.first.getNode();
20749 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
20750 return ResNode->getOperand(1);
20753 SDValue
20754 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
20755 assert(Subtarget->isTargetWindows() && "unsupported target platform");
20756 SDLoc DL(Op);
20758 // Get the inputs.
20759 SDValue Chain = Op.getOperand(0);
20760 SDValue Size = Op.getOperand(1);
20762 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
20763 "no-stack-arg-probe")) {
20764 MaybeAlign Align =
20765 cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
20766 SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20767 Chain = SP.getValue(1);
20768 SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
20769 if (Align)
20770 SP =
20771 DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
20772 DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
20773 Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
20774 SDValue Ops[2] = { SP, Chain };
20775 return DAG.getMergeValues(Ops, DL);
20778 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
20779 DAG.getConstant(2, DL, MVT::i32));
20781 SDValue Glue;
20782 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Glue);
20783 Glue = Chain.getValue(1);
20785 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
20786 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Glue);
20788 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20789 Chain = NewSP.getValue(1);
20791 SDValue Ops[2] = { NewSP, Chain };
20792 return DAG.getMergeValues(Ops, DL);
20795 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
20796 bool IsStrict = Op->isStrictFPOpcode();
20797 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20798 const unsigned DstSz = Op.getValueType().getSizeInBits();
20799 const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
20800 assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
20801 "Unexpected type for custom-lowering FP_EXTEND");
20803 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20804 "With both FP DP and 16, any FP conversion is legal!");
20806 assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
20807 "With FP16, 16 to 32 conversion is legal!");
20809 // Converting from 32 -> 64 is valid if we have FP64.
20810 if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
20811 // FIXME: Remove this when we have strict fp instruction selection patterns
20812 if (IsStrict) {
20813 SDLoc Loc(Op);
20814 SDValue Result = DAG.getNode(ISD::FP_EXTEND,
20815 Loc, Op.getValueType(), SrcVal);
20816 return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
20818 return Op;
20821 // Either we are converting from 16 -> 64, without FP16 and/or
20822 // FP.double-precision or without Armv8-fp. So we must do it in two
20823 // steps.
20824 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
20825 // without FP16. So we must do a function call.
20826 SDLoc Loc(Op);
20827 RTLIB::Libcall LC;
20828 MakeLibCallOptions CallOptions;
20829 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20830 for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
20831 bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
20832 MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
20833 MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
20834 if (Supported) {
20835 if (IsStrict) {
20836 SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
20837 {DstVT, MVT::Other}, {Chain, SrcVal});
20838 Chain = SrcVal.getValue(1);
20839 } else {
20840 SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
20842 } else {
20843 LC = RTLIB::getFPEXT(SrcVT, DstVT);
20844 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20845 "Unexpected type for custom-lowering FP_EXTEND");
20846 std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20847 Loc, Chain);
20851 return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
20854 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
20855 bool IsStrict = Op->isStrictFPOpcode();
20857 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20858 EVT SrcVT = SrcVal.getValueType();
20859 EVT DstVT = Op.getValueType();
20860 const unsigned DstSz = Op.getValueType().getSizeInBits();
20861 const unsigned SrcSz = SrcVT.getSizeInBits();
20862 (void)DstSz;
20863 assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
20864 "Unexpected type for custom-lowering FP_ROUND");
20866 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20867 "With both FP DP and 16, any FP conversion is legal!");
20869 SDLoc Loc(Op);
20871 // Instruction from 32 -> 16 if hasFP16 is valid
20872 if (SrcSz == 32 && Subtarget->hasFP16())
20873 return Op;
20875 // Lib call from 32 -> 16 / 64 -> [32, 16]
20876 RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
20877 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20878 "Unexpected type for custom-lowering FP_ROUND");
20879 MakeLibCallOptions CallOptions;
20880 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20881 SDValue Result;
20882 std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20883 Loc, Chain);
20884 return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
20887 bool
20888 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
20889 // The ARM target isn't yet aware of offsets.
20890 return false;
20893 bool ARM::isBitFieldInvertedMask(unsigned v) {
20894 if (v == 0xffffffff)
20895 return false;
20897 // there can be 1's on either or both "outsides", all the "inside"
20898 // bits must be 0's
20899 return isShiftedMask_32(~v);
20902 /// isFPImmLegal - Returns true if the target can instruction select the
20903 /// specified FP immediate natively. If false, the legalizer will
20904 /// materialize the FP immediate as a load from a constant pool.
20905 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
20906 bool ForCodeSize) const {
20907 if (!Subtarget->hasVFP3Base())
20908 return false;
20909 if (VT == MVT::f16 && Subtarget->hasFullFP16())
20910 return ARM_AM::getFP16Imm(Imm) != -1;
20911 if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
20912 ARM_AM::getFP32FP16Imm(Imm) != -1)
20913 return true;
20914 if (VT == MVT::f32)
20915 return ARM_AM::getFP32Imm(Imm) != -1;
20916 if (VT == MVT::f64 && Subtarget->hasFP64())
20917 return ARM_AM::getFP64Imm(Imm) != -1;
20918 return false;
20921 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
20922 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
20923 /// specified in the intrinsic calls.
20924 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
20925 const CallInst &I,
20926 MachineFunction &MF,
20927 unsigned Intrinsic) const {
20928 switch (Intrinsic) {
20929 case Intrinsic::arm_neon_vld1:
20930 case Intrinsic::arm_neon_vld2:
20931 case Intrinsic::arm_neon_vld3:
20932 case Intrinsic::arm_neon_vld4:
20933 case Intrinsic::arm_neon_vld2lane:
20934 case Intrinsic::arm_neon_vld3lane:
20935 case Intrinsic::arm_neon_vld4lane:
20936 case Intrinsic::arm_neon_vld2dup:
20937 case Intrinsic::arm_neon_vld3dup:
20938 case Intrinsic::arm_neon_vld4dup: {
20939 Info.opc = ISD::INTRINSIC_W_CHAIN;
20940 // Conservatively set memVT to the entire set of vectors loaded.
20941 auto &DL = I.getDataLayout();
20942 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
20943 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20944 Info.ptrVal = I.getArgOperand(0);
20945 Info.offset = 0;
20946 Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
20947 Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20948 // volatile loads with NEON intrinsics not supported
20949 Info.flags = MachineMemOperand::MOLoad;
20950 return true;
20952 case Intrinsic::arm_neon_vld1x2:
20953 case Intrinsic::arm_neon_vld1x3:
20954 case Intrinsic::arm_neon_vld1x4: {
20955 Info.opc = ISD::INTRINSIC_W_CHAIN;
20956 // Conservatively set memVT to the entire set of vectors loaded.
20957 auto &DL = I.getDataLayout();
20958 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
20959 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20960 Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
20961 Info.offset = 0;
20962 Info.align = I.getParamAlign(I.arg_size() - 1).valueOrOne();
20963 // volatile loads with NEON intrinsics not supported
20964 Info.flags = MachineMemOperand::MOLoad;
20965 return true;
20967 case Intrinsic::arm_neon_vst1:
20968 case Intrinsic::arm_neon_vst2:
20969 case Intrinsic::arm_neon_vst3:
20970 case Intrinsic::arm_neon_vst4:
20971 case Intrinsic::arm_neon_vst2lane:
20972 case Intrinsic::arm_neon_vst3lane:
20973 case Intrinsic::arm_neon_vst4lane: {
20974 Info.opc = ISD::INTRINSIC_VOID;
20975 // Conservatively set memVT to the entire set of vectors stored.
20976 auto &DL = I.getDataLayout();
20977 unsigned NumElts = 0;
20978 for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
20979 Type *ArgTy = I.getArgOperand(ArgI)->getType();
20980 if (!ArgTy->isVectorTy())
20981 break;
20982 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
20984 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20985 Info.ptrVal = I.getArgOperand(0);
20986 Info.offset = 0;
20987 Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
20988 Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20989 // volatile stores with NEON intrinsics not supported
20990 Info.flags = MachineMemOperand::MOStore;
20991 return true;
20993 case Intrinsic::arm_neon_vst1x2:
20994 case Intrinsic::arm_neon_vst1x3:
20995 case Intrinsic::arm_neon_vst1x4: {
20996 Info.opc = ISD::INTRINSIC_VOID;
20997 // Conservatively set memVT to the entire set of vectors stored.
20998 auto &DL = I.getDataLayout();
20999 unsigned NumElts = 0;
21000 for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
21001 Type *ArgTy = I.getArgOperand(ArgI)->getType();
21002 if (!ArgTy->isVectorTy())
21003 break;
21004 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
21006 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
21007 Info.ptrVal = I.getArgOperand(0);
21008 Info.offset = 0;
21009 Info.align = I.getParamAlign(0).valueOrOne();
21010 // volatile stores with NEON intrinsics not supported
21011 Info.flags = MachineMemOperand::MOStore;
21012 return true;
21014 case Intrinsic::arm_mve_vld2q:
21015 case Intrinsic::arm_mve_vld4q: {
21016 Info.opc = ISD::INTRINSIC_W_CHAIN;
21017 // Conservatively set memVT to the entire set of vectors loaded.
21018 Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
21019 unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
21020 Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
21021 Info.ptrVal = I.getArgOperand(0);
21022 Info.offset = 0;
21023 Info.align = Align(VecTy->getScalarSizeInBits() / 8);
21024 // volatile loads with MVE intrinsics not supported
21025 Info.flags = MachineMemOperand::MOLoad;
21026 return true;
21028 case Intrinsic::arm_mve_vst2q:
21029 case Intrinsic::arm_mve_vst4q: {
21030 Info.opc = ISD::INTRINSIC_VOID;
21031 // Conservatively set memVT to the entire set of vectors stored.
21032 Type *VecTy = I.getArgOperand(1)->getType();
21033 unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
21034 Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
21035 Info.ptrVal = I.getArgOperand(0);
21036 Info.offset = 0;
21037 Info.align = Align(VecTy->getScalarSizeInBits() / 8);
21038 // volatile stores with MVE intrinsics not supported
21039 Info.flags = MachineMemOperand::MOStore;
21040 return true;
21042 case Intrinsic::arm_mve_vldr_gather_base:
21043 case Intrinsic::arm_mve_vldr_gather_base_predicated: {
21044 Info.opc = ISD::INTRINSIC_W_CHAIN;
21045 Info.ptrVal = nullptr;
21046 Info.memVT = MVT::getVT(I.getType());
21047 Info.align = Align(1);
21048 Info.flags |= MachineMemOperand::MOLoad;
21049 return true;
21051 case Intrinsic::arm_mve_vldr_gather_base_wb:
21052 case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
21053 Info.opc = ISD::INTRINSIC_W_CHAIN;
21054 Info.ptrVal = nullptr;
21055 Info.memVT = MVT::getVT(I.getType()->getContainedType(0));
21056 Info.align = Align(1);
21057 Info.flags |= MachineMemOperand::MOLoad;
21058 return true;
21060 case Intrinsic::arm_mve_vldr_gather_offset:
21061 case Intrinsic::arm_mve_vldr_gather_offset_predicated: {
21062 Info.opc = ISD::INTRINSIC_W_CHAIN;
21063 Info.ptrVal = nullptr;
21064 MVT DataVT = MVT::getVT(I.getType());
21065 unsigned MemSize = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
21066 Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
21067 DataVT.getVectorNumElements());
21068 Info.align = Align(1);
21069 Info.flags |= MachineMemOperand::MOLoad;
21070 return true;
21072 case Intrinsic::arm_mve_vstr_scatter_base:
21073 case Intrinsic::arm_mve_vstr_scatter_base_predicated: {
21074 Info.opc = ISD::INTRINSIC_VOID;
21075 Info.ptrVal = nullptr;
21076 Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
21077 Info.align = Align(1);
21078 Info.flags |= MachineMemOperand::MOStore;
21079 return true;
21081 case Intrinsic::arm_mve_vstr_scatter_base_wb:
21082 case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: {
21083 Info.opc = ISD::INTRINSIC_W_CHAIN;
21084 Info.ptrVal = nullptr;
21085 Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
21086 Info.align = Align(1);
21087 Info.flags |= MachineMemOperand::MOStore;
21088 return true;
21090 case Intrinsic::arm_mve_vstr_scatter_offset:
21091 case Intrinsic::arm_mve_vstr_scatter_offset_predicated: {
21092 Info.opc = ISD::INTRINSIC_VOID;
21093 Info.ptrVal = nullptr;
21094 MVT DataVT = MVT::getVT(I.getArgOperand(2)->getType());
21095 unsigned MemSize = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
21096 Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
21097 DataVT.getVectorNumElements());
21098 Info.align = Align(1);
21099 Info.flags |= MachineMemOperand::MOStore;
21100 return true;
21102 case Intrinsic::arm_ldaex:
21103 case Intrinsic::arm_ldrex: {
21104 auto &DL = I.getDataLayout();
21105 Type *ValTy = I.getParamElementType(0);
21106 Info.opc = ISD::INTRINSIC_W_CHAIN;
21107 Info.memVT = MVT::getVT(ValTy);
21108 Info.ptrVal = I.getArgOperand(0);
21109 Info.offset = 0;
21110 Info.align = DL.getABITypeAlign(ValTy);
21111 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
21112 return true;
21114 case Intrinsic::arm_stlex:
21115 case Intrinsic::arm_strex: {
21116 auto &DL = I.getDataLayout();
21117 Type *ValTy = I.getParamElementType(1);
21118 Info.opc = ISD::INTRINSIC_W_CHAIN;
21119 Info.memVT = MVT::getVT(ValTy);
21120 Info.ptrVal = I.getArgOperand(1);
21121 Info.offset = 0;
21122 Info.align = DL.getABITypeAlign(ValTy);
21123 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
21124 return true;
21126 case Intrinsic::arm_stlexd:
21127 case Intrinsic::arm_strexd:
21128 Info.opc = ISD::INTRINSIC_W_CHAIN;
21129 Info.memVT = MVT::i64;
21130 Info.ptrVal = I.getArgOperand(2);
21131 Info.offset = 0;
21132 Info.align = Align(8);
21133 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
21134 return true;
21136 case Intrinsic::arm_ldaexd:
21137 case Intrinsic::arm_ldrexd:
21138 Info.opc = ISD::INTRINSIC_W_CHAIN;
21139 Info.memVT = MVT::i64;
21140 Info.ptrVal = I.getArgOperand(0);
21141 Info.offset = 0;
21142 Info.align = Align(8);
21143 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
21144 return true;
21146 default:
21147 break;
21150 return false;
21153 /// Returns true if it is beneficial to convert a load of a constant
21154 /// to just the constant itself.
21155 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
21156 Type *Ty) const {
21157 assert(Ty->isIntegerTy());
21159 unsigned Bits = Ty->getPrimitiveSizeInBits();
21160 if (Bits == 0 || Bits > 32)
21161 return false;
21162 return true;
21165 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
21166 unsigned Index) const {
21167 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
21168 return false;
21170 return (Index == 0 || Index == ResVT.getVectorNumElements());
21173 Instruction *ARMTargetLowering::makeDMB(IRBuilderBase &Builder,
21174 ARM_MB::MemBOpt Domain) const {
21175 // First, if the target has no DMB, see what fallback we can use.
21176 if (!Subtarget->hasDataBarrier()) {
21177 // Some ARMv6 cpus can support data barriers with an mcr instruction.
21178 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
21179 // here.
21180 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
21181 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
21182 Builder.getInt32(0), Builder.getInt32(7),
21183 Builder.getInt32(10), Builder.getInt32(5)};
21184 return Builder.CreateIntrinsic(Intrinsic::arm_mcr, {}, args);
21185 } else {
21186 // Instead of using barriers, atomic accesses on these subtargets use
21187 // libcalls.
21188 llvm_unreachable("makeDMB on a target so old that it has no barriers");
21190 } else {
21191 // Only a full system barrier exists in the M-class architectures.
21192 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
21193 Constant *CDomain = Builder.getInt32(Domain);
21194 return Builder.CreateIntrinsic(Intrinsic::arm_dmb, {}, CDomain);
21198 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
21199 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
21200 Instruction *Inst,
21201 AtomicOrdering Ord) const {
21202 switch (Ord) {
21203 case AtomicOrdering::NotAtomic:
21204 case AtomicOrdering::Unordered:
21205 llvm_unreachable("Invalid fence: unordered/non-atomic");
21206 case AtomicOrdering::Monotonic:
21207 case AtomicOrdering::Acquire:
21208 return nullptr; // Nothing to do
21209 case AtomicOrdering::SequentiallyConsistent:
21210 if (!Inst->hasAtomicStore())
21211 return nullptr; // Nothing to do
21212 [[fallthrough]];
21213 case AtomicOrdering::Release:
21214 case AtomicOrdering::AcquireRelease:
21215 if (Subtarget->preferISHSTBarriers())
21216 return makeDMB(Builder, ARM_MB::ISHST);
21217 // FIXME: add a comment with a link to documentation justifying this.
21218 else
21219 return makeDMB(Builder, ARM_MB::ISH);
21221 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
21224 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
21225 Instruction *Inst,
21226 AtomicOrdering Ord) const {
21227 switch (Ord) {
21228 case AtomicOrdering::NotAtomic:
21229 case AtomicOrdering::Unordered:
21230 llvm_unreachable("Invalid fence: unordered/not-atomic");
21231 case AtomicOrdering::Monotonic:
21232 case AtomicOrdering::Release:
21233 return nullptr; // Nothing to do
21234 case AtomicOrdering::Acquire:
21235 case AtomicOrdering::AcquireRelease:
21236 case AtomicOrdering::SequentiallyConsistent:
21237 return makeDMB(Builder, ARM_MB::ISH);
21239 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
21242 // Loads and stores less than 64-bits are already atomic; ones above that
21243 // are doomed anyway, so defer to the default libcall and blame the OS when
21244 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21245 // anything for those.
21246 TargetLoweringBase::AtomicExpansionKind
21247 ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
21248 bool has64BitAtomicStore;
21249 if (Subtarget->isMClass())
21250 has64BitAtomicStore = false;
21251 else if (Subtarget->isThumb())
21252 has64BitAtomicStore = Subtarget->hasV7Ops();
21253 else
21254 has64BitAtomicStore = Subtarget->hasV6Ops();
21256 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
21257 return Size == 64 && has64BitAtomicStore ? AtomicExpansionKind::Expand
21258 : AtomicExpansionKind::None;
21261 // Loads and stores less than 64-bits are already atomic; ones above that
21262 // are doomed anyway, so defer to the default libcall and blame the OS when
21263 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
21264 // anything for those.
21265 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
21266 // guarantee, see DDI0406C ARM architecture reference manual,
21267 // sections A8.8.72-74 LDRD)
21268 TargetLowering::AtomicExpansionKind
21269 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
21270 bool has64BitAtomicLoad;
21271 if (Subtarget->isMClass())
21272 has64BitAtomicLoad = false;
21273 else if (Subtarget->isThumb())
21274 has64BitAtomicLoad = Subtarget->hasV7Ops();
21275 else
21276 has64BitAtomicLoad = Subtarget->hasV6Ops();
21278 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
21279 return (Size == 64 && has64BitAtomicLoad) ? AtomicExpansionKind::LLOnly
21280 : AtomicExpansionKind::None;
21283 // For the real atomic operations, we have ldrex/strex up to 32 bits,
21284 // and up to 64 bits on the non-M profiles
21285 TargetLowering::AtomicExpansionKind
21286 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
21287 if (AI->isFloatingPointOperation())
21288 return AtomicExpansionKind::CmpXChg;
21290 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
21291 bool hasAtomicRMW;
21292 if (Subtarget->isMClass())
21293 hasAtomicRMW = Subtarget->hasV8MBaselineOps();
21294 else if (Subtarget->isThumb())
21295 hasAtomicRMW = Subtarget->hasV7Ops();
21296 else
21297 hasAtomicRMW = Subtarget->hasV6Ops();
21298 if (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW) {
21299 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21300 // implement atomicrmw without spilling. If the target address is also on
21301 // the stack and close enough to the spill slot, this can lead to a
21302 // situation where the monitor always gets cleared and the atomic operation
21303 // can never succeed. So at -O0 lower this operation to a CAS loop.
21304 if (getTargetMachine().getOptLevel() == CodeGenOptLevel::None)
21305 return AtomicExpansionKind::CmpXChg;
21306 return AtomicExpansionKind::LLSC;
21308 return AtomicExpansionKind::None;
21311 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used up to 32
21312 // bits, and up to 64 bits on the non-M profiles.
21313 TargetLowering::AtomicExpansionKind
21314 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
21315 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
21316 // implement cmpxchg without spilling. If the address being exchanged is also
21317 // on the stack and close enough to the spill slot, this can lead to a
21318 // situation where the monitor always gets cleared and the atomic operation
21319 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
21320 unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits();
21321 bool HasAtomicCmpXchg;
21322 if (Subtarget->isMClass())
21323 HasAtomicCmpXchg = Subtarget->hasV8MBaselineOps();
21324 else if (Subtarget->isThumb())
21325 HasAtomicCmpXchg = Subtarget->hasV7Ops();
21326 else
21327 HasAtomicCmpXchg = Subtarget->hasV6Ops();
21328 if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None &&
21329 HasAtomicCmpXchg && Size <= (Subtarget->isMClass() ? 32U : 64U))
21330 return AtomicExpansionKind::LLSC;
21331 return AtomicExpansionKind::None;
21334 bool ARMTargetLowering::shouldInsertFencesForAtomic(
21335 const Instruction *I) const {
21336 return InsertFencesForAtomic;
21339 bool ARMTargetLowering::useLoadStackGuardNode(const Module &M) const {
21340 // ROPI/RWPI are not supported currently.
21341 return !Subtarget->isROPI() && !Subtarget->isRWPI();
21344 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
21345 if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21346 return TargetLowering::insertSSPDeclarations(M);
21348 // MSVC CRT has a global variable holding security cookie.
21349 M.getOrInsertGlobal("__security_cookie",
21350 PointerType::getUnqual(M.getContext()));
21352 // MSVC CRT has a function to validate security cookie.
21353 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
21354 "__security_check_cookie", Type::getVoidTy(M.getContext()),
21355 PointerType::getUnqual(M.getContext()));
21356 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
21357 F->addParamAttr(0, Attribute::AttrKind::InReg);
21360 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
21361 // MSVC CRT has a global variable holding security cookie.
21362 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21363 return M.getGlobalVariable("__security_cookie");
21364 return TargetLowering::getSDagStackGuard(M);
21367 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
21368 // MSVC CRT has a function to validate security cookie.
21369 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21370 return M.getFunction("__security_check_cookie");
21371 return TargetLowering::getSSPStackGuardCheck(M);
21374 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
21375 unsigned &Cost) const {
21376 // If we do not have NEON, vector types are not natively supported.
21377 if (!Subtarget->hasNEON())
21378 return false;
21380 // Floating point values and vector values map to the same register file.
21381 // Therefore, although we could do a store extract of a vector type, this is
21382 // better to leave at float as we have more freedom in the addressing mode for
21383 // those.
21384 if (VectorTy->isFPOrFPVectorTy())
21385 return false;
21387 // If the index is unknown at compile time, this is very expensive to lower
21388 // and it is not possible to combine the store with the extract.
21389 if (!isa<ConstantInt>(Idx))
21390 return false;
21392 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
21393 unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedValue();
21394 // We can do a store + vector extract on any vector that fits perfectly in a D
21395 // or Q register.
21396 if (BitWidth == 64 || BitWidth == 128) {
21397 Cost = 0;
21398 return true;
21400 return false;
21403 bool ARMTargetLowering::isCheapToSpeculateCttz(Type *Ty) const {
21404 return Subtarget->hasV6T2Ops();
21407 bool ARMTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const {
21408 return Subtarget->hasV6T2Ops();
21411 bool ARMTargetLowering::isMaskAndCmp0FoldingBeneficial(
21412 const Instruction &AndI) const {
21413 if (!Subtarget->hasV7Ops())
21414 return false;
21416 // Sink the `and` instruction only if the mask would fit into a modified
21417 // immediate operand.
21418 ConstantInt *Mask = dyn_cast<ConstantInt>(AndI.getOperand(1));
21419 if (!Mask || Mask->getValue().getBitWidth() > 32u)
21420 return false;
21421 auto MaskVal = unsigned(Mask->getValue().getZExtValue());
21422 return (Subtarget->isThumb2() ? ARM_AM::getT2SOImmVal(MaskVal)
21423 : ARM_AM::getSOImmVal(MaskVal)) != -1;
21426 TargetLowering::ShiftLegalizationStrategy
21427 ARMTargetLowering::preferredShiftLegalizationStrategy(
21428 SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const {
21429 if (Subtarget->hasMinSize() && !Subtarget->isTargetWindows())
21430 return ShiftLegalizationStrategy::LowerToLibcall;
21431 return TargetLowering::preferredShiftLegalizationStrategy(DAG, N,
21432 ExpansionFactor);
21435 Value *ARMTargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
21436 Value *Addr,
21437 AtomicOrdering Ord) const {
21438 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21439 bool IsAcquire = isAcquireOrStronger(Ord);
21441 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
21442 // intrinsic must return {i32, i32} and we have to recombine them into a
21443 // single i64 here.
21444 if (ValueTy->getPrimitiveSizeInBits() == 64) {
21445 Intrinsic::ID Int =
21446 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
21448 Value *LoHi =
21449 Builder.CreateIntrinsic(Int, {}, Addr, /*FMFSource=*/nullptr, "lohi");
21451 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
21452 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
21453 if (!Subtarget->isLittle())
21454 std::swap (Lo, Hi);
21455 Lo = Builder.CreateZExt(Lo, ValueTy, "lo64");
21456 Hi = Builder.CreateZExt(Hi, ValueTy, "hi64");
21457 return Builder.CreateOr(
21458 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 32)), "val64");
21461 Type *Tys[] = { Addr->getType() };
21462 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
21463 CallInst *CI = Builder.CreateIntrinsic(Int, Tys, Addr);
21465 CI->addParamAttr(
21466 0, Attribute::get(M->getContext(), Attribute::ElementType, ValueTy));
21467 return Builder.CreateTruncOrBitCast(CI, ValueTy);
21470 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
21471 IRBuilderBase &Builder) const {
21472 if (!Subtarget->hasV7Ops())
21473 return;
21474 Builder.CreateIntrinsic(Intrinsic::arm_clrex, {}, {});
21477 Value *ARMTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
21478 Value *Val, Value *Addr,
21479 AtomicOrdering Ord) const {
21480 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21481 bool IsRelease = isReleaseOrStronger(Ord);
21483 // Since the intrinsics must have legal type, the i64 intrinsics take two
21484 // parameters: "i32, i32". We must marshal Val into the appropriate form
21485 // before the call.
21486 if (Val->getType()->getPrimitiveSizeInBits() == 64) {
21487 Intrinsic::ID Int =
21488 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
21489 Type *Int32Ty = Type::getInt32Ty(M->getContext());
21491 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
21492 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
21493 if (!Subtarget->isLittle())
21494 std::swap(Lo, Hi);
21495 return Builder.CreateIntrinsic(Int, {}, {Lo, Hi, Addr});
21498 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
21499 Type *Tys[] = { Addr->getType() };
21500 Function *Strex = Intrinsic::getOrInsertDeclaration(M, Int, Tys);
21502 CallInst *CI = Builder.CreateCall(
21503 Strex, {Builder.CreateZExtOrBitCast(
21504 Val, Strex->getFunctionType()->getParamType(0)),
21505 Addr});
21506 CI->addParamAttr(1, Attribute::get(M->getContext(), Attribute::ElementType,
21507 Val->getType()));
21508 return CI;
21512 bool ARMTargetLowering::alignLoopsWithOptSize() const {
21513 return Subtarget->isMClass();
21516 /// A helper function for determining the number of interleaved accesses we
21517 /// will generate when lowering accesses of the given type.
21518 unsigned
21519 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
21520 const DataLayout &DL) const {
21521 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
21524 bool ARMTargetLowering::isLegalInterleavedAccessType(
21525 unsigned Factor, FixedVectorType *VecTy, Align Alignment,
21526 const DataLayout &DL) const {
21528 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
21529 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
21531 if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
21532 return false;
21534 // Ensure the vector doesn't have f16 elements. Even though we could do an
21535 // i16 vldN, we can't hold the f16 vectors and will end up converting via
21536 // f32.
21537 if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
21538 return false;
21539 if (Subtarget->hasMVEIntegerOps() && Factor == 3)
21540 return false;
21542 // Ensure the number of vector elements is greater than 1.
21543 if (VecTy->getNumElements() < 2)
21544 return false;
21546 // Ensure the element type is legal.
21547 if (ElSize != 8 && ElSize != 16 && ElSize != 32)
21548 return false;
21549 // And the alignment if high enough under MVE.
21550 if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8)
21551 return false;
21553 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
21554 // 128 will be split into multiple interleaved accesses.
21555 if (Subtarget->hasNEON() && VecSize == 64)
21556 return true;
21557 return VecSize % 128 == 0;
21560 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
21561 if (Subtarget->hasNEON())
21562 return 4;
21563 if (Subtarget->hasMVEIntegerOps())
21564 return MVEMaxSupportedInterleaveFactor;
21565 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
21568 /// Lower an interleaved load into a vldN intrinsic.
21570 /// E.g. Lower an interleaved load (Factor = 2):
21571 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
21572 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
21573 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
21575 /// Into:
21576 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
21577 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
21578 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
21579 bool ARMTargetLowering::lowerInterleavedLoad(
21580 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
21581 ArrayRef<unsigned> Indices, unsigned Factor) const {
21582 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21583 "Invalid interleave factor");
21584 assert(!Shuffles.empty() && "Empty shufflevector input");
21585 assert(Shuffles.size() == Indices.size() &&
21586 "Unmatched number of shufflevectors and indices");
21588 auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
21589 Type *EltTy = VecTy->getElementType();
21591 const DataLayout &DL = LI->getDataLayout();
21592 Align Alignment = LI->getAlign();
21594 // Skip if we do not have NEON and skip illegal vector types. We can
21595 // "legalize" wide vector types into multiple interleaved accesses as long as
21596 // the vector types are divisible by 128.
21597 if (!isLegalInterleavedAccessType(Factor, VecTy, Alignment, DL))
21598 return false;
21600 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
21602 // A pointer vector can not be the return type of the ldN intrinsics. Need to
21603 // load integer vectors first and then convert to pointer vectors.
21604 if (EltTy->isPointerTy())
21605 VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
21607 IRBuilder<> Builder(LI);
21609 // The base address of the load.
21610 Value *BaseAddr = LI->getPointerOperand();
21612 if (NumLoads > 1) {
21613 // If we're going to generate more than one load, reset the sub-vector type
21614 // to something legal.
21615 VecTy = FixedVectorType::get(VecTy->getElementType(),
21616 VecTy->getNumElements() / NumLoads);
21619 assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
21621 auto createLoadIntrinsic = [&](Value *BaseAddr) {
21622 if (Subtarget->hasNEON()) {
21623 Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace());
21624 Type *Tys[] = {VecTy, PtrTy};
21625 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
21626 Intrinsic::arm_neon_vld3,
21627 Intrinsic::arm_neon_vld4};
21629 SmallVector<Value *, 2> Ops;
21630 Ops.push_back(BaseAddr);
21631 Ops.push_back(Builder.getInt32(LI->getAlign().value()));
21633 return Builder.CreateIntrinsic(LoadInts[Factor - 2], Tys, Ops,
21634 /*FMFSource=*/nullptr, "vldN");
21635 } else {
21636 assert((Factor == 2 || Factor == 4) &&
21637 "expected interleave factor of 2 or 4 for MVE");
21638 Intrinsic::ID LoadInts =
21639 Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
21640 Type *PtrTy = Builder.getPtrTy(LI->getPointerAddressSpace());
21641 Type *Tys[] = {VecTy, PtrTy};
21643 SmallVector<Value *, 2> Ops;
21644 Ops.push_back(BaseAddr);
21645 return Builder.CreateIntrinsic(LoadInts, Tys, Ops, /*FMFSource=*/nullptr,
21646 "vldN");
21650 // Holds sub-vectors extracted from the load intrinsic return values. The
21651 // sub-vectors are associated with the shufflevector instructions they will
21652 // replace.
21653 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
21655 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
21656 // If we're generating more than one load, compute the base address of
21657 // subsequent loads as an offset from the previous.
21658 if (LoadCount > 0)
21659 BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
21660 VecTy->getNumElements() * Factor);
21662 CallInst *VldN = createLoadIntrinsic(BaseAddr);
21664 // Replace uses of each shufflevector with the corresponding vector loaded
21665 // by ldN.
21666 for (unsigned i = 0; i < Shuffles.size(); i++) {
21667 ShuffleVectorInst *SV = Shuffles[i];
21668 unsigned Index = Indices[i];
21670 Value *SubVec = Builder.CreateExtractValue(VldN, Index);
21672 // Convert the integer vector to pointer vector if the element is pointer.
21673 if (EltTy->isPointerTy())
21674 SubVec = Builder.CreateIntToPtr(
21675 SubVec,
21676 FixedVectorType::get(SV->getType()->getElementType(), VecTy));
21678 SubVecs[SV].push_back(SubVec);
21682 // Replace uses of the shufflevector instructions with the sub-vectors
21683 // returned by the load intrinsic. If a shufflevector instruction is
21684 // associated with more than one sub-vector, those sub-vectors will be
21685 // concatenated into a single wide vector.
21686 for (ShuffleVectorInst *SVI : Shuffles) {
21687 auto &SubVec = SubVecs[SVI];
21688 auto *WideVec =
21689 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
21690 SVI->replaceAllUsesWith(WideVec);
21693 return true;
21696 /// Lower an interleaved store into a vstN intrinsic.
21698 /// E.g. Lower an interleaved store (Factor = 3):
21699 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
21700 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
21701 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
21703 /// Into:
21704 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
21705 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
21706 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
21707 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21709 /// Note that the new shufflevectors will be removed and we'll only generate one
21710 /// vst3 instruction in CodeGen.
21712 /// Example for a more general valid mask (Factor 3). Lower:
21713 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
21714 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
21715 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
21717 /// Into:
21718 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
21719 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
21720 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
21721 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21722 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
21723 ShuffleVectorInst *SVI,
21724 unsigned Factor) const {
21725 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21726 "Invalid interleave factor");
21728 auto *VecTy = cast<FixedVectorType>(SVI->getType());
21729 assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
21731 unsigned LaneLen = VecTy->getNumElements() / Factor;
21732 Type *EltTy = VecTy->getElementType();
21733 auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
21735 const DataLayout &DL = SI->getDataLayout();
21736 Align Alignment = SI->getAlign();
21738 // Skip if we do not have NEON and skip illegal vector types. We can
21739 // "legalize" wide vector types into multiple interleaved accesses as long as
21740 // the vector types are divisible by 128.
21741 if (!isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
21742 return false;
21744 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
21746 Value *Op0 = SVI->getOperand(0);
21747 Value *Op1 = SVI->getOperand(1);
21748 IRBuilder<> Builder(SI);
21750 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
21751 // vectors to integer vectors.
21752 if (EltTy->isPointerTy()) {
21753 Type *IntTy = DL.getIntPtrType(EltTy);
21755 // Convert to the corresponding integer vector.
21756 auto *IntVecTy =
21757 FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
21758 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
21759 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
21761 SubVecTy = FixedVectorType::get(IntTy, LaneLen);
21764 // The base address of the store.
21765 Value *BaseAddr = SI->getPointerOperand();
21767 if (NumStores > 1) {
21768 // If we're going to generate more than one store, reset the lane length
21769 // and sub-vector type to something legal.
21770 LaneLen /= NumStores;
21771 SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
21774 assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
21776 auto Mask = SVI->getShuffleMask();
21778 auto createStoreIntrinsic = [&](Value *BaseAddr,
21779 SmallVectorImpl<Value *> &Shuffles) {
21780 if (Subtarget->hasNEON()) {
21781 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
21782 Intrinsic::arm_neon_vst3,
21783 Intrinsic::arm_neon_vst4};
21784 Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace());
21785 Type *Tys[] = {PtrTy, SubVecTy};
21787 SmallVector<Value *, 6> Ops;
21788 Ops.push_back(BaseAddr);
21789 append_range(Ops, Shuffles);
21790 Ops.push_back(Builder.getInt32(SI->getAlign().value()));
21791 Builder.CreateIntrinsic(StoreInts[Factor - 2], Tys, Ops);
21792 } else {
21793 assert((Factor == 2 || Factor == 4) &&
21794 "expected interleave factor of 2 or 4 for MVE");
21795 Intrinsic::ID StoreInts =
21796 Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
21797 Type *PtrTy = Builder.getPtrTy(SI->getPointerAddressSpace());
21798 Type *Tys[] = {PtrTy, SubVecTy};
21800 SmallVector<Value *, 6> Ops;
21801 Ops.push_back(BaseAddr);
21802 append_range(Ops, Shuffles);
21803 for (unsigned F = 0; F < Factor; F++) {
21804 Ops.push_back(Builder.getInt32(F));
21805 Builder.CreateIntrinsic(StoreInts, Tys, Ops);
21806 Ops.pop_back();
21811 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
21812 // If we generating more than one store, we compute the base address of
21813 // subsequent stores as an offset from the previous.
21814 if (StoreCount > 0)
21815 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
21816 BaseAddr, LaneLen * Factor);
21818 SmallVector<Value *, 4> Shuffles;
21820 // Split the shufflevector operands into sub vectors for the new vstN call.
21821 for (unsigned i = 0; i < Factor; i++) {
21822 unsigned IdxI = StoreCount * LaneLen * Factor + i;
21823 if (Mask[IdxI] >= 0) {
21824 Shuffles.push_back(Builder.CreateShuffleVector(
21825 Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
21826 } else {
21827 unsigned StartMask = 0;
21828 for (unsigned j = 1; j < LaneLen; j++) {
21829 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
21830 if (Mask[IdxJ * Factor + IdxI] >= 0) {
21831 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
21832 break;
21835 // Note: If all elements in a chunk are undefs, StartMask=0!
21836 // Note: Filling undef gaps with random elements is ok, since
21837 // those elements were being written anyway (with undefs).
21838 // In the case of all undefs we're defaulting to using elems from 0
21839 // Note: StartMask cannot be negative, it's checked in
21840 // isReInterleaveMask
21841 Shuffles.push_back(Builder.CreateShuffleVector(
21842 Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
21846 createStoreIntrinsic(BaseAddr, Shuffles);
21848 return true;
21851 enum HABaseType {
21852 HA_UNKNOWN = 0,
21853 HA_FLOAT,
21854 HA_DOUBLE,
21855 HA_VECT64,
21856 HA_VECT128
21859 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
21860 uint64_t &Members) {
21861 if (auto *ST = dyn_cast<StructType>(Ty)) {
21862 for (unsigned i = 0; i < ST->getNumElements(); ++i) {
21863 uint64_t SubMembers = 0;
21864 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
21865 return false;
21866 Members += SubMembers;
21868 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
21869 uint64_t SubMembers = 0;
21870 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
21871 return false;
21872 Members += SubMembers * AT->getNumElements();
21873 } else if (Ty->isFloatTy()) {
21874 if (Base != HA_UNKNOWN && Base != HA_FLOAT)
21875 return false;
21876 Members = 1;
21877 Base = HA_FLOAT;
21878 } else if (Ty->isDoubleTy()) {
21879 if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
21880 return false;
21881 Members = 1;
21882 Base = HA_DOUBLE;
21883 } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
21884 Members = 1;
21885 switch (Base) {
21886 case HA_FLOAT:
21887 case HA_DOUBLE:
21888 return false;
21889 case HA_VECT64:
21890 return VT->getPrimitiveSizeInBits().getFixedValue() == 64;
21891 case HA_VECT128:
21892 return VT->getPrimitiveSizeInBits().getFixedValue() == 128;
21893 case HA_UNKNOWN:
21894 switch (VT->getPrimitiveSizeInBits().getFixedValue()) {
21895 case 64:
21896 Base = HA_VECT64;
21897 return true;
21898 case 128:
21899 Base = HA_VECT128;
21900 return true;
21901 default:
21902 return false;
21907 return (Members > 0 && Members <= 4);
21910 /// Return the correct alignment for the current calling convention.
21911 Align ARMTargetLowering::getABIAlignmentForCallingConv(
21912 Type *ArgTy, const DataLayout &DL) const {
21913 const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
21914 if (!ArgTy->isVectorTy())
21915 return ABITypeAlign;
21917 // Avoid over-aligning vector parameters. It would require realigning the
21918 // stack and waste space for no real benefit.
21919 MaybeAlign StackAlign = DL.getStackAlignment();
21920 assert(StackAlign && "data layout string is missing stack alignment");
21921 return std::min(ABITypeAlign, *StackAlign);
21924 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
21925 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
21926 /// passing according to AAPCS rules.
21927 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
21928 Type *Ty, CallingConv::ID CallConv, bool isVarArg,
21929 const DataLayout &DL) const {
21930 if (getEffectiveCallingConv(CallConv, isVarArg) !=
21931 CallingConv::ARM_AAPCS_VFP)
21932 return false;
21934 HABaseType Base = HA_UNKNOWN;
21935 uint64_t Members = 0;
21936 bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
21937 LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
21939 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
21940 return IsHA || IsIntArray;
21943 Register ARMTargetLowering::getExceptionPointerRegister(
21944 const Constant *PersonalityFn) const {
21945 // Platforms which do not use SjLj EH may return values in these registers
21946 // via the personality function.
21947 return Subtarget->useSjLjEH() ? Register() : ARM::R0;
21950 Register ARMTargetLowering::getExceptionSelectorRegister(
21951 const Constant *PersonalityFn) const {
21952 // Platforms which do not use SjLj EH may return values in these registers
21953 // via the personality function.
21954 return Subtarget->useSjLjEH() ? Register() : ARM::R1;
21957 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
21958 // Update IsSplitCSR in ARMFunctionInfo.
21959 ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
21960 AFI->setIsSplitCSR(true);
21963 void ARMTargetLowering::insertCopiesSplitCSR(
21964 MachineBasicBlock *Entry,
21965 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
21966 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
21967 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
21968 if (!IStart)
21969 return;
21971 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21972 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
21973 MachineBasicBlock::iterator MBBI = Entry->begin();
21974 for (const MCPhysReg *I = IStart; *I; ++I) {
21975 const TargetRegisterClass *RC = nullptr;
21976 if (ARM::GPRRegClass.contains(*I))
21977 RC = &ARM::GPRRegClass;
21978 else if (ARM::DPRRegClass.contains(*I))
21979 RC = &ARM::DPRRegClass;
21980 else
21981 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
21983 Register NewVR = MRI->createVirtualRegister(RC);
21984 // Create copy from CSR to a virtual register.
21985 // FIXME: this currently does not emit CFI pseudo-instructions, it works
21986 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
21987 // nounwind. If we want to generalize this later, we may need to emit
21988 // CFI pseudo-instructions.
21989 assert(Entry->getParent()->getFunction().hasFnAttribute(
21990 Attribute::NoUnwind) &&
21991 "Function should be nounwind in insertCopiesSplitCSR!");
21992 Entry->addLiveIn(*I);
21993 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
21994 .addReg(*I);
21996 // Insert the copy-back instructions right before the terminator.
21997 for (auto *Exit : Exits)
21998 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
21999 TII->get(TargetOpcode::COPY), *I)
22000 .addReg(NewVR);
22004 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
22005 MF.getFrameInfo().computeMaxCallFrameSize(MF);
22006 TargetLoweringBase::finalizeLowering(MF);
22009 bool ARMTargetLowering::isComplexDeinterleavingSupported() const {
22010 return Subtarget->hasMVEIntegerOps();
22013 bool ARMTargetLowering::isComplexDeinterleavingOperationSupported(
22014 ComplexDeinterleavingOperation Operation, Type *Ty) const {
22015 auto *VTy = dyn_cast<FixedVectorType>(Ty);
22016 if (!VTy)
22017 return false;
22019 auto *ScalarTy = VTy->getScalarType();
22020 unsigned NumElements = VTy->getNumElements();
22022 unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements;
22023 if (VTyWidth < 128 || !llvm::isPowerOf2_32(VTyWidth))
22024 return false;
22026 // Both VCADD and VCMUL/VCMLA support the same types, F16 and F32
22027 if (ScalarTy->isHalfTy() || ScalarTy->isFloatTy())
22028 return Subtarget->hasMVEFloatOps();
22030 if (Operation != ComplexDeinterleavingOperation::CAdd)
22031 return false;
22033 return Subtarget->hasMVEIntegerOps() &&
22034 (ScalarTy->isIntegerTy(8) || ScalarTy->isIntegerTy(16) ||
22035 ScalarTy->isIntegerTy(32));
22038 Value *ARMTargetLowering::createComplexDeinterleavingIR(
22039 IRBuilderBase &B, ComplexDeinterleavingOperation OperationType,
22040 ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
22041 Value *Accumulator) const {
22043 FixedVectorType *Ty = cast<FixedVectorType>(InputA->getType());
22045 unsigned TyWidth = Ty->getScalarSizeInBits() * Ty->getNumElements();
22047 assert(TyWidth >= 128 && "Width of vector type must be at least 128 bits");
22049 if (TyWidth > 128) {
22050 int Stride = Ty->getNumElements() / 2;
22051 auto SplitSeq = llvm::seq<int>(0, Ty->getNumElements());
22052 auto SplitSeqVec = llvm::to_vector(SplitSeq);
22053 ArrayRef<int> LowerSplitMask(&SplitSeqVec[0], Stride);
22054 ArrayRef<int> UpperSplitMask(&SplitSeqVec[Stride], Stride);
22056 auto *LowerSplitA = B.CreateShuffleVector(InputA, LowerSplitMask);
22057 auto *LowerSplitB = B.CreateShuffleVector(InputB, LowerSplitMask);
22058 auto *UpperSplitA = B.CreateShuffleVector(InputA, UpperSplitMask);
22059 auto *UpperSplitB = B.CreateShuffleVector(InputB, UpperSplitMask);
22060 Value *LowerSplitAcc = nullptr;
22061 Value *UpperSplitAcc = nullptr;
22063 if (Accumulator) {
22064 LowerSplitAcc = B.CreateShuffleVector(Accumulator, LowerSplitMask);
22065 UpperSplitAcc = B.CreateShuffleVector(Accumulator, UpperSplitMask);
22068 auto *LowerSplitInt = createComplexDeinterleavingIR(
22069 B, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc);
22070 auto *UpperSplitInt = createComplexDeinterleavingIR(
22071 B, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc);
22073 ArrayRef<int> JoinMask(&SplitSeqVec[0], Ty->getNumElements());
22074 return B.CreateShuffleVector(LowerSplitInt, UpperSplitInt, JoinMask);
22077 auto *IntTy = Type::getInt32Ty(B.getContext());
22079 ConstantInt *ConstRotation = nullptr;
22080 if (OperationType == ComplexDeinterleavingOperation::CMulPartial) {
22081 ConstRotation = ConstantInt::get(IntTy, (int)Rotation);
22083 if (Accumulator)
22084 return B.CreateIntrinsic(Intrinsic::arm_mve_vcmlaq, Ty,
22085 {ConstRotation, Accumulator, InputB, InputA});
22086 return B.CreateIntrinsic(Intrinsic::arm_mve_vcmulq, Ty,
22087 {ConstRotation, InputB, InputA});
22090 if (OperationType == ComplexDeinterleavingOperation::CAdd) {
22091 // 1 means the value is not halved.
22092 auto *ConstHalving = ConstantInt::get(IntTy, 1);
22094 if (Rotation == ComplexDeinterleavingRotation::Rotation_90)
22095 ConstRotation = ConstantInt::get(IntTy, 0);
22096 else if (Rotation == ComplexDeinterleavingRotation::Rotation_270)
22097 ConstRotation = ConstantInt::get(IntTy, 1);
22099 if (!ConstRotation)
22100 return nullptr; // Invalid rotation for arm_mve_vcaddq
22102 return B.CreateIntrinsic(Intrinsic::arm_mve_vcaddq, Ty,
22103 {ConstHalving, ConstRotation, InputA, InputB});
22106 return nullptr;