AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / ARM / ARMTargetMachine.cpp
blob8e7b756b6790567b6782f6d271b1d6d39f42f013
1 //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //
10 //===----------------------------------------------------------------------===//
12 #include "ARMTargetMachine.h"
13 #include "ARM.h"
14 #include "ARMLatencyMutations.h"
15 #include "ARMMachineFunctionInfo.h"
16 #include "ARMMacroFusion.h"
17 #include "ARMSubtarget.h"
18 #include "ARMTargetObjectFile.h"
19 #include "ARMTargetTransformInfo.h"
20 #include "MCTargetDesc/ARMMCTargetDesc.h"
21 #include "TargetInfo/ARMTargetInfo.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/CodeGen/ExecutionDomainFix.h"
25 #include "llvm/CodeGen/GlobalISel/CSEInfo.h"
26 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
30 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
31 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
32 #include "llvm/CodeGen/MIRParser/MIParser.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineScheduler.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/DataLayout.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/MC/TargetRegistry.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Target/TargetLoweringObjectFile.h"
46 #include "llvm/Target/TargetOptions.h"
47 #include "llvm/TargetParser/ARMTargetParser.h"
48 #include "llvm/TargetParser/TargetParser.h"
49 #include "llvm/TargetParser/Triple.h"
50 #include "llvm/Transforms/CFGuard.h"
51 #include "llvm/Transforms/IPO.h"
52 #include "llvm/Transforms/Scalar.h"
53 #include <cassert>
54 #include <memory>
55 #include <optional>
56 #include <string>
58 using namespace llvm;
60 static cl::opt<bool>
61 DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
62 cl::desc("Inhibit optimization of S->D register accesses on A15"),
63 cl::init(false));
65 static cl::opt<bool>
66 EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
67 cl::desc("Run SimplifyCFG after expanding atomic operations"
68 " to make use of cmpxchg flow-based information"),
69 cl::init(true));
71 static cl::opt<bool>
72 EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
73 cl::desc("Enable ARM load/store optimization pass"),
74 cl::init(true));
76 // FIXME: Unify control over GlobalMerge.
77 static cl::opt<cl::boolOrDefault>
78 EnableGlobalMerge("arm-global-merge", cl::Hidden,
79 cl::desc("Enable the global merge pass"));
81 namespace llvm {
82 void initializeARMExecutionDomainFixPass(PassRegistry&);
85 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTarget() {
86 // Register the target.
87 RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
88 RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
89 RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
90 RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
92 PassRegistry &Registry = *PassRegistry::getPassRegistry();
93 initializeGlobalISel(Registry);
94 initializeARMLoadStoreOptPass(Registry);
95 initializeARMPreAllocLoadStoreOptPass(Registry);
96 initializeARMParallelDSPPass(Registry);
97 initializeARMBranchTargetsPass(Registry);
98 initializeARMConstantIslandsPass(Registry);
99 initializeARMExecutionDomainFixPass(Registry);
100 initializeARMExpandPseudoPass(Registry);
101 initializeThumb2SizeReducePass(Registry);
102 initializeMVEVPTBlockPass(Registry);
103 initializeMVETPAndVPTOptimisationsPass(Registry);
104 initializeMVETailPredicationPass(Registry);
105 initializeARMLowOverheadLoopsPass(Registry);
106 initializeARMBlockPlacementPass(Registry);
107 initializeMVEGatherScatterLoweringPass(Registry);
108 initializeARMSLSHardeningPass(Registry);
109 initializeMVELaneInterleavingPass(Registry);
110 initializeARMFixCortexA57AES1742098Pass(Registry);
111 initializeARMDAGToDAGISelLegacyPass(Registry);
114 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
115 if (TT.isOSBinFormatMachO())
116 return std::make_unique<TargetLoweringObjectFileMachO>();
117 if (TT.isOSWindows())
118 return std::make_unique<TargetLoweringObjectFileCOFF>();
119 return std::make_unique<ARMElfTargetObjectFile>();
122 static ARMBaseTargetMachine::ARMABI
123 computeTargetABI(const Triple &TT, StringRef CPU,
124 const TargetOptions &Options) {
125 StringRef ABIName = Options.MCOptions.getABIName();
127 if (ABIName.empty())
128 ABIName = ARM::computeDefaultTargetABI(TT, CPU);
130 if (ABIName == "aapcs16")
131 return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
132 else if (ABIName.starts_with("aapcs"))
133 return ARMBaseTargetMachine::ARM_ABI_AAPCS;
134 else if (ABIName.starts_with("apcs"))
135 return ARMBaseTargetMachine::ARM_ABI_APCS;
137 llvm_unreachable("Unhandled/unknown ABI Name!");
138 return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
141 static std::string computeDataLayout(const Triple &TT, StringRef CPU,
142 const TargetOptions &Options,
143 bool isLittle) {
144 auto ABI = computeTargetABI(TT, CPU, Options);
145 std::string Ret;
147 if (isLittle)
148 // Little endian.
149 Ret += "e";
150 else
151 // Big endian.
152 Ret += "E";
154 Ret += DataLayout::getManglingComponent(TT);
156 // Pointers are 32 bits and aligned to 32 bits.
157 Ret += "-p:32:32";
159 // Function pointers are aligned to 8 bits (because the LSB stores the
160 // ARM/Thumb state).
161 Ret += "-Fi8";
163 // ABIs other than APCS have 64 bit integers with natural alignment.
164 if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
165 Ret += "-i64:64";
167 // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
168 // bits, others to 64 bits. We always try to align to 64 bits.
169 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
170 Ret += "-f64:32:64";
172 // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
173 // to 64. We always ty to give them natural alignment.
174 if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
175 Ret += "-v64:32:64-v128:32:128";
176 else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
177 Ret += "-v128:64:128";
179 // Try to align aggregates to 32 bits (the default is 64 bits, which has no
180 // particular hardware support on 32-bit ARM).
181 Ret += "-a:0:32";
183 // Integer registers are 32 bits.
184 Ret += "-n32";
186 // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
187 // aligned everywhere else.
188 if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
189 Ret += "-S128";
190 else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
191 Ret += "-S64";
192 else
193 Ret += "-S32";
195 return Ret;
198 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
199 std::optional<Reloc::Model> RM) {
200 if (!RM)
201 // Default relocation model on Darwin is PIC.
202 return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
204 if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
205 assert(TT.isOSBinFormatELF() &&
206 "ROPI/RWPI currently only supported for ELF");
208 // DynamicNoPIC is only used on darwin.
209 if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
210 return Reloc::Static;
212 return *RM;
215 /// Create an ARM architecture model.
217 ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
218 StringRef CPU, StringRef FS,
219 const TargetOptions &Options,
220 std::optional<Reloc::Model> RM,
221 std::optional<CodeModel::Model> CM,
222 CodeGenOptLevel OL, bool isLittle)
223 : CodeGenTargetMachineImpl(T, computeDataLayout(TT, CPU, Options, isLittle),
224 TT, CPU, FS, Options,
225 getEffectiveRelocModel(TT, RM),
226 getEffectiveCodeModel(CM, CodeModel::Small), OL),
227 TargetABI(computeTargetABI(TT, CPU, Options)),
228 TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
230 // Default to triple-appropriate float ABI
231 if (Options.FloatABIType == FloatABI::Default) {
232 if (isTargetHardFloat())
233 this->Options.FloatABIType = FloatABI::Hard;
234 else
235 this->Options.FloatABIType = FloatABI::Soft;
238 // Default to triple-appropriate EABI
239 if (Options.EABIVersion == EABI::Default ||
240 Options.EABIVersion == EABI::Unknown) {
241 // musl is compatible with glibc with regard to EABI version
242 if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
243 TargetTriple.getEnvironment() == Triple::GNUEABIT64 ||
244 TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
245 TargetTriple.getEnvironment() == Triple::GNUEABIHFT64 ||
246 TargetTriple.getEnvironment() == Triple::MuslEABI ||
247 TargetTriple.getEnvironment() == Triple::MuslEABIHF ||
248 TargetTriple.getEnvironment() == Triple::OpenHOS) &&
249 !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
250 this->Options.EABIVersion = EABI::GNU;
251 else
252 this->Options.EABIVersion = EABI::EABI5;
255 if (TT.isOSBinFormatMachO()) {
256 this->Options.TrapUnreachable = true;
257 this->Options.NoTrapAfterNoreturn = true;
260 // ARM supports the debug entry values.
261 setSupportsDebugEntryValues(true);
263 initAsmInfo();
265 // ARM supports the MachineOutliner.
266 setMachineOutliner(true);
267 setSupportsDefaultOutlining(true);
270 ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
272 MachineFunctionInfo *ARMBaseTargetMachine::createMachineFunctionInfo(
273 BumpPtrAllocator &Allocator, const Function &F,
274 const TargetSubtargetInfo *STI) const {
275 return ARMFunctionInfo::create<ARMFunctionInfo>(
276 Allocator, F, static_cast<const ARMSubtarget *>(STI));
279 const ARMSubtarget *
280 ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
281 Attribute CPUAttr = F.getFnAttribute("target-cpu");
282 Attribute FSAttr = F.getFnAttribute("target-features");
284 std::string CPU =
285 CPUAttr.isValid() ? CPUAttr.getValueAsString().str() : TargetCPU;
286 std::string FS =
287 FSAttr.isValid() ? FSAttr.getValueAsString().str() : TargetFS;
289 // FIXME: This is related to the code below to reset the target options,
290 // we need to know whether or not the soft float flag is set on the
291 // function before we can generate a subtarget. We also need to use
292 // it as a key for the subtarget since that can be the only difference
293 // between two functions.
294 bool SoftFloat = F.getFnAttribute("use-soft-float").getValueAsBool();
295 // If the soft float attribute is set on the function turn on the soft float
296 // subtarget feature.
297 if (SoftFloat)
298 FS += FS.empty() ? "+soft-float" : ",+soft-float";
300 // Use the optminsize to identify the subtarget, but don't use it in the
301 // feature string.
302 std::string Key = CPU + FS;
303 if (F.hasMinSize())
304 Key += "+minsize";
306 auto &I = SubtargetMap[Key];
307 if (!I) {
308 // This needs to be done before we create a new subtarget since any
309 // creation will depend on the TM and the code generation flags on the
310 // function that reside in TargetOptions.
311 resetTargetOptions(F);
312 I = std::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle,
313 F.hasMinSize());
315 if (!I->isThumb() && !I->hasARMOps())
316 F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
317 "instructions, but the target does not support ARM mode execution.");
320 return I.get();
323 TargetTransformInfo
324 ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) const {
325 return TargetTransformInfo(ARMTTIImpl(this, F));
328 ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
329 StringRef CPU, StringRef FS,
330 const TargetOptions &Options,
331 std::optional<Reloc::Model> RM,
332 std::optional<CodeModel::Model> CM,
333 CodeGenOptLevel OL, bool JIT)
334 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
336 ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
337 StringRef CPU, StringRef FS,
338 const TargetOptions &Options,
339 std::optional<Reloc::Model> RM,
340 std::optional<CodeModel::Model> CM,
341 CodeGenOptLevel OL, bool JIT)
342 : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
344 namespace {
346 /// ARM Code Generator Pass Configuration Options.
347 class ARMPassConfig : public TargetPassConfig {
348 public:
349 ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
350 : TargetPassConfig(TM, PM) {}
352 ARMBaseTargetMachine &getARMTargetMachine() const {
353 return getTM<ARMBaseTargetMachine>();
356 ScheduleDAGInstrs *
357 createMachineScheduler(MachineSchedContext *C) const override {
358 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
359 // add DAG Mutations here.
360 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
361 if (ST.hasFusion())
362 DAG->addMutation(createARMMacroFusionDAGMutation());
363 return DAG;
366 ScheduleDAGInstrs *
367 createPostMachineScheduler(MachineSchedContext *C) const override {
368 ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
369 // add DAG Mutations here.
370 const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
371 if (ST.hasFusion())
372 DAG->addMutation(createARMMacroFusionDAGMutation());
373 if (auto Mutation = createARMLatencyMutations(ST, C->AA))
374 DAG->addMutation(std::move(Mutation));
375 return DAG;
378 void addIRPasses() override;
379 void addCodeGenPrepare() override;
380 bool addPreISel() override;
381 bool addInstSelector() override;
382 bool addIRTranslator() override;
383 bool addLegalizeMachineIR() override;
384 bool addRegBankSelect() override;
385 bool addGlobalInstructionSelect() override;
386 void addPreRegAlloc() override;
387 void addPreSched2() override;
388 void addPreEmitPass() override;
389 void addPreEmitPass2() override;
391 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
394 class ARMExecutionDomainFix : public ExecutionDomainFix {
395 public:
396 static char ID;
397 ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
398 StringRef getPassName() const override {
399 return "ARM Execution Domain Fix";
402 char ARMExecutionDomainFix::ID;
404 } // end anonymous namespace
406 INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
407 "ARM Execution Domain Fix", false, false)
408 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
409 INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
410 "ARM Execution Domain Fix", false, false)
412 TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
413 return new ARMPassConfig(*this, PM);
416 std::unique_ptr<CSEConfigBase> ARMPassConfig::getCSEConfig() const {
417 return getStandardCSEConfigForOpt(TM->getOptLevel());
420 void ARMPassConfig::addIRPasses() {
421 if (TM->Options.ThreadModel == ThreadModel::Single)
422 addPass(createLowerAtomicPass());
423 else
424 addPass(createAtomicExpandLegacyPass());
426 // Cmpxchg instructions are often used with a subsequent comparison to
427 // determine whether it succeeded. We can exploit existing control-flow in
428 // ldrex/strex loops to simplify this, but it needs tidying up.
429 if (TM->getOptLevel() != CodeGenOptLevel::None && EnableAtomicTidy)
430 addPass(createCFGSimplificationPass(
431 SimplifyCFGOptions().hoistCommonInsts(true).sinkCommonInsts(true),
432 [this](const Function &F) {
433 const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
434 return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
435 }));
437 addPass(createMVEGatherScatterLoweringPass());
438 addPass(createMVELaneInterleavingPass());
440 TargetPassConfig::addIRPasses();
442 // Run the parallel DSP pass.
443 if (getOptLevel() == CodeGenOptLevel::Aggressive)
444 addPass(createARMParallelDSPPass());
446 // Match complex arithmetic patterns
447 if (TM->getOptLevel() >= CodeGenOptLevel::Default)
448 addPass(createComplexDeinterleavingPass(TM));
450 // Match interleaved memory accesses to ldN/stN intrinsics.
451 if (TM->getOptLevel() != CodeGenOptLevel::None)
452 addPass(createInterleavedAccessPass());
454 // Add Control Flow Guard checks.
455 if (TM->getTargetTriple().isOSWindows())
456 addPass(createCFGuardCheckPass());
458 if (TM->Options.JMCInstrument)
459 addPass(createJMCInstrumenterPass());
462 void ARMPassConfig::addCodeGenPrepare() {
463 if (getOptLevel() != CodeGenOptLevel::None)
464 addPass(createTypePromotionLegacyPass());
465 TargetPassConfig::addCodeGenPrepare();
468 bool ARMPassConfig::addPreISel() {
469 if ((TM->getOptLevel() != CodeGenOptLevel::None &&
470 EnableGlobalMerge == cl::BOU_UNSET) ||
471 EnableGlobalMerge == cl::BOU_TRUE) {
472 // FIXME: This is using the thumb1 only constant value for
473 // maximal global offset for merging globals. We may want
474 // to look into using the old value for non-thumb1 code of
475 // 4095 based on the TargetMachine, but this starts to become
476 // tricky when doing code gen per function.
477 bool OnlyOptimizeForSize =
478 (TM->getOptLevel() < CodeGenOptLevel::Aggressive) &&
479 (EnableGlobalMerge == cl::BOU_UNSET);
480 // Merging of extern globals is enabled by default on non-Mach-O as we
481 // expect it to be generally either beneficial or harmless. On Mach-O it
482 // is disabled as we emit the .subsections_via_symbols directive which
483 // means that merging extern globals is not safe.
484 bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
485 addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
486 MergeExternalByDefault));
489 if (TM->getOptLevel() != CodeGenOptLevel::None) {
490 addPass(createHardwareLoopsLegacyPass());
491 addPass(createMVETailPredicationPass());
492 // FIXME: IR passes can delete address-taken basic blocks, deleting
493 // corresponding blockaddresses. ARMConstantPoolConstant holds references to
494 // address-taken basic blocks which can be invalidated if the function
495 // containing the blockaddress has already been codegen'd and the basic
496 // block is removed. Work around this by forcing all IR passes to run before
497 // any ISel takes place. We should have a more principled way of handling
498 // this. See D99707 for more details.
499 addPass(createBarrierNoopPass());
502 return false;
505 bool ARMPassConfig::addInstSelector() {
506 addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
507 return false;
510 bool ARMPassConfig::addIRTranslator() {
511 addPass(new IRTranslator(getOptLevel()));
512 return false;
515 bool ARMPassConfig::addLegalizeMachineIR() {
516 addPass(new Legalizer());
517 return false;
520 bool ARMPassConfig::addRegBankSelect() {
521 addPass(new RegBankSelect());
522 return false;
525 bool ARMPassConfig::addGlobalInstructionSelect() {
526 addPass(new InstructionSelect(getOptLevel()));
527 return false;
530 void ARMPassConfig::addPreRegAlloc() {
531 if (getOptLevel() != CodeGenOptLevel::None) {
532 if (getOptLevel() == CodeGenOptLevel::Aggressive)
533 addPass(&MachinePipelinerID);
535 addPass(createMVETPAndVPTOptimisationsPass());
537 addPass(createMLxExpansionPass());
539 if (EnableARMLoadStoreOpt)
540 addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
542 if (!DisableA15SDOptimization)
543 addPass(createA15SDOptimizerPass());
547 void ARMPassConfig::addPreSched2() {
548 if (getOptLevel() != CodeGenOptLevel::None) {
549 if (EnableARMLoadStoreOpt)
550 addPass(createARMLoadStoreOptimizationPass());
552 addPass(new ARMExecutionDomainFix());
553 addPass(createBreakFalseDeps());
556 // Expand some pseudo instructions into multiple instructions to allow
557 // proper scheduling.
558 addPass(createARMExpandPseudoPass());
560 if (getOptLevel() != CodeGenOptLevel::None) {
561 // When optimising for size, always run the Thumb2SizeReduction pass before
562 // IfConversion. Otherwise, check whether IT blocks are restricted
563 // (e.g. in v8, IfConversion depends on Thumb instruction widths)
564 addPass(createThumb2SizeReductionPass([this](const Function &F) {
565 return this->TM->getSubtarget<ARMSubtarget>(F).hasMinSize() ||
566 this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
567 }));
569 addPass(createIfConverter([](const MachineFunction &MF) {
570 return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
571 }));
573 addPass(createThumb2ITBlockPass());
575 // Add both scheduling passes to give the subtarget an opportunity to pick
576 // between them.
577 if (getOptLevel() != CodeGenOptLevel::None) {
578 addPass(&PostMachineSchedulerID);
579 addPass(&PostRASchedulerID);
582 addPass(createMVEVPTBlockPass());
583 addPass(createARMIndirectThunks());
584 addPass(createARMSLSHardeningPass());
587 void ARMPassConfig::addPreEmitPass() {
588 addPass(createThumb2SizeReductionPass());
590 // Constant island pass work on unbundled instructions.
591 addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
592 return MF.getSubtarget<ARMSubtarget>().isThumb2();
593 }));
595 // Don't optimize barriers or block placement at -O0.
596 if (getOptLevel() != CodeGenOptLevel::None) {
597 addPass(createARMBlockPlacementPass());
598 addPass(createARMOptimizeBarriersPass());
602 void ARMPassConfig::addPreEmitPass2() {
603 // Inserts fixup instructions before unsafe AES operations. Instructions may
604 // be inserted at the start of blocks and at within blocks so this pass has to
605 // come before those below.
606 addPass(createARMFixCortexA57AES1742098Pass());
607 // Inserts BTIs at the start of functions and indirectly-called basic blocks,
608 // so passes cannot add to the start of basic blocks once this has run.
609 addPass(createARMBranchTargetsPass());
610 // Inserts Constant Islands. Block sizes cannot be increased after this point,
611 // as this may push the branch ranges and load offsets of accessing constant
612 // pools out of range..
613 addPass(createARMConstantIslandPass());
614 // Finalises Low-Overhead Loops. This replaces pseudo instructions with real
615 // instructions, but the pseudos all have conservative sizes so that block
616 // sizes will only be decreased by this pass.
617 addPass(createARMLowOverheadLoopsPass());
619 if (TM->getTargetTriple().isOSWindows()) {
620 // Identify valid longjmp targets for Windows Control Flow Guard.
621 addPass(createCFGuardLongjmpPass());
622 // Identify valid eh continuation targets for Windows EHCont Guard.
623 addPass(createEHContGuardCatchretPass());
627 yaml::MachineFunctionInfo *
628 ARMBaseTargetMachine::createDefaultFuncInfoYAML() const {
629 return new yaml::ARMFunctionInfo();
632 yaml::MachineFunctionInfo *
633 ARMBaseTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
634 const auto *MFI = MF.getInfo<ARMFunctionInfo>();
635 return new yaml::ARMFunctionInfo(*MFI);
638 bool ARMBaseTargetMachine::parseMachineFunctionInfo(
639 const yaml::MachineFunctionInfo &MFI, PerFunctionMIParsingState &PFS,
640 SMDiagnostic &Error, SMRange &SourceRange) const {
641 const auto &YamlMFI = static_cast<const yaml::ARMFunctionInfo &>(MFI);
642 MachineFunction &MF = PFS.MF;
643 MF.getInfo<ARMFunctionInfo>()->initializeBaseYamlFields(YamlMFI);
644 return false;
647 void ARMBaseTargetMachine::reset() { SubtargetMap.clear(); }