AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / ARM / ARMLoadStoreOptimizer.cpp
bloba0624ba64aeafdbaabeffc8cf910d41a6c1bdffd
1 //===- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file contains a pass that performs load / store related peephole
10 /// optimizations. This pass should be run after register allocation.
12 //===----------------------------------------------------------------------===//
14 #include "ARM.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMISelLowering.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/CodeGen/LiveRegUnits.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegisterClassInfo.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/InitializePasses.h"
56 #include "llvm/MC/MCInstrDesc.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/Allocator.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdlib>
66 #include <iterator>
67 #include <limits>
68 #include <utility>
70 using namespace llvm;
72 #define DEBUG_TYPE "arm-ldst-opt"
74 STATISTIC(NumLDMGened , "Number of ldm instructions generated");
75 STATISTIC(NumSTMGened , "Number of stm instructions generated");
76 STATISTIC(NumVLDMGened, "Number of vldm instructions generated");
77 STATISTIC(NumVSTMGened, "Number of vstm instructions generated");
78 STATISTIC(NumLdStMoved, "Number of load / store instructions moved");
79 STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation");
80 STATISTIC(NumSTRDFormed,"Number of strd created before allocation");
81 STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm");
82 STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm");
83 STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's");
84 STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's");
86 /// This switch disables formation of double/multi instructions that could
87 /// potentially lead to (new) alignment traps even with CCR.UNALIGN_TRP
88 /// disabled. This can be used to create libraries that are robust even when
89 /// users provoke undefined behaviour by supplying misaligned pointers.
90 /// \see mayCombineMisaligned()
91 static cl::opt<bool>
92 AssumeMisalignedLoadStores("arm-assume-misaligned-load-store", cl::Hidden,
93 cl::init(false), cl::desc("Be more conservative in ARM load/store opt"));
95 #define ARM_LOAD_STORE_OPT_NAME "ARM load / store optimization pass"
97 namespace {
99 /// Post- register allocation pass the combine load / store instructions to
100 /// form ldm / stm instructions.
101 struct ARMLoadStoreOpt : public MachineFunctionPass {
102 static char ID;
104 const MachineFunction *MF;
105 const TargetInstrInfo *TII;
106 const TargetRegisterInfo *TRI;
107 const ARMSubtarget *STI;
108 const TargetLowering *TL;
109 ARMFunctionInfo *AFI;
110 LiveRegUnits LiveRegs;
111 RegisterClassInfo RegClassInfo;
112 MachineBasicBlock::const_iterator LiveRegPos;
113 bool LiveRegsValid;
114 bool RegClassInfoValid;
115 bool isThumb1, isThumb2;
117 ARMLoadStoreOpt() : MachineFunctionPass(ID) {}
119 bool runOnMachineFunction(MachineFunction &Fn) override;
121 MachineFunctionProperties getRequiredProperties() const override {
122 return MachineFunctionProperties().set(
123 MachineFunctionProperties::Property::NoVRegs);
126 StringRef getPassName() const override { return ARM_LOAD_STORE_OPT_NAME; }
128 private:
129 /// A set of load/store MachineInstrs with same base register sorted by
130 /// offset.
131 struct MemOpQueueEntry {
132 MachineInstr *MI;
133 int Offset; ///< Load/Store offset.
134 unsigned Position; ///< Position as counted from end of basic block.
136 MemOpQueueEntry(MachineInstr &MI, int Offset, unsigned Position)
137 : MI(&MI), Offset(Offset), Position(Position) {}
139 using MemOpQueue = SmallVector<MemOpQueueEntry, 8>;
141 /// A set of MachineInstrs that fulfill (nearly all) conditions to get
142 /// merged into a LDM/STM.
143 struct MergeCandidate {
144 /// List of instructions ordered by load/store offset.
145 SmallVector<MachineInstr*, 4> Instrs;
147 /// Index in Instrs of the instruction being latest in the schedule.
148 unsigned LatestMIIdx;
150 /// Index in Instrs of the instruction being earliest in the schedule.
151 unsigned EarliestMIIdx;
153 /// Index into the basic block where the merged instruction will be
154 /// inserted. (See MemOpQueueEntry.Position)
155 unsigned InsertPos;
157 /// Whether the instructions can be merged into a ldm/stm instruction.
158 bool CanMergeToLSMulti;
160 /// Whether the instructions can be merged into a ldrd/strd instruction.
161 bool CanMergeToLSDouble;
163 SpecificBumpPtrAllocator<MergeCandidate> Allocator;
164 SmallVector<const MergeCandidate*,4> Candidates;
165 SmallVector<MachineInstr*,4> MergeBaseCandidates;
167 void moveLiveRegsBefore(const MachineBasicBlock &MBB,
168 MachineBasicBlock::const_iterator Before);
169 unsigned findFreeReg(const TargetRegisterClass &RegClass);
170 void UpdateBaseRegUses(MachineBasicBlock &MBB,
171 MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
172 unsigned Base, unsigned WordOffset,
173 ARMCC::CondCodes Pred, unsigned PredReg);
174 MachineInstr *CreateLoadStoreMulti(
175 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
176 int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
177 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
178 ArrayRef<std::pair<unsigned, bool>> Regs,
179 ArrayRef<MachineInstr*> Instrs);
180 MachineInstr *CreateLoadStoreDouble(
181 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
182 int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
183 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
184 ArrayRef<std::pair<unsigned, bool>> Regs,
185 ArrayRef<MachineInstr*> Instrs) const;
186 void FormCandidates(const MemOpQueue &MemOps);
187 MachineInstr *MergeOpsUpdate(const MergeCandidate &Cand);
188 bool FixInvalidRegPairOp(MachineBasicBlock &MBB,
189 MachineBasicBlock::iterator &MBBI);
190 bool MergeBaseUpdateLoadStore(MachineInstr *MI);
191 bool MergeBaseUpdateLSMultiple(MachineInstr *MI);
192 bool MergeBaseUpdateLSDouble(MachineInstr &MI) const;
193 bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
194 bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
195 bool CombineMovBx(MachineBasicBlock &MBB);
198 } // end anonymous namespace
200 char ARMLoadStoreOpt::ID = 0;
202 INITIALIZE_PASS(ARMLoadStoreOpt, "arm-ldst-opt", ARM_LOAD_STORE_OPT_NAME, false,
203 false)
205 static bool definesCPSR(const MachineInstr &MI) {
206 for (const auto &MO : MI.operands()) {
207 if (!MO.isReg())
208 continue;
209 if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead())
210 // If the instruction has live CPSR def, then it's not safe to fold it
211 // into load / store.
212 return true;
215 return false;
218 static int getMemoryOpOffset(const MachineInstr &MI) {
219 unsigned Opcode = MI.getOpcode();
220 bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
221 unsigned NumOperands = MI.getDesc().getNumOperands();
222 unsigned OffField = MI.getOperand(NumOperands - 3).getImm();
224 if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
225 Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
226 Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
227 Opcode == ARM::LDRi12 || Opcode == ARM::STRi12)
228 return OffField;
230 // Thumb1 immediate offsets are scaled by 4
231 if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi ||
232 Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi)
233 return OffField * 4;
235 int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
236 : ARM_AM::getAM5Offset(OffField) * 4;
237 ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField)
238 : ARM_AM::getAM5Op(OffField);
240 if (Op == ARM_AM::sub)
241 return -Offset;
243 return Offset;
246 static const MachineOperand &getLoadStoreBaseOp(const MachineInstr &MI) {
247 return MI.getOperand(1);
250 static const MachineOperand &getLoadStoreRegOp(const MachineInstr &MI) {
251 return MI.getOperand(0);
254 static int getLoadStoreMultipleOpcode(unsigned Opcode, ARM_AM::AMSubMode Mode) {
255 switch (Opcode) {
256 default: llvm_unreachable("Unhandled opcode!");
257 case ARM::LDRi12:
258 ++NumLDMGened;
259 switch (Mode) {
260 default: llvm_unreachable("Unhandled submode!");
261 case ARM_AM::ia: return ARM::LDMIA;
262 case ARM_AM::da: return ARM::LDMDA;
263 case ARM_AM::db: return ARM::LDMDB;
264 case ARM_AM::ib: return ARM::LDMIB;
266 case ARM::STRi12:
267 ++NumSTMGened;
268 switch (Mode) {
269 default: llvm_unreachable("Unhandled submode!");
270 case ARM_AM::ia: return ARM::STMIA;
271 case ARM_AM::da: return ARM::STMDA;
272 case ARM_AM::db: return ARM::STMDB;
273 case ARM_AM::ib: return ARM::STMIB;
275 case ARM::tLDRi:
276 case ARM::tLDRspi:
277 // tLDMIA is writeback-only - unless the base register is in the input
278 // reglist.
279 ++NumLDMGened;
280 switch (Mode) {
281 default: llvm_unreachable("Unhandled submode!");
282 case ARM_AM::ia: return ARM::tLDMIA;
284 case ARM::tSTRi:
285 case ARM::tSTRspi:
286 // There is no non-writeback tSTMIA either.
287 ++NumSTMGened;
288 switch (Mode) {
289 default: llvm_unreachable("Unhandled submode!");
290 case ARM_AM::ia: return ARM::tSTMIA_UPD;
292 case ARM::t2LDRi8:
293 case ARM::t2LDRi12:
294 ++NumLDMGened;
295 switch (Mode) {
296 default: llvm_unreachable("Unhandled submode!");
297 case ARM_AM::ia: return ARM::t2LDMIA;
298 case ARM_AM::db: return ARM::t2LDMDB;
300 case ARM::t2STRi8:
301 case ARM::t2STRi12:
302 ++NumSTMGened;
303 switch (Mode) {
304 default: llvm_unreachable("Unhandled submode!");
305 case ARM_AM::ia: return ARM::t2STMIA;
306 case ARM_AM::db: return ARM::t2STMDB;
308 case ARM::VLDRS:
309 ++NumVLDMGened;
310 switch (Mode) {
311 default: llvm_unreachable("Unhandled submode!");
312 case ARM_AM::ia: return ARM::VLDMSIA;
313 case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists.
315 case ARM::VSTRS:
316 ++NumVSTMGened;
317 switch (Mode) {
318 default: llvm_unreachable("Unhandled submode!");
319 case ARM_AM::ia: return ARM::VSTMSIA;
320 case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists.
322 case ARM::VLDRD:
323 ++NumVLDMGened;
324 switch (Mode) {
325 default: llvm_unreachable("Unhandled submode!");
326 case ARM_AM::ia: return ARM::VLDMDIA;
327 case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists.
329 case ARM::VSTRD:
330 ++NumVSTMGened;
331 switch (Mode) {
332 default: llvm_unreachable("Unhandled submode!");
333 case ARM_AM::ia: return ARM::VSTMDIA;
334 case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists.
339 static ARM_AM::AMSubMode getLoadStoreMultipleSubMode(unsigned Opcode) {
340 switch (Opcode) {
341 default: llvm_unreachable("Unhandled opcode!");
342 case ARM::LDMIA_RET:
343 case ARM::LDMIA:
344 case ARM::LDMIA_UPD:
345 case ARM::STMIA:
346 case ARM::STMIA_UPD:
347 case ARM::tLDMIA:
348 case ARM::tLDMIA_UPD:
349 case ARM::tSTMIA_UPD:
350 case ARM::t2LDMIA_RET:
351 case ARM::t2LDMIA:
352 case ARM::t2LDMIA_UPD:
353 case ARM::t2STMIA:
354 case ARM::t2STMIA_UPD:
355 case ARM::VLDMSIA:
356 case ARM::VLDMSIA_UPD:
357 case ARM::VSTMSIA:
358 case ARM::VSTMSIA_UPD:
359 case ARM::VLDMDIA:
360 case ARM::VLDMDIA_UPD:
361 case ARM::VSTMDIA:
362 case ARM::VSTMDIA_UPD:
363 return ARM_AM::ia;
365 case ARM::LDMDA:
366 case ARM::LDMDA_UPD:
367 case ARM::STMDA:
368 case ARM::STMDA_UPD:
369 return ARM_AM::da;
371 case ARM::LDMDB:
372 case ARM::LDMDB_UPD:
373 case ARM::STMDB:
374 case ARM::STMDB_UPD:
375 case ARM::t2LDMDB:
376 case ARM::t2LDMDB_UPD:
377 case ARM::t2STMDB:
378 case ARM::t2STMDB_UPD:
379 case ARM::VLDMSDB_UPD:
380 case ARM::VSTMSDB_UPD:
381 case ARM::VLDMDDB_UPD:
382 case ARM::VSTMDDB_UPD:
383 return ARM_AM::db;
385 case ARM::LDMIB:
386 case ARM::LDMIB_UPD:
387 case ARM::STMIB:
388 case ARM::STMIB_UPD:
389 return ARM_AM::ib;
393 static bool isT1i32Load(unsigned Opc) {
394 return Opc == ARM::tLDRi || Opc == ARM::tLDRspi;
397 static bool isT2i32Load(unsigned Opc) {
398 return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8;
401 static bool isi32Load(unsigned Opc) {
402 return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ;
405 static bool isT1i32Store(unsigned Opc) {
406 return Opc == ARM::tSTRi || Opc == ARM::tSTRspi;
409 static bool isT2i32Store(unsigned Opc) {
410 return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8;
413 static bool isi32Store(unsigned Opc) {
414 return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc);
417 static bool isLoadSingle(unsigned Opc) {
418 return isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD;
421 static unsigned getImmScale(unsigned Opc) {
422 switch (Opc) {
423 default: llvm_unreachable("Unhandled opcode!");
424 case ARM::tLDRi:
425 case ARM::tSTRi:
426 case ARM::tLDRspi:
427 case ARM::tSTRspi:
428 return 1;
429 case ARM::tLDRHi:
430 case ARM::tSTRHi:
431 return 2;
432 case ARM::tLDRBi:
433 case ARM::tSTRBi:
434 return 4;
438 static unsigned getLSMultipleTransferSize(const MachineInstr *MI) {
439 switch (MI->getOpcode()) {
440 default: return 0;
441 case ARM::LDRi12:
442 case ARM::STRi12:
443 case ARM::tLDRi:
444 case ARM::tSTRi:
445 case ARM::tLDRspi:
446 case ARM::tSTRspi:
447 case ARM::t2LDRi8:
448 case ARM::t2LDRi12:
449 case ARM::t2STRi8:
450 case ARM::t2STRi12:
451 case ARM::VLDRS:
452 case ARM::VSTRS:
453 return 4;
454 case ARM::VLDRD:
455 case ARM::VSTRD:
456 return 8;
457 case ARM::LDMIA:
458 case ARM::LDMDA:
459 case ARM::LDMDB:
460 case ARM::LDMIB:
461 case ARM::STMIA:
462 case ARM::STMDA:
463 case ARM::STMDB:
464 case ARM::STMIB:
465 case ARM::tLDMIA:
466 case ARM::tLDMIA_UPD:
467 case ARM::tSTMIA_UPD:
468 case ARM::t2LDMIA:
469 case ARM::t2LDMDB:
470 case ARM::t2STMIA:
471 case ARM::t2STMDB:
472 case ARM::VLDMSIA:
473 case ARM::VSTMSIA:
474 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4;
475 case ARM::VLDMDIA:
476 case ARM::VSTMDIA:
477 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8;
481 /// Update future uses of the base register with the offset introduced
482 /// due to writeback. This function only works on Thumb1.
483 void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
484 MachineBasicBlock::iterator MBBI,
485 const DebugLoc &DL, unsigned Base,
486 unsigned WordOffset,
487 ARMCC::CondCodes Pred,
488 unsigned PredReg) {
489 assert(isThumb1 && "Can only update base register uses for Thumb1!");
490 // Start updating any instructions with immediate offsets. Insert a SUB before
491 // the first non-updateable instruction (if any).
492 for (; MBBI != MBB.end(); ++MBBI) {
493 bool InsertSub = false;
494 unsigned Opc = MBBI->getOpcode();
496 if (MBBI->readsRegister(Base, /*TRI=*/nullptr)) {
497 int Offset;
498 bool IsLoad =
499 Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi;
500 bool IsStore =
501 Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi;
503 if (IsLoad || IsStore) {
504 // Loads and stores with immediate offsets can be updated, but only if
505 // the new offset isn't negative.
506 // The MachineOperand containing the offset immediate is the last one
507 // before predicates.
508 MachineOperand &MO =
509 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
510 // The offsets are scaled by 1, 2 or 4 depending on the Opcode.
511 Offset = MO.getImm() - WordOffset * getImmScale(Opc);
513 // If storing the base register, it needs to be reset first.
514 Register InstrSrcReg = getLoadStoreRegOp(*MBBI).getReg();
516 if (Offset >= 0 && !(IsStore && InstrSrcReg == Base))
517 MO.setImm(Offset);
518 else
519 InsertSub = true;
520 } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) &&
521 !definesCPSR(*MBBI)) {
522 // SUBS/ADDS using this register, with a dead def of the CPSR.
523 // Merge it with the update; if the merged offset is too large,
524 // insert a new sub instead.
525 MachineOperand &MO =
526 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
527 Offset = (Opc == ARM::tSUBi8) ?
528 MO.getImm() + WordOffset * 4 :
529 MO.getImm() - WordOffset * 4 ;
530 if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) {
531 // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if
532 // Offset == 0.
533 MO.setImm(Offset);
534 // The base register has now been reset, so exit early.
535 return;
536 } else {
537 InsertSub = true;
539 } else {
540 // Can't update the instruction.
541 InsertSub = true;
543 } else if (definesCPSR(*MBBI) || MBBI->isCall() || MBBI->isBranch()) {
544 // Since SUBS sets the condition flags, we can't place the base reset
545 // after an instruction that has a live CPSR def.
546 // The base register might also contain an argument for a function call.
547 InsertSub = true;
550 if (InsertSub) {
551 // An instruction above couldn't be updated, so insert a sub.
552 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
553 .add(t1CondCodeOp(true))
554 .addReg(Base)
555 .addImm(WordOffset * 4)
556 .addImm(Pred)
557 .addReg(PredReg);
558 return;
561 if (MBBI->killsRegister(Base, /*TRI=*/nullptr) ||
562 MBBI->definesRegister(Base, /*TRI=*/nullptr))
563 // Register got killed. Stop updating.
564 return;
567 // End of block was reached.
568 if (!MBB.succ_empty()) {
569 // FIXME: Because of a bug, live registers are sometimes missing from
570 // the successor blocks' live-in sets. This means we can't trust that
571 // information and *always* have to reset at the end of a block.
572 // See PR21029.
573 if (MBBI != MBB.end()) --MBBI;
574 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
575 .add(t1CondCodeOp(true))
576 .addReg(Base)
577 .addImm(WordOffset * 4)
578 .addImm(Pred)
579 .addReg(PredReg);
583 /// Return the first register of class \p RegClass that is not in \p Regs.
584 unsigned ARMLoadStoreOpt::findFreeReg(const TargetRegisterClass &RegClass) {
585 if (!RegClassInfoValid) {
586 RegClassInfo.runOnMachineFunction(*MF);
587 RegClassInfoValid = true;
590 for (unsigned Reg : RegClassInfo.getOrder(&RegClass))
591 if (LiveRegs.available(Reg) && !MF->getRegInfo().isReserved(Reg))
592 return Reg;
593 return 0;
596 /// Compute live registers just before instruction \p Before (in normal schedule
597 /// direction). Computes backwards so multiple queries in the same block must
598 /// come in reverse order.
599 void ARMLoadStoreOpt::moveLiveRegsBefore(const MachineBasicBlock &MBB,
600 MachineBasicBlock::const_iterator Before) {
601 // Initialize if we never queried in this block.
602 if (!LiveRegsValid) {
603 LiveRegs.init(*TRI);
604 LiveRegs.addLiveOuts(MBB);
605 LiveRegPos = MBB.end();
606 LiveRegsValid = true;
608 // Move backward just before the "Before" position.
609 while (LiveRegPos != Before) {
610 --LiveRegPos;
611 LiveRegs.stepBackward(*LiveRegPos);
615 static bool ContainsReg(const ArrayRef<std::pair<unsigned, bool>> &Regs,
616 unsigned Reg) {
617 for (const std::pair<unsigned, bool> &R : Regs)
618 if (R.first == Reg)
619 return true;
620 return false;
623 /// Create and insert a LDM or STM with Base as base register and registers in
624 /// Regs as the register operands that would be loaded / stored. It returns
625 /// true if the transformation is done.
626 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreMulti(
627 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
628 int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
629 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
630 ArrayRef<std::pair<unsigned, bool>> Regs,
631 ArrayRef<MachineInstr*> Instrs) {
632 unsigned NumRegs = Regs.size();
633 assert(NumRegs > 1);
635 // For Thumb1 targets, it might be necessary to clobber the CPSR to merge.
636 // Compute liveness information for that register to make the decision.
637 bool SafeToClobberCPSR = !isThumb1 ||
638 (MBB.computeRegisterLiveness(TRI, ARM::CPSR, InsertBefore, 20) ==
639 MachineBasicBlock::LQR_Dead);
641 bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback.
643 // Exception: If the base register is in the input reglist, Thumb1 LDM is
644 // non-writeback.
645 // It's also not possible to merge an STR of the base register in Thumb1.
646 if (isThumb1 && ContainsReg(Regs, Base)) {
647 assert(Base != ARM::SP && "Thumb1 does not allow SP in register list");
648 if (Opcode == ARM::tLDRi)
649 Writeback = false;
650 else if (Opcode == ARM::tSTRi)
651 return nullptr;
654 ARM_AM::AMSubMode Mode = ARM_AM::ia;
655 // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA.
656 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
657 bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1;
659 if (Offset == 4 && haveIBAndDA) {
660 Mode = ARM_AM::ib;
661 } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) {
662 Mode = ARM_AM::da;
663 } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) {
664 // VLDM/VSTM do not support DB mode without also updating the base reg.
665 Mode = ARM_AM::db;
666 } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) {
667 // Check if this is a supported opcode before inserting instructions to
668 // calculate a new base register.
669 if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return nullptr;
671 // If starting offset isn't zero, insert a MI to materialize a new base.
672 // But only do so if it is cost effective, i.e. merging more than two
673 // loads / stores.
674 if (NumRegs <= 2)
675 return nullptr;
677 // On Thumb1, it's not worth materializing a new base register without
678 // clobbering the CPSR (i.e. not using ADDS/SUBS).
679 if (!SafeToClobberCPSR)
680 return nullptr;
682 unsigned NewBase;
683 if (isi32Load(Opcode)) {
684 // If it is a load, then just use one of the destination registers
685 // as the new base. Will no longer be writeback in Thumb1.
686 NewBase = Regs[NumRegs-1].first;
687 Writeback = false;
688 } else {
689 // Find a free register that we can use as scratch register.
690 moveLiveRegsBefore(MBB, InsertBefore);
691 // The merged instruction does not exist yet but will use several Regs if
692 // it is a Store.
693 if (!isLoadSingle(Opcode))
694 for (const std::pair<unsigned, bool> &R : Regs)
695 LiveRegs.addReg(R.first);
697 NewBase = findFreeReg(isThumb1 ? ARM::tGPRRegClass : ARM::GPRRegClass);
698 if (NewBase == 0)
699 return nullptr;
702 int BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2ADDspImm
703 : ARM::t2ADDri)
704 : (isThumb1 && Base == ARM::SP)
705 ? ARM::tADDrSPi
706 : (isThumb1 && Offset < 8)
707 ? ARM::tADDi3
708 : isThumb1 ? ARM::tADDi8 : ARM::ADDri;
710 if (Offset < 0) {
711 // FIXME: There are no Thumb1 load/store instructions with negative
712 // offsets. So the Base != ARM::SP might be unnecessary.
713 Offset = -Offset;
714 BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2SUBspImm
715 : ARM::t2SUBri)
716 : (isThumb1 && Offset < 8 && Base != ARM::SP)
717 ? ARM::tSUBi3
718 : isThumb1 ? ARM::tSUBi8 : ARM::SUBri;
721 if (!TL->isLegalAddImmediate(Offset))
722 // FIXME: Try add with register operand?
723 return nullptr; // Probably not worth it then.
725 // We can only append a kill flag to the add/sub input if the value is not
726 // used in the register list of the stm as well.
727 bool KillOldBase = BaseKill &&
728 (!isi32Store(Opcode) || !ContainsReg(Regs, Base));
730 if (isThumb1) {
731 // Thumb1: depending on immediate size, use either
732 // ADDS NewBase, Base, #imm3
733 // or
734 // MOV NewBase, Base
735 // ADDS NewBase, #imm8.
736 if (Base != NewBase &&
737 (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) {
738 // Need to insert a MOV to the new base first.
739 if (isARMLowRegister(NewBase) && isARMLowRegister(Base) &&
740 !STI->hasV6Ops()) {
741 // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr
742 if (Pred != ARMCC::AL)
743 return nullptr;
744 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVSr), NewBase)
745 .addReg(Base, getKillRegState(KillOldBase));
746 } else
747 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVr), NewBase)
748 .addReg(Base, getKillRegState(KillOldBase))
749 .add(predOps(Pred, PredReg));
751 // The following ADDS/SUBS becomes an update.
752 Base = NewBase;
753 KillOldBase = true;
755 if (BaseOpc == ARM::tADDrSPi) {
756 assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4");
757 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
758 .addReg(Base, getKillRegState(KillOldBase))
759 .addImm(Offset / 4)
760 .add(predOps(Pred, PredReg));
761 } else
762 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
763 .add(t1CondCodeOp(true))
764 .addReg(Base, getKillRegState(KillOldBase))
765 .addImm(Offset)
766 .add(predOps(Pred, PredReg));
767 } else {
768 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
769 .addReg(Base, getKillRegState(KillOldBase))
770 .addImm(Offset)
771 .add(predOps(Pred, PredReg))
772 .add(condCodeOp());
774 Base = NewBase;
775 BaseKill = true; // New base is always killed straight away.
778 bool isDef = isLoadSingle(Opcode);
780 // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with
781 // base register writeback.
782 Opcode = getLoadStoreMultipleOpcode(Opcode, Mode);
783 if (!Opcode)
784 return nullptr;
786 // Check if a Thumb1 LDM/STM merge is safe. This is the case if:
787 // - There is no writeback (LDM of base register),
788 // - the base register is killed by the merged instruction,
789 // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS
790 // to reset the base register.
791 // Otherwise, don't merge.
792 // It's safe to return here since the code to materialize a new base register
793 // above is also conditional on SafeToClobberCPSR.
794 if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill)
795 return nullptr;
797 MachineInstrBuilder MIB;
799 if (Writeback) {
800 assert(isThumb1 && "expected Writeback only inThumb1");
801 if (Opcode == ARM::tLDMIA) {
802 assert(!(ContainsReg(Regs, Base)) && "Thumb1 can't LDM ! with Base in Regs");
803 // Update tLDMIA with writeback if necessary.
804 Opcode = ARM::tLDMIA_UPD;
807 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));
809 // Thumb1: we might need to set base writeback when building the MI.
810 MIB.addReg(Base, getDefRegState(true))
811 .addReg(Base, getKillRegState(BaseKill));
813 // The base isn't dead after a merged instruction with writeback.
814 // Insert a sub instruction after the newly formed instruction to reset.
815 if (!BaseKill)
816 UpdateBaseRegUses(MBB, InsertBefore, DL, Base, NumRegs, Pred, PredReg);
817 } else {
818 // No writeback, simply build the MachineInstr.
819 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));
820 MIB.addReg(Base, getKillRegState(BaseKill));
823 MIB.addImm(Pred).addReg(PredReg);
825 for (const std::pair<unsigned, bool> &R : Regs)
826 MIB.addReg(R.first, getDefRegState(isDef) | getKillRegState(R.second));
828 MIB.cloneMergedMemRefs(Instrs);
830 return MIB.getInstr();
833 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreDouble(
834 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
835 int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
836 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
837 ArrayRef<std::pair<unsigned, bool>> Regs,
838 ArrayRef<MachineInstr*> Instrs) const {
839 bool IsLoad = isi32Load(Opcode);
840 assert((IsLoad || isi32Store(Opcode)) && "Must have integer load or store");
841 unsigned LoadStoreOpcode = IsLoad ? ARM::t2LDRDi8 : ARM::t2STRDi8;
843 assert(Regs.size() == 2);
844 MachineInstrBuilder MIB = BuildMI(MBB, InsertBefore, DL,
845 TII->get(LoadStoreOpcode));
846 if (IsLoad) {
847 MIB.addReg(Regs[0].first, RegState::Define)
848 .addReg(Regs[1].first, RegState::Define);
849 } else {
850 MIB.addReg(Regs[0].first, getKillRegState(Regs[0].second))
851 .addReg(Regs[1].first, getKillRegState(Regs[1].second));
853 MIB.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
854 MIB.cloneMergedMemRefs(Instrs);
855 return MIB.getInstr();
858 /// Call MergeOps and update MemOps and merges accordingly on success.
859 MachineInstr *ARMLoadStoreOpt::MergeOpsUpdate(const MergeCandidate &Cand) {
860 const MachineInstr *First = Cand.Instrs.front();
861 unsigned Opcode = First->getOpcode();
862 bool IsLoad = isLoadSingle(Opcode);
863 SmallVector<std::pair<unsigned, bool>, 8> Regs;
864 SmallVector<unsigned, 4> ImpDefs;
865 DenseSet<unsigned> KilledRegs;
866 DenseSet<unsigned> UsedRegs;
867 // Determine list of registers and list of implicit super-register defs.
868 for (const MachineInstr *MI : Cand.Instrs) {
869 const MachineOperand &MO = getLoadStoreRegOp(*MI);
870 Register Reg = MO.getReg();
871 bool IsKill = MO.isKill();
872 if (IsKill)
873 KilledRegs.insert(Reg);
874 Regs.push_back(std::make_pair(Reg, IsKill));
875 UsedRegs.insert(Reg);
877 if (IsLoad) {
878 // Collect any implicit defs of super-registers, after merging we can't
879 // be sure anymore that we properly preserved these live ranges and must
880 // removed these implicit operands.
881 for (const MachineOperand &MO : MI->implicit_operands()) {
882 if (!MO.isReg() || !MO.isDef() || MO.isDead())
883 continue;
884 assert(MO.isImplicit());
885 Register DefReg = MO.getReg();
887 if (is_contained(ImpDefs, DefReg))
888 continue;
889 // We can ignore cases where the super-reg is read and written.
890 if (MI->readsRegister(DefReg, /*TRI=*/nullptr))
891 continue;
892 ImpDefs.push_back(DefReg);
897 // Attempt the merge.
898 using iterator = MachineBasicBlock::iterator;
900 MachineInstr *LatestMI = Cand.Instrs[Cand.LatestMIIdx];
901 iterator InsertBefore = std::next(iterator(LatestMI));
902 MachineBasicBlock &MBB = *LatestMI->getParent();
903 unsigned Offset = getMemoryOpOffset(*First);
904 Register Base = getLoadStoreBaseOp(*First).getReg();
905 bool BaseKill = LatestMI->killsRegister(Base, /*TRI=*/nullptr);
906 Register PredReg;
907 ARMCC::CondCodes Pred = getInstrPredicate(*First, PredReg);
908 DebugLoc DL = First->getDebugLoc();
909 MachineInstr *Merged = nullptr;
910 if (Cand.CanMergeToLSDouble)
911 Merged = CreateLoadStoreDouble(MBB, InsertBefore, Offset, Base, BaseKill,
912 Opcode, Pred, PredReg, DL, Regs,
913 Cand.Instrs);
914 if (!Merged && Cand.CanMergeToLSMulti)
915 Merged = CreateLoadStoreMulti(MBB, InsertBefore, Offset, Base, BaseKill,
916 Opcode, Pred, PredReg, DL, Regs, Cand.Instrs);
917 if (!Merged)
918 return nullptr;
920 // Determine earliest instruction that will get removed. We then keep an
921 // iterator just above it so the following erases don't invalidated it.
922 iterator EarliestI(Cand.Instrs[Cand.EarliestMIIdx]);
923 bool EarliestAtBegin = false;
924 if (EarliestI == MBB.begin()) {
925 EarliestAtBegin = true;
926 } else {
927 EarliestI = std::prev(EarliestI);
930 // Remove instructions which have been merged.
931 for (MachineInstr *MI : Cand.Instrs)
932 MBB.erase(MI);
934 // Determine range between the earliest removed instruction and the new one.
935 if (EarliestAtBegin)
936 EarliestI = MBB.begin();
937 else
938 EarliestI = std::next(EarliestI);
939 auto FixupRange = make_range(EarliestI, iterator(Merged));
941 if (isLoadSingle(Opcode)) {
942 // If the previous loads defined a super-reg, then we have to mark earlier
943 // operands undef; Replicate the super-reg def on the merged instruction.
944 for (MachineInstr &MI : FixupRange) {
945 for (unsigned &ImpDefReg : ImpDefs) {
946 for (MachineOperand &MO : MI.implicit_operands()) {
947 if (!MO.isReg() || MO.getReg() != ImpDefReg)
948 continue;
949 if (MO.readsReg())
950 MO.setIsUndef();
951 else if (MO.isDef())
952 ImpDefReg = 0;
957 MachineInstrBuilder MIB(*Merged->getParent()->getParent(), Merged);
958 for (unsigned ImpDef : ImpDefs)
959 MIB.addReg(ImpDef, RegState::ImplicitDefine);
960 } else {
961 // Remove kill flags: We are possibly storing the values later now.
962 assert(isi32Store(Opcode) || Opcode == ARM::VSTRS || Opcode == ARM::VSTRD);
963 for (MachineInstr &MI : FixupRange) {
964 for (MachineOperand &MO : MI.uses()) {
965 if (!MO.isReg() || !MO.isKill())
966 continue;
967 if (UsedRegs.count(MO.getReg()))
968 MO.setIsKill(false);
971 assert(ImpDefs.empty());
974 return Merged;
977 static bool isValidLSDoubleOffset(int Offset) {
978 unsigned Value = abs(Offset);
979 // t2LDRDi8/t2STRDi8 supports an 8 bit immediate which is internally
980 // multiplied by 4.
981 return (Value % 4) == 0 && Value < 1024;
984 /// Return true for loads/stores that can be combined to a double/multi
985 /// operation without increasing the requirements for alignment.
986 static bool mayCombineMisaligned(const TargetSubtargetInfo &STI,
987 const MachineInstr &MI) {
988 // vldr/vstr trap on misaligned pointers anyway, forming vldm makes no
989 // difference.
990 unsigned Opcode = MI.getOpcode();
991 if (!isi32Load(Opcode) && !isi32Store(Opcode))
992 return true;
994 // Stack pointer alignment is out of the programmers control so we can trust
995 // SP-relative loads/stores.
996 if (getLoadStoreBaseOp(MI).getReg() == ARM::SP &&
997 STI.getFrameLowering()->getTransientStackAlign() >= Align(4))
998 return true;
999 return false;
1002 /// Find candidates for load/store multiple merge in list of MemOpQueueEntries.
1003 void ARMLoadStoreOpt::FormCandidates(const MemOpQueue &MemOps) {
1004 const MachineInstr *FirstMI = MemOps[0].MI;
1005 unsigned Opcode = FirstMI->getOpcode();
1006 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
1007 unsigned Size = getLSMultipleTransferSize(FirstMI);
1009 unsigned SIndex = 0;
1010 unsigned EIndex = MemOps.size();
1011 do {
1012 // Look at the first instruction.
1013 const MachineInstr *MI = MemOps[SIndex].MI;
1014 int Offset = MemOps[SIndex].Offset;
1015 const MachineOperand &PMO = getLoadStoreRegOp(*MI);
1016 Register PReg = PMO.getReg();
1017 unsigned PRegNum = PMO.isUndef() ? std::numeric_limits<unsigned>::max()
1018 : TRI->getEncodingValue(PReg);
1019 unsigned Latest = SIndex;
1020 unsigned Earliest = SIndex;
1021 unsigned Count = 1;
1022 bool CanMergeToLSDouble =
1023 STI->isThumb2() && isNotVFP && isValidLSDoubleOffset(Offset);
1024 // ARM errata 602117: LDRD with base in list may result in incorrect base
1025 // register when interrupted or faulted.
1026 if (STI->isCortexM3() && isi32Load(Opcode) &&
1027 PReg == getLoadStoreBaseOp(*MI).getReg())
1028 CanMergeToLSDouble = false;
1030 bool CanMergeToLSMulti = true;
1031 // On swift vldm/vstm starting with an odd register number as that needs
1032 // more uops than single vldrs.
1033 if (STI->hasSlowOddRegister() && !isNotVFP && (PRegNum % 2) == 1)
1034 CanMergeToLSMulti = false;
1036 // LDRD/STRD do not allow SP/PC. LDM/STM do not support it or have it
1037 // deprecated; LDM to PC is fine but cannot happen here.
1038 if (PReg == ARM::SP || PReg == ARM::PC)
1039 CanMergeToLSMulti = CanMergeToLSDouble = false;
1041 // Should we be conservative?
1042 if (AssumeMisalignedLoadStores && !mayCombineMisaligned(*STI, *MI))
1043 CanMergeToLSMulti = CanMergeToLSDouble = false;
1045 // vldm / vstm limit are 32 for S variants, 16 for D variants.
1046 unsigned Limit;
1047 switch (Opcode) {
1048 default:
1049 Limit = UINT_MAX;
1050 break;
1051 case ARM::VLDRD:
1052 case ARM::VSTRD:
1053 Limit = 16;
1054 break;
1057 // Merge following instructions where possible.
1058 for (unsigned I = SIndex+1; I < EIndex; ++I, ++Count) {
1059 int NewOffset = MemOps[I].Offset;
1060 if (NewOffset != Offset + (int)Size)
1061 break;
1062 const MachineOperand &MO = getLoadStoreRegOp(*MemOps[I].MI);
1063 Register Reg = MO.getReg();
1064 if (Reg == ARM::SP || Reg == ARM::PC)
1065 break;
1066 if (Count == Limit)
1067 break;
1069 // See if the current load/store may be part of a multi load/store.
1070 unsigned RegNum = MO.isUndef() ? std::numeric_limits<unsigned>::max()
1071 : TRI->getEncodingValue(Reg);
1072 bool PartOfLSMulti = CanMergeToLSMulti;
1073 if (PartOfLSMulti) {
1074 // Register numbers must be in ascending order.
1075 if (RegNum <= PRegNum)
1076 PartOfLSMulti = false;
1077 // For VFP / NEON load/store multiples, the registers must be
1078 // consecutive and within the limit on the number of registers per
1079 // instruction.
1080 else if (!isNotVFP && RegNum != PRegNum+1)
1081 PartOfLSMulti = false;
1083 // See if the current load/store may be part of a double load/store.
1084 bool PartOfLSDouble = CanMergeToLSDouble && Count <= 1;
1086 if (!PartOfLSMulti && !PartOfLSDouble)
1087 break;
1088 CanMergeToLSMulti &= PartOfLSMulti;
1089 CanMergeToLSDouble &= PartOfLSDouble;
1090 // Track MemOp with latest and earliest position (Positions are
1091 // counted in reverse).
1092 unsigned Position = MemOps[I].Position;
1093 if (Position < MemOps[Latest].Position)
1094 Latest = I;
1095 else if (Position > MemOps[Earliest].Position)
1096 Earliest = I;
1097 // Prepare for next MemOp.
1098 Offset += Size;
1099 PRegNum = RegNum;
1102 // Form a candidate from the Ops collected so far.
1103 MergeCandidate *Candidate = new(Allocator.Allocate()) MergeCandidate;
1104 for (unsigned C = SIndex, CE = SIndex + Count; C < CE; ++C)
1105 Candidate->Instrs.push_back(MemOps[C].MI);
1106 Candidate->LatestMIIdx = Latest - SIndex;
1107 Candidate->EarliestMIIdx = Earliest - SIndex;
1108 Candidate->InsertPos = MemOps[Latest].Position;
1109 if (Count == 1)
1110 CanMergeToLSMulti = CanMergeToLSDouble = false;
1111 Candidate->CanMergeToLSMulti = CanMergeToLSMulti;
1112 Candidate->CanMergeToLSDouble = CanMergeToLSDouble;
1113 Candidates.push_back(Candidate);
1114 // Continue after the chain.
1115 SIndex += Count;
1116 } while (SIndex < EIndex);
1119 static unsigned getUpdatingLSMultipleOpcode(unsigned Opc,
1120 ARM_AM::AMSubMode Mode) {
1121 switch (Opc) {
1122 default: llvm_unreachable("Unhandled opcode!");
1123 case ARM::LDMIA:
1124 case ARM::LDMDA:
1125 case ARM::LDMDB:
1126 case ARM::LDMIB:
1127 switch (Mode) {
1128 default: llvm_unreachable("Unhandled submode!");
1129 case ARM_AM::ia: return ARM::LDMIA_UPD;
1130 case ARM_AM::ib: return ARM::LDMIB_UPD;
1131 case ARM_AM::da: return ARM::LDMDA_UPD;
1132 case ARM_AM::db: return ARM::LDMDB_UPD;
1134 case ARM::STMIA:
1135 case ARM::STMDA:
1136 case ARM::STMDB:
1137 case ARM::STMIB:
1138 switch (Mode) {
1139 default: llvm_unreachable("Unhandled submode!");
1140 case ARM_AM::ia: return ARM::STMIA_UPD;
1141 case ARM_AM::ib: return ARM::STMIB_UPD;
1142 case ARM_AM::da: return ARM::STMDA_UPD;
1143 case ARM_AM::db: return ARM::STMDB_UPD;
1145 case ARM::t2LDMIA:
1146 case ARM::t2LDMDB:
1147 switch (Mode) {
1148 default: llvm_unreachable("Unhandled submode!");
1149 case ARM_AM::ia: return ARM::t2LDMIA_UPD;
1150 case ARM_AM::db: return ARM::t2LDMDB_UPD;
1152 case ARM::t2STMIA:
1153 case ARM::t2STMDB:
1154 switch (Mode) {
1155 default: llvm_unreachable("Unhandled submode!");
1156 case ARM_AM::ia: return ARM::t2STMIA_UPD;
1157 case ARM_AM::db: return ARM::t2STMDB_UPD;
1159 case ARM::VLDMSIA:
1160 switch (Mode) {
1161 default: llvm_unreachable("Unhandled submode!");
1162 case ARM_AM::ia: return ARM::VLDMSIA_UPD;
1163 case ARM_AM::db: return ARM::VLDMSDB_UPD;
1165 case ARM::VLDMDIA:
1166 switch (Mode) {
1167 default: llvm_unreachable("Unhandled submode!");
1168 case ARM_AM::ia: return ARM::VLDMDIA_UPD;
1169 case ARM_AM::db: return ARM::VLDMDDB_UPD;
1171 case ARM::VSTMSIA:
1172 switch (Mode) {
1173 default: llvm_unreachable("Unhandled submode!");
1174 case ARM_AM::ia: return ARM::VSTMSIA_UPD;
1175 case ARM_AM::db: return ARM::VSTMSDB_UPD;
1177 case ARM::VSTMDIA:
1178 switch (Mode) {
1179 default: llvm_unreachable("Unhandled submode!");
1180 case ARM_AM::ia: return ARM::VSTMDIA_UPD;
1181 case ARM_AM::db: return ARM::VSTMDDB_UPD;
1186 /// Check if the given instruction increments or decrements a register and
1187 /// return the amount it is incremented/decremented. Returns 0 if the CPSR flags
1188 /// generated by the instruction are possibly read as well.
1189 static int isIncrementOrDecrement(const MachineInstr &MI, Register Reg,
1190 ARMCC::CondCodes Pred, Register PredReg) {
1191 bool CheckCPSRDef;
1192 int Scale;
1193 switch (MI.getOpcode()) {
1194 case ARM::tADDi8: Scale = 4; CheckCPSRDef = true; break;
1195 case ARM::tSUBi8: Scale = -4; CheckCPSRDef = true; break;
1196 case ARM::t2SUBri:
1197 case ARM::t2SUBspImm:
1198 case ARM::SUBri: Scale = -1; CheckCPSRDef = true; break;
1199 case ARM::t2ADDri:
1200 case ARM::t2ADDspImm:
1201 case ARM::ADDri: Scale = 1; CheckCPSRDef = true; break;
1202 case ARM::tADDspi: Scale = 4; CheckCPSRDef = false; break;
1203 case ARM::tSUBspi: Scale = -4; CheckCPSRDef = false; break;
1204 default: return 0;
1207 Register MIPredReg;
1208 if (MI.getOperand(0).getReg() != Reg ||
1209 MI.getOperand(1).getReg() != Reg ||
1210 getInstrPredicate(MI, MIPredReg) != Pred ||
1211 MIPredReg != PredReg)
1212 return 0;
1214 if (CheckCPSRDef && definesCPSR(MI))
1215 return 0;
1216 return MI.getOperand(2).getImm() * Scale;
1219 /// Searches for an increment or decrement of \p Reg before \p MBBI.
1220 static MachineBasicBlock::iterator
1221 findIncDecBefore(MachineBasicBlock::iterator MBBI, Register Reg,
1222 ARMCC::CondCodes Pred, Register PredReg, int &Offset) {
1223 Offset = 0;
1224 MachineBasicBlock &MBB = *MBBI->getParent();
1225 MachineBasicBlock::iterator BeginMBBI = MBB.begin();
1226 MachineBasicBlock::iterator EndMBBI = MBB.end();
1227 if (MBBI == BeginMBBI)
1228 return EndMBBI;
1230 // Skip debug values.
1231 MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI);
1232 while (PrevMBBI->isDebugInstr() && PrevMBBI != BeginMBBI)
1233 --PrevMBBI;
1235 Offset = isIncrementOrDecrement(*PrevMBBI, Reg, Pred, PredReg);
1236 return Offset == 0 ? EndMBBI : PrevMBBI;
1239 /// Searches for a increment or decrement of \p Reg after \p MBBI.
1240 static MachineBasicBlock::iterator
1241 findIncDecAfter(MachineBasicBlock::iterator MBBI, Register Reg,
1242 ARMCC::CondCodes Pred, Register PredReg, int &Offset,
1243 const TargetRegisterInfo *TRI) {
1244 Offset = 0;
1245 MachineBasicBlock &MBB = *MBBI->getParent();
1246 MachineBasicBlock::iterator EndMBBI = MBB.end();
1247 MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
1248 while (NextMBBI != EndMBBI) {
1249 // Skip debug values.
1250 while (NextMBBI != EndMBBI && NextMBBI->isDebugInstr())
1251 ++NextMBBI;
1252 if (NextMBBI == EndMBBI)
1253 return EndMBBI;
1255 unsigned Off = isIncrementOrDecrement(*NextMBBI, Reg, Pred, PredReg);
1256 if (Off) {
1257 Offset = Off;
1258 return NextMBBI;
1261 // SP can only be combined if it is the next instruction after the original
1262 // MBBI, otherwise we may be incrementing the stack pointer (invalidating
1263 // anything below the new pointer) when its frame elements are still in
1264 // use. Other registers can attempt to look further, until a different use
1265 // or def of the register is found.
1266 if (Reg == ARM::SP || NextMBBI->readsRegister(Reg, TRI) ||
1267 NextMBBI->definesRegister(Reg, TRI))
1268 return EndMBBI;
1270 ++NextMBBI;
1272 return EndMBBI;
1275 /// Fold proceeding/trailing inc/dec of base register into the
1276 /// LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible:
1278 /// stmia rn, <ra, rb, rc>
1279 /// rn := rn + 4 * 3;
1280 /// =>
1281 /// stmia rn!, <ra, rb, rc>
1283 /// rn := rn - 4 * 3;
1284 /// ldmia rn, <ra, rb, rc>
1285 /// =>
1286 /// ldmdb rn!, <ra, rb, rc>
1287 bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineInstr *MI) {
1288 // Thumb1 is already using updating loads/stores.
1289 if (isThumb1) return false;
1290 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI);
1292 const MachineOperand &BaseOP = MI->getOperand(0);
1293 Register Base = BaseOP.getReg();
1294 bool BaseKill = BaseOP.isKill();
1295 Register PredReg;
1296 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1297 unsigned Opcode = MI->getOpcode();
1298 DebugLoc DL = MI->getDebugLoc();
1300 // Can't use an updating ld/st if the base register is also a dest
1301 // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined.
1302 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1303 if (MO.getReg() == Base)
1304 return false;
1306 int Bytes = getLSMultipleTransferSize(MI);
1307 MachineBasicBlock &MBB = *MI->getParent();
1308 MachineBasicBlock::iterator MBBI(MI);
1309 int Offset;
1310 MachineBasicBlock::iterator MergeInstr
1311 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
1312 ARM_AM::AMSubMode Mode = getLoadStoreMultipleSubMode(Opcode);
1313 if (Mode == ARM_AM::ia && Offset == -Bytes) {
1314 Mode = ARM_AM::db;
1315 } else if (Mode == ARM_AM::ib && Offset == -Bytes) {
1316 Mode = ARM_AM::da;
1317 } else {
1318 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1319 if (((Mode != ARM_AM::ia && Mode != ARM_AM::ib) || Offset != Bytes) &&
1320 ((Mode != ARM_AM::da && Mode != ARM_AM::db) || Offset != -Bytes)) {
1322 // We couldn't find an inc/dec to merge. But if the base is dead, we
1323 // can still change to a writeback form as that will save us 2 bytes
1324 // of code size. It can create WAW hazards though, so only do it if
1325 // we're minimizing code size.
1326 if (!STI->hasMinSize() || !BaseKill)
1327 return false;
1329 bool HighRegsUsed = false;
1330 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1331 if (MO.getReg() >= ARM::R8) {
1332 HighRegsUsed = true;
1333 break;
1336 if (!HighRegsUsed)
1337 MergeInstr = MBB.end();
1338 else
1339 return false;
1342 if (MergeInstr != MBB.end()) {
1343 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr);
1344 MBB.erase(MergeInstr);
1347 unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode);
1348 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
1349 .addReg(Base, getDefRegState(true)) // WB base register
1350 .addReg(Base, getKillRegState(BaseKill))
1351 .addImm(Pred).addReg(PredReg);
1353 // Transfer the rest of operands.
1354 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 3))
1355 MIB.add(MO);
1357 // Transfer memoperands.
1358 MIB.setMemRefs(MI->memoperands());
1360 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB);
1361 MBB.erase(MBBI);
1362 return true;
1365 static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc,
1366 ARM_AM::AddrOpc Mode) {
1367 switch (Opc) {
1368 case ARM::LDRi12:
1369 return ARM::LDR_PRE_IMM;
1370 case ARM::STRi12:
1371 return ARM::STR_PRE_IMM;
1372 case ARM::VLDRS:
1373 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
1374 case ARM::VLDRD:
1375 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
1376 case ARM::VSTRS:
1377 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
1378 case ARM::VSTRD:
1379 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
1380 case ARM::t2LDRi8:
1381 case ARM::t2LDRi12:
1382 return ARM::t2LDR_PRE;
1383 case ARM::t2STRi8:
1384 case ARM::t2STRi12:
1385 return ARM::t2STR_PRE;
1386 default: llvm_unreachable("Unhandled opcode!");
1390 static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc,
1391 ARM_AM::AddrOpc Mode) {
1392 switch (Opc) {
1393 case ARM::LDRi12:
1394 return ARM::LDR_POST_IMM;
1395 case ARM::STRi12:
1396 return ARM::STR_POST_IMM;
1397 case ARM::VLDRS:
1398 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
1399 case ARM::VLDRD:
1400 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
1401 case ARM::VSTRS:
1402 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
1403 case ARM::VSTRD:
1404 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
1405 case ARM::t2LDRi8:
1406 case ARM::t2LDRi12:
1407 return ARM::t2LDR_POST;
1408 case ARM::t2LDRBi8:
1409 case ARM::t2LDRBi12:
1410 return ARM::t2LDRB_POST;
1411 case ARM::t2LDRSBi8:
1412 case ARM::t2LDRSBi12:
1413 return ARM::t2LDRSB_POST;
1414 case ARM::t2LDRHi8:
1415 case ARM::t2LDRHi12:
1416 return ARM::t2LDRH_POST;
1417 case ARM::t2LDRSHi8:
1418 case ARM::t2LDRSHi12:
1419 return ARM::t2LDRSH_POST;
1420 case ARM::t2STRi8:
1421 case ARM::t2STRi12:
1422 return ARM::t2STR_POST;
1423 case ARM::t2STRBi8:
1424 case ARM::t2STRBi12:
1425 return ARM::t2STRB_POST;
1426 case ARM::t2STRHi8:
1427 case ARM::t2STRHi12:
1428 return ARM::t2STRH_POST;
1430 case ARM::MVE_VLDRBS16:
1431 return ARM::MVE_VLDRBS16_post;
1432 case ARM::MVE_VLDRBS32:
1433 return ARM::MVE_VLDRBS32_post;
1434 case ARM::MVE_VLDRBU16:
1435 return ARM::MVE_VLDRBU16_post;
1436 case ARM::MVE_VLDRBU32:
1437 return ARM::MVE_VLDRBU32_post;
1438 case ARM::MVE_VLDRHS32:
1439 return ARM::MVE_VLDRHS32_post;
1440 case ARM::MVE_VLDRHU32:
1441 return ARM::MVE_VLDRHU32_post;
1442 case ARM::MVE_VLDRBU8:
1443 return ARM::MVE_VLDRBU8_post;
1444 case ARM::MVE_VLDRHU16:
1445 return ARM::MVE_VLDRHU16_post;
1446 case ARM::MVE_VLDRWU32:
1447 return ARM::MVE_VLDRWU32_post;
1448 case ARM::MVE_VSTRB16:
1449 return ARM::MVE_VSTRB16_post;
1450 case ARM::MVE_VSTRB32:
1451 return ARM::MVE_VSTRB32_post;
1452 case ARM::MVE_VSTRH32:
1453 return ARM::MVE_VSTRH32_post;
1454 case ARM::MVE_VSTRBU8:
1455 return ARM::MVE_VSTRBU8_post;
1456 case ARM::MVE_VSTRHU16:
1457 return ARM::MVE_VSTRHU16_post;
1458 case ARM::MVE_VSTRWU32:
1459 return ARM::MVE_VSTRWU32_post;
1461 default: llvm_unreachable("Unhandled opcode!");
1465 /// Fold proceeding/trailing inc/dec of base register into the
1466 /// LDR/STR/FLD{D|S}/FST{D|S} op when possible:
1467 bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineInstr *MI) {
1468 // Thumb1 doesn't have updating LDR/STR.
1469 // FIXME: Use LDM/STM with single register instead.
1470 if (isThumb1) return false;
1471 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI);
1473 Register Base = getLoadStoreBaseOp(*MI).getReg();
1474 bool BaseKill = getLoadStoreBaseOp(*MI).isKill();
1475 unsigned Opcode = MI->getOpcode();
1476 DebugLoc DL = MI->getDebugLoc();
1477 bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS ||
1478 Opcode == ARM::VSTRD || Opcode == ARM::VSTRS);
1479 bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12);
1480 if (isi32Load(Opcode) || isi32Store(Opcode))
1481 if (MI->getOperand(2).getImm() != 0)
1482 return false;
1483 if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)
1484 return false;
1486 // Can't do the merge if the destination register is the same as the would-be
1487 // writeback register.
1488 if (MI->getOperand(0).getReg() == Base)
1489 return false;
1491 Register PredReg;
1492 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1493 int Bytes = getLSMultipleTransferSize(MI);
1494 MachineBasicBlock &MBB = *MI->getParent();
1495 MachineBasicBlock::iterator MBBI(MI);
1496 int Offset;
1497 MachineBasicBlock::iterator MergeInstr
1498 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
1499 unsigned NewOpc;
1500 if (!isAM5 && Offset == Bytes) {
1501 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
1502 } else if (Offset == -Bytes) {
1503 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
1504 } else {
1505 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1506 if (MergeInstr == MBB.end())
1507 return false;
1509 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
1510 if ((isAM5 && Offset != Bytes) ||
1511 (!isAM5 && !isLegalAddressImm(NewOpc, Offset, TII))) {
1512 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
1513 if (isAM5 || !isLegalAddressImm(NewOpc, Offset, TII))
1514 return false;
1517 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr);
1518 MBB.erase(MergeInstr);
1520 ARM_AM::AddrOpc AddSub = Offset < 0 ? ARM_AM::sub : ARM_AM::add;
1522 bool isLd = isLoadSingle(Opcode);
1523 if (isAM5) {
1524 // VLDM[SD]_UPD, VSTM[SD]_UPD
1525 // (There are no base-updating versions of VLDR/VSTR instructions, but the
1526 // updating load/store-multiple instructions can be used with only one
1527 // register.)
1528 MachineOperand &MO = MI->getOperand(0);
1529 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
1530 .addReg(Base, getDefRegState(true)) // WB base register
1531 .addReg(Base, getKillRegState(isLd ? BaseKill : false))
1532 .addImm(Pred)
1533 .addReg(PredReg)
1534 .addReg(MO.getReg(), (isLd ? getDefRegState(true)
1535 : getKillRegState(MO.isKill())))
1536 .cloneMemRefs(*MI);
1537 (void)MIB;
1538 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB);
1539 } else if (isLd) {
1540 if (isAM2) {
1541 // LDR_PRE, LDR_POST
1542 if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) {
1543 auto MIB =
1544 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1545 .addReg(Base, RegState::Define)
1546 .addReg(Base)
1547 .addImm(Offset)
1548 .addImm(Pred)
1549 .addReg(PredReg)
1550 .cloneMemRefs(*MI);
1551 (void)MIB;
1552 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB);
1553 } else {
1554 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift);
1555 auto MIB =
1556 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1557 .addReg(Base, RegState::Define)
1558 .addReg(Base)
1559 .addReg(0)
1560 .addImm(Imm)
1561 .add(predOps(Pred, PredReg))
1562 .cloneMemRefs(*MI);
1563 (void)MIB;
1564 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB);
1566 } else {
1567 // t2LDR_PRE, t2LDR_POST
1568 auto MIB =
1569 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1570 .addReg(Base, RegState::Define)
1571 .addReg(Base)
1572 .addImm(Offset)
1573 .add(predOps(Pred, PredReg))
1574 .cloneMemRefs(*MI);
1575 (void)MIB;
1576 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB);
1578 } else {
1579 MachineOperand &MO = MI->getOperand(0);
1580 // FIXME: post-indexed stores use am2offset_imm, which still encodes
1581 // the vestigal zero-reg offset register. When that's fixed, this clause
1582 // can be removed entirely.
1583 if (isAM2 && NewOpc == ARM::STR_POST_IMM) {
1584 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift);
1585 // STR_PRE, STR_POST
1586 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
1587 .addReg(MO.getReg(), getKillRegState(MO.isKill()))
1588 .addReg(Base)
1589 .addReg(0)
1590 .addImm(Imm)
1591 .add(predOps(Pred, PredReg))
1592 .cloneMemRefs(*MI);
1593 (void)MIB;
1594 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB);
1595 } else {
1596 // t2STR_PRE, t2STR_POST
1597 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
1598 .addReg(MO.getReg(), getKillRegState(MO.isKill()))
1599 .addReg(Base)
1600 .addImm(Offset)
1601 .add(predOps(Pred, PredReg))
1602 .cloneMemRefs(*MI);
1603 (void)MIB;
1604 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB);
1607 MBB.erase(MBBI);
1609 return true;
1612 bool ARMLoadStoreOpt::MergeBaseUpdateLSDouble(MachineInstr &MI) const {
1613 unsigned Opcode = MI.getOpcode();
1614 assert((Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) &&
1615 "Must have t2STRDi8 or t2LDRDi8");
1616 if (MI.getOperand(3).getImm() != 0)
1617 return false;
1618 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << MI);
1620 // Behaviour for writeback is undefined if base register is the same as one
1621 // of the others.
1622 const MachineOperand &BaseOp = MI.getOperand(2);
1623 Register Base = BaseOp.getReg();
1624 const MachineOperand &Reg0Op = MI.getOperand(0);
1625 const MachineOperand &Reg1Op = MI.getOperand(1);
1626 if (Reg0Op.getReg() == Base || Reg1Op.getReg() == Base)
1627 return false;
1629 Register PredReg;
1630 ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
1631 MachineBasicBlock::iterator MBBI(MI);
1632 MachineBasicBlock &MBB = *MI.getParent();
1633 int Offset;
1634 MachineBasicBlock::iterator MergeInstr = findIncDecBefore(MBBI, Base, Pred,
1635 PredReg, Offset);
1636 unsigned NewOpc;
1637 if (Offset == 8 || Offset == -8) {
1638 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_PRE : ARM::t2STRD_PRE;
1639 } else {
1640 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1641 if (MergeInstr == MBB.end())
1642 return false;
1643 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_POST : ARM::t2STRD_POST;
1644 if (!isLegalAddressImm(NewOpc, Offset, TII))
1645 return false;
1647 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr);
1648 MBB.erase(MergeInstr);
1650 DebugLoc DL = MI.getDebugLoc();
1651 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1652 if (NewOpc == ARM::t2LDRD_PRE || NewOpc == ARM::t2LDRD_POST) {
1653 MIB.add(Reg0Op).add(Reg1Op).addReg(BaseOp.getReg(), RegState::Define);
1654 } else {
1655 assert(NewOpc == ARM::t2STRD_PRE || NewOpc == ARM::t2STRD_POST);
1656 MIB.addReg(BaseOp.getReg(), RegState::Define).add(Reg0Op).add(Reg1Op);
1658 MIB.addReg(BaseOp.getReg(), RegState::Kill)
1659 .addImm(Offset).addImm(Pred).addReg(PredReg);
1660 assert(TII->get(Opcode).getNumOperands() == 6 &&
1661 TII->get(NewOpc).getNumOperands() == 7 &&
1662 "Unexpected number of operands in Opcode specification.");
1664 // Transfer implicit operands.
1665 for (const MachineOperand &MO : MI.implicit_operands())
1666 MIB.add(MO);
1667 MIB.cloneMemRefs(MI);
1669 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB);
1670 MBB.erase(MBBI);
1671 return true;
1674 /// Returns true if instruction is a memory operation that this pass is capable
1675 /// of operating on.
1676 static bool isMemoryOp(const MachineInstr &MI) {
1677 unsigned Opcode = MI.getOpcode();
1678 switch (Opcode) {
1679 case ARM::VLDRS:
1680 case ARM::VSTRS:
1681 case ARM::VLDRD:
1682 case ARM::VSTRD:
1683 case ARM::LDRi12:
1684 case ARM::STRi12:
1685 case ARM::tLDRi:
1686 case ARM::tSTRi:
1687 case ARM::tLDRspi:
1688 case ARM::tSTRspi:
1689 case ARM::t2LDRi8:
1690 case ARM::t2LDRi12:
1691 case ARM::t2STRi8:
1692 case ARM::t2STRi12:
1693 break;
1694 default:
1695 return false;
1697 if (!MI.getOperand(1).isReg())
1698 return false;
1700 // When no memory operands are present, conservatively assume unaligned,
1701 // volatile, unfoldable.
1702 if (!MI.hasOneMemOperand())
1703 return false;
1705 const MachineMemOperand &MMO = **MI.memoperands_begin();
1707 // Don't touch volatile memory accesses - we may be changing their order.
1708 // TODO: We could allow unordered and monotonic atomics here, but we need to
1709 // make sure the resulting ldm/stm is correctly marked as atomic.
1710 if (MMO.isVolatile() || MMO.isAtomic())
1711 return false;
1713 // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is
1714 // not.
1715 if (MMO.getAlign() < Align(4))
1716 return false;
1718 // str <undef> could probably be eliminated entirely, but for now we just want
1719 // to avoid making a mess of it.
1720 // FIXME: Use str <undef> as a wildcard to enable better stm folding.
1721 if (MI.getOperand(0).isReg() && MI.getOperand(0).isUndef())
1722 return false;
1724 // Likewise don't mess with references to undefined addresses.
1725 if (MI.getOperand(1).isUndef())
1726 return false;
1728 return true;
1731 static void InsertLDR_STR(MachineBasicBlock &MBB,
1732 MachineBasicBlock::iterator &MBBI, int Offset,
1733 bool isDef, unsigned NewOpc, unsigned Reg,
1734 bool RegDeadKill, bool RegUndef, unsigned BaseReg,
1735 bool BaseKill, bool BaseUndef, ARMCC::CondCodes Pred,
1736 unsigned PredReg, const TargetInstrInfo *TII,
1737 MachineInstr *MI) {
1738 if (isDef) {
1739 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
1740 TII->get(NewOpc))
1741 .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill))
1742 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
1743 MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
1744 // FIXME: This is overly conservative; the new instruction accesses 4
1745 // bytes, not 8.
1746 MIB.cloneMemRefs(*MI);
1747 } else {
1748 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
1749 TII->get(NewOpc))
1750 .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef))
1751 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
1752 MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
1753 // FIXME: This is overly conservative; the new instruction accesses 4
1754 // bytes, not 8.
1755 MIB.cloneMemRefs(*MI);
1759 bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
1760 MachineBasicBlock::iterator &MBBI) {
1761 MachineInstr *MI = &*MBBI;
1762 unsigned Opcode = MI->getOpcode();
1763 // FIXME: Code/comments below check Opcode == t2STRDi8, but this check returns
1764 // if we see this opcode.
1765 if (Opcode != ARM::LDRD && Opcode != ARM::STRD && Opcode != ARM::t2LDRDi8)
1766 return false;
1768 const MachineOperand &BaseOp = MI->getOperand(2);
1769 Register BaseReg = BaseOp.getReg();
1770 Register EvenReg = MI->getOperand(0).getReg();
1771 Register OddReg = MI->getOperand(1).getReg();
1772 unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false);
1773 unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false);
1775 // ARM errata 602117: LDRD with base in list may result in incorrect base
1776 // register when interrupted or faulted.
1777 bool Errata602117 = EvenReg == BaseReg &&
1778 (Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8) && STI->isCortexM3();
1779 // ARM LDRD/STRD needs consecutive registers.
1780 bool NonConsecutiveRegs = (Opcode == ARM::LDRD || Opcode == ARM::STRD) &&
1781 (EvenRegNum % 2 != 0 || EvenRegNum + 1 != OddRegNum);
1783 if (!Errata602117 && !NonConsecutiveRegs)
1784 return false;
1786 bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8;
1787 bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8;
1788 bool EvenDeadKill = isLd ?
1789 MI->getOperand(0).isDead() : MI->getOperand(0).isKill();
1790 bool EvenUndef = MI->getOperand(0).isUndef();
1791 bool OddDeadKill = isLd ?
1792 MI->getOperand(1).isDead() : MI->getOperand(1).isKill();
1793 bool OddUndef = MI->getOperand(1).isUndef();
1794 bool BaseKill = BaseOp.isKill();
1795 bool BaseUndef = BaseOp.isUndef();
1796 assert((isT2 || MI->getOperand(3).getReg() == ARM::NoRegister) &&
1797 "register offset not handled below");
1798 int OffImm = getMemoryOpOffset(*MI);
1799 Register PredReg;
1800 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1802 if (OddRegNum > EvenRegNum && OffImm == 0) {
1803 // Ascending register numbers and no offset. It's safe to change it to a
1804 // ldm or stm.
1805 unsigned NewOpc = (isLd)
1806 ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA)
1807 : (isT2 ? ARM::t2STMIA : ARM::STMIA);
1808 if (isLd) {
1809 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
1810 .addReg(BaseReg, getKillRegState(BaseKill))
1811 .addImm(Pred).addReg(PredReg)
1812 .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill))
1813 .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill))
1814 .cloneMemRefs(*MI);
1815 ++NumLDRD2LDM;
1816 } else {
1817 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
1818 .addReg(BaseReg, getKillRegState(BaseKill))
1819 .addImm(Pred).addReg(PredReg)
1820 .addReg(EvenReg,
1821 getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef))
1822 .addReg(OddReg,
1823 getKillRegState(OddDeadKill) | getUndefRegState(OddUndef))
1824 .cloneMemRefs(*MI);
1825 ++NumSTRD2STM;
1827 } else {
1828 // Split into two instructions.
1829 unsigned NewOpc = (isLd)
1830 ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
1831 : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
1832 // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset,
1833 // so adjust and use t2LDRi12 here for that.
1834 unsigned NewOpc2 = (isLd)
1835 ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
1836 : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
1837 // If this is a load, make sure the first load does not clobber the base
1838 // register before the second load reads it.
1839 if (isLd && TRI->regsOverlap(EvenReg, BaseReg)) {
1840 assert(!TRI->regsOverlap(OddReg, BaseReg));
1841 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
1842 false, BaseReg, false, BaseUndef, Pred, PredReg, TII, MI);
1843 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
1844 false, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
1845 MI);
1846 } else {
1847 if (OddReg == EvenReg && EvenDeadKill) {
1848 // If the two source operands are the same, the kill marker is
1849 // probably on the first one. e.g.
1850 // t2STRDi8 killed %r5, %r5, killed %r9, 0, 14, %reg0
1851 EvenDeadKill = false;
1852 OddDeadKill = true;
1854 // Never kill the base register in the first instruction.
1855 if (EvenReg == BaseReg)
1856 EvenDeadKill = false;
1857 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
1858 EvenUndef, BaseReg, false, BaseUndef, Pred, PredReg, TII,
1859 MI);
1860 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
1861 OddUndef, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
1862 MI);
1864 if (isLd)
1865 ++NumLDRD2LDR;
1866 else
1867 ++NumSTRD2STR;
1870 MBBI = MBB.erase(MBBI);
1871 return true;
1874 /// An optimization pass to turn multiple LDR / STR ops of the same base and
1875 /// incrementing offset into LDM / STM ops.
1876 bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
1877 MemOpQueue MemOps;
1878 unsigned CurrBase = 0;
1879 unsigned CurrOpc = ~0u;
1880 ARMCC::CondCodes CurrPred = ARMCC::AL;
1881 unsigned Position = 0;
1882 assert(Candidates.size() == 0);
1883 assert(MergeBaseCandidates.size() == 0);
1884 LiveRegsValid = false;
1886 for (MachineBasicBlock::iterator I = MBB.end(), MBBI; I != MBB.begin();
1887 I = MBBI) {
1888 // The instruction in front of the iterator is the one we look at.
1889 MBBI = std::prev(I);
1890 if (FixInvalidRegPairOp(MBB, MBBI))
1891 continue;
1892 ++Position;
1894 if (isMemoryOp(*MBBI)) {
1895 unsigned Opcode = MBBI->getOpcode();
1896 const MachineOperand &MO = MBBI->getOperand(0);
1897 Register Reg = MO.getReg();
1898 Register Base = getLoadStoreBaseOp(*MBBI).getReg();
1899 Register PredReg;
1900 ARMCC::CondCodes Pred = getInstrPredicate(*MBBI, PredReg);
1901 int Offset = getMemoryOpOffset(*MBBI);
1902 if (CurrBase == 0) {
1903 // Start of a new chain.
1904 CurrBase = Base;
1905 CurrOpc = Opcode;
1906 CurrPred = Pred;
1907 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
1908 continue;
1910 // Note: No need to match PredReg in the next if.
1911 if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) {
1912 // Watch out for:
1913 // r4 := ldr [r0, #8]
1914 // r4 := ldr [r0, #4]
1915 // or
1916 // r0 := ldr [r0]
1917 // If a load overrides the base register or a register loaded by
1918 // another load in our chain, we cannot take this instruction.
1919 bool Overlap = false;
1920 if (isLoadSingle(Opcode)) {
1921 Overlap = (Base == Reg);
1922 if (!Overlap) {
1923 for (const MemOpQueueEntry &E : MemOps) {
1924 if (TRI->regsOverlap(Reg, E.MI->getOperand(0).getReg())) {
1925 Overlap = true;
1926 break;
1932 if (!Overlap) {
1933 // Check offset and sort memory operation into the current chain.
1934 if (Offset > MemOps.back().Offset) {
1935 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
1936 continue;
1937 } else {
1938 MemOpQueue::iterator MI, ME;
1939 for (MI = MemOps.begin(), ME = MemOps.end(); MI != ME; ++MI) {
1940 if (Offset < MI->Offset) {
1941 // Found a place to insert.
1942 break;
1944 if (Offset == MI->Offset) {
1945 // Collision, abort.
1946 MI = ME;
1947 break;
1950 if (MI != MemOps.end()) {
1951 MemOps.insert(MI, MemOpQueueEntry(*MBBI, Offset, Position));
1952 continue;
1958 // Don't advance the iterator; The op will start a new chain next.
1959 MBBI = I;
1960 --Position;
1961 // Fallthrough to look into existing chain.
1962 } else if (MBBI->isDebugInstr()) {
1963 continue;
1964 } else if (MBBI->getOpcode() == ARM::t2LDRDi8 ||
1965 MBBI->getOpcode() == ARM::t2STRDi8) {
1966 // ARMPreAllocLoadStoreOpt has already formed some LDRD/STRD instructions
1967 // remember them because we may still be able to merge add/sub into them.
1968 MergeBaseCandidates.push_back(&*MBBI);
1971 // If we are here then the chain is broken; Extract candidates for a merge.
1972 if (MemOps.size() > 0) {
1973 FormCandidates(MemOps);
1974 // Reset for the next chain.
1975 CurrBase = 0;
1976 CurrOpc = ~0u;
1977 CurrPred = ARMCC::AL;
1978 MemOps.clear();
1981 if (MemOps.size() > 0)
1982 FormCandidates(MemOps);
1984 // Sort candidates so they get processed from end to begin of the basic
1985 // block later; This is necessary for liveness calculation.
1986 auto LessThan = [](const MergeCandidate* M0, const MergeCandidate *M1) {
1987 return M0->InsertPos < M1->InsertPos;
1989 llvm::sort(Candidates, LessThan);
1991 // Go through list of candidates and merge.
1992 bool Changed = false;
1993 for (const MergeCandidate *Candidate : Candidates) {
1994 if (Candidate->CanMergeToLSMulti || Candidate->CanMergeToLSDouble) {
1995 MachineInstr *Merged = MergeOpsUpdate(*Candidate);
1996 // Merge preceding/trailing base inc/dec into the merged op.
1997 if (Merged) {
1998 Changed = true;
1999 unsigned Opcode = Merged->getOpcode();
2000 if (Opcode == ARM::t2STRDi8 || Opcode == ARM::t2LDRDi8)
2001 MergeBaseUpdateLSDouble(*Merged);
2002 else
2003 MergeBaseUpdateLSMultiple(Merged);
2004 } else {
2005 for (MachineInstr *MI : Candidate->Instrs) {
2006 if (MergeBaseUpdateLoadStore(MI))
2007 Changed = true;
2010 } else {
2011 assert(Candidate->Instrs.size() == 1);
2012 if (MergeBaseUpdateLoadStore(Candidate->Instrs.front()))
2013 Changed = true;
2016 Candidates.clear();
2017 // Try to fold add/sub into the LDRD/STRD formed by ARMPreAllocLoadStoreOpt.
2018 for (MachineInstr *MI : MergeBaseCandidates)
2019 MergeBaseUpdateLSDouble(*MI);
2020 MergeBaseCandidates.clear();
2022 return Changed;
2025 /// If this is a exit BB, try merging the return ops ("bx lr" and "mov pc, lr")
2026 /// into the preceding stack restore so it directly restore the value of LR
2027 /// into pc.
2028 /// ldmfd sp!, {..., lr}
2029 /// bx lr
2030 /// or
2031 /// ldmfd sp!, {..., lr}
2032 /// mov pc, lr
2033 /// =>
2034 /// ldmfd sp!, {..., pc}
2035 bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
2036 // Thumb1 LDM doesn't allow high registers.
2037 if (isThumb1) return false;
2038 if (MBB.empty()) return false;
2040 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
2041 if (MBBI != MBB.begin() && MBBI != MBB.end() &&
2042 (MBBI->getOpcode() == ARM::BX_RET ||
2043 MBBI->getOpcode() == ARM::tBX_RET ||
2044 MBBI->getOpcode() == ARM::MOVPCLR)) {
2045 MachineBasicBlock::iterator PrevI = std::prev(MBBI);
2046 // Ignore any debug instructions.
2047 while (PrevI->isDebugInstr() && PrevI != MBB.begin())
2048 --PrevI;
2049 MachineInstr &PrevMI = *PrevI;
2050 unsigned Opcode = PrevMI.getOpcode();
2051 if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD ||
2052 Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD ||
2053 Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
2054 MachineOperand &MO = PrevMI.getOperand(PrevMI.getNumOperands() - 1);
2055 if (MO.getReg() != ARM::LR)
2056 return false;
2057 unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET);
2058 assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) ||
2059 Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!");
2060 PrevMI.setDesc(TII->get(NewOpc));
2061 MO.setReg(ARM::PC);
2062 PrevMI.copyImplicitOps(*MBB.getParent(), *MBBI);
2063 MBB.erase(MBBI);
2064 return true;
2067 return false;
2070 bool ARMLoadStoreOpt::CombineMovBx(MachineBasicBlock &MBB) {
2071 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
2072 if (MBBI == MBB.begin() || MBBI == MBB.end() ||
2073 MBBI->getOpcode() != ARM::tBX_RET)
2074 return false;
2076 MachineBasicBlock::iterator Prev = MBBI;
2077 --Prev;
2078 if (Prev->getOpcode() != ARM::tMOVr ||
2079 !Prev->definesRegister(ARM::LR, /*TRI=*/nullptr))
2080 return false;
2082 for (auto Use : Prev->uses())
2083 if (Use.isKill()) {
2084 assert(STI->hasV4TOps());
2085 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::tBX))
2086 .addReg(Use.getReg(), RegState::Kill)
2087 .add(predOps(ARMCC::AL))
2088 .copyImplicitOps(*MBBI);
2089 MBB.erase(MBBI);
2090 MBB.erase(Prev);
2091 return true;
2094 llvm_unreachable("tMOVr doesn't kill a reg before tBX_RET?");
2097 bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2098 if (skipFunction(Fn.getFunction()))
2099 return false;
2101 MF = &Fn;
2102 STI = &Fn.getSubtarget<ARMSubtarget>();
2103 TL = STI->getTargetLowering();
2104 AFI = Fn.getInfo<ARMFunctionInfo>();
2105 TII = STI->getInstrInfo();
2106 TRI = STI->getRegisterInfo();
2108 RegClassInfoValid = false;
2109 isThumb2 = AFI->isThumb2Function();
2110 isThumb1 = AFI->isThumbFunction() && !isThumb2;
2112 bool Modified = false, ModifiedLDMReturn = false;
2113 for (MachineBasicBlock &MBB : Fn) {
2114 Modified |= LoadStoreMultipleOpti(MBB);
2115 if (STI->hasV5TOps() && !AFI->shouldSignReturnAddress())
2116 ModifiedLDMReturn |= MergeReturnIntoLDM(MBB);
2117 if (isThumb1)
2118 Modified |= CombineMovBx(MBB);
2120 Modified |= ModifiedLDMReturn;
2122 // If we merged a BX instruction into an LDM, we need to re-calculate whether
2123 // LR is restored. This check needs to consider the whole function, not just
2124 // the instruction(s) we changed, because there may be other BX returns which
2125 // still need LR to be restored.
2126 if (ModifiedLDMReturn)
2127 ARMFrameLowering::updateLRRestored(Fn);
2129 Allocator.DestroyAll();
2130 return Modified;
2133 #define ARM_PREALLOC_LOAD_STORE_OPT_NAME \
2134 "ARM pre- register allocation load / store optimization pass"
2136 namespace {
2138 /// Pre- register allocation pass that move load / stores from consecutive
2139 /// locations close to make it more likely they will be combined later.
2140 struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{
2141 static char ID;
2143 AliasAnalysis *AA;
2144 const DataLayout *TD;
2145 const TargetInstrInfo *TII;
2146 const TargetRegisterInfo *TRI;
2147 const ARMSubtarget *STI;
2148 MachineRegisterInfo *MRI;
2149 MachineDominatorTree *DT;
2150 MachineFunction *MF;
2152 ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {}
2154 bool runOnMachineFunction(MachineFunction &Fn) override;
2156 StringRef getPassName() const override {
2157 return ARM_PREALLOC_LOAD_STORE_OPT_NAME;
2160 void getAnalysisUsage(AnalysisUsage &AU) const override {
2161 AU.addRequired<AAResultsWrapperPass>();
2162 AU.addRequired<MachineDominatorTreeWrapperPass>();
2163 AU.addPreserved<MachineDominatorTreeWrapperPass>();
2164 MachineFunctionPass::getAnalysisUsage(AU);
2167 private:
2168 bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl,
2169 unsigned &NewOpc, Register &EvenReg, Register &OddReg,
2170 Register &BaseReg, int &Offset, Register &PredReg,
2171 ARMCC::CondCodes &Pred, bool &isT2);
2172 bool RescheduleOps(
2173 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops,
2174 unsigned Base, bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap,
2175 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap);
2176 bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB);
2177 bool DistributeIncrements();
2178 bool DistributeIncrements(Register Base);
2181 } // end anonymous namespace
2183 char ARMPreAllocLoadStoreOpt::ID = 0;
2185 INITIALIZE_PASS_BEGIN(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
2186 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)
2187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
2188 INITIALIZE_PASS_END(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
2189 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)
2191 // Limit the number of instructions to be rescheduled.
2192 // FIXME: tune this limit, and/or come up with some better heuristics.
2193 static cl::opt<unsigned> InstReorderLimit("arm-prera-ldst-opt-reorder-limit",
2194 cl::init(8), cl::Hidden);
2196 bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2197 if (AssumeMisalignedLoadStores || skipFunction(Fn.getFunction()))
2198 return false;
2200 TD = &Fn.getDataLayout();
2201 STI = &Fn.getSubtarget<ARMSubtarget>();
2202 TII = STI->getInstrInfo();
2203 TRI = STI->getRegisterInfo();
2204 MRI = &Fn.getRegInfo();
2205 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
2206 MF = &Fn;
2207 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2209 bool Modified = DistributeIncrements();
2210 for (MachineBasicBlock &MFI : Fn)
2211 Modified |= RescheduleLoadStoreInstrs(&MFI);
2213 return Modified;
2216 static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base,
2217 MachineBasicBlock::iterator I,
2218 MachineBasicBlock::iterator E,
2219 SmallPtrSetImpl<MachineInstr*> &MemOps,
2220 SmallSet<unsigned, 4> &MemRegs,
2221 const TargetRegisterInfo *TRI,
2222 AliasAnalysis *AA) {
2223 // Are there stores / loads / calls between them?
2224 SmallSet<unsigned, 4> AddedRegPressure;
2225 while (++I != E) {
2226 if (I->isDebugInstr() || MemOps.count(&*I))
2227 continue;
2228 if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects())
2229 return false;
2230 if (I->mayStore() || (!isLd && I->mayLoad()))
2231 for (MachineInstr *MemOp : MemOps)
2232 if (I->mayAlias(AA, *MemOp, /*UseTBAA*/ false))
2233 return false;
2234 for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) {
2235 MachineOperand &MO = I->getOperand(j);
2236 if (!MO.isReg())
2237 continue;
2238 Register Reg = MO.getReg();
2239 if (MO.isDef() && TRI->regsOverlap(Reg, Base))
2240 return false;
2241 if (Reg != Base && !MemRegs.count(Reg))
2242 AddedRegPressure.insert(Reg);
2246 // Estimate register pressure increase due to the transformation.
2247 if (MemRegs.size() <= 4)
2248 // Ok if we are moving small number of instructions.
2249 return true;
2250 return AddedRegPressure.size() <= MemRegs.size() * 2;
2253 bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord(
2254 MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc,
2255 Register &FirstReg, Register &SecondReg, Register &BaseReg, int &Offset,
2256 Register &PredReg, ARMCC::CondCodes &Pred, bool &isT2) {
2257 // Make sure we're allowed to generate LDRD/STRD.
2258 if (!STI->hasV5TEOps())
2259 return false;
2261 // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD
2262 unsigned Scale = 1;
2263 unsigned Opcode = Op0->getOpcode();
2264 if (Opcode == ARM::LDRi12) {
2265 NewOpc = ARM::LDRD;
2266 } else if (Opcode == ARM::STRi12) {
2267 NewOpc = ARM::STRD;
2268 } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) {
2269 NewOpc = ARM::t2LDRDi8;
2270 Scale = 4;
2271 isT2 = true;
2272 } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) {
2273 NewOpc = ARM::t2STRDi8;
2274 Scale = 4;
2275 isT2 = true;
2276 } else {
2277 return false;
2280 // Make sure the base address satisfies i64 ld / st alignment requirement.
2281 // At the moment, we ignore the memoryoperand's value.
2282 // If we want to use AliasAnalysis, we should check it accordingly.
2283 if (!Op0->hasOneMemOperand() ||
2284 (*Op0->memoperands_begin())->isVolatile() ||
2285 (*Op0->memoperands_begin())->isAtomic())
2286 return false;
2288 Align Alignment = (*Op0->memoperands_begin())->getAlign();
2289 Align ReqAlign = STI->getDualLoadStoreAlignment();
2290 if (Alignment < ReqAlign)
2291 return false;
2293 // Then make sure the immediate offset fits.
2294 int OffImm = getMemoryOpOffset(*Op0);
2295 if (isT2) {
2296 int Limit = (1 << 8) * Scale;
2297 if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1)))
2298 return false;
2299 Offset = OffImm;
2300 } else {
2301 ARM_AM::AddrOpc AddSub = ARM_AM::add;
2302 if (OffImm < 0) {
2303 AddSub = ARM_AM::sub;
2304 OffImm = - OffImm;
2306 int Limit = (1 << 8) * Scale;
2307 if (OffImm >= Limit || (OffImm & (Scale-1)))
2308 return false;
2309 Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
2311 FirstReg = Op0->getOperand(0).getReg();
2312 SecondReg = Op1->getOperand(0).getReg();
2313 if (FirstReg == SecondReg)
2314 return false;
2315 BaseReg = Op0->getOperand(1).getReg();
2316 Pred = getInstrPredicate(*Op0, PredReg);
2317 dl = Op0->getDebugLoc();
2318 return true;
2321 bool ARMPreAllocLoadStoreOpt::RescheduleOps(
2322 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, unsigned Base,
2323 bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap,
2324 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap) {
2325 bool RetVal = false;
2327 // Sort by offset (in reverse order).
2328 llvm::sort(Ops, [](const MachineInstr *LHS, const MachineInstr *RHS) {
2329 int LOffset = getMemoryOpOffset(*LHS);
2330 int ROffset = getMemoryOpOffset(*RHS);
2331 assert(LHS == RHS || LOffset != ROffset);
2332 return LOffset > ROffset;
2335 // The loads / stores of the same base are in order. Scan them from first to
2336 // last and check for the following:
2337 // 1. Any def of base.
2338 // 2. Any gaps.
2339 while (Ops.size() > 1) {
2340 unsigned FirstLoc = ~0U;
2341 unsigned LastLoc = 0;
2342 MachineInstr *FirstOp = nullptr;
2343 MachineInstr *LastOp = nullptr;
2344 int LastOffset = 0;
2345 unsigned LastOpcode = 0;
2346 unsigned LastBytes = 0;
2347 unsigned NumMove = 0;
2348 for (MachineInstr *Op : llvm::reverse(Ops)) {
2349 // Make sure each operation has the same kind.
2350 unsigned LSMOpcode
2351 = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia);
2352 if (LastOpcode && LSMOpcode != LastOpcode)
2353 break;
2355 // Check that we have a continuous set of offsets.
2356 int Offset = getMemoryOpOffset(*Op);
2357 unsigned Bytes = getLSMultipleTransferSize(Op);
2358 if (LastBytes) {
2359 if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes))
2360 break;
2363 // Don't try to reschedule too many instructions.
2364 if (NumMove == InstReorderLimit)
2365 break;
2367 // Found a mergable instruction; save information about it.
2368 ++NumMove;
2369 LastOffset = Offset;
2370 LastBytes = Bytes;
2371 LastOpcode = LSMOpcode;
2373 unsigned Loc = MI2LocMap[Op];
2374 if (Loc <= FirstLoc) {
2375 FirstLoc = Loc;
2376 FirstOp = Op;
2378 if (Loc >= LastLoc) {
2379 LastLoc = Loc;
2380 LastOp = Op;
2384 if (NumMove <= 1)
2385 Ops.pop_back();
2386 else {
2387 SmallPtrSet<MachineInstr*, 4> MemOps;
2388 SmallSet<unsigned, 4> MemRegs;
2389 for (size_t i = Ops.size() - NumMove, e = Ops.size(); i != e; ++i) {
2390 MemOps.insert(Ops[i]);
2391 MemRegs.insert(Ops[i]->getOperand(0).getReg());
2394 // Be conservative, if the instructions are too far apart, don't
2395 // move them. We want to limit the increase of register pressure.
2396 bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this.
2397 if (DoMove)
2398 DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp,
2399 MemOps, MemRegs, TRI, AA);
2400 if (!DoMove) {
2401 for (unsigned i = 0; i != NumMove; ++i)
2402 Ops.pop_back();
2403 } else {
2404 // This is the new location for the loads / stores.
2405 MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp;
2406 while (InsertPos != MBB->end() &&
2407 (MemOps.count(&*InsertPos) || InsertPos->isDebugInstr()))
2408 ++InsertPos;
2410 // If we are moving a pair of loads / stores, see if it makes sense
2411 // to try to allocate a pair of registers that can form register pairs.
2412 MachineInstr *Op0 = Ops.back();
2413 MachineInstr *Op1 = Ops[Ops.size()-2];
2414 Register FirstReg, SecondReg;
2415 Register BaseReg, PredReg;
2416 ARMCC::CondCodes Pred = ARMCC::AL;
2417 bool isT2 = false;
2418 unsigned NewOpc = 0;
2419 int Offset = 0;
2420 DebugLoc dl;
2421 if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc,
2422 FirstReg, SecondReg, BaseReg,
2423 Offset, PredReg, Pred, isT2)) {
2424 Ops.pop_back();
2425 Ops.pop_back();
2427 const MCInstrDesc &MCID = TII->get(NewOpc);
2428 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
2429 MRI->constrainRegClass(FirstReg, TRC);
2430 MRI->constrainRegClass(SecondReg, TRC);
2432 // Form the pair instruction.
2433 if (isLd) {
2434 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
2435 .addReg(FirstReg, RegState::Define)
2436 .addReg(SecondReg, RegState::Define)
2437 .addReg(BaseReg);
2438 // FIXME: We're converting from LDRi12 to an insn that still
2439 // uses addrmode2, so we need an explicit offset reg. It should
2440 // always by reg0 since we're transforming LDRi12s.
2441 if (!isT2)
2442 MIB.addReg(0);
2443 MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
2444 MIB.cloneMergedMemRefs({Op0, Op1});
2445 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
2446 ++NumLDRDFormed;
2447 } else {
2448 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
2449 .addReg(FirstReg)
2450 .addReg(SecondReg)
2451 .addReg(BaseReg);
2452 // FIXME: We're converting from LDRi12 to an insn that still
2453 // uses addrmode2, so we need an explicit offset reg. It should
2454 // always by reg0 since we're transforming STRi12s.
2455 if (!isT2)
2456 MIB.addReg(0);
2457 MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
2458 MIB.cloneMergedMemRefs({Op0, Op1});
2459 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
2460 ++NumSTRDFormed;
2462 MBB->erase(Op0);
2463 MBB->erase(Op1);
2465 if (!isT2) {
2466 // Add register allocation hints to form register pairs.
2467 MRI->setRegAllocationHint(FirstReg, ARMRI::RegPairEven, SecondReg);
2468 MRI->setRegAllocationHint(SecondReg, ARMRI::RegPairOdd, FirstReg);
2470 } else {
2471 for (unsigned i = 0; i != NumMove; ++i) {
2472 MachineInstr *Op = Ops.pop_back_val();
2473 if (isLd) {
2474 // Populate RegisterMap with all Registers defined by loads.
2475 Register Reg = Op->getOperand(0).getReg();
2476 RegisterMap[Reg];
2479 MBB->splice(InsertPos, MBB, Op);
2483 NumLdStMoved += NumMove;
2484 RetVal = true;
2489 return RetVal;
2492 static void forEachDbgRegOperand(MachineInstr *MI,
2493 std::function<void(MachineOperand &)> Fn) {
2494 if (MI->isNonListDebugValue()) {
2495 auto &Op = MI->getOperand(0);
2496 if (Op.isReg())
2497 Fn(Op);
2498 } else {
2499 for (unsigned I = 2; I < MI->getNumOperands(); I++) {
2500 auto &Op = MI->getOperand(I);
2501 if (Op.isReg())
2502 Fn(Op);
2507 // Update the RegisterMap with the instruction that was moved because a
2508 // DBG_VALUE_LIST may need to be moved again.
2509 static void updateRegisterMapForDbgValueListAfterMove(
2510 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap,
2511 MachineInstr *DbgValueListInstr, MachineInstr *InstrToReplace) {
2513 forEachDbgRegOperand(DbgValueListInstr, [&](MachineOperand &Op) {
2514 auto RegIt = RegisterMap.find(Op.getReg());
2515 if (RegIt == RegisterMap.end())
2516 return;
2517 auto &InstrVec = RegIt->getSecond();
2518 llvm::replace(InstrVec, InstrToReplace, DbgValueListInstr);
2522 static DebugVariable createDebugVariableFromMachineInstr(MachineInstr *MI) {
2523 auto DbgVar = DebugVariable(MI->getDebugVariable(), MI->getDebugExpression(),
2524 MI->getDebugLoc()->getInlinedAt());
2525 return DbgVar;
2528 bool
2529 ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
2530 bool RetVal = false;
2532 DenseMap<MachineInstr *, unsigned> MI2LocMap;
2533 using Base2InstMap = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>;
2534 using BaseVec = SmallVector<unsigned, 4>;
2535 Base2InstMap Base2LdsMap;
2536 Base2InstMap Base2StsMap;
2537 BaseVec LdBases;
2538 BaseVec StBases;
2539 // This map is used to track the relationship between the virtual
2540 // register that is the result of a load that is moved and the DBG_VALUE
2541 // MachineInstr pointer that uses that virtual register.
2542 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> RegisterMap;
2544 unsigned Loc = 0;
2545 MachineBasicBlock::iterator MBBI = MBB->begin();
2546 MachineBasicBlock::iterator E = MBB->end();
2547 while (MBBI != E) {
2548 for (; MBBI != E; ++MBBI) {
2549 MachineInstr &MI = *MBBI;
2550 if (MI.isCall() || MI.isTerminator()) {
2551 // Stop at barriers.
2552 ++MBBI;
2553 break;
2556 if (!MI.isDebugInstr())
2557 MI2LocMap[&MI] = ++Loc;
2559 if (!isMemoryOp(MI))
2560 continue;
2561 Register PredReg;
2562 if (getInstrPredicate(MI, PredReg) != ARMCC::AL)
2563 continue;
2565 int Opc = MI.getOpcode();
2566 bool isLd = isLoadSingle(Opc);
2567 Register Base = MI.getOperand(1).getReg();
2568 int Offset = getMemoryOpOffset(MI);
2569 bool StopHere = false;
2570 auto FindBases = [&](Base2InstMap &Base2Ops, BaseVec &Bases) {
2571 auto [BI, Inserted] = Base2Ops.try_emplace(Base);
2572 if (Inserted) {
2573 BI->second.push_back(&MI);
2574 Bases.push_back(Base);
2575 return;
2577 for (const MachineInstr *MI : BI->second) {
2578 if (Offset == getMemoryOpOffset(*MI)) {
2579 StopHere = true;
2580 break;
2583 if (!StopHere)
2584 BI->second.push_back(&MI);
2587 if (isLd)
2588 FindBases(Base2LdsMap, LdBases);
2589 else
2590 FindBases(Base2StsMap, StBases);
2592 if (StopHere) {
2593 // Found a duplicate (a base+offset combination that's seen earlier).
2594 // Backtrack.
2595 --Loc;
2596 break;
2600 // Re-schedule loads.
2601 for (unsigned Base : LdBases) {
2602 SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base];
2603 if (Lds.size() > 1)
2604 RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap, RegisterMap);
2607 // Re-schedule stores.
2608 for (unsigned Base : StBases) {
2609 SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base];
2610 if (Sts.size() > 1)
2611 RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap, RegisterMap);
2614 if (MBBI != E) {
2615 Base2LdsMap.clear();
2616 Base2StsMap.clear();
2617 LdBases.clear();
2618 StBases.clear();
2622 // Reschedule DBG_VALUEs to match any loads that were moved. When a load is
2623 // sunk beyond a DBG_VALUE that is referring to it, the DBG_VALUE becomes a
2624 // use-before-def, resulting in a loss of debug info.
2626 // Example:
2627 // Before the Pre Register Allocation Load Store Pass
2628 // inst_a
2629 // %2 = ld ...
2630 // inst_b
2631 // DBG_VALUE %2, "x", ...
2632 // %3 = ld ...
2634 // After the Pass:
2635 // inst_a
2636 // inst_b
2637 // DBG_VALUE %2, "x", ...
2638 // %2 = ld ...
2639 // %3 = ld ...
2641 // The code below addresses this by moving the DBG_VALUE to the position
2642 // immediately after the load.
2644 // Example:
2645 // After the code below:
2646 // inst_a
2647 // inst_b
2648 // %2 = ld ...
2649 // DBG_VALUE %2, "x", ...
2650 // %3 = ld ...
2652 // The algorithm works in two phases: First RescheduleOps() populates the
2653 // RegisterMap with registers that were moved as keys, there is no value
2654 // inserted. In the next phase, every MachineInstr in a basic block is
2655 // iterated over. If it is a valid DBG_VALUE or DBG_VALUE_LIST and it uses one
2656 // or more registers in the RegisterMap, the RegisterMap and InstrMap are
2657 // populated with the MachineInstr. If the DBG_VALUE or DBG_VALUE_LIST
2658 // describes debug information for a variable that already exists in the
2659 // DbgValueSinkCandidates, the MachineInstr in the DbgValueSinkCandidates must
2660 // be set to undef. If the current MachineInstr is a load that was moved,
2661 // undef the corresponding DBG_VALUE or DBG_VALUE_LIST and clone it to below
2662 // the load.
2664 // To illustrate the above algorithm visually let's take this example.
2666 // Before the Pre Register Allocation Load Store Pass:
2667 // %2 = ld ...
2668 // DBG_VALUE %2, A, .... # X
2669 // DBG_VALUE 0, A, ... # Y
2670 // %3 = ld ...
2671 // DBG_VALUE %3, A, ..., # Z
2672 // %4 = ld ...
2674 // After Pre Register Allocation Load Store Pass:
2675 // DBG_VALUE %2, A, .... # X
2676 // DBG_VALUE 0, A, ... # Y
2677 // DBG_VALUE %3, A, ..., # Z
2678 // %2 = ld ...
2679 // %3 = ld ...
2680 // %4 = ld ...
2682 // The algorithm below does the following:
2684 // In the beginning, the RegisterMap will have been populated with the virtual
2685 // registers %2, and %3, the DbgValueSinkCandidates and the InstrMap will be
2686 // empty. DbgValueSinkCandidates = {}, RegisterMap = {2 -> {}, 3 -> {}},
2687 // InstrMap {}
2688 // -> DBG_VALUE %2, A, .... # X
2689 // DBG_VALUE 0, A, ... # Y
2690 // DBG_VALUE %3, A, ..., # Z
2691 // %2 = ld ...
2692 // %3 = ld ...
2693 // %4 = ld ...
2695 // After the first DBG_VALUE (denoted with an X) is processed, the
2696 // DbgValueSinkCandidates and InstrMap will be populated and the RegisterMap
2697 // entry for %2 will be populated as well. DbgValueSinkCandidates = {A -> X},
2698 // RegisterMap = {2 -> {X}, 3 -> {}}, InstrMap {X -> 2}
2699 // DBG_VALUE %2, A, .... # X
2700 // -> DBG_VALUE 0, A, ... # Y
2701 // DBG_VALUE %3, A, ..., # Z
2702 // %2 = ld ...
2703 // %3 = ld ...
2704 // %4 = ld ...
2706 // After the DBG_VALUE Y is processed, the DbgValueSinkCandidates is updated
2707 // to now hold Y for A and the RegisterMap is also updated to remove X from
2708 // %2, this is because both X and Y describe the same debug variable A. X is
2709 // also updated to have a $noreg as the first operand.
2710 // DbgValueSinkCandidates = {A -> {Y}}, RegisterMap = {2 -> {}, 3 -> {}},
2711 // InstrMap = {X-> 2}
2712 // DBG_VALUE $noreg, A, .... # X
2713 // DBG_VALUE 0, A, ... # Y
2714 // -> DBG_VALUE %3, A, ..., # Z
2715 // %2 = ld ...
2716 // %3 = ld ...
2717 // %4 = ld ...
2719 // After DBG_VALUE Z is processed, the DbgValueSinkCandidates is updated to
2720 // hold Z fr A, the RegisterMap is updated to hold Z for %3, and the InstrMap
2721 // is updated to have Z mapped to %3. This is again because Z describes the
2722 // debug variable A, Y is not updated to have $noreg as first operand because
2723 // its first operand is an immediate, not a register.
2724 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2725 // InstrMap = {X -> 2, Z -> 3}
2726 // DBG_VALUE $noreg, A, .... # X
2727 // DBG_VALUE 0, A, ... # Y
2728 // DBG_VALUE %3, A, ..., # Z
2729 // -> %2 = ld ...
2730 // %3 = ld ...
2731 // %4 = ld ...
2733 // Nothing happens here since the RegisterMap for %2 contains no value.
2734 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2735 // InstrMap = {X -> 2, Z -> 3}
2736 // DBG_VALUE $noreg, A, .... # X
2737 // DBG_VALUE 0, A, ... # Y
2738 // DBG_VALUE %3, A, ..., # Z
2739 // %2 = ld ...
2740 // -> %3 = ld ...
2741 // %4 = ld ...
2743 // Since the RegisterMap contains Z as a value for %3, the MachineInstr
2744 // pointer Z is copied to come after the load for %3 and the old Z's first
2745 // operand is changed to $noreg the Basic Block iterator is moved to after the
2746 // DBG_VALUE Z's new position.
2747 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2748 // InstrMap = {X -> 2, Z -> 3}
2749 // DBG_VALUE $noreg, A, .... # X
2750 // DBG_VALUE 0, A, ... # Y
2751 // DBG_VALUE $noreg, A, ..., # Old Z
2752 // %2 = ld ...
2753 // %3 = ld ...
2754 // DBG_VALUE %3, A, ..., # Z
2755 // -> %4 = ld ...
2757 // Nothing happens for %4 and the algorithm exits having processed the entire
2758 // Basic Block.
2759 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2760 // InstrMap = {X -> 2, Z -> 3}
2761 // DBG_VALUE $noreg, A, .... # X
2762 // DBG_VALUE 0, A, ... # Y
2763 // DBG_VALUE $noreg, A, ..., # Old Z
2764 // %2 = ld ...
2765 // %3 = ld ...
2766 // DBG_VALUE %3, A, ..., # Z
2767 // %4 = ld ...
2769 // This map is used to track the relationship between
2770 // a Debug Variable and the DBG_VALUE MachineInstr pointer that describes the
2771 // debug information for that Debug Variable.
2772 SmallDenseMap<DebugVariable, MachineInstr *, 8> DbgValueSinkCandidates;
2773 // This map is used to track the relationship between a DBG_VALUE or
2774 // DBG_VALUE_LIST MachineInstr pointer and Registers that it uses.
2775 SmallDenseMap<MachineInstr *, SmallVector<Register>, 8> InstrMap;
2776 for (MBBI = MBB->begin(), E = MBB->end(); MBBI != E; ++MBBI) {
2777 MachineInstr &MI = *MBBI;
2779 auto PopulateRegisterAndInstrMapForDebugInstr = [&](Register Reg) {
2780 auto RegIt = RegisterMap.find(Reg);
2781 if (RegIt == RegisterMap.end())
2782 return;
2783 auto &InstrVec = RegIt->getSecond();
2784 InstrVec.push_back(&MI);
2785 InstrMap[&MI].push_back(Reg);
2788 if (MI.isDebugValue()) {
2789 assert(MI.getDebugVariable() &&
2790 "DBG_VALUE or DBG_VALUE_LIST must contain a DILocalVariable");
2792 auto DbgVar = createDebugVariableFromMachineInstr(&MI);
2793 // If the first operand is a register and it exists in the RegisterMap, we
2794 // know this is a DBG_VALUE that uses the result of a load that was moved,
2795 // and is therefore a candidate to also be moved, add it to the
2796 // RegisterMap and InstrMap.
2797 forEachDbgRegOperand(&MI, [&](MachineOperand &Op) {
2798 PopulateRegisterAndInstrMapForDebugInstr(Op.getReg());
2801 // If the current DBG_VALUE describes the same variable as one of the
2802 // in-flight DBG_VALUEs, remove the candidate from the list and set it to
2803 // undef. Moving one DBG_VALUE past another would result in the variable's
2804 // value going back in time when stepping through the block in the
2805 // debugger.
2806 auto InstrIt = DbgValueSinkCandidates.find(DbgVar);
2807 if (InstrIt != DbgValueSinkCandidates.end()) {
2808 auto *Instr = InstrIt->getSecond();
2809 auto RegIt = InstrMap.find(Instr);
2810 if (RegIt != InstrMap.end()) {
2811 const auto &RegVec = RegIt->getSecond();
2812 // For every Register in the RegVec, remove the MachineInstr in the
2813 // RegisterMap that describes the DbgVar.
2814 for (auto &Reg : RegVec) {
2815 auto RegIt = RegisterMap.find(Reg);
2816 if (RegIt == RegisterMap.end())
2817 continue;
2818 auto &InstrVec = RegIt->getSecond();
2819 auto IsDbgVar = [&](MachineInstr *I) -> bool {
2820 auto Var = createDebugVariableFromMachineInstr(I);
2821 return Var == DbgVar;
2824 llvm::erase_if(InstrVec, IsDbgVar);
2826 forEachDbgRegOperand(Instr,
2827 [&](MachineOperand &Op) { Op.setReg(0); });
2830 DbgValueSinkCandidates[DbgVar] = &MI;
2831 } else {
2832 // If the first operand of a load matches with a DBG_VALUE in RegisterMap,
2833 // then move that DBG_VALUE to below the load.
2834 auto Opc = MI.getOpcode();
2835 if (!isLoadSingle(Opc))
2836 continue;
2837 auto Reg = MI.getOperand(0).getReg();
2838 auto RegIt = RegisterMap.find(Reg);
2839 if (RegIt == RegisterMap.end())
2840 continue;
2841 auto &DbgInstrVec = RegIt->getSecond();
2842 if (!DbgInstrVec.size())
2843 continue;
2844 for (auto *DbgInstr : DbgInstrVec) {
2845 MachineBasicBlock::iterator InsertPos = std::next(MBBI);
2846 auto *ClonedMI = MI.getMF()->CloneMachineInstr(DbgInstr);
2847 MBB->insert(InsertPos, ClonedMI);
2848 MBBI++;
2849 // Erase the entry into the DbgValueSinkCandidates for the DBG_VALUE
2850 // that was moved.
2851 auto DbgVar = createDebugVariableFromMachineInstr(DbgInstr);
2852 auto DbgIt = DbgValueSinkCandidates.find(DbgVar);
2853 // If the instruction is a DBG_VALUE_LIST, it may have already been
2854 // erased from the DbgValueSinkCandidates. Only erase if it exists in
2855 // the DbgValueSinkCandidates.
2856 if (DbgIt != DbgValueSinkCandidates.end())
2857 DbgValueSinkCandidates.erase(DbgIt);
2858 // Zero out original dbg instr
2859 forEachDbgRegOperand(DbgInstr,
2860 [&](MachineOperand &Op) { Op.setReg(0); });
2861 // Update RegisterMap with ClonedMI because it might have to be moved
2862 // again.
2863 if (DbgInstr->isDebugValueList())
2864 updateRegisterMapForDbgValueListAfterMove(RegisterMap, ClonedMI,
2865 DbgInstr);
2869 return RetVal;
2872 // Get the Base register operand index from the memory access MachineInst if we
2873 // should attempt to distribute postinc on it. Return -1 if not of a valid
2874 // instruction type. If it returns an index, it is assumed that instruction is a
2875 // r+i indexing mode, and getBaseOperandIndex() + 1 is the Offset index.
2876 static int getBaseOperandIndex(MachineInstr &MI) {
2877 switch (MI.getOpcode()) {
2878 case ARM::MVE_VLDRBS16:
2879 case ARM::MVE_VLDRBS32:
2880 case ARM::MVE_VLDRBU16:
2881 case ARM::MVE_VLDRBU32:
2882 case ARM::MVE_VLDRHS32:
2883 case ARM::MVE_VLDRHU32:
2884 case ARM::MVE_VLDRBU8:
2885 case ARM::MVE_VLDRHU16:
2886 case ARM::MVE_VLDRWU32:
2887 case ARM::MVE_VSTRB16:
2888 case ARM::MVE_VSTRB32:
2889 case ARM::MVE_VSTRH32:
2890 case ARM::MVE_VSTRBU8:
2891 case ARM::MVE_VSTRHU16:
2892 case ARM::MVE_VSTRWU32:
2893 case ARM::t2LDRHi8:
2894 case ARM::t2LDRHi12:
2895 case ARM::t2LDRSHi8:
2896 case ARM::t2LDRSHi12:
2897 case ARM::t2LDRBi8:
2898 case ARM::t2LDRBi12:
2899 case ARM::t2LDRSBi8:
2900 case ARM::t2LDRSBi12:
2901 case ARM::t2STRBi8:
2902 case ARM::t2STRBi12:
2903 case ARM::t2STRHi8:
2904 case ARM::t2STRHi12:
2905 return 1;
2906 case ARM::MVE_VLDRBS16_post:
2907 case ARM::MVE_VLDRBS32_post:
2908 case ARM::MVE_VLDRBU16_post:
2909 case ARM::MVE_VLDRBU32_post:
2910 case ARM::MVE_VLDRHS32_post:
2911 case ARM::MVE_VLDRHU32_post:
2912 case ARM::MVE_VLDRBU8_post:
2913 case ARM::MVE_VLDRHU16_post:
2914 case ARM::MVE_VLDRWU32_post:
2915 case ARM::MVE_VSTRB16_post:
2916 case ARM::MVE_VSTRB32_post:
2917 case ARM::MVE_VSTRH32_post:
2918 case ARM::MVE_VSTRBU8_post:
2919 case ARM::MVE_VSTRHU16_post:
2920 case ARM::MVE_VSTRWU32_post:
2921 case ARM::MVE_VLDRBS16_pre:
2922 case ARM::MVE_VLDRBS32_pre:
2923 case ARM::MVE_VLDRBU16_pre:
2924 case ARM::MVE_VLDRBU32_pre:
2925 case ARM::MVE_VLDRHS32_pre:
2926 case ARM::MVE_VLDRHU32_pre:
2927 case ARM::MVE_VLDRBU8_pre:
2928 case ARM::MVE_VLDRHU16_pre:
2929 case ARM::MVE_VLDRWU32_pre:
2930 case ARM::MVE_VSTRB16_pre:
2931 case ARM::MVE_VSTRB32_pre:
2932 case ARM::MVE_VSTRH32_pre:
2933 case ARM::MVE_VSTRBU8_pre:
2934 case ARM::MVE_VSTRHU16_pre:
2935 case ARM::MVE_VSTRWU32_pre:
2936 return 2;
2938 return -1;
2941 static bool isPostIndex(MachineInstr &MI) {
2942 switch (MI.getOpcode()) {
2943 case ARM::MVE_VLDRBS16_post:
2944 case ARM::MVE_VLDRBS32_post:
2945 case ARM::MVE_VLDRBU16_post:
2946 case ARM::MVE_VLDRBU32_post:
2947 case ARM::MVE_VLDRHS32_post:
2948 case ARM::MVE_VLDRHU32_post:
2949 case ARM::MVE_VLDRBU8_post:
2950 case ARM::MVE_VLDRHU16_post:
2951 case ARM::MVE_VLDRWU32_post:
2952 case ARM::MVE_VSTRB16_post:
2953 case ARM::MVE_VSTRB32_post:
2954 case ARM::MVE_VSTRH32_post:
2955 case ARM::MVE_VSTRBU8_post:
2956 case ARM::MVE_VSTRHU16_post:
2957 case ARM::MVE_VSTRWU32_post:
2958 return true;
2960 return false;
2963 static bool isPreIndex(MachineInstr &MI) {
2964 switch (MI.getOpcode()) {
2965 case ARM::MVE_VLDRBS16_pre:
2966 case ARM::MVE_VLDRBS32_pre:
2967 case ARM::MVE_VLDRBU16_pre:
2968 case ARM::MVE_VLDRBU32_pre:
2969 case ARM::MVE_VLDRHS32_pre:
2970 case ARM::MVE_VLDRHU32_pre:
2971 case ARM::MVE_VLDRBU8_pre:
2972 case ARM::MVE_VLDRHU16_pre:
2973 case ARM::MVE_VLDRWU32_pre:
2974 case ARM::MVE_VSTRB16_pre:
2975 case ARM::MVE_VSTRB32_pre:
2976 case ARM::MVE_VSTRH32_pre:
2977 case ARM::MVE_VSTRBU8_pre:
2978 case ARM::MVE_VSTRHU16_pre:
2979 case ARM::MVE_VSTRWU32_pre:
2980 return true;
2982 return false;
2985 // Given a memory access Opcode, check that the give Imm would be a valid Offset
2986 // for this instruction (same as isLegalAddressImm), Or if the instruction
2987 // could be easily converted to one where that was valid. For example converting
2988 // t2LDRi12 to t2LDRi8 for negative offsets. Works in conjunction with
2989 // AdjustBaseAndOffset below.
2990 static bool isLegalOrConvertableAddressImm(unsigned Opcode, int Imm,
2991 const TargetInstrInfo *TII,
2992 int &CodesizeEstimate) {
2993 if (isLegalAddressImm(Opcode, Imm, TII))
2994 return true;
2996 // We can convert AddrModeT2_i12 to AddrModeT2_i8neg.
2997 const MCInstrDesc &Desc = TII->get(Opcode);
2998 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2999 switch (AddrMode) {
3000 case ARMII::AddrModeT2_i12:
3001 CodesizeEstimate += 1;
3002 return Imm < 0 && -Imm < ((1 << 8) * 1);
3004 return false;
3007 // Given an MI adjust its address BaseReg to use NewBaseReg and address offset
3008 // by -Offset. This can either happen in-place or be a replacement as MI is
3009 // converted to another instruction type.
3010 static void AdjustBaseAndOffset(MachineInstr *MI, Register NewBaseReg,
3011 int Offset, const TargetInstrInfo *TII,
3012 const TargetRegisterInfo *TRI) {
3013 // Set the Base reg
3014 unsigned BaseOp = getBaseOperandIndex(*MI);
3015 MI->getOperand(BaseOp).setReg(NewBaseReg);
3016 // and constrain the reg class to that required by the instruction.
3017 MachineFunction *MF = MI->getMF();
3018 MachineRegisterInfo &MRI = MF->getRegInfo();
3019 const MCInstrDesc &MCID = TII->get(MI->getOpcode());
3020 const TargetRegisterClass *TRC = TII->getRegClass(MCID, BaseOp, TRI, *MF);
3021 MRI.constrainRegClass(NewBaseReg, TRC);
3023 int OldOffset = MI->getOperand(BaseOp + 1).getImm();
3024 if (isLegalAddressImm(MI->getOpcode(), OldOffset - Offset, TII))
3025 MI->getOperand(BaseOp + 1).setImm(OldOffset - Offset);
3026 else {
3027 unsigned ConvOpcode;
3028 switch (MI->getOpcode()) {
3029 case ARM::t2LDRHi12:
3030 ConvOpcode = ARM::t2LDRHi8;
3031 break;
3032 case ARM::t2LDRSHi12:
3033 ConvOpcode = ARM::t2LDRSHi8;
3034 break;
3035 case ARM::t2LDRBi12:
3036 ConvOpcode = ARM::t2LDRBi8;
3037 break;
3038 case ARM::t2LDRSBi12:
3039 ConvOpcode = ARM::t2LDRSBi8;
3040 break;
3041 case ARM::t2STRHi12:
3042 ConvOpcode = ARM::t2STRHi8;
3043 break;
3044 case ARM::t2STRBi12:
3045 ConvOpcode = ARM::t2STRBi8;
3046 break;
3047 default:
3048 llvm_unreachable("Unhandled convertable opcode");
3050 assert(isLegalAddressImm(ConvOpcode, OldOffset - Offset, TII) &&
3051 "Illegal Address Immediate after convert!");
3053 const MCInstrDesc &MCID = TII->get(ConvOpcode);
3054 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3055 .add(MI->getOperand(0))
3056 .add(MI->getOperand(1))
3057 .addImm(OldOffset - Offset)
3058 .add(MI->getOperand(3))
3059 .add(MI->getOperand(4))
3060 .cloneMemRefs(*MI);
3061 MI->eraseFromParent();
3065 static MachineInstr *createPostIncLoadStore(MachineInstr *MI, int Offset,
3066 Register NewReg,
3067 const TargetInstrInfo *TII,
3068 const TargetRegisterInfo *TRI) {
3069 MachineFunction *MF = MI->getMF();
3070 MachineRegisterInfo &MRI = MF->getRegInfo();
3072 unsigned NewOpcode = getPostIndexedLoadStoreOpcode(
3073 MI->getOpcode(), Offset > 0 ? ARM_AM::add : ARM_AM::sub);
3075 const MCInstrDesc &MCID = TII->get(NewOpcode);
3076 // Constrain the def register class
3077 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
3078 MRI.constrainRegClass(NewReg, TRC);
3079 // And do the same for the base operand
3080 TRC = TII->getRegClass(MCID, 2, TRI, *MF);
3081 MRI.constrainRegClass(MI->getOperand(1).getReg(), TRC);
3083 unsigned AddrMode = (MCID.TSFlags & ARMII::AddrModeMask);
3084 switch (AddrMode) {
3085 case ARMII::AddrModeT2_i7:
3086 case ARMII::AddrModeT2_i7s2:
3087 case ARMII::AddrModeT2_i7s4:
3088 // Any MVE load/store
3089 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3090 .addReg(NewReg, RegState::Define)
3091 .add(MI->getOperand(0))
3092 .add(MI->getOperand(1))
3093 .addImm(Offset)
3094 .add(MI->getOperand(3))
3095 .add(MI->getOperand(4))
3096 .add(MI->getOperand(5))
3097 .cloneMemRefs(*MI);
3098 case ARMII::AddrModeT2_i8:
3099 if (MI->mayLoad()) {
3100 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3101 .add(MI->getOperand(0))
3102 .addReg(NewReg, RegState::Define)
3103 .add(MI->getOperand(1))
3104 .addImm(Offset)
3105 .add(MI->getOperand(3))
3106 .add(MI->getOperand(4))
3107 .cloneMemRefs(*MI);
3108 } else {
3109 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3110 .addReg(NewReg, RegState::Define)
3111 .add(MI->getOperand(0))
3112 .add(MI->getOperand(1))
3113 .addImm(Offset)
3114 .add(MI->getOperand(3))
3115 .add(MI->getOperand(4))
3116 .cloneMemRefs(*MI);
3118 default:
3119 llvm_unreachable("Unhandled createPostIncLoadStore");
3123 // Given a Base Register, optimise the load/store uses to attempt to create more
3124 // post-inc accesses and less register moves. We do this by taking zero offset
3125 // loads/stores with an add, and convert them to a postinc load/store of the
3126 // same type. Any subsequent accesses will be adjusted to use and account for
3127 // the post-inc value.
3128 // For example:
3129 // LDR #0 LDR_POSTINC #16
3130 // LDR #4 LDR #-12
3131 // LDR #8 LDR #-8
3132 // LDR #12 LDR #-4
3133 // ADD #16
3135 // At the same time if we do not find an increment but do find an existing
3136 // pre/post inc instruction, we can still adjust the offsets of subsequent
3137 // instructions to save the register move that would otherwise be needed for the
3138 // in-place increment.
3139 bool ARMPreAllocLoadStoreOpt::DistributeIncrements(Register Base) {
3140 // We are looking for:
3141 // One zero offset load/store that can become postinc
3142 MachineInstr *BaseAccess = nullptr;
3143 MachineInstr *PrePostInc = nullptr;
3144 // An increment that can be folded in
3145 MachineInstr *Increment = nullptr;
3146 // Other accesses after BaseAccess that will need to be updated to use the
3147 // postinc value.
3148 SmallPtrSet<MachineInstr *, 8> OtherAccesses;
3149 for (auto &Use : MRI->use_nodbg_instructions(Base)) {
3150 if (!Increment && getAddSubImmediate(Use) != 0) {
3151 Increment = &Use;
3152 continue;
3155 int BaseOp = getBaseOperandIndex(Use);
3156 if (BaseOp == -1)
3157 return false;
3159 if (!Use.getOperand(BaseOp).isReg() ||
3160 Use.getOperand(BaseOp).getReg() != Base)
3161 return false;
3162 if (isPreIndex(Use) || isPostIndex(Use))
3163 PrePostInc = &Use;
3164 else if (Use.getOperand(BaseOp + 1).getImm() == 0)
3165 BaseAccess = &Use;
3166 else
3167 OtherAccesses.insert(&Use);
3170 int IncrementOffset;
3171 Register NewBaseReg;
3172 if (BaseAccess && Increment) {
3173 if (PrePostInc || BaseAccess->getParent() != Increment->getParent())
3174 return false;
3175 Register PredReg;
3176 if (Increment->definesRegister(ARM::CPSR, /*TRI=*/nullptr) ||
3177 getInstrPredicate(*Increment, PredReg) != ARMCC::AL)
3178 return false;
3180 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on VirtualReg "
3181 << Base.virtRegIndex() << "\n");
3183 // Make sure that Increment has no uses before BaseAccess that are not PHI
3184 // uses.
3185 for (MachineInstr &Use :
3186 MRI->use_nodbg_instructions(Increment->getOperand(0).getReg())) {
3187 if (&Use == BaseAccess || (Use.getOpcode() != TargetOpcode::PHI &&
3188 !DT->dominates(BaseAccess, &Use))) {
3189 LLVM_DEBUG(dbgs() << " BaseAccess doesn't dominate use of increment\n");
3190 return false;
3194 // Make sure that Increment can be folded into Base
3195 IncrementOffset = getAddSubImmediate(*Increment);
3196 unsigned NewPostIncOpcode = getPostIndexedLoadStoreOpcode(
3197 BaseAccess->getOpcode(), IncrementOffset > 0 ? ARM_AM::add : ARM_AM::sub);
3198 if (!isLegalAddressImm(NewPostIncOpcode, IncrementOffset, TII)) {
3199 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on postinc\n");
3200 return false;
3203 else if (PrePostInc) {
3204 // If we already have a pre/post index load/store then set BaseAccess,
3205 // IncrementOffset and NewBaseReg to the values it already produces,
3206 // allowing us to update and subsequent uses of BaseOp reg with the
3207 // incremented value.
3208 if (Increment)
3209 return false;
3211 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on already "
3212 << "indexed VirtualReg " << Base.virtRegIndex() << "\n");
3213 int BaseOp = getBaseOperandIndex(*PrePostInc);
3214 IncrementOffset = PrePostInc->getOperand(BaseOp+1).getImm();
3215 BaseAccess = PrePostInc;
3216 NewBaseReg = PrePostInc->getOperand(0).getReg();
3218 else
3219 return false;
3221 // And make sure that the negative value of increment can be added to all
3222 // other offsets after the BaseAccess. We rely on either
3223 // dominates(BaseAccess, OtherAccess) or dominates(OtherAccess, BaseAccess)
3224 // to keep things simple.
3225 // This also adds a simple codesize metric, to detect if an instruction (like
3226 // t2LDRBi12) which can often be shrunk to a thumb1 instruction (tLDRBi)
3227 // cannot because it is converted to something else (t2LDRBi8). We start this
3228 // at -1 for the gain from removing the increment.
3229 SmallPtrSet<MachineInstr *, 4> SuccessorAccesses;
3230 int CodesizeEstimate = -1;
3231 for (auto *Use : OtherAccesses) {
3232 if (DT->dominates(BaseAccess, Use)) {
3233 SuccessorAccesses.insert(Use);
3234 unsigned BaseOp = getBaseOperandIndex(*Use);
3235 if (!isLegalOrConvertableAddressImm(Use->getOpcode(),
3236 Use->getOperand(BaseOp + 1).getImm() -
3237 IncrementOffset,
3238 TII, CodesizeEstimate)) {
3239 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on use\n");
3240 return false;
3242 } else if (!DT->dominates(Use, BaseAccess)) {
3243 LLVM_DEBUG(
3244 dbgs() << " Unknown dominance relation between Base and Use\n");
3245 return false;
3248 if (STI->hasMinSize() && CodesizeEstimate > 0) {
3249 LLVM_DEBUG(dbgs() << " Expected to grow instructions under minsize\n");
3250 return false;
3253 if (!PrePostInc) {
3254 // Replace BaseAccess with a post inc
3255 LLVM_DEBUG(dbgs() << "Changing: "; BaseAccess->dump());
3256 LLVM_DEBUG(dbgs() << " And : "; Increment->dump());
3257 NewBaseReg = Increment->getOperand(0).getReg();
3258 MachineInstr *BaseAccessPost =
3259 createPostIncLoadStore(BaseAccess, IncrementOffset, NewBaseReg, TII, TRI);
3260 BaseAccess->eraseFromParent();
3261 Increment->eraseFromParent();
3262 (void)BaseAccessPost;
3263 LLVM_DEBUG(dbgs() << " To : "; BaseAccessPost->dump());
3266 for (auto *Use : SuccessorAccesses) {
3267 LLVM_DEBUG(dbgs() << "Changing: "; Use->dump());
3268 AdjustBaseAndOffset(Use, NewBaseReg, IncrementOffset, TII, TRI);
3269 LLVM_DEBUG(dbgs() << " To : "; Use->dump());
3272 // Remove the kill flag from all uses of NewBaseReg, in case any old uses
3273 // remain.
3274 for (MachineOperand &Op : MRI->use_nodbg_operands(NewBaseReg))
3275 Op.setIsKill(false);
3276 return true;
3279 bool ARMPreAllocLoadStoreOpt::DistributeIncrements() {
3280 bool Changed = false;
3281 SmallSetVector<Register, 4> Visited;
3282 for (auto &MBB : *MF) {
3283 for (auto &MI : MBB) {
3284 int BaseOp = getBaseOperandIndex(MI);
3285 if (BaseOp == -1 || !MI.getOperand(BaseOp).isReg())
3286 continue;
3288 Register Base = MI.getOperand(BaseOp).getReg();
3289 if (!Base.isVirtual())
3290 continue;
3292 Visited.insert(Base);
3296 for (auto Base : Visited)
3297 Changed |= DistributeIncrements(Base);
3299 return Changed;
3302 /// Returns an instance of the load / store optimization pass.
3303 FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) {
3304 if (PreAlloc)
3305 return new ARMPreAllocLoadStoreOpt();
3306 return new ARMLoadStoreOpt();