[test] Pre-commit llvm.experimental.memset.pattern tests prior to MemoryLocation...
[llvm-project.git] / llvm / lib / Target / ARM / MCTargetDesc / ARMAddressingModes.h
blob28e5840fdde5b4842f38a7fd49a65e1df2c5d20a
1 //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM addressing mode implementation stuff.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
14 #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/bit.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
23 namespace llvm {
25 /// ARM_AM - ARM Addressing Mode Stuff
26 namespace ARM_AM {
27 enum ShiftOpc {
28 no_shift = 0,
29 asr,
30 lsl,
31 lsr,
32 ror,
33 rrx,
34 uxtw
37 enum AddrOpc {
38 sub = 0,
39 add
42 inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
44 inline const StringRef getShiftOpcStr(ShiftOpc Op) {
45 switch (Op) {
46 default: llvm_unreachable("Unknown shift opc!");
47 case ARM_AM::asr: return "asr";
48 case ARM_AM::lsl: return "lsl";
49 case ARM_AM::lsr: return "lsr";
50 case ARM_AM::ror: return "ror";
51 case ARM_AM::rrx: return "rrx";
52 case ARM_AM::uxtw: return "uxtw";
56 inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57 switch (Op) {
58 default: llvm_unreachable("Unknown shift opc!");
59 case ARM_AM::asr: return 2;
60 case ARM_AM::lsl: return 0;
61 case ARM_AM::lsr: return 1;
62 case ARM_AM::ror: return 3;
66 enum AMSubMode {
67 bad_am_submode = 0,
68 ia,
69 ib,
70 da,
74 inline const char *getAMSubModeStr(AMSubMode Mode) {
75 switch (Mode) {
76 default: llvm_unreachable("Unknown addressing sub-mode!");
77 case ARM_AM::ia: return "ia";
78 case ARM_AM::ib: return "ib";
79 case ARM_AM::da: return "da";
80 case ARM_AM::db: return "db";
84 //===--------------------------------------------------------------------===//
85 // Addressing Mode #1: shift_operand with registers
86 //===--------------------------------------------------------------------===//
88 // This 'addressing mode' is used for arithmetic instructions. It can
89 // represent things like:
90 // reg
91 // reg [asr|lsl|lsr|ror|rrx] reg
92 // reg [asr|lsl|lsr|ror|rrx] imm
94 // This is stored three operands [rega, regb, opc]. The first is the base
95 // reg, the second is the shift amount (or reg0 if not present or imm). The
96 // third operand encodes the shift opcode and the imm if a reg isn't present.
98 inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
99 return ShOp | (Imm << 3);
101 inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
102 inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
104 /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
105 /// the 8-bit imm value.
106 inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
107 /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
108 /// the rotate amount.
109 inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
111 /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
112 /// computing the rotate amount to use. If this immediate value cannot be
113 /// handled with a single shifter-op, determine a good rotate amount that will
114 /// take a maximal chunk of bits out of the immediate.
115 inline unsigned getSOImmValRotate(unsigned Imm) {
116 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
117 // of zero.
118 if ((Imm & ~255U) == 0) return 0;
120 // Use CTZ to compute the rotate amount.
121 unsigned TZ = llvm::countr_zero(Imm);
123 // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
124 // not 9.
125 unsigned RotAmt = TZ & ~1;
127 // If we can handle this spread, return it.
128 if ((llvm::rotr<uint32_t>(Imm, RotAmt) & ~255U) == 0)
129 return (32-RotAmt)&31; // HW rotates right, not left.
131 // For values like 0xF000000F, we should ignore the low 6 bits, then
132 // retry the hunt.
133 if (Imm & 63U) {
134 unsigned TZ2 = llvm::countr_zero(Imm & ~63U);
135 unsigned RotAmt2 = TZ2 & ~1;
136 if ((llvm::rotr<uint32_t>(Imm, RotAmt2) & ~255U) == 0)
137 return (32-RotAmt2)&31; // HW rotates right, not left.
140 // Otherwise, we have no way to cover this span of bits with a single
141 // shifter_op immediate. Return a chunk of bits that will be useful to
142 // handle.
143 return (32-RotAmt)&31; // HW rotates right, not left.
146 /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
147 /// into an shifter_operand immediate operand, return the 12-bit encoding for
148 /// it. If not, return -1.
149 inline int getSOImmVal(unsigned Arg) {
150 // 8-bit (or less) immediates are trivially shifter_operands with a rotate
151 // of zero.
152 if ((Arg & ~255U) == 0) return Arg;
154 unsigned RotAmt = getSOImmValRotate(Arg);
156 // If this cannot be handled with a single shifter_op, bail out.
157 if (llvm::rotr<uint32_t>(~255U, RotAmt) & Arg)
158 return -1;
160 // Encode this correctly.
161 return llvm::rotl<uint32_t>(Arg, RotAmt) | ((RotAmt >> 1) << 8);
164 /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
165 /// or'ing together two SOImmVal's.
166 inline bool isSOImmTwoPartVal(unsigned V) {
167 // If this can be handled with a single shifter_op, bail out.
168 V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
169 if (V == 0)
170 return false;
172 // If this can be handled with two shifter_op's, accept.
173 V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
174 return V == 0;
177 /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
178 /// return the first chunk of it.
179 inline unsigned getSOImmTwoPartFirst(unsigned V) {
180 return llvm::rotr<uint32_t>(255U, getSOImmValRotate(V)) & V;
183 /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
184 /// return the second chunk of it.
185 inline unsigned getSOImmTwoPartSecond(unsigned V) {
186 // Mask out the first hunk.
187 V = llvm::rotr<uint32_t>(~255U, getSOImmValRotate(V)) & V;
189 // Take what's left.
190 assert(V == (llvm::rotr<uint32_t>(255U, getSOImmValRotate(V)) & V));
191 return V;
194 /// isSOImmTwoPartValNeg - Return true if the specified value can be obtained
195 /// by two SOImmVal, that -V = First + Second.
196 /// "R+V" can be optimized to (sub (sub R, First), Second).
197 /// "R=V" can be optimized to (sub (mvn R, ~(-First)), Second).
198 inline bool isSOImmTwoPartValNeg(unsigned V) {
199 unsigned First;
200 if (!isSOImmTwoPartVal(-V))
201 return false;
202 // Return false if ~(-First) is not a SoImmval.
203 First = getSOImmTwoPartFirst(-V);
204 First = ~(-First);
205 return !(llvm::rotr<uint32_t>(~255U, getSOImmValRotate(First)) & First);
208 /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
209 /// by a left shift. Returns the shift amount to use.
210 inline unsigned getThumbImmValShift(unsigned Imm) {
211 // 8-bit (or less) immediates are trivially immediate operand with a shift
212 // of zero.
213 if ((Imm & ~255U) == 0) return 0;
215 // Use CTZ to compute the shift amount.
216 return llvm::countr_zero(Imm);
219 /// isThumbImmShiftedVal - Return true if the specified value can be obtained
220 /// by left shifting a 8-bit immediate.
221 inline bool isThumbImmShiftedVal(unsigned V) {
222 // If this can be handled with
223 V = (~255U << getThumbImmValShift(V)) & V;
224 return V == 0;
227 /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
228 /// by a left shift. Returns the shift amount to use.
229 inline unsigned getThumbImm16ValShift(unsigned Imm) {
230 // 16-bit (or less) immediates are trivially immediate operand with a shift
231 // of zero.
232 if ((Imm & ~65535U) == 0) return 0;
234 // Use CTZ to compute the shift amount.
235 return llvm::countr_zero(Imm);
238 /// isThumbImm16ShiftedVal - Return true if the specified value can be
239 /// obtained by left shifting a 16-bit immediate.
240 inline bool isThumbImm16ShiftedVal(unsigned V) {
241 // If this can be handled with
242 V = (~65535U << getThumbImm16ValShift(V)) & V;
243 return V == 0;
246 /// getThumbImmNonShiftedVal - If V is a value that satisfies
247 /// isThumbImmShiftedVal, return the non-shiftd value.
248 inline unsigned getThumbImmNonShiftedVal(unsigned V) {
249 return V >> getThumbImmValShift(V);
253 /// getT2SOImmValSplat - Return the 12-bit encoded representation
254 /// if the specified value can be obtained by splatting the low 8 bits
255 /// into every other byte or every byte of a 32-bit value. i.e.,
256 /// 00000000 00000000 00000000 abcdefgh control = 0
257 /// 00000000 abcdefgh 00000000 abcdefgh control = 1
258 /// abcdefgh 00000000 abcdefgh 00000000 control = 2
259 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
260 /// Return -1 if none of the above apply.
261 /// See ARM Reference Manual A6.3.2.
262 inline int getT2SOImmValSplatVal(unsigned V) {
263 unsigned u, Vs, Imm;
264 // control = 0
265 if ((V & 0xffffff00) == 0)
266 return V;
268 // If the value is zeroes in the first byte, just shift those off
269 Vs = ((V & 0xff) == 0) ? V >> 8 : V;
270 // Any passing value only has 8 bits of payload, splatted across the word
271 Imm = Vs & 0xff;
272 // Likewise, any passing values have the payload splatted into the 3rd byte
273 u = Imm | (Imm << 16);
275 // control = 1 or 2
276 if (Vs == u)
277 return (((Vs == V) ? 1 : 2) << 8) | Imm;
279 // control = 3
280 if (Vs == (u | (u << 8)))
281 return (3 << 8) | Imm;
283 return -1;
286 /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
287 /// specified value is a rotated 8-bit value. Return -1 if no rotation
288 /// encoding is possible.
289 /// See ARM Reference Manual A6.3.2.
290 inline int getT2SOImmValRotateVal(unsigned V) {
291 unsigned RotAmt = llvm::countl_zero(V);
292 if (RotAmt >= 24)
293 return -1;
295 // If 'Arg' can be handled with a single shifter_op return the value.
296 if ((llvm::rotr<uint32_t>(0xff000000U, RotAmt) & V) == V)
297 return (llvm::rotr<uint32_t>(V, 24 - RotAmt) & 0x7f) |
298 ((RotAmt + 8) << 7);
300 return -1;
303 /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
304 /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
305 /// encoding for it. If not, return -1.
306 /// See ARM Reference Manual A6.3.2.
307 inline int getT2SOImmVal(unsigned Arg) {
308 // If 'Arg' is an 8-bit splat, then get the encoded value.
309 int Splat = getT2SOImmValSplatVal(Arg);
310 if (Splat != -1)
311 return Splat;
313 // If 'Arg' can be handled with a single shifter_op return the value.
314 int Rot = getT2SOImmValRotateVal(Arg);
315 if (Rot != -1)
316 return Rot;
318 return -1;
321 inline unsigned getT2SOImmValRotate(unsigned V) {
322 if ((V & ~255U) == 0) return 0;
323 // Use CTZ to compute the rotate amount.
324 unsigned RotAmt = llvm::countr_zero(V);
325 return (32 - RotAmt) & 31;
328 inline bool isT2SOImmTwoPartVal(unsigned Imm) {
329 unsigned V = Imm;
330 // Passing values can be any combination of splat values and shifter
331 // values. If this can be handled with a single shifter or splat, bail
332 // out. Those should be handled directly, not with a two-part val.
333 if (getT2SOImmValSplatVal(V) != -1)
334 return false;
335 V = llvm::rotr<uint32_t>(~255U, getT2SOImmValRotate(V)) & V;
336 if (V == 0)
337 return false;
339 // If this can be handled as an immediate, accept.
340 if (getT2SOImmVal(V) != -1) return true;
342 // Likewise, try masking out a splat value first.
343 V = Imm;
344 if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
345 V &= ~0xff00ff00U;
346 else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
347 V &= ~0x00ff00ffU;
348 // If what's left can be handled as an immediate, accept.
349 if (getT2SOImmVal(V) != -1) return true;
351 // Otherwise, do not accept.
352 return false;
355 inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
356 assert (isT2SOImmTwoPartVal(Imm) &&
357 "Immedate cannot be encoded as two part immediate!");
358 // Try a shifter operand as one part
359 unsigned V = llvm::rotr<uint32_t>(~255, getT2SOImmValRotate(Imm)) & Imm;
360 // If the rest is encodable as an immediate, then return it.
361 if (getT2SOImmVal(V) != -1) return V;
363 // Try masking out a splat value first.
364 if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
365 return Imm & 0xff00ff00U;
367 // The other splat is all that's left as an option.
368 assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
369 return Imm & 0x00ff00ffU;
372 inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
373 // Mask out the first hunk
374 Imm ^= getT2SOImmTwoPartFirst(Imm);
375 // Return what's left
376 assert (getT2SOImmVal(Imm) != -1 &&
377 "Unable to encode second part of T2 two part SO immediate");
378 return Imm;
382 //===--------------------------------------------------------------------===//
383 // Addressing Mode #2
384 //===--------------------------------------------------------------------===//
386 // This is used for most simple load/store instructions.
388 // addrmode2 := reg +/- reg shop imm
389 // addrmode2 := reg +/- imm12
391 // The first operand is always a Reg. The second operand is a reg if in
392 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
393 // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
394 // fourth operand 16-17 encodes the index mode.
396 // If this addressing mode is a frame index (before prolog/epilog insertion
397 // and code rewriting), this operand will have the form: FI#, reg0, <offs>
398 // with no shift amount for the frame offset.
400 inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
401 unsigned IdxMode = 0) {
402 assert(Imm12 < (1 << 12) && "Imm too large!");
403 bool isSub = Opc == sub;
404 return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
406 inline unsigned getAM2Offset(unsigned AM2Opc) {
407 return AM2Opc & ((1 << 12)-1);
409 inline AddrOpc getAM2Op(unsigned AM2Opc) {
410 return ((AM2Opc >> 12) & 1) ? sub : add;
412 inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
413 return (ShiftOpc)((AM2Opc >> 13) & 7);
415 inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
417 //===--------------------------------------------------------------------===//
418 // Addressing Mode #3
419 //===--------------------------------------------------------------------===//
421 // This is used for sign-extending loads, and load/store-pair instructions.
423 // addrmode3 := reg +/- reg
424 // addrmode3 := reg +/- imm8
426 // The first operand is always a Reg. The second operand is a reg if in
427 // reg/reg form, otherwise it's reg#0. The third field encodes the operation
428 // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
429 // index mode.
431 /// getAM3Opc - This function encodes the addrmode3 opc field.
432 inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
433 unsigned IdxMode = 0) {
434 bool isSub = Opc == sub;
435 return ((int)isSub << 8) | Offset | (IdxMode << 9);
437 inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
438 inline AddrOpc getAM3Op(unsigned AM3Opc) {
439 return ((AM3Opc >> 8) & 1) ? sub : add;
441 inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
443 //===--------------------------------------------------------------------===//
444 // Addressing Mode #4
445 //===--------------------------------------------------------------------===//
447 // This is used for load / store multiple instructions.
449 // addrmode4 := reg, <mode>
451 // The four modes are:
452 // IA - Increment after
453 // IB - Increment before
454 // DA - Decrement after
455 // DB - Decrement before
456 // For VFP instructions, only the IA and DB modes are valid.
458 inline AMSubMode getAM4SubMode(unsigned Mode) {
459 return (AMSubMode)(Mode & 0x7);
462 inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
464 //===--------------------------------------------------------------------===//
465 // Addressing Mode #5
466 //===--------------------------------------------------------------------===//
468 // This is used for coprocessor instructions, such as FP load/stores.
470 // addrmode5 := reg +/- imm8*4
472 // The first operand is always a Reg. The second operand encodes the
473 // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
475 /// getAM5Opc - This function encodes the addrmode5 opc field.
476 inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
477 bool isSub = Opc == sub;
478 return ((int)isSub << 8) | Offset;
480 inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
481 inline AddrOpc getAM5Op(unsigned AM5Opc) {
482 return ((AM5Opc >> 8) & 1) ? sub : add;
485 //===--------------------------------------------------------------------===//
486 // Addressing Mode #5 FP16
487 //===--------------------------------------------------------------------===//
489 // This is used for coprocessor instructions, such as 16-bit FP load/stores.
491 // addrmode5fp16 := reg +/- imm8*2
493 // The first operand is always a Reg. The second operand encodes the
494 // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
496 /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
497 inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
498 bool isSub = Opc == sub;
499 return ((int)isSub << 8) | Offset;
501 inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
502 return AM5Opc & 0xFF;
504 inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
505 return ((AM5Opc >> 8) & 1) ? sub : add;
508 //===--------------------------------------------------------------------===//
509 // Addressing Mode #6
510 //===--------------------------------------------------------------------===//
512 // This is used for NEON load / store instructions.
514 // addrmode6 := reg with optional alignment
516 // This is stored in two operands [regaddr, align]. The first is the
517 // address register. The second operand is the value of the alignment
518 // specifier in bytes or zero if no explicit alignment.
519 // Valid alignments depend on the specific instruction.
521 //===--------------------------------------------------------------------===//
522 // NEON/MVE Modified Immediates
523 //===--------------------------------------------------------------------===//
525 // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
526 // vector operand, where a small immediate encoded in the instruction
527 // specifies a full NEON vector value. These modified immediates are
528 // represented here as encoded integers. The low 8 bits hold the immediate
529 // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
530 // the "Cmode" field of the instruction. The interfaces below treat the
531 // Op and Cmode values as a single 5-bit value.
533 inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
534 return (OpCmode << 8) | Val;
536 inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
537 return (ModImm >> 8) & 0x1f;
539 inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }
541 /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
542 /// element value and the element size in bits. (If the element size is
543 /// smaller than the vector, it is splatted into all the elements.)
544 inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
545 unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
546 unsigned Imm8 = getVMOVModImmVal(ModImm);
547 uint64_t Val = 0;
549 if (OpCmode == 0xe) {
550 // 8-bit vector elements
551 Val = Imm8;
552 EltBits = 8;
553 } else if ((OpCmode & 0xc) == 0x8) {
554 // 16-bit vector elements
555 unsigned ByteNum = (OpCmode & 0x6) >> 1;
556 Val = Imm8 << (8 * ByteNum);
557 EltBits = 16;
558 } else if ((OpCmode & 0x8) == 0) {
559 // 32-bit vector elements, zero with one byte set
560 unsigned ByteNum = (OpCmode & 0x6) >> 1;
561 Val = Imm8 << (8 * ByteNum);
562 EltBits = 32;
563 } else if ((OpCmode & 0xe) == 0xc) {
564 // 32-bit vector elements, one byte with low bits set
565 unsigned ByteNum = 1 + (OpCmode & 0x1);
566 Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
567 EltBits = 32;
568 } else if (OpCmode == 0x1e) {
569 // 64-bit vector elements
570 for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
571 if ((ModImm >> ByteNum) & 1)
572 Val |= (uint64_t)0xff << (8 * ByteNum);
574 EltBits = 64;
575 } else {
576 llvm_unreachable("Unsupported VMOV immediate");
578 return Val;
581 // Generic validation for single-byte immediate (0X00, 00X0, etc).
582 inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
583 assert(Size >= 1 && Size <= 4 && "Invalid size");
584 unsigned count = 0;
585 for (unsigned i = 0; i < Size; ++i) {
586 if (Value & 0xff) count++;
587 Value >>= 8;
589 return count == 1;
592 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
593 inline bool isNEONi16splat(unsigned Value) {
594 if (Value > 0xffff)
595 return false;
596 // i16 value with set bits only in one byte X0 or 0X.
597 return Value == 0 || isNEONBytesplat(Value, 2);
600 // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
601 inline unsigned encodeNEONi16splat(unsigned Value) {
602 assert(isNEONi16splat(Value) && "Invalid NEON splat value");
603 if (Value >= 0x100)
604 Value = (Value >> 8) | 0xa00;
605 else
606 Value |= 0x800;
607 return Value;
610 /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
611 inline bool isNEONi32splat(unsigned Value) {
612 // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
613 return Value == 0 || isNEONBytesplat(Value, 4);
616 /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
617 inline unsigned encodeNEONi32splat(unsigned Value) {
618 assert(isNEONi32splat(Value) && "Invalid NEON splat value");
619 if (Value >= 0x100 && Value <= 0xff00)
620 Value = (Value >> 8) | 0x200;
621 else if (Value > 0xffff && Value <= 0xff0000)
622 Value = (Value >> 16) | 0x400;
623 else if (Value > 0xffffff)
624 Value = (Value >> 24) | 0x600;
625 return Value;
628 //===--------------------------------------------------------------------===//
629 // Floating-point Immediates
631 inline float getFPImmFloat(unsigned Imm) {
632 // We expect an 8-bit binary encoding of a floating-point number here.
634 uint8_t Sign = (Imm >> 7) & 0x1;
635 uint8_t Exp = (Imm >> 4) & 0x7;
636 uint8_t Mantissa = Imm & 0xf;
638 // 8-bit FP IEEE Float Encoding
639 // abcd efgh aBbbbbbc defgh000 00000000 00000000
641 // where B = NOT(b);
642 uint32_t I = 0;
643 I |= Sign << 31;
644 I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
645 I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
646 I |= (Exp & 0x3) << 23;
647 I |= Mantissa << 19;
648 return bit_cast<float>(I);
651 /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
652 /// floating-point value. If the value cannot be represented as an 8-bit
653 /// floating-point value, then return -1.
654 inline int getFP16Imm(const APInt &Imm) {
655 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
656 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
657 int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
659 // We can handle 4 bits of mantissa.
660 // mantissa = (16+UInt(e:f:g:h))/16.
661 if (Mantissa & 0x3f)
662 return -1;
663 Mantissa >>= 6;
665 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
666 if (Exp < -3 || Exp > 4)
667 return -1;
668 Exp = ((Exp+3) & 0x7) ^ 4;
670 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
673 inline int getFP16Imm(const APFloat &FPImm) {
674 return getFP16Imm(FPImm.bitcastToAPInt());
677 /// If this is a FP16Imm encoded as a fp32 value, return the 8-bit encoding
678 /// for it. Otherwise return -1 like getFP16Imm.
679 inline int getFP32FP16Imm(const APInt &Imm) {
680 if (Imm.getActiveBits() > 16)
681 return -1;
682 return ARM_AM::getFP16Imm(Imm.trunc(16));
685 inline int getFP32FP16Imm(const APFloat &FPImm) {
686 return getFP32FP16Imm(FPImm.bitcastToAPInt());
689 /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
690 /// floating-point value. If the value cannot be represented as an 8-bit
691 /// floating-point value, then return -1.
692 inline int getFP32Imm(const APInt &Imm) {
693 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
694 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
695 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
697 // We can handle 4 bits of mantissa.
698 // mantissa = (16+UInt(e:f:g:h))/16.
699 if (Mantissa & 0x7ffff)
700 return -1;
701 Mantissa >>= 19;
702 if ((Mantissa & 0xf) != Mantissa)
703 return -1;
705 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
706 if (Exp < -3 || Exp > 4)
707 return -1;
708 Exp = ((Exp+3) & 0x7) ^ 4;
710 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
713 inline int getFP32Imm(const APFloat &FPImm) {
714 return getFP32Imm(FPImm.bitcastToAPInt());
717 /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
718 /// floating-point value. If the value cannot be represented as an 8-bit
719 /// floating-point value, then return -1.
720 inline int getFP64Imm(const APInt &Imm) {
721 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
722 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
723 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
725 // We can handle 4 bits of mantissa.
726 // mantissa = (16+UInt(e:f:g:h))/16.
727 if (Mantissa & 0xffffffffffffULL)
728 return -1;
729 Mantissa >>= 48;
730 if ((Mantissa & 0xf) != Mantissa)
731 return -1;
733 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
734 if (Exp < -3 || Exp > 4)
735 return -1;
736 Exp = ((Exp+3) & 0x7) ^ 4;
738 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
741 inline int getFP64Imm(const APFloat &FPImm) {
742 return getFP64Imm(FPImm.bitcastToAPInt());
745 } // end namespace ARM_AM
746 } // end namespace llvm
748 #endif