1 //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
11 /// branches to help accelerate DSP applications. These two extensions,
12 /// combined with a new form of predication called tail-predication, can be used
13 /// to provide implicit vector predication within a low-overhead loop.
14 /// This is implicit because the predicate of active/inactive lanes is
15 /// calculated by hardware, and thus does not need to be explicitly passed
16 /// to vector instructions. The instructions responsible for this are the
17 /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
18 /// the total number of data elements processed by the loop. The loop-end
19 /// LETP instruction is responsible for decrementing and setting the remaining
20 /// elements to be processed and generating the mask of active lanes.
22 /// The HardwareLoops pass inserts intrinsics identifying loops that the
23 /// backend will attempt to convert into a low-overhead loop. The vectorizer is
24 /// responsible for generating a vectorized loop in which the lanes are
25 /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these
26 /// get.active.lane.mask intrinsic and attempts to convert them to VCTP
27 /// instructions. This will be picked up by the ARM Low-overhead loop pass later
28 /// in the backend, which performs the final transformation to a DLSTP or WLSTP
29 /// tail-predicated loop.
31 //===----------------------------------------------------------------------===//
34 #include "ARMSubtarget.h"
35 #include "ARMTargetTransformInfo.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopPass.h"
38 #include "llvm/Analysis/ScalarEvolution.h"
39 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
40 #include "llvm/Analysis/TargetLibraryInfo.h"
41 #include "llvm/Analysis/TargetTransformInfo.h"
42 #include "llvm/Analysis/ValueTracking.h"
43 #include "llvm/CodeGen/TargetPassConfig.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicsARM.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
49 #include "llvm/Transforms/Utils/Local.h"
50 #include "llvm/Transforms/Utils/LoopUtils.h"
51 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
55 #define DEBUG_TYPE "mve-tail-predication"
56 #define DESC "Transform predicated vector loops to use MVE tail predication"
58 cl::opt
<TailPredication::Mode
> EnableTailPredication(
59 "tail-predication", cl::desc("MVE tail-predication pass options"),
60 cl::init(TailPredication::Enabled
),
61 cl::values(clEnumValN(TailPredication::Disabled
, "disabled",
62 "Don't tail-predicate loops"),
63 clEnumValN(TailPredication::EnabledNoReductions
,
64 "enabled-no-reductions",
65 "Enable tail-predication, but not for reduction loops"),
66 clEnumValN(TailPredication::Enabled
,
68 "Enable tail-predication, including reduction loops"),
69 clEnumValN(TailPredication::ForceEnabledNoReductions
,
70 "force-enabled-no-reductions",
71 "Enable tail-predication, but not for reduction loops, "
72 "and force this which might be unsafe"),
73 clEnumValN(TailPredication::ForceEnabled
,
75 "Enable tail-predication, including reduction loops, "
76 "and force this which might be unsafe")));
81 class MVETailPredication
: public LoopPass
{
82 SmallVector
<IntrinsicInst
*, 4> MaskedInsts
;
84 ScalarEvolution
*SE
= nullptr;
85 TargetTransformInfo
*TTI
= nullptr;
86 const ARMSubtarget
*ST
= nullptr;
91 MVETailPredication() : LoopPass(ID
) { }
93 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
94 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
95 AU
.addRequired
<LoopInfoWrapperPass
>();
96 AU
.addRequired
<TargetPassConfig
>();
97 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
98 AU
.addPreserved
<LoopInfoWrapperPass
>();
102 bool runOnLoop(Loop
*L
, LPPassManager
&) override
;
105 /// Perform the relevant checks on the loop and convert active lane masks if
107 bool TryConvertActiveLaneMask(Value
*TripCount
);
109 /// Perform several checks on the arguments of @llvm.get.active.lane.mask
110 /// intrinsic. E.g., check that the loop induction variable and the element
111 /// count are of the form we expect, and also perform overflow checks for
112 /// the new expressions that are created.
113 const SCEV
*IsSafeActiveMask(IntrinsicInst
*ActiveLaneMask
, Value
*TripCount
);
115 /// Insert the intrinsic to represent the effect of tail predication.
116 void InsertVCTPIntrinsic(IntrinsicInst
*ActiveLaneMask
, Value
*Start
);
121 bool MVETailPredication::runOnLoop(Loop
*L
, LPPassManager
&) {
122 if (skipLoop(L
) || !EnableTailPredication
)
126 Function
&F
= *L
->getHeader()->getParent();
127 auto &TPC
= getAnalysis
<TargetPassConfig
>();
128 auto &TM
= TPC
.getTM
<TargetMachine
>();
129 ST
= &TM
.getSubtarget
<ARMSubtarget
>(F
);
130 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
131 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
134 // The MVE and LOB extensions are combined to enable tail-predication, but
135 // there's nothing preventing us from generating VCTP instructions for v8.1m.
136 if (!ST
->hasMVEIntegerOps() || !ST
->hasV8_1MMainlineOps()) {
137 LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
141 BasicBlock
*Preheader
= L
->getLoopPreheader();
145 auto FindLoopIterations
= [](BasicBlock
*BB
) -> IntrinsicInst
* {
146 for (auto &I
: *BB
) {
147 auto *Call
= dyn_cast
<IntrinsicInst
>(&I
);
151 Intrinsic::ID ID
= Call
->getIntrinsicID();
152 if (ID
== Intrinsic::start_loop_iterations
||
153 ID
== Intrinsic::test_start_loop_iterations
)
154 return cast
<IntrinsicInst
>(&I
);
159 // Look for the hardware loop intrinsic that sets the iteration count.
160 IntrinsicInst
*Setup
= FindLoopIterations(Preheader
);
162 // The test.set iteration could live in the pre-preheader.
164 if (!Preheader
->getSinglePredecessor())
166 Setup
= FindLoopIterations(Preheader
->getSinglePredecessor());
171 LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L
<< *Setup
<< "\n");
173 bool Changed
= TryConvertActiveLaneMask(Setup
->getArgOperand(0));
178 // The active lane intrinsic has this form:
180 // @llvm.get.active.lane.mask(IV, TC)
182 // Here we perform checks that this intrinsic behaves as expected,
185 // 1) Check that the TripCount (TC) belongs to this loop (originally).
186 // 2) The element count (TC) needs to be sufficiently large that the decrement
187 // of element counter doesn't overflow, which means that we need to prove:
188 // ceil(ElementCount / VectorWidth) >= TripCount
189 // by rounding up ElementCount up:
190 // ((ElementCount + (VectorWidth - 1)) / VectorWidth
191 // and evaluate if expression isKnownNonNegative:
192 // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
193 // 3) The IV must be an induction phi with an increment equal to the
195 const SCEV
*MVETailPredication::IsSafeActiveMask(IntrinsicInst
*ActiveLaneMask
,
197 bool ForceTailPredication
=
198 EnableTailPredication
== TailPredication::ForceEnabledNoReductions
||
199 EnableTailPredication
== TailPredication::ForceEnabled
;
201 Value
*ElemCount
= ActiveLaneMask
->getOperand(1);
202 bool Changed
= false;
203 if (!L
->makeLoopInvariant(ElemCount
, Changed
))
206 const SCEV
*EC
= SE
->getSCEV(ElemCount
);
207 const SCEV
*TC
= SE
->getSCEV(TripCount
);
209 cast
<FixedVectorType
>(ActiveLaneMask
->getType())->getNumElements();
210 if (VectorWidth
!= 2 && VectorWidth
!= 4 && VectorWidth
!= 8 &&
213 ConstantInt
*ConstElemCount
= nullptr;
215 // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to
216 // this loop. The scalar tripcount corresponds the number of elements
217 // processed by the loop, so we will refer to that from this point on.
218 if (!SE
->isLoopInvariant(EC
, L
)) {
219 LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n");
223 // 2) Find out if IV is an induction phi. Note that we can't use Loop
224 // helpers here to get the induction variable, because the hardware loop is
225 // no longer in loopsimplify form, and also the hwloop intrinsic uses a
226 // different counter. Using SCEV, we check that the induction is of the
227 // form i = i + 4, where the increment must be equal to the VectorWidth.
228 auto *IV
= ActiveLaneMask
->getOperand(0);
229 const SCEV
*IVExpr
= SE
->getSCEV(IV
);
230 auto *AddExpr
= dyn_cast
<SCEVAddRecExpr
>(IVExpr
);
233 LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr
->dump());
236 // Check that this AddRec is associated with this loop.
237 if (AddExpr
->getLoop() != L
) {
238 LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
241 auto *Step
= dyn_cast
<SCEVConstant
>(AddExpr
->getOperand(1));
243 LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
244 AddExpr
->getOperand(1)->dump());
247 auto StepValue
= Step
->getValue()->getSExtValue();
248 if (VectorWidth
!= StepValue
) {
249 LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue
250 << " doesn't match vector width " << VectorWidth
<< "\n");
254 if ((ConstElemCount
= dyn_cast
<ConstantInt
>(ElemCount
))) {
255 ConstantInt
*TC
= dyn_cast
<ConstantInt
>(TripCount
);
257 LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in "
258 "set.loop.iterations\n");
262 // Calculate 2 tripcount values and check that they are consistent with
263 // each other. The TripCount for a predicated vector loop body is
264 // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we
266 uint64_t TC1
= TC
->getZExtValue();
268 (ConstElemCount
->getZExtValue() + VectorWidth
- 1) / VectorWidth
;
270 // If the tripcount values are inconsistent, we can't insert the VCTP and
271 // trigger tail-predication; keep the intrinsic as a get.active.lane.mask
272 // and legalize this.
274 LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: "
275 << TC1
<< " from set.loop.iterations, and "
276 << TC2
<< " from get.active.lane.mask\n");
279 } else if (!ForceTailPredication
) {
280 // 3) We need to prove that the sub expression that we create in the
281 // tail-predicated loop body, which calculates the remaining elements to be
282 // processed, is non-negative, i.e. it doesn't overflow:
284 // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0
288 // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth
290 // which what we will be using here.
293 SE
->getSCEV(ConstantInt::get(TripCount
->getType(), VectorWidth
));
294 // ElementCount + (VW-1):
295 const SCEV
*Start
= AddExpr
->getStart();
296 const SCEV
*ECPlusVWMinus1
= SE
->getAddExpr(
298 SE
->getSCEV(ConstantInt::get(TripCount
->getType(), VectorWidth
- 1)));
300 // Ceil = ElementCount + (VW-1) / VW
301 const SCEV
*Ceil
= SE
->getUDivExpr(ECPlusVWMinus1
, VW
);
303 // Prevent unused variable warnings with TC
306 dbgs() << "ARM TP: Analysing overflow behaviour for:\n";
307 dbgs() << "ARM TP: - TripCount = " << *TC
<< "\n";
308 dbgs() << "ARM TP: - ElemCount = " << *EC
<< "\n";
309 dbgs() << "ARM TP: - Start = " << *Start
<< "\n";
310 dbgs() << "ARM TP: - BETC = " << *SE
->getBackedgeTakenCount(L
) << "\n";
311 dbgs() << "ARM TP: - VecWidth = " << VectorWidth
<< "\n";
312 dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil
<< "\n";
315 // As an example, almost all the tripcount expressions (produced by the
316 // vectoriser) look like this:
318 // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4)
320 // and "ElementCount + (VW-1) / VW":
322 // Ceil = ((3 + %N) /u 4)
324 // Check for equality of TC and Ceil by calculating SCEV expression
325 // TC - Ceil and test it for zero.
327 const SCEV
*Div
= SE
->getUDivExpr(
328 SE
->getAddExpr(SE
->getMulExpr(Ceil
, VW
), SE
->getNegativeSCEV(VW
),
329 SE
->getNegativeSCEV(Start
)),
331 const SCEV
*Sub
= SE
->getMinusSCEV(SE
->getBackedgeTakenCount(L
), Div
);
332 LLVM_DEBUG(dbgs() << "ARM TP: - Sub = "; Sub
->dump());
334 // Use context sensitive facts about the path to the loop to refine. This
335 // comes up as the backedge taken count can incorporate context sensitive
336 // reasoning, and our RHS just above doesn't.
337 Sub
= SE
->applyLoopGuards(Sub
, L
);
338 LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = "; Sub
->dump());
340 if (!Sub
->isZero()) {
341 LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n");
346 // Check that the start value is a multiple of the VectorWidth.
347 // TODO: This could do with a method to check if the scev is a multiple of
348 // VectorWidth. For the moment we just check for constants, muls and unknowns
349 // (which use MaskedValueIsZero and seems to be the most common).
350 if (auto *BaseC
= dyn_cast
<SCEVConstant
>(AddExpr
->getStart())) {
351 if (BaseC
->getAPInt().urem(VectorWidth
) == 0)
352 return SE
->getMinusSCEV(EC
, BaseC
);
353 } else if (auto *BaseV
= dyn_cast
<SCEVUnknown
>(AddExpr
->getStart())) {
354 Type
*Ty
= BaseV
->getType();
355 APInt Mask
= APInt::getLowBitsSet(Ty
->getPrimitiveSizeInBits(),
356 Log2_64(VectorWidth
));
357 if (MaskedValueIsZero(BaseV
->getValue(), Mask
,
358 L
->getHeader()->getDataLayout()))
359 return SE
->getMinusSCEV(EC
, BaseV
);
360 } else if (auto *BaseMul
= dyn_cast
<SCEVMulExpr
>(AddExpr
->getStart())) {
361 if (auto *BaseC
= dyn_cast
<SCEVConstant
>(BaseMul
->getOperand(0)))
362 if (BaseC
->getAPInt().urem(VectorWidth
) == 0)
363 return SE
->getMinusSCEV(EC
, BaseC
);
364 if (auto *BaseC
= dyn_cast
<SCEVConstant
>(BaseMul
->getOperand(1)))
365 if (BaseC
->getAPInt().urem(VectorWidth
) == 0)
366 return SE
->getMinusSCEV(EC
, BaseC
);
370 dbgs() << "ARM TP: induction base is not know to be a multiple of VF: "
371 << *AddExpr
->getOperand(0) << "\n");
375 void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst
*ActiveLaneMask
,
377 IRBuilder
<> Builder(L
->getLoopPreheader()->getTerminator());
378 Module
*M
= L
->getHeader()->getModule();
379 Type
*Ty
= IntegerType::get(M
->getContext(), 32);
380 unsigned VectorWidth
=
381 cast
<FixedVectorType
>(ActiveLaneMask
->getType())->getNumElements();
383 // Insert a phi to count the number of elements processed by the loop.
384 Builder
.SetInsertPoint(L
->getHeader(), L
->getHeader()->getFirstNonPHIIt());
385 PHINode
*Processed
= Builder
.CreatePHI(Ty
, 2);
386 Processed
->addIncoming(Start
, L
->getLoopPreheader());
388 // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and
389 // thus represent the effect of tail predication.
390 Builder
.SetInsertPoint(ActiveLaneMask
);
391 ConstantInt
*Factor
= ConstantInt::get(cast
<IntegerType
>(Ty
), VectorWidth
);
393 Intrinsic::ID VCTPID
;
394 switch (VectorWidth
) {
396 llvm_unreachable("unexpected number of lanes");
397 case 2: VCTPID
= Intrinsic::arm_mve_vctp64
; break;
398 case 4: VCTPID
= Intrinsic::arm_mve_vctp32
; break;
399 case 8: VCTPID
= Intrinsic::arm_mve_vctp16
; break;
400 case 16: VCTPID
= Intrinsic::arm_mve_vctp8
; break;
402 Value
*VCTPCall
= Builder
.CreateIntrinsic(VCTPID
, {}, Processed
);
403 ActiveLaneMask
->replaceAllUsesWith(VCTPCall
);
405 // Add the incoming value to the new phi.
406 // TODO: This add likely already exists in the loop.
407 Value
*Remaining
= Builder
.CreateSub(Processed
, Factor
);
408 Processed
->addIncoming(Remaining
, L
->getLoopLatch());
409 LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
410 << *Processed
<< "\n"
411 << "ARM TP: Inserted VCTP: " << *VCTPCall
<< "\n");
414 bool MVETailPredication::TryConvertActiveLaneMask(Value
*TripCount
) {
415 SmallVector
<IntrinsicInst
*, 4> ActiveLaneMasks
;
416 for (auto *BB
: L
->getBlocks())
418 if (auto *Int
= dyn_cast
<IntrinsicInst
>(&I
))
419 if (Int
->getIntrinsicID() == Intrinsic::get_active_lane_mask
)
420 ActiveLaneMasks
.push_back(Int
);
422 if (ActiveLaneMasks
.empty())
425 LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
427 for (auto *ActiveLaneMask
: ActiveLaneMasks
) {
428 LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
429 << *ActiveLaneMask
<< "\n");
431 const SCEV
*StartSCEV
= IsSafeActiveMask(ActiveLaneMask
, TripCount
);
433 LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
436 LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV
438 SCEVExpander
Expander(*SE
, L
->getHeader()->getDataLayout(),
440 Instruction
*Ins
= L
->getLoopPreheader()->getTerminator();
441 Value
*Start
= Expander
.expandCodeFor(StartSCEV
, StartSCEV
->getType(), Ins
);
442 LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start
<< "\n");
443 InsertVCTPIntrinsic(ActiveLaneMask
, Start
);
446 // Remove dead instructions and now dead phis.
447 for (auto *II
: ActiveLaneMasks
)
448 RecursivelyDeleteTriviallyDeadInstructions(II
);
449 for (auto *I
: L
->blocks())
454 Pass
*llvm::createMVETailPredicationPass() {
455 return new MVETailPredication();
458 char MVETailPredication::ID
= 0;
460 INITIALIZE_PASS_BEGIN(MVETailPredication
, DEBUG_TYPE
, DESC
, false, false)
461 INITIALIZE_PASS_END(MVETailPredication
, DEBUG_TYPE
, DESC
, false, false)