1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the targeting of the Machinelegalizer class for ARM.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
13 #include "ARMLegalizerInfo.h"
14 #include "ARMCallLowering.h"
15 #include "ARMSubtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/LowLevelTypeUtils.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetOpcodes.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Type.h"
26 using namespace LegalizeActions
;
28 static bool AEABI(const ARMSubtarget
&ST
) {
29 return ST
.isTargetAEABI() || ST
.isTargetGNUAEABI() || ST
.isTargetMuslAEABI();
32 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget
&ST
) : ST(ST
) {
33 using namespace TargetOpcode
;
35 const LLT p0
= LLT::pointer(0, 32);
37 const LLT s1
= LLT::scalar(1);
38 const LLT s8
= LLT::scalar(8);
39 const LLT s16
= LLT::scalar(16);
40 const LLT s32
= LLT::scalar(32);
41 const LLT s64
= LLT::scalar(64);
43 auto &LegacyInfo
= getLegacyLegalizerInfo();
44 if (ST
.isThumb1Only()) {
45 // Thumb1 is not supported yet.
46 LegacyInfo
.computeTables();
47 verify(*ST
.getInstrInfo());
51 getActionDefinitionsBuilder({G_SEXT
, G_ZEXT
, G_ANYEXT
})
52 .legalForCartesianProduct({s8
, s16
, s32
}, {s1
, s8
, s16
});
54 getActionDefinitionsBuilder(G_SEXT_INREG
).lower();
56 getActionDefinitionsBuilder({G_MUL
, G_AND
, G_OR
, G_XOR
})
58 .clampScalar(0, s32
, s32
);
61 getActionDefinitionsBuilder({G_ADD
, G_SUB
})
65 getActionDefinitionsBuilder({G_ADD
, G_SUB
})
69 getActionDefinitionsBuilder({G_ASHR
, G_LSHR
, G_SHL
})
70 .legalFor({{s32
, s32
}})
72 .clampScalar(1, s32
, s32
);
74 bool HasHWDivide
= (!ST
.isThumb() && ST
.hasDivideInARMMode()) ||
75 (ST
.isThumb() && ST
.hasDivideInThumbMode());
77 getActionDefinitionsBuilder({G_SDIV
, G_UDIV
})
79 .clampScalar(0, s32
, s32
);
81 getActionDefinitionsBuilder({G_SDIV
, G_UDIV
})
83 .clampScalar(0, s32
, s32
);
86 getActionDefinitionsBuilder({G_SREM
, G_UREM
}).minScalar(0, s32
);
88 REMBuilder
.lowerFor({s32
});
90 REMBuilder
.customFor({s32
});
92 REMBuilder
.libcallFor({s32
});
94 getActionDefinitionsBuilder(G_INTTOPTR
)
95 .legalFor({{p0
, s32
}})
97 getActionDefinitionsBuilder(G_PTRTOINT
)
98 .legalFor({{s32
, p0
}})
101 getActionDefinitionsBuilder(G_CONSTANT
)
102 .customFor({s32
, p0
})
103 .clampScalar(0, s32
, s32
);
105 getActionDefinitionsBuilder(G_CONSTANT_POOL
).legalFor({p0
});
107 getActionDefinitionsBuilder(G_ICMP
)
108 .legalForCartesianProduct({s1
}, {s32
, p0
})
111 getActionDefinitionsBuilder(G_SELECT
)
112 .legalForCartesianProduct({s32
, p0
}, {s1
})
115 // We're keeping these builders around because we'll want to add support for
116 // floating point to them.
117 auto &LoadStoreBuilder
= getActionDefinitionsBuilder({G_LOAD
, G_STORE
})
118 .legalForTypesWithMemDesc({{s8
, p0
, s8
, 8},
122 .unsupportedIfMemSizeNotPow2();
124 getActionDefinitionsBuilder(G_FRAME_INDEX
).legalFor({p0
});
125 getActionDefinitionsBuilder(G_GLOBAL_VALUE
).legalFor({p0
});
128 getActionDefinitionsBuilder(G_PHI
)
132 getActionDefinitionsBuilder(G_PTR_ADD
)
133 .legalFor({{p0
, s32
}})
136 getActionDefinitionsBuilder(G_BRCOND
).legalFor({s1
});
138 if (!ST
.useSoftFloat() && ST
.hasVFP2Base()) {
139 getActionDefinitionsBuilder(
140 {G_FADD
, G_FSUB
, G_FMUL
, G_FDIV
, G_FCONSTANT
, G_FNEG
})
141 .legalFor({s32
, s64
});
144 .legalForTypesWithMemDesc({{s64
, p0
, s64
, 32}})
146 PhiBuilder
.legalFor({s64
});
148 getActionDefinitionsBuilder(G_FCMP
).legalForCartesianProduct({s1
},
151 getActionDefinitionsBuilder(G_MERGE_VALUES
).legalFor({{s64
, s32
}});
152 getActionDefinitionsBuilder(G_UNMERGE_VALUES
).legalFor({{s32
, s64
}});
154 getActionDefinitionsBuilder(G_FPEXT
).legalFor({{s64
, s32
}});
155 getActionDefinitionsBuilder(G_FPTRUNC
).legalFor({{s32
, s64
}});
157 getActionDefinitionsBuilder({G_FPTOSI
, G_FPTOUI
})
158 .legalForCartesianProduct({s32
}, {s32
, s64
});
159 getActionDefinitionsBuilder({G_SITOFP
, G_UITOFP
})
160 .legalForCartesianProduct({s32
, s64
}, {s32
});
162 getActionDefinitionsBuilder({G_GET_FPENV
, G_SET_FPENV
, G_GET_FPMODE
})
164 getActionDefinitionsBuilder(G_RESET_FPENV
).alwaysLegal();
165 getActionDefinitionsBuilder(G_SET_FPMODE
).customFor({s32
});
166 getActionDefinitionsBuilder(G_RESET_FPMODE
).custom();
168 getActionDefinitionsBuilder({G_FADD
, G_FSUB
, G_FMUL
, G_FDIV
})
169 .libcallFor({s32
, s64
});
171 LoadStoreBuilder
.maxScalar(0, s32
);
173 getActionDefinitionsBuilder(G_FNEG
).lowerFor({s32
, s64
});
175 getActionDefinitionsBuilder(G_FCONSTANT
).customFor({s32
, s64
});
177 getActionDefinitionsBuilder(G_FCMP
).customForCartesianProduct({s1
},
181 setFCmpLibcallsAEABI();
183 setFCmpLibcallsGNU();
185 getActionDefinitionsBuilder(G_FPEXT
).libcallFor({{s64
, s32
}});
186 getActionDefinitionsBuilder(G_FPTRUNC
).libcallFor({{s32
, s64
}});
188 getActionDefinitionsBuilder({G_FPTOSI
, G_FPTOUI
})
189 .libcallForCartesianProduct({s32
}, {s32
, s64
});
190 getActionDefinitionsBuilder({G_SITOFP
, G_UITOFP
})
191 .libcallForCartesianProduct({s32
, s64
}, {s32
});
193 getActionDefinitionsBuilder({G_GET_FPENV
, G_SET_FPENV
, G_RESET_FPENV
})
195 getActionDefinitionsBuilder({G_GET_FPMODE
, G_SET_FPMODE
, G_RESET_FPMODE
})
199 // Just expand whatever loads and stores are left.
200 LoadStoreBuilder
.lower();
202 if (!ST
.useSoftFloat() && ST
.hasVFP4Base())
203 getActionDefinitionsBuilder(G_FMA
).legalFor({s32
, s64
});
205 getActionDefinitionsBuilder(G_FMA
).libcallFor({s32
, s64
});
207 getActionDefinitionsBuilder({G_FREM
, G_FPOW
}).libcallFor({s32
, s64
});
209 if (ST
.hasV5TOps()) {
210 getActionDefinitionsBuilder(G_CTLZ
)
211 .legalFor({s32
, s32
})
212 .clampScalar(1, s32
, s32
)
213 .clampScalar(0, s32
, s32
);
214 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF
)
215 .lowerFor({s32
, s32
})
216 .clampScalar(1, s32
, s32
)
217 .clampScalar(0, s32
, s32
);
219 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF
)
220 .libcallFor({s32
, s32
})
221 .clampScalar(1, s32
, s32
)
222 .clampScalar(0, s32
, s32
);
223 getActionDefinitionsBuilder(G_CTLZ
)
224 .lowerFor({s32
, s32
})
225 .clampScalar(1, s32
, s32
)
226 .clampScalar(0, s32
, s32
);
229 LegacyInfo
.computeTables();
230 verify(*ST
.getInstrInfo());
233 void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
234 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
235 // default-initialized.
236 FCmp32Libcalls
.resize(CmpInst::LAST_FCMP_PREDICATE
+ 1);
237 FCmp32Libcalls
[CmpInst::FCMP_OEQ
] = {
238 {RTLIB::OEQ_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
239 FCmp32Libcalls
[CmpInst::FCMP_OGE
] = {
240 {RTLIB::OGE_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
241 FCmp32Libcalls
[CmpInst::FCMP_OGT
] = {
242 {RTLIB::OGT_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
243 FCmp32Libcalls
[CmpInst::FCMP_OLE
] = {
244 {RTLIB::OLE_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
245 FCmp32Libcalls
[CmpInst::FCMP_OLT
] = {
246 {RTLIB::OLT_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
247 FCmp32Libcalls
[CmpInst::FCMP_ORD
] = {{RTLIB::UO_F32
, CmpInst::ICMP_EQ
}};
248 FCmp32Libcalls
[CmpInst::FCMP_UGE
] = {{RTLIB::OLT_F32
, CmpInst::ICMP_EQ
}};
249 FCmp32Libcalls
[CmpInst::FCMP_UGT
] = {{RTLIB::OLE_F32
, CmpInst::ICMP_EQ
}};
250 FCmp32Libcalls
[CmpInst::FCMP_ULE
] = {{RTLIB::OGT_F32
, CmpInst::ICMP_EQ
}};
251 FCmp32Libcalls
[CmpInst::FCMP_ULT
] = {{RTLIB::OGE_F32
, CmpInst::ICMP_EQ
}};
252 FCmp32Libcalls
[CmpInst::FCMP_UNE
] = {{RTLIB::UNE_F32
, CmpInst::ICMP_EQ
}};
253 FCmp32Libcalls
[CmpInst::FCMP_UNO
] = {
254 {RTLIB::UO_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
255 FCmp32Libcalls
[CmpInst::FCMP_ONE
] = {
256 {RTLIB::OGT_F32
, CmpInst::BAD_ICMP_PREDICATE
},
257 {RTLIB::OLT_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
258 FCmp32Libcalls
[CmpInst::FCMP_UEQ
] = {
259 {RTLIB::OEQ_F32
, CmpInst::BAD_ICMP_PREDICATE
},
260 {RTLIB::UO_F32
, CmpInst::BAD_ICMP_PREDICATE
}};
262 FCmp64Libcalls
.resize(CmpInst::LAST_FCMP_PREDICATE
+ 1);
263 FCmp64Libcalls
[CmpInst::FCMP_OEQ
] = {
264 {RTLIB::OEQ_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
265 FCmp64Libcalls
[CmpInst::FCMP_OGE
] = {
266 {RTLIB::OGE_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
267 FCmp64Libcalls
[CmpInst::FCMP_OGT
] = {
268 {RTLIB::OGT_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
269 FCmp64Libcalls
[CmpInst::FCMP_OLE
] = {
270 {RTLIB::OLE_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
271 FCmp64Libcalls
[CmpInst::FCMP_OLT
] = {
272 {RTLIB::OLT_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
273 FCmp64Libcalls
[CmpInst::FCMP_ORD
] = {{RTLIB::UO_F64
, CmpInst::ICMP_EQ
}};
274 FCmp64Libcalls
[CmpInst::FCMP_UGE
] = {{RTLIB::OLT_F64
, CmpInst::ICMP_EQ
}};
275 FCmp64Libcalls
[CmpInst::FCMP_UGT
] = {{RTLIB::OLE_F64
, CmpInst::ICMP_EQ
}};
276 FCmp64Libcalls
[CmpInst::FCMP_ULE
] = {{RTLIB::OGT_F64
, CmpInst::ICMP_EQ
}};
277 FCmp64Libcalls
[CmpInst::FCMP_ULT
] = {{RTLIB::OGE_F64
, CmpInst::ICMP_EQ
}};
278 FCmp64Libcalls
[CmpInst::FCMP_UNE
] = {{RTLIB::UNE_F64
, CmpInst::ICMP_EQ
}};
279 FCmp64Libcalls
[CmpInst::FCMP_UNO
] = {
280 {RTLIB::UO_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
281 FCmp64Libcalls
[CmpInst::FCMP_ONE
] = {
282 {RTLIB::OGT_F64
, CmpInst::BAD_ICMP_PREDICATE
},
283 {RTLIB::OLT_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
284 FCmp64Libcalls
[CmpInst::FCMP_UEQ
] = {
285 {RTLIB::OEQ_F64
, CmpInst::BAD_ICMP_PREDICATE
},
286 {RTLIB::UO_F64
, CmpInst::BAD_ICMP_PREDICATE
}};
289 void ARMLegalizerInfo::setFCmpLibcallsGNU() {
290 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
291 // default-initialized.
292 FCmp32Libcalls
.resize(CmpInst::LAST_FCMP_PREDICATE
+ 1);
293 FCmp32Libcalls
[CmpInst::FCMP_OEQ
] = {{RTLIB::OEQ_F32
, CmpInst::ICMP_EQ
}};
294 FCmp32Libcalls
[CmpInst::FCMP_OGE
] = {{RTLIB::OGE_F32
, CmpInst::ICMP_SGE
}};
295 FCmp32Libcalls
[CmpInst::FCMP_OGT
] = {{RTLIB::OGT_F32
, CmpInst::ICMP_SGT
}};
296 FCmp32Libcalls
[CmpInst::FCMP_OLE
] = {{RTLIB::OLE_F32
, CmpInst::ICMP_SLE
}};
297 FCmp32Libcalls
[CmpInst::FCMP_OLT
] = {{RTLIB::OLT_F32
, CmpInst::ICMP_SLT
}};
298 FCmp32Libcalls
[CmpInst::FCMP_ORD
] = {{RTLIB::UO_F32
, CmpInst::ICMP_EQ
}};
299 FCmp32Libcalls
[CmpInst::FCMP_UGE
] = {{RTLIB::OLT_F32
, CmpInst::ICMP_SGE
}};
300 FCmp32Libcalls
[CmpInst::FCMP_UGT
] = {{RTLIB::OLE_F32
, CmpInst::ICMP_SGT
}};
301 FCmp32Libcalls
[CmpInst::FCMP_ULE
] = {{RTLIB::OGT_F32
, CmpInst::ICMP_SLE
}};
302 FCmp32Libcalls
[CmpInst::FCMP_ULT
] = {{RTLIB::OGE_F32
, CmpInst::ICMP_SLT
}};
303 FCmp32Libcalls
[CmpInst::FCMP_UNE
] = {{RTLIB::UNE_F32
, CmpInst::ICMP_NE
}};
304 FCmp32Libcalls
[CmpInst::FCMP_UNO
] = {{RTLIB::UO_F32
, CmpInst::ICMP_NE
}};
305 FCmp32Libcalls
[CmpInst::FCMP_ONE
] = {{RTLIB::OGT_F32
, CmpInst::ICMP_SGT
},
306 {RTLIB::OLT_F32
, CmpInst::ICMP_SLT
}};
307 FCmp32Libcalls
[CmpInst::FCMP_UEQ
] = {{RTLIB::OEQ_F32
, CmpInst::ICMP_EQ
},
308 {RTLIB::UO_F32
, CmpInst::ICMP_NE
}};
310 FCmp64Libcalls
.resize(CmpInst::LAST_FCMP_PREDICATE
+ 1);
311 FCmp64Libcalls
[CmpInst::FCMP_OEQ
] = {{RTLIB::OEQ_F64
, CmpInst::ICMP_EQ
}};
312 FCmp64Libcalls
[CmpInst::FCMP_OGE
] = {{RTLIB::OGE_F64
, CmpInst::ICMP_SGE
}};
313 FCmp64Libcalls
[CmpInst::FCMP_OGT
] = {{RTLIB::OGT_F64
, CmpInst::ICMP_SGT
}};
314 FCmp64Libcalls
[CmpInst::FCMP_OLE
] = {{RTLIB::OLE_F64
, CmpInst::ICMP_SLE
}};
315 FCmp64Libcalls
[CmpInst::FCMP_OLT
] = {{RTLIB::OLT_F64
, CmpInst::ICMP_SLT
}};
316 FCmp64Libcalls
[CmpInst::FCMP_ORD
] = {{RTLIB::UO_F64
, CmpInst::ICMP_EQ
}};
317 FCmp64Libcalls
[CmpInst::FCMP_UGE
] = {{RTLIB::OLT_F64
, CmpInst::ICMP_SGE
}};
318 FCmp64Libcalls
[CmpInst::FCMP_UGT
] = {{RTLIB::OLE_F64
, CmpInst::ICMP_SGT
}};
319 FCmp64Libcalls
[CmpInst::FCMP_ULE
] = {{RTLIB::OGT_F64
, CmpInst::ICMP_SLE
}};
320 FCmp64Libcalls
[CmpInst::FCMP_ULT
] = {{RTLIB::OGE_F64
, CmpInst::ICMP_SLT
}};
321 FCmp64Libcalls
[CmpInst::FCMP_UNE
] = {{RTLIB::UNE_F64
, CmpInst::ICMP_NE
}};
322 FCmp64Libcalls
[CmpInst::FCMP_UNO
] = {{RTLIB::UO_F64
, CmpInst::ICMP_NE
}};
323 FCmp64Libcalls
[CmpInst::FCMP_ONE
] = {{RTLIB::OGT_F64
, CmpInst::ICMP_SGT
},
324 {RTLIB::OLT_F64
, CmpInst::ICMP_SLT
}};
325 FCmp64Libcalls
[CmpInst::FCMP_UEQ
] = {{RTLIB::OEQ_F64
, CmpInst::ICMP_EQ
},
326 {RTLIB::UO_F64
, CmpInst::ICMP_NE
}};
329 ARMLegalizerInfo::FCmpLibcallsList
330 ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate
,
331 unsigned Size
) const {
332 assert(CmpInst::isFPPredicate(Predicate
) && "Unsupported FCmp predicate");
334 return FCmp32Libcalls
[Predicate
];
336 return FCmp64Libcalls
[Predicate
];
337 llvm_unreachable("Unsupported size for FCmp predicate");
340 bool ARMLegalizerInfo::legalizeCustom(LegalizerHelper
&Helper
, MachineInstr
&MI
,
341 LostDebugLocObserver
&LocObserver
) const {
342 using namespace TargetOpcode
;
344 MachineIRBuilder
&MIRBuilder
= Helper
.MIRBuilder
;
345 MachineRegisterInfo
&MRI
= *MIRBuilder
.getMRI();
346 LLVMContext
&Ctx
= MIRBuilder
.getMF().getFunction().getContext();
348 switch (MI
.getOpcode()) {
353 Register OriginalResult
= MI
.getOperand(0).getReg();
354 auto Size
= MRI
.getType(OriginalResult
).getSizeInBits();
359 MI
.getOpcode() == G_SREM
? RTLIB::SDIVREM_I32
: RTLIB::UDIVREM_I32
;
361 // Our divmod libcalls return a struct containing the quotient and the
362 // remainder. Create a new, unused register for the quotient and use the
363 // destination of the original instruction for the remainder.
364 Type
*ArgTy
= Type::getInt32Ty(Ctx
);
365 StructType
*RetTy
= StructType::get(Ctx
, {ArgTy
, ArgTy
}, /* Packed */ true);
366 Register RetRegs
[] = {MRI
.createGenericVirtualRegister(LLT::scalar(32)),
368 auto Status
= createLibcall(MIRBuilder
, Libcall
, {RetRegs
, RetTy
, 0},
369 {{MI
.getOperand(1).getReg(), ArgTy
, 0},
370 {MI
.getOperand(2).getReg(), ArgTy
, 0}},
372 if (Status
!= LegalizerHelper::Legalized
)
377 assert(MRI
.getType(MI
.getOperand(2).getReg()) ==
378 MRI
.getType(MI
.getOperand(3).getReg()) &&
379 "Mismatched operands for G_FCMP");
380 auto OpSize
= MRI
.getType(MI
.getOperand(2).getReg()).getSizeInBits();
382 auto OriginalResult
= MI
.getOperand(0).getReg();
384 static_cast<CmpInst::Predicate
>(MI
.getOperand(1).getPredicate());
385 auto Libcalls
= getFCmpLibcalls(Predicate
, OpSize
);
387 if (Libcalls
.empty()) {
388 assert((Predicate
== CmpInst::FCMP_TRUE
||
389 Predicate
== CmpInst::FCMP_FALSE
) &&
390 "Predicate needs libcalls, but none specified");
391 MIRBuilder
.buildConstant(OriginalResult
,
392 Predicate
== CmpInst::FCMP_TRUE
? 1 : 0);
393 MI
.eraseFromParent();
397 assert((OpSize
== 32 || OpSize
== 64) && "Unsupported operand size");
398 auto *ArgTy
= OpSize
== 32 ? Type::getFloatTy(Ctx
) : Type::getDoubleTy(Ctx
);
399 auto *RetTy
= Type::getInt32Ty(Ctx
);
401 SmallVector
<Register
, 2> Results
;
402 for (auto Libcall
: Libcalls
) {
403 auto LibcallResult
= MRI
.createGenericVirtualRegister(LLT::scalar(32));
404 auto Status
= createLibcall(MIRBuilder
, Libcall
.LibcallID
,
405 {LibcallResult
, RetTy
, 0},
406 {{MI
.getOperand(2).getReg(), ArgTy
, 0},
407 {MI
.getOperand(3).getReg(), ArgTy
, 0}},
410 if (Status
!= LegalizerHelper::Legalized
)
413 auto ProcessedResult
=
416 : MRI
.createGenericVirtualRegister(MRI
.getType(OriginalResult
));
418 // We have a result, but we need to transform it into a proper 1-bit 0 or
419 // 1, taking into account the different peculiarities of the values
420 // returned by the comparison functions.
421 CmpInst::Predicate ResultPred
= Libcall
.Predicate
;
422 if (ResultPred
== CmpInst::BAD_ICMP_PREDICATE
) {
423 // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
424 // to keep the types consistent.
425 MIRBuilder
.buildTrunc(ProcessedResult
, LibcallResult
);
427 // We need to compare against 0.
428 assert(CmpInst::isIntPredicate(ResultPred
) && "Unsupported predicate");
429 auto Zero
= MIRBuilder
.buildConstant(LLT::scalar(32), 0);
430 MIRBuilder
.buildICmp(ResultPred
, ProcessedResult
, LibcallResult
, Zero
);
432 Results
.push_back(ProcessedResult
);
435 if (Results
.size() != 1) {
436 assert(Results
.size() == 2 && "Unexpected number of results");
437 MIRBuilder
.buildOr(OriginalResult
, Results
[0], Results
[1]);
442 const ConstantInt
*ConstVal
= MI
.getOperand(1).getCImm();
443 uint64_t ImmVal
= ConstVal
->getZExtValue();
444 if (ConstantMaterializationCost(ImmVal
, &ST
) > 2 && !ST
.genExecuteOnly())
445 return Helper
.lowerConstant(MI
) == LegalizerHelper::Legalized
;
449 // Convert to integer constants, while preserving the binary representation.
451 MI
.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
452 MIRBuilder
.buildConstant(MI
.getOperand(0),
453 *ConstantInt::get(Ctx
, AsInteger
));
457 // New FPSCR = (FPSCR & FPStatusBits) | (Modes & ~FPStatusBits)
458 LLT FPEnvTy
= LLT::scalar(32);
459 auto FPEnv
= MRI
.createGenericVirtualRegister(FPEnvTy
);
460 Register Modes
= MI
.getOperand(0).getReg();
461 MIRBuilder
.buildGetFPEnv(FPEnv
);
462 auto StatusBitMask
= MIRBuilder
.buildConstant(FPEnvTy
, ARM::FPStatusBits
);
463 auto StatusBits
= MIRBuilder
.buildAnd(FPEnvTy
, FPEnv
, StatusBitMask
);
464 auto NotStatusBitMask
=
465 MIRBuilder
.buildConstant(FPEnvTy
, ~ARM::FPStatusBits
);
466 auto FPModeBits
= MIRBuilder
.buildAnd(FPEnvTy
, Modes
, NotStatusBitMask
);
467 auto NewFPSCR
= MIRBuilder
.buildOr(FPEnvTy
, StatusBits
, FPModeBits
);
468 MIRBuilder
.buildSetFPEnv(NewFPSCR
);
471 case G_RESET_FPMODE
: {
472 // To get the default FP mode all control bits are cleared:
473 // FPSCR = FPSCR & (FPStatusBits | FPReservedBits)
474 LLT FPEnvTy
= LLT::scalar(32);
475 auto FPEnv
= MIRBuilder
.buildGetFPEnv(FPEnvTy
);
476 auto NotModeBitMask
= MIRBuilder
.buildConstant(
477 FPEnvTy
, ARM::FPStatusBits
| ARM::FPReservedBits
);
478 auto NewFPSCR
= MIRBuilder
.buildAnd(FPEnvTy
, FPEnv
, NotModeBitMask
);
479 MIRBuilder
.buildSetFPEnv(NewFPSCR
);
484 MI
.eraseFromParent();