[test] Pre-commit llvm.experimental.memset.pattern tests prior to MemoryLocation...
[llvm-project.git] / llvm / lib / Target / ARM / MCTargetDesc / ARMTargetStreamer.cpp
blob84a0fb44c9acdf05059e9d52bf0b5c59a01de30d
1 //===- ARMTargetStreamer.cpp - ARMTargetStreamer class --*- C++ -*---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARMTargetStreamer class.
11 //===----------------------------------------------------------------------===//
13 #include "MCTargetDesc/ARMMCTargetDesc.h"
14 #include "llvm/MC/ConstantPools.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCContext.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCStreamer.h"
19 #include "llvm/MC/MCSubtargetInfo.h"
20 #include "llvm/Support/ARMBuildAttributes.h"
22 using namespace llvm;
25 // ARMTargetStreamer Implemenation
28 ARMTargetStreamer::ARMTargetStreamer(MCStreamer &S)
29 : MCTargetStreamer(S), ConstantPools(new AssemblerConstantPools()) {}
31 ARMTargetStreamer::~ARMTargetStreamer() = default;
33 // The constant pool handling is shared by all ARMTargetStreamer
34 // implementations.
35 const MCExpr *ARMTargetStreamer::addConstantPoolEntry(const MCExpr *Expr, SMLoc Loc) {
36 return ConstantPools->addEntry(Streamer, Expr, 4, Loc);
39 void ARMTargetStreamer::emitCurrentConstantPool() {
40 ConstantPools->emitForCurrentSection(Streamer);
41 ConstantPools->clearCacheForCurrentSection(Streamer);
44 // finish() - write out any non-empty assembler constant pools.
45 void ARMTargetStreamer::emitConstantPools() {
46 ConstantPools->emitAll(Streamer);
49 // reset() - Reset any state
50 void ARMTargetStreamer::reset() {}
52 void ARMTargetStreamer::emitInst(uint32_t Inst, char Suffix) {
53 unsigned Size;
54 char Buffer[4];
55 const bool LittleEndian = getStreamer().getContext().getAsmInfo()->isLittleEndian();
57 switch (Suffix) {
58 case '\0':
59 Size = 4;
61 for (unsigned II = 0, IE = Size; II != IE; II++) {
62 const unsigned I = LittleEndian ? (Size - II - 1) : II;
63 Buffer[Size - II - 1] = uint8_t(Inst >> I * CHAR_BIT);
66 break;
67 case 'n':
68 case 'w':
69 Size = (Suffix == 'n' ? 2 : 4);
71 // Thumb wide instructions are emitted as a pair of 16-bit words of the
72 // appropriate endianness.
73 for (unsigned II = 0, IE = Size; II != IE; II = II + 2) {
74 const unsigned I0 = LittleEndian ? II + 0 : II + 1;
75 const unsigned I1 = LittleEndian ? II + 1 : II + 0;
76 Buffer[Size - II - 2] = uint8_t(Inst >> I0 * CHAR_BIT);
77 Buffer[Size - II - 1] = uint8_t(Inst >> I1 * CHAR_BIT);
80 break;
81 default:
82 llvm_unreachable("Invalid Suffix");
84 getStreamer().emitBytes(StringRef(Buffer, Size));
87 // The remaining callbacks should be handled separately by each
88 // streamer.
89 void ARMTargetStreamer::emitFnStart() {}
90 void ARMTargetStreamer::emitFnEnd() {}
91 void ARMTargetStreamer::emitCantUnwind() {}
92 void ARMTargetStreamer::emitPersonality(const MCSymbol *Personality) {}
93 void ARMTargetStreamer::emitPersonalityIndex(unsigned Index) {}
94 void ARMTargetStreamer::emitHandlerData() {}
95 void ARMTargetStreamer::emitSetFP(MCRegister FpReg, MCRegister SpReg,
96 int64_t Offset) {}
97 void ARMTargetStreamer::emitMovSP(MCRegister Reg, int64_t Offset) {}
98 void ARMTargetStreamer::emitPad(int64_t Offset) {}
99 void ARMTargetStreamer::emitRegSave(const SmallVectorImpl<MCRegister> &RegList,
100 bool isVector) {}
101 void ARMTargetStreamer::emitUnwindRaw(int64_t StackOffset,
102 const SmallVectorImpl<uint8_t> &Opcodes) {
104 void ARMTargetStreamer::switchVendor(StringRef Vendor) {}
105 void ARMTargetStreamer::emitAttribute(unsigned Attribute, unsigned Value) {}
106 void ARMTargetStreamer::emitTextAttribute(unsigned Attribute,
107 StringRef String) {}
108 void ARMTargetStreamer::emitIntTextAttribute(unsigned Attribute,
109 unsigned IntValue,
110 StringRef StringValue) {}
111 void ARMTargetStreamer::emitArch(ARM::ArchKind Arch) {}
112 void ARMTargetStreamer::emitArchExtension(uint64_t ArchExt) {}
113 void ARMTargetStreamer::emitObjectArch(ARM::ArchKind Arch) {}
114 void ARMTargetStreamer::emitFPU(ARM::FPUKind FPU) {}
115 void ARMTargetStreamer::finishAttributeSection() {}
116 void ARMTargetStreamer::annotateTLSDescriptorSequence(
117 const MCSymbolRefExpr *SRE) {}
118 void ARMTargetStreamer::emitThumbSet(MCSymbol *Symbol, const MCExpr *Value) {}
120 void ARMTargetStreamer::emitARMWinCFIAllocStack(unsigned Size, bool Wide) {}
121 void ARMTargetStreamer::emitARMWinCFISaveRegMask(unsigned Mask, bool Wide) {}
122 void ARMTargetStreamer::emitARMWinCFISaveSP(unsigned Reg) {}
123 void ARMTargetStreamer::emitARMWinCFISaveFRegs(unsigned First, unsigned Last) {}
124 void ARMTargetStreamer::emitARMWinCFISaveLR(unsigned Offset) {}
125 void ARMTargetStreamer::emitARMWinCFINop(bool Wide) {}
126 void ARMTargetStreamer::emitARMWinCFIPrologEnd(bool Fragment) {}
127 void ARMTargetStreamer::emitARMWinCFIEpilogStart(unsigned Condition) {}
128 void ARMTargetStreamer::emitARMWinCFIEpilogEnd() {}
129 void ARMTargetStreamer::emitARMWinCFICustom(unsigned Opcode) {}
131 static ARMBuildAttrs::CPUArch getArchForCPU(const MCSubtargetInfo &STI) {
132 if (STI.getCPU() == "xscale")
133 return ARMBuildAttrs::v5TEJ;
135 if (STI.hasFeature(ARM::HasV9_0aOps))
136 return ARMBuildAttrs::v9_A;
137 else if (STI.hasFeature(ARM::HasV8Ops)) {
138 if (STI.hasFeature(ARM::FeatureRClass))
139 return ARMBuildAttrs::v8_R;
140 return ARMBuildAttrs::v8_A;
141 } else if (STI.hasFeature(ARM::HasV8_1MMainlineOps))
142 return ARMBuildAttrs::v8_1_M_Main;
143 else if (STI.hasFeature(ARM::HasV8MMainlineOps))
144 return ARMBuildAttrs::v8_M_Main;
145 else if (STI.hasFeature(ARM::HasV7Ops)) {
146 if (STI.hasFeature(ARM::FeatureMClass) && STI.hasFeature(ARM::FeatureDSP))
147 return ARMBuildAttrs::v7E_M;
148 return ARMBuildAttrs::v7;
149 } else if (STI.hasFeature(ARM::HasV6T2Ops))
150 return ARMBuildAttrs::v6T2;
151 else if (STI.hasFeature(ARM::HasV8MBaselineOps))
152 return ARMBuildAttrs::v8_M_Base;
153 else if (STI.hasFeature(ARM::HasV6MOps))
154 return ARMBuildAttrs::v6S_M;
155 else if (STI.hasFeature(ARM::HasV6Ops))
156 return ARMBuildAttrs::v6;
157 else if (STI.hasFeature(ARM::HasV5TEOps))
158 return ARMBuildAttrs::v5TE;
159 else if (STI.hasFeature(ARM::HasV5TOps))
160 return ARMBuildAttrs::v5T;
161 else if (STI.hasFeature(ARM::HasV4TOps))
162 return ARMBuildAttrs::v4T;
163 else
164 return ARMBuildAttrs::v4;
167 static bool isV8M(const MCSubtargetInfo &STI) {
168 // Note that v8M Baseline is a subset of v6T2!
169 return (STI.hasFeature(ARM::HasV8MBaselineOps) &&
170 !STI.hasFeature(ARM::HasV6T2Ops)) ||
171 STI.hasFeature(ARM::HasV8MMainlineOps);
174 /// Emit the build attributes that only depend on the hardware that we expect
175 // /to be available, and not on the ABI, or any source-language choices.
176 void ARMTargetStreamer::emitTargetAttributes(const MCSubtargetInfo &STI) {
177 switchVendor("aeabi");
179 const StringRef CPUString = STI.getCPU();
180 if (!CPUString.empty() && !CPUString.starts_with("generic")) {
181 // FIXME: remove krait check when GNU tools support krait cpu
182 if (STI.hasFeature(ARM::ProcKrait)) {
183 emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
184 // We consider krait as a "cortex-a9" + hwdiv CPU
185 // Enable hwdiv through ".arch_extension idiv"
186 if (STI.hasFeature(ARM::FeatureHWDivThumb) ||
187 STI.hasFeature(ARM::FeatureHWDivARM))
188 emitArchExtension(ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM);
189 } else {
190 emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
194 emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(STI));
196 if (STI.hasFeature(ARM::FeatureAClass)) {
197 emitAttribute(ARMBuildAttrs::CPU_arch_profile,
198 ARMBuildAttrs::ApplicationProfile);
199 } else if (STI.hasFeature(ARM::FeatureRClass)) {
200 emitAttribute(ARMBuildAttrs::CPU_arch_profile,
201 ARMBuildAttrs::RealTimeProfile);
202 } else if (STI.hasFeature(ARM::FeatureMClass)) {
203 emitAttribute(ARMBuildAttrs::CPU_arch_profile,
204 ARMBuildAttrs::MicroControllerProfile);
207 emitAttribute(ARMBuildAttrs::ARM_ISA_use, STI.hasFeature(ARM::FeatureNoARM)
208 ? ARMBuildAttrs::Not_Allowed
209 : ARMBuildAttrs::Allowed);
211 if (isV8M(STI)) {
212 emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
213 ARMBuildAttrs::AllowThumbDerived);
214 } else if (STI.hasFeature(ARM::FeatureThumb2)) {
215 emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
216 ARMBuildAttrs::AllowThumb32);
217 } else if (STI.hasFeature(ARM::HasV4TOps)) {
218 emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
221 if (STI.hasFeature(ARM::FeatureNEON)) {
222 /* NEON is not exactly a VFP architecture, but GAS emit one of
223 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
224 if (STI.hasFeature(ARM::FeatureFPARMv8)) {
225 if (STI.hasFeature(ARM::FeatureCrypto))
226 emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
227 else
228 emitFPU(ARM::FK_NEON_FP_ARMV8);
229 } else if (STI.hasFeature(ARM::FeatureVFP4))
230 emitFPU(ARM::FK_NEON_VFPV4);
231 else
232 emitFPU(STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_NEON_FP16
233 : ARM::FK_NEON);
234 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
235 if (STI.hasFeature(ARM::HasV8Ops))
236 emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
237 STI.hasFeature(ARM::HasV8_1aOps)
238 ? ARMBuildAttrs::AllowNeonARMv8_1a
239 : ARMBuildAttrs::AllowNeonARMv8);
240 } else {
241 if (STI.hasFeature(ARM::FeatureFPARMv8_D16_SP)) {
242 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
243 // FPU, but there are two different names for it depending on the CPU.
244 if (STI.hasFeature(ARM::FeatureD32))
245 emitFPU(ARM::FK_FP_ARMV8);
246 else {
247 emitFPU(STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_FPV5_D16
248 : ARM::FK_FPV5_SP_D16);
249 if (STI.hasFeature(ARM::HasMVEFloatOps))
250 emitArchExtension(ARM::AEK_SIMD | ARM::AEK_DSP | ARM::AEK_FP);
252 } else if (STI.hasFeature(ARM::FeatureVFP4_D16_SP))
253 emitFPU(STI.hasFeature(ARM::FeatureD32)
254 ? ARM::FK_VFPV4
255 : (STI.hasFeature(ARM::FeatureFP64) ? ARM::FK_VFPV4_D16
256 : ARM::FK_FPV4_SP_D16));
257 else if (STI.hasFeature(ARM::FeatureVFP3_D16_SP))
258 emitFPU(
259 STI.hasFeature(ARM::FeatureD32)
260 // +d32
261 ? (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3_FP16
262 : ARM::FK_VFPV3)
263 // -d32
264 : (STI.hasFeature(ARM::FeatureFP64)
265 ? (STI.hasFeature(ARM::FeatureFP16)
266 ? ARM::FK_VFPV3_D16_FP16
267 : ARM::FK_VFPV3_D16)
268 : (STI.hasFeature(ARM::FeatureFP16) ? ARM::FK_VFPV3XD_FP16
269 : ARM::FK_VFPV3XD)));
270 else if (STI.hasFeature(ARM::FeatureVFP2_SP))
271 emitFPU(ARM::FK_VFPV2);
274 // ABI_HardFP_use attribute to indicate single precision FP.
275 if (STI.hasFeature(ARM::FeatureVFP2_SP) && !STI.hasFeature(ARM::FeatureFP64))
276 emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
277 ARMBuildAttrs::HardFPSinglePrecision);
279 if (STI.hasFeature(ARM::FeatureFP16))
280 emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
282 if (STI.hasFeature(ARM::FeatureMP))
283 emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
285 if (STI.hasFeature(ARM::HasMVEFloatOps))
286 emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEIntegerAndFloat);
287 else if (STI.hasFeature(ARM::HasMVEIntegerOps))
288 emitAttribute(ARMBuildAttrs::MVE_arch, ARMBuildAttrs::AllowMVEInteger);
290 // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
291 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
292 // It is not possible to produce DisallowDIV: if hwdiv is present in the base
293 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
294 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
295 // otherwise, the default value (AllowDIVIfExists) applies.
296 if (STI.hasFeature(ARM::FeatureHWDivARM) && !STI.hasFeature(ARM::HasV8Ops))
297 emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
299 if (STI.hasFeature(ARM::FeatureDSP) && isV8M(STI))
300 emitAttribute(ARMBuildAttrs::DSP_extension, ARMBuildAttrs::Allowed);
302 if (STI.hasFeature(ARM::FeatureStrictAlign))
303 emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
304 ARMBuildAttrs::Not_Allowed);
305 else
306 emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
307 ARMBuildAttrs::Allowed);
309 if (STI.hasFeature(ARM::FeatureTrustZone) &&
310 STI.hasFeature(ARM::FeatureVirtualization))
311 emitAttribute(ARMBuildAttrs::Virtualization_use,
312 ARMBuildAttrs::AllowTZVirtualization);
313 else if (STI.hasFeature(ARM::FeatureTrustZone))
314 emitAttribute(ARMBuildAttrs::Virtualization_use, ARMBuildAttrs::AllowTZ);
315 else if (STI.hasFeature(ARM::FeatureVirtualization))
316 emitAttribute(ARMBuildAttrs::Virtualization_use,
317 ARMBuildAttrs::AllowVirtualization);
319 if (STI.hasFeature(ARM::FeaturePACBTI)) {
320 emitAttribute(ARMBuildAttrs::PAC_extension, ARMBuildAttrs::AllowPAC);
321 emitAttribute(ARMBuildAttrs::BTI_extension, ARMBuildAttrs::AllowBTI);
325 MCTargetStreamer *
326 llvm::createARMObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) {
327 const Triple &TT = STI.getTargetTriple();
328 if (TT.isOSBinFormatELF())
329 return createARMObjectTargetELFStreamer(S);
330 if (TT.isOSBinFormatCOFF())
331 return createARMObjectTargetWinCOFFStreamer(S);
332 return new ARMTargetStreamer(S);