1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 /// form should be in the preheader, whereas the while form should be in the
14 /// preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBasicBlockInfo.h"
57 #include "ARMSubtarget.h"
58 #include "MVETailPredUtils.h"
59 #include "Thumb2InstrInfo.h"
60 #include "llvm/ADT/SetVector.h"
61 #include "llvm/CodeGen/LivePhysRegs.h"
62 #include "llvm/CodeGen/MachineFrameInfo.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineLoopInfo.h"
65 #include "llvm/CodeGen/MachineLoopUtils.h"
66 #include "llvm/CodeGen/MachineRegisterInfo.h"
67 #include "llvm/CodeGen/Passes.h"
68 #include "llvm/CodeGen/ReachingDefAnalysis.h"
69 #include "llvm/MC/MCInstrDesc.h"
73 #define DEBUG_TYPE "arm-low-overhead-loops"
74 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
77 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden
,
78 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
82 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden
,
83 cl::desc("Disable omitting 'dls lr, lr' instructions"),
86 static bool isVectorPredicated(MachineInstr
*MI
) {
87 int PIdx
= llvm::findFirstVPTPredOperandIdx(*MI
);
88 return PIdx
!= -1 && MI
->getOperand(PIdx
+ 1).getReg() == ARM::VPR
;
91 static bool isVectorPredicate(MachineInstr
*MI
) {
92 return MI
->findRegisterDefOperandIdx(ARM::VPR
, /*TRI=*/nullptr) != -1;
95 static bool hasVPRUse(MachineInstr
&MI
) {
96 return MI
.findRegisterUseOperandIdx(ARM::VPR
, /*TRI=*/nullptr) != -1;
99 static bool isDomainMVE(MachineInstr
*MI
) {
100 uint64_t Domain
= MI
->getDesc().TSFlags
& ARMII::DomainMask
;
101 return Domain
== ARMII::DomainMVE
;
104 static int getVecSize(const MachineInstr
&MI
) {
105 const MCInstrDesc
&MCID
= MI
.getDesc();
106 uint64_t Flags
= MCID
.TSFlags
;
107 return (Flags
& ARMII::VecSize
) >> ARMII::VecSizeShift
;
110 static bool shouldInspect(MachineInstr
&MI
) {
111 if (MI
.isDebugInstr())
113 return isDomainMVE(&MI
) || isVectorPredicate(&MI
) || hasVPRUse(MI
);
116 static bool isHorizontalReduction(const MachineInstr
&MI
) {
117 const MCInstrDesc
&MCID
= MI
.getDesc();
118 uint64_t Flags
= MCID
.TSFlags
;
119 return (Flags
& ARMII::HorizontalReduction
) != 0;
124 using InstSet
= SmallPtrSetImpl
<MachineInstr
*>;
126 class PostOrderLoopTraversal
{
128 MachineLoopInfo
&MLI
;
129 SmallPtrSet
<MachineBasicBlock
*, 4> Visited
;
130 SmallVector
<MachineBasicBlock
*, 4> Order
;
133 PostOrderLoopTraversal(MachineLoop
&ML
, MachineLoopInfo
&MLI
)
134 : ML(ML
), MLI(MLI
) { }
136 const SmallVectorImpl
<MachineBasicBlock
*> &getOrder() const {
140 // Visit all the blocks within the loop, as well as exit blocks and any
141 // blocks properly dominating the header.
143 std::function
<void(MachineBasicBlock
*)> Search
=
144 [this, &Search
](MachineBasicBlock
*MBB
) -> void {
145 if (!Visited
.insert(MBB
).second
)
148 for (auto *Succ
: MBB
->successors()) {
149 if (!ML
.contains(Succ
))
153 Order
.push_back(MBB
);
156 // Insert exit blocks.
157 SmallVector
<MachineBasicBlock
*, 2> ExitBlocks
;
158 ML
.getExitBlocks(ExitBlocks
);
159 append_range(Order
, ExitBlocks
);
161 // Then add the loop body.
162 Search(ML
.getHeader());
164 // Then try the preheader and its predecessors.
165 std::function
<void(MachineBasicBlock
*)> GetPredecessor
=
166 [this, &GetPredecessor
] (MachineBasicBlock
*MBB
) -> void {
167 Order
.push_back(MBB
);
168 if (MBB
->pred_size() == 1)
169 GetPredecessor(*MBB
->pred_begin());
172 if (auto *Preheader
= ML
.getLoopPreheader())
173 GetPredecessor(Preheader
);
174 else if (auto *Preheader
= MLI
.findLoopPreheader(&ML
, true, true))
175 GetPredecessor(Preheader
);
180 SmallVector
<MachineInstr
*, 4> Insts
;
183 VPTBlock(MachineInstr
*MI
) { Insts
.push_back(MI
); }
185 // Have we found an instruction within the block which defines the vpr? If
186 // so, not all the instructions in the block will have the same predicate.
187 bool hasUniformPredicate() { return getDivergent() == nullptr; }
189 // If it exists, return the first internal instruction which modifies the
191 MachineInstr
*getDivergent() {
192 SmallVectorImpl
<MachineInstr
*> &Insts
= getInsts();
193 for (unsigned i
= 1; i
< Insts
.size(); ++i
) {
194 MachineInstr
*Next
= Insts
[i
];
195 if (isVectorPredicate(Next
))
196 return Next
; // Found an instruction altering the vpr.
201 void insert(MachineInstr
*MI
) {
203 // VPT/VPST + 4 predicated instructions.
204 assert(Insts
.size() <= 5 && "Too many instructions in VPT block!");
207 bool containsVCTP() const { return llvm::any_of(Insts
, isVCTP
); }
209 unsigned size() const { return Insts
.size(); }
210 SmallVectorImpl
<MachineInstr
*> &getInsts() { return Insts
; }
213 // Represent the current state of the VPR and hold all instances which
214 // represent a VPT block, which is a list of instructions that begins with a
215 // VPT/VPST and has a maximum of four proceeding instructions. All
216 // instructions within the block are predicated upon the vpr and we allow
217 // instructions to define the vpr within in the block too.
219 friend struct LowOverheadLoop
;
221 SmallVector
<VPTBlock
, 4> Blocks
;
222 SetVector
<MachineInstr
*> CurrentPredicates
;
223 std::map
<MachineInstr
*, SetVector
<MachineInstr
*>> PredicatedInsts
;
225 void CreateVPTBlock(MachineInstr
*MI
) {
226 assert((CurrentPredicates
.size() || MI
->getParent()->isLiveIn(ARM::VPR
))
227 && "Can't begin VPT without predicate");
228 Blocks
.emplace_back(MI
);
229 // The execution of MI is predicated upon the current set of instructions
230 // that are AND'ed together to form the VPR predicate value. In the case
231 // that MI is a VPT, CurrentPredicates will also just be MI.
232 PredicatedInsts
[MI
] = CurrentPredicates
;
235 void addInst(MachineInstr
*MI
) {
236 Blocks
.back().insert(MI
);
237 PredicatedInsts
[MI
] = CurrentPredicates
;
240 void addPredicate(MachineInstr
*MI
) {
241 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI
);
242 CurrentPredicates
.insert(MI
);
245 void resetPredicate(MachineInstr
*MI
) {
246 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI
);
247 CurrentPredicates
.clear();
248 CurrentPredicates
.insert(MI
);
252 // Return whether the given instruction is predicated upon a VCTP.
253 bool isPredicatedOnVCTP(MachineInstr
*MI
, bool Exclusive
= false) {
254 SetVector
<MachineInstr
*> &Predicates
= PredicatedInsts
[MI
];
255 if (Exclusive
&& Predicates
.size() != 1)
257 // We do not know how to convert an else predicate of a VCTP.
258 if (getVPTInstrPredicate(*MI
) == ARMVCC::Else
)
260 return llvm::any_of(Predicates
, isVCTP
);
263 // Is the VPST, controlling the block entry, predicated upon a VCTP.
264 bool isEntryPredicatedOnVCTP(VPTBlock
&Block
, bool Exclusive
= false) {
265 SmallVectorImpl
<MachineInstr
*> &Insts
= Block
.getInsts();
266 return isPredicatedOnVCTP(Insts
.front(), Exclusive
);
269 // If this block begins with a VPT, we can check whether it's using
270 // at least one predicated input(s), as well as possible loop invariant
271 // which would result in it being implicitly predicated.
272 bool hasImplicitlyValidVPT(VPTBlock
&Block
, ReachingDefAnalysis
&RDA
) {
273 SmallVectorImpl
<MachineInstr
*> &Insts
= Block
.getInsts();
274 MachineInstr
*VPT
= Insts
.front();
275 assert(isVPTOpcode(VPT
->getOpcode()) &&
276 "Expected VPT block to begin with VPT/VPST");
278 if (VPT
->getOpcode() == ARM::MVE_VPST
)
281 // If the VPT block does not define something that is an "output", then
282 // the tail-predicated version will just perform a subset of the original
283 // vpt block, where the last lanes should not be used.
284 if (isVPTOpcode(VPT
->getOpcode()) &&
285 all_of(Block
.getInsts(), [](const MachineInstr
*MI
) {
286 return !MI
->mayStore() && !MI
->mayLoad() &&
287 !isHorizontalReduction(*MI
) && !isVCTP(MI
);
291 auto IsOperandPredicated
= [&](MachineInstr
*MI
, unsigned Idx
) {
292 MachineInstr
*Op
= RDA
.getMIOperand(MI
, MI
->getOperand(Idx
));
293 return Op
&& PredicatedInsts
.count(Op
) && isPredicatedOnVCTP(Op
);
296 auto IsOperandInvariant
= [&](MachineInstr
*MI
, unsigned Idx
) {
297 MachineOperand
&MO
= MI
->getOperand(Idx
);
298 if (!MO
.isReg() || !MO
.getReg())
301 SmallPtrSet
<MachineInstr
*, 2> Defs
;
302 RDA
.getGlobalReachingDefs(MI
, MO
.getReg(), Defs
);
306 for (auto *Def
: Defs
)
307 if (Def
->getParent() == VPT
->getParent())
312 // Check that at least one of the operands is directly predicated on a
313 // vctp and allow an invariant value too.
314 return (IsOperandPredicated(VPT
, 1) || IsOperandPredicated(VPT
, 2)) &&
315 (IsOperandPredicated(VPT
, 1) || IsOperandInvariant(VPT
, 1)) &&
316 (IsOperandPredicated(VPT
, 2) || IsOperandInvariant(VPT
, 2));
319 bool isValid(ReachingDefAnalysis
&RDA
) {
320 // All predication within the loop should be based on vctp. If the block
321 // isn't predicated on entry, check whether the vctp is within the block
322 // and that all other instructions are then predicated on it.
323 for (auto &Block
: Blocks
) {
324 if (isEntryPredicatedOnVCTP(Block
, false) &&
325 !any_of(drop_begin(Block
.getInsts()), [](const MachineInstr
*MI
) {
326 return getVPTInstrPredicate(*MI
) == ARMVCC::Else
;
329 if (hasImplicitlyValidVPT(Block
, RDA
))
332 SmallVectorImpl
<MachineInstr
*> &Insts
= Block
.getInsts();
333 // We don't know how to convert a block with just a VPT;VCTP into
334 // anything valid once we remove the VCTP. For now just bail out.
335 assert(isVPTOpcode(Insts
.front()->getOpcode()) &&
336 "Expected VPT block to start with a VPST or VPT!");
337 if (Insts
.size() == 2 && Insts
.front()->getOpcode() != ARM::MVE_VPST
&&
338 isVCTP(Insts
.back()))
341 for (auto *MI
: Insts
) {
342 // Check that any internal VCTPs are 'Then' predicated.
343 if (isVCTP(MI
) && getVPTInstrPredicate(*MI
) != ARMVCC::Then
)
345 // Skip other instructions that build up the predicate.
346 if (MI
->getOpcode() == ARM::MVE_VPST
|| isVectorPredicate(MI
))
348 // Check that any other instructions are predicated upon a vctp.
349 // TODO: We could infer when VPTs are implicitly predicated on the
350 // vctp (when the operands are predicated).
351 if (!isPredicatedOnVCTP(MI
)) {
352 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI
);
361 struct LowOverheadLoop
{
364 MachineBasicBlock
*Preheader
= nullptr;
365 MachineLoopInfo
&MLI
;
366 ReachingDefAnalysis
&RDA
;
367 const TargetRegisterInfo
&TRI
;
368 const ARMBaseInstrInfo
&TII
;
369 MachineFunction
*MF
= nullptr;
370 MachineBasicBlock::iterator StartInsertPt
;
371 MachineBasicBlock
*StartInsertBB
= nullptr;
372 MachineInstr
*Start
= nullptr;
373 MachineInstr
*Dec
= nullptr;
374 MachineInstr
*End
= nullptr;
375 MachineOperand TPNumElements
;
376 SmallVector
<MachineInstr
*, 4> VCTPs
;
377 SmallPtrSet
<MachineInstr
*, 4> ToRemove
;
378 SmallPtrSet
<MachineInstr
*, 4> BlockMasksToRecompute
;
379 SmallPtrSet
<MachineInstr
*, 4> DoubleWidthResultInstrs
;
380 SmallPtrSet
<MachineInstr
*, 4> VMOVCopies
;
382 bool CannotTailPredicate
= false;
385 LowOverheadLoop(MachineLoop
&ML
, MachineLoopInfo
&MLI
,
386 ReachingDefAnalysis
&RDA
, const TargetRegisterInfo
&TRI
,
387 const ARMBaseInstrInfo
&TII
)
388 : ML(ML
), MLI(MLI
), RDA(RDA
), TRI(TRI
), TII(TII
),
389 TPNumElements(MachineOperand::CreateImm(0)) {
390 MF
= ML
.getHeader()->getParent();
391 if (auto *MBB
= ML
.getLoopPreheader())
393 else if (auto *MBB
= MLI
.findLoopPreheader(&ML
, true, true))
397 // If this is an MVE instruction, check that we know how to use tail
398 // predication with it. Record VPT blocks and return whether the
399 // instruction is valid for tail predication.
400 bool ValidateMVEInst(MachineInstr
*MI
);
402 void AnalyseMVEInst(MachineInstr
*MI
) {
403 CannotTailPredicate
= !ValidateMVEInst(MI
);
406 bool IsTailPredicationLegal() const {
407 // For now, let's keep things really simple and only support a single
408 // block for tail predication.
409 return !Revert
&& FoundAllComponents() && !VCTPs
.empty() &&
410 !CannotTailPredicate
&& ML
.getNumBlocks() == 1;
413 // Given that MI is a VCTP, check that is equivalent to any other VCTPs
415 bool AddVCTP(MachineInstr
*MI
);
417 // Check that the predication in the loop will be equivalent once we
418 // perform the conversion. Also ensure that we can provide the number
419 // of elements to the loop start instruction.
420 bool ValidateTailPredicate();
422 // Check that any values available outside of the loop will be the same
423 // after tail predication conversion.
424 bool ValidateLiveOuts();
426 // Check the branch targets are within range and we satisfy our
428 void Validate(ARMBasicBlockUtils
*BBUtils
);
430 bool FoundAllComponents() const {
431 return Start
&& Dec
&& End
;
434 SmallVectorImpl
<VPTBlock
> &getVPTBlocks() { return VPTstate
.Blocks
; }
436 // Return the operand for the loop start instruction. This will be the loop
437 // iteration count, or the number of elements if we're tail predicating.
438 MachineOperand
&getLoopStartOperand() {
439 if (IsTailPredicationLegal())
440 return TPNumElements
;
441 return Start
->getOperand(1);
444 unsigned getStartOpcode() const {
445 bool IsDo
= isDoLoopStart(*Start
);
446 if (!IsTailPredicationLegal())
447 return IsDo
? ARM::t2DLS
: ARM::t2WLS
;
449 return VCTPOpcodeToLSTP(VCTPs
.back()->getOpcode(), IsDo
);
453 if (Start
) dbgs() << "ARM Loops: Found Loop Start: " << *Start
;
454 if (Dec
) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec
;
455 if (End
) dbgs() << "ARM Loops: Found Loop End: " << *End
;
456 if (!VCTPs
.empty()) {
457 dbgs() << "ARM Loops: Found VCTP(s):\n";
458 for (auto *MI
: VCTPs
)
459 dbgs() << " - " << *MI
;
461 if (!FoundAllComponents())
462 dbgs() << "ARM Loops: Not a low-overhead loop.\n";
463 else if (!(Start
&& Dec
&& End
))
464 dbgs() << "ARM Loops: Failed to find all loop components.\n";
468 class ARMLowOverheadLoops
: public MachineFunctionPass
{
469 MachineFunction
*MF
= nullptr;
470 MachineLoopInfo
*MLI
= nullptr;
471 ReachingDefAnalysis
*RDA
= nullptr;
472 const ARMBaseInstrInfo
*TII
= nullptr;
473 MachineRegisterInfo
*MRI
= nullptr;
474 const TargetRegisterInfo
*TRI
= nullptr;
475 std::unique_ptr
<ARMBasicBlockUtils
> BBUtils
= nullptr;
480 ARMLowOverheadLoops() : MachineFunctionPass(ID
) { }
482 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
483 AU
.setPreservesCFG();
484 AU
.addRequired
<MachineLoopInfoWrapperPass
>();
485 AU
.addRequired
<ReachingDefAnalysis
>();
486 MachineFunctionPass::getAnalysisUsage(AU
);
489 bool runOnMachineFunction(MachineFunction
&MF
) override
;
491 MachineFunctionProperties
getRequiredProperties() const override
{
492 return MachineFunctionProperties().set(
493 MachineFunctionProperties::Property::NoVRegs
).set(
494 MachineFunctionProperties::Property::TracksLiveness
);
497 StringRef
getPassName() const override
{
498 return ARM_LOW_OVERHEAD_LOOPS_NAME
;
502 bool ProcessLoop(MachineLoop
*ML
);
504 bool RevertNonLoops();
506 void RevertWhile(MachineInstr
*MI
) const;
507 void RevertDo(MachineInstr
*MI
) const;
509 bool RevertLoopDec(MachineInstr
*MI
) const;
511 void RevertLoopEnd(MachineInstr
*MI
, bool SkipCmp
= false) const;
513 void RevertLoopEndDec(MachineInstr
*MI
) const;
515 void ConvertVPTBlocks(LowOverheadLoop
&LoLoop
);
517 MachineInstr
*ExpandLoopStart(LowOverheadLoop
&LoLoop
);
519 void Expand(LowOverheadLoop
&LoLoop
);
521 void IterationCountDCE(LowOverheadLoop
&LoLoop
);
525 char ARMLowOverheadLoops::ID
= 0;
527 INITIALIZE_PASS(ARMLowOverheadLoops
, DEBUG_TYPE
, ARM_LOW_OVERHEAD_LOOPS_NAME
,
530 static bool TryRemove(MachineInstr
*MI
, ReachingDefAnalysis
&RDA
,
531 InstSet
&ToRemove
, InstSet
&Ignore
) {
533 // Check that we can remove all of Killed without having to modify any IT
535 auto WontCorruptITs
= [](InstSet
&Killed
, ReachingDefAnalysis
&RDA
) {
536 // Collect the dead code and the MBBs in which they reside.
537 SmallPtrSet
<MachineBasicBlock
*, 2> BasicBlocks
;
538 for (auto *Dead
: Killed
)
539 BasicBlocks
.insert(Dead
->getParent());
541 // Collect IT blocks in all affected basic blocks.
542 std::map
<MachineInstr
*, SmallPtrSet
<MachineInstr
*, 2>> ITBlocks
;
543 for (auto *MBB
: BasicBlocks
) {
544 for (auto &IT
: *MBB
) {
545 if (IT
.getOpcode() != ARM::t2IT
)
547 RDA
.getReachingLocalUses(&IT
, MCRegister::from(ARM::ITSTATE
),
552 // If we're removing all of the instructions within an IT block, then
553 // also remove the IT instruction.
554 SmallPtrSet
<MachineInstr
*, 2> ModifiedITs
;
555 SmallPtrSet
<MachineInstr
*, 2> RemoveITs
;
556 for (auto *Dead
: Killed
) {
557 if (MachineOperand
*MO
=
558 Dead
->findRegisterUseOperand(ARM::ITSTATE
, /*TRI=*/nullptr)) {
559 MachineInstr
*IT
= RDA
.getMIOperand(Dead
, *MO
);
560 RemoveITs
.insert(IT
);
561 auto &CurrentBlock
= ITBlocks
[IT
];
562 CurrentBlock
.erase(Dead
);
563 if (CurrentBlock
.empty())
564 ModifiedITs
.erase(IT
);
566 ModifiedITs
.insert(IT
);
569 if (!ModifiedITs
.empty())
571 Killed
.insert(RemoveITs
.begin(), RemoveITs
.end());
575 SmallPtrSet
<MachineInstr
*, 2> Uses
;
576 if (!RDA
.isSafeToRemove(MI
, Uses
, Ignore
))
579 if (WontCorruptITs(Uses
, RDA
)) {
580 ToRemove
.insert(Uses
.begin(), Uses
.end());
581 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
582 << " - can also remove:\n";
583 for (auto *Use
: Uses
)
584 dbgs() << " - " << *Use
);
586 SmallPtrSet
<MachineInstr
*, 4> Killed
;
587 RDA
.collectKilledOperands(MI
, Killed
);
588 if (WontCorruptITs(Killed
, RDA
)) {
589 ToRemove
.insert(Killed
.begin(), Killed
.end());
590 LLVM_DEBUG(for (auto *Dead
: Killed
)
591 dbgs() << " - " << *Dead
);
598 bool LowOverheadLoop::ValidateTailPredicate() {
599 if (!IsTailPredicationLegal()) {
600 LLVM_DEBUG(if (VCTPs
.empty())
601 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
602 dbgs() << "ARM Loops: Tail-predication is not valid.\n");
606 assert(!VCTPs
.empty() && "VCTP instruction expected but is not set");
607 assert(ML
.getBlocks().size() == 1 &&
608 "Shouldn't be processing a loop with more than one block");
610 if (DisableTailPredication
) {
611 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
615 if (!VPTstate
.isValid(RDA
)) {
616 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
620 if (!ValidateLiveOuts()) {
621 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
625 // For tail predication, we need to provide the number of elements, instead
626 // of the iteration count, to the loop start instruction. The number of
627 // elements is provided to the vctp instruction, so we need to check that
628 // we can use this register at InsertPt.
629 MachineInstr
*VCTP
= VCTPs
.back();
630 if (Start
->getOpcode() == ARM::t2DoLoopStartTP
||
631 Start
->getOpcode() == ARM::t2WhileLoopStartTP
) {
632 TPNumElements
= Start
->getOperand(2);
633 StartInsertPt
= Start
;
634 StartInsertBB
= Start
->getParent();
636 TPNumElements
= VCTP
->getOperand(1);
637 MCRegister NumElements
= TPNumElements
.getReg().asMCReg();
639 // If the register is defined within loop, then we can't perform TP.
640 // TODO: Check whether this is just a mov of a register that would be
642 if (RDA
.hasLocalDefBefore(VCTP
, NumElements
)) {
643 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
647 // The element count register maybe defined after InsertPt, in which case we
648 // need to try to move either InsertPt or the def so that the [w|d]lstp can
651 if (StartInsertPt
!= StartInsertBB
->end() &&
652 !RDA
.isReachingDefLiveOut(&*StartInsertPt
, NumElements
)) {
654 RDA
.getLocalLiveOutMIDef(StartInsertBB
, NumElements
)) {
655 if (RDA
.isSafeToMoveForwards(ElemDef
, &*StartInsertPt
)) {
656 ElemDef
->removeFromParent();
657 StartInsertBB
->insert(StartInsertPt
, ElemDef
);
659 << "ARM Loops: Moved element count def: " << *ElemDef
);
660 } else if (RDA
.isSafeToMoveBackwards(&*StartInsertPt
, ElemDef
)) {
661 StartInsertPt
->removeFromParent();
662 StartInsertBB
->insertAfter(MachineBasicBlock::iterator(ElemDef
),
664 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef
);
666 // If we fail to move an instruction and the element count is provided
667 // by a mov, use the mov operand if it will have the same value at the
669 MachineOperand Operand
= ElemDef
->getOperand(1);
670 if (isMovRegOpcode(ElemDef
->getOpcode()) &&
671 RDA
.getUniqueReachingMIDef(ElemDef
, Operand
.getReg().asMCReg()) ==
672 RDA
.getUniqueReachingMIDef(&*StartInsertPt
,
673 Operand
.getReg().asMCReg())) {
674 TPNumElements
= Operand
;
675 NumElements
= TPNumElements
.getReg();
678 << "ARM Loops: Unable to move element count to loop "
679 << "start instruction.\n");
686 // Especially in the case of while loops, InsertBB may not be the
687 // preheader, so we need to check that the register isn't redefined
688 // before entering the loop.
689 auto CannotProvideElements
= [this](MachineBasicBlock
*MBB
,
690 MCRegister NumElements
) {
693 // NumElements is redefined in this block.
694 if (RDA
.hasLocalDefBefore(&MBB
->back(), NumElements
))
697 // Don't continue searching up through multiple predecessors.
698 if (MBB
->pred_size() > 1)
704 // Search backwards for a def, until we get to InsertBB.
705 MachineBasicBlock
*MBB
= Preheader
;
706 while (MBB
&& MBB
!= StartInsertBB
) {
707 if (CannotProvideElements(MBB
, NumElements
)) {
708 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
711 MBB
= *MBB
->pred_begin();
715 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
716 // world the [w|d]lstp instruction would be last instruction in the preheader
717 // and so it would only affect instructions within the loop body. But due to
718 // scheduling, and/or the logic in this pass (above), the insertion point can
719 // be moved earlier. So if the Loop Start isn't the last instruction in the
720 // preheader, and if the initial element count is smaller than the vector
721 // width, the Loop Start instruction will immediately generate one or more
722 // false lane mask which can, incorrectly, affect the proceeding MVE
723 // instructions in the preheader.
724 if (std::any_of(StartInsertPt
, StartInsertBB
->end(), shouldInspect
)) {
725 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
729 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they
730 // need to compute an output size that is smaller than the VCTP mask operates
731 // on. The VecSize of the DoubleWidthResult is the larger vector size - the
732 // size it extends into, so any VCTP VecSize <= is valid.
733 unsigned VCTPVecSize
= getVecSize(*VCTP
);
734 for (MachineInstr
*MI
: DoubleWidthResultInstrs
) {
735 unsigned InstrVecSize
= getVecSize(*MI
);
736 if (InstrVecSize
> VCTPVecSize
) {
737 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP "
738 << "VecSize:\n" << *MI
);
743 // Check that the value change of the element count is what we expect and
744 // that the predication will be equivalent. For this we need:
745 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
746 // and we can also allow register copies within the chain too.
747 auto IsValidSub
= [](MachineInstr
*MI
, int ExpectedVecWidth
) {
748 return -getAddSubImmediate(*MI
) == ExpectedVecWidth
;
751 MachineBasicBlock
*MBB
= VCTP
->getParent();
752 // Remove modifications to the element count since they have no purpose in a
753 // tail predicated loop. Explicitly refer to the vctp operand no matter which
754 // register NumElements has been assigned to, since that is what the
755 // modifications will be using
756 if (auto *Def
= RDA
.getUniqueReachingMIDef(
757 &MBB
->back(), VCTP
->getOperand(1).getReg().asMCReg())) {
758 SmallPtrSet
<MachineInstr
*, 2> ElementChain
;
759 SmallPtrSet
<MachineInstr
*, 2> Ignore
;
760 unsigned ExpectedVectorWidth
= getTailPredVectorWidth(VCTP
->getOpcode());
762 Ignore
.insert(VCTPs
.begin(), VCTPs
.end());
764 if (TryRemove(Def
, RDA
, ElementChain
, Ignore
)) {
765 bool FoundSub
= false;
767 for (auto *MI
: ElementChain
) {
768 if (isMovRegOpcode(MI
->getOpcode()))
771 if (isSubImmOpcode(MI
->getOpcode())) {
772 if (FoundSub
|| !IsValidSub(MI
, ExpectedVectorWidth
)) {
773 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
779 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
784 ToRemove
.insert(ElementChain
.begin(), ElementChain
.end());
788 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we
789 // can also remove any extra instructions in the preheader, which often
790 // includes a now unused MOV.
791 if ((Start
->getOpcode() == ARM::t2DoLoopStartTP
||
792 Start
->getOpcode() == ARM::t2WhileLoopStartTP
) &&
793 Preheader
&& !Preheader
->empty() &&
794 !RDA
.hasLocalDefBefore(VCTP
, VCTP
->getOperand(1).getReg())) {
795 if (auto *Def
= RDA
.getUniqueReachingMIDef(
796 &Preheader
->back(), VCTP
->getOperand(1).getReg().asMCReg())) {
797 SmallPtrSet
<MachineInstr
*, 2> Ignore
;
798 Ignore
.insert(VCTPs
.begin(), VCTPs
.end());
799 TryRemove(Def
, RDA
, ToRemove
, Ignore
);
806 static bool isRegInClass(const MachineOperand
&MO
,
807 const TargetRegisterClass
*Class
) {
808 return MO
.isReg() && MO
.getReg() && Class
->contains(MO
.getReg());
811 // MVE 'narrowing' operate on half a lane, reading from half and writing
812 // to half, which are referred to has the top and bottom half. The other
813 // half retains its previous value.
814 static bool retainsPreviousHalfElement(const MachineInstr
&MI
) {
815 const MCInstrDesc
&MCID
= MI
.getDesc();
816 uint64_t Flags
= MCID
.TSFlags
;
817 return (Flags
& ARMII::RetainsPreviousHalfElement
) != 0;
820 // Some MVE instructions read from the top/bottom halves of their operand(s)
821 // and generate a vector result with result elements that are double the
822 // width of the input.
823 static bool producesDoubleWidthResult(const MachineInstr
&MI
) {
824 const MCInstrDesc
&MCID
= MI
.getDesc();
825 uint64_t Flags
= MCID
.TSFlags
;
826 return (Flags
& ARMII::DoubleWidthResult
) != 0;
829 // Can this instruction generate a non-zero result when given only zeroed
830 // operands? This allows us to know that, given operands with false bytes
831 // zeroed by masked loads, that the result will also contain zeros in those
833 static bool canGenerateNonZeros(const MachineInstr
&MI
) {
835 // Check for instructions which can write into a larger element size,
836 // possibly writing into a previous zero'd lane.
837 if (producesDoubleWidthResult(MI
))
840 switch (MI
.getOpcode()) {
843 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
844 // fp16 -> fp32 vector conversions.
845 // Instructions that perform a NOT will generate 1s from 0s.
848 // Count leading zeros will do just that!
849 case ARM::MVE_VCLZs8
:
850 case ARM::MVE_VCLZs16
:
851 case ARM::MVE_VCLZs32
:
857 // Look at its register uses to see if it only can only receive zeros
858 // into its false lanes which would then produce zeros. Also check that
859 // the output register is also defined by an FalseLanesZero instruction
860 // so that if tail-predication happens, the lanes that aren't updated will
862 static bool producesFalseLanesZero(MachineInstr
&MI
,
863 const TargetRegisterClass
*QPRs
,
864 const ReachingDefAnalysis
&RDA
,
865 InstSet
&FalseLanesZero
) {
866 if (canGenerateNonZeros(MI
))
869 bool isPredicated
= isVectorPredicated(&MI
);
870 // Predicated loads will write zeros to the falsely predicated bytes of the
871 // destination register.
875 auto IsZeroInit
= [](MachineInstr
*Def
) {
876 return !isVectorPredicated(Def
) &&
877 Def
->getOpcode() == ARM::MVE_VMOVimmi32
&&
878 Def
->getOperand(1).getImm() == 0;
881 bool AllowScalars
= isHorizontalReduction(MI
);
882 for (auto &MO
: MI
.operands()) {
883 if (!MO
.isReg() || !MO
.getReg())
885 if (!isRegInClass(MO
, QPRs
) && AllowScalars
)
887 // Skip the lr predicate reg
888 int PIdx
= llvm::findFirstVPTPredOperandIdx(MI
);
889 if (PIdx
!= -1 && (int)MO
.getOperandNo() == PIdx
+ 2)
892 // Check that this instruction will produce zeros in its false lanes:
893 // - If it only consumes false lanes zero or constant 0 (vmov #0)
894 // - If it's predicated, it only matters that it's def register already has
895 // false lane zeros, so we can ignore the uses.
896 SmallPtrSet
<MachineInstr
*, 2> Defs
;
897 RDA
.getGlobalReachingDefs(&MI
, MO
.getReg(), Defs
);
900 for (auto *Def
: Defs
) {
901 if (Def
== &MI
|| FalseLanesZero
.count(Def
) || IsZeroInit(Def
))
903 if (MO
.isUse() && isPredicated
)
908 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI
);
912 bool LowOverheadLoop::ValidateLiveOuts() {
913 // We want to find out if the tail-predicated version of this loop will
914 // produce the same values as the loop in its original form. For this to
915 // be true, the newly inserted implicit predication must not change the
916 // the (observable) results.
917 // We're doing this because many instructions in the loop will not be
918 // predicated and so the conversion from VPT predication to tail-predication
919 // can result in different values being produced; due to the tail-predication
920 // preventing many instructions from updating their falsely predicated
921 // lanes. This analysis assumes that all the instructions perform lane-wise
922 // operations and don't perform any exchanges.
923 // A masked load, whether through VPT or tail predication, will write zeros
924 // to any of the falsely predicated bytes. So, from the loads, we know that
925 // the false lanes are zeroed and here we're trying to track that those false
926 // lanes remain zero, or where they change, the differences are masked away
928 // All MVE stores have to be predicated, so we know that any predicate load
929 // operands, or stored results are equivalent already. Other explicitly
930 // predicated instructions will perform the same operation in the original
931 // loop and the tail-predicated form too. Because of this, we can insert
932 // loads, stores and other predicated instructions into our Predicated
933 // set and build from there.
934 const TargetRegisterClass
*QPRs
= TRI
.getRegClass(ARM::MQPRRegClassID
);
935 SetVector
<MachineInstr
*> FalseLanesUnknown
;
936 SmallPtrSet
<MachineInstr
*, 4> FalseLanesZero
;
937 SmallPtrSet
<MachineInstr
*, 4> Predicated
;
938 MachineBasicBlock
*Header
= ML
.getHeader();
940 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n");
942 for (auto &MI
: *Header
) {
943 if (!shouldInspect(MI
))
946 if (isVCTP(&MI
) || isVPTOpcode(MI
.getOpcode()))
949 bool isPredicated
= isVectorPredicated(&MI
);
950 bool retainsOrReduces
=
951 retainsPreviousHalfElement(MI
) || isHorizontalReduction(MI
);
954 Predicated
.insert(&MI
);
955 if (producesFalseLanesZero(MI
, QPRs
, RDA
, FalseLanesZero
))
956 FalseLanesZero
.insert(&MI
);
957 else if (MI
.getNumDefs() == 0)
959 else if (!isPredicated
&& retainsOrReduces
) {
960 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI
);
962 } else if (!isPredicated
&& MI
.getOpcode() != ARM::MQPRCopy
)
963 FalseLanesUnknown
.insert(&MI
);
967 dbgs() << " Predicated:\n";
968 for (auto *I
: Predicated
)
970 dbgs() << " FalseLanesZero:\n";
971 for (auto *I
: FalseLanesZero
)
973 dbgs() << " FalseLanesUnknown:\n";
974 for (auto *I
: FalseLanesUnknown
)
978 auto HasPredicatedUsers
= [this](MachineInstr
*MI
, const MachineOperand
&MO
,
979 SmallPtrSetImpl
<MachineInstr
*> &Predicated
) {
980 SmallPtrSet
<MachineInstr
*, 2> Uses
;
981 RDA
.getGlobalUses(MI
, MO
.getReg().asMCReg(), Uses
);
982 for (auto *Use
: Uses
) {
983 if (Use
!= MI
&& !Predicated
.count(Use
))
989 // Visit the unknowns in reverse so that we can start at the values being
990 // stored and then we can work towards the leaves, hopefully adding more
991 // instructions to Predicated. Successfully terminating the loop means that
992 // all the unknown values have to found to be masked by predicated user(s).
993 // For any unpredicated values, we store them in NonPredicated so that we
994 // can later check whether these form a reduction.
995 SmallPtrSet
<MachineInstr
*, 2> NonPredicated
;
996 for (auto *MI
: reverse(FalseLanesUnknown
)) {
997 for (auto &MO
: MI
->operands()) {
998 if (!isRegInClass(MO
, QPRs
) || !MO
.isDef())
1000 if (!HasPredicatedUsers(MI
, MO
, Predicated
)) {
1001 LLVM_DEBUG(dbgs() << " Found an unknown def of : "
1002 << TRI
.getRegAsmName(MO
.getReg()) << " at " << *MI
);
1003 NonPredicated
.insert(MI
);
1007 // Any unknown false lanes have been masked away by the user(s).
1008 if (!NonPredicated
.contains(MI
))
1009 Predicated
.insert(MI
);
1012 SmallPtrSet
<MachineInstr
*, 2> LiveOutMIs
;
1013 SmallVector
<MachineBasicBlock
*, 2> ExitBlocks
;
1014 ML
.getExitBlocks(ExitBlocks
);
1015 assert(ML
.getNumBlocks() == 1 && "Expected single block loop!");
1016 assert(ExitBlocks
.size() == 1 && "Expected a single exit block");
1017 MachineBasicBlock
*ExitBB
= ExitBlocks
.front();
1018 for (const MachineBasicBlock::RegisterMaskPair
&RegMask
: ExitBB
->liveins()) {
1019 // TODO: Instead of blocking predication, we could move the vctp to the exit
1020 // block and calculate it's operand there in or the preheader.
1021 if (RegMask
.PhysReg
== ARM::VPR
) {
1022 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block.");
1025 // Check Q-regs that are live in the exit blocks. We don't collect scalars
1026 // because they won't be affected by lane predication.
1027 if (QPRs
->contains(RegMask
.PhysReg
))
1028 if (auto *MI
= RDA
.getLocalLiveOutMIDef(Header
, RegMask
.PhysReg
))
1029 LiveOutMIs
.insert(MI
);
1032 // We've already validated that any VPT predication within the loop will be
1033 // equivalent when we perform the predication transformation; so we know that
1034 // any VPT predicated instruction is predicated upon VCTP. Any live-out
1035 // instruction needs to be predicated, so check this here. The instructions
1036 // in NonPredicated have been found to be a reduction that we can ensure its
1037 // legality. Any MQPRCopy found will need to validate its input as if it was
1039 SmallVector
<MachineInstr
*> Worklist(LiveOutMIs
.begin(), LiveOutMIs
.end());
1040 while (!Worklist
.empty()) {
1041 MachineInstr
*MI
= Worklist
.pop_back_val();
1042 if (MI
->getOpcode() == ARM::MQPRCopy
) {
1043 VMOVCopies
.insert(MI
);
1044 MachineInstr
*CopySrc
=
1045 RDA
.getUniqueReachingMIDef(MI
, MI
->getOperand(1).getReg());
1047 Worklist
.push_back(CopySrc
);
1048 } else if (NonPredicated
.count(MI
) && FalseLanesUnknown
.contains(MI
)) {
1049 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI
);
1058 void LowOverheadLoop::Validate(ARMBasicBlockUtils
*BBUtils
) {
1062 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1063 // can only jump back.
1064 auto ValidateRanges
= [](MachineInstr
*Start
, MachineInstr
*End
,
1065 ARMBasicBlockUtils
*BBUtils
, MachineLoop
&ML
) {
1066 MachineBasicBlock
*TgtBB
= End
->getOpcode() == ARM::t2LoopEnd
1067 ? End
->getOperand(1).getMBB()
1068 : End
->getOperand(2).getMBB();
1069 // TODO Maybe there's cases where the target doesn't have to be the header,
1070 // but for now be safe and revert.
1071 if (TgtBB
!= ML
.getHeader()) {
1072 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1076 // The WLS and LE instructions have 12-bits for the label offset. WLS
1077 // requires a positive offset, while LE uses negative.
1078 if (BBUtils
->getOffsetOf(End
) < BBUtils
->getOffsetOf(ML
.getHeader()) ||
1079 !BBUtils
->isBBInRange(End
, ML
.getHeader(), 4094)) {
1080 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1084 if (isWhileLoopStart(*Start
)) {
1085 MachineBasicBlock
*TargetBB
= getWhileLoopStartTargetBB(*Start
);
1086 if (BBUtils
->getOffsetOf(Start
) > BBUtils
->getOffsetOf(TargetBB
) ||
1087 !BBUtils
->isBBInRange(Start
, TargetBB
, 4094)) {
1088 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1095 StartInsertPt
= MachineBasicBlock::iterator(Start
);
1096 StartInsertBB
= Start
->getParent();
1097 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1100 Revert
= !ValidateRanges(Start
, End
, BBUtils
, ML
);
1101 CannotTailPredicate
= !ValidateTailPredicate();
1104 bool LowOverheadLoop::AddVCTP(MachineInstr
*MI
) {
1105 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI
);
1106 if (VCTPs
.empty()) {
1107 VCTPs
.push_back(MI
);
1111 // If we find another VCTP, check whether it uses the same value as the main VCTP.
1112 // If it does, store it in the VCTPs set, else refuse it.
1113 MachineInstr
*Prev
= VCTPs
.back();
1114 if (!Prev
->getOperand(1).isIdenticalTo(MI
->getOperand(1)) ||
1115 !RDA
.hasSameReachingDef(Prev
, MI
, MI
->getOperand(1).getReg().asMCReg())) {
1116 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1117 "definition from the main VCTP");
1120 VCTPs
.push_back(MI
);
1124 static bool ValidateMVEStore(MachineInstr
*MI
, MachineLoop
*ML
) {
1126 auto GetFrameIndex
= [](MachineMemOperand
*Operand
) {
1127 const PseudoSourceValue
*PseudoValue
= Operand
->getPseudoValue();
1128 if (PseudoValue
&& PseudoValue
->kind() == PseudoSourceValue::FixedStack
) {
1129 if (const auto *FS
= dyn_cast
<FixedStackPseudoSourceValue
>(PseudoValue
)) {
1130 return FS
->getFrameIndex();
1136 auto IsStackOp
= [GetFrameIndex
](MachineInstr
*I
) {
1137 switch (I
->getOpcode()) {
1138 case ARM::MVE_VSTRWU32
:
1139 case ARM::MVE_VLDRWU32
: {
1140 return I
->getOperand(1).getReg() == ARM::SP
&&
1141 I
->memoperands().size() == 1 &&
1142 GetFrameIndex(I
->memoperands().front()) >= 0;
1149 // An unpredicated vector register spill is allowed if all of the uses of the
1150 // stack slot are within the loop
1151 if (MI
->getOpcode() != ARM::MVE_VSTRWU32
|| !IsStackOp(MI
))
1154 // Search all blocks after the loop for accesses to the same stack slot.
1155 // ReachingDefAnalysis doesn't work for sp as it relies on registers being
1156 // live-out (which sp never is) to know what blocks to look in
1157 if (MI
->memoperands().size() == 0)
1159 int FI
= GetFrameIndex(MI
->memoperands().front());
1161 auto &FrameInfo
= MI
->getParent()->getParent()->getFrameInfo();
1162 if (FI
== -1 || !FrameInfo
.isSpillSlotObjectIndex(FI
))
1165 SmallVector
<MachineBasicBlock
*> Frontier
;
1166 ML
->getExitBlocks(Frontier
);
1167 SmallPtrSet
<MachineBasicBlock
*, 4> Visited
{MI
->getParent()};
1169 while (Idx
< Frontier
.size()) {
1170 MachineBasicBlock
*BB
= Frontier
[Idx
];
1171 bool LookAtSuccessors
= true;
1172 for (auto &I
: *BB
) {
1173 if (!IsStackOp(&I
) || I
.memoperands().size() == 0)
1175 if (GetFrameIndex(I
.memoperands().front()) != FI
)
1177 // If this block has a store to the stack slot before any loads then we
1178 // can ignore the block
1179 if (I
.getOpcode() == ARM::MVE_VSTRWU32
) {
1180 LookAtSuccessors
= false;
1183 // If the store and the load are using the same stack slot then the
1184 // store isn't valid for tail predication
1185 if (I
.getOpcode() == ARM::MVE_VLDRWU32
)
1189 if (LookAtSuccessors
) {
1190 for (auto *Succ
: BB
->successors()) {
1191 if (!Visited
.contains(Succ
) && !is_contained(Frontier
, Succ
))
1192 Frontier
.push_back(Succ
);
1202 bool LowOverheadLoop::ValidateMVEInst(MachineInstr
*MI
) {
1203 if (CannotTailPredicate
)
1206 if (!shouldInspect(*MI
))
1209 if (MI
->getOpcode() == ARM::MVE_VPSEL
||
1210 MI
->getOpcode() == ARM::MVE_VPNOT
) {
1211 // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1212 // 1) It will use the VPR as a predicate operand, but doesn't have to be
1213 // instead a VPT block, which means we can assert while building up
1214 // the VPT block because we don't find another VPT or VPST to being a new
1216 // 2) VPSEL still requires a VPR operand even after tail predicating,
1217 // which means we can't remove it unless there is another
1218 // instruction, such as vcmp, that can provide the VPR def.
1222 // Record all VCTPs and check that they're equivalent to one another.
1223 if (isVCTP(MI
) && !AddVCTP(MI
))
1226 // Inspect uses first so that any instructions that alter the VPR don't
1227 // alter the predicate upon themselves.
1228 const MCInstrDesc
&MCID
= MI
->getDesc();
1230 unsigned LastOpIdx
= MI
->getNumOperands() - 1;
1231 for (const auto &Op
: enumerate(reverse(MCID
.operands()))) {
1232 const MachineOperand
&MO
= MI
->getOperand(LastOpIdx
- Op
.index());
1233 if (!MO
.isReg() || !MO
.isUse() || MO
.getReg() != ARM::VPR
)
1236 if (ARM::isVpred(Op
.value().OperandType
)) {
1237 VPTstate
.addInst(MI
);
1239 } else if (MI
->getOpcode() != ARM::MVE_VPST
) {
1240 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI
);
1245 // If we find an instruction that has been marked as not valid for tail
1246 // predication, only allow the instruction if it's contained within a valid
1248 bool RequiresExplicitPredication
=
1249 (MCID
.TSFlags
& ARMII::ValidForTailPredication
) == 0;
1250 if (isDomainMVE(MI
) && RequiresExplicitPredication
) {
1251 if (MI
->getOpcode() == ARM::MQPRCopy
)
1253 if (!IsUse
&& producesDoubleWidthResult(*MI
)) {
1254 DoubleWidthResultInstrs
.insert(MI
);
1258 LLVM_DEBUG(if (!IsUse
) dbgs()
1259 << "ARM Loops: Can't tail predicate: " << *MI
);
1263 // If the instruction is already explicitly predicated, then the conversion
1264 // will be fine, but ensure that all store operations are predicated.
1265 if (MI
->mayStore() && !ValidateMVEStore(MI
, &ML
))
1268 // If this instruction defines the VPR, update the predicate for the
1269 // proceeding instructions.
1270 if (isVectorPredicate(MI
)) {
1271 // Clear the existing predicate when we're not in VPT Active state,
1272 // otherwise we add to it.
1273 if (!isVectorPredicated(MI
))
1274 VPTstate
.resetPredicate(MI
);
1276 VPTstate
.addPredicate(MI
);
1279 // Finally once the predicate has been modified, we can start a new VPT
1280 // block if necessary.
1281 if (isVPTOpcode(MI
->getOpcode()))
1282 VPTstate
.CreateVPTBlock(MI
);
1287 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction
&mf
) {
1288 const ARMSubtarget
&ST
= mf
.getSubtarget
<ARMSubtarget
>();
1293 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF
->getName() << " ------------- \n");
1295 MLI
= &getAnalysis
<MachineLoopInfoWrapperPass
>().getLI();
1296 RDA
= &getAnalysis
<ReachingDefAnalysis
>();
1297 MF
->getProperties().set(MachineFunctionProperties::Property::TracksLiveness
);
1298 MRI
= &MF
->getRegInfo();
1299 TII
= static_cast<const ARMBaseInstrInfo
*>(ST
.getInstrInfo());
1300 TRI
= ST
.getRegisterInfo();
1301 BBUtils
= std::make_unique
<ARMBasicBlockUtils
>(*MF
);
1302 BBUtils
->computeAllBlockSizes();
1303 BBUtils
->adjustBBOffsetsAfter(&MF
->front());
1305 bool Changed
= false;
1306 for (auto *ML
: *MLI
) {
1307 if (ML
->isOutermost())
1308 Changed
|= ProcessLoop(ML
);
1310 Changed
|= RevertNonLoops();
1314 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop
*ML
) {
1315 bool Changed
= false;
1317 // Process inner loops first.
1318 for (MachineLoop
*L
: *ML
)
1319 Changed
|= ProcessLoop(L
);
1322 dbgs() << "ARM Loops: Processing loop containing:\n";
1323 if (auto *Preheader
= ML
->getLoopPreheader())
1324 dbgs() << " - Preheader: " << printMBBReference(*Preheader
) << "\n";
1325 else if (auto *Preheader
= MLI
->findLoopPreheader(ML
, true, true))
1326 dbgs() << " - Preheader: " << printMBBReference(*Preheader
) << "\n";
1327 for (auto *MBB
: ML
->getBlocks())
1328 dbgs() << " - Block: " << printMBBReference(*MBB
) << "\n";
1331 // Search the given block for a loop start instruction. If one isn't found,
1332 // and there's only one predecessor block, search that one too.
1333 std::function
<MachineInstr
*(MachineBasicBlock
*)> SearchForStart
=
1334 [&SearchForStart
](MachineBasicBlock
*MBB
) -> MachineInstr
* {
1335 for (auto &MI
: *MBB
) {
1336 if (isLoopStart(MI
))
1339 if (MBB
->pred_size() == 1)
1340 return SearchForStart(*MBB
->pred_begin());
1344 LowOverheadLoop
LoLoop(*ML
, *MLI
, *RDA
, *TRI
, *TII
);
1345 // Search the preheader for the start intrinsic.
1346 // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1347 // with potentially multiple set.loop.iterations, so we need to enable this.
1348 if (LoLoop
.Preheader
)
1349 LoLoop
.Start
= SearchForStart(LoLoop
.Preheader
);
1353 // Find the low-overhead loop components and decide whether or not to fall
1354 // back to a normal loop. Also look for a vctp instructions and decide
1355 // whether we can convert that predicate using tail predication.
1356 for (auto *MBB
: reverse(ML
->getBlocks())) {
1357 for (auto &MI
: *MBB
) {
1358 if (MI
.isDebugValue())
1360 else if (MI
.getOpcode() == ARM::t2LoopDec
)
1362 else if (MI
.getOpcode() == ARM::t2LoopEnd
)
1364 else if (MI
.getOpcode() == ARM::t2LoopEndDec
)
1365 LoLoop
.End
= LoLoop
.Dec
= &MI
;
1366 else if (isLoopStart(MI
))
1368 else if (MI
.getDesc().isCall()) {
1369 // TODO: Though the call will require LE to execute again, does this
1370 // mean we should revert? Always executing LE hopefully should be
1371 // faster than performing a sub,cmp,br or even subs,br.
1372 LoLoop
.Revert
= true;
1373 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1375 // Record VPR defs and build up their corresponding vpt blocks.
1376 // Check we know how to tail predicate any mve instructions.
1377 LoLoop
.AnalyseMVEInst(&MI
);
1382 LLVM_DEBUG(LoLoop
.dump());
1383 if (!LoLoop
.FoundAllComponents()) {
1384 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1388 assert(LoLoop
.Start
->getOpcode() != ARM::t2WhileLoopStart
&&
1389 "Expected t2WhileLoopStart to be removed before regalloc!");
1391 // Check that the only instruction using LoopDec is LoopEnd. This can only
1392 // happen when the Dec and End are separate, not a single t2LoopEndDec.
1393 // TODO: Check for copy chains that really have no effect.
1394 if (LoLoop
.Dec
!= LoLoop
.End
) {
1395 SmallPtrSet
<MachineInstr
*, 2> Uses
;
1396 RDA
->getReachingLocalUses(LoLoop
.Dec
, MCRegister::from(ARM::LR
), Uses
);
1397 if (Uses
.size() > 1 || !Uses
.count(LoLoop
.End
)) {
1398 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1399 LoLoop
.Revert
= true;
1402 LoLoop
.Validate(BBUtils
.get());
1407 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1408 // beq that branches to the exit branch.
1409 // TODO: We could also try to generate a cbz if the value in LR is also in
1410 // another low register.
1411 void ARMLowOverheadLoops::RevertWhile(MachineInstr
*MI
) const {
1412 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI
);
1413 MachineBasicBlock
*DestBB
= getWhileLoopStartTargetBB(*MI
);
1414 unsigned BrOpc
= BBUtils
->isBBInRange(MI
, DestBB
, 254) ?
1415 ARM::tBcc
: ARM::t2Bcc
;
1417 RevertWhileLoopStartLR(MI
, TII
, BrOpc
);
1420 void ARMLowOverheadLoops::RevertDo(MachineInstr
*MI
) const {
1421 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI
);
1422 RevertDoLoopStart(MI
, TII
);
1425 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr
*MI
) const {
1426 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI
);
1427 MachineBasicBlock
*MBB
= MI
->getParent();
1428 SmallPtrSet
<MachineInstr
*, 1> Ignore
;
1429 for (auto I
= MachineBasicBlock::iterator(MI
), E
= MBB
->end(); I
!= E
; ++I
) {
1430 if (I
->getOpcode() == ARM::t2LoopEnd
) {
1436 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1438 RDA
->isSafeToDefRegAt(MI
, MCRegister::from(ARM::CPSR
), Ignore
);
1440 llvm::RevertLoopDec(MI
, TII
, SetFlags
);
1444 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1445 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr
*MI
, bool SkipCmp
) const {
1446 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI
);
1448 MachineBasicBlock
*DestBB
= MI
->getOperand(1).getMBB();
1449 unsigned BrOpc
= BBUtils
->isBBInRange(MI
, DestBB
, 254) ?
1450 ARM::tBcc
: ARM::t2Bcc
;
1452 llvm::RevertLoopEnd(MI
, TII
, BrOpc
, SkipCmp
);
1455 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1456 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr
*MI
) const {
1457 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI
);
1458 assert(MI
->getOpcode() == ARM::t2LoopEndDec
&& "Expected a t2LoopEndDec!");
1459 MachineBasicBlock
*MBB
= MI
->getParent();
1461 MachineInstrBuilder MIB
=
1462 BuildMI(*MBB
, MI
, MI
->getDebugLoc(), TII
->get(ARM::t2SUBri
));
1463 MIB
.addDef(ARM::LR
);
1464 MIB
.add(MI
->getOperand(1));
1466 MIB
.addImm(ARMCC::AL
);
1467 MIB
.addReg(ARM::NoRegister
);
1468 MIB
.addReg(ARM::CPSR
);
1469 MIB
->getOperand(5).setIsDef(true);
1471 MachineBasicBlock
*DestBB
= MI
->getOperand(2).getMBB();
1473 BBUtils
->isBBInRange(MI
, DestBB
, 254) ? ARM::tBcc
: ARM::t2Bcc
;
1476 MIB
= BuildMI(*MBB
, MI
, MI
->getDebugLoc(), TII
->get(BrOpc
));
1477 MIB
.add(MI
->getOperand(2)); // branch target
1478 MIB
.addImm(ARMCC::NE
); // condition code
1479 MIB
.addReg(ARM::CPSR
);
1481 MI
->eraseFromParent();
1484 // Perform dead code elimation on the loop iteration count setup expression.
1485 // If we are tail-predicating, the number of elements to be processed is the
1486 // operand of the VCTP instruction in the vector body, see getCount(), which is
1487 // register $r3 in this example:
1489 // $lr = big-itercount-expression
1491 // $lr = t2DoLoopStart renamable $lr
1494 // $vpr = MVE_VCTP32 renamable $r3
1495 // renamable $lr = t2LoopDec killed renamable $lr, 1
1496 // t2LoopEnd renamable $lr, %vector.body
1499 // What we would like achieve here is to replace the do-loop start pseudo
1500 // instruction t2DoLoopStart with:
1502 // $lr = MVE_DLSTP_32 killed renamable $r3
1504 // Thus, $r3 which defines the number of elements, is written to $lr,
1505 // and then we want to delete the whole chain that used to define $lr,
1506 // see the comment below how this chain could look like.
1508 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop
&LoLoop
) {
1509 if (!LoLoop
.IsTailPredicationLegal())
1512 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1514 MachineInstr
*Def
= RDA
->getMIOperand(LoLoop
.Start
, 1);
1516 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1520 // Collect and remove the users of iteration count.
1521 SmallPtrSet
<MachineInstr
*, 4> Killed
= { LoLoop
.Start
, LoLoop
.Dec
,
1523 if (!TryRemove(Def
, *RDA
, LoLoop
.ToRemove
, Killed
))
1524 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1527 MachineInstr
* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop
&LoLoop
) {
1528 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1529 // When using tail-predication, try to delete the dead code that was used to
1530 // calculate the number of loop iterations.
1531 IterationCountDCE(LoLoop
);
1533 MachineBasicBlock::iterator InsertPt
= LoLoop
.StartInsertPt
;
1534 MachineInstr
*Start
= LoLoop
.Start
;
1535 MachineBasicBlock
*MBB
= LoLoop
.StartInsertBB
;
1536 unsigned Opc
= LoLoop
.getStartOpcode();
1537 MachineOperand
&Count
= LoLoop
.getLoopStartOperand();
1539 // A DLS lr, lr we needn't emit
1540 MachineInstr
* NewStart
;
1541 if (!DisableOmitDLS
&& Opc
== ARM::t2DLS
&& Count
.isReg() &&
1542 Count
.getReg() == ARM::LR
) {
1543 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1546 MachineInstrBuilder MIB
=
1547 BuildMI(*MBB
, InsertPt
, Start
->getDebugLoc(), TII
->get(Opc
));
1549 MIB
.addDef(ARM::LR
);
1551 if (isWhileLoopStart(*Start
))
1552 MIB
.addMBB(getWhileLoopStartTargetBB(*Start
));
1554 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB
);
1558 LoLoop
.ToRemove
.insert(Start
);
1562 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop
&LoLoop
) {
1563 auto RemovePredicate
= [](MachineInstr
*MI
) {
1564 if (MI
->isDebugInstr())
1566 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI
);
1567 int PIdx
= llvm::findFirstVPTPredOperandIdx(*MI
);
1568 assert(PIdx
>= 1 && "Trying to unpredicate a non-predicated instruction");
1569 assert(MI
->getOperand(PIdx
).getImm() == ARMVCC::Then
&&
1570 "Expected Then predicate!");
1571 MI
->getOperand(PIdx
).setImm(ARMVCC::None
);
1572 MI
->getOperand(PIdx
+ 1).setReg(0);
1575 for (auto &Block
: LoLoop
.getVPTBlocks()) {
1576 SmallVectorImpl
<MachineInstr
*> &Insts
= Block
.getInsts();
1578 auto ReplaceVCMPWithVPT
= [&](MachineInstr
*&TheVCMP
, MachineInstr
*At
) {
1579 assert(TheVCMP
&& "Replacing a removed or non-existent VCMP");
1580 // Replace the VCMP with a VPT
1581 MachineInstrBuilder MIB
=
1582 BuildMI(*At
->getParent(), At
, At
->getDebugLoc(),
1583 TII
->get(VCMPOpcodeToVPT(TheVCMP
->getOpcode())));
1584 MIB
.addImm(ARMVCC::Then
);
1586 MIB
.add(TheVCMP
->getOperand(1));
1588 MIB
.add(TheVCMP
->getOperand(2));
1589 // The comparison code, e.g. ge, eq, lt
1590 MIB
.add(TheVCMP
->getOperand(3));
1591 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB
);
1592 LoLoop
.BlockMasksToRecompute
.insert(MIB
.getInstr());
1593 LoLoop
.ToRemove
.insert(TheVCMP
);
1597 if (LoLoop
.VPTstate
.isEntryPredicatedOnVCTP(Block
, /*exclusive*/ true)) {
1598 MachineInstr
*VPST
= Insts
.front();
1599 if (Block
.hasUniformPredicate()) {
1600 // A vpt block starting with VPST, is only predicated upon vctp and has no
1601 // internal vpr defs:
1603 // - Unpredicate the remaining instructions.
1604 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST
);
1605 for (unsigned i
= 1; i
< Insts
.size(); ++i
)
1606 RemovePredicate(Insts
[i
]);
1608 // The VPT block has a non-uniform predicate but it uses a vpst and its
1609 // entry is guarded only by a vctp, which means we:
1610 // - Need to remove the original vpst.
1611 // - Then need to unpredicate any following instructions, until
1612 // we come across the divergent vpr def.
1613 // - Insert a new vpst to predicate the instruction(s) that following
1614 // the divergent vpr def.
1615 MachineInstr
*Divergent
= Block
.getDivergent();
1616 MachineBasicBlock
*MBB
= Divergent
->getParent();
1617 auto DivergentNext
= ++MachineBasicBlock::iterator(Divergent
);
1618 while (DivergentNext
!= MBB
->end() && DivergentNext
->isDebugInstr())
1621 bool DivergentNextIsPredicated
=
1622 DivergentNext
!= MBB
->end() &&
1623 getVPTInstrPredicate(*DivergentNext
) != ARMVCC::None
;
1625 for (auto I
= ++MachineBasicBlock::iterator(VPST
), E
= DivergentNext
;
1627 RemovePredicate(&*I
);
1629 // Check if the instruction defining vpr is a vcmp so it can be combined
1630 // with the VPST This should be the divergent instruction
1631 MachineInstr
*VCMP
=
1632 VCMPOpcodeToVPT(Divergent
->getOpcode()) != 0 ? Divergent
: nullptr;
1634 if (DivergentNextIsPredicated
) {
1635 // Insert a VPST at the divergent only if the next instruction
1636 // would actually use it. A VCMP following a VPST can be
1637 // merged into a VPT so do that instead if the VCMP exists.
1639 // Create a VPST (with a null mask for now, we'll recompute it
1641 MachineInstrBuilder MIB
=
1642 BuildMI(*Divergent
->getParent(), Divergent
,
1643 Divergent
->getDebugLoc(), TII
->get(ARM::MVE_VPST
));
1645 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB
);
1646 LoLoop
.BlockMasksToRecompute
.insert(MIB
.getInstr());
1648 // No RDA checks are necessary here since the VPST would have been
1649 // directly after the VCMP
1650 ReplaceVCMPWithVPT(VCMP
, VCMP
);
1654 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST
);
1655 LoLoop
.ToRemove
.insert(VPST
);
1656 } else if (Block
.containsVCTP()) {
1657 // The vctp will be removed, so either the entire block will be dead or
1658 // the block mask of the vp(s)t will need to be recomputed.
1659 MachineInstr
*VPST
= Insts
.front();
1660 if (Block
.size() == 2) {
1661 assert(VPST
->getOpcode() == ARM::MVE_VPST
&&
1662 "Found a VPST in an otherwise empty vpt block");
1663 LoLoop
.ToRemove
.insert(VPST
);
1665 LoLoop
.BlockMasksToRecompute
.insert(VPST
);
1666 } else if (Insts
.front()->getOpcode() == ARM::MVE_VPST
) {
1667 // If this block starts with a VPST then attempt to merge it with the
1668 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1669 // block that no longer exists
1670 MachineInstr
*VPST
= Insts
.front();
1671 auto Next
= ++MachineBasicBlock::iterator(VPST
);
1672 assert(getVPTInstrPredicate(*Next
) != ARMVCC::None
&&
1673 "The instruction after a VPST must be predicated");
1675 MachineInstr
*VprDef
= RDA
->getUniqueReachingMIDef(VPST
, ARM::VPR
);
1676 if (VprDef
&& VCMPOpcodeToVPT(VprDef
->getOpcode()) &&
1677 !LoLoop
.ToRemove
.contains(VprDef
)) {
1678 MachineInstr
*VCMP
= VprDef
;
1679 // The VCMP and VPST can only be merged if the VCMP's operands will have
1680 // the same values at the VPST.
1681 // If any of the instructions between the VCMP and VPST are predicated
1682 // then a different code path is expected to have merged the VCMP and
1684 if (std::none_of(++MachineBasicBlock::iterator(VCMP
),
1685 MachineBasicBlock::iterator(VPST
), hasVPRUse
) &&
1686 RDA
->hasSameReachingDef(VCMP
, VPST
, VCMP
->getOperand(1).getReg()) &&
1687 RDA
->hasSameReachingDef(VCMP
, VPST
, VCMP
->getOperand(2).getReg())) {
1688 ReplaceVCMPWithVPT(VCMP
, VPST
);
1689 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST
);
1690 LoLoop
.ToRemove
.insert(VPST
);
1696 LoLoop
.ToRemove
.insert(LoLoop
.VCTPs
.begin(), LoLoop
.VCTPs
.end());
1699 void ARMLowOverheadLoops::Expand(LowOverheadLoop
&LoLoop
) {
1701 // Combine the LoopDec and LoopEnd instructions into LE(TP).
1702 auto ExpandLoopEnd
= [this](LowOverheadLoop
&LoLoop
) {
1703 MachineInstr
*End
= LoLoop
.End
;
1704 MachineBasicBlock
*MBB
= End
->getParent();
1705 unsigned Opc
= LoLoop
.IsTailPredicationLegal() ?
1706 ARM::MVE_LETP
: ARM::t2LEUpdate
;
1707 MachineInstrBuilder MIB
= BuildMI(*MBB
, End
, End
->getDebugLoc(),
1709 MIB
.addDef(ARM::LR
);
1710 unsigned Off
= LoLoop
.Dec
== LoLoop
.End
? 1 : 0;
1711 MIB
.add(End
->getOperand(Off
+ 0));
1712 MIB
.add(End
->getOperand(Off
+ 1));
1713 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB
);
1714 LoLoop
.ToRemove
.insert(LoLoop
.Dec
);
1715 LoLoop
.ToRemove
.insert(End
);
1719 // TODO: We should be able to automatically remove these branches before we
1720 // get here - probably by teaching analyzeBranch about the pseudo
1722 // If there is an unconditional branch, after I, that just branches to the
1723 // next block, remove it.
1724 auto RemoveDeadBranch
= [](MachineInstr
*I
) {
1725 MachineBasicBlock
*BB
= I
->getParent();
1726 MachineInstr
*Terminator
= &BB
->instr_back();
1727 if (Terminator
->isUnconditionalBranch() && I
!= Terminator
) {
1728 MachineBasicBlock
*Succ
= Terminator
->getOperand(0).getMBB();
1729 if (BB
->isLayoutSuccessor(Succ
)) {
1730 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator
);
1731 Terminator
->eraseFromParent();
1736 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid.
1737 // Anything other MQPRCopy can be converted to MVE_VORR later on.
1738 auto ExpandVMOVCopies
= [this](SmallPtrSet
<MachineInstr
*, 4> &VMOVCopies
) {
1739 for (auto *MI
: VMOVCopies
) {
1740 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI
);
1741 assert(MI
->getOpcode() == ARM::MQPRCopy
&& "Only expected MQPRCOPY!");
1742 MachineBasicBlock
*MBB
= MI
->getParent();
1743 Register Dst
= MI
->getOperand(0).getReg();
1744 Register Src
= MI
->getOperand(1).getReg();
1745 auto MIB1
= BuildMI(*MBB
, MI
, MI
->getDebugLoc(), TII
->get(ARM::VMOVD
),
1746 ARM::D0
+ (Dst
- ARM::Q0
) * 2)
1747 .addReg(ARM::D0
+ (Src
- ARM::Q0
) * 2)
1748 .add(predOps(ARMCC::AL
));
1750 LLVM_DEBUG(dbgs() << " into " << *MIB1
);
1751 auto MIB2
= BuildMI(*MBB
, MI
, MI
->getDebugLoc(), TII
->get(ARM::VMOVD
),
1752 ARM::D0
+ (Dst
- ARM::Q0
) * 2 + 1)
1753 .addReg(ARM::D0
+ (Src
- ARM::Q0
) * 2 + 1)
1754 .add(predOps(ARMCC::AL
));
1755 LLVM_DEBUG(dbgs() << " and " << *MIB2
);
1757 MI
->eraseFromParent();
1761 if (LoLoop
.Revert
) {
1762 if (isWhileLoopStart(*LoLoop
.Start
))
1763 RevertWhile(LoLoop
.Start
);
1765 RevertDo(LoLoop
.Start
);
1766 if (LoLoop
.Dec
== LoLoop
.End
)
1767 RevertLoopEndDec(LoLoop
.End
);
1769 RevertLoopEnd(LoLoop
.End
, RevertLoopDec(LoLoop
.Dec
));
1771 ExpandVMOVCopies(LoLoop
.VMOVCopies
);
1772 LoLoop
.Start
= ExpandLoopStart(LoLoop
);
1774 RemoveDeadBranch(LoLoop
.Start
);
1775 LoLoop
.End
= ExpandLoopEnd(LoLoop
);
1776 RemoveDeadBranch(LoLoop
.End
);
1777 if (LoLoop
.IsTailPredicationLegal())
1778 ConvertVPTBlocks(LoLoop
);
1779 for (auto *I
: LoLoop
.ToRemove
) {
1780 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I
);
1781 I
->eraseFromParent();
1783 for (auto *I
: LoLoop
.BlockMasksToRecompute
) {
1784 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I
);
1785 recomputeVPTBlockMask(*I
);
1786 LLVM_DEBUG(dbgs() << " ... done: " << *I
);
1790 PostOrderLoopTraversal
DFS(LoLoop
.ML
, *MLI
);
1792 const SmallVectorImpl
<MachineBasicBlock
*> &PostOrder
= DFS
.getOrder();
1793 fullyRecomputeLiveIns(PostOrder
);
1795 for (auto *MBB
: reverse(PostOrder
))
1796 recomputeLivenessFlags(*MBB
);
1798 // We've moved, removed and inserted new instructions, so update RDA.
1802 bool ARMLowOverheadLoops::RevertNonLoops() {
1803 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1804 bool Changed
= false;
1806 for (auto &MBB
: *MF
) {
1807 SmallVector
<MachineInstr
*, 4> Starts
;
1808 SmallVector
<MachineInstr
*, 4> Decs
;
1809 SmallVector
<MachineInstr
*, 4> Ends
;
1810 SmallVector
<MachineInstr
*, 4> EndDecs
;
1811 SmallVector
<MachineInstr
*, 4> MQPRCopies
;
1813 for (auto &I
: MBB
) {
1815 Starts
.push_back(&I
);
1816 else if (I
.getOpcode() == ARM::t2LoopDec
)
1818 else if (I
.getOpcode() == ARM::t2LoopEnd
)
1820 else if (I
.getOpcode() == ARM::t2LoopEndDec
)
1821 EndDecs
.push_back(&I
);
1822 else if (I
.getOpcode() == ARM::MQPRCopy
)
1823 MQPRCopies
.push_back(&I
);
1826 if (Starts
.empty() && Decs
.empty() && Ends
.empty() && EndDecs
.empty() &&
1832 for (auto *Start
: Starts
) {
1833 if (isWhileLoopStart(*Start
))
1838 for (auto *Dec
: Decs
)
1841 for (auto *End
: Ends
)
1843 for (auto *End
: EndDecs
)
1844 RevertLoopEndDec(End
);
1845 for (auto *MI
: MQPRCopies
) {
1846 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI
);
1847 assert(MI
->getOpcode() == ARM::MQPRCopy
&& "Only expected MQPRCOPY!");
1848 MachineBasicBlock
*MBB
= MI
->getParent();
1849 auto MIB
= BuildMI(*MBB
, MI
, MI
->getDebugLoc(), TII
->get(ARM::MVE_VORR
),
1850 MI
->getOperand(0).getReg())
1851 .add(MI
->getOperand(1))
1852 .add(MI
->getOperand(1));
1853 addUnpredicatedMveVpredROp(MIB
, MI
->getOperand(0).getReg());
1854 MI
->eraseFromParent();
1860 FunctionPass
*llvm::createARMLowOverheadLoopsPass() {
1861 return new ARMLowOverheadLoops();