1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
15 //===----------------------------------------------------------------------===//
18 #include "ARMSubtarget.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/IntrinsicsARM.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/IR/NoFolder.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 using namespace PatternMatch
;
41 #define DEBUG_TYPE "arm-parallel-dsp"
43 STATISTIC(NumSMLAD
, "Number of smlad instructions generated");
46 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden
, cl::init(false),
47 cl::desc("Disable the ARM Parallel DSP pass"));
49 static cl::opt
<unsigned>
50 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden
, cl::init(16),
51 cl::desc("Limit the number of loads analysed"));
57 using MulCandList
= SmallVector
<std::unique_ptr
<MulCandidate
>, 8>;
58 using MemInstList
= SmallVectorImpl
<LoadInst
*>;
59 using MulPairList
= SmallVector
<std::pair
<MulCandidate
*, MulCandidate
*>, 8>;
61 // 'MulCandidate' holds the multiplication instructions that are candidates
62 // for parallel execution.
67 bool Exchange
= false;
69 SmallVector
<LoadInst
*, 2> VecLd
; // Container for loads to widen.
71 MulCandidate(Instruction
*I
, Value
*lhs
, Value
*rhs
) :
72 Root(I
), LHS(lhs
), RHS(rhs
) { }
74 bool HasTwoLoadInputs() const {
75 return isa
<LoadInst
>(LHS
) && isa
<LoadInst
>(RHS
);
78 LoadInst
*getBaseLoad() const {
83 /// Represent a sequence of multiply-accumulate operations with the aim to
84 /// perform the multiplications in parallel.
86 Instruction
*Root
= nullptr;
90 SetVector
<Instruction
*> Adds
;
95 Reduction (Instruction
*Add
) : Root(Add
) { }
97 /// Record an Add instruction that is a part of the this reduction.
98 void InsertAdd(Instruction
*I
) { Adds
.insert(I
); }
100 /// Create MulCandidates, each rooted at a Mul instruction, that is a part
101 /// of this reduction.
103 auto GetMulOperand
= [](Value
*V
) -> Instruction
* {
104 if (auto *SExt
= dyn_cast
<SExtInst
>(V
)) {
105 if (auto *I
= dyn_cast
<Instruction
>(SExt
->getOperand(0)))
106 if (I
->getOpcode() == Instruction::Mul
)
108 } else if (auto *I
= dyn_cast
<Instruction
>(V
)) {
109 if (I
->getOpcode() == Instruction::Mul
)
115 auto InsertMul
= [this](Instruction
*I
) {
116 Value
*LHS
= cast
<Instruction
>(I
->getOperand(0))->getOperand(0);
117 Value
*RHS
= cast
<Instruction
>(I
->getOperand(1))->getOperand(0);
118 Muls
.push_back(std::make_unique
<MulCandidate
>(I
, LHS
, RHS
));
121 for (auto *Add
: Adds
) {
124 if (auto *Mul
= GetMulOperand(Add
->getOperand(0)))
126 if (auto *Mul
= GetMulOperand(Add
->getOperand(1)))
131 /// Add the incoming accumulator value, returns true if a value had not
132 /// already been added. Returning false signals to the user that this
133 /// reduction already has a value to initialise the accumulator.
134 bool InsertAcc(Value
*V
) {
141 /// Set two MulCandidates, rooted at muls, that can be executed as a single
142 /// parallel operation.
143 void AddMulPair(MulCandidate
*Mul0
, MulCandidate
*Mul1
,
144 bool Exchange
= false) {
145 LLVM_DEBUG(dbgs() << "Pairing:\n"
146 << *Mul0
->Root
<< "\n"
147 << *Mul1
->Root
<< "\n");
151 Mul1
->Exchange
= true;
152 MulPairs
.push_back(std::make_pair(Mul0
, Mul1
));
155 /// Return the add instruction which is the root of the reduction.
156 Instruction
*getRoot() { return Root
; }
158 bool is64Bit() const { return Root
->getType()->isIntegerTy(64); }
160 Type
*getType() const { return Root
->getType(); }
162 /// Return the incoming value to be accumulated. This maybe null.
163 Value
*getAccumulator() { return Acc
; }
165 /// Return the set of adds that comprise the reduction.
166 SetVector
<Instruction
*> &getAdds() { return Adds
; }
168 /// Return the MulCandidate, rooted at mul instruction, that comprise the
170 MulCandList
&getMuls() { return Muls
; }
172 /// Return the MulCandidate, rooted at mul instructions, that have been
173 /// paired for parallel execution.
174 MulPairList
&getMulPairs() { return MulPairs
; }
176 /// To finalise, replace the uses of the root with the intrinsic call.
177 void UpdateRoot(Instruction
*SMLAD
) {
178 Root
->replaceAllUsesWith(SMLAD
);
182 LLVM_DEBUG(dbgs() << "Reduction:\n";
183 for (auto *Add
: Adds
)
184 LLVM_DEBUG(dbgs() << *Add
<< "\n");
185 for (auto &Mul
: Muls
)
186 LLVM_DEBUG(dbgs() << *Mul
->Root
<< "\n"
187 << " " << *Mul
->LHS
<< "\n"
188 << " " << *Mul
->RHS
<< "\n");
189 LLVM_DEBUG(if (Acc
) dbgs() << "Acc in: " << *Acc
<< "\n")
195 LoadInst
*NewLd
= nullptr;
196 SmallVector
<LoadInst
*, 4> Loads
;
199 WidenedLoad(SmallVectorImpl
<LoadInst
*> &Lds
, LoadInst
*Wide
)
201 append_range(Loads
, Lds
);
203 LoadInst
*getLoad() {
208 class ARMParallelDSP
: public FunctionPass
{
211 TargetLibraryInfo
*TLI
;
213 const DataLayout
*DL
;
215 std::map
<LoadInst
*, LoadInst
*> LoadPairs
;
216 SmallPtrSet
<LoadInst
*, 4> OffsetLoads
;
217 std::map
<LoadInst
*, std::unique_ptr
<WidenedLoad
>> WideLoads
;
220 bool IsNarrowSequence(Value
*V
);
221 bool Search(Value
*V
, BasicBlock
*BB
, Reduction
&R
);
222 bool RecordMemoryOps(BasicBlock
*BB
);
223 void InsertParallelMACs(Reduction
&Reduction
);
224 bool AreSequentialLoads(LoadInst
*Ld0
, LoadInst
*Ld1
, MemInstList
&VecMem
);
225 LoadInst
* CreateWideLoad(MemInstList
&Loads
, IntegerType
*LoadTy
);
226 bool CreateParallelPairs(Reduction
&R
);
228 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
229 /// Dual performs two signed 16x16-bit multiplications. It adds the
230 /// products to a 32-bit accumulate operand. Optionally, the instruction can
231 /// exchange the halfwords of the second operand before performing the
233 bool MatchSMLAD(Function
&F
);
238 ARMParallelDSP() : FunctionPass(ID
) { }
240 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
241 FunctionPass::getAnalysisUsage(AU
);
242 AU
.addRequired
<AssumptionCacheTracker
>();
243 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
244 AU
.addRequired
<AAResultsWrapperPass
>();
245 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
246 AU
.addRequired
<DominatorTreeWrapperPass
>();
247 AU
.addRequired
<TargetPassConfig
>();
248 AU
.addPreserved
<ScalarEvolutionWrapperPass
>();
249 AU
.addPreserved
<GlobalsAAWrapperPass
>();
250 AU
.setPreservesCFG();
253 bool runOnFunction(Function
&F
) override
{
254 if (DisableParallelDSP
)
259 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
260 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
261 TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
262 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
263 auto &TPC
= getAnalysis
<TargetPassConfig
>();
266 DL
= &M
->getDataLayout();
268 auto &TM
= TPC
.getTM
<TargetMachine
>();
269 auto *ST
= &TM
.getSubtarget
<ARMSubtarget
>(F
);
271 if (!ST
->allowsUnalignedMem()) {
272 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
273 "running pass ARMParallelDSP\n");
278 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
283 if (!ST
->isLittle()) {
284 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
285 << "ARMParallelDSP\n");
289 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
290 LLVM_DEBUG(dbgs() << " - " << F
.getName() << "\n\n");
292 bool Changes
= MatchSMLAD(F
);
298 bool ARMParallelDSP::AreSequentialLoads(LoadInst
*Ld0
, LoadInst
*Ld1
,
299 MemInstList
&VecMem
) {
303 if (!LoadPairs
.count(Ld0
) || LoadPairs
[Ld0
] != Ld1
)
306 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
307 dbgs() << "Ld0:"; Ld0
->dump();
308 dbgs() << "Ld1:"; Ld1
->dump();
312 VecMem
.push_back(Ld0
);
313 VecMem
.push_back(Ld1
);
317 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
318 // instructions, which is set to 16. So here we should collect all i8 and i16
319 // narrow operations.
320 // TODO: we currently only collect i16, and will support i8 later, so that's
321 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
322 template<unsigned MaxBitWidth
>
323 bool ARMParallelDSP::IsNarrowSequence(Value
*V
) {
324 if (auto *SExt
= dyn_cast
<SExtInst
>(V
)) {
325 if (SExt
->getSrcTy()->getIntegerBitWidth() != MaxBitWidth
)
328 if (auto *Ld
= dyn_cast
<LoadInst
>(SExt
->getOperand(0))) {
329 // Check that this load could be paired.
330 return LoadPairs
.count(Ld
) || OffsetLoads
.count(Ld
);
336 /// Iterate through the block and record base, offset pairs of loads which can
337 /// be widened into a single load.
338 bool ARMParallelDSP::RecordMemoryOps(BasicBlock
*BB
) {
339 SmallVector
<LoadInst
*, 8> Loads
;
340 SmallVector
<Instruction
*, 8> Writes
;
344 // Collect loads and instruction that may write to memory. For now we only
345 // record loads which are simple, sign-extended and have a single user.
346 // TODO: Allow zero-extended loads.
347 for (auto &I
: *BB
) {
348 if (I
.mayWriteToMemory())
349 Writes
.push_back(&I
);
350 auto *Ld
= dyn_cast
<LoadInst
>(&I
);
351 if (!Ld
|| !Ld
->isSimple() ||
352 !Ld
->hasOneUse() || !isa
<SExtInst
>(Ld
->user_back()))
357 if (Loads
.empty() || Loads
.size() > NumLoadLimit
)
360 using InstSet
= std::set
<Instruction
*>;
361 using DepMap
= std::map
<Instruction
*, InstSet
>;
364 // Record any writes that may alias a load.
365 const auto Size
= LocationSize::beforeOrAfterPointer();
366 for (auto *Write
: Writes
) {
367 for (auto *Read
: Loads
) {
368 MemoryLocation ReadLoc
=
369 MemoryLocation(Read
->getPointerOperand(), Size
);
371 if (!isModOrRefSet(AA
->getModRefInfo(Write
, ReadLoc
)))
373 if (Write
->comesBefore(Read
))
374 RAWDeps
[Read
].insert(Write
);
378 // Check whether there's not a write between the two loads which would
379 // prevent them from being safely merged.
380 auto SafeToPair
= [&](LoadInst
*Base
, LoadInst
*Offset
) {
381 bool BaseFirst
= Base
->comesBefore(Offset
);
382 LoadInst
*Dominator
= BaseFirst
? Base
: Offset
;
383 LoadInst
*Dominated
= BaseFirst
? Offset
: Base
;
385 if (RAWDeps
.count(Dominated
)) {
386 InstSet
&WritesBefore
= RAWDeps
[Dominated
];
388 for (auto *Before
: WritesBefore
) {
389 // We can't move the second load backward, past a write, to merge
390 // with the first load.
391 if (Dominator
->comesBefore(Before
))
398 // Record base, offset load pairs.
399 for (auto *Base
: Loads
) {
400 for (auto *Offset
: Loads
) {
401 if (Base
== Offset
|| OffsetLoads
.count(Offset
))
404 if (isConsecutiveAccess(Base
, Offset
, *DL
, *SE
) &&
405 SafeToPair(Base
, Offset
)) {
406 LoadPairs
[Base
] = Offset
;
407 OffsetLoads
.insert(Offset
);
413 LLVM_DEBUG(if (!LoadPairs
.empty()) {
414 dbgs() << "Consecutive load pairs:\n";
415 for (auto &MapIt
: LoadPairs
) {
416 LLVM_DEBUG(dbgs() << *MapIt
.first
<< ", "
417 << *MapIt
.second
<< "\n");
420 return LoadPairs
.size() > 1;
423 // Search recursively back through the operands to find a tree of values that
424 // form a multiply-accumulate chain. The search records the Add and Mul
425 // instructions that form the reduction and allows us to find a single value
426 // to be used as the initial input to the accumlator.
427 bool ARMParallelDSP::Search(Value
*V
, BasicBlock
*BB
, Reduction
&R
) {
428 // If we find a non-instruction, try to use it as the initial accumulator
429 // value. This may have already been found during the search in which case
430 // this function will return false, signaling a search fail.
431 auto *I
= dyn_cast
<Instruction
>(V
);
433 return R
.InsertAcc(V
);
435 if (I
->getParent() != BB
)
438 switch (I
->getOpcode()) {
441 case Instruction::PHI
:
442 // Could be the accumulator value.
443 return R
.InsertAcc(V
);
444 case Instruction::Add
: {
445 // Adds should be adding together two muls, or another add and a mul to
446 // be within the mac chain. One of the operands may also be the
447 // accumulator value at which point we should stop searching.
449 Value
*LHS
= I
->getOperand(0);
450 Value
*RHS
= I
->getOperand(1);
451 bool ValidLHS
= Search(LHS
, BB
, R
);
452 bool ValidRHS
= Search(RHS
, BB
, R
);
454 if (ValidLHS
&& ValidRHS
)
457 // Ensure we don't add the root as the incoming accumulator.
458 if (R
.getRoot() == I
)
461 return R
.InsertAcc(I
);
463 case Instruction::Mul
: {
464 Value
*MulOp0
= I
->getOperand(0);
465 Value
*MulOp1
= I
->getOperand(1);
466 return IsNarrowSequence
<16>(MulOp0
) && IsNarrowSequence
<16>(MulOp1
);
468 case Instruction::SExt
:
469 return Search(I
->getOperand(0), BB
, R
);
474 // The pass needs to identify integer add/sub reductions of 16-bit vector
477 // 1) we first need to find integer add then look for this pattern:
481 // sext0 = sext i16 %ld0 to i32
483 // sext1 = sext i16 %ld1 to i32
484 // mul0 = mul %sext0, %sext1
486 // sext2 = sext i16 %ld2 to i32
488 // sext3 = sext i16 %ld3 to i32
489 // mul1 = mul i32 %sext2, %sext3
490 // add0 = add i32 %mul0, %acc0
491 // acc1 = add i32 %add0, %mul1
493 // Which can be selected to:
497 // smlad r2, r0, r1, r2
499 // If constants are used instead of loads, these will need to be hoisted
500 // out and into a register.
502 // If loop invariants are used instead of loads, these need to be packed
503 // before the loop begins.
505 bool ARMParallelDSP::MatchSMLAD(Function
&F
) {
506 bool Changed
= false;
509 SmallPtrSet
<Instruction
*, 4> AllAdds
;
510 if (!RecordMemoryOps(&BB
))
513 for (Instruction
&I
: reverse(BB
)) {
514 if (I
.getOpcode() != Instruction::Add
)
517 if (AllAdds
.count(&I
))
520 const auto *Ty
= I
.getType();
521 if (!Ty
->isIntegerTy(32) && !Ty
->isIntegerTy(64))
525 if (!Search(&I
, &BB
, R
))
529 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R
.dump());
531 if (!CreateParallelPairs(R
))
534 InsertParallelMACs(R
);
536 AllAdds
.insert(R
.getAdds().begin(), R
.getAdds().end());
537 LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB
);
544 bool ARMParallelDSP::CreateParallelPairs(Reduction
&R
) {
546 // Not enough mul operations to make a pair.
547 if (R
.getMuls().size() < 2)
550 // Check that the muls operate directly upon sign extended loads.
551 for (auto &MulCand
: R
.getMuls()) {
552 if (!MulCand
->HasTwoLoadInputs())
556 auto CanPair
= [&](Reduction
&R
, MulCandidate
*PMul0
, MulCandidate
*PMul1
) {
557 // The first elements of each vector should be loads with sexts. If we
558 // find that its two pairs of consecutive loads, then these can be
559 // transformed into two wider loads and the users can be replaced with
561 auto Ld0
= static_cast<LoadInst
*>(PMul0
->LHS
);
562 auto Ld1
= static_cast<LoadInst
*>(PMul1
->LHS
);
563 auto Ld2
= static_cast<LoadInst
*>(PMul0
->RHS
);
564 auto Ld3
= static_cast<LoadInst
*>(PMul1
->RHS
);
566 // Check that each mul is operating on two different loads.
567 if (Ld0
== Ld2
|| Ld1
== Ld3
)
570 if (AreSequentialLoads(Ld0
, Ld1
, PMul0
->VecLd
)) {
571 if (AreSequentialLoads(Ld2
, Ld3
, PMul1
->VecLd
)) {
572 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
573 R
.AddMulPair(PMul0
, PMul1
);
575 } else if (AreSequentialLoads(Ld3
, Ld2
, PMul1
->VecLd
)) {
576 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
577 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
578 R
.AddMulPair(PMul0
, PMul1
, true);
581 } else if (AreSequentialLoads(Ld1
, Ld0
, PMul0
->VecLd
) &&
582 AreSequentialLoads(Ld2
, Ld3
, PMul1
->VecLd
)) {
583 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
584 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
585 LLVM_DEBUG(dbgs() << " and swapping muls\n");
586 // Only the second operand can be exchanged, so swap the muls.
587 R
.AddMulPair(PMul1
, PMul0
, true);
593 MulCandList
&Muls
= R
.getMuls();
594 const unsigned Elems
= Muls
.size();
595 for (unsigned i
= 0; i
< Elems
; ++i
) {
596 MulCandidate
*PMul0
= static_cast<MulCandidate
*>(Muls
[i
].get());
600 for (unsigned j
= 0; j
< Elems
; ++j
) {
604 MulCandidate
*PMul1
= static_cast<MulCandidate
*>(Muls
[j
].get());
608 const Instruction
*Mul0
= PMul0
->Root
;
609 const Instruction
*Mul1
= PMul1
->Root
;
613 assert(PMul0
!= PMul1
&& "expected different chains");
615 if (CanPair(R
, PMul0
, PMul1
))
619 return !R
.getMulPairs().empty();
622 void ARMParallelDSP::InsertParallelMACs(Reduction
&R
) {
624 auto CreateSMLAD
= [&](LoadInst
* WideLd0
, LoadInst
*WideLd1
,
625 Value
*Acc
, bool Exchange
,
626 Instruction
*InsertAfter
) {
627 // Replace the reduction chain with an intrinsic call
629 Value
* Args
[] = { WideLd0
, WideLd1
, Acc
};
630 Function
*SMLAD
= nullptr;
633 Acc
->getType()->isIntegerTy(32)
634 ? Intrinsic::getOrInsertDeclaration(M
, Intrinsic::arm_smladx
)
635 : Intrinsic::getOrInsertDeclaration(M
, Intrinsic::arm_smlaldx
);
637 SMLAD
= Acc
->getType()->isIntegerTy(32)
638 ? Intrinsic::getOrInsertDeclaration(M
, Intrinsic::arm_smlad
)
639 : Intrinsic::getOrInsertDeclaration(M
, Intrinsic::arm_smlald
);
641 IRBuilder
<NoFolder
> Builder(InsertAfter
->getParent(),
642 BasicBlock::iterator(InsertAfter
));
643 Instruction
*Call
= Builder
.CreateCall(SMLAD
, Args
);
648 // Return the instruction after the dominated instruction.
649 auto GetInsertPoint
= [this](Value
*A
, Value
*B
) {
650 assert((isa
<Instruction
>(A
) || isa
<Instruction
>(B
)) &&
651 "expected at least one instruction");
654 if (!isa
<Instruction
>(A
))
656 else if (!isa
<Instruction
>(B
))
659 V
= DT
->dominates(cast
<Instruction
>(A
), cast
<Instruction
>(B
)) ? B
: A
;
661 return &*++BasicBlock::iterator(cast
<Instruction
>(V
));
664 Value
*Acc
= R
.getAccumulator();
666 // For any muls that were discovered but not paired, accumulate their values
668 IRBuilder
<NoFolder
> Builder(R
.getRoot()->getParent());
669 MulCandList
&MulCands
= R
.getMuls();
670 for (auto &MulCand
: MulCands
) {
674 Instruction
*Mul
= cast
<Instruction
>(MulCand
->Root
);
675 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul
<< "\n");
677 if (R
.getType() != Mul
->getType()) {
678 assert(R
.is64Bit() && "expected 64-bit result");
679 Builder
.SetInsertPoint(&*++BasicBlock::iterator(Mul
));
680 Mul
= cast
<Instruction
>(Builder
.CreateSExt(Mul
, R
.getRoot()->getType()));
688 // If Acc is the original incoming value to the reduction, it could be a
689 // phi. But the phi will dominate Mul, meaning that Mul will be the
691 Builder
.SetInsertPoint(GetInsertPoint(Mul
, Acc
));
692 Acc
= Builder
.CreateAdd(Mul
, Acc
);
697 ConstantInt::get(IntegerType::get(M
->getContext(), 64), 0) :
698 ConstantInt::get(IntegerType::get(M
->getContext(), 32), 0);
699 } else if (Acc
->getType() != R
.getType()) {
700 Builder
.SetInsertPoint(R
.getRoot());
701 Acc
= Builder
.CreateSExt(Acc
, R
.getType());
704 // Roughly sort the mul pairs in their program order.
705 llvm::sort(R
.getMulPairs(), [](auto &PairA
, auto &PairB
) {
706 const Instruction
*A
= PairA
.first
->Root
;
707 const Instruction
*B
= PairB
.first
->Root
;
708 return A
->comesBefore(B
);
711 IntegerType
*Ty
= IntegerType::get(M
->getContext(), 32);
712 for (auto &Pair
: R
.getMulPairs()) {
713 MulCandidate
*LHSMul
= Pair
.first
;
714 MulCandidate
*RHSMul
= Pair
.second
;
715 LoadInst
*BaseLHS
= LHSMul
->getBaseLoad();
716 LoadInst
*BaseRHS
= RHSMul
->getBaseLoad();
717 LoadInst
*WideLHS
= WideLoads
.count(BaseLHS
) ?
718 WideLoads
[BaseLHS
]->getLoad() : CreateWideLoad(LHSMul
->VecLd
, Ty
);
719 LoadInst
*WideRHS
= WideLoads
.count(BaseRHS
) ?
720 WideLoads
[BaseRHS
]->getLoad() : CreateWideLoad(RHSMul
->VecLd
, Ty
);
722 Instruction
*InsertAfter
= GetInsertPoint(WideLHS
, WideRHS
);
723 InsertAfter
= GetInsertPoint(InsertAfter
, Acc
);
724 Acc
= CreateSMLAD(WideLHS
, WideRHS
, Acc
, RHSMul
->Exchange
, InsertAfter
);
726 R
.UpdateRoot(cast
<Instruction
>(Acc
));
729 LoadInst
* ARMParallelDSP::CreateWideLoad(MemInstList
&Loads
,
730 IntegerType
*LoadTy
) {
731 assert(Loads
.size() == 2 && "currently only support widening two loads");
733 LoadInst
*Base
= Loads
[0];
734 LoadInst
*Offset
= Loads
[1];
736 Instruction
*BaseSExt
= dyn_cast
<SExtInst
>(Base
->user_back());
737 Instruction
*OffsetSExt
= dyn_cast
<SExtInst
>(Offset
->user_back());
739 assert((BaseSExt
&& OffsetSExt
)
740 && "Loads should have a single, extending, user");
742 std::function
<void(Value
*, Value
*)> MoveBefore
=
743 [&](Value
*A
, Value
*B
) -> void {
744 if (!isa
<Instruction
>(A
) || !isa
<Instruction
>(B
))
747 auto *Source
= cast
<Instruction
>(A
);
748 auto *Sink
= cast
<Instruction
>(B
);
750 if (DT
->dominates(Source
, Sink
) ||
751 Source
->getParent() != Sink
->getParent() ||
752 isa
<PHINode
>(Source
) || isa
<PHINode
>(Sink
))
755 Source
->moveBefore(Sink
);
756 for (auto &Op
: Source
->operands())
757 MoveBefore(Op
, Source
);
760 // Insert the load at the point of the original dominating load.
761 LoadInst
*DomLoad
= DT
->dominates(Base
, Offset
) ? Base
: Offset
;
762 IRBuilder
<NoFolder
> IRB(DomLoad
->getParent(),
763 ++BasicBlock::iterator(DomLoad
));
765 // Create the wide load, while making sure to maintain the original alignment
766 // as this prevents ldrd from being generated when it could be illegal due to
768 Value
*VecPtr
= Base
->getPointerOperand();
769 LoadInst
*WideLoad
= IRB
.CreateAlignedLoad(LoadTy
, VecPtr
, Base
->getAlign());
771 // Make sure everything is in the correct order in the basic block.
772 MoveBefore(Base
->getPointerOperand(), VecPtr
);
773 MoveBefore(VecPtr
, WideLoad
);
775 // From the wide load, create two values that equal the original two loads.
776 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
777 // TODO: Support big-endian as well.
778 Value
*Bottom
= IRB
.CreateTrunc(WideLoad
, Base
->getType());
779 Value
*NewBaseSExt
= IRB
.CreateSExt(Bottom
, BaseSExt
->getType());
780 BaseSExt
->replaceAllUsesWith(NewBaseSExt
);
782 IntegerType
*OffsetTy
= cast
<IntegerType
>(Offset
->getType());
783 Value
*ShiftVal
= ConstantInt::get(LoadTy
, OffsetTy
->getBitWidth());
784 Value
*Top
= IRB
.CreateLShr(WideLoad
, ShiftVal
);
785 Value
*Trunc
= IRB
.CreateTrunc(Top
, OffsetTy
);
786 Value
*NewOffsetSExt
= IRB
.CreateSExt(Trunc
, OffsetSExt
->getType());
787 OffsetSExt
->replaceAllUsesWith(NewOffsetSExt
);
789 LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
790 << *Base
<< "\n" << *Offset
<< "\n"
791 << "Created Wide Load:\n"
794 << *NewBaseSExt
<< "\n"
797 << *NewOffsetSExt
<< "\n");
798 WideLoads
.emplace(std::make_pair(Base
,
799 std::make_unique
<WidenedLoad
>(Loads
, WideLoad
)));
803 Pass
*llvm::createARMParallelDSPPass() {
804 return new ARMParallelDSP();
807 char ARMParallelDSP::ID
= 0;
809 INITIALIZE_PASS_BEGIN(ARMParallelDSP
, "arm-parallel-dsp",
810 "Transform functions to use DSP intrinsics", false, false)
811 INITIALIZE_PASS_END(ARMParallelDSP
, "arm-parallel-dsp",
812 "Transform functions to use DSP intrinsics", false, false)