Add gfx950 mfma instructions to ROCDL dialect (#123361)
[llvm-project.git] / llvm / lib / Target / ARM / ARMLegalizerInfo.cpp
blobfc12f050fa5a5f4e4d913f16a7677c5dbb959d4d
1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for ARM.
10 /// \todo This should be generated by TableGen.
11 //===----------------------------------------------------------------------===//
13 #include "ARMLegalizerInfo.h"
14 #include "ARMCallLowering.h"
15 #include "ARMSubtarget.h"
16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
18 #include "llvm/CodeGen/LowLevelTypeUtils.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/TargetOpcodes.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/Type.h"
25 using namespace llvm;
26 using namespace LegalizeActions;
28 static bool AEABI(const ARMSubtarget &ST) {
29 return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
32 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) : ST(ST) {
33 using namespace TargetOpcode;
35 const LLT p0 = LLT::pointer(0, 32);
37 const LLT s1 = LLT::scalar(1);
38 const LLT s8 = LLT::scalar(8);
39 const LLT s16 = LLT::scalar(16);
40 const LLT s32 = LLT::scalar(32);
41 const LLT s64 = LLT::scalar(64);
43 auto &LegacyInfo = getLegacyLegalizerInfo();
44 if (ST.isThumb1Only()) {
45 // Thumb1 is not supported yet.
46 LegacyInfo.computeTables();
47 verify(*ST.getInstrInfo());
48 return;
51 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
52 .legalForCartesianProduct({s8, s16, s32}, {s1, s8, s16});
54 getActionDefinitionsBuilder(G_SEXT_INREG).lower();
56 getActionDefinitionsBuilder({G_MUL, G_AND, G_OR, G_XOR})
57 .legalFor({s32})
58 .clampScalar(0, s32, s32);
60 if (ST.hasNEON())
61 getActionDefinitionsBuilder({G_ADD, G_SUB})
62 .legalFor({s32, s64})
63 .minScalar(0, s32);
64 else
65 getActionDefinitionsBuilder({G_ADD, G_SUB})
66 .legalFor({s32})
67 .minScalar(0, s32);
69 getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
70 .legalFor({{s32, s32}})
71 .minScalar(0, s32)
72 .clampScalar(1, s32, s32);
74 bool HasHWDivide = (!ST.isThumb() && ST.hasDivideInARMMode()) ||
75 (ST.isThumb() && ST.hasDivideInThumbMode());
76 if (HasHWDivide)
77 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
78 .legalFor({s32})
79 .clampScalar(0, s32, s32);
80 else
81 getActionDefinitionsBuilder({G_SDIV, G_UDIV})
82 .libcallFor({s32})
83 .clampScalar(0, s32, s32);
85 auto &REMBuilder =
86 getActionDefinitionsBuilder({G_SREM, G_UREM}).minScalar(0, s32);
87 if (HasHWDivide)
88 REMBuilder.lowerFor({s32});
89 else if (AEABI(ST))
90 REMBuilder.customFor({s32});
91 else
92 REMBuilder.libcallFor({s32});
94 getActionDefinitionsBuilder(G_INTTOPTR)
95 .legalFor({{p0, s32}})
96 .minScalar(1, s32);
97 getActionDefinitionsBuilder(G_PTRTOINT)
98 .legalFor({{s32, p0}})
99 .minScalar(0, s32);
101 getActionDefinitionsBuilder(G_CONSTANT)
102 .customFor({s32, p0})
103 .clampScalar(0, s32, s32);
105 getActionDefinitionsBuilder(G_CONSTANT_POOL).legalFor({p0});
107 getActionDefinitionsBuilder(G_ICMP)
108 .legalForCartesianProduct({s1}, {s32, p0})
109 .minScalar(1, s32);
111 getActionDefinitionsBuilder(G_SELECT)
112 .legalForCartesianProduct({s32, p0}, {s1})
113 .minScalar(0, s32);
115 // We're keeping these builders around because we'll want to add support for
116 // floating point to them.
117 auto &LoadStoreBuilder = getActionDefinitionsBuilder({G_LOAD, G_STORE})
118 .legalForTypesWithMemDesc({{s8, p0, s8, 8},
119 {s16, p0, s16, 8},
120 {s32, p0, s32, 8},
121 {p0, p0, p0, 8}})
122 .unsupportedIfMemSizeNotPow2();
124 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
125 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
127 auto &PhiBuilder =
128 getActionDefinitionsBuilder(G_PHI)
129 .legalFor({s32, p0})
130 .minScalar(0, s32);
132 getActionDefinitionsBuilder(G_PTR_ADD)
133 .legalFor({{p0, s32}})
134 .minScalar(1, s32);
136 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
138 if (!ST.useSoftFloat() && ST.hasVFP2Base()) {
139 getActionDefinitionsBuilder(
140 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
141 .legalFor({s32, s64});
143 LoadStoreBuilder
144 .legalForTypesWithMemDesc({{s64, p0, s64, 32}})
145 .maxScalar(0, s32);
146 PhiBuilder.legalFor({s64});
148 getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
149 {s32, s64});
151 getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
152 getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
154 getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
155 getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
157 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
158 .legalForCartesianProduct({s32}, {s32, s64});
159 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
160 .legalForCartesianProduct({s32, s64}, {s32});
162 getActionDefinitionsBuilder({G_GET_FPENV, G_SET_FPENV, G_GET_FPMODE})
163 .legalFor({s32});
164 getActionDefinitionsBuilder(G_RESET_FPENV).alwaysLegal();
165 getActionDefinitionsBuilder(G_SET_FPMODE).customFor({s32});
166 getActionDefinitionsBuilder(G_RESET_FPMODE).custom();
167 } else {
168 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
169 .libcallFor({s32, s64});
171 LoadStoreBuilder.maxScalar(0, s32);
173 getActionDefinitionsBuilder(G_FNEG).lowerFor({s32, s64});
175 getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
177 getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
178 {s32, s64});
180 if (AEABI(ST))
181 setFCmpLibcallsAEABI();
182 else
183 setFCmpLibcallsGNU();
185 getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
186 getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
188 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
189 .libcallForCartesianProduct({s32}, {s32, s64});
190 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
191 .libcallForCartesianProduct({s32, s64}, {s32});
193 getActionDefinitionsBuilder({G_GET_FPENV, G_SET_FPENV, G_RESET_FPENV})
194 .libcall();
195 getActionDefinitionsBuilder({G_GET_FPMODE, G_SET_FPMODE, G_RESET_FPMODE})
196 .libcall();
199 // Just expand whatever loads and stores are left.
200 LoadStoreBuilder.lower();
202 if (!ST.useSoftFloat() && ST.hasVFP4Base())
203 getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
204 else
205 getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
207 getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
209 if (ST.hasV5TOps()) {
210 getActionDefinitionsBuilder(G_CTLZ)
211 .legalFor({s32, s32})
212 .clampScalar(1, s32, s32)
213 .clampScalar(0, s32, s32);
214 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
215 .lowerFor({s32, s32})
216 .clampScalar(1, s32, s32)
217 .clampScalar(0, s32, s32);
218 } else {
219 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
220 .libcallFor({s32, s32})
221 .clampScalar(1, s32, s32)
222 .clampScalar(0, s32, s32);
223 getActionDefinitionsBuilder(G_CTLZ)
224 .lowerFor({s32, s32})
225 .clampScalar(1, s32, s32)
226 .clampScalar(0, s32, s32);
229 LegacyInfo.computeTables();
230 verify(*ST.getInstrInfo());
233 void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
234 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
235 // default-initialized.
236 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
237 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
238 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
239 FCmp32Libcalls[CmpInst::FCMP_OGE] = {
240 {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
241 FCmp32Libcalls[CmpInst::FCMP_OGT] = {
242 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
243 FCmp32Libcalls[CmpInst::FCMP_OLE] = {
244 {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
245 FCmp32Libcalls[CmpInst::FCMP_OLT] = {
246 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
247 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}};
248 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
249 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
250 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
251 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
252 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
253 FCmp32Libcalls[CmpInst::FCMP_UNO] = {
254 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
255 FCmp32Libcalls[CmpInst::FCMP_ONE] = {
256 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
257 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
258 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
259 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
260 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
262 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
263 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
264 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
265 FCmp64Libcalls[CmpInst::FCMP_OGE] = {
266 {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
267 FCmp64Libcalls[CmpInst::FCMP_OGT] = {
268 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
269 FCmp64Libcalls[CmpInst::FCMP_OLE] = {
270 {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
271 FCmp64Libcalls[CmpInst::FCMP_OLT] = {
272 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
273 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}};
274 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
275 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
276 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
277 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
278 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
279 FCmp64Libcalls[CmpInst::FCMP_UNO] = {
280 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
281 FCmp64Libcalls[CmpInst::FCMP_ONE] = {
282 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
283 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
284 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
285 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
286 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
289 void ARMLegalizerInfo::setFCmpLibcallsGNU() {
290 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
291 // default-initialized.
292 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
293 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
294 FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
295 FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
296 FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
297 FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
298 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}};
299 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
300 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
301 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
302 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
303 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
304 FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
305 FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
306 {RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
307 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
308 {RTLIB::UO_F32, CmpInst::ICMP_NE}};
310 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
311 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
312 FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
313 FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
314 FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
315 FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
316 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}};
317 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
318 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
319 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
320 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
321 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
322 FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
323 FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
324 {RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
325 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
326 {RTLIB::UO_F64, CmpInst::ICMP_NE}};
329 ARMLegalizerInfo::FCmpLibcallsList
330 ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
331 unsigned Size) const {
332 assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
333 if (Size == 32)
334 return FCmp32Libcalls[Predicate];
335 if (Size == 64)
336 return FCmp64Libcalls[Predicate];
337 llvm_unreachable("Unsupported size for FCmp predicate");
340 bool ARMLegalizerInfo::legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI,
341 LostDebugLocObserver &LocObserver) const {
342 using namespace TargetOpcode;
344 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
345 MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
346 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
348 switch (MI.getOpcode()) {
349 default:
350 return false;
351 case G_SREM:
352 case G_UREM: {
353 Register OriginalResult = MI.getOperand(0).getReg();
354 auto Size = MRI.getType(OriginalResult).getSizeInBits();
355 if (Size != 32)
356 return false;
358 auto Libcall =
359 MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
361 // Our divmod libcalls return a struct containing the quotient and the
362 // remainder. Create a new, unused register for the quotient and use the
363 // destination of the original instruction for the remainder.
364 Type *ArgTy = Type::getInt32Ty(Ctx);
365 StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
366 Register RetRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)),
367 OriginalResult};
368 auto Status = createLibcall(MIRBuilder, Libcall, {RetRegs, RetTy, 0},
369 {{MI.getOperand(1).getReg(), ArgTy, 0},
370 {MI.getOperand(2).getReg(), ArgTy, 0}},
371 LocObserver, &MI);
372 if (Status != LegalizerHelper::Legalized)
373 return false;
374 break;
376 case G_FCMP: {
377 assert(MRI.getType(MI.getOperand(2).getReg()) ==
378 MRI.getType(MI.getOperand(3).getReg()) &&
379 "Mismatched operands for G_FCMP");
380 auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
382 auto OriginalResult = MI.getOperand(0).getReg();
383 auto Predicate =
384 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
385 auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
387 if (Libcalls.empty()) {
388 assert((Predicate == CmpInst::FCMP_TRUE ||
389 Predicate == CmpInst::FCMP_FALSE) &&
390 "Predicate needs libcalls, but none specified");
391 MIRBuilder.buildConstant(OriginalResult,
392 Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
393 MI.eraseFromParent();
394 return true;
397 assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
398 auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
399 auto *RetTy = Type::getInt32Ty(Ctx);
401 SmallVector<Register, 2> Results;
402 for (auto Libcall : Libcalls) {
403 auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
404 auto Status = createLibcall(MIRBuilder, Libcall.LibcallID,
405 {LibcallResult, RetTy, 0},
406 {{MI.getOperand(2).getReg(), ArgTy, 0},
407 {MI.getOperand(3).getReg(), ArgTy, 0}},
408 LocObserver, &MI);
410 if (Status != LegalizerHelper::Legalized)
411 return false;
413 auto ProcessedResult =
414 Libcalls.size() == 1
415 ? OriginalResult
416 : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
418 // We have a result, but we need to transform it into a proper 1-bit 0 or
419 // 1, taking into account the different peculiarities of the values
420 // returned by the comparison functions.
421 CmpInst::Predicate ResultPred = Libcall.Predicate;
422 if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
423 // We have a nice 0 or 1, and we just need to truncate it back to 1 bit
424 // to keep the types consistent.
425 MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
426 } else {
427 // We need to compare against 0.
428 assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
429 auto Zero = MIRBuilder.buildConstant(LLT::scalar(32), 0);
430 MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
432 Results.push_back(ProcessedResult);
435 if (Results.size() != 1) {
436 assert(Results.size() == 2 && "Unexpected number of results");
437 MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
439 break;
441 case G_CONSTANT: {
442 const ConstantInt *ConstVal = MI.getOperand(1).getCImm();
443 uint64_t ImmVal = ConstVal->getZExtValue();
444 if (ConstantMaterializationCost(ImmVal, &ST) > 2 && !ST.genExecuteOnly())
445 return Helper.lowerConstant(MI) == LegalizerHelper::Legalized;
446 return true;
448 case G_FCONSTANT: {
449 // Convert to integer constants, while preserving the binary representation.
450 auto AsInteger =
451 MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
452 MIRBuilder.buildConstant(MI.getOperand(0),
453 *ConstantInt::get(Ctx, AsInteger));
454 break;
456 case G_SET_FPMODE: {
457 // New FPSCR = (FPSCR & FPStatusBits) | (Modes & ~FPStatusBits)
458 LLT FPEnvTy = LLT::scalar(32);
459 auto FPEnv = MRI.createGenericVirtualRegister(FPEnvTy);
460 Register Modes = MI.getOperand(0).getReg();
461 MIRBuilder.buildGetFPEnv(FPEnv);
462 auto StatusBitMask = MIRBuilder.buildConstant(FPEnvTy, ARM::FPStatusBits);
463 auto StatusBits = MIRBuilder.buildAnd(FPEnvTy, FPEnv, StatusBitMask);
464 auto NotStatusBitMask =
465 MIRBuilder.buildConstant(FPEnvTy, ~ARM::FPStatusBits);
466 auto FPModeBits = MIRBuilder.buildAnd(FPEnvTy, Modes, NotStatusBitMask);
467 auto NewFPSCR = MIRBuilder.buildOr(FPEnvTy, StatusBits, FPModeBits);
468 MIRBuilder.buildSetFPEnv(NewFPSCR);
469 break;
471 case G_RESET_FPMODE: {
472 // To get the default FP mode all control bits are cleared:
473 // FPSCR = FPSCR & (FPStatusBits | FPReservedBits)
474 LLT FPEnvTy = LLT::scalar(32);
475 auto FPEnv = MIRBuilder.buildGetFPEnv(FPEnvTy);
476 auto NotModeBitMask = MIRBuilder.buildConstant(
477 FPEnvTy, ARM::FPStatusBits | ARM::FPReservedBits);
478 auto NewFPSCR = MIRBuilder.buildAnd(FPEnvTy, FPEnv, NotModeBitMask);
479 MIRBuilder.buildSetFPEnv(NewFPSCR);
480 break;
484 MI.eraseFromParent();
485 return true;