1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "DirectXIRPasses/PointerTypeAnalysis.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Bitcode/BitcodeCommon.h"
18 #include "llvm/Bitcode/BitcodeReader.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/Bitstream/BitCodes.h"
21 #include "llvm/Bitstream/BitstreamWriter.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Comdat.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSummaryIndex.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/UseListOrder.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/IR/ValueSymbolTable.h"
49 #include "llvm/Object/IRSymtab.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/ModRef.h"
52 #include "llvm/Support/SHA1.h"
53 #include "llvm/TargetParser/Triple.h"
58 // Generates an enum to use as an index in the Abbrev array of Metadata record.
59 enum MetadataAbbrev
: unsigned {
60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
61 #include "llvm/IR/Metadata.def"
65 class DXILBitcodeWriter
{
67 /// These are manifest constants used by the bitcode writer. They do not need
68 /// to be kept in sync with the reader, but need to be consistent within this
71 // VALUE_SYMTAB_BLOCK abbrev id's.
72 VST_ENTRY_8_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
77 // CONSTANTS_BLOCK abbrev id's.
78 CONSTANTS_SETTYPE_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
79 CONSTANTS_INTEGER_ABBREV
,
80 CONSTANTS_CE_CAST_Abbrev
,
81 CONSTANTS_NULL_Abbrev
,
83 // FUNCTION_BLOCK abbrev id's.
84 FUNCTION_INST_LOAD_ABBREV
= bitc::FIRST_APPLICATION_ABBREV
,
85 FUNCTION_INST_BINOP_ABBREV
,
86 FUNCTION_INST_BINOP_FLAGS_ABBREV
,
87 FUNCTION_INST_CAST_ABBREV
,
88 FUNCTION_INST_RET_VOID_ABBREV
,
89 FUNCTION_INST_RET_VAL_ABBREV
,
90 FUNCTION_INST_UNREACHABLE_ABBREV
,
91 FUNCTION_INST_GEP_ABBREV
,
98 /// The stream created and owned by the client.
99 BitstreamWriter
&Stream
;
101 StringTableBuilder
&StrtabBuilder
;
103 /// The Module to write to bitcode.
106 /// Enumerates ids for all values in the module.
109 /// Map that holds the correspondence between GUIDs in the summary index,
110 /// that came from indirect call profiles, and a value id generated by this
111 /// class to use in the VST and summary block records.
112 std::map
<GlobalValue::GUID
, unsigned> GUIDToValueIdMap
;
114 /// Tracks the last value id recorded in the GUIDToValueMap.
115 unsigned GlobalValueId
;
117 /// Saves the offset of the VSTOffset record that must eventually be
118 /// backpatched with the offset of the actual VST.
119 uint64_t VSTOffsetPlaceholder
= 0;
121 /// Pointer to the buffer allocated by caller for bitcode writing.
122 const SmallVectorImpl
<char> &Buffer
;
124 /// The start bit of the identification block.
125 uint64_t BitcodeStartBit
;
127 /// This maps values to their typed pointers
128 PointerTypeMap PointerMap
;
131 /// Constructs a ModuleBitcodeWriter object for the given Module,
132 /// writing to the provided \p Buffer.
133 DXILBitcodeWriter(const Module
&M
, SmallVectorImpl
<char> &Buffer
,
134 StringTableBuilder
&StrtabBuilder
, BitstreamWriter
&Stream
)
135 : I8Ty(Type::getInt8Ty(M
.getContext())),
136 I8PtrTy(TypedPointerType::get(I8Ty
, 0)), Stream(Stream
),
137 StrtabBuilder(StrtabBuilder
), M(M
), VE(M
, I8PtrTy
), Buffer(Buffer
),
138 BitcodeStartBit(Stream
.GetCurrentBitNo()),
139 PointerMap(PointerTypeAnalysis::run(M
)) {
140 GlobalValueId
= VE
.getValues().size();
141 // Enumerate the typed pointers
142 for (auto El
: PointerMap
)
143 VE
.EnumerateType(El
.second
);
146 /// Emit the current module to the bitstream.
149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind
);
150 static void writeStringRecord(BitstreamWriter
&Stream
, unsigned Code
,
151 StringRef Str
, unsigned AbbrevToUse
);
152 static void writeIdentificationBlock(BitstreamWriter
&Stream
);
153 static void emitSignedInt64(SmallVectorImpl
<uint64_t> &Vals
, uint64_t V
);
154 static void emitWideAPInt(SmallVectorImpl
<uint64_t> &Vals
, const APInt
&A
);
156 static unsigned getEncodedComdatSelectionKind(const Comdat
&C
);
157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage
);
158 static unsigned getEncodedLinkage(const GlobalValue
&GV
);
159 static unsigned getEncodedVisibility(const GlobalValue
&GV
);
160 static unsigned getEncodedThreadLocalMode(const GlobalValue
&GV
);
161 static unsigned getEncodedDLLStorageClass(const GlobalValue
&GV
);
162 static unsigned getEncodedCastOpcode(unsigned Opcode
);
163 static unsigned getEncodedUnaryOpcode(unsigned Opcode
);
164 static unsigned getEncodedBinaryOpcode(unsigned Opcode
);
165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op
);
166 static unsigned getEncodedOrdering(AtomicOrdering Ordering
);
167 static uint64_t getOptimizationFlags(const Value
*V
);
170 void writeModuleVersion();
171 void writePerModuleGlobalValueSummary();
173 void writePerModuleFunctionSummaryRecord(SmallVector
<uint64_t, 64> &NameVals
,
174 GlobalValueSummary
*Summary
,
176 unsigned FSCallsAbbrev
,
177 unsigned FSCallsProfileAbbrev
,
179 void writeModuleLevelReferences(const GlobalVariable
&V
,
180 SmallVector
<uint64_t, 64> &NameVals
,
181 unsigned FSModRefsAbbrev
,
182 unsigned FSModVTableRefsAbbrev
);
184 void assignValueId(GlobalValue::GUID ValGUID
) {
185 GUIDToValueIdMap
[ValGUID
] = ++GlobalValueId
;
188 unsigned getValueId(GlobalValue::GUID ValGUID
) {
189 const auto &VMI
= GUIDToValueIdMap
.find(ValGUID
);
190 // Expect that any GUID value had a value Id assigned by an
191 // earlier call to assignValueId.
192 assert(VMI
!= GUIDToValueIdMap
.end() &&
193 "GUID does not have assigned value Id");
197 // Helper to get the valueId for the type of value recorded in VI.
198 unsigned getValueId(ValueInfo VI
) {
199 if (!VI
.haveGVs() || !VI
.getValue())
200 return getValueId(VI
.getGUID());
201 return VE
.getValueID(VI
.getValue());
204 std::map
<GlobalValue::GUID
, unsigned> &valueIds() { return GUIDToValueIdMap
; }
206 uint64_t bitcodeStartBit() { return BitcodeStartBit
; }
208 size_t addToStrtab(StringRef Str
);
210 unsigned createDILocationAbbrev();
211 unsigned createGenericDINodeAbbrev();
213 void writeAttributeGroupTable();
214 void writeAttributeTable();
215 void writeTypeTable();
217 void writeValueSymbolTableForwardDecl();
218 void writeModuleInfo();
219 void writeValueAsMetadata(const ValueAsMetadata
*MD
,
220 SmallVectorImpl
<uint64_t> &Record
);
221 void writeMDTuple(const MDTuple
*N
, SmallVectorImpl
<uint64_t> &Record
,
223 void writeDILocation(const DILocation
*N
, SmallVectorImpl
<uint64_t> &Record
,
225 void writeGenericDINode(const GenericDINode
*N
,
226 SmallVectorImpl
<uint64_t> &Record
, unsigned &Abbrev
) {
227 llvm_unreachable("DXIL cannot contain GenericDI Nodes");
229 void writeDISubrange(const DISubrange
*N
, SmallVectorImpl
<uint64_t> &Record
,
231 void writeDIGenericSubrange(const DIGenericSubrange
*N
,
232 SmallVectorImpl
<uint64_t> &Record
,
234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
236 void writeDIEnumerator(const DIEnumerator
*N
,
237 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
238 void writeDIBasicType(const DIBasicType
*N
, SmallVectorImpl
<uint64_t> &Record
,
240 void writeDIStringType(const DIStringType
*N
,
241 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
) {
242 llvm_unreachable("DXIL cannot contain DIStringType Nodes");
244 void writeDIDerivedType(const DIDerivedType
*N
,
245 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
246 void writeDICompositeType(const DICompositeType
*N
,
247 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
248 void writeDISubroutineType(const DISubroutineType
*N
,
249 SmallVectorImpl
<uint64_t> &Record
,
251 void writeDIFile(const DIFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
253 void writeDICompileUnit(const DICompileUnit
*N
,
254 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
255 void writeDISubprogram(const DISubprogram
*N
,
256 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
257 void writeDILexicalBlock(const DILexicalBlock
*N
,
258 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
259 void writeDILexicalBlockFile(const DILexicalBlockFile
*N
,
260 SmallVectorImpl
<uint64_t> &Record
,
262 void writeDICommonBlock(const DICommonBlock
*N
,
263 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
) {
264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
266 void writeDINamespace(const DINamespace
*N
, SmallVectorImpl
<uint64_t> &Record
,
268 void writeDIMacro(const DIMacro
*N
, SmallVectorImpl
<uint64_t> &Record
,
270 llvm_unreachable("DXIL cannot contain DIMacro Nodes");
272 void writeDIMacroFile(const DIMacroFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
276 void writeDIArgList(const DIArgList
*N
, SmallVectorImpl
<uint64_t> &Record
,
278 llvm_unreachable("DXIL cannot contain DIArgList Nodes");
280 void writeDIAssignID(const DIAssignID
*N
, SmallVectorImpl
<uint64_t> &Record
,
282 // DIAssignID is experimental feature to track variable location in IR..
283 // FIXME: translate DIAssignID to debug info DXIL supports.
284 // See https://github.com/llvm/llvm-project/issues/58989
285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes");
287 void writeDIModule(const DIModule
*N
, SmallVectorImpl
<uint64_t> &Record
,
289 void writeDITemplateTypeParameter(const DITemplateTypeParameter
*N
,
290 SmallVectorImpl
<uint64_t> &Record
,
292 void writeDITemplateValueParameter(const DITemplateValueParameter
*N
,
293 SmallVectorImpl
<uint64_t> &Record
,
295 void writeDIGlobalVariable(const DIGlobalVariable
*N
,
296 SmallVectorImpl
<uint64_t> &Record
,
298 void writeDILocalVariable(const DILocalVariable
*N
,
299 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
300 void writeDILabel(const DILabel
*N
, SmallVectorImpl
<uint64_t> &Record
,
302 llvm_unreachable("DXIL cannot contain DILabel Nodes");
304 void writeDIExpression(const DIExpression
*N
,
305 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression
*N
,
307 SmallVectorImpl
<uint64_t> &Record
,
309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
311 void writeDIObjCProperty(const DIObjCProperty
*N
,
312 SmallVectorImpl
<uint64_t> &Record
, unsigned Abbrev
);
313 void writeDIImportedEntity(const DIImportedEntity
*N
,
314 SmallVectorImpl
<uint64_t> &Record
,
316 unsigned createNamedMetadataAbbrev();
317 void writeNamedMetadata(SmallVectorImpl
<uint64_t> &Record
);
318 unsigned createMetadataStringsAbbrev();
319 void writeMetadataStrings(ArrayRef
<const Metadata
*> Strings
,
320 SmallVectorImpl
<uint64_t> &Record
);
321 void writeMetadataRecords(ArrayRef
<const Metadata
*> MDs
,
322 SmallVectorImpl
<uint64_t> &Record
,
323 std::vector
<unsigned> *MDAbbrevs
= nullptr,
324 std::vector
<uint64_t> *IndexPos
= nullptr);
325 void writeModuleMetadata();
326 void writeFunctionMetadata(const Function
&F
);
327 void writeFunctionMetadataAttachment(const Function
&F
);
328 void pushGlobalMetadataAttachment(SmallVectorImpl
<uint64_t> &Record
,
329 const GlobalObject
&GO
);
330 void writeModuleMetadataKinds();
331 void writeOperandBundleTags();
332 void writeSyncScopeNames();
333 void writeConstants(unsigned FirstVal
, unsigned LastVal
, bool isGlobal
);
334 void writeModuleConstants();
335 bool pushValueAndType(const Value
*V
, unsigned InstID
,
336 SmallVectorImpl
<unsigned> &Vals
);
337 void writeOperandBundles(const CallBase
&CB
, unsigned InstID
);
338 void pushValue(const Value
*V
, unsigned InstID
,
339 SmallVectorImpl
<unsigned> &Vals
);
340 void pushValueSigned(const Value
*V
, unsigned InstID
,
341 SmallVectorImpl
<uint64_t> &Vals
);
342 void writeInstruction(const Instruction
&I
, unsigned InstID
,
343 SmallVectorImpl
<unsigned> &Vals
);
344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable
&VST
);
345 void writeGlobalValueSymbolTable(
346 DenseMap
<const Function
*, uint64_t> &FunctionToBitcodeIndex
);
347 void writeFunction(const Function
&F
);
348 void writeBlockInfo();
350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID
) { return unsigned(SSID
); }
352 unsigned getEncodedAlign(MaybeAlign Alignment
) { return encode(Alignment
); }
354 unsigned getTypeID(Type
*T
, const Value
*V
= nullptr);
355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject
357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the
358 /// GlobalObject, but in the bitcode writer we need the pointer element type.
359 unsigned getGlobalObjectValueTypeID(Type
*T
, const GlobalObject
*G
);
365 using namespace llvm
;
366 using namespace llvm::dxil
;
368 ////////////////////////////////////////////////////////////////////////////////
369 /// Begin dxil::BitcodeWriter Implementation
370 ////////////////////////////////////////////////////////////////////////////////
372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl
<char> &Buffer
)
373 : Buffer(Buffer
), Stream(new BitstreamWriter(Buffer
)) {
374 // Emit the file header.
375 Stream
->Emit((unsigned)'B', 8);
376 Stream
->Emit((unsigned)'C', 8);
377 Stream
->Emit(0x0, 4);
378 Stream
->Emit(0xC, 4);
379 Stream
->Emit(0xE, 4);
380 Stream
->Emit(0xD, 4);
383 dxil::BitcodeWriter::~BitcodeWriter() { }
385 /// Write the specified module to the specified output stream.
386 void dxil::WriteDXILToFile(const Module
&M
, raw_ostream
&Out
) {
387 SmallVector
<char, 0> Buffer
;
388 Buffer
.reserve(256 * 1024);
390 // If this is darwin or another generic macho target, reserve space for the
392 Triple
TT(M
.getTargetTriple());
393 if (TT
.isOSDarwin() || TT
.isOSBinFormatMachO())
394 Buffer
.insert(Buffer
.begin(), BWH_HeaderSize
, 0);
396 BitcodeWriter
Writer(Buffer
);
397 Writer
.writeModule(M
);
399 // Write the generated bitstream to "Out".
401 Out
.write((char *)&Buffer
.front(), Buffer
.size());
404 void BitcodeWriter::writeBlob(unsigned Block
, unsigned Record
, StringRef Blob
) {
405 Stream
->EnterSubblock(Block
, 3);
407 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
408 Abbv
->Add(BitCodeAbbrevOp(Record
));
409 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob
));
410 auto AbbrevNo
= Stream
->EmitAbbrev(std::move(Abbv
));
412 Stream
->EmitRecordWithBlob(AbbrevNo
, ArrayRef
<uint64_t>{Record
}, Blob
);
417 void BitcodeWriter::writeModule(const Module
&M
) {
419 // The Mods vector is used by irsymtab::build, which requires non-const
420 // Modules in case it needs to materialize metadata. But the bitcode writer
421 // requires that the module is materialized, so we can cast to non-const here,
422 // after checking that it is in fact materialized.
423 assert(M
.isMaterialized());
424 Mods
.push_back(const_cast<Module
*>(&M
));
426 DXILBitcodeWriter
ModuleWriter(M
, Buffer
, StrtabBuilder
, *Stream
);
427 ModuleWriter
.write();
430 ////////////////////////////////////////////////////////////////////////////////
431 /// Begin dxil::BitcodeWriterBase Implementation
432 ////////////////////////////////////////////////////////////////////////////////
434 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode
) {
437 llvm_unreachable("Unknown cast instruction!");
438 case Instruction::Trunc
:
439 return bitc::CAST_TRUNC
;
440 case Instruction::ZExt
:
441 return bitc::CAST_ZEXT
;
442 case Instruction::SExt
:
443 return bitc::CAST_SEXT
;
444 case Instruction::FPToUI
:
445 return bitc::CAST_FPTOUI
;
446 case Instruction::FPToSI
:
447 return bitc::CAST_FPTOSI
;
448 case Instruction::UIToFP
:
449 return bitc::CAST_UITOFP
;
450 case Instruction::SIToFP
:
451 return bitc::CAST_SITOFP
;
452 case Instruction::FPTrunc
:
453 return bitc::CAST_FPTRUNC
;
454 case Instruction::FPExt
:
455 return bitc::CAST_FPEXT
;
456 case Instruction::PtrToInt
:
457 return bitc::CAST_PTRTOINT
;
458 case Instruction::IntToPtr
:
459 return bitc::CAST_INTTOPTR
;
460 case Instruction::BitCast
:
461 return bitc::CAST_BITCAST
;
462 case Instruction::AddrSpaceCast
:
463 return bitc::CAST_ADDRSPACECAST
;
467 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode
) {
470 llvm_unreachable("Unknown binary instruction!");
471 case Instruction::FNeg
:
472 return bitc::UNOP_FNEG
;
476 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode
) {
479 llvm_unreachable("Unknown binary instruction!");
480 case Instruction::Add
:
481 case Instruction::FAdd
:
482 return bitc::BINOP_ADD
;
483 case Instruction::Sub
:
484 case Instruction::FSub
:
485 return bitc::BINOP_SUB
;
486 case Instruction::Mul
:
487 case Instruction::FMul
:
488 return bitc::BINOP_MUL
;
489 case Instruction::UDiv
:
490 return bitc::BINOP_UDIV
;
491 case Instruction::FDiv
:
492 case Instruction::SDiv
:
493 return bitc::BINOP_SDIV
;
494 case Instruction::URem
:
495 return bitc::BINOP_UREM
;
496 case Instruction::FRem
:
497 case Instruction::SRem
:
498 return bitc::BINOP_SREM
;
499 case Instruction::Shl
:
500 return bitc::BINOP_SHL
;
501 case Instruction::LShr
:
502 return bitc::BINOP_LSHR
;
503 case Instruction::AShr
:
504 return bitc::BINOP_ASHR
;
505 case Instruction::And
:
506 return bitc::BINOP_AND
;
507 case Instruction::Or
:
508 return bitc::BINOP_OR
;
509 case Instruction::Xor
:
510 return bitc::BINOP_XOR
;
514 unsigned DXILBitcodeWriter::getTypeID(Type
*T
, const Value
*V
) {
515 if (!T
->isPointerTy() &&
516 // For Constant, always check PointerMap to make sure OpaquePointer in
517 // things like constant struct/array works.
518 (!V
|| !isa
<Constant
>(V
)))
519 return VE
.getTypeID(T
);
520 auto It
= PointerMap
.find(V
);
521 if (It
!= PointerMap
.end())
522 return VE
.getTypeID(It
->second
);
523 // For Constant, return T when cannot find in PointerMap.
524 // FIXME: support ConstantPointerNull which could map to more than one
526 // See https://github.com/llvm/llvm-project/issues/57942.
527 if (V
&& isa
<Constant
>(V
) && !isa
<ConstantPointerNull
>(V
))
528 return VE
.getTypeID(T
);
529 return VE
.getTypeID(I8PtrTy
);
532 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type
*T
,
533 const GlobalObject
*G
) {
534 auto It
= PointerMap
.find(G
);
535 if (It
!= PointerMap
.end()) {
536 TypedPointerType
*PtrTy
= cast
<TypedPointerType
>(It
->second
);
537 return VE
.getTypeID(PtrTy
->getElementType());
539 return VE
.getTypeID(T
);
542 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op
) {
545 llvm_unreachable("Unknown RMW operation!");
546 case AtomicRMWInst::Xchg
:
547 return bitc::RMW_XCHG
;
548 case AtomicRMWInst::Add
:
549 return bitc::RMW_ADD
;
550 case AtomicRMWInst::Sub
:
551 return bitc::RMW_SUB
;
552 case AtomicRMWInst::And
:
553 return bitc::RMW_AND
;
554 case AtomicRMWInst::Nand
:
555 return bitc::RMW_NAND
;
556 case AtomicRMWInst::Or
:
558 case AtomicRMWInst::Xor
:
559 return bitc::RMW_XOR
;
560 case AtomicRMWInst::Max
:
561 return bitc::RMW_MAX
;
562 case AtomicRMWInst::Min
:
563 return bitc::RMW_MIN
;
564 case AtomicRMWInst::UMax
:
565 return bitc::RMW_UMAX
;
566 case AtomicRMWInst::UMin
:
567 return bitc::RMW_UMIN
;
568 case AtomicRMWInst::FAdd
:
569 return bitc::RMW_FADD
;
570 case AtomicRMWInst::FSub
:
571 return bitc::RMW_FSUB
;
572 case AtomicRMWInst::FMax
:
573 return bitc::RMW_FMAX
;
574 case AtomicRMWInst::FMin
:
575 return bitc::RMW_FMIN
;
579 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering
) {
581 case AtomicOrdering::NotAtomic
:
582 return bitc::ORDERING_NOTATOMIC
;
583 case AtomicOrdering::Unordered
:
584 return bitc::ORDERING_UNORDERED
;
585 case AtomicOrdering::Monotonic
:
586 return bitc::ORDERING_MONOTONIC
;
587 case AtomicOrdering::Acquire
:
588 return bitc::ORDERING_ACQUIRE
;
589 case AtomicOrdering::Release
:
590 return bitc::ORDERING_RELEASE
;
591 case AtomicOrdering::AcquireRelease
:
592 return bitc::ORDERING_ACQREL
;
593 case AtomicOrdering::SequentiallyConsistent
:
594 return bitc::ORDERING_SEQCST
;
596 llvm_unreachable("Invalid ordering");
599 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter
&Stream
,
600 unsigned Code
, StringRef Str
,
601 unsigned AbbrevToUse
) {
602 SmallVector
<unsigned, 64> Vals
;
604 // Code: [strchar x N]
606 if (AbbrevToUse
&& !BitCodeAbbrevOp::isChar6(C
))
611 // Emit the finished record.
612 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
615 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind
) {
617 case Attribute::Alignment
:
618 return bitc::ATTR_KIND_ALIGNMENT
;
619 case Attribute::AlwaysInline
:
620 return bitc::ATTR_KIND_ALWAYS_INLINE
;
621 case Attribute::Builtin
:
622 return bitc::ATTR_KIND_BUILTIN
;
623 case Attribute::ByVal
:
624 return bitc::ATTR_KIND_BY_VAL
;
625 case Attribute::Convergent
:
626 return bitc::ATTR_KIND_CONVERGENT
;
627 case Attribute::InAlloca
:
628 return bitc::ATTR_KIND_IN_ALLOCA
;
629 case Attribute::Cold
:
630 return bitc::ATTR_KIND_COLD
;
631 case Attribute::InlineHint
:
632 return bitc::ATTR_KIND_INLINE_HINT
;
633 case Attribute::InReg
:
634 return bitc::ATTR_KIND_IN_REG
;
635 case Attribute::JumpTable
:
636 return bitc::ATTR_KIND_JUMP_TABLE
;
637 case Attribute::MinSize
:
638 return bitc::ATTR_KIND_MIN_SIZE
;
639 case Attribute::Naked
:
640 return bitc::ATTR_KIND_NAKED
;
641 case Attribute::Nest
:
642 return bitc::ATTR_KIND_NEST
;
643 case Attribute::NoAlias
:
644 return bitc::ATTR_KIND_NO_ALIAS
;
645 case Attribute::NoBuiltin
:
646 return bitc::ATTR_KIND_NO_BUILTIN
;
647 case Attribute::NoDuplicate
:
648 return bitc::ATTR_KIND_NO_DUPLICATE
;
649 case Attribute::NoImplicitFloat
:
650 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT
;
651 case Attribute::NoInline
:
652 return bitc::ATTR_KIND_NO_INLINE
;
653 case Attribute::NonLazyBind
:
654 return bitc::ATTR_KIND_NON_LAZY_BIND
;
655 case Attribute::NonNull
:
656 return bitc::ATTR_KIND_NON_NULL
;
657 case Attribute::Dereferenceable
:
658 return bitc::ATTR_KIND_DEREFERENCEABLE
;
659 case Attribute::DereferenceableOrNull
:
660 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL
;
661 case Attribute::NoRedZone
:
662 return bitc::ATTR_KIND_NO_RED_ZONE
;
663 case Attribute::NoReturn
:
664 return bitc::ATTR_KIND_NO_RETURN
;
665 case Attribute::NoUnwind
:
666 return bitc::ATTR_KIND_NO_UNWIND
;
667 case Attribute::OptimizeForSize
:
668 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE
;
669 case Attribute::OptimizeNone
:
670 return bitc::ATTR_KIND_OPTIMIZE_NONE
;
671 case Attribute::ReadNone
:
672 return bitc::ATTR_KIND_READ_NONE
;
673 case Attribute::ReadOnly
:
674 return bitc::ATTR_KIND_READ_ONLY
;
675 case Attribute::Returned
:
676 return bitc::ATTR_KIND_RETURNED
;
677 case Attribute::ReturnsTwice
:
678 return bitc::ATTR_KIND_RETURNS_TWICE
;
679 case Attribute::SExt
:
680 return bitc::ATTR_KIND_S_EXT
;
681 case Attribute::StackAlignment
:
682 return bitc::ATTR_KIND_STACK_ALIGNMENT
;
683 case Attribute::StackProtect
:
684 return bitc::ATTR_KIND_STACK_PROTECT
;
685 case Attribute::StackProtectReq
:
686 return bitc::ATTR_KIND_STACK_PROTECT_REQ
;
687 case Attribute::StackProtectStrong
:
688 return bitc::ATTR_KIND_STACK_PROTECT_STRONG
;
689 case Attribute::SafeStack
:
690 return bitc::ATTR_KIND_SAFESTACK
;
691 case Attribute::StructRet
:
692 return bitc::ATTR_KIND_STRUCT_RET
;
693 case Attribute::SanitizeAddress
:
694 return bitc::ATTR_KIND_SANITIZE_ADDRESS
;
695 case Attribute::SanitizeThread
:
696 return bitc::ATTR_KIND_SANITIZE_THREAD
;
697 case Attribute::SanitizeMemory
:
698 return bitc::ATTR_KIND_SANITIZE_MEMORY
;
699 case Attribute::UWTable
:
700 return bitc::ATTR_KIND_UW_TABLE
;
701 case Attribute::ZExt
:
702 return bitc::ATTR_KIND_Z_EXT
;
703 case Attribute::EndAttrKinds
:
704 llvm_unreachable("Can not encode end-attribute kinds marker.");
705 case Attribute::None
:
706 llvm_unreachable("Can not encode none-attribute.");
707 case Attribute::EmptyKey
:
708 case Attribute::TombstoneKey
:
709 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
711 llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
712 "should be stripped in DXILPrepare");
715 llvm_unreachable("Trying to encode unknown attribute");
718 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl
<uint64_t> &Vals
,
721 Vals
.push_back(V
<< 1);
723 Vals
.push_back((-V
<< 1) | 1);
726 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl
<uint64_t> &Vals
,
728 // We have an arbitrary precision integer value to write whose
729 // bit width is > 64. However, in canonical unsigned integer
730 // format it is likely that the high bits are going to be zero.
731 // So, we only write the number of active words.
732 unsigned NumWords
= A
.getActiveWords();
733 const uint64_t *RawData
= A
.getRawData();
734 for (unsigned i
= 0; i
< NumWords
; i
++)
735 emitSignedInt64(Vals
, RawData
[i
]);
738 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value
*V
) {
741 if (const auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(V
)) {
742 if (OBO
->hasNoSignedWrap())
743 Flags
|= 1 << bitc::OBO_NO_SIGNED_WRAP
;
744 if (OBO
->hasNoUnsignedWrap())
745 Flags
|= 1 << bitc::OBO_NO_UNSIGNED_WRAP
;
746 } else if (const auto *PEO
= dyn_cast
<PossiblyExactOperator
>(V
)) {
748 Flags
|= 1 << bitc::PEO_EXACT
;
749 } else if (const auto *FPMO
= dyn_cast
<FPMathOperator
>(V
)) {
750 if (FPMO
->hasAllowReassoc() || FPMO
->hasAllowContract())
751 Flags
|= bitc::UnsafeAlgebra
;
752 if (FPMO
->hasNoNaNs())
753 Flags
|= bitc::NoNaNs
;
754 if (FPMO
->hasNoInfs())
755 Flags
|= bitc::NoInfs
;
756 if (FPMO
->hasNoSignedZeros())
757 Flags
|= bitc::NoSignedZeros
;
758 if (FPMO
->hasAllowReciprocal())
759 Flags
|= bitc::AllowReciprocal
;
766 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage
) {
768 case GlobalValue::ExternalLinkage
:
770 case GlobalValue::WeakAnyLinkage
:
772 case GlobalValue::AppendingLinkage
:
774 case GlobalValue::InternalLinkage
:
776 case GlobalValue::LinkOnceAnyLinkage
:
778 case GlobalValue::ExternalWeakLinkage
:
780 case GlobalValue::CommonLinkage
:
782 case GlobalValue::PrivateLinkage
:
784 case GlobalValue::WeakODRLinkage
:
786 case GlobalValue::LinkOnceODRLinkage
:
788 case GlobalValue::AvailableExternallyLinkage
:
791 llvm_unreachable("Invalid linkage");
794 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue
&GV
) {
795 return getEncodedLinkage(GV
.getLinkage());
798 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue
&GV
) {
799 switch (GV
.getVisibility()) {
800 case GlobalValue::DefaultVisibility
:
802 case GlobalValue::HiddenVisibility
:
804 case GlobalValue::ProtectedVisibility
:
807 llvm_unreachable("Invalid visibility");
810 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue
&GV
) {
811 switch (GV
.getDLLStorageClass()) {
812 case GlobalValue::DefaultStorageClass
:
814 case GlobalValue::DLLImportStorageClass
:
816 case GlobalValue::DLLExportStorageClass
:
819 llvm_unreachable("Invalid DLL storage class");
822 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue
&GV
) {
823 switch (GV
.getThreadLocalMode()) {
824 case GlobalVariable::NotThreadLocal
:
826 case GlobalVariable::GeneralDynamicTLSModel
:
828 case GlobalVariable::LocalDynamicTLSModel
:
830 case GlobalVariable::InitialExecTLSModel
:
832 case GlobalVariable::LocalExecTLSModel
:
835 llvm_unreachable("Invalid TLS model");
838 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat
&C
) {
839 switch (C
.getSelectionKind()) {
841 return bitc::COMDAT_SELECTION_KIND_ANY
;
842 case Comdat::ExactMatch
:
843 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH
;
844 case Comdat::Largest
:
845 return bitc::COMDAT_SELECTION_KIND_LARGEST
;
846 case Comdat::NoDeduplicate
:
847 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES
;
848 case Comdat::SameSize
:
849 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE
;
851 llvm_unreachable("Invalid selection kind");
854 ////////////////////////////////////////////////////////////////////////////////
855 /// Begin DXILBitcodeWriter Implementation
856 ////////////////////////////////////////////////////////////////////////////////
858 void DXILBitcodeWriter::writeAttributeGroupTable() {
859 const std::vector
<ValueEnumerator::IndexAndAttrSet
> &AttrGrps
=
860 VE
.getAttributeGroups();
861 if (AttrGrps
.empty())
864 Stream
.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID
, 3);
866 SmallVector
<uint64_t, 64> Record
;
867 for (ValueEnumerator::IndexAndAttrSet Pair
: AttrGrps
) {
868 unsigned AttrListIndex
= Pair
.first
;
869 AttributeSet AS
= Pair
.second
;
870 Record
.push_back(VE
.getAttributeGroupID(Pair
));
871 Record
.push_back(AttrListIndex
);
873 for (Attribute Attr
: AS
) {
874 if (Attr
.isEnumAttribute()) {
875 uint64_t Val
= getAttrKindEncoding(Attr
.getKindAsEnum());
876 assert(Val
<= bitc::ATTR_KIND_ARGMEMONLY
&&
877 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
879 Record
.push_back(Val
);
880 } else if (Attr
.isIntAttribute()) {
881 if (Attr
.getKindAsEnum() == Attribute::AttrKind::Memory
) {
882 MemoryEffects ME
= Attr
.getMemoryEffects();
883 if (ME
.doesNotAccessMemory()) {
885 Record
.push_back(bitc::ATTR_KIND_READ_NONE
);
887 if (ME
.onlyReadsMemory()) {
889 Record
.push_back(bitc::ATTR_KIND_READ_ONLY
);
891 if (ME
.onlyAccessesArgPointees()) {
893 Record
.push_back(bitc::ATTR_KIND_ARGMEMONLY
);
897 uint64_t Val
= getAttrKindEncoding(Attr
.getKindAsEnum());
898 assert(Val
<= bitc::ATTR_KIND_ARGMEMONLY
&&
899 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
901 Record
.push_back(Val
);
902 Record
.push_back(Attr
.getValueAsInt());
905 StringRef Kind
= Attr
.getKindAsString();
906 StringRef Val
= Attr
.getValueAsString();
908 Record
.push_back(Val
.empty() ? 3 : 4);
909 Record
.append(Kind
.begin(), Kind
.end());
912 Record
.append(Val
.begin(), Val
.end());
918 Stream
.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY
, Record
);
925 void DXILBitcodeWriter::writeAttributeTable() {
926 const std::vector
<AttributeList
> &Attrs
= VE
.getAttributeLists();
930 Stream
.EnterSubblock(bitc::PARAMATTR_BLOCK_ID
, 3);
932 SmallVector
<uint64_t, 64> Record
;
933 for (AttributeList AL
: Attrs
) {
934 for (unsigned i
: AL
.indexes()) {
935 AttributeSet AS
= AL
.getAttributes(i
);
936 if (AS
.hasAttributes())
937 Record
.push_back(VE
.getAttributeGroupID({i
, AS
}));
940 Stream
.EmitRecord(bitc::PARAMATTR_CODE_ENTRY
, Record
);
947 /// WriteTypeTable - Write out the type table for a module.
948 void DXILBitcodeWriter::writeTypeTable() {
949 const ValueEnumerator::TypeList
&TypeList
= VE
.getTypes();
951 Stream
.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW
, 4 /*count from # abbrevs */);
952 SmallVector
<uint64_t, 64> TypeVals
;
954 uint64_t NumBits
= VE
.computeBitsRequiredForTypeIndices();
956 // Abbrev for TYPE_CODE_POINTER.
957 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
958 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER
));
959 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
960 Abbv
->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
961 unsigned PtrAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
963 // Abbrev for TYPE_CODE_FUNCTION.
964 Abbv
= std::make_shared
<BitCodeAbbrev
>();
965 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION
));
966 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // isvararg
967 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
968 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
969 unsigned FunctionAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
971 // Abbrev for TYPE_CODE_STRUCT_ANON.
972 Abbv
= std::make_shared
<BitCodeAbbrev
>();
973 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON
));
974 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
975 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
976 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
977 unsigned StructAnonAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
979 // Abbrev for TYPE_CODE_STRUCT_NAME.
980 Abbv
= std::make_shared
<BitCodeAbbrev
>();
981 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME
));
982 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
983 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
984 unsigned StructNameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
986 // Abbrev for TYPE_CODE_STRUCT_NAMED.
987 Abbv
= std::make_shared
<BitCodeAbbrev
>();
988 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED
));
989 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // ispacked
990 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
991 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
992 unsigned StructNamedAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
994 // Abbrev for TYPE_CODE_ARRAY.
995 Abbv
= std::make_shared
<BitCodeAbbrev
>();
996 Abbv
->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY
));
997 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // size
998 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, NumBits
));
999 unsigned ArrayAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1001 // Emit an entry count so the reader can reserve space.
1002 TypeVals
.push_back(TypeList
.size());
1003 Stream
.EmitRecord(bitc::TYPE_CODE_NUMENTRY
, TypeVals
);
1006 // Loop over all of the types, emitting each in turn.
1007 for (Type
*T
: TypeList
) {
1008 int AbbrevToUse
= 0;
1011 switch (T
->getTypeID()) {
1012 case Type::BFloatTyID
:
1013 case Type::X86_AMXTyID
:
1014 case Type::TokenTyID
:
1015 case Type::TargetExtTyID
:
1016 llvm_unreachable("These should never be used!!!");
1018 case Type::VoidTyID
:
1019 Code
= bitc::TYPE_CODE_VOID
;
1021 case Type::HalfTyID
:
1022 Code
= bitc::TYPE_CODE_HALF
;
1024 case Type::FloatTyID
:
1025 Code
= bitc::TYPE_CODE_FLOAT
;
1027 case Type::DoubleTyID
:
1028 Code
= bitc::TYPE_CODE_DOUBLE
;
1030 case Type::X86_FP80TyID
:
1031 Code
= bitc::TYPE_CODE_X86_FP80
;
1033 case Type::FP128TyID
:
1034 Code
= bitc::TYPE_CODE_FP128
;
1036 case Type::PPC_FP128TyID
:
1037 Code
= bitc::TYPE_CODE_PPC_FP128
;
1039 case Type::LabelTyID
:
1040 Code
= bitc::TYPE_CODE_LABEL
;
1042 case Type::MetadataTyID
:
1043 Code
= bitc::TYPE_CODE_METADATA
;
1045 case Type::IntegerTyID
:
1047 Code
= bitc::TYPE_CODE_INTEGER
;
1048 TypeVals
.push_back(cast
<IntegerType
>(T
)->getBitWidth());
1050 case Type::TypedPointerTyID
: {
1051 TypedPointerType
*PTy
= cast
<TypedPointerType
>(T
);
1052 // POINTER: [pointee type, address space]
1053 Code
= bitc::TYPE_CODE_POINTER
;
1054 TypeVals
.push_back(getTypeID(PTy
->getElementType()));
1055 unsigned AddressSpace
= PTy
->getAddressSpace();
1056 TypeVals
.push_back(AddressSpace
);
1057 if (AddressSpace
== 0)
1058 AbbrevToUse
= PtrAbbrev
;
1061 case Type::PointerTyID
: {
1062 // POINTER: [pointee type, address space]
1063 // Emitting an empty struct type for the pointer's type allows this to be
1064 // order-independent. Non-struct types must be emitted in bitcode before
1065 // they can be referenced.
1066 TypeVals
.push_back(false);
1067 Code
= bitc::TYPE_CODE_OPAQUE
;
1068 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
,
1069 "dxilOpaquePtrReservedName", StructNameAbbrev
);
1072 case Type::FunctionTyID
: {
1073 FunctionType
*FT
= cast
<FunctionType
>(T
);
1074 // FUNCTION: [isvararg, retty, paramty x N]
1075 Code
= bitc::TYPE_CODE_FUNCTION
;
1076 TypeVals
.push_back(FT
->isVarArg());
1077 TypeVals
.push_back(getTypeID(FT
->getReturnType()));
1078 for (Type
*PTy
: FT
->params())
1079 TypeVals
.push_back(getTypeID(PTy
));
1080 AbbrevToUse
= FunctionAbbrev
;
1083 case Type::StructTyID
: {
1084 StructType
*ST
= cast
<StructType
>(T
);
1085 // STRUCT: [ispacked, eltty x N]
1086 TypeVals
.push_back(ST
->isPacked());
1087 // Output all of the element types.
1088 for (Type
*ElTy
: ST
->elements())
1089 TypeVals
.push_back(getTypeID(ElTy
));
1091 if (ST
->isLiteral()) {
1092 Code
= bitc::TYPE_CODE_STRUCT_ANON
;
1093 AbbrevToUse
= StructAnonAbbrev
;
1095 if (ST
->isOpaque()) {
1096 Code
= bitc::TYPE_CODE_OPAQUE
;
1098 Code
= bitc::TYPE_CODE_STRUCT_NAMED
;
1099 AbbrevToUse
= StructNamedAbbrev
;
1102 // Emit the name if it is present.
1103 if (!ST
->getName().empty())
1104 writeStringRecord(Stream
, bitc::TYPE_CODE_STRUCT_NAME
, ST
->getName(),
1109 case Type::ArrayTyID
: {
1110 ArrayType
*AT
= cast
<ArrayType
>(T
);
1111 // ARRAY: [numelts, eltty]
1112 Code
= bitc::TYPE_CODE_ARRAY
;
1113 TypeVals
.push_back(AT
->getNumElements());
1114 TypeVals
.push_back(getTypeID(AT
->getElementType()));
1115 AbbrevToUse
= ArrayAbbrev
;
1118 case Type::FixedVectorTyID
:
1119 case Type::ScalableVectorTyID
: {
1120 VectorType
*VT
= cast
<VectorType
>(T
);
1121 // VECTOR [numelts, eltty]
1122 Code
= bitc::TYPE_CODE_VECTOR
;
1123 TypeVals
.push_back(VT
->getElementCount().getKnownMinValue());
1124 TypeVals
.push_back(getTypeID(VT
->getElementType()));
1129 // Emit the finished record.
1130 Stream
.EmitRecord(Code
, TypeVals
, AbbrevToUse
);
1137 void DXILBitcodeWriter::writeComdats() {
1138 SmallVector
<uint16_t, 64> Vals
;
1139 for (const Comdat
*C
: VE
.getComdats()) {
1140 // COMDAT: [selection_kind, name]
1141 Vals
.push_back(getEncodedComdatSelectionKind(*C
));
1142 size_t Size
= C
->getName().size();
1143 assert(isUInt
<16>(Size
));
1144 Vals
.push_back(Size
);
1145 for (char Chr
: C
->getName())
1146 Vals
.push_back((unsigned char)Chr
);
1147 Stream
.EmitRecord(bitc::MODULE_CODE_COMDAT
, Vals
, /*AbbrevToUse=*/0);
1152 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1154 /// Emit top-level description of module, including target triple, inline asm,
1155 /// descriptors for global variables, and function prototype info.
1156 /// Returns the bit offset to backpatch with the location of the real VST.
1157 void DXILBitcodeWriter::writeModuleInfo() {
1158 // Emit various pieces of data attached to a module.
1159 if (!M
.getTargetTriple().empty())
1160 writeStringRecord(Stream
, bitc::MODULE_CODE_TRIPLE
, M
.getTargetTriple(),
1162 const std::string
&DL
= M
.getDataLayoutStr();
1164 writeStringRecord(Stream
, bitc::MODULE_CODE_DATALAYOUT
, DL
, 0 /*TODO*/);
1165 if (!M
.getModuleInlineAsm().empty())
1166 writeStringRecord(Stream
, bitc::MODULE_CODE_ASM
, M
.getModuleInlineAsm(),
1169 // Emit information about sections and GC, computing how many there are. Also
1170 // compute the maximum alignment value.
1171 std::map
<std::string
, unsigned> SectionMap
;
1172 std::map
<std::string
, unsigned> GCMap
;
1173 MaybeAlign MaxAlignment
;
1174 unsigned MaxGlobalType
= 0;
1175 const auto UpdateMaxAlignment
= [&MaxAlignment
](const MaybeAlign A
) {
1177 MaxAlignment
= !MaxAlignment
? *A
: std::max(*MaxAlignment
, *A
);
1179 for (const GlobalVariable
&GV
: M
.globals()) {
1180 UpdateMaxAlignment(GV
.getAlign());
1181 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for
1182 // Global Variable types.
1183 MaxGlobalType
= std::max(
1184 MaxGlobalType
, getGlobalObjectValueTypeID(GV
.getValueType(), &GV
));
1185 if (GV
.hasSection()) {
1186 // Give section names unique ID's.
1187 unsigned &Entry
= SectionMap
[std::string(GV
.getSection())];
1189 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
,
1190 GV
.getSection(), 0 /*TODO*/);
1191 Entry
= SectionMap
.size();
1195 for (const Function
&F
: M
) {
1196 UpdateMaxAlignment(F
.getAlign());
1197 if (F
.hasSection()) {
1198 // Give section names unique ID's.
1199 unsigned &Entry
= SectionMap
[std::string(F
.getSection())];
1201 writeStringRecord(Stream
, bitc::MODULE_CODE_SECTIONNAME
, F
.getSection(),
1203 Entry
= SectionMap
.size();
1207 // Same for GC names.
1208 unsigned &Entry
= GCMap
[F
.getGC()];
1210 writeStringRecord(Stream
, bitc::MODULE_CODE_GCNAME
, F
.getGC(),
1212 Entry
= GCMap
.size();
1217 // Emit abbrev for globals, now that we know # sections and max alignment.
1218 unsigned SimpleGVarAbbrev
= 0;
1219 if (!M
.global_empty()) {
1220 // Add an abbrev for common globals with no visibility or thread
1222 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1223 Abbv
->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR
));
1224 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1225 Log2_32_Ceil(MaxGlobalType
+ 1)));
1226 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // AddrSpace << 2
1227 //| explicitType << 1
1229 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Initializer.
1230 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 5)); // Linkage.
1231 if (!MaxAlignment
) // Alignment.
1232 Abbv
->Add(BitCodeAbbrevOp(0));
1234 unsigned MaxEncAlignment
= getEncodedAlign(MaxAlignment
);
1235 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1236 Log2_32_Ceil(MaxEncAlignment
+ 1)));
1238 if (SectionMap
.empty()) // Section.
1239 Abbv
->Add(BitCodeAbbrevOp(0));
1241 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
1242 Log2_32_Ceil(SectionMap
.size() + 1)));
1243 // Don't bother emitting vis + thread local.
1244 SimpleGVarAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1247 // Emit the global variable information.
1248 SmallVector
<unsigned, 64> Vals
;
1249 for (const GlobalVariable
&GV
: M
.globals()) {
1250 unsigned AbbrevToUse
= 0;
1252 // GLOBALVAR: [type, isconst, initid,
1253 // linkage, alignment, section, visibility, threadlocal,
1254 // unnamed_addr, externally_initialized, dllstorageclass,
1256 Vals
.push_back(getGlobalObjectValueTypeID(GV
.getValueType(), &GV
));
1258 GV
.getType()->getAddressSpace() << 2 | 2 |
1259 (GV
.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1260 // unsigned int and bool
1262 GV
.isDeclaration() ? 0 : (VE
.getValueID(GV
.getInitializer()) + 1));
1263 Vals
.push_back(getEncodedLinkage(GV
));
1264 Vals
.push_back(getEncodedAlign(GV
.getAlign()));
1265 Vals
.push_back(GV
.hasSection() ? SectionMap
[std::string(GV
.getSection())]
1267 if (GV
.isThreadLocal() ||
1268 GV
.getVisibility() != GlobalValue::DefaultVisibility
||
1269 GV
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
||
1270 GV
.isExternallyInitialized() ||
1271 GV
.getDLLStorageClass() != GlobalValue::DefaultStorageClass
||
1273 Vals
.push_back(getEncodedVisibility(GV
));
1274 Vals
.push_back(getEncodedThreadLocalMode(GV
));
1275 Vals
.push_back(GV
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
);
1276 Vals
.push_back(GV
.isExternallyInitialized());
1277 Vals
.push_back(getEncodedDLLStorageClass(GV
));
1278 Vals
.push_back(GV
.hasComdat() ? VE
.getComdatID(GV
.getComdat()) : 0);
1280 AbbrevToUse
= SimpleGVarAbbrev
;
1283 Stream
.EmitRecord(bitc::MODULE_CODE_GLOBALVAR
, Vals
, AbbrevToUse
);
1287 // Emit the function proto information.
1288 for (const Function
&F
: M
) {
1289 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
1290 // section, visibility, gc, unnamed_addr, prologuedata,
1291 // dllstorageclass, comdat, prefixdata, personalityfn]
1292 Vals
.push_back(getGlobalObjectValueTypeID(F
.getFunctionType(), &F
));
1293 Vals
.push_back(F
.getCallingConv());
1294 Vals
.push_back(F
.isDeclaration());
1295 Vals
.push_back(getEncodedLinkage(F
));
1296 Vals
.push_back(VE
.getAttributeListID(F
.getAttributes()));
1297 Vals
.push_back(getEncodedAlign(F
.getAlign()));
1298 Vals
.push_back(F
.hasSection() ? SectionMap
[std::string(F
.getSection())]
1300 Vals
.push_back(getEncodedVisibility(F
));
1301 Vals
.push_back(F
.hasGC() ? GCMap
[F
.getGC()] : 0);
1302 Vals
.push_back(F
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
);
1304 F
.hasPrologueData() ? (VE
.getValueID(F
.getPrologueData()) + 1) : 0);
1305 Vals
.push_back(getEncodedDLLStorageClass(F
));
1306 Vals
.push_back(F
.hasComdat() ? VE
.getComdatID(F
.getComdat()) : 0);
1307 Vals
.push_back(F
.hasPrefixData() ? (VE
.getValueID(F
.getPrefixData()) + 1)
1310 F
.hasPersonalityFn() ? (VE
.getValueID(F
.getPersonalityFn()) + 1) : 0);
1312 unsigned AbbrevToUse
= 0;
1313 Stream
.EmitRecord(bitc::MODULE_CODE_FUNCTION
, Vals
, AbbrevToUse
);
1317 // Emit the alias information.
1318 for (const GlobalAlias
&A
: M
.aliases()) {
1319 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1320 Vals
.push_back(getTypeID(A
.getValueType(), &A
));
1321 Vals
.push_back(VE
.getValueID(A
.getAliasee()));
1322 Vals
.push_back(getEncodedLinkage(A
));
1323 Vals
.push_back(getEncodedVisibility(A
));
1324 Vals
.push_back(getEncodedDLLStorageClass(A
));
1325 Vals
.push_back(getEncodedThreadLocalMode(A
));
1326 Vals
.push_back(A
.getUnnamedAddr() != GlobalValue::UnnamedAddr::None
);
1327 unsigned AbbrevToUse
= 0;
1328 Stream
.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD
, Vals
, AbbrevToUse
);
1333 void DXILBitcodeWriter::writeValueAsMetadata(
1334 const ValueAsMetadata
*MD
, SmallVectorImpl
<uint64_t> &Record
) {
1335 // Mimic an MDNode with a value as one operand.
1336 Value
*V
= MD
->getValue();
1337 Type
*Ty
= V
->getType();
1338 if (Function
*F
= dyn_cast
<Function
>(V
))
1339 Ty
= TypedPointerType::get(F
->getFunctionType(), F
->getAddressSpace());
1340 else if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(V
))
1341 Ty
= TypedPointerType::get(GV
->getValueType(), GV
->getAddressSpace());
1342 Record
.push_back(getTypeID(Ty
, V
));
1343 Record
.push_back(VE
.getValueID(V
));
1344 Stream
.EmitRecord(bitc::METADATA_VALUE
, Record
, 0);
1348 void DXILBitcodeWriter::writeMDTuple(const MDTuple
*N
,
1349 SmallVectorImpl
<uint64_t> &Record
,
1351 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
1352 Metadata
*MD
= N
->getOperand(i
);
1353 assert(!(MD
&& isa
<LocalAsMetadata
>(MD
)) &&
1354 "Unexpected function-local metadata");
1355 Record
.push_back(VE
.getMetadataOrNullID(MD
));
1357 Stream
.EmitRecord(N
->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1358 : bitc::METADATA_NODE
,
1363 void DXILBitcodeWriter::writeDILocation(const DILocation
*N
,
1364 SmallVectorImpl
<uint64_t> &Record
,
1367 Abbrev
= createDILocationAbbrev();
1368 Record
.push_back(N
->isDistinct());
1369 Record
.push_back(N
->getLine());
1370 Record
.push_back(N
->getColumn());
1371 Record
.push_back(VE
.getMetadataID(N
->getScope()));
1372 Record
.push_back(VE
.getMetadataOrNullID(N
->getInlinedAt()));
1374 Stream
.EmitRecord(bitc::METADATA_LOCATION
, Record
, Abbrev
);
1378 static uint64_t rotateSign(APInt Val
) {
1379 int64_t I
= Val
.getSExtValue();
1381 return I
< 0 ? ~(U
<< 1) : U
<< 1;
1384 void DXILBitcodeWriter::writeDISubrange(const DISubrange
*N
,
1385 SmallVectorImpl
<uint64_t> &Record
,
1387 Record
.push_back(N
->isDistinct());
1389 // TODO: Do we need to handle DIExpression here? What about cases where Count
1390 // isn't specified but UpperBound and such are?
1391 ConstantInt
*Count
= dyn_cast
<ConstantInt
*>(N
->getCount());
1392 assert(Count
&& "Count is missing or not ConstantInt");
1393 Record
.push_back(Count
->getValue().getSExtValue());
1395 // TODO: Similarly, DIExpression is allowed here now
1396 DISubrange::BoundType LowerBound
= N
->getLowerBound();
1397 assert((LowerBound
.isNull() || isa
<ConstantInt
*>(LowerBound
)) &&
1398 "Lower bound provided but not ConstantInt");
1400 LowerBound
? rotateSign(cast
<ConstantInt
*>(LowerBound
)->getValue()) : 0);
1402 Stream
.EmitRecord(bitc::METADATA_SUBRANGE
, Record
, Abbrev
);
1406 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator
*N
,
1407 SmallVectorImpl
<uint64_t> &Record
,
1409 Record
.push_back(N
->isDistinct());
1410 Record
.push_back(rotateSign(N
->getValue()));
1411 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1413 Stream
.EmitRecord(bitc::METADATA_ENUMERATOR
, Record
, Abbrev
);
1417 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType
*N
,
1418 SmallVectorImpl
<uint64_t> &Record
,
1420 Record
.push_back(N
->isDistinct());
1421 Record
.push_back(N
->getTag());
1422 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1423 Record
.push_back(N
->getSizeInBits());
1424 Record
.push_back(N
->getAlignInBits());
1425 Record
.push_back(N
->getEncoding());
1427 Stream
.EmitRecord(bitc::METADATA_BASIC_TYPE
, Record
, Abbrev
);
1431 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType
*N
,
1432 SmallVectorImpl
<uint64_t> &Record
,
1434 Record
.push_back(N
->isDistinct());
1435 Record
.push_back(N
->getTag());
1436 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1437 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1438 Record
.push_back(N
->getLine());
1439 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1440 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1441 Record
.push_back(N
->getSizeInBits());
1442 Record
.push_back(N
->getAlignInBits());
1443 Record
.push_back(N
->getOffsetInBits());
1444 Record
.push_back(N
->getFlags());
1445 Record
.push_back(VE
.getMetadataOrNullID(N
->getExtraData()));
1447 Stream
.EmitRecord(bitc::METADATA_DERIVED_TYPE
, Record
, Abbrev
);
1451 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType
*N
,
1452 SmallVectorImpl
<uint64_t> &Record
,
1454 Record
.push_back(N
->isDistinct());
1455 Record
.push_back(N
->getTag());
1456 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1457 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1458 Record
.push_back(N
->getLine());
1459 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1460 Record
.push_back(VE
.getMetadataOrNullID(N
->getBaseType()));
1461 Record
.push_back(N
->getSizeInBits());
1462 Record
.push_back(N
->getAlignInBits());
1463 Record
.push_back(N
->getOffsetInBits());
1464 Record
.push_back(N
->getFlags());
1465 Record
.push_back(VE
.getMetadataOrNullID(N
->getElements().get()));
1466 Record
.push_back(N
->getRuntimeLang());
1467 Record
.push_back(VE
.getMetadataOrNullID(N
->getVTableHolder()));
1468 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1469 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawIdentifier()));
1471 Stream
.EmitRecord(bitc::METADATA_COMPOSITE_TYPE
, Record
, Abbrev
);
1475 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType
*N
,
1476 SmallVectorImpl
<uint64_t> &Record
,
1478 Record
.push_back(N
->isDistinct());
1479 Record
.push_back(N
->getFlags());
1480 Record
.push_back(VE
.getMetadataOrNullID(N
->getTypeArray().get()));
1482 Stream
.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE
, Record
, Abbrev
);
1486 void DXILBitcodeWriter::writeDIFile(const DIFile
*N
,
1487 SmallVectorImpl
<uint64_t> &Record
,
1489 Record
.push_back(N
->isDistinct());
1490 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFilename()));
1491 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawDirectory()));
1493 Stream
.EmitRecord(bitc::METADATA_FILE
, Record
, Abbrev
);
1497 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit
*N
,
1498 SmallVectorImpl
<uint64_t> &Record
,
1500 Record
.push_back(N
->isDistinct());
1501 Record
.push_back(N
->getSourceLanguage());
1502 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1503 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawProducer()));
1504 Record
.push_back(N
->isOptimized());
1505 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawFlags()));
1506 Record
.push_back(N
->getRuntimeVersion());
1507 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawSplitDebugFilename()));
1508 Record
.push_back(N
->getEmissionKind());
1509 Record
.push_back(VE
.getMetadataOrNullID(N
->getEnumTypes().get()));
1510 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedTypes().get()));
1511 Record
.push_back(/* subprograms */ 0);
1512 Record
.push_back(VE
.getMetadataOrNullID(N
->getGlobalVariables().get()));
1513 Record
.push_back(VE
.getMetadataOrNullID(N
->getImportedEntities().get()));
1514 Record
.push_back(N
->getDWOId());
1516 Stream
.EmitRecord(bitc::METADATA_COMPILE_UNIT
, Record
, Abbrev
);
1520 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram
*N
,
1521 SmallVectorImpl
<uint64_t> &Record
,
1523 Record
.push_back(N
->isDistinct());
1524 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1525 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1526 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
1527 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1528 Record
.push_back(N
->getLine());
1529 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1530 Record
.push_back(N
->isLocalToUnit());
1531 Record
.push_back(N
->isDefinition());
1532 Record
.push_back(N
->getScopeLine());
1533 Record
.push_back(VE
.getMetadataOrNullID(N
->getContainingType()));
1534 Record
.push_back(N
->getVirtuality());
1535 Record
.push_back(N
->getVirtualIndex());
1536 Record
.push_back(N
->getFlags());
1537 Record
.push_back(N
->isOptimized());
1538 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawUnit()));
1539 Record
.push_back(VE
.getMetadataOrNullID(N
->getTemplateParams().get()));
1540 Record
.push_back(VE
.getMetadataOrNullID(N
->getDeclaration()));
1541 Record
.push_back(VE
.getMetadataOrNullID(N
->getRetainedNodes().get()));
1543 Stream
.EmitRecord(bitc::METADATA_SUBPROGRAM
, Record
, Abbrev
);
1547 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock
*N
,
1548 SmallVectorImpl
<uint64_t> &Record
,
1550 Record
.push_back(N
->isDistinct());
1551 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1552 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1553 Record
.push_back(N
->getLine());
1554 Record
.push_back(N
->getColumn());
1556 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK
, Record
, Abbrev
);
1560 void DXILBitcodeWriter::writeDILexicalBlockFile(
1561 const DILexicalBlockFile
*N
, SmallVectorImpl
<uint64_t> &Record
,
1563 Record
.push_back(N
->isDistinct());
1564 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1565 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1566 Record
.push_back(N
->getDiscriminator());
1568 Stream
.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE
, Record
, Abbrev
);
1572 void DXILBitcodeWriter::writeDINamespace(const DINamespace
*N
,
1573 SmallVectorImpl
<uint64_t> &Record
,
1575 Record
.push_back(N
->isDistinct());
1576 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1577 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1578 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1579 Record
.push_back(/* line number */ 0);
1581 Stream
.EmitRecord(bitc::METADATA_NAMESPACE
, Record
, Abbrev
);
1585 void DXILBitcodeWriter::writeDIModule(const DIModule
*N
,
1586 SmallVectorImpl
<uint64_t> &Record
,
1588 Record
.push_back(N
->isDistinct());
1589 for (auto &I
: N
->operands())
1590 Record
.push_back(VE
.getMetadataOrNullID(I
));
1592 Stream
.EmitRecord(bitc::METADATA_MODULE
, Record
, Abbrev
);
1596 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1597 const DITemplateTypeParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
1599 Record
.push_back(N
->isDistinct());
1600 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1601 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1603 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_TYPE
, Record
, Abbrev
);
1607 void DXILBitcodeWriter::writeDITemplateValueParameter(
1608 const DITemplateValueParameter
*N
, SmallVectorImpl
<uint64_t> &Record
,
1610 Record
.push_back(N
->isDistinct());
1611 Record
.push_back(N
->getTag());
1612 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1613 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1614 Record
.push_back(VE
.getMetadataOrNullID(N
->getValue()));
1616 Stream
.EmitRecord(bitc::METADATA_TEMPLATE_VALUE
, Record
, Abbrev
);
1620 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable
*N
,
1621 SmallVectorImpl
<uint64_t> &Record
,
1623 Record
.push_back(N
->isDistinct());
1624 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1625 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1626 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawLinkageName()));
1627 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1628 Record
.push_back(N
->getLine());
1629 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1630 Record
.push_back(N
->isLocalToUnit());
1631 Record
.push_back(N
->isDefinition());
1632 Record
.push_back(/* N->getRawVariable() */ 0);
1633 Record
.push_back(VE
.getMetadataOrNullID(N
->getStaticDataMemberDeclaration()));
1635 Stream
.EmitRecord(bitc::METADATA_GLOBAL_VAR
, Record
, Abbrev
);
1639 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable
*N
,
1640 SmallVectorImpl
<uint64_t> &Record
,
1642 Record
.push_back(N
->isDistinct());
1643 Record
.push_back(N
->getTag());
1644 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1645 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1646 Record
.push_back(VE
.getMetadataOrNullID(N
->getFile()));
1647 Record
.push_back(N
->getLine());
1648 Record
.push_back(VE
.getMetadataOrNullID(N
->getType()));
1649 Record
.push_back(N
->getArg());
1650 Record
.push_back(N
->getFlags());
1652 Stream
.EmitRecord(bitc::METADATA_LOCAL_VAR
, Record
, Abbrev
);
1656 void DXILBitcodeWriter::writeDIExpression(const DIExpression
*N
,
1657 SmallVectorImpl
<uint64_t> &Record
,
1659 Record
.reserve(N
->getElements().size() + 1);
1661 Record
.push_back(N
->isDistinct());
1662 Record
.append(N
->elements_begin(), N
->elements_end());
1664 Stream
.EmitRecord(bitc::METADATA_EXPRESSION
, Record
, Abbrev
);
1668 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty
*N
,
1669 SmallVectorImpl
<uint64_t> &Record
,
1671 llvm_unreachable("DXIL does not support objc!!!");
1674 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity
*N
,
1675 SmallVectorImpl
<uint64_t> &Record
,
1677 Record
.push_back(N
->isDistinct());
1678 Record
.push_back(N
->getTag());
1679 Record
.push_back(VE
.getMetadataOrNullID(N
->getScope()));
1680 Record
.push_back(VE
.getMetadataOrNullID(N
->getEntity()));
1681 Record
.push_back(N
->getLine());
1682 Record
.push_back(VE
.getMetadataOrNullID(N
->getRawName()));
1684 Stream
.EmitRecord(bitc::METADATA_IMPORTED_ENTITY
, Record
, Abbrev
);
1688 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1689 // Abbrev for METADATA_LOCATION.
1691 // Assume the column is usually under 128, and always output the inlined-at
1692 // location (it's never more expensive than building an array size 1).
1693 std::shared_ptr
<BitCodeAbbrev
> Abbv
= std::make_shared
<BitCodeAbbrev
>();
1694 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION
));
1695 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1696 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1697 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
1698 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1699 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1700 return Stream
.EmitAbbrev(std::move(Abbv
));
1703 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1704 // Abbrev for METADATA_GENERIC_DEBUG.
1706 // Assume the column is usually under 128, and always output the inlined-at
1707 // location (it's never more expensive than building an array size 1).
1708 std::shared_ptr
<BitCodeAbbrev
> Abbv
= std::make_shared
<BitCodeAbbrev
>();
1709 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG
));
1710 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1711 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1712 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
1713 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1714 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1715 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
1716 return Stream
.EmitAbbrev(std::move(Abbv
));
1719 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef
<const Metadata
*> MDs
,
1720 SmallVectorImpl
<uint64_t> &Record
,
1721 std::vector
<unsigned> *MDAbbrevs
,
1722 std::vector
<uint64_t> *IndexPos
) {
1726 // Initialize MDNode abbreviations.
1727 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1728 #include "llvm/IR/Metadata.def"
1730 for (const Metadata
*MD
: MDs
) {
1732 IndexPos
->push_back(Stream
.GetCurrentBitNo());
1733 if (const MDNode
*N
= dyn_cast
<MDNode
>(MD
)) {
1734 assert(N
->isResolved() && "Expected forward references to be resolved");
1736 switch (N
->getMetadataID()) {
1738 llvm_unreachable("Invalid MDNode subclass");
1739 #define HANDLE_MDNODE_LEAF(CLASS) \
1740 case Metadata::CLASS##Kind: \
1742 write##CLASS(cast<CLASS>(N), Record, \
1743 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1745 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1747 #include "llvm/IR/Metadata.def"
1750 writeValueAsMetadata(cast
<ValueAsMetadata
>(MD
), Record
);
1754 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1755 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1756 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD
));
1757 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1758 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
1759 return Stream
.EmitAbbrev(std::move(Abbv
));
1762 void DXILBitcodeWriter::writeMetadataStrings(
1763 ArrayRef
<const Metadata
*> Strings
, SmallVectorImpl
<uint64_t> &Record
) {
1764 if (Strings
.empty())
1767 unsigned MDSAbbrev
= createMetadataStringsAbbrev();
1769 for (const Metadata
*MD
: Strings
) {
1770 const MDString
*MDS
= cast
<MDString
>(MD
);
1771 // Code: [strchar x N]
1772 Record
.append(MDS
->bytes_begin(), MDS
->bytes_end());
1774 // Emit the finished record.
1775 Stream
.EmitRecord(bitc::METADATA_STRING_OLD
, Record
, MDSAbbrev
);
1780 void DXILBitcodeWriter::writeModuleMetadata() {
1781 if (!VE
.hasMDs() && M
.named_metadata_empty())
1784 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 5);
1786 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1787 // block and load any metadata.
1788 std::vector
<unsigned> MDAbbrevs
;
1790 MDAbbrevs
.resize(MetadataAbbrev::LastPlusOne
);
1791 MDAbbrevs
[MetadataAbbrev::DILocationAbbrevID
] = createDILocationAbbrev();
1792 MDAbbrevs
[MetadataAbbrev::GenericDINodeAbbrevID
] =
1793 createGenericDINodeAbbrev();
1795 unsigned NameAbbrev
= 0;
1796 if (!M
.named_metadata_empty()) {
1797 // Abbrev for METADATA_NAME.
1798 std::shared_ptr
<BitCodeAbbrev
> Abbv
= std::make_shared
<BitCodeAbbrev
>();
1799 Abbv
->Add(BitCodeAbbrevOp(bitc::METADATA_NAME
));
1800 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1801 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
1802 NameAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1805 SmallVector
<uint64_t, 64> Record
;
1806 writeMetadataStrings(VE
.getMDStrings(), Record
);
1808 std::vector
<uint64_t> IndexPos
;
1809 IndexPos
.reserve(VE
.getNonMDStrings().size());
1810 writeMetadataRecords(VE
.getNonMDStrings(), Record
, &MDAbbrevs
, &IndexPos
);
1812 // Write named metadata.
1813 for (const NamedMDNode
&NMD
: M
.named_metadata()) {
1815 StringRef Str
= NMD
.getName();
1816 Record
.append(Str
.bytes_begin(), Str
.bytes_end());
1817 Stream
.EmitRecord(bitc::METADATA_NAME
, Record
, NameAbbrev
);
1820 // Write named metadata operands.
1821 for (const MDNode
*N
: NMD
.operands())
1822 Record
.push_back(VE
.getMetadataID(N
));
1823 Stream
.EmitRecord(bitc::METADATA_NAMED_NODE
, Record
, 0);
1830 void DXILBitcodeWriter::writeFunctionMetadata(const Function
&F
) {
1834 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 4);
1835 SmallVector
<uint64_t, 64> Record
;
1836 writeMetadataStrings(VE
.getMDStrings(), Record
);
1837 writeMetadataRecords(VE
.getNonMDStrings(), Record
);
1841 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function
&F
) {
1842 Stream
.EnterSubblock(bitc::METADATA_ATTACHMENT_ID
, 3);
1844 SmallVector
<uint64_t, 64> Record
;
1846 // Write metadata attachments
1847 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1848 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
1849 F
.getAllMetadata(MDs
);
1851 for (const auto &I
: MDs
) {
1852 Record
.push_back(I
.first
);
1853 Record
.push_back(VE
.getMetadataID(I
.second
));
1855 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
1859 for (const BasicBlock
&BB
: F
)
1860 for (const Instruction
&I
: BB
) {
1862 I
.getAllMetadataOtherThanDebugLoc(MDs
);
1864 // If no metadata, ignore instruction.
1868 Record
.push_back(VE
.getInstructionID(&I
));
1870 for (unsigned i
= 0, e
= MDs
.size(); i
!= e
; ++i
) {
1871 Record
.push_back(MDs
[i
].first
);
1872 Record
.push_back(VE
.getMetadataID(MDs
[i
].second
));
1874 Stream
.EmitRecord(bitc::METADATA_ATTACHMENT
, Record
, 0);
1881 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1882 SmallVector
<uint64_t, 64> Record
;
1884 // Write metadata kinds
1885 // METADATA_KIND - [n x [id, name]]
1886 SmallVector
<StringRef
, 8> Names
;
1887 M
.getMDKindNames(Names
);
1892 Stream
.EnterSubblock(bitc::METADATA_BLOCK_ID
, 3);
1894 for (unsigned MDKindID
= 0, e
= Names
.size(); MDKindID
!= e
; ++MDKindID
) {
1895 Record
.push_back(MDKindID
);
1896 StringRef KName
= Names
[MDKindID
];
1897 Record
.append(KName
.begin(), KName
.end());
1899 Stream
.EmitRecord(bitc::METADATA_KIND
, Record
, 0);
1906 void DXILBitcodeWriter::writeConstants(unsigned FirstVal
, unsigned LastVal
,
1908 if (FirstVal
== LastVal
)
1911 Stream
.EnterSubblock(bitc::CONSTANTS_BLOCK_ID
, 4);
1913 unsigned AggregateAbbrev
= 0;
1914 unsigned String8Abbrev
= 0;
1915 unsigned CString7Abbrev
= 0;
1916 unsigned CString6Abbrev
= 0;
1917 // If this is a constant pool for the module, emit module-specific abbrevs.
1919 // Abbrev for CST_CODE_AGGREGATE.
1920 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
1921 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE
));
1922 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1924 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, Log2_32_Ceil(LastVal
+ 1)));
1925 AggregateAbbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1927 // Abbrev for CST_CODE_STRING.
1928 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1929 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING
));
1930 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1931 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
1932 String8Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1933 // Abbrev for CST_CODE_CSTRING.
1934 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1935 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
1936 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1937 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
1938 CString7Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1939 // Abbrev for CST_CODE_CSTRING.
1940 Abbv
= std::make_shared
<BitCodeAbbrev
>();
1941 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING
));
1942 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
1943 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
1944 CString6Abbrev
= Stream
.EmitAbbrev(std::move(Abbv
));
1947 SmallVector
<uint64_t, 64> Record
;
1949 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
1950 Type
*LastTy
= nullptr;
1951 for (unsigned i
= FirstVal
; i
!= LastVal
; ++i
) {
1952 const Value
*V
= Vals
[i
].first
;
1953 // If we need to switch types, do so now.
1954 if (V
->getType() != LastTy
) {
1955 LastTy
= V
->getType();
1956 Record
.push_back(getTypeID(LastTy
, V
));
1957 Stream
.EmitRecord(bitc::CST_CODE_SETTYPE
, Record
,
1958 CONSTANTS_SETTYPE_ABBREV
);
1962 if (const InlineAsm
*IA
= dyn_cast
<InlineAsm
>(V
)) {
1963 Record
.push_back(unsigned(IA
->hasSideEffects()) |
1964 unsigned(IA
->isAlignStack()) << 1 |
1965 unsigned(IA
->getDialect() & 1) << 2);
1967 // Add the asm string.
1968 const std::string
&AsmStr
= IA
->getAsmString();
1969 Record
.push_back(AsmStr
.size());
1970 Record
.append(AsmStr
.begin(), AsmStr
.end());
1972 // Add the constraint string.
1973 const std::string
&ConstraintStr
= IA
->getConstraintString();
1974 Record
.push_back(ConstraintStr
.size());
1975 Record
.append(ConstraintStr
.begin(), ConstraintStr
.end());
1976 Stream
.EmitRecord(bitc::CST_CODE_INLINEASM
, Record
);
1980 const Constant
*C
= cast
<Constant
>(V
);
1981 unsigned Code
= -1U;
1982 unsigned AbbrevToUse
= 0;
1983 if (C
->isNullValue()) {
1984 Code
= bitc::CST_CODE_NULL
;
1985 } else if (isa
<UndefValue
>(C
)) {
1986 Code
= bitc::CST_CODE_UNDEF
;
1987 } else if (const ConstantInt
*IV
= dyn_cast
<ConstantInt
>(C
)) {
1988 if (IV
->getBitWidth() <= 64) {
1989 uint64_t V
= IV
->getSExtValue();
1990 emitSignedInt64(Record
, V
);
1991 Code
= bitc::CST_CODE_INTEGER
;
1992 AbbrevToUse
= CONSTANTS_INTEGER_ABBREV
;
1993 } else { // Wide integers, > 64 bits in size.
1994 // We have an arbitrary precision integer value to write whose
1995 // bit width is > 64. However, in canonical unsigned integer
1996 // format it is likely that the high bits are going to be zero.
1997 // So, we only write the number of active words.
1998 unsigned NWords
= IV
->getValue().getActiveWords();
1999 const uint64_t *RawWords
= IV
->getValue().getRawData();
2000 for (unsigned i
= 0; i
!= NWords
; ++i
) {
2001 emitSignedInt64(Record
, RawWords
[i
]);
2003 Code
= bitc::CST_CODE_WIDE_INTEGER
;
2005 } else if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
)) {
2006 Code
= bitc::CST_CODE_FLOAT
;
2007 Type
*Ty
= CFP
->getType();
2008 if (Ty
->isHalfTy() || Ty
->isFloatTy() || Ty
->isDoubleTy()) {
2009 Record
.push_back(CFP
->getValueAPF().bitcastToAPInt().getZExtValue());
2010 } else if (Ty
->isX86_FP80Ty()) {
2011 // api needed to prevent premature destruction
2012 // bits are not in the same order as a normal i80 APInt, compensate.
2013 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2014 const uint64_t *p
= api
.getRawData();
2015 Record
.push_back((p
[1] << 48) | (p
[0] >> 16));
2016 Record
.push_back(p
[0] & 0xffffLL
);
2017 } else if (Ty
->isFP128Ty() || Ty
->isPPC_FP128Ty()) {
2018 APInt api
= CFP
->getValueAPF().bitcastToAPInt();
2019 const uint64_t *p
= api
.getRawData();
2020 Record
.push_back(p
[0]);
2021 Record
.push_back(p
[1]);
2023 assert(0 && "Unknown FP type!");
2025 } else if (isa
<ConstantDataSequential
>(C
) &&
2026 cast
<ConstantDataSequential
>(C
)->isString()) {
2027 const ConstantDataSequential
*Str
= cast
<ConstantDataSequential
>(C
);
2028 // Emit constant strings specially.
2029 unsigned NumElts
= Str
->getNumElements();
2030 // If this is a null-terminated string, use the denser CSTRING encoding.
2031 if (Str
->isCString()) {
2032 Code
= bitc::CST_CODE_CSTRING
;
2033 --NumElts
; // Don't encode the null, which isn't allowed by char6.
2035 Code
= bitc::CST_CODE_STRING
;
2036 AbbrevToUse
= String8Abbrev
;
2038 bool isCStr7
= Code
== bitc::CST_CODE_CSTRING
;
2039 bool isCStrChar6
= Code
== bitc::CST_CODE_CSTRING
;
2040 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2041 unsigned char V
= Str
->getElementAsInteger(i
);
2042 Record
.push_back(V
);
2043 isCStr7
&= (V
& 128) == 0;
2045 isCStrChar6
= BitCodeAbbrevOp::isChar6(V
);
2049 AbbrevToUse
= CString6Abbrev
;
2051 AbbrevToUse
= CString7Abbrev
;
2052 } else if (const ConstantDataSequential
*CDS
=
2053 dyn_cast
<ConstantDataSequential
>(C
)) {
2054 Code
= bitc::CST_CODE_DATA
;
2055 Type
*EltTy
= CDS
->getElementType();
2056 if (isa
<IntegerType
>(EltTy
)) {
2057 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
)
2058 Record
.push_back(CDS
->getElementAsInteger(i
));
2059 } else if (EltTy
->isFloatTy()) {
2060 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
2065 F
= CDS
->getElementAsFloat(i
);
2066 Record
.push_back(I
);
2069 assert(EltTy
->isDoubleTy() && "Unknown ConstantData element type");
2070 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
2075 F
= CDS
->getElementAsDouble(i
);
2076 Record
.push_back(I
);
2079 } else if (isa
<ConstantArray
>(C
) || isa
<ConstantStruct
>(C
) ||
2080 isa
<ConstantVector
>(C
)) {
2081 Code
= bitc::CST_CODE_AGGREGATE
;
2082 for (const Value
*Op
: C
->operands())
2083 Record
.push_back(VE
.getValueID(Op
));
2084 AbbrevToUse
= AggregateAbbrev
;
2085 } else if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
2086 switch (CE
->getOpcode()) {
2088 if (Instruction::isCast(CE
->getOpcode())) {
2089 Code
= bitc::CST_CODE_CE_CAST
;
2090 Record
.push_back(getEncodedCastOpcode(CE
->getOpcode()));
2092 getTypeID(C
->getOperand(0)->getType(), C
->getOperand(0)));
2093 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2094 AbbrevToUse
= CONSTANTS_CE_CAST_Abbrev
;
2096 assert(CE
->getNumOperands() == 2 && "Unknown constant expr!");
2097 Code
= bitc::CST_CODE_CE_BINOP
;
2098 Record
.push_back(getEncodedBinaryOpcode(CE
->getOpcode()));
2099 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2100 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2101 uint64_t Flags
= getOptimizationFlags(CE
);
2103 Record
.push_back(Flags
);
2106 case Instruction::GetElementPtr
: {
2107 Code
= bitc::CST_CODE_CE_GEP
;
2108 const auto *GO
= cast
<GEPOperator
>(C
);
2109 if (GO
->isInBounds())
2110 Code
= bitc::CST_CODE_CE_INBOUNDS_GEP
;
2111 Record
.push_back(getTypeID(GO
->getSourceElementType()));
2112 for (unsigned i
= 0, e
= CE
->getNumOperands(); i
!= e
; ++i
) {
2114 getTypeID(C
->getOperand(i
)->getType(), C
->getOperand(i
)));
2115 Record
.push_back(VE
.getValueID(C
->getOperand(i
)));
2119 case Instruction::Select
:
2120 Code
= bitc::CST_CODE_CE_SELECT
;
2121 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2122 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2123 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2125 case Instruction::ExtractElement
:
2126 Code
= bitc::CST_CODE_CE_EXTRACTELT
;
2127 Record
.push_back(getTypeID(C
->getOperand(0)->getType()));
2128 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2129 Record
.push_back(getTypeID(C
->getOperand(1)->getType()));
2130 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2132 case Instruction::InsertElement
:
2133 Code
= bitc::CST_CODE_CE_INSERTELT
;
2134 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2135 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2136 Record
.push_back(getTypeID(C
->getOperand(2)->getType()));
2137 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2139 case Instruction::ShuffleVector
:
2140 // If the return type and argument types are the same, this is a
2141 // standard shufflevector instruction. If the types are different,
2142 // then the shuffle is widening or truncating the input vectors, and
2143 // the argument type must also be encoded.
2144 if (C
->getType() == C
->getOperand(0)->getType()) {
2145 Code
= bitc::CST_CODE_CE_SHUFFLEVEC
;
2147 Code
= bitc::CST_CODE_CE_SHUFVEC_EX
;
2148 Record
.push_back(getTypeID(C
->getOperand(0)->getType()));
2150 Record
.push_back(VE
.getValueID(C
->getOperand(0)));
2151 Record
.push_back(VE
.getValueID(C
->getOperand(1)));
2152 Record
.push_back(VE
.getValueID(C
->getOperand(2)));
2155 } else if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
)) {
2156 Code
= bitc::CST_CODE_BLOCKADDRESS
;
2157 Record
.push_back(getTypeID(BA
->getFunction()->getType()));
2158 Record
.push_back(VE
.getValueID(BA
->getFunction()));
2159 Record
.push_back(VE
.getGlobalBasicBlockID(BA
->getBasicBlock()));
2164 llvm_unreachable("Unknown constant!");
2166 Stream
.EmitRecord(Code
, Record
, AbbrevToUse
);
2173 void DXILBitcodeWriter::writeModuleConstants() {
2174 const ValueEnumerator::ValueList
&Vals
= VE
.getValues();
2176 // Find the first constant to emit, which is the first non-globalvalue value.
2177 // We know globalvalues have been emitted by WriteModuleInfo.
2178 for (unsigned i
= 0, e
= Vals
.size(); i
!= e
; ++i
) {
2179 if (!isa
<GlobalValue
>(Vals
[i
].first
)) {
2180 writeConstants(i
, Vals
.size(), true);
2186 /// pushValueAndType - The file has to encode both the value and type id for
2187 /// many values, because we need to know what type to create for forward
2188 /// references. However, most operands are not forward references, so this type
2189 /// field is not needed.
2191 /// This function adds V's value ID to Vals. If the value ID is higher than the
2192 /// instruction ID, then it is a forward reference, and it also includes the
2193 /// type ID. The value ID that is written is encoded relative to the InstID.
2194 bool DXILBitcodeWriter::pushValueAndType(const Value
*V
, unsigned InstID
,
2195 SmallVectorImpl
<unsigned> &Vals
) {
2196 unsigned ValID
= VE
.getValueID(V
);
2197 // Make encoding relative to the InstID.
2198 Vals
.push_back(InstID
- ValID
);
2199 if (ValID
>= InstID
) {
2200 Vals
.push_back(getTypeID(V
->getType(), V
));
2206 /// pushValue - Like pushValueAndType, but where the type of the value is
2207 /// omitted (perhaps it was already encoded in an earlier operand).
2208 void DXILBitcodeWriter::pushValue(const Value
*V
, unsigned InstID
,
2209 SmallVectorImpl
<unsigned> &Vals
) {
2210 unsigned ValID
= VE
.getValueID(V
);
2211 Vals
.push_back(InstID
- ValID
);
2214 void DXILBitcodeWriter::pushValueSigned(const Value
*V
, unsigned InstID
,
2215 SmallVectorImpl
<uint64_t> &Vals
) {
2216 unsigned ValID
= VE
.getValueID(V
);
2217 int64_t diff
= ((int32_t)InstID
- (int32_t)ValID
);
2218 emitSignedInt64(Vals
, diff
);
2221 /// WriteInstruction - Emit an instruction
2222 void DXILBitcodeWriter::writeInstruction(const Instruction
&I
, unsigned InstID
,
2223 SmallVectorImpl
<unsigned> &Vals
) {
2225 unsigned AbbrevToUse
= 0;
2226 VE
.setInstructionID(&I
);
2227 switch (I
.getOpcode()) {
2229 if (Instruction::isCast(I
.getOpcode())) {
2230 Code
= bitc::FUNC_CODE_INST_CAST
;
2231 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2232 AbbrevToUse
= (unsigned)FUNCTION_INST_CAST_ABBREV
;
2233 Vals
.push_back(getTypeID(I
.getType(), &I
));
2234 Vals
.push_back(getEncodedCastOpcode(I
.getOpcode()));
2236 assert(isa
<BinaryOperator
>(I
) && "Unknown instruction!");
2237 Code
= bitc::FUNC_CODE_INST_BINOP
;
2238 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2239 AbbrevToUse
= (unsigned)FUNCTION_INST_BINOP_ABBREV
;
2240 pushValue(I
.getOperand(1), InstID
, Vals
);
2241 Vals
.push_back(getEncodedBinaryOpcode(I
.getOpcode()));
2242 uint64_t Flags
= getOptimizationFlags(&I
);
2244 if (AbbrevToUse
== (unsigned)FUNCTION_INST_BINOP_ABBREV
)
2245 AbbrevToUse
= (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV
;
2246 Vals
.push_back(Flags
);
2251 case Instruction::GetElementPtr
: {
2252 Code
= bitc::FUNC_CODE_INST_GEP
;
2253 AbbrevToUse
= (unsigned)FUNCTION_INST_GEP_ABBREV
;
2254 auto &GEPInst
= cast
<GetElementPtrInst
>(I
);
2255 Vals
.push_back(GEPInst
.isInBounds());
2256 Vals
.push_back(getTypeID(GEPInst
.getSourceElementType()));
2257 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
2258 pushValueAndType(I
.getOperand(i
), InstID
, Vals
);
2261 case Instruction::ExtractValue
: {
2262 Code
= bitc::FUNC_CODE_INST_EXTRACTVAL
;
2263 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2264 const ExtractValueInst
*EVI
= cast
<ExtractValueInst
>(&I
);
2265 Vals
.append(EVI
->idx_begin(), EVI
->idx_end());
2268 case Instruction::InsertValue
: {
2269 Code
= bitc::FUNC_CODE_INST_INSERTVAL
;
2270 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2271 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2272 const InsertValueInst
*IVI
= cast
<InsertValueInst
>(&I
);
2273 Vals
.append(IVI
->idx_begin(), IVI
->idx_end());
2276 case Instruction::Select
:
2277 Code
= bitc::FUNC_CODE_INST_VSELECT
;
2278 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2279 pushValue(I
.getOperand(2), InstID
, Vals
);
2280 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2282 case Instruction::ExtractElement
:
2283 Code
= bitc::FUNC_CODE_INST_EXTRACTELT
;
2284 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2285 pushValueAndType(I
.getOperand(1), InstID
, Vals
);
2287 case Instruction::InsertElement
:
2288 Code
= bitc::FUNC_CODE_INST_INSERTELT
;
2289 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2290 pushValue(I
.getOperand(1), InstID
, Vals
);
2291 pushValueAndType(I
.getOperand(2), InstID
, Vals
);
2293 case Instruction::ShuffleVector
:
2294 Code
= bitc::FUNC_CODE_INST_SHUFFLEVEC
;
2295 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2296 pushValue(I
.getOperand(1), InstID
, Vals
);
2297 pushValue(cast
<ShuffleVectorInst
>(&I
)->getShuffleMaskForBitcode(), InstID
,
2300 case Instruction::ICmp
:
2301 case Instruction::FCmp
: {
2302 // compare returning Int1Ty or vector of Int1Ty
2303 Code
= bitc::FUNC_CODE_INST_CMP2
;
2304 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2305 pushValue(I
.getOperand(1), InstID
, Vals
);
2306 Vals
.push_back(cast
<CmpInst
>(I
).getPredicate());
2307 uint64_t Flags
= getOptimizationFlags(&I
);
2309 Vals
.push_back(Flags
);
2313 case Instruction::Ret
: {
2314 Code
= bitc::FUNC_CODE_INST_RET
;
2315 unsigned NumOperands
= I
.getNumOperands();
2316 if (NumOperands
== 0)
2317 AbbrevToUse
= (unsigned)FUNCTION_INST_RET_VOID_ABBREV
;
2318 else if (NumOperands
== 1) {
2319 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
))
2320 AbbrevToUse
= (unsigned)FUNCTION_INST_RET_VAL_ABBREV
;
2322 for (unsigned i
= 0, e
= NumOperands
; i
!= e
; ++i
)
2323 pushValueAndType(I
.getOperand(i
), InstID
, Vals
);
2326 case Instruction::Br
: {
2327 Code
= bitc::FUNC_CODE_INST_BR
;
2328 const BranchInst
&II
= cast
<BranchInst
>(I
);
2329 Vals
.push_back(VE
.getValueID(II
.getSuccessor(0)));
2330 if (II
.isConditional()) {
2331 Vals
.push_back(VE
.getValueID(II
.getSuccessor(1)));
2332 pushValue(II
.getCondition(), InstID
, Vals
);
2335 case Instruction::Switch
: {
2336 Code
= bitc::FUNC_CODE_INST_SWITCH
;
2337 const SwitchInst
&SI
= cast
<SwitchInst
>(I
);
2338 Vals
.push_back(getTypeID(SI
.getCondition()->getType()));
2339 pushValue(SI
.getCondition(), InstID
, Vals
);
2340 Vals
.push_back(VE
.getValueID(SI
.getDefaultDest()));
2341 for (auto Case
: SI
.cases()) {
2342 Vals
.push_back(VE
.getValueID(Case
.getCaseValue()));
2343 Vals
.push_back(VE
.getValueID(Case
.getCaseSuccessor()));
2346 case Instruction::IndirectBr
:
2347 Code
= bitc::FUNC_CODE_INST_INDIRECTBR
;
2348 Vals
.push_back(getTypeID(I
.getOperand(0)->getType()));
2349 // Encode the address operand as relative, but not the basic blocks.
2350 pushValue(I
.getOperand(0), InstID
, Vals
);
2351 for (unsigned i
= 1, e
= I
.getNumOperands(); i
!= e
; ++i
)
2352 Vals
.push_back(VE
.getValueID(I
.getOperand(i
)));
2355 case Instruction::Invoke
: {
2356 const InvokeInst
*II
= cast
<InvokeInst
>(&I
);
2357 const Value
*Callee
= II
->getCalledOperand();
2358 FunctionType
*FTy
= II
->getFunctionType();
2359 Code
= bitc::FUNC_CODE_INST_INVOKE
;
2361 Vals
.push_back(VE
.getAttributeListID(II
->getAttributes()));
2362 Vals
.push_back(II
->getCallingConv() | 1 << 13);
2363 Vals
.push_back(VE
.getValueID(II
->getNormalDest()));
2364 Vals
.push_back(VE
.getValueID(II
->getUnwindDest()));
2365 Vals
.push_back(getTypeID(FTy
));
2366 pushValueAndType(Callee
, InstID
, Vals
);
2368 // Emit value #'s for the fixed parameters.
2369 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2370 pushValue(I
.getOperand(i
), InstID
, Vals
); // fixed param.
2372 // Emit type/value pairs for varargs params.
2373 if (FTy
->isVarArg()) {
2374 for (unsigned i
= FTy
->getNumParams(), e
= I
.getNumOperands() - 3; i
!= e
;
2376 pushValueAndType(I
.getOperand(i
), InstID
, Vals
); // vararg
2380 case Instruction::Resume
:
2381 Code
= bitc::FUNC_CODE_INST_RESUME
;
2382 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2384 case Instruction::Unreachable
:
2385 Code
= bitc::FUNC_CODE_INST_UNREACHABLE
;
2386 AbbrevToUse
= (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV
;
2389 case Instruction::PHI
: {
2390 const PHINode
&PN
= cast
<PHINode
>(I
);
2391 Code
= bitc::FUNC_CODE_INST_PHI
;
2392 // With the newer instruction encoding, forward references could give
2393 // negative valued IDs. This is most common for PHIs, so we use
2395 SmallVector
<uint64_t, 128> Vals64
;
2396 Vals64
.push_back(getTypeID(PN
.getType()));
2397 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
) {
2398 pushValueSigned(PN
.getIncomingValue(i
), InstID
, Vals64
);
2399 Vals64
.push_back(VE
.getValueID(PN
.getIncomingBlock(i
)));
2401 // Emit a Vals64 vector and exit.
2402 Stream
.EmitRecord(Code
, Vals64
, AbbrevToUse
);
2407 case Instruction::LandingPad
: {
2408 const LandingPadInst
&LP
= cast
<LandingPadInst
>(I
);
2409 Code
= bitc::FUNC_CODE_INST_LANDINGPAD
;
2410 Vals
.push_back(getTypeID(LP
.getType()));
2411 Vals
.push_back(LP
.isCleanup());
2412 Vals
.push_back(LP
.getNumClauses());
2413 for (unsigned I
= 0, E
= LP
.getNumClauses(); I
!= E
; ++I
) {
2415 Vals
.push_back(LandingPadInst::Catch
);
2417 Vals
.push_back(LandingPadInst::Filter
);
2418 pushValueAndType(LP
.getClause(I
), InstID
, Vals
);
2423 case Instruction::Alloca
: {
2424 Code
= bitc::FUNC_CODE_INST_ALLOCA
;
2425 const AllocaInst
&AI
= cast
<AllocaInst
>(I
);
2426 Vals
.push_back(getTypeID(AI
.getAllocatedType()));
2427 Vals
.push_back(getTypeID(I
.getOperand(0)->getType()));
2428 Vals
.push_back(VE
.getValueID(I
.getOperand(0))); // size.
2429 unsigned AlignRecord
= Log2_32(AI
.getAlign().value()) + 1;
2430 assert(AlignRecord
< 1 << 5 && "alignment greater than 1 << 64");
2431 AlignRecord
|= AI
.isUsedWithInAlloca() << 5;
2432 AlignRecord
|= 1 << 6;
2433 Vals
.push_back(AlignRecord
);
2437 case Instruction::Load
:
2438 if (cast
<LoadInst
>(I
).isAtomic()) {
2439 Code
= bitc::FUNC_CODE_INST_LOADATOMIC
;
2440 pushValueAndType(I
.getOperand(0), InstID
, Vals
);
2442 Code
= bitc::FUNC_CODE_INST_LOAD
;
2443 if (!pushValueAndType(I
.getOperand(0), InstID
, Vals
)) // ptr
2444 AbbrevToUse
= (unsigned)FUNCTION_INST_LOAD_ABBREV
;
2446 Vals
.push_back(getTypeID(I
.getType()));
2447 Vals
.push_back(Log2(cast
<LoadInst
>(I
).getAlign()) + 1);
2448 Vals
.push_back(cast
<LoadInst
>(I
).isVolatile());
2449 if (cast
<LoadInst
>(I
).isAtomic()) {
2450 Vals
.push_back(getEncodedOrdering(cast
<LoadInst
>(I
).getOrdering()));
2451 Vals
.push_back(getEncodedSyncScopeID(cast
<LoadInst
>(I
).getSyncScopeID()));
2454 case Instruction::Store
:
2455 if (cast
<StoreInst
>(I
).isAtomic())
2456 Code
= bitc::FUNC_CODE_INST_STOREATOMIC
;
2458 Code
= bitc::FUNC_CODE_INST_STORE
;
2459 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // ptrty + ptr
2460 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // valty + val
2461 Vals
.push_back(Log2(cast
<StoreInst
>(I
).getAlign()) + 1);
2462 Vals
.push_back(cast
<StoreInst
>(I
).isVolatile());
2463 if (cast
<StoreInst
>(I
).isAtomic()) {
2464 Vals
.push_back(getEncodedOrdering(cast
<StoreInst
>(I
).getOrdering()));
2466 getEncodedSyncScopeID(cast
<StoreInst
>(I
).getSyncScopeID()));
2469 case Instruction::AtomicCmpXchg
:
2470 Code
= bitc::FUNC_CODE_INST_CMPXCHG
;
2471 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
2472 pushValueAndType(I
.getOperand(1), InstID
, Vals
); // cmp.
2473 pushValue(I
.getOperand(2), InstID
, Vals
); // newval.
2474 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isVolatile());
2476 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getSuccessOrdering()));
2478 getEncodedSyncScopeID(cast
<AtomicCmpXchgInst
>(I
).getSyncScopeID()));
2480 getEncodedOrdering(cast
<AtomicCmpXchgInst
>(I
).getFailureOrdering()));
2481 Vals
.push_back(cast
<AtomicCmpXchgInst
>(I
).isWeak());
2483 case Instruction::AtomicRMW
:
2484 Code
= bitc::FUNC_CODE_INST_ATOMICRMW
;
2485 pushValueAndType(I
.getOperand(0), InstID
, Vals
); // ptrty + ptr
2486 pushValue(I
.getOperand(1), InstID
, Vals
); // val.
2488 getEncodedRMWOperation(cast
<AtomicRMWInst
>(I
).getOperation()));
2489 Vals
.push_back(cast
<AtomicRMWInst
>(I
).isVolatile());
2490 Vals
.push_back(getEncodedOrdering(cast
<AtomicRMWInst
>(I
).getOrdering()));
2492 getEncodedSyncScopeID(cast
<AtomicRMWInst
>(I
).getSyncScopeID()));
2494 case Instruction::Fence
:
2495 Code
= bitc::FUNC_CODE_INST_FENCE
;
2496 Vals
.push_back(getEncodedOrdering(cast
<FenceInst
>(I
).getOrdering()));
2497 Vals
.push_back(getEncodedSyncScopeID(cast
<FenceInst
>(I
).getSyncScopeID()));
2499 case Instruction::Call
: {
2500 const CallInst
&CI
= cast
<CallInst
>(I
);
2501 FunctionType
*FTy
= CI
.getFunctionType();
2503 Code
= bitc::FUNC_CODE_INST_CALL
;
2505 Vals
.push_back(VE
.getAttributeListID(CI
.getAttributes()));
2506 Vals
.push_back((CI
.getCallingConv() << 1) | unsigned(CI
.isTailCall()) |
2507 unsigned(CI
.isMustTailCall()) << 14 | 1 << 15);
2508 Vals
.push_back(getGlobalObjectValueTypeID(FTy
, CI
.getCalledFunction()));
2509 pushValueAndType(CI
.getCalledOperand(), InstID
, Vals
); // Callee
2511 // Emit value #'s for the fixed parameters.
2512 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
2513 // Check for labels (can happen with asm labels).
2514 if (FTy
->getParamType(i
)->isLabelTy())
2515 Vals
.push_back(VE
.getValueID(CI
.getArgOperand(i
)));
2517 pushValue(CI
.getArgOperand(i
), InstID
, Vals
); // fixed param.
2520 // Emit type/value pairs for varargs params.
2521 if (FTy
->isVarArg()) {
2522 for (unsigned i
= FTy
->getNumParams(), e
= CI
.arg_size(); i
!= e
; ++i
)
2523 pushValueAndType(CI
.getArgOperand(i
), InstID
, Vals
); // varargs
2527 case Instruction::VAArg
:
2528 Code
= bitc::FUNC_CODE_INST_VAARG
;
2529 Vals
.push_back(getTypeID(I
.getOperand(0)->getType())); // valistty
2530 pushValue(I
.getOperand(0), InstID
, Vals
); // valist.
2531 Vals
.push_back(getTypeID(I
.getType())); // restype.
2535 Stream
.EmitRecord(Code
, Vals
, AbbrevToUse
);
2539 // Emit names for globals/functions etc.
2540 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2541 const ValueSymbolTable
&VST
) {
2544 Stream
.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID
, 4);
2546 SmallVector
<unsigned, 64> NameVals
;
2549 // Read the named values from a sorted list instead of the original list
2550 // to ensure the binary is the same no matter what values ever existed.
2551 SmallVector
<const ValueName
*, 16> SortedTable
;
2553 for (auto &VI
: VST
) {
2554 SortedTable
.push_back(VI
.second
->getValueName());
2556 // The keys are unique, so there shouldn't be stability issues.
2557 llvm::sort(SortedTable
, [](const ValueName
*A
, const ValueName
*B
) {
2558 return A
->first() < B
->first();
2561 for (const ValueName
*SI
: SortedTable
) {
2564 // Figure out the encoding to use for the name.
2566 bool isChar6
= true;
2567 for (const char *C
= Name
.getKeyData(), *E
= C
+ Name
.getKeyLength();
2570 isChar6
= BitCodeAbbrevOp::isChar6(*C
);
2571 if ((unsigned char)*C
& 128) {
2573 break; // don't bother scanning the rest.
2577 unsigned AbbrevToUse
= VST_ENTRY_8_ABBREV
;
2579 // VST_ENTRY: [valueid, namechar x N]
2580 // VST_BBENTRY: [bbid, namechar x N]
2582 if (isa
<BasicBlock
>(SI
->getValue())) {
2583 Code
= bitc::VST_CODE_BBENTRY
;
2585 AbbrevToUse
= VST_BBENTRY_6_ABBREV
;
2587 Code
= bitc::VST_CODE_ENTRY
;
2589 AbbrevToUse
= VST_ENTRY_6_ABBREV
;
2591 AbbrevToUse
= VST_ENTRY_7_ABBREV
;
2594 NameVals
.push_back(VE
.getValueID(SI
->getValue()));
2595 for (const char *P
= Name
.getKeyData(),
2596 *E
= Name
.getKeyData() + Name
.getKeyLength();
2598 NameVals
.push_back((unsigned char)*P
);
2600 // Emit the finished record.
2601 Stream
.EmitRecord(Code
, NameVals
, AbbrevToUse
);
2607 /// Emit a function body to the module stream.
2608 void DXILBitcodeWriter::writeFunction(const Function
&F
) {
2609 Stream
.EnterSubblock(bitc::FUNCTION_BLOCK_ID
, 4);
2610 VE
.incorporateFunction(F
);
2612 SmallVector
<unsigned, 64> Vals
;
2614 // Emit the number of basic blocks, so the reader can create them ahead of
2616 Vals
.push_back(VE
.getBasicBlocks().size());
2617 Stream
.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS
, Vals
);
2620 // If there are function-local constants, emit them now.
2621 unsigned CstStart
, CstEnd
;
2622 VE
.getFunctionConstantRange(CstStart
, CstEnd
);
2623 writeConstants(CstStart
, CstEnd
, false);
2625 // If there is function-local metadata, emit it now.
2626 writeFunctionMetadata(F
);
2628 // Keep a running idea of what the instruction ID is.
2629 unsigned InstID
= CstEnd
;
2631 bool NeedsMetadataAttachment
= F
.hasMetadata();
2633 DILocation
*LastDL
= nullptr;
2635 // Finally, emit all the instructions, in order.
2636 for (Function::const_iterator BB
= F
.begin(), E
= F
.end(); BB
!= E
; ++BB
)
2637 for (BasicBlock::const_iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
2639 writeInstruction(*I
, InstID
, Vals
);
2641 if (!I
->getType()->isVoidTy())
2644 // If the instruction has metadata, write a metadata attachment later.
2645 NeedsMetadataAttachment
|= I
->hasMetadataOtherThanDebugLoc();
2647 // If the instruction has a debug location, emit it.
2648 DILocation
*DL
= I
->getDebugLoc();
2653 // Just repeat the same debug loc as last time.
2654 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN
, Vals
);
2658 Vals
.push_back(DL
->getLine());
2659 Vals
.push_back(DL
->getColumn());
2660 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getScope()));
2661 Vals
.push_back(VE
.getMetadataOrNullID(DL
->getInlinedAt()));
2662 Stream
.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC
, Vals
);
2668 // Emit names for all the instructions etc.
2669 if (auto *Symtab
= F
.getValueSymbolTable())
2670 writeFunctionLevelValueSymbolTable(*Symtab
);
2672 if (NeedsMetadataAttachment
)
2673 writeFunctionMetadataAttachment(F
);
2679 // Emit blockinfo, which defines the standard abbreviations etc.
2680 void DXILBitcodeWriter::writeBlockInfo() {
2681 // We only want to emit block info records for blocks that have multiple
2682 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2683 // Other blocks can define their abbrevs inline.
2684 Stream
.EnterBlockInfoBlock();
2686 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2687 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2688 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 3));
2689 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
2690 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2691 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 8));
2692 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
2693 std::move(Abbv
)) != VST_ENTRY_8_ABBREV
)
2694 assert(false && "Unexpected abbrev ordering!");
2697 { // 7-bit fixed width VST_ENTRY strings.
2698 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2699 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
2700 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
2701 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2702 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7));
2703 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
2704 std::move(Abbv
)) != VST_ENTRY_7_ABBREV
)
2705 assert(false && "Unexpected abbrev ordering!");
2707 { // 6-bit char6 VST_ENTRY strings.
2708 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2709 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY
));
2710 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
2711 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2712 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
2713 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
2714 std::move(Abbv
)) != VST_ENTRY_6_ABBREV
)
2715 assert(false && "Unexpected abbrev ordering!");
2717 { // 6-bit char6 VST_BBENTRY strings.
2718 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2719 Abbv
->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY
));
2720 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
2721 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2722 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6
));
2723 if (Stream
.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID
,
2724 std::move(Abbv
)) != VST_BBENTRY_6_ABBREV
)
2725 assert(false && "Unexpected abbrev ordering!");
2728 { // SETTYPE abbrev for CONSTANTS_BLOCK.
2729 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2730 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE
));
2731 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
,
2732 VE
.computeBitsRequiredForTypeIndices()));
2733 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, std::move(Abbv
)) !=
2734 CONSTANTS_SETTYPE_ABBREV
)
2735 assert(false && "Unexpected abbrev ordering!");
2738 { // INTEGER abbrev for CONSTANTS_BLOCK.
2739 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2740 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER
));
2741 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8));
2742 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, std::move(Abbv
)) !=
2743 CONSTANTS_INTEGER_ABBREV
)
2744 assert(false && "Unexpected abbrev ordering!");
2747 { // CE_CAST abbrev for CONSTANTS_BLOCK.
2748 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2749 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST
));
2750 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // cast opc
2751 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // typeid
2752 VE
.computeBitsRequiredForTypeIndices()));
2753 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 8)); // value id
2755 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, std::move(Abbv
)) !=
2756 CONSTANTS_CE_CAST_Abbrev
)
2757 assert(false && "Unexpected abbrev ordering!");
2759 { // NULL abbrev for CONSTANTS_BLOCK.
2760 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2761 Abbv
->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL
));
2762 if (Stream
.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID
, std::move(Abbv
)) !=
2763 CONSTANTS_NULL_Abbrev
)
2764 assert(false && "Unexpected abbrev ordering!");
2767 // FIXME: This should only use space for first class types!
2769 { // INST_LOAD abbrev for FUNCTION_BLOCK.
2770 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2771 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD
));
2772 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // Ptr
2773 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
2774 VE
.computeBitsRequiredForTypeIndices()));
2775 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 4)); // Align
2776 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1)); // volatile
2777 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2778 (unsigned)FUNCTION_INST_LOAD_ABBREV
)
2779 assert(false && "Unexpected abbrev ordering!");
2781 { // INST_BINOP abbrev for FUNCTION_BLOCK.
2782 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2783 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
2784 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
2785 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
2786 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
2787 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2788 (unsigned)FUNCTION_INST_BINOP_ABBREV
)
2789 assert(false && "Unexpected abbrev ordering!");
2791 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2792 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2793 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP
));
2794 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // LHS
2795 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // RHS
2796 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
2797 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 7)); // flags
2798 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2799 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV
)
2800 assert(false && "Unexpected abbrev ordering!");
2802 { // INST_CAST abbrev for FUNCTION_BLOCK.
2803 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2804 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST
));
2805 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // OpVal
2806 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
2807 VE
.computeBitsRequiredForTypeIndices()));
2808 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 4)); // opc
2809 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2810 (unsigned)FUNCTION_INST_CAST_ABBREV
)
2811 assert(false && "Unexpected abbrev ordering!");
2814 { // INST_RET abbrev for FUNCTION_BLOCK.
2815 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2816 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
2817 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2818 (unsigned)FUNCTION_INST_RET_VOID_ABBREV
)
2819 assert(false && "Unexpected abbrev ordering!");
2821 { // INST_RET abbrev for FUNCTION_BLOCK.
2822 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2823 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET
));
2824 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6)); // ValID
2825 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2826 (unsigned)FUNCTION_INST_RET_VAL_ABBREV
)
2827 assert(false && "Unexpected abbrev ordering!");
2829 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2830 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2831 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE
));
2832 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2833 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV
)
2834 assert(false && "Unexpected abbrev ordering!");
2837 auto Abbv
= std::make_shared
<BitCodeAbbrev
>();
2838 Abbv
->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP
));
2839 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, 1));
2840 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed
, // dest ty
2841 Log2_32_Ceil(VE
.getTypes().size() + 1)));
2842 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array
));
2843 Abbv
->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR
, 6));
2844 if (Stream
.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID
, std::move(Abbv
)) !=
2845 (unsigned)FUNCTION_INST_GEP_ABBREV
)
2846 assert(false && "Unexpected abbrev ordering!");
2852 void DXILBitcodeWriter::writeModuleVersion() {
2853 // VERSION: [version#]
2854 Stream
.EmitRecord(bitc::MODULE_CODE_VERSION
, ArrayRef
<unsigned>{1});
2857 /// WriteModule - Emit the specified module to the bitstream.
2858 void DXILBitcodeWriter::write() {
2859 // The identification block is new since llvm-3.7, but the old bitcode reader
2861 // writeIdentificationBlock(Stream);
2863 Stream
.EnterSubblock(bitc::MODULE_BLOCK_ID
, 3);
2865 // It is redundant to fully-specify this here, but nice to make it explicit
2866 // so that it is clear the DXIL module version is different.
2867 DXILBitcodeWriter::writeModuleVersion();
2869 // Emit blockinfo, which defines the standard abbreviations etc.
2872 // Emit information about attribute groups.
2873 writeAttributeGroupTable();
2875 // Emit information about parameter attributes.
2876 writeAttributeTable();
2878 // Emit information describing all of the types in the module.
2883 // Emit top-level description of module, including target triple, inline asm,
2884 // descriptors for global variables, and function prototype info.
2888 writeModuleConstants();
2891 writeModuleMetadataKinds();
2894 writeModuleMetadata();
2896 // Emit names for globals/functions etc.
2897 // DXIL uses the same format for module-level value symbol table as for the
2898 // function level table.
2899 writeFunctionLevelValueSymbolTable(M
.getValueSymbolTable());
2901 // Emit function bodies.
2902 for (const Function
&F
: M
)
2903 if (!F
.isDeclaration())