1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "MCTargetDesc/ARMAsmBackend.h"
10 #include "MCTargetDesc/ARMAddressingModes.h"
11 #include "MCTargetDesc/ARMAsmBackendDarwin.h"
12 #include "MCTargetDesc/ARMAsmBackendELF.h"
13 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
14 #include "MCTargetDesc/ARMFixupKinds.h"
15 #include "MCTargetDesc/ARMMCTargetDesc.h"
16 #include "llvm/ADT/StringSwitch.h"
17 #include "llvm/BinaryFormat/ELF.h"
18 #include "llvm/BinaryFormat/MachO.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAssembler.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDirectives.h"
23 #include "llvm/MC/MCELFObjectWriter.h"
24 #include "llvm/MC/MCExpr.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCObjectWriter.h"
27 #include "llvm/MC/MCRegisterInfo.h"
28 #include "llvm/MC/MCSubtargetInfo.h"
29 #include "llvm/MC/MCTargetOptions.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/EndianStream.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
39 class ARMELFObjectWriter
: public MCELFObjectTargetWriter
{
41 ARMELFObjectWriter(uint8_t OSABI
)
42 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI
, ELF::EM_ARM
,
43 /*HasRelocationAddend*/ false) {}
45 } // end anonymous namespace
47 std::optional
<MCFixupKind
> ARMAsmBackend::getFixupKind(StringRef Name
) const {
51 std::optional
<MCFixupKind
>
52 ARMAsmBackendELF::getFixupKind(StringRef Name
) const {
53 unsigned Type
= llvm::StringSwitch
<unsigned>(Name
)
54 #define ELF_RELOC(X, Y) .Case(#X, Y)
55 #include "llvm/BinaryFormat/ELFRelocs/ARM.def"
57 .Case("BFD_RELOC_NONE", ELF::R_ARM_NONE
)
58 .Case("BFD_RELOC_8", ELF::R_ARM_ABS8
)
59 .Case("BFD_RELOC_16", ELF::R_ARM_ABS16
)
60 .Case("BFD_RELOC_32", ELF::R_ARM_ABS32
)
64 return static_cast<MCFixupKind
>(FirstLiteralRelocationKind
+ Type
);
67 const MCFixupKindInfo
&ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind
) const {
68 const static MCFixupKindInfo InfosLE
[ARM::NumTargetFixupKinds
] = {
69 // This table *must* be in the order that the fixup_* kinds are defined in
72 // Name Offset (bits) Size (bits) Flags
73 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
74 {"fixup_t2_ldst_pcrel_12", 0, 32,
75 MCFixupKindInfo::FKF_IsPCRel
|
76 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
77 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
78 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
79 {"fixup_t2_pcrel_10", 0, 32,
80 MCFixupKindInfo::FKF_IsPCRel
|
81 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
82 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
83 {"fixup_t2_pcrel_9", 0, 32,
84 MCFixupKindInfo::FKF_IsPCRel
|
85 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
86 {"fixup_arm_ldst_abs_12", 0, 32, 0},
87 {"fixup_thumb_adr_pcrel_10", 0, 8,
88 MCFixupKindInfo::FKF_IsPCRel
|
89 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
90 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
91 {"fixup_t2_adr_pcrel_12", 0, 32,
92 MCFixupKindInfo::FKF_IsPCRel
|
93 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
94 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
95 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
96 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
97 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
98 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
99 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
100 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
101 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel
},
102 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
103 {"fixup_arm_thumb_blx", 0, 32,
104 MCFixupKindInfo::FKF_IsPCRel
|
105 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
106 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
107 {"fixup_arm_thumb_cp", 0, 8,
108 MCFixupKindInfo::FKF_IsPCRel
|
109 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
110 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel
},
111 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
113 {"fixup_arm_movt_hi16", 0, 20, 0},
114 {"fixup_arm_movw_lo16", 0, 20, 0},
115 {"fixup_t2_movt_hi16", 0, 20, 0},
116 {"fixup_t2_movw_lo16", 0, 20, 0},
117 {"fixup_arm_thumb_upper_8_15", 0, 8, 0},
118 {"fixup_arm_thumb_upper_0_7", 0, 8, 0},
119 {"fixup_arm_thumb_lower_8_15", 0, 8, 0},
120 {"fixup_arm_thumb_lower_0_7", 0, 8, 0},
121 {"fixup_arm_mod_imm", 0, 12, 0},
122 {"fixup_t2_so_imm", 0, 26, 0},
123 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
124 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
125 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
126 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
127 {"fixup_bfcsel_else_target", 0, 32, 0},
128 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
129 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel
}};
130 const static MCFixupKindInfo InfosBE
[ARM::NumTargetFixupKinds
] = {
131 // This table *must* be in the order that the fixup_* kinds are defined in
134 // Name Offset (bits) Size (bits) Flags
135 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
136 {"fixup_t2_ldst_pcrel_12", 0, 32,
137 MCFixupKindInfo::FKF_IsPCRel
|
138 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
139 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
140 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
141 {"fixup_t2_pcrel_10", 0, 32,
142 MCFixupKindInfo::FKF_IsPCRel
|
143 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
144 {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
145 {"fixup_t2_pcrel_9", 0, 32,
146 MCFixupKindInfo::FKF_IsPCRel
|
147 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
148 {"fixup_arm_ldst_abs_12", 0, 32, 0},
149 {"fixup_thumb_adr_pcrel_10", 8, 8,
150 MCFixupKindInfo::FKF_IsPCRel
|
151 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
152 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
153 {"fixup_t2_adr_pcrel_12", 0, 32,
154 MCFixupKindInfo::FKF_IsPCRel
|
155 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
156 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
157 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
158 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
159 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
160 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
161 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
162 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
163 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel
},
164 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
165 {"fixup_arm_thumb_blx", 0, 32,
166 MCFixupKindInfo::FKF_IsPCRel
|
167 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
168 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel
},
169 {"fixup_arm_thumb_cp", 8, 8,
170 MCFixupKindInfo::FKF_IsPCRel
|
171 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits
},
172 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel
},
173 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
175 {"fixup_arm_movt_hi16", 12, 20, 0},
176 {"fixup_arm_movw_lo16", 12, 20, 0},
177 {"fixup_t2_movt_hi16", 12, 20, 0},
178 {"fixup_t2_movw_lo16", 12, 20, 0},
179 {"fixup_arm_thumb_upper_8_15", 24, 8, 0},
180 {"fixup_arm_thumb_upper_0_7", 24, 8, 0},
181 {"fixup_arm_thumb_lower_8_15", 24, 8, 0},
182 {"fixup_arm_thumb_lower_0_7", 24, 8, 0},
183 {"fixup_arm_mod_imm", 20, 12, 0},
184 {"fixup_t2_so_imm", 26, 6, 0},
185 {"fixup_bf_branch", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
186 {"fixup_bf_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
187 {"fixup_bfl_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
188 {"fixup_bfc_target", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
189 {"fixup_bfcsel_else_target", 0, 32, 0},
190 {"fixup_wls", 0, 32, MCFixupKindInfo::FKF_IsPCRel
},
191 {"fixup_le", 0, 32, MCFixupKindInfo::FKF_IsPCRel
}};
193 // Fixup kinds from .reloc directive are like R_ARM_NONE. They do not require
194 // any extra processing.
195 if (Kind
>= FirstLiteralRelocationKind
)
196 return MCAsmBackend::getFixupKindInfo(FK_NONE
);
198 if (Kind
< FirstTargetFixupKind
)
199 return MCAsmBackend::getFixupKindInfo(Kind
);
201 assert(unsigned(Kind
- FirstTargetFixupKind
) < getNumFixupKinds() &&
203 return (Endian
== llvm::endianness::little
205 : InfosBE
)[Kind
- FirstTargetFixupKind
];
208 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag
) {
221 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op
,
222 const MCSubtargetInfo
&STI
) const {
223 bool HasThumb2
= STI
.hasFeature(ARM::FeatureThumb2
);
224 bool HasV8MBaselineOps
= STI
.hasFeature(ARM::HasV8MBaselineOps
);
230 return HasThumb2
? (unsigned)ARM::t2Bcc
: Op
;
232 return HasThumb2
? (unsigned)ARM::t2LDRpci
: Op
;
234 return HasThumb2
? (unsigned)ARM::t2ADR
: Op
;
236 return HasV8MBaselineOps
? (unsigned)ARM::t2B
: Op
;
244 bool ARMAsmBackend::mayNeedRelaxation(const MCInst
&Inst
,
245 const MCSubtargetInfo
&STI
) const {
246 if (getRelaxedOpcode(Inst
.getOpcode(), STI
) != Inst
.getOpcode())
251 static const char *checkPCRelOffset(uint64_t Value
, int64_t Min
, int64_t Max
) {
252 int64_t Offset
= int64_t(Value
) - 4;
253 if (Offset
< Min
|| Offset
> Max
)
254 return "out of range pc-relative fixup value";
258 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup
&Fixup
,
259 uint64_t Value
) const {
260 switch (Fixup
.getTargetKind()) {
261 case ARM::fixup_arm_thumb_br
: {
262 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
263 // low bit being an implied zero. There's an implied +4 offset for the
264 // branch, so we adjust the other way here to determine what's
267 // Relax if the value is too big for a (signed) i8.
268 int64_t Offset
= int64_t(Value
) - 4;
269 if (Offset
> 2046 || Offset
< -2048)
270 return "out of range pc-relative fixup value";
273 case ARM::fixup_arm_thumb_bcc
: {
274 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
275 // low bit being an implied zero. There's an implied +4 offset for the
276 // branch, so we adjust the other way here to determine what's
279 // Relax if the value is too big for a (signed) i8.
280 int64_t Offset
= int64_t(Value
) - 4;
281 if (Offset
> 254 || Offset
< -256)
282 return "out of range pc-relative fixup value";
285 case ARM::fixup_thumb_adr_pcrel_10
:
286 case ARM::fixup_arm_thumb_cp
: {
287 // If the immediate is negative, greater than 1020, or not a multiple
288 // of four, the wide version of the instruction must be used.
289 int64_t Offset
= int64_t(Value
) - 4;
291 return "misaligned pc-relative fixup value";
292 else if (Offset
> 1020 || Offset
< 0)
293 return "out of range pc-relative fixup value";
296 case ARM::fixup_arm_thumb_cb
: {
297 // If we have a Thumb CBZ or CBNZ instruction and its target is the next
298 // instruction it is actually out of range for the instruction.
299 // It will be changed to a NOP.
300 int64_t Offset
= (Value
& ~1);
302 return "will be converted to nop";
305 case ARM::fixup_bf_branch
:
306 return checkPCRelOffset(Value
, 0, 30);
307 case ARM::fixup_bf_target
:
308 return checkPCRelOffset(Value
, -0x10000, +0xfffe);
309 case ARM::fixup_bfl_target
:
310 return checkPCRelOffset(Value
, -0x40000, +0x3fffe);
311 case ARM::fixup_bfc_target
:
312 return checkPCRelOffset(Value
, -0x1000, +0xffe);
314 return checkPCRelOffset(Value
, 0, +0xffe);
316 // The offset field in the LE and LETP instructions is an 11-bit
317 // value shifted left by 2 (i.e. 0,2,4,...,4094), and it is
318 // interpreted as a negative offset from the value read from pc,
319 // i.e. from instruction_address+4.
321 // So an LE instruction can in principle address the instruction
322 // immediately after itself, or (not very usefully) the address
323 // half way through the 4-byte LE.
324 return checkPCRelOffset(Value
, -0xffe, 0);
325 case ARM::fixup_bfcsel_else_target
: {
326 if (Value
!= 2 && Value
!= 4)
327 return "out of range label-relative fixup value";
332 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
337 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup
&Fixup
,
338 uint64_t Value
) const {
339 return reasonForFixupRelaxation(Fixup
, Value
);
342 void ARMAsmBackend::relaxInstruction(MCInst
&Inst
,
343 const MCSubtargetInfo
&STI
) const {
344 unsigned RelaxedOp
= getRelaxedOpcode(Inst
.getOpcode(), STI
);
346 // Return a diagnostic if we get here w/ a bogus instruction.
347 if (RelaxedOp
== Inst
.getOpcode()) {
348 SmallString
<256> Tmp
;
349 raw_svector_ostream
OS(Tmp
);
350 Inst
.dump_pretty(OS
);
352 report_fatal_error("unexpected instruction to relax: " + OS
.str());
355 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
356 // have to change the operands too.
357 if ((Inst
.getOpcode() == ARM::tCBZ
|| Inst
.getOpcode() == ARM::tCBNZ
) &&
358 RelaxedOp
== ARM::tHINT
) {
360 Res
.setOpcode(RelaxedOp
);
361 Res
.addOperand(MCOperand::createImm(0));
362 Res
.addOperand(MCOperand::createImm(14));
363 Res
.addOperand(MCOperand::createReg(0));
364 Inst
= std::move(Res
);
368 // The rest of instructions we're relaxing have the same operands.
369 // We just need to update to the proper opcode.
370 Inst
.setOpcode(RelaxedOp
);
373 bool ARMAsmBackend::writeNopData(raw_ostream
&OS
, uint64_t Count
,
374 const MCSubtargetInfo
*STI
) const {
375 const uint16_t Thumb1_16bitNopEncoding
= 0x46c0; // using MOV r8,r8
376 const uint16_t Thumb2_16bitNopEncoding
= 0xbf00; // NOP
377 const uint32_t ARMv4_NopEncoding
= 0xe1a00000; // using MOV r0,r0
378 const uint32_t ARMv6T2_NopEncoding
= 0xe320f000; // NOP
380 const uint16_t nopEncoding
=
381 hasNOP(STI
) ? Thumb2_16bitNopEncoding
: Thumb1_16bitNopEncoding
;
382 uint64_t NumNops
= Count
/ 2;
383 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
384 support::endian::write(OS
, nopEncoding
, Endian
);
390 const uint32_t nopEncoding
=
391 hasNOP(STI
) ? ARMv6T2_NopEncoding
: ARMv4_NopEncoding
;
392 uint64_t NumNops
= Count
/ 4;
393 for (uint64_t i
= 0; i
!= NumNops
; ++i
)
394 support::endian::write(OS
, nopEncoding
, Endian
);
395 // FIXME: should this function return false when unable to write exactly
396 // 'Count' bytes with NOP encodings?
399 break; // No leftover bytes to write
407 OS
.write("\0\0\xa0", 3);
414 static uint32_t swapHalfWords(uint32_t Value
, bool IsLittleEndian
) {
415 if (IsLittleEndian
) {
416 // Note that the halfwords are stored high first and low second in thumb;
417 // so we need to swap the fixup value here to map properly.
418 uint32_t Swapped
= (Value
& 0xFFFF0000) >> 16;
419 Swapped
|= (Value
& 0x0000FFFF) << 16;
425 static uint32_t joinHalfWords(uint32_t FirstHalf
, uint32_t SecondHalf
,
426 bool IsLittleEndian
) {
429 if (IsLittleEndian
) {
430 Value
= (SecondHalf
& 0xFFFF) << 16;
431 Value
|= (FirstHalf
& 0xFFFF);
433 Value
= (SecondHalf
& 0xFFFF);
434 Value
|= (FirstHalf
& 0xFFFF) << 16;
440 unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler
&Asm
,
441 const MCFixup
&Fixup
,
442 const MCValue
&Target
, uint64_t Value
,
443 bool IsResolved
, MCContext
&Ctx
,
444 const MCSubtargetInfo
* STI
) const {
445 unsigned Kind
= Fixup
.getKind();
446 int64_t Addend
= Target
.getConstant();
448 // For MOVW/MOVT Instructions, the fixup value must already be within a
449 // signed 16bit range.
450 if ((Kind
== ARM::fixup_arm_movw_lo16
|| Kind
== ARM::fixup_arm_movt_hi16
||
451 Kind
== ARM::fixup_t2_movw_lo16
|| Kind
== ARM::fixup_t2_movt_hi16
) &&
452 (Addend
< minIntN(16) || Addend
> maxIntN(16))) {
453 Ctx
.reportError(Fixup
.getLoc(), "Relocation Not In Range");
457 // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
458 // and .word relocations they put the Thumb bit into the addend if possible.
459 // Other relocation types don't want this bit though (branches couldn't encode
460 // it if it *was* present, and no other relocations exist) and it can
461 // interfere with checking valid expressions.
462 if (const MCSymbolRefExpr
*A
= Target
.getSymA()) {
463 if (A
->hasSubsectionsViaSymbols() && Asm
.isThumbFunc(&A
->getSymbol()) &&
464 A
->getSymbol().isExternal() &&
465 (Kind
== FK_Data_4
|| Kind
== ARM::fixup_arm_movw_lo16
||
466 Kind
== ARM::fixup_arm_movt_hi16
|| Kind
== ARM::fixup_t2_movw_lo16
||
467 Kind
== ARM::fixup_t2_movt_hi16
))
482 case ARM::fixup_arm_movt_hi16
:
483 assert(STI
!= nullptr);
484 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
487 case ARM::fixup_arm_movw_lo16
: {
488 unsigned Hi4
= (Value
& 0xF000) >> 12;
489 unsigned Lo12
= Value
& 0x0FFF;
490 // inst{19-16} = Hi4;
491 // inst{11-0} = Lo12;
492 Value
= (Hi4
<< 16) | (Lo12
);
495 case ARM::fixup_t2_movt_hi16
:
496 assert(STI
!= nullptr);
497 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
500 case ARM::fixup_t2_movw_lo16
: {
501 unsigned Hi4
= (Value
& 0xF000) >> 12;
502 unsigned i
= (Value
& 0x800) >> 11;
503 unsigned Mid3
= (Value
& 0x700) >> 8;
504 unsigned Lo8
= Value
& 0x0FF;
505 // inst{19-16} = Hi4;
507 // inst{14-12} = Mid3;
509 Value
= (Hi4
<< 16) | (i
<< 26) | (Mid3
<< 12) | (Lo8
);
510 return swapHalfWords(Value
, Endian
== llvm::endianness::little
);
512 case ARM::fixup_arm_thumb_upper_8_15
:
513 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
514 return (Value
& 0xff000000) >> 24;
516 case ARM::fixup_arm_thumb_upper_0_7
:
517 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
518 return (Value
& 0x00ff0000) >> 16;
520 case ARM::fixup_arm_thumb_lower_8_15
:
521 if (IsResolved
|| !STI
->getTargetTriple().isOSBinFormatELF())
522 return (Value
& 0x0000ff00) >> 8;
524 case ARM::fixup_arm_thumb_lower_0_7
:
525 return Value
& 0x000000ff;
526 case ARM::fixup_arm_ldst_pcrel_12
:
527 // ARM PC-relative values are offset by 8.
530 case ARM::fixup_t2_ldst_pcrel_12
:
531 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
534 case ARM::fixup_arm_ldst_abs_12
: {
536 if ((int64_t)Value
< 0) {
541 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
544 Value
|= isAdd
<< 23;
546 // Same addressing mode as fixup_arm_pcrel_10,
547 // but with 16-bit halfwords swapped.
548 if (Kind
== ARM::fixup_t2_ldst_pcrel_12
)
549 return swapHalfWords(Value
, Endian
== llvm::endianness::little
);
553 case ARM::fixup_arm_adr_pcrel_12
: {
554 // ARM PC-relative values are offset by 8.
556 unsigned opc
= 4; // bits {24-21}. Default to add: 0b0100
557 if ((int64_t)Value
< 0) {
561 if (ARM_AM::getSOImmVal(Value
) == -1) {
562 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
565 // Encode the immediate and shift the opcode into place.
566 return ARM_AM::getSOImmVal(Value
) | (opc
<< 21);
569 case ARM::fixup_t2_adr_pcrel_12
: {
572 if ((int64_t)Value
< 0) {
577 uint32_t out
= (opc
<< 21);
578 out
|= (Value
& 0x800) << 15;
579 out
|= (Value
& 0x700) << 4;
580 out
|= (Value
& 0x0FF);
582 return swapHalfWords(out
, Endian
== llvm::endianness::little
);
585 case ARM::fixup_arm_condbranch
:
586 case ARM::fixup_arm_uncondbranch
:
587 case ARM::fixup_arm_uncondbl
:
588 case ARM::fixup_arm_condbl
:
589 case ARM::fixup_arm_blx
:
590 // Check that the relocation value is legal.
592 if (!isInt
<26>(Value
)) {
593 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
596 // Alignment differs for blx. Because we are switching to thumb ISA, we use
597 // 16-bit alignment. Otherwise, use 32-bit.
598 if ((Kind
== ARM::fixup_arm_blx
&& Value
% 2 != 0) ||
599 (Kind
!= ARM::fixup_arm_blx
&& Value
% 4 != 0)) {
600 Ctx
.reportError(Fixup
.getLoc(), "Relocation not aligned");
604 // These values don't encode the low two bits since they're always zero.
605 // Offset by 8 just as above.
606 if (const MCSymbolRefExpr
*SRE
=
607 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
608 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
610 return 0xffffff & (Value
>> 2);
611 case ARM::fixup_t2_uncondbranch
: {
612 if (STI
->getTargetTriple().isOSBinFormatCOFF() && !IsResolved
&&
614 // MSVC link.exe and lld do not support this relocation type
615 // with a non-zero offset. ("Value" is offset by 4 at this point.)
616 Ctx
.reportError(Fixup
.getLoc(),
617 "cannot perform a PC-relative fixup with a non-zero "
621 if (!isInt
<25>(Value
)) {
622 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
626 Value
>>= 1; // Low bit is not encoded.
629 bool I
= Value
& 0x800000;
630 bool J1
= Value
& 0x400000;
631 bool J2
= Value
& 0x200000;
635 out
|= I
<< 26; // S bit
636 out
|= !J1
<< 13; // J1 bit
637 out
|= !J2
<< 11; // J2 bit
638 out
|= (Value
& 0x1FF800) << 5; // imm6 field
639 out
|= (Value
& 0x0007FF); // imm11 field
641 return swapHalfWords(out
, Endian
== llvm::endianness::little
);
643 case ARM::fixup_t2_condbranch
: {
645 if (!isInt
<21>(Value
)) {
646 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
650 Value
>>= 1; // Low bit is not encoded.
653 out
|= (Value
& 0x80000) << 7; // S bit
654 out
|= (Value
& 0x40000) >> 7; // J2 bit
655 out
|= (Value
& 0x20000) >> 4; // J1 bit
656 out
|= (Value
& 0x1F800) << 5; // imm6 field
657 out
|= (Value
& 0x007FF); // imm11 field
659 return swapHalfWords(out
, Endian
== llvm::endianness::little
);
661 case ARM::fixup_arm_thumb_bl
: {
662 if (!isInt
<25>(Value
- 4) ||
663 (!STI
->hasFeature(ARM::FeatureThumb2
) &&
664 !STI
->hasFeature(ARM::HasV8MBaselineOps
) &&
665 !STI
->hasFeature(ARM::HasV6MOps
) &&
666 !isInt
<23>(Value
- 4))) {
667 Ctx
.reportError(Fixup
.getLoc(), "Relocation out of range");
670 if (STI
->getTargetTriple().isOSBinFormatCOFF() && !IsResolved
&&
672 // MSVC link.exe and lld do not support this relocation type
673 // with a non-zero offset. ("Value" is offset by 4 at this point.)
674 Ctx
.reportError(Fixup
.getLoc(),
675 "cannot perform a PC-relative fixup with a non-zero "
679 // The value doesn't encode the low bit (always zero) and is offset by
680 // four. The 32-bit immediate value is encoded as
681 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
682 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
683 // The value is encoded into disjoint bit positions in the destination
684 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
685 // J = either J1 or J2 bit
687 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
689 // Note that the halfwords are stored high first, low second; so we need
690 // to transpose the fixup value here to map properly.
691 uint32_t offset
= (Value
- 4) >> 1;
692 uint32_t signBit
= (offset
& 0x800000) >> 23;
693 uint32_t I1Bit
= (offset
& 0x400000) >> 22;
694 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
695 uint32_t I2Bit
= (offset
& 0x200000) >> 21;
696 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
697 uint32_t imm10Bits
= (offset
& 0x1FF800) >> 11;
698 uint32_t imm11Bits
= (offset
& 0x000007FF);
700 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10Bits
);
701 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
702 (uint16_t)imm11Bits
);
703 return joinHalfWords(FirstHalf
, SecondHalf
,
704 Endian
== llvm::endianness::little
);
706 case ARM::fixup_arm_thumb_blx
: {
707 if (STI
->getTargetTriple().isOSBinFormatCOFF() && !IsResolved
&&
709 // MSVC link.exe and lld do not support this relocation type
710 // with a non-zero offset. ("Value" is offset by 4 at this point.)
711 Ctx
.reportError(Fixup
.getLoc(),
712 "cannot perform a PC-relative fixup with a non-zero "
715 // The value doesn't encode the low two bits (always zero) and is offset by
716 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
717 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
718 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
719 // The value is encoded into disjoint bit positions in the destination
720 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
721 // J = either J1 or J2 bit, 0 = zero.
723 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
725 // Note that the halfwords are stored high first, low second; so we need
726 // to transpose the fixup value here to map properly.
727 if (Value
% 4 != 0) {
728 Ctx
.reportError(Fixup
.getLoc(), "misaligned ARM call destination");
732 uint32_t offset
= (Value
- 4) >> 2;
733 if (const MCSymbolRefExpr
*SRE
=
734 dyn_cast
<MCSymbolRefExpr
>(Fixup
.getValue()))
735 if (SRE
->getKind() == MCSymbolRefExpr::VK_TLSCALL
)
737 uint32_t signBit
= (offset
& 0x400000) >> 22;
738 uint32_t I1Bit
= (offset
& 0x200000) >> 21;
739 uint32_t J1Bit
= (I1Bit
^ 0x1) ^ signBit
;
740 uint32_t I2Bit
= (offset
& 0x100000) >> 20;
741 uint32_t J2Bit
= (I2Bit
^ 0x1) ^ signBit
;
742 uint32_t imm10HBits
= (offset
& 0xFFC00) >> 10;
743 uint32_t imm10LBits
= (offset
& 0x3FF);
745 uint32_t FirstHalf
= (((uint16_t)signBit
<< 10) | (uint16_t)imm10HBits
);
746 uint32_t SecondHalf
= (((uint16_t)J1Bit
<< 13) | ((uint16_t)J2Bit
<< 11) |
747 ((uint16_t)imm10LBits
) << 1);
748 return joinHalfWords(FirstHalf
, SecondHalf
,
749 Endian
== llvm::endianness::little
);
751 case ARM::fixup_thumb_adr_pcrel_10
:
752 case ARM::fixup_arm_thumb_cp
:
753 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
754 // could have an error on our hands.
755 assert(STI
!= nullptr);
756 if (!STI
->hasFeature(ARM::FeatureThumb2
) && IsResolved
) {
757 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
758 if (FixupDiagnostic
) {
759 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
763 // Offset by 4, and don't encode the low two bits.
764 return ((Value
- 4) >> 2) & 0xff;
765 case ARM::fixup_arm_thumb_cb
: {
766 // CB instructions can only branch to offsets in [4, 126] in multiples of 2
767 // so ensure that the raw value LSB is zero and it lies in [2, 130].
768 // An offset of 2 will be relaxed to a NOP.
769 if ((int64_t)Value
< 2 || Value
> 0x82 || Value
& 1) {
770 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
773 // Offset by 4 and don't encode the lower bit, which is always 0.
774 // FIXME: diagnose if no Thumb2
775 uint32_t Binary
= (Value
- 4) >> 1;
776 return ((Binary
& 0x20) << 4) | ((Binary
& 0x1f) << 3);
778 case ARM::fixup_arm_thumb_br
:
779 // Offset by 4 and don't encode the lower bit, which is always 0.
780 assert(STI
!= nullptr);
781 if (!STI
->hasFeature(ARM::FeatureThumb2
) &&
782 !STI
->hasFeature(ARM::HasV8MBaselineOps
)) {
783 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
784 if (FixupDiagnostic
) {
785 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
789 return ((Value
- 4) >> 1) & 0x7ff;
790 case ARM::fixup_arm_thumb_bcc
:
791 // Offset by 4 and don't encode the lower bit, which is always 0.
792 assert(STI
!= nullptr);
793 if (!STI
->hasFeature(ARM::FeatureThumb2
)) {
794 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
795 if (FixupDiagnostic
) {
796 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
800 return ((Value
- 4) >> 1) & 0xff;
801 case ARM::fixup_arm_pcrel_10_unscaled
: {
802 Value
= Value
- 8; // ARM fixups offset by an additional word and don't
803 // need to adjust for the half-word ordering.
805 if ((int64_t)Value
< 0) {
809 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
811 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
814 Value
= (Value
& 0xf) | ((Value
& 0xf0) << 4);
815 return Value
| (isAdd
<< 23);
817 case ARM::fixup_arm_pcrel_10
:
818 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
819 // need to adjust for the half-word ordering.
821 case ARM::fixup_t2_pcrel_10
: {
822 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
825 if ((int64_t)Value
< 0) {
829 // These values don't encode the low two bits since they're always zero.
832 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
835 Value
|= isAdd
<< 23;
837 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
839 if (Kind
== ARM::fixup_t2_pcrel_10
)
840 return swapHalfWords(Value
, Endian
== llvm::endianness::little
);
844 case ARM::fixup_arm_pcrel_9
:
845 Value
= Value
- 4; // ARM fixups offset by an additional word and don't
846 // need to adjust for the half-word ordering.
848 case ARM::fixup_t2_pcrel_9
: {
849 // Offset by 4, adjusted by two due to the half-word ordering of thumb.
852 if ((int64_t)Value
< 0) {
856 // These values don't encode the low bit since it's always zero.
858 Ctx
.reportError(Fixup
.getLoc(), "invalid value for this fixup");
863 Ctx
.reportError(Fixup
.getLoc(), "out of range pc-relative fixup value");
866 Value
|= isAdd
<< 23;
868 // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
870 if (Kind
== ARM::fixup_t2_pcrel_9
)
871 return swapHalfWords(Value
, Endian
== llvm::endianness::little
);
875 case ARM::fixup_arm_mod_imm
:
876 Value
= ARM_AM::getSOImmVal(Value
);
878 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
882 case ARM::fixup_t2_so_imm
: {
883 Value
= ARM_AM::getT2SOImmVal(Value
);
884 if ((int64_t)Value
< 0) {
885 Ctx
.reportError(Fixup
.getLoc(), "out of range immediate fixup value");
888 // Value will contain a 12-bit value broken up into a 4-bit shift in bits
889 // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
890 // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
891 // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
893 uint64_t EncValue
= 0;
894 EncValue
|= (Value
& 0x800) << 15;
895 EncValue
|= (Value
& 0x700) << 4;
896 EncValue
|= (Value
& 0xff);
897 return swapHalfWords(EncValue
, Endian
== llvm::endianness::little
);
899 case ARM::fixup_bf_branch
: {
900 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
901 if (FixupDiagnostic
) {
902 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
905 uint32_t out
= (((Value
- 4) >> 1) & 0xf) << 23;
906 return swapHalfWords(out
, Endian
== llvm::endianness::little
);
908 case ARM::fixup_bf_target
:
909 case ARM::fixup_bfl_target
:
910 case ARM::fixup_bfc_target
: {
911 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
912 if (FixupDiagnostic
) {
913 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
917 uint32_t HighBitMask
= (Kind
== ARM::fixup_bf_target
? 0xf800 :
918 Kind
== ARM::fixup_bfl_target
? 0x3f800 : 0x800);
919 out
|= (((Value
- 4) >> 1) & 0x1) << 11;
920 out
|= (((Value
- 4) >> 1) & 0x7fe);
921 out
|= (((Value
- 4) >> 1) & HighBitMask
) << 5;
922 return swapHalfWords(out
, Endian
== llvm::endianness::little
);
924 case ARM::fixup_bfcsel_else_target
: {
925 // If this is a fixup of a branch future's else target then it should be a
926 // constant MCExpr representing the distance between the branch targetted
927 // and the instruction after that same branch.
928 Value
= Target
.getConstant();
930 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
931 if (FixupDiagnostic
) {
932 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
935 uint32_t out
= ((Value
>> 2) & 1) << 17;
936 return swapHalfWords(out
, Endian
== llvm::endianness::little
);
939 case ARM::fixup_le
: {
940 const char *FixupDiagnostic
= reasonForFixupRelaxation(Fixup
, Value
);
941 if (FixupDiagnostic
) {
942 Ctx
.reportError(Fixup
.getLoc(), FixupDiagnostic
);
945 uint64_t real_value
= Value
- 4;
947 if (Kind
== ARM::fixup_le
)
948 real_value
= -real_value
;
949 out
|= ((real_value
>> 1) & 0x1) << 11;
950 out
|= ((real_value
>> 1) & 0x7fe);
951 return swapHalfWords(out
, Endian
== llvm::endianness::little
);
956 bool ARMAsmBackend::shouldForceRelocation(const MCAssembler
&Asm
,
957 const MCFixup
&Fixup
,
958 const MCValue
&Target
,
959 const MCSubtargetInfo
*STI
) {
960 const MCSymbolRefExpr
*A
= Target
.getSymA();
961 const MCSymbol
*Sym
= A
? &A
->getSymbol() : nullptr;
962 const unsigned FixupKind
= Fixup
.getKind();
963 if (FixupKind
>= FirstLiteralRelocationKind
)
965 if (FixupKind
== ARM::fixup_arm_thumb_bl
) {
966 assert(Sym
&& "How did we resolve this?");
968 // If the symbol is external the linker will handle it.
969 // FIXME: Should we handle it as an optimization?
971 // If the symbol is out of range, produce a relocation and hope the
972 // linker can handle it. GNU AS produces an error in this case.
973 if (Sym
->isExternal())
976 // Create relocations for unconditional branches to function symbols with
977 // different execution mode in ELF binaries.
978 if (Sym
&& Sym
->isELF()) {
979 unsigned Type
= cast
<MCSymbolELF
>(Sym
)->getType();
980 if ((Type
== ELF::STT_FUNC
|| Type
== ELF::STT_GNU_IFUNC
)) {
981 if (Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_uncondbranch
))
983 if (!Asm
.isThumbFunc(Sym
) && (FixupKind
== ARM::fixup_arm_thumb_br
||
984 FixupKind
== ARM::fixup_arm_thumb_bl
||
985 FixupKind
== ARM::fixup_t2_condbranch
||
986 FixupKind
== ARM::fixup_t2_uncondbranch
))
990 // We must always generate a relocation for BL/BLX instructions if we have
991 // a symbol to reference, as the linker relies on knowing the destination
992 // symbol's thumb-ness to get interworking right.
993 if (A
&& (FixupKind
== ARM::fixup_arm_thumb_blx
||
994 FixupKind
== ARM::fixup_arm_blx
||
995 FixupKind
== ARM::fixup_arm_uncondbl
||
996 FixupKind
== ARM::fixup_arm_condbl
))
1001 /// getFixupKindNumBytes - The number of bytes the fixup may change.
1002 static unsigned getFixupKindNumBytes(unsigned Kind
) {
1005 llvm_unreachable("Unknown fixup kind!");
1008 case ARM::fixup_arm_thumb_bcc
:
1009 case ARM::fixup_arm_thumb_cp
:
1010 case ARM::fixup_thumb_adr_pcrel_10
:
1011 case ARM::fixup_arm_thumb_upper_8_15
:
1012 case ARM::fixup_arm_thumb_upper_0_7
:
1013 case ARM::fixup_arm_thumb_lower_8_15
:
1014 case ARM::fixup_arm_thumb_lower_0_7
:
1018 case ARM::fixup_arm_thumb_br
:
1019 case ARM::fixup_arm_thumb_cb
:
1020 case ARM::fixup_arm_mod_imm
:
1023 case ARM::fixup_arm_pcrel_10_unscaled
:
1024 case ARM::fixup_arm_ldst_pcrel_12
:
1025 case ARM::fixup_arm_pcrel_10
:
1026 case ARM::fixup_arm_pcrel_9
:
1027 case ARM::fixup_arm_ldst_abs_12
:
1028 case ARM::fixup_arm_adr_pcrel_12
:
1029 case ARM::fixup_arm_uncondbl
:
1030 case ARM::fixup_arm_condbl
:
1031 case ARM::fixup_arm_blx
:
1032 case ARM::fixup_arm_condbranch
:
1033 case ARM::fixup_arm_uncondbranch
:
1037 case ARM::fixup_t2_ldst_pcrel_12
:
1038 case ARM::fixup_t2_condbranch
:
1039 case ARM::fixup_t2_uncondbranch
:
1040 case ARM::fixup_t2_pcrel_10
:
1041 case ARM::fixup_t2_pcrel_9
:
1042 case ARM::fixup_t2_adr_pcrel_12
:
1043 case ARM::fixup_arm_thumb_bl
:
1044 case ARM::fixup_arm_thumb_blx
:
1045 case ARM::fixup_arm_movt_hi16
:
1046 case ARM::fixup_arm_movw_lo16
:
1047 case ARM::fixup_t2_movt_hi16
:
1048 case ARM::fixup_t2_movw_lo16
:
1049 case ARM::fixup_t2_so_imm
:
1050 case ARM::fixup_bf_branch
:
1051 case ARM::fixup_bf_target
:
1052 case ARM::fixup_bfl_target
:
1053 case ARM::fixup_bfc_target
:
1054 case ARM::fixup_bfcsel_else_target
:
1055 case ARM::fixup_wls
:
1066 /// getFixupKindContainerSizeBytes - The number of bytes of the
1067 /// container involved in big endian.
1068 static unsigned getFixupKindContainerSizeBytes(unsigned Kind
) {
1071 llvm_unreachable("Unknown fixup kind!");
1080 case ARM::fixup_arm_thumb_bcc
:
1081 case ARM::fixup_arm_thumb_cp
:
1082 case ARM::fixup_thumb_adr_pcrel_10
:
1083 case ARM::fixup_arm_thumb_br
:
1084 case ARM::fixup_arm_thumb_cb
:
1085 case ARM::fixup_arm_thumb_upper_8_15
:
1086 case ARM::fixup_arm_thumb_upper_0_7
:
1087 case ARM::fixup_arm_thumb_lower_8_15
:
1088 case ARM::fixup_arm_thumb_lower_0_7
:
1089 // Instruction size is 2 bytes.
1092 case ARM::fixup_arm_pcrel_10_unscaled
:
1093 case ARM::fixup_arm_ldst_pcrel_12
:
1094 case ARM::fixup_arm_pcrel_10
:
1095 case ARM::fixup_arm_pcrel_9
:
1096 case ARM::fixup_arm_adr_pcrel_12
:
1097 case ARM::fixup_arm_uncondbl
:
1098 case ARM::fixup_arm_condbl
:
1099 case ARM::fixup_arm_blx
:
1100 case ARM::fixup_arm_condbranch
:
1101 case ARM::fixup_arm_uncondbranch
:
1102 case ARM::fixup_t2_ldst_pcrel_12
:
1103 case ARM::fixup_t2_condbranch
:
1104 case ARM::fixup_t2_uncondbranch
:
1105 case ARM::fixup_t2_pcrel_10
:
1106 case ARM::fixup_t2_pcrel_9
:
1107 case ARM::fixup_t2_adr_pcrel_12
:
1108 case ARM::fixup_arm_thumb_bl
:
1109 case ARM::fixup_arm_thumb_blx
:
1110 case ARM::fixup_arm_movt_hi16
:
1111 case ARM::fixup_arm_movw_lo16
:
1112 case ARM::fixup_t2_movt_hi16
:
1113 case ARM::fixup_t2_movw_lo16
:
1114 case ARM::fixup_arm_mod_imm
:
1115 case ARM::fixup_t2_so_imm
:
1116 case ARM::fixup_bf_branch
:
1117 case ARM::fixup_bf_target
:
1118 case ARM::fixup_bfl_target
:
1119 case ARM::fixup_bfc_target
:
1120 case ARM::fixup_bfcsel_else_target
:
1121 case ARM::fixup_wls
:
1123 // Instruction size is 4 bytes.
1128 void ARMAsmBackend::applyFixup(const MCAssembler
&Asm
, const MCFixup
&Fixup
,
1129 const MCValue
&Target
,
1130 MutableArrayRef
<char> Data
, uint64_t Value
,
1132 const MCSubtargetInfo
* STI
) const {
1133 unsigned Kind
= Fixup
.getKind();
1134 if (Kind
>= FirstLiteralRelocationKind
)
1136 MCContext
&Ctx
= Asm
.getContext();
1137 Value
= adjustFixupValue(Asm
, Fixup
, Target
, Value
, IsResolved
, Ctx
, STI
);
1139 return; // Doesn't change encoding.
1140 const unsigned NumBytes
= getFixupKindNumBytes(Kind
);
1142 unsigned Offset
= Fixup
.getOffset();
1143 assert(Offset
+ NumBytes
<= Data
.size() && "Invalid fixup offset!");
1145 // Used to point to big endian bytes.
1146 unsigned FullSizeBytes
;
1147 if (Endian
== llvm::endianness::big
) {
1148 FullSizeBytes
= getFixupKindContainerSizeBytes(Kind
);
1149 assert((Offset
+ FullSizeBytes
) <= Data
.size() && "Invalid fixup size!");
1150 assert(NumBytes
<= FullSizeBytes
&& "Invalid fixup size!");
1153 // For each byte of the fragment that the fixup touches, mask in the bits from
1154 // the fixup value. The Value has been "split up" into the appropriate
1156 for (unsigned i
= 0; i
!= NumBytes
; ++i
) {
1158 Endian
== llvm::endianness::little
? i
: (FullSizeBytes
- 1 - i
);
1159 Data
[Offset
+ Idx
] |= uint8_t((Value
>> (i
* 8)) & 0xff);
1165 /// Compact unwind encoding values.
1166 enum CompactUnwindEncodings
{
1167 UNWIND_ARM_MODE_MASK
= 0x0F000000,
1168 UNWIND_ARM_MODE_FRAME
= 0x01000000,
1169 UNWIND_ARM_MODE_FRAME_D
= 0x02000000,
1170 UNWIND_ARM_MODE_DWARF
= 0x04000000,
1172 UNWIND_ARM_FRAME_STACK_ADJUST_MASK
= 0x00C00000,
1174 UNWIND_ARM_FRAME_FIRST_PUSH_R4
= 0x00000001,
1175 UNWIND_ARM_FRAME_FIRST_PUSH_R5
= 0x00000002,
1176 UNWIND_ARM_FRAME_FIRST_PUSH_R6
= 0x00000004,
1178 UNWIND_ARM_FRAME_SECOND_PUSH_R8
= 0x00000008,
1179 UNWIND_ARM_FRAME_SECOND_PUSH_R9
= 0x00000010,
1180 UNWIND_ARM_FRAME_SECOND_PUSH_R10
= 0x00000020,
1181 UNWIND_ARM_FRAME_SECOND_PUSH_R11
= 0x00000040,
1182 UNWIND_ARM_FRAME_SECOND_PUSH_R12
= 0x00000080,
1184 UNWIND_ARM_FRAME_D_REG_COUNT_MASK
= 0x00000F00,
1186 UNWIND_ARM_DWARF_SECTION_OFFSET
= 0x00FFFFFF
1189 } // end CU namespace
1191 /// Generate compact unwind encoding for the function based on the CFI
1192 /// instructions. If the CFI instructions describe a frame that cannot be
1193 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
1194 /// tells the runtime to fallback and unwind using dwarf.
1195 uint64_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
1196 const MCDwarfFrameInfo
*FI
, const MCContext
*Ctxt
) const {
1197 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
1198 // Only armv7k uses CFI based unwinding.
1199 if (Subtype
!= MachO::CPU_SUBTYPE_ARM_V7K
)
1201 // No .cfi directives means no frame.
1202 ArrayRef
<MCCFIInstruction
> Instrs
= FI
->Instructions
;
1205 if (!isDarwinCanonicalPersonality(FI
->Personality
) &&
1206 !Ctxt
->emitCompactUnwindNonCanonical())
1207 return CU::UNWIND_ARM_MODE_DWARF
;
1209 // Start off assuming CFA is at SP+0.
1210 MCRegister CFARegister
= ARM::SP
;
1211 int CFARegisterOffset
= 0;
1212 // Mark savable registers as initially unsaved
1213 DenseMap
<MCRegister
, int> RegOffsets
;
1214 int FloatRegCount
= 0;
1215 // Process each .cfi directive and build up compact unwind info.
1216 for (const MCCFIInstruction
&Inst
: Instrs
) {
1218 switch (Inst
.getOperation()) {
1219 case MCCFIInstruction::OpDefCfa
: // DW_CFA_def_cfa
1220 CFARegisterOffset
= Inst
.getOffset();
1221 CFARegister
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1223 case MCCFIInstruction::OpDefCfaOffset
: // DW_CFA_def_cfa_offset
1224 CFARegisterOffset
= Inst
.getOffset();
1226 case MCCFIInstruction::OpDefCfaRegister
: // DW_CFA_def_cfa_register
1227 CFARegister
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1229 case MCCFIInstruction::OpOffset
: // DW_CFA_offset
1230 Reg
= *MRI
.getLLVMRegNum(Inst
.getRegister(), true);
1231 if (ARMMCRegisterClasses
[ARM::GPRRegClassID
].contains(Reg
))
1232 RegOffsets
[Reg
] = Inst
.getOffset();
1233 else if (ARMMCRegisterClasses
[ARM::DPRRegClassID
].contains(Reg
)) {
1234 RegOffsets
[Reg
] = Inst
.getOffset();
1237 DEBUG_WITH_TYPE("compact-unwind",
1238 llvm::dbgs() << ".cfi_offset on unknown register="
1239 << Inst
.getRegister() << "\n");
1240 return CU::UNWIND_ARM_MODE_DWARF
;
1243 case MCCFIInstruction::OpRelOffset
: // DW_CFA_advance_loc
1247 // Directive not convertable to compact unwind, bail out.
1248 DEBUG_WITH_TYPE("compact-unwind",
1250 << "CFI directive not compatible with compact "
1251 "unwind encoding, opcode="
1252 << uint8_t(Inst
.getOperation()) << "\n");
1253 return CU::UNWIND_ARM_MODE_DWARF
;
1258 // If no frame set up, return no unwind info.
1259 if ((CFARegister
== ARM::SP
) && (CFARegisterOffset
== 0))
1262 // Verify standard frame (lr/r7) was used.
1263 if (CFARegister
!= ARM::R7
) {
1264 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1266 << " instead of r7\n");
1267 return CU::UNWIND_ARM_MODE_DWARF
;
1269 int StackAdjust
= CFARegisterOffset
- 8;
1270 if (RegOffsets
.lookup(ARM::LR
) != (-4 - StackAdjust
)) {
1273 llvm::dbgs() << "LR not saved as standard frame, StackAdjust="
1275 << ", CFARegisterOffset=" << CFARegisterOffset
1276 << ", lr save at offset=" << RegOffsets
[ARM::LR
] << "\n");
1277 return CU::UNWIND_ARM_MODE_DWARF
;
1279 if (RegOffsets
.lookup(ARM::R7
) != (-8 - StackAdjust
)) {
1280 DEBUG_WITH_TYPE("compact-unwind",
1281 llvm::dbgs() << "r7 not saved as standard frame\n");
1282 return CU::UNWIND_ARM_MODE_DWARF
;
1284 uint32_t CompactUnwindEncoding
= CU::UNWIND_ARM_MODE_FRAME
;
1286 // If var-args are used, there may be a stack adjust required.
1287 switch (StackAdjust
) {
1291 CompactUnwindEncoding
|= 0x00400000;
1294 CompactUnwindEncoding
|= 0x00800000;
1297 CompactUnwindEncoding
|= 0x00C00000;
1300 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1301 << ".cfi_def_cfa stack adjust ("
1302 << StackAdjust
<< ") out of range\n");
1303 return CU::UNWIND_ARM_MODE_DWARF
;
1306 // If r6 is saved, it must be right below r7.
1310 } GPRCSRegs
[] = {{ARM::R6
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6
},
1311 {ARM::R5
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5
},
1312 {ARM::R4
, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4
},
1313 {ARM::R12
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12
},
1314 {ARM::R11
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11
},
1315 {ARM::R10
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10
},
1316 {ARM::R9
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9
},
1317 {ARM::R8
, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8
}};
1319 int CurOffset
= -8 - StackAdjust
;
1320 for (auto CSReg
: GPRCSRegs
) {
1321 auto Offset
= RegOffsets
.find(CSReg
.Reg
);
1322 if (Offset
== RegOffsets
.end())
1325 int RegOffset
= Offset
->second
;
1326 if (RegOffset
!= CurOffset
- 4) {
1327 DEBUG_WITH_TYPE("compact-unwind",
1328 llvm::dbgs() << MRI
.getName(CSReg
.Reg
) << " saved at "
1329 << RegOffset
<< " but only supported at "
1330 << CurOffset
<< "\n");
1331 return CU::UNWIND_ARM_MODE_DWARF
;
1333 CompactUnwindEncoding
|= CSReg
.Encoding
;
1337 // If no floats saved, we are done.
1338 if (FloatRegCount
== 0)
1339 return CompactUnwindEncoding
;
1341 // Switch mode to include D register saving.
1342 CompactUnwindEncoding
&= ~CU::UNWIND_ARM_MODE_MASK
;
1343 CompactUnwindEncoding
|= CU::UNWIND_ARM_MODE_FRAME_D
;
1345 // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1346 // but needs coordination with the linker and libunwind.
1347 if (FloatRegCount
> 4) {
1348 DEBUG_WITH_TYPE("compact-unwind",
1349 llvm::dbgs() << "unsupported number of D registers saved ("
1350 << FloatRegCount
<< ")\n");
1351 return CU::UNWIND_ARM_MODE_DWARF
;
1354 // Floating point registers must either be saved sequentially, or we defer to
1355 // DWARF. No gaps allowed here so check that each saved d-register is
1356 // precisely where it should be.
1357 static MCPhysReg FPRCSRegs
[] = {ARM::D8
, ARM::D10
, ARM::D12
, ARM::D14
};
1358 for (int Idx
= FloatRegCount
- 1; Idx
>= 0; --Idx
) {
1359 auto Offset
= RegOffsets
.find(FPRCSRegs
[Idx
]);
1360 if (Offset
== RegOffsets
.end()) {
1361 DEBUG_WITH_TYPE("compact-unwind",
1362 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1363 << MRI
.getName(FPRCSRegs
[Idx
])
1365 return CU::UNWIND_ARM_MODE_DWARF
;
1366 } else if (Offset
->second
!= CurOffset
- 8) {
1367 DEBUG_WITH_TYPE("compact-unwind",
1368 llvm::dbgs() << FloatRegCount
<< " D-regs saved, but "
1369 << MRI
.getName(FPRCSRegs
[Idx
])
1370 << " saved at " << Offset
->second
1371 << ", expected at " << CurOffset
- 8
1373 return CU::UNWIND_ARM_MODE_DWARF
;
1378 return CompactUnwindEncoding
| ((FloatRegCount
- 1) << 8);
1381 static MCAsmBackend
*createARMAsmBackend(const Target
&T
,
1382 const MCSubtargetInfo
&STI
,
1383 const MCRegisterInfo
&MRI
,
1384 const MCTargetOptions
&Options
,
1385 llvm::endianness Endian
) {
1386 const Triple
&TheTriple
= STI
.getTargetTriple();
1387 switch (TheTriple
.getObjectFormat()) {
1389 llvm_unreachable("unsupported object format");
1391 return new ARMAsmBackendDarwin(T
, STI
, MRI
);
1393 assert(TheTriple
.isOSWindows() && "non-Windows ARM COFF is not supported");
1394 return new ARMAsmBackendWinCOFF(T
, STI
.getTargetTriple().isThumb());
1396 assert(TheTriple
.isOSBinFormatELF() && "using ELF for non-ELF target");
1397 uint8_t OSABI
= Options
.FDPIC
1398 ? ELF::ELFOSABI_ARM_FDPIC
1399 : MCELFObjectTargetWriter::getOSABI(TheTriple
.getOS());
1400 return new ARMAsmBackendELF(T
, STI
.getTargetTriple().isThumb(), OSABI
,
1405 MCAsmBackend
*llvm::createARMLEAsmBackend(const Target
&T
,
1406 const MCSubtargetInfo
&STI
,
1407 const MCRegisterInfo
&MRI
,
1408 const MCTargetOptions
&Options
) {
1409 return createARMAsmBackend(T
, STI
, MRI
, Options
, llvm::endianness::little
);
1412 MCAsmBackend
*llvm::createARMBEAsmBackend(const Target
&T
,
1413 const MCSubtargetInfo
&STI
,
1414 const MCRegisterInfo
&MRI
,
1415 const MCTargetOptions
&Options
) {
1416 return createARMAsmBackend(T
, STI
, MRI
, Options
, llvm::endianness::big
);