Add gfx950 mfma instructions to ROCDL dialect (#123361)
[llvm-project.git] / llvm / lib / Target / ARM / ARMSelectionDAGInfo.cpp
bloba39487c318f8e0e30f9d6870f24de4055ad1f726
1 //===-- ARMSelectionDAGInfo.cpp - ARM SelectionDAG Info -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARMSelectionDAGInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "ARMTargetTransformInfo.h"
14 #include "llvm/CodeGen/SelectionDAG.h"
15 #include "llvm/Support/CommandLine.h"
16 using namespace llvm;
18 #define DEBUG_TYPE "arm-selectiondag-info"
20 cl::opt<TPLoop::MemTransfer> EnableMemtransferTPLoop(
21 "arm-memtransfer-tploop", cl::Hidden,
22 cl::desc("Control conversion of memcpy to "
23 "Tail predicated loops (WLSTP)"),
24 cl::init(TPLoop::ForceDisabled),
25 cl::values(clEnumValN(TPLoop::ForceDisabled, "force-disabled",
26 "Don't convert memcpy to TP loop."),
27 clEnumValN(TPLoop::ForceEnabled, "force-enabled",
28 "Always convert memcpy to TP loop."),
29 clEnumValN(TPLoop::Allow, "allow",
30 "Allow (may be subject to certain conditions) "
31 "conversion of memcpy to TP loop.")));
33 bool ARMSelectionDAGInfo::isTargetMemoryOpcode(unsigned Opcode) const {
34 return Opcode >= ARMISD::FIRST_MEMORY_OPCODE &&
35 Opcode <= ARMISD::LAST_MEMORY_OPCODE;
38 // Emit, if possible, a specialized version of the given Libcall. Typically this
39 // means selecting the appropriately aligned version, but we also convert memset
40 // of 0 into memclr.
41 SDValue ARMSelectionDAGInfo::EmitSpecializedLibcall(
42 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
43 SDValue Size, unsigned Align, RTLIB::Libcall LC) const {
44 const ARMSubtarget &Subtarget =
45 DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
46 const ARMTargetLowering *TLI = Subtarget.getTargetLowering();
48 // Only use a specialized AEABI function if the default version of this
49 // Libcall is an AEABI function.
50 if (std::strncmp(TLI->getLibcallName(LC), "__aeabi", 7) != 0)
51 return SDValue();
53 // Translate RTLIB::Libcall to AEABILibcall. We only do this in order to be
54 // able to translate memset to memclr and use the value to index the function
55 // name array.
56 enum {
57 AEABI_MEMCPY = 0,
58 AEABI_MEMMOVE,
59 AEABI_MEMSET,
60 AEABI_MEMCLR
61 } AEABILibcall;
62 switch (LC) {
63 case RTLIB::MEMCPY:
64 AEABILibcall = AEABI_MEMCPY;
65 break;
66 case RTLIB::MEMMOVE:
67 AEABILibcall = AEABI_MEMMOVE;
68 break;
69 case RTLIB::MEMSET:
70 AEABILibcall = AEABI_MEMSET;
71 if (isNullConstant(Src))
72 AEABILibcall = AEABI_MEMCLR;
73 break;
74 default:
75 return SDValue();
78 // Choose the most-aligned libcall variant that we can
79 enum {
80 ALIGN1 = 0,
81 ALIGN4,
82 ALIGN8
83 } AlignVariant;
84 if ((Align & 7) == 0)
85 AlignVariant = ALIGN8;
86 else if ((Align & 3) == 0)
87 AlignVariant = ALIGN4;
88 else
89 AlignVariant = ALIGN1;
91 TargetLowering::ArgListTy Args;
92 TargetLowering::ArgListEntry Entry;
93 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
94 Entry.Node = Dst;
95 Args.push_back(Entry);
96 if (AEABILibcall == AEABI_MEMCLR) {
97 Entry.Node = Size;
98 Args.push_back(Entry);
99 } else if (AEABILibcall == AEABI_MEMSET) {
100 // Adjust parameters for memset, EABI uses format (ptr, size, value),
101 // GNU library uses (ptr, value, size)
102 // See RTABI section 4.3.4
103 Entry.Node = Size;
104 Args.push_back(Entry);
106 // Extend or truncate the argument to be an i32 value for the call.
107 if (Src.getValueType().bitsGT(MVT::i32))
108 Src = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
109 else if (Src.getValueType().bitsLT(MVT::i32))
110 Src = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
112 Entry.Node = Src;
113 Entry.Ty = Type::getInt32Ty(*DAG.getContext());
114 Entry.IsSExt = false;
115 Args.push_back(Entry);
116 } else {
117 Entry.Node = Src;
118 Args.push_back(Entry);
120 Entry.Node = Size;
121 Args.push_back(Entry);
124 char const *FunctionNames[4][3] = {
125 { "__aeabi_memcpy", "__aeabi_memcpy4", "__aeabi_memcpy8" },
126 { "__aeabi_memmove", "__aeabi_memmove4", "__aeabi_memmove8" },
127 { "__aeabi_memset", "__aeabi_memset4", "__aeabi_memset8" },
128 { "__aeabi_memclr", "__aeabi_memclr4", "__aeabi_memclr8" }
130 TargetLowering::CallLoweringInfo CLI(DAG);
131 CLI.setDebugLoc(dl)
132 .setChain(Chain)
133 .setLibCallee(
134 TLI->getLibcallCallingConv(LC), Type::getVoidTy(*DAG.getContext()),
135 DAG.getExternalSymbol(FunctionNames[AEABILibcall][AlignVariant],
136 TLI->getPointerTy(DAG.getDataLayout())),
137 std::move(Args))
138 .setDiscardResult();
139 std::pair<SDValue,SDValue> CallResult = TLI->LowerCallTo(CLI);
141 return CallResult.second;
144 static bool shouldGenerateInlineTPLoop(const ARMSubtarget &Subtarget,
145 const SelectionDAG &DAG,
146 ConstantSDNode *ConstantSize,
147 Align Alignment, bool IsMemcpy) {
148 auto &F = DAG.getMachineFunction().getFunction();
149 if (!EnableMemtransferTPLoop)
150 return false;
151 if (EnableMemtransferTPLoop == TPLoop::ForceEnabled)
152 return true;
153 // Do not generate inline TP loop if optimizations is disabled,
154 // or if optimization for size (-Os or -Oz) is on.
155 if (F.hasOptNone() || F.hasOptSize())
156 return false;
157 // If cli option is unset, for memset always generate inline TP.
158 // For memcpy, check some conditions
159 if (!IsMemcpy)
160 return true;
161 if (!ConstantSize && Alignment >= Align(4))
162 return true;
163 if (ConstantSize &&
164 ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold() &&
165 ConstantSize->getZExtValue() <
166 Subtarget.getMaxMemcpyTPInlineSizeThreshold())
167 return true;
168 return false;
171 SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemcpy(
172 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
173 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
174 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
175 const ARMSubtarget &Subtarget =
176 DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
177 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
179 if (Subtarget.hasMVEIntegerOps() &&
180 shouldGenerateInlineTPLoop(Subtarget, DAG, ConstantSize, Alignment, true))
181 return DAG.getNode(ARMISD::MEMCPYLOOP, dl, MVT::Other, Chain, Dst, Src,
182 DAG.getZExtOrTrunc(Size, dl, MVT::i32));
184 // Do repeated 4-byte loads and stores. To be improved.
185 // This requires 4-byte alignment.
186 if (Alignment < Align(4))
187 return SDValue();
188 // This requires the copy size to be a constant, preferably
189 // within a subtarget-specific limit.
190 if (!ConstantSize)
191 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size,
192 Alignment.value(), RTLIB::MEMCPY);
193 uint64_t SizeVal = ConstantSize->getZExtValue();
194 if (!AlwaysInline && SizeVal > Subtarget.getMaxInlineSizeThreshold())
195 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size,
196 Alignment.value(), RTLIB::MEMCPY);
198 unsigned BytesLeft = SizeVal & 3;
199 unsigned NumMemOps = SizeVal >> 2;
200 unsigned EmittedNumMemOps = 0;
201 EVT VT = MVT::i32;
202 unsigned VTSize = 4;
203 unsigned i = 0;
204 // Emit a maximum of 4 loads in Thumb1 since we have fewer registers
205 const unsigned MaxLoadsInLDM = Subtarget.isThumb1Only() ? 4 : 6;
206 SDValue TFOps[6];
207 SDValue Loads[6];
208 uint64_t SrcOff = 0, DstOff = 0;
210 // FIXME: We should invent a VMEMCPY pseudo-instruction that lowers to
211 // VLDM/VSTM and make this code emit it when appropriate. This would reduce
212 // pressure on the general purpose registers. However this seems harder to map
213 // onto the register allocator's view of the world.
215 // The number of MEMCPY pseudo-instructions to emit. We use up to
216 // MaxLoadsInLDM registers per mcopy, which will get lowered into ldm/stm
217 // later on. This is a lower bound on the number of MEMCPY operations we must
218 // emit.
219 unsigned NumMEMCPYs = (NumMemOps + MaxLoadsInLDM - 1) / MaxLoadsInLDM;
221 // Code size optimisation: do not inline memcpy if expansion results in
222 // more instructions than the libary call.
223 if (NumMEMCPYs > 1 && Subtarget.hasMinSize()) {
224 return SDValue();
227 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other, MVT::Glue);
229 for (unsigned I = 0; I != NumMEMCPYs; ++I) {
230 // Evenly distribute registers among MEMCPY operations to reduce register
231 // pressure.
232 unsigned NextEmittedNumMemOps = NumMemOps * (I + 1) / NumMEMCPYs;
233 unsigned NumRegs = NextEmittedNumMemOps - EmittedNumMemOps;
235 Dst = DAG.getNode(ARMISD::MEMCPY, dl, VTs, Chain, Dst, Src,
236 DAG.getConstant(NumRegs, dl, MVT::i32));
237 Src = Dst.getValue(1);
238 Chain = Dst.getValue(2);
240 DstPtrInfo = DstPtrInfo.getWithOffset(NumRegs * VTSize);
241 SrcPtrInfo = SrcPtrInfo.getWithOffset(NumRegs * VTSize);
243 EmittedNumMemOps = NextEmittedNumMemOps;
246 if (BytesLeft == 0)
247 return Chain;
249 // Issue loads / stores for the trailing (1 - 3) bytes.
250 auto getRemainingValueType = [](unsigned BytesLeft) {
251 return (BytesLeft >= 2) ? MVT::i16 : MVT::i8;
253 auto getRemainingSize = [](unsigned BytesLeft) {
254 return (BytesLeft >= 2) ? 2 : 1;
257 unsigned BytesLeftSave = BytesLeft;
258 i = 0;
259 while (BytesLeft) {
260 VT = getRemainingValueType(BytesLeft);
261 VTSize = getRemainingSize(BytesLeft);
262 Loads[i] = DAG.getLoad(VT, dl, Chain,
263 DAG.getNode(ISD::ADD, dl, MVT::i32, Src,
264 DAG.getConstant(SrcOff, dl, MVT::i32)),
265 SrcPtrInfo.getWithOffset(SrcOff));
266 TFOps[i] = Loads[i].getValue(1);
267 ++i;
268 SrcOff += VTSize;
269 BytesLeft -= VTSize;
271 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, ArrayRef(TFOps, i));
273 i = 0;
274 BytesLeft = BytesLeftSave;
275 while (BytesLeft) {
276 VT = getRemainingValueType(BytesLeft);
277 VTSize = getRemainingSize(BytesLeft);
278 TFOps[i] = DAG.getStore(Chain, dl, Loads[i],
279 DAG.getNode(ISD::ADD, dl, MVT::i32, Dst,
280 DAG.getConstant(DstOff, dl, MVT::i32)),
281 DstPtrInfo.getWithOffset(DstOff));
282 ++i;
283 DstOff += VTSize;
284 BytesLeft -= VTSize;
286 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, ArrayRef(TFOps, i));
289 SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemmove(
290 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
291 SDValue Size, Align Alignment, bool isVolatile,
292 MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
293 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size,
294 Alignment.value(), RTLIB::MEMMOVE);
297 SDValue ARMSelectionDAGInfo::EmitTargetCodeForMemset(
298 SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
299 SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
300 MachinePointerInfo DstPtrInfo) const {
302 const ARMSubtarget &Subtarget =
303 DAG.getMachineFunction().getSubtarget<ARMSubtarget>();
305 ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
307 // Generate TP loop for llvm.memset
308 if (Subtarget.hasMVEIntegerOps() &&
309 shouldGenerateInlineTPLoop(Subtarget, DAG, ConstantSize, Alignment,
310 false)) {
311 Src = DAG.getSplatBuildVector(MVT::v16i8, dl,
312 DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src));
313 return DAG.getNode(ARMISD::MEMSETLOOP, dl, MVT::Other, Chain, Dst, Src,
314 DAG.getZExtOrTrunc(Size, dl, MVT::i32));
317 if (!AlwaysInline)
318 return EmitSpecializedLibcall(DAG, dl, Chain, Dst, Src, Size,
319 Alignment.value(), RTLIB::MEMSET);
321 return SDValue();