[clang] NFC, add a "continue" bailout in the for-loop of
[llvm-project.git] / llvm / lib / Target / DirectX / DXILWriter / DXILBitcodeWriter.cpp
blob543fbd10db2305da7b5567942878a28f474adc7d
1 //===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
11 //===----------------------------------------------------------------------===//
13 #include "DXILBitcodeWriter.h"
14 #include "DXILValueEnumerator.h"
15 #include "DirectXIRPasses/PointerTypeAnalysis.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/Bitcode/BitcodeCommon.h"
18 #include "llvm/Bitcode/BitcodeReader.h"
19 #include "llvm/Bitcode/LLVMBitCodes.h"
20 #include "llvm/Bitstream/BitCodes.h"
21 #include "llvm/Bitstream/BitstreamWriter.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Comdat.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DebugLoc.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/ModuleSummaryIndex.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/UseListOrder.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/IR/ValueSymbolTable.h"
49 #include "llvm/Object/IRSymtab.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/ModRef.h"
52 #include "llvm/Support/SHA1.h"
53 #include "llvm/TargetParser/Triple.h"
55 namespace llvm {
56 namespace dxil {
58 // Generates an enum to use as an index in the Abbrev array of Metadata record.
59 enum MetadataAbbrev : unsigned {
60 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
61 #include "llvm/IR/Metadata.def"
62 LastPlusOne
65 class DXILBitcodeWriter {
67 /// These are manifest constants used by the bitcode writer. They do not need
68 /// to be kept in sync with the reader, but need to be consistent within this
69 /// file.
70 enum {
71 // VALUE_SYMTAB_BLOCK abbrev id's.
72 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
73 VST_ENTRY_7_ABBREV,
74 VST_ENTRY_6_ABBREV,
75 VST_BBENTRY_6_ABBREV,
77 // CONSTANTS_BLOCK abbrev id's.
78 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
79 CONSTANTS_INTEGER_ABBREV,
80 CONSTANTS_CE_CAST_Abbrev,
81 CONSTANTS_NULL_Abbrev,
83 // FUNCTION_BLOCK abbrev id's.
84 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
85 FUNCTION_INST_BINOP_ABBREV,
86 FUNCTION_INST_BINOP_FLAGS_ABBREV,
87 FUNCTION_INST_CAST_ABBREV,
88 FUNCTION_INST_RET_VOID_ABBREV,
89 FUNCTION_INST_RET_VAL_ABBREV,
90 FUNCTION_INST_UNREACHABLE_ABBREV,
91 FUNCTION_INST_GEP_ABBREV,
94 // Cache some types
95 Type *I8Ty;
96 Type *I8PtrTy;
98 /// The stream created and owned by the client.
99 BitstreamWriter &Stream;
101 StringTableBuilder &StrtabBuilder;
103 /// The Module to write to bitcode.
104 const Module &M;
106 /// Enumerates ids for all values in the module.
107 ValueEnumerator VE;
109 /// Map that holds the correspondence between GUIDs in the summary index,
110 /// that came from indirect call profiles, and a value id generated by this
111 /// class to use in the VST and summary block records.
112 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
114 /// Tracks the last value id recorded in the GUIDToValueMap.
115 unsigned GlobalValueId;
117 /// Saves the offset of the VSTOffset record that must eventually be
118 /// backpatched with the offset of the actual VST.
119 uint64_t VSTOffsetPlaceholder = 0;
121 /// Pointer to the buffer allocated by caller for bitcode writing.
122 const SmallVectorImpl<char> &Buffer;
124 /// The start bit of the identification block.
125 uint64_t BitcodeStartBit;
127 /// This maps values to their typed pointers
128 PointerTypeMap PointerMap;
130 public:
131 /// Constructs a ModuleBitcodeWriter object for the given Module,
132 /// writing to the provided \p Buffer.
133 DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
134 StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
135 : I8Ty(Type::getInt8Ty(M.getContext())),
136 I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
137 StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
138 BitcodeStartBit(Stream.GetCurrentBitNo()),
139 PointerMap(PointerTypeAnalysis::run(M)) {
140 GlobalValueId = VE.getValues().size();
141 // Enumerate the typed pointers
142 for (auto El : PointerMap)
143 VE.EnumerateType(El.second);
146 /// Emit the current module to the bitstream.
147 void write();
149 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
150 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
151 StringRef Str, unsigned AbbrevToUse);
152 static void writeIdentificationBlock(BitstreamWriter &Stream);
153 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
154 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
156 static unsigned getEncodedComdatSelectionKind(const Comdat &C);
157 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
158 static unsigned getEncodedLinkage(const GlobalValue &GV);
159 static unsigned getEncodedVisibility(const GlobalValue &GV);
160 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
161 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
162 static unsigned getEncodedCastOpcode(unsigned Opcode);
163 static unsigned getEncodedUnaryOpcode(unsigned Opcode);
164 static unsigned getEncodedBinaryOpcode(unsigned Opcode);
165 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
166 static unsigned getEncodedOrdering(AtomicOrdering Ordering);
167 static uint64_t getOptimizationFlags(const Value *V);
169 private:
170 void writeModuleVersion();
171 void writePerModuleGlobalValueSummary();
173 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
174 GlobalValueSummary *Summary,
175 unsigned ValueID,
176 unsigned FSCallsAbbrev,
177 unsigned FSCallsProfileAbbrev,
178 const Function &F);
179 void writeModuleLevelReferences(const GlobalVariable &V,
180 SmallVector<uint64_t, 64> &NameVals,
181 unsigned FSModRefsAbbrev,
182 unsigned FSModVTableRefsAbbrev);
184 void assignValueId(GlobalValue::GUID ValGUID) {
185 GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
188 unsigned getValueId(GlobalValue::GUID ValGUID) {
189 const auto &VMI = GUIDToValueIdMap.find(ValGUID);
190 // Expect that any GUID value had a value Id assigned by an
191 // earlier call to assignValueId.
192 assert(VMI != GUIDToValueIdMap.end() &&
193 "GUID does not have assigned value Id");
194 return VMI->second;
197 // Helper to get the valueId for the type of value recorded in VI.
198 unsigned getValueId(ValueInfo VI) {
199 if (!VI.haveGVs() || !VI.getValue())
200 return getValueId(VI.getGUID());
201 return VE.getValueID(VI.getValue());
204 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
206 uint64_t bitcodeStartBit() { return BitcodeStartBit; }
208 size_t addToStrtab(StringRef Str);
210 unsigned createDILocationAbbrev();
211 unsigned createGenericDINodeAbbrev();
213 void writeAttributeGroupTable();
214 void writeAttributeTable();
215 void writeTypeTable();
216 void writeComdats();
217 void writeValueSymbolTableForwardDecl();
218 void writeModuleInfo();
219 void writeValueAsMetadata(const ValueAsMetadata *MD,
220 SmallVectorImpl<uint64_t> &Record);
221 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
222 unsigned Abbrev);
223 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
224 unsigned &Abbrev);
225 void writeGenericDINode(const GenericDINode *N,
226 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
227 llvm_unreachable("DXIL cannot contain GenericDI Nodes");
229 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
230 unsigned Abbrev);
231 void writeDIGenericSubrange(const DIGenericSubrange *N,
232 SmallVectorImpl<uint64_t> &Record,
233 unsigned Abbrev) {
234 llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
236 void writeDIEnumerator(const DIEnumerator *N,
237 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
238 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
239 unsigned Abbrev);
240 void writeDIStringType(const DIStringType *N,
241 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
242 llvm_unreachable("DXIL cannot contain DIStringType Nodes");
244 void writeDIDerivedType(const DIDerivedType *N,
245 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
246 void writeDICompositeType(const DICompositeType *N,
247 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
248 void writeDISubroutineType(const DISubroutineType *N,
249 SmallVectorImpl<uint64_t> &Record,
250 unsigned Abbrev);
251 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
252 unsigned Abbrev);
253 void writeDICompileUnit(const DICompileUnit *N,
254 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
255 void writeDISubprogram(const DISubprogram *N,
256 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
257 void writeDILexicalBlock(const DILexicalBlock *N,
258 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
259 void writeDILexicalBlockFile(const DILexicalBlockFile *N,
260 SmallVectorImpl<uint64_t> &Record,
261 unsigned Abbrev);
262 void writeDICommonBlock(const DICommonBlock *N,
263 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
264 llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
266 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
267 unsigned Abbrev);
268 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
269 unsigned Abbrev) {
270 llvm_unreachable("DXIL cannot contain DIMacro Nodes");
272 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
273 unsigned Abbrev) {
274 llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
276 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
277 unsigned Abbrev) {
278 llvm_unreachable("DXIL cannot contain DIArgList Nodes");
280 void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record,
281 unsigned Abbrev) {
282 // DIAssignID is experimental feature to track variable location in IR..
283 // FIXME: translate DIAssignID to debug info DXIL supports.
284 // See https://github.com/llvm/llvm-project/issues/58989
285 llvm_unreachable("DXIL cannot contain DIAssignID Nodes");
287 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
288 unsigned Abbrev);
289 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
290 SmallVectorImpl<uint64_t> &Record,
291 unsigned Abbrev);
292 void writeDITemplateValueParameter(const DITemplateValueParameter *N,
293 SmallVectorImpl<uint64_t> &Record,
294 unsigned Abbrev);
295 void writeDIGlobalVariable(const DIGlobalVariable *N,
296 SmallVectorImpl<uint64_t> &Record,
297 unsigned Abbrev);
298 void writeDILocalVariable(const DILocalVariable *N,
299 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
300 void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
301 unsigned Abbrev) {
302 llvm_unreachable("DXIL cannot contain DILabel Nodes");
304 void writeDIExpression(const DIExpression *N,
305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
306 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
307 SmallVectorImpl<uint64_t> &Record,
308 unsigned Abbrev) {
309 llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
311 void writeDIObjCProperty(const DIObjCProperty *N,
312 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313 void writeDIImportedEntity(const DIImportedEntity *N,
314 SmallVectorImpl<uint64_t> &Record,
315 unsigned Abbrev);
316 unsigned createNamedMetadataAbbrev();
317 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
318 unsigned createMetadataStringsAbbrev();
319 void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
320 SmallVectorImpl<uint64_t> &Record);
321 void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
322 SmallVectorImpl<uint64_t> &Record,
323 std::vector<unsigned> *MDAbbrevs = nullptr,
324 std::vector<uint64_t> *IndexPos = nullptr);
325 void writeModuleMetadata();
326 void writeFunctionMetadata(const Function &F);
327 void writeFunctionMetadataAttachment(const Function &F);
328 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
329 const GlobalObject &GO);
330 void writeModuleMetadataKinds();
331 void writeOperandBundleTags();
332 void writeSyncScopeNames();
333 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
334 void writeModuleConstants();
335 bool pushValueAndType(const Value *V, unsigned InstID,
336 SmallVectorImpl<unsigned> &Vals);
337 void writeOperandBundles(const CallBase &CB, unsigned InstID);
338 void pushValue(const Value *V, unsigned InstID,
339 SmallVectorImpl<unsigned> &Vals);
340 void pushValueSigned(const Value *V, unsigned InstID,
341 SmallVectorImpl<uint64_t> &Vals);
342 void writeInstruction(const Instruction &I, unsigned InstID,
343 SmallVectorImpl<unsigned> &Vals);
344 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
345 void writeGlobalValueSymbolTable(
346 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
347 void writeFunction(const Function &F);
348 void writeBlockInfo();
350 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
352 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
354 unsigned getTypeID(Type *T, const Value *V = nullptr);
355 /// getGlobalObjectValueTypeID - returns the element type for a GlobalObject
357 /// GlobalObject types are saved by PointerTypeAnalysis as pointers to the
358 /// GlobalObject, but in the bitcode writer we need the pointer element type.
359 unsigned getGlobalObjectValueTypeID(Type *T, const GlobalObject *G);
362 } // namespace dxil
363 } // namespace llvm
365 using namespace llvm;
366 using namespace llvm::dxil;
368 ////////////////////////////////////////////////////////////////////////////////
369 /// Begin dxil::BitcodeWriter Implementation
370 ////////////////////////////////////////////////////////////////////////////////
372 dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer)
373 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) {
374 // Emit the file header.
375 Stream->Emit((unsigned)'B', 8);
376 Stream->Emit((unsigned)'C', 8);
377 Stream->Emit(0x0, 4);
378 Stream->Emit(0xC, 4);
379 Stream->Emit(0xE, 4);
380 Stream->Emit(0xD, 4);
383 dxil::BitcodeWriter::~BitcodeWriter() { }
385 /// Write the specified module to the specified output stream.
386 void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
387 SmallVector<char, 0> Buffer;
388 Buffer.reserve(256 * 1024);
390 // If this is darwin or another generic macho target, reserve space for the
391 // header.
392 Triple TT(M.getTargetTriple());
393 if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
394 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
396 BitcodeWriter Writer(Buffer);
397 Writer.writeModule(M);
399 // Write the generated bitstream to "Out".
400 if (!Buffer.empty())
401 Out.write((char *)&Buffer.front(), Buffer.size());
404 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
405 Stream->EnterSubblock(Block, 3);
407 auto Abbv = std::make_shared<BitCodeAbbrev>();
408 Abbv->Add(BitCodeAbbrevOp(Record));
409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
410 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
412 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
414 Stream->ExitBlock();
417 void BitcodeWriter::writeModule(const Module &M) {
419 // The Mods vector is used by irsymtab::build, which requires non-const
420 // Modules in case it needs to materialize metadata. But the bitcode writer
421 // requires that the module is materialized, so we can cast to non-const here,
422 // after checking that it is in fact materialized.
423 assert(M.isMaterialized());
424 Mods.push_back(const_cast<Module *>(&M));
426 DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
427 ModuleWriter.write();
430 ////////////////////////////////////////////////////////////////////////////////
431 /// Begin dxil::BitcodeWriterBase Implementation
432 ////////////////////////////////////////////////////////////////////////////////
434 unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
435 switch (Opcode) {
436 default:
437 llvm_unreachable("Unknown cast instruction!");
438 case Instruction::Trunc:
439 return bitc::CAST_TRUNC;
440 case Instruction::ZExt:
441 return bitc::CAST_ZEXT;
442 case Instruction::SExt:
443 return bitc::CAST_SEXT;
444 case Instruction::FPToUI:
445 return bitc::CAST_FPTOUI;
446 case Instruction::FPToSI:
447 return bitc::CAST_FPTOSI;
448 case Instruction::UIToFP:
449 return bitc::CAST_UITOFP;
450 case Instruction::SIToFP:
451 return bitc::CAST_SITOFP;
452 case Instruction::FPTrunc:
453 return bitc::CAST_FPTRUNC;
454 case Instruction::FPExt:
455 return bitc::CAST_FPEXT;
456 case Instruction::PtrToInt:
457 return bitc::CAST_PTRTOINT;
458 case Instruction::IntToPtr:
459 return bitc::CAST_INTTOPTR;
460 case Instruction::BitCast:
461 return bitc::CAST_BITCAST;
462 case Instruction::AddrSpaceCast:
463 return bitc::CAST_ADDRSPACECAST;
467 unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
468 switch (Opcode) {
469 default:
470 llvm_unreachable("Unknown binary instruction!");
471 case Instruction::FNeg:
472 return bitc::UNOP_FNEG;
476 unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
477 switch (Opcode) {
478 default:
479 llvm_unreachable("Unknown binary instruction!");
480 case Instruction::Add:
481 case Instruction::FAdd:
482 return bitc::BINOP_ADD;
483 case Instruction::Sub:
484 case Instruction::FSub:
485 return bitc::BINOP_SUB;
486 case Instruction::Mul:
487 case Instruction::FMul:
488 return bitc::BINOP_MUL;
489 case Instruction::UDiv:
490 return bitc::BINOP_UDIV;
491 case Instruction::FDiv:
492 case Instruction::SDiv:
493 return bitc::BINOP_SDIV;
494 case Instruction::URem:
495 return bitc::BINOP_UREM;
496 case Instruction::FRem:
497 case Instruction::SRem:
498 return bitc::BINOP_SREM;
499 case Instruction::Shl:
500 return bitc::BINOP_SHL;
501 case Instruction::LShr:
502 return bitc::BINOP_LSHR;
503 case Instruction::AShr:
504 return bitc::BINOP_ASHR;
505 case Instruction::And:
506 return bitc::BINOP_AND;
507 case Instruction::Or:
508 return bitc::BINOP_OR;
509 case Instruction::Xor:
510 return bitc::BINOP_XOR;
514 unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
515 if (!T->isPointerTy() &&
516 // For Constant, always check PointerMap to make sure OpaquePointer in
517 // things like constant struct/array works.
518 (!V || !isa<Constant>(V)))
519 return VE.getTypeID(T);
520 auto It = PointerMap.find(V);
521 if (It != PointerMap.end())
522 return VE.getTypeID(It->second);
523 // For Constant, return T when cannot find in PointerMap.
524 // FIXME: support ConstantPointerNull which could map to more than one
525 // TypedPointerType.
526 // See https://github.com/llvm/llvm-project/issues/57942.
527 if (V && isa<Constant>(V) && !isa<ConstantPointerNull>(V))
528 return VE.getTypeID(T);
529 return VE.getTypeID(I8PtrTy);
532 unsigned DXILBitcodeWriter::getGlobalObjectValueTypeID(Type *T,
533 const GlobalObject *G) {
534 auto It = PointerMap.find(G);
535 if (It != PointerMap.end()) {
536 TypedPointerType *PtrTy = cast<TypedPointerType>(It->second);
537 return VE.getTypeID(PtrTy->getElementType());
539 return VE.getTypeID(T);
542 unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
543 switch (Op) {
544 default:
545 llvm_unreachable("Unknown RMW operation!");
546 case AtomicRMWInst::Xchg:
547 return bitc::RMW_XCHG;
548 case AtomicRMWInst::Add:
549 return bitc::RMW_ADD;
550 case AtomicRMWInst::Sub:
551 return bitc::RMW_SUB;
552 case AtomicRMWInst::And:
553 return bitc::RMW_AND;
554 case AtomicRMWInst::Nand:
555 return bitc::RMW_NAND;
556 case AtomicRMWInst::Or:
557 return bitc::RMW_OR;
558 case AtomicRMWInst::Xor:
559 return bitc::RMW_XOR;
560 case AtomicRMWInst::Max:
561 return bitc::RMW_MAX;
562 case AtomicRMWInst::Min:
563 return bitc::RMW_MIN;
564 case AtomicRMWInst::UMax:
565 return bitc::RMW_UMAX;
566 case AtomicRMWInst::UMin:
567 return bitc::RMW_UMIN;
568 case AtomicRMWInst::FAdd:
569 return bitc::RMW_FADD;
570 case AtomicRMWInst::FSub:
571 return bitc::RMW_FSUB;
572 case AtomicRMWInst::FMax:
573 return bitc::RMW_FMAX;
574 case AtomicRMWInst::FMin:
575 return bitc::RMW_FMIN;
579 unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
580 switch (Ordering) {
581 case AtomicOrdering::NotAtomic:
582 return bitc::ORDERING_NOTATOMIC;
583 case AtomicOrdering::Unordered:
584 return bitc::ORDERING_UNORDERED;
585 case AtomicOrdering::Monotonic:
586 return bitc::ORDERING_MONOTONIC;
587 case AtomicOrdering::Acquire:
588 return bitc::ORDERING_ACQUIRE;
589 case AtomicOrdering::Release:
590 return bitc::ORDERING_RELEASE;
591 case AtomicOrdering::AcquireRelease:
592 return bitc::ORDERING_ACQREL;
593 case AtomicOrdering::SequentiallyConsistent:
594 return bitc::ORDERING_SEQCST;
596 llvm_unreachable("Invalid ordering");
599 void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
600 unsigned Code, StringRef Str,
601 unsigned AbbrevToUse) {
602 SmallVector<unsigned, 64> Vals;
604 // Code: [strchar x N]
605 for (char C : Str) {
606 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
607 AbbrevToUse = 0;
608 Vals.push_back(C);
611 // Emit the finished record.
612 Stream.EmitRecord(Code, Vals, AbbrevToUse);
615 uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
616 switch (Kind) {
617 case Attribute::Alignment:
618 return bitc::ATTR_KIND_ALIGNMENT;
619 case Attribute::AlwaysInline:
620 return bitc::ATTR_KIND_ALWAYS_INLINE;
621 case Attribute::Builtin:
622 return bitc::ATTR_KIND_BUILTIN;
623 case Attribute::ByVal:
624 return bitc::ATTR_KIND_BY_VAL;
625 case Attribute::Convergent:
626 return bitc::ATTR_KIND_CONVERGENT;
627 case Attribute::InAlloca:
628 return bitc::ATTR_KIND_IN_ALLOCA;
629 case Attribute::Cold:
630 return bitc::ATTR_KIND_COLD;
631 case Attribute::InlineHint:
632 return bitc::ATTR_KIND_INLINE_HINT;
633 case Attribute::InReg:
634 return bitc::ATTR_KIND_IN_REG;
635 case Attribute::JumpTable:
636 return bitc::ATTR_KIND_JUMP_TABLE;
637 case Attribute::MinSize:
638 return bitc::ATTR_KIND_MIN_SIZE;
639 case Attribute::Naked:
640 return bitc::ATTR_KIND_NAKED;
641 case Attribute::Nest:
642 return bitc::ATTR_KIND_NEST;
643 case Attribute::NoAlias:
644 return bitc::ATTR_KIND_NO_ALIAS;
645 case Attribute::NoBuiltin:
646 return bitc::ATTR_KIND_NO_BUILTIN;
647 case Attribute::NoDuplicate:
648 return bitc::ATTR_KIND_NO_DUPLICATE;
649 case Attribute::NoImplicitFloat:
650 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
651 case Attribute::NoInline:
652 return bitc::ATTR_KIND_NO_INLINE;
653 case Attribute::NonLazyBind:
654 return bitc::ATTR_KIND_NON_LAZY_BIND;
655 case Attribute::NonNull:
656 return bitc::ATTR_KIND_NON_NULL;
657 case Attribute::Dereferenceable:
658 return bitc::ATTR_KIND_DEREFERENCEABLE;
659 case Attribute::DereferenceableOrNull:
660 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
661 case Attribute::NoRedZone:
662 return bitc::ATTR_KIND_NO_RED_ZONE;
663 case Attribute::NoReturn:
664 return bitc::ATTR_KIND_NO_RETURN;
665 case Attribute::NoUnwind:
666 return bitc::ATTR_KIND_NO_UNWIND;
667 case Attribute::OptimizeForSize:
668 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
669 case Attribute::OptimizeNone:
670 return bitc::ATTR_KIND_OPTIMIZE_NONE;
671 case Attribute::ReadNone:
672 return bitc::ATTR_KIND_READ_NONE;
673 case Attribute::ReadOnly:
674 return bitc::ATTR_KIND_READ_ONLY;
675 case Attribute::Returned:
676 return bitc::ATTR_KIND_RETURNED;
677 case Attribute::ReturnsTwice:
678 return bitc::ATTR_KIND_RETURNS_TWICE;
679 case Attribute::SExt:
680 return bitc::ATTR_KIND_S_EXT;
681 case Attribute::StackAlignment:
682 return bitc::ATTR_KIND_STACK_ALIGNMENT;
683 case Attribute::StackProtect:
684 return bitc::ATTR_KIND_STACK_PROTECT;
685 case Attribute::StackProtectReq:
686 return bitc::ATTR_KIND_STACK_PROTECT_REQ;
687 case Attribute::StackProtectStrong:
688 return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
689 case Attribute::SafeStack:
690 return bitc::ATTR_KIND_SAFESTACK;
691 case Attribute::StructRet:
692 return bitc::ATTR_KIND_STRUCT_RET;
693 case Attribute::SanitizeAddress:
694 return bitc::ATTR_KIND_SANITIZE_ADDRESS;
695 case Attribute::SanitizeThread:
696 return bitc::ATTR_KIND_SANITIZE_THREAD;
697 case Attribute::SanitizeMemory:
698 return bitc::ATTR_KIND_SANITIZE_MEMORY;
699 case Attribute::UWTable:
700 return bitc::ATTR_KIND_UW_TABLE;
701 case Attribute::ZExt:
702 return bitc::ATTR_KIND_Z_EXT;
703 case Attribute::EndAttrKinds:
704 llvm_unreachable("Can not encode end-attribute kinds marker.");
705 case Attribute::None:
706 llvm_unreachable("Can not encode none-attribute.");
707 case Attribute::EmptyKey:
708 case Attribute::TombstoneKey:
709 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
710 default:
711 llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
712 "should be stripped in DXILPrepare");
715 llvm_unreachable("Trying to encode unknown attribute");
718 void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
719 uint64_t V) {
720 if ((int64_t)V >= 0)
721 Vals.push_back(V << 1);
722 else
723 Vals.push_back((-V << 1) | 1);
726 void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
727 const APInt &A) {
728 // We have an arbitrary precision integer value to write whose
729 // bit width is > 64. However, in canonical unsigned integer
730 // format it is likely that the high bits are going to be zero.
731 // So, we only write the number of active words.
732 unsigned NumWords = A.getActiveWords();
733 const uint64_t *RawData = A.getRawData();
734 for (unsigned i = 0; i < NumWords; i++)
735 emitSignedInt64(Vals, RawData[i]);
738 uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
739 uint64_t Flags = 0;
741 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
742 if (OBO->hasNoSignedWrap())
743 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
744 if (OBO->hasNoUnsignedWrap())
745 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
746 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
747 if (PEO->isExact())
748 Flags |= 1 << bitc::PEO_EXACT;
749 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
750 if (FPMO->hasAllowReassoc() || FPMO->hasAllowContract())
751 Flags |= bitc::UnsafeAlgebra;
752 if (FPMO->hasNoNaNs())
753 Flags |= bitc::NoNaNs;
754 if (FPMO->hasNoInfs())
755 Flags |= bitc::NoInfs;
756 if (FPMO->hasNoSignedZeros())
757 Flags |= bitc::NoSignedZeros;
758 if (FPMO->hasAllowReciprocal())
759 Flags |= bitc::AllowReciprocal;
762 return Flags;
765 unsigned
766 DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
767 switch (Linkage) {
768 case GlobalValue::ExternalLinkage:
769 return 0;
770 case GlobalValue::WeakAnyLinkage:
771 return 16;
772 case GlobalValue::AppendingLinkage:
773 return 2;
774 case GlobalValue::InternalLinkage:
775 return 3;
776 case GlobalValue::LinkOnceAnyLinkage:
777 return 18;
778 case GlobalValue::ExternalWeakLinkage:
779 return 7;
780 case GlobalValue::CommonLinkage:
781 return 8;
782 case GlobalValue::PrivateLinkage:
783 return 9;
784 case GlobalValue::WeakODRLinkage:
785 return 17;
786 case GlobalValue::LinkOnceODRLinkage:
787 return 19;
788 case GlobalValue::AvailableExternallyLinkage:
789 return 12;
791 llvm_unreachable("Invalid linkage");
794 unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
795 return getEncodedLinkage(GV.getLinkage());
798 unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
799 switch (GV.getVisibility()) {
800 case GlobalValue::DefaultVisibility:
801 return 0;
802 case GlobalValue::HiddenVisibility:
803 return 1;
804 case GlobalValue::ProtectedVisibility:
805 return 2;
807 llvm_unreachable("Invalid visibility");
810 unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
811 switch (GV.getDLLStorageClass()) {
812 case GlobalValue::DefaultStorageClass:
813 return 0;
814 case GlobalValue::DLLImportStorageClass:
815 return 1;
816 case GlobalValue::DLLExportStorageClass:
817 return 2;
819 llvm_unreachable("Invalid DLL storage class");
822 unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
823 switch (GV.getThreadLocalMode()) {
824 case GlobalVariable::NotThreadLocal:
825 return 0;
826 case GlobalVariable::GeneralDynamicTLSModel:
827 return 1;
828 case GlobalVariable::LocalDynamicTLSModel:
829 return 2;
830 case GlobalVariable::InitialExecTLSModel:
831 return 3;
832 case GlobalVariable::LocalExecTLSModel:
833 return 4;
835 llvm_unreachable("Invalid TLS model");
838 unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
839 switch (C.getSelectionKind()) {
840 case Comdat::Any:
841 return bitc::COMDAT_SELECTION_KIND_ANY;
842 case Comdat::ExactMatch:
843 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
844 case Comdat::Largest:
845 return bitc::COMDAT_SELECTION_KIND_LARGEST;
846 case Comdat::NoDeduplicate:
847 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
848 case Comdat::SameSize:
849 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
851 llvm_unreachable("Invalid selection kind");
854 ////////////////////////////////////////////////////////////////////////////////
855 /// Begin DXILBitcodeWriter Implementation
856 ////////////////////////////////////////////////////////////////////////////////
858 void DXILBitcodeWriter::writeAttributeGroupTable() {
859 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
860 VE.getAttributeGroups();
861 if (AttrGrps.empty())
862 return;
864 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
866 SmallVector<uint64_t, 64> Record;
867 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
868 unsigned AttrListIndex = Pair.first;
869 AttributeSet AS = Pair.second;
870 Record.push_back(VE.getAttributeGroupID(Pair));
871 Record.push_back(AttrListIndex);
873 for (Attribute Attr : AS) {
874 if (Attr.isEnumAttribute()) {
875 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
876 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
877 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
878 Record.push_back(0);
879 Record.push_back(Val);
880 } else if (Attr.isIntAttribute()) {
881 if (Attr.getKindAsEnum() == Attribute::AttrKind::Memory) {
882 MemoryEffects ME = Attr.getMemoryEffects();
883 if (ME.doesNotAccessMemory()) {
884 Record.push_back(0);
885 Record.push_back(bitc::ATTR_KIND_READ_NONE);
886 } else {
887 if (ME.onlyReadsMemory()) {
888 Record.push_back(0);
889 Record.push_back(bitc::ATTR_KIND_READ_ONLY);
891 if (ME.onlyAccessesArgPointees()) {
892 Record.push_back(0);
893 Record.push_back(bitc::ATTR_KIND_ARGMEMONLY);
896 } else {
897 uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
898 assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
899 "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
900 Record.push_back(1);
901 Record.push_back(Val);
902 Record.push_back(Attr.getValueAsInt());
904 } else {
905 StringRef Kind = Attr.getKindAsString();
906 StringRef Val = Attr.getValueAsString();
908 Record.push_back(Val.empty() ? 3 : 4);
909 Record.append(Kind.begin(), Kind.end());
910 Record.push_back(0);
911 if (!Val.empty()) {
912 Record.append(Val.begin(), Val.end());
913 Record.push_back(0);
918 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
919 Record.clear();
922 Stream.ExitBlock();
925 void DXILBitcodeWriter::writeAttributeTable() {
926 const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
927 if (Attrs.empty())
928 return;
930 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
932 SmallVector<uint64_t, 64> Record;
933 for (AttributeList AL : Attrs) {
934 for (unsigned i : AL.indexes()) {
935 AttributeSet AS = AL.getAttributes(i);
936 if (AS.hasAttributes())
937 Record.push_back(VE.getAttributeGroupID({i, AS}));
940 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
941 Record.clear();
944 Stream.ExitBlock();
947 /// WriteTypeTable - Write out the type table for a module.
948 void DXILBitcodeWriter::writeTypeTable() {
949 const ValueEnumerator::TypeList &TypeList = VE.getTypes();
951 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
952 SmallVector<uint64_t, 64> TypeVals;
954 uint64_t NumBits = VE.computeBitsRequiredForTypeIndices();
956 // Abbrev for TYPE_CODE_POINTER.
957 auto Abbv = std::make_shared<BitCodeAbbrev>();
958 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
960 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
961 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
963 // Abbrev for TYPE_CODE_FUNCTION.
964 Abbv = std::make_shared<BitCodeAbbrev>();
965 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
966 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
969 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
971 // Abbrev for TYPE_CODE_STRUCT_ANON.
972 Abbv = std::make_shared<BitCodeAbbrev>();
973 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
977 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
979 // Abbrev for TYPE_CODE_STRUCT_NAME.
980 Abbv = std::make_shared<BitCodeAbbrev>();
981 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
984 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
986 // Abbrev for TYPE_CODE_STRUCT_NAMED.
987 Abbv = std::make_shared<BitCodeAbbrev>();
988 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
989 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
992 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
994 // Abbrev for TYPE_CODE_ARRAY.
995 Abbv = std::make_shared<BitCodeAbbrev>();
996 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
997 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
998 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
999 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1001 // Emit an entry count so the reader can reserve space.
1002 TypeVals.push_back(TypeList.size());
1003 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
1004 TypeVals.clear();
1006 // Loop over all of the types, emitting each in turn.
1007 for (Type *T : TypeList) {
1008 int AbbrevToUse = 0;
1009 unsigned Code = 0;
1011 switch (T->getTypeID()) {
1012 case Type::BFloatTyID:
1013 case Type::X86_AMXTyID:
1014 case Type::TokenTyID:
1015 case Type::TargetExtTyID:
1016 llvm_unreachable("These should never be used!!!");
1017 break;
1018 case Type::VoidTyID:
1019 Code = bitc::TYPE_CODE_VOID;
1020 break;
1021 case Type::HalfTyID:
1022 Code = bitc::TYPE_CODE_HALF;
1023 break;
1024 case Type::FloatTyID:
1025 Code = bitc::TYPE_CODE_FLOAT;
1026 break;
1027 case Type::DoubleTyID:
1028 Code = bitc::TYPE_CODE_DOUBLE;
1029 break;
1030 case Type::X86_FP80TyID:
1031 Code = bitc::TYPE_CODE_X86_FP80;
1032 break;
1033 case Type::FP128TyID:
1034 Code = bitc::TYPE_CODE_FP128;
1035 break;
1036 case Type::PPC_FP128TyID:
1037 Code = bitc::TYPE_CODE_PPC_FP128;
1038 break;
1039 case Type::LabelTyID:
1040 Code = bitc::TYPE_CODE_LABEL;
1041 break;
1042 case Type::MetadataTyID:
1043 Code = bitc::TYPE_CODE_METADATA;
1044 break;
1045 case Type::IntegerTyID:
1046 // INTEGER: [width]
1047 Code = bitc::TYPE_CODE_INTEGER;
1048 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
1049 break;
1050 case Type::TypedPointerTyID: {
1051 TypedPointerType *PTy = cast<TypedPointerType>(T);
1052 // POINTER: [pointee type, address space]
1053 Code = bitc::TYPE_CODE_POINTER;
1054 TypeVals.push_back(getTypeID(PTy->getElementType()));
1055 unsigned AddressSpace = PTy->getAddressSpace();
1056 TypeVals.push_back(AddressSpace);
1057 if (AddressSpace == 0)
1058 AbbrevToUse = PtrAbbrev;
1059 break;
1061 case Type::PointerTyID: {
1062 // POINTER: [pointee type, address space]
1063 // Emitting an empty struct type for the pointer's type allows this to be
1064 // order-independent. Non-struct types must be emitted in bitcode before
1065 // they can be referenced.
1066 TypeVals.push_back(false);
1067 Code = bitc::TYPE_CODE_OPAQUE;
1068 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
1069 "dxilOpaquePtrReservedName", StructNameAbbrev);
1070 break;
1072 case Type::FunctionTyID: {
1073 FunctionType *FT = cast<FunctionType>(T);
1074 // FUNCTION: [isvararg, retty, paramty x N]
1075 Code = bitc::TYPE_CODE_FUNCTION;
1076 TypeVals.push_back(FT->isVarArg());
1077 TypeVals.push_back(getTypeID(FT->getReturnType()));
1078 for (Type *PTy : FT->params())
1079 TypeVals.push_back(getTypeID(PTy));
1080 AbbrevToUse = FunctionAbbrev;
1081 break;
1083 case Type::StructTyID: {
1084 StructType *ST = cast<StructType>(T);
1085 // STRUCT: [ispacked, eltty x N]
1086 TypeVals.push_back(ST->isPacked());
1087 // Output all of the element types.
1088 for (Type *ElTy : ST->elements())
1089 TypeVals.push_back(getTypeID(ElTy));
1091 if (ST->isLiteral()) {
1092 Code = bitc::TYPE_CODE_STRUCT_ANON;
1093 AbbrevToUse = StructAnonAbbrev;
1094 } else {
1095 if (ST->isOpaque()) {
1096 Code = bitc::TYPE_CODE_OPAQUE;
1097 } else {
1098 Code = bitc::TYPE_CODE_STRUCT_NAMED;
1099 AbbrevToUse = StructNamedAbbrev;
1102 // Emit the name if it is present.
1103 if (!ST->getName().empty())
1104 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
1105 StructNameAbbrev);
1107 break;
1109 case Type::ArrayTyID: {
1110 ArrayType *AT = cast<ArrayType>(T);
1111 // ARRAY: [numelts, eltty]
1112 Code = bitc::TYPE_CODE_ARRAY;
1113 TypeVals.push_back(AT->getNumElements());
1114 TypeVals.push_back(getTypeID(AT->getElementType()));
1115 AbbrevToUse = ArrayAbbrev;
1116 break;
1118 case Type::FixedVectorTyID:
1119 case Type::ScalableVectorTyID: {
1120 VectorType *VT = cast<VectorType>(T);
1121 // VECTOR [numelts, eltty]
1122 Code = bitc::TYPE_CODE_VECTOR;
1123 TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1124 TypeVals.push_back(getTypeID(VT->getElementType()));
1125 break;
1129 // Emit the finished record.
1130 Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1131 TypeVals.clear();
1134 Stream.ExitBlock();
1137 void DXILBitcodeWriter::writeComdats() {
1138 SmallVector<uint16_t, 64> Vals;
1139 for (const Comdat *C : VE.getComdats()) {
1140 // COMDAT: [selection_kind, name]
1141 Vals.push_back(getEncodedComdatSelectionKind(*C));
1142 size_t Size = C->getName().size();
1143 assert(isUInt<16>(Size));
1144 Vals.push_back(Size);
1145 for (char Chr : C->getName())
1146 Vals.push_back((unsigned char)Chr);
1147 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1148 Vals.clear();
1152 void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
1154 /// Emit top-level description of module, including target triple, inline asm,
1155 /// descriptors for global variables, and function prototype info.
1156 /// Returns the bit offset to backpatch with the location of the real VST.
1157 void DXILBitcodeWriter::writeModuleInfo() {
1158 // Emit various pieces of data attached to a module.
1159 if (!M.getTargetTriple().empty())
1160 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1161 0 /*TODO*/);
1162 const std::string &DL = M.getDataLayoutStr();
1163 if (!DL.empty())
1164 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1165 if (!M.getModuleInlineAsm().empty())
1166 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1167 0 /*TODO*/);
1169 // Emit information about sections and GC, computing how many there are. Also
1170 // compute the maximum alignment value.
1171 std::map<std::string, unsigned> SectionMap;
1172 std::map<std::string, unsigned> GCMap;
1173 MaybeAlign MaxAlignment;
1174 unsigned MaxGlobalType = 0;
1175 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1176 if (A)
1177 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1179 for (const GlobalVariable &GV : M.globals()) {
1180 UpdateMaxAlignment(GV.getAlign());
1181 // Use getGlobalObjectValueTypeID to look up the enumerated type ID for
1182 // Global Variable types.
1183 MaxGlobalType = std::max(
1184 MaxGlobalType, getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1185 if (GV.hasSection()) {
1186 // Give section names unique ID's.
1187 unsigned &Entry = SectionMap[std::string(GV.getSection())];
1188 if (!Entry) {
1189 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
1190 GV.getSection(), 0 /*TODO*/);
1191 Entry = SectionMap.size();
1195 for (const Function &F : M) {
1196 UpdateMaxAlignment(F.getAlign());
1197 if (F.hasSection()) {
1198 // Give section names unique ID's.
1199 unsigned &Entry = SectionMap[std::string(F.getSection())];
1200 if (!Entry) {
1201 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1202 0 /*TODO*/);
1203 Entry = SectionMap.size();
1206 if (F.hasGC()) {
1207 // Same for GC names.
1208 unsigned &Entry = GCMap[F.getGC()];
1209 if (!Entry) {
1210 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1211 0 /*TODO*/);
1212 Entry = GCMap.size();
1217 // Emit abbrev for globals, now that we know # sections and max alignment.
1218 unsigned SimpleGVarAbbrev = 0;
1219 if (!M.global_empty()) {
1220 // Add an abbrev for common globals with no visibility or thread
1221 // localness.
1222 auto Abbv = std::make_shared<BitCodeAbbrev>();
1223 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1225 Log2_32_Ceil(MaxGlobalType + 1)));
1226 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
1227 //| explicitType << 1
1228 //| constant
1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
1230 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1231 if (!MaxAlignment) // Alignment.
1232 Abbv->Add(BitCodeAbbrevOp(0));
1233 else {
1234 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1236 Log2_32_Ceil(MaxEncAlignment + 1)));
1238 if (SectionMap.empty()) // Section.
1239 Abbv->Add(BitCodeAbbrevOp(0));
1240 else
1241 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1242 Log2_32_Ceil(SectionMap.size() + 1)));
1243 // Don't bother emitting vis + thread local.
1244 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1247 // Emit the global variable information.
1248 SmallVector<unsigned, 64> Vals;
1249 for (const GlobalVariable &GV : M.globals()) {
1250 unsigned AbbrevToUse = 0;
1252 // GLOBALVAR: [type, isconst, initid,
1253 // linkage, alignment, section, visibility, threadlocal,
1254 // unnamed_addr, externally_initialized, dllstorageclass,
1255 // comdat]
1256 Vals.push_back(getGlobalObjectValueTypeID(GV.getValueType(), &GV));
1257 Vals.push_back(
1258 GV.getType()->getAddressSpace() << 2 | 2 |
1259 (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
1260 // unsigned int and bool
1261 Vals.push_back(
1262 GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
1263 Vals.push_back(getEncodedLinkage(GV));
1264 Vals.push_back(getEncodedAlign(GV.getAlign()));
1265 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1266 : 0);
1267 if (GV.isThreadLocal() ||
1268 GV.getVisibility() != GlobalValue::DefaultVisibility ||
1269 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1270 GV.isExternallyInitialized() ||
1271 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1272 GV.hasComdat()) {
1273 Vals.push_back(getEncodedVisibility(GV));
1274 Vals.push_back(getEncodedThreadLocalMode(GV));
1275 Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1276 Vals.push_back(GV.isExternallyInitialized());
1277 Vals.push_back(getEncodedDLLStorageClass(GV));
1278 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1279 } else {
1280 AbbrevToUse = SimpleGVarAbbrev;
1283 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1284 Vals.clear();
1287 // Emit the function proto information.
1288 for (const Function &F : M) {
1289 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
1290 // section, visibility, gc, unnamed_addr, prologuedata,
1291 // dllstorageclass, comdat, prefixdata, personalityfn]
1292 Vals.push_back(getGlobalObjectValueTypeID(F.getFunctionType(), &F));
1293 Vals.push_back(F.getCallingConv());
1294 Vals.push_back(F.isDeclaration());
1295 Vals.push_back(getEncodedLinkage(F));
1296 Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1297 Vals.push_back(getEncodedAlign(F.getAlign()));
1298 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1299 : 0);
1300 Vals.push_back(getEncodedVisibility(F));
1301 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1302 Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1303 Vals.push_back(
1304 F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
1305 Vals.push_back(getEncodedDLLStorageClass(F));
1306 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1307 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1308 : 0);
1309 Vals.push_back(
1310 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1312 unsigned AbbrevToUse = 0;
1313 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1314 Vals.clear();
1317 // Emit the alias information.
1318 for (const GlobalAlias &A : M.aliases()) {
1319 // ALIAS: [alias type, aliasee val#, linkage, visibility]
1320 Vals.push_back(getTypeID(A.getValueType(), &A));
1321 Vals.push_back(VE.getValueID(A.getAliasee()));
1322 Vals.push_back(getEncodedLinkage(A));
1323 Vals.push_back(getEncodedVisibility(A));
1324 Vals.push_back(getEncodedDLLStorageClass(A));
1325 Vals.push_back(getEncodedThreadLocalMode(A));
1326 Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
1327 unsigned AbbrevToUse = 0;
1328 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
1329 Vals.clear();
1333 void DXILBitcodeWriter::writeValueAsMetadata(
1334 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1335 // Mimic an MDNode with a value as one operand.
1336 Value *V = MD->getValue();
1337 Type *Ty = V->getType();
1338 if (Function *F = dyn_cast<Function>(V))
1339 Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
1340 else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1341 Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
1342 Record.push_back(getTypeID(Ty, V));
1343 Record.push_back(VE.getValueID(V));
1344 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1345 Record.clear();
1348 void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
1349 SmallVectorImpl<uint64_t> &Record,
1350 unsigned Abbrev) {
1351 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1352 Metadata *MD = N->getOperand(i);
1353 assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1354 "Unexpected function-local metadata");
1355 Record.push_back(VE.getMetadataOrNullID(MD));
1357 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1358 : bitc::METADATA_NODE,
1359 Record, Abbrev);
1360 Record.clear();
1363 void DXILBitcodeWriter::writeDILocation(const DILocation *N,
1364 SmallVectorImpl<uint64_t> &Record,
1365 unsigned &Abbrev) {
1366 if (!Abbrev)
1367 Abbrev = createDILocationAbbrev();
1368 Record.push_back(N->isDistinct());
1369 Record.push_back(N->getLine());
1370 Record.push_back(N->getColumn());
1371 Record.push_back(VE.getMetadataID(N->getScope()));
1372 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1374 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1375 Record.clear();
1378 static uint64_t rotateSign(APInt Val) {
1379 int64_t I = Val.getSExtValue();
1380 uint64_t U = I;
1381 return I < 0 ? ~(U << 1) : U << 1;
1384 void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
1385 SmallVectorImpl<uint64_t> &Record,
1386 unsigned Abbrev) {
1387 Record.push_back(N->isDistinct());
1389 // TODO: Do we need to handle DIExpression here? What about cases where Count
1390 // isn't specified but UpperBound and such are?
1391 ConstantInt *Count = dyn_cast<ConstantInt *>(N->getCount());
1392 assert(Count && "Count is missing or not ConstantInt");
1393 Record.push_back(Count->getValue().getSExtValue());
1395 // TODO: Similarly, DIExpression is allowed here now
1396 DISubrange::BoundType LowerBound = N->getLowerBound();
1397 assert((LowerBound.isNull() || isa<ConstantInt *>(LowerBound)) &&
1398 "Lower bound provided but not ConstantInt");
1399 Record.push_back(
1400 LowerBound ? rotateSign(cast<ConstantInt *>(LowerBound)->getValue()) : 0);
1402 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1403 Record.clear();
1406 void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1407 SmallVectorImpl<uint64_t> &Record,
1408 unsigned Abbrev) {
1409 Record.push_back(N->isDistinct());
1410 Record.push_back(rotateSign(N->getValue()));
1411 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1413 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1414 Record.clear();
1417 void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1418 SmallVectorImpl<uint64_t> &Record,
1419 unsigned Abbrev) {
1420 Record.push_back(N->isDistinct());
1421 Record.push_back(N->getTag());
1422 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1423 Record.push_back(N->getSizeInBits());
1424 Record.push_back(N->getAlignInBits());
1425 Record.push_back(N->getEncoding());
1427 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1428 Record.clear();
1431 void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1432 SmallVectorImpl<uint64_t> &Record,
1433 unsigned Abbrev) {
1434 Record.push_back(N->isDistinct());
1435 Record.push_back(N->getTag());
1436 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1437 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1438 Record.push_back(N->getLine());
1439 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1440 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1441 Record.push_back(N->getSizeInBits());
1442 Record.push_back(N->getAlignInBits());
1443 Record.push_back(N->getOffsetInBits());
1444 Record.push_back(N->getFlags());
1445 Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1447 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1448 Record.clear();
1451 void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
1452 SmallVectorImpl<uint64_t> &Record,
1453 unsigned Abbrev) {
1454 Record.push_back(N->isDistinct());
1455 Record.push_back(N->getTag());
1456 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1457 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1458 Record.push_back(N->getLine());
1459 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1460 Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1461 Record.push_back(N->getSizeInBits());
1462 Record.push_back(N->getAlignInBits());
1463 Record.push_back(N->getOffsetInBits());
1464 Record.push_back(N->getFlags());
1465 Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1466 Record.push_back(N->getRuntimeLang());
1467 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1468 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1469 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1471 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1472 Record.clear();
1475 void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
1476 SmallVectorImpl<uint64_t> &Record,
1477 unsigned Abbrev) {
1478 Record.push_back(N->isDistinct());
1479 Record.push_back(N->getFlags());
1480 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1482 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1483 Record.clear();
1486 void DXILBitcodeWriter::writeDIFile(const DIFile *N,
1487 SmallVectorImpl<uint64_t> &Record,
1488 unsigned Abbrev) {
1489 Record.push_back(N->isDistinct());
1490 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1491 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1493 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1494 Record.clear();
1497 void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1498 SmallVectorImpl<uint64_t> &Record,
1499 unsigned Abbrev) {
1500 Record.push_back(N->isDistinct());
1501 Record.push_back(N->getSourceLanguage());
1502 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1503 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1504 Record.push_back(N->isOptimized());
1505 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1506 Record.push_back(N->getRuntimeVersion());
1507 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1508 Record.push_back(N->getEmissionKind());
1509 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1510 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1511 Record.push_back(/* subprograms */ 0);
1512 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1513 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1514 Record.push_back(N->getDWOId());
1516 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1517 Record.clear();
1520 void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1521 SmallVectorImpl<uint64_t> &Record,
1522 unsigned Abbrev) {
1523 Record.push_back(N->isDistinct());
1524 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1525 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1526 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1527 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1528 Record.push_back(N->getLine());
1529 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1530 Record.push_back(N->isLocalToUnit());
1531 Record.push_back(N->isDefinition());
1532 Record.push_back(N->getScopeLine());
1533 Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1534 Record.push_back(N->getVirtuality());
1535 Record.push_back(N->getVirtualIndex());
1536 Record.push_back(N->getFlags());
1537 Record.push_back(N->isOptimized());
1538 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1539 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1540 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1541 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1543 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1544 Record.clear();
1547 void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1548 SmallVectorImpl<uint64_t> &Record,
1549 unsigned Abbrev) {
1550 Record.push_back(N->isDistinct());
1551 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1552 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1553 Record.push_back(N->getLine());
1554 Record.push_back(N->getColumn());
1556 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1557 Record.clear();
1560 void DXILBitcodeWriter::writeDILexicalBlockFile(
1561 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1562 unsigned Abbrev) {
1563 Record.push_back(N->isDistinct());
1564 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1565 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1566 Record.push_back(N->getDiscriminator());
1568 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1569 Record.clear();
1572 void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
1573 SmallVectorImpl<uint64_t> &Record,
1574 unsigned Abbrev) {
1575 Record.push_back(N->isDistinct());
1576 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1577 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1578 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1579 Record.push_back(/* line number */ 0);
1581 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1582 Record.clear();
1585 void DXILBitcodeWriter::writeDIModule(const DIModule *N,
1586 SmallVectorImpl<uint64_t> &Record,
1587 unsigned Abbrev) {
1588 Record.push_back(N->isDistinct());
1589 for (auto &I : N->operands())
1590 Record.push_back(VE.getMetadataOrNullID(I));
1592 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1593 Record.clear();
1596 void DXILBitcodeWriter::writeDITemplateTypeParameter(
1597 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1598 unsigned Abbrev) {
1599 Record.push_back(N->isDistinct());
1600 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1601 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1603 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1604 Record.clear();
1607 void DXILBitcodeWriter::writeDITemplateValueParameter(
1608 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1609 unsigned Abbrev) {
1610 Record.push_back(N->isDistinct());
1611 Record.push_back(N->getTag());
1612 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1613 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1614 Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1616 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1617 Record.clear();
1620 void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
1621 SmallVectorImpl<uint64_t> &Record,
1622 unsigned Abbrev) {
1623 Record.push_back(N->isDistinct());
1624 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1625 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1626 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1627 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1628 Record.push_back(N->getLine());
1629 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1630 Record.push_back(N->isLocalToUnit());
1631 Record.push_back(N->isDefinition());
1632 Record.push_back(/* N->getRawVariable() */ 0);
1633 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1635 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1636 Record.clear();
1639 void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
1640 SmallVectorImpl<uint64_t> &Record,
1641 unsigned Abbrev) {
1642 Record.push_back(N->isDistinct());
1643 Record.push_back(N->getTag());
1644 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1645 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1646 Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1647 Record.push_back(N->getLine());
1648 Record.push_back(VE.getMetadataOrNullID(N->getType()));
1649 Record.push_back(N->getArg());
1650 Record.push_back(N->getFlags());
1652 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1653 Record.clear();
1656 void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
1657 SmallVectorImpl<uint64_t> &Record,
1658 unsigned Abbrev) {
1659 Record.reserve(N->getElements().size() + 1);
1661 Record.push_back(N->isDistinct());
1662 Record.append(N->elements_begin(), N->elements_end());
1664 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
1665 Record.clear();
1668 void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
1669 SmallVectorImpl<uint64_t> &Record,
1670 unsigned Abbrev) {
1671 llvm_unreachable("DXIL does not support objc!!!");
1674 void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
1675 SmallVectorImpl<uint64_t> &Record,
1676 unsigned Abbrev) {
1677 Record.push_back(N->isDistinct());
1678 Record.push_back(N->getTag());
1679 Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1680 Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
1681 Record.push_back(N->getLine());
1682 Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1684 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
1685 Record.clear();
1688 unsigned DXILBitcodeWriter::createDILocationAbbrev() {
1689 // Abbrev for METADATA_LOCATION.
1691 // Assume the column is usually under 128, and always output the inlined-at
1692 // location (it's never more expensive than building an array size 1).
1693 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1694 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1695 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1696 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1697 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1698 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1699 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1700 return Stream.EmitAbbrev(std::move(Abbv));
1703 unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
1704 // Abbrev for METADATA_GENERIC_DEBUG.
1706 // Assume the column is usually under 128, and always output the inlined-at
1707 // location (it's never more expensive than building an array size 1).
1708 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1709 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1713 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1714 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1715 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1716 return Stream.EmitAbbrev(std::move(Abbv));
1719 void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
1720 SmallVectorImpl<uint64_t> &Record,
1721 std::vector<unsigned> *MDAbbrevs,
1722 std::vector<uint64_t> *IndexPos) {
1723 if (MDs.empty())
1724 return;
1726 // Initialize MDNode abbreviations.
1727 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
1728 #include "llvm/IR/Metadata.def"
1730 for (const Metadata *MD : MDs) {
1731 if (IndexPos)
1732 IndexPos->push_back(Stream.GetCurrentBitNo());
1733 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1734 assert(N->isResolved() && "Expected forward references to be resolved");
1736 switch (N->getMetadataID()) {
1737 default:
1738 llvm_unreachable("Invalid MDNode subclass");
1739 #define HANDLE_MDNODE_LEAF(CLASS) \
1740 case Metadata::CLASS##Kind: \
1741 if (MDAbbrevs) \
1742 write##CLASS(cast<CLASS>(N), Record, \
1743 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
1744 else \
1745 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
1746 continue;
1747 #include "llvm/IR/Metadata.def"
1750 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
1754 unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
1755 auto Abbv = std::make_shared<BitCodeAbbrev>();
1756 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1759 return Stream.EmitAbbrev(std::move(Abbv));
1762 void DXILBitcodeWriter::writeMetadataStrings(
1763 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
1764 if (Strings.empty())
1765 return;
1767 unsigned MDSAbbrev = createMetadataStringsAbbrev();
1769 for (const Metadata *MD : Strings) {
1770 const MDString *MDS = cast<MDString>(MD);
1771 // Code: [strchar x N]
1772 Record.append(MDS->bytes_begin(), MDS->bytes_end());
1774 // Emit the finished record.
1775 Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, MDSAbbrev);
1776 Record.clear();
1780 void DXILBitcodeWriter::writeModuleMetadata() {
1781 if (!VE.hasMDs() && M.named_metadata_empty())
1782 return;
1784 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
1786 // Emit all abbrevs upfront, so that the reader can jump in the middle of the
1787 // block and load any metadata.
1788 std::vector<unsigned> MDAbbrevs;
1790 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
1791 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
1792 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
1793 createGenericDINodeAbbrev();
1795 unsigned NameAbbrev = 0;
1796 if (!M.named_metadata_empty()) {
1797 // Abbrev for METADATA_NAME.
1798 std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
1799 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
1800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1802 NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1805 SmallVector<uint64_t, 64> Record;
1806 writeMetadataStrings(VE.getMDStrings(), Record);
1808 std::vector<uint64_t> IndexPos;
1809 IndexPos.reserve(VE.getNonMDStrings().size());
1810 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
1812 // Write named metadata.
1813 for (const NamedMDNode &NMD : M.named_metadata()) {
1814 // Write name.
1815 StringRef Str = NMD.getName();
1816 Record.append(Str.bytes_begin(), Str.bytes_end());
1817 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
1818 Record.clear();
1820 // Write named metadata operands.
1821 for (const MDNode *N : NMD.operands())
1822 Record.push_back(VE.getMetadataID(N));
1823 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
1824 Record.clear();
1827 Stream.ExitBlock();
1830 void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
1831 if (!VE.hasMDs())
1832 return;
1834 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
1835 SmallVector<uint64_t, 64> Record;
1836 writeMetadataStrings(VE.getMDStrings(), Record);
1837 writeMetadataRecords(VE.getNonMDStrings(), Record);
1838 Stream.ExitBlock();
1841 void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
1842 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
1844 SmallVector<uint64_t, 64> Record;
1846 // Write metadata attachments
1847 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
1848 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1849 F.getAllMetadata(MDs);
1850 if (!MDs.empty()) {
1851 for (const auto &I : MDs) {
1852 Record.push_back(I.first);
1853 Record.push_back(VE.getMetadataID(I.second));
1855 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1856 Record.clear();
1859 for (const BasicBlock &BB : F)
1860 for (const Instruction &I : BB) {
1861 MDs.clear();
1862 I.getAllMetadataOtherThanDebugLoc(MDs);
1864 // If no metadata, ignore instruction.
1865 if (MDs.empty())
1866 continue;
1868 Record.push_back(VE.getInstructionID(&I));
1870 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
1871 Record.push_back(MDs[i].first);
1872 Record.push_back(VE.getMetadataID(MDs[i].second));
1874 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
1875 Record.clear();
1878 Stream.ExitBlock();
1881 void DXILBitcodeWriter::writeModuleMetadataKinds() {
1882 SmallVector<uint64_t, 64> Record;
1884 // Write metadata kinds
1885 // METADATA_KIND - [n x [id, name]]
1886 SmallVector<StringRef, 8> Names;
1887 M.getMDKindNames(Names);
1889 if (Names.empty())
1890 return;
1892 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
1894 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
1895 Record.push_back(MDKindID);
1896 StringRef KName = Names[MDKindID];
1897 Record.append(KName.begin(), KName.end());
1899 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
1900 Record.clear();
1903 Stream.ExitBlock();
1906 void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
1907 bool isGlobal) {
1908 if (FirstVal == LastVal)
1909 return;
1911 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
1913 unsigned AggregateAbbrev = 0;
1914 unsigned String8Abbrev = 0;
1915 unsigned CString7Abbrev = 0;
1916 unsigned CString6Abbrev = 0;
1917 // If this is a constant pool for the module, emit module-specific abbrevs.
1918 if (isGlobal) {
1919 // Abbrev for CST_CODE_AGGREGATE.
1920 auto Abbv = std::make_shared<BitCodeAbbrev>();
1921 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
1922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1923 Abbv->Add(
1924 BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
1925 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1927 // Abbrev for CST_CODE_STRING.
1928 Abbv = std::make_shared<BitCodeAbbrev>();
1929 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
1930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
1932 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1933 // Abbrev for CST_CODE_CSTRING.
1934 Abbv = std::make_shared<BitCodeAbbrev>();
1935 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
1938 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1939 // Abbrev for CST_CODE_CSTRING.
1940 Abbv = std::make_shared<BitCodeAbbrev>();
1941 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1943 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
1944 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
1947 SmallVector<uint64_t, 64> Record;
1949 const ValueEnumerator::ValueList &Vals = VE.getValues();
1950 Type *LastTy = nullptr;
1951 for (unsigned i = FirstVal; i != LastVal; ++i) {
1952 const Value *V = Vals[i].first;
1953 // If we need to switch types, do so now.
1954 if (V->getType() != LastTy) {
1955 LastTy = V->getType();
1956 Record.push_back(getTypeID(LastTy, V));
1957 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
1958 CONSTANTS_SETTYPE_ABBREV);
1959 Record.clear();
1962 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1963 Record.push_back(unsigned(IA->hasSideEffects()) |
1964 unsigned(IA->isAlignStack()) << 1 |
1965 unsigned(IA->getDialect() & 1) << 2);
1967 // Add the asm string.
1968 const std::string &AsmStr = IA->getAsmString();
1969 Record.push_back(AsmStr.size());
1970 Record.append(AsmStr.begin(), AsmStr.end());
1972 // Add the constraint string.
1973 const std::string &ConstraintStr = IA->getConstraintString();
1974 Record.push_back(ConstraintStr.size());
1975 Record.append(ConstraintStr.begin(), ConstraintStr.end());
1976 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
1977 Record.clear();
1978 continue;
1980 const Constant *C = cast<Constant>(V);
1981 unsigned Code = -1U;
1982 unsigned AbbrevToUse = 0;
1983 if (C->isNullValue()) {
1984 Code = bitc::CST_CODE_NULL;
1985 } else if (isa<UndefValue>(C)) {
1986 Code = bitc::CST_CODE_UNDEF;
1987 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
1988 if (IV->getBitWidth() <= 64) {
1989 uint64_t V = IV->getSExtValue();
1990 emitSignedInt64(Record, V);
1991 Code = bitc::CST_CODE_INTEGER;
1992 AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
1993 } else { // Wide integers, > 64 bits in size.
1994 // We have an arbitrary precision integer value to write whose
1995 // bit width is > 64. However, in canonical unsigned integer
1996 // format it is likely that the high bits are going to be zero.
1997 // So, we only write the number of active words.
1998 unsigned NWords = IV->getValue().getActiveWords();
1999 const uint64_t *RawWords = IV->getValue().getRawData();
2000 for (unsigned i = 0; i != NWords; ++i) {
2001 emitSignedInt64(Record, RawWords[i]);
2003 Code = bitc::CST_CODE_WIDE_INTEGER;
2005 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2006 Code = bitc::CST_CODE_FLOAT;
2007 Type *Ty = CFP->getType();
2008 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
2009 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2010 } else if (Ty->isX86_FP80Ty()) {
2011 // api needed to prevent premature destruction
2012 // bits are not in the same order as a normal i80 APInt, compensate.
2013 APInt api = CFP->getValueAPF().bitcastToAPInt();
2014 const uint64_t *p = api.getRawData();
2015 Record.push_back((p[1] << 48) | (p[0] >> 16));
2016 Record.push_back(p[0] & 0xffffLL);
2017 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2018 APInt api = CFP->getValueAPF().bitcastToAPInt();
2019 const uint64_t *p = api.getRawData();
2020 Record.push_back(p[0]);
2021 Record.push_back(p[1]);
2022 } else {
2023 assert(0 && "Unknown FP type!");
2025 } else if (isa<ConstantDataSequential>(C) &&
2026 cast<ConstantDataSequential>(C)->isString()) {
2027 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2028 // Emit constant strings specially.
2029 unsigned NumElts = Str->getNumElements();
2030 // If this is a null-terminated string, use the denser CSTRING encoding.
2031 if (Str->isCString()) {
2032 Code = bitc::CST_CODE_CSTRING;
2033 --NumElts; // Don't encode the null, which isn't allowed by char6.
2034 } else {
2035 Code = bitc::CST_CODE_STRING;
2036 AbbrevToUse = String8Abbrev;
2038 bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2039 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2040 for (unsigned i = 0; i != NumElts; ++i) {
2041 unsigned char V = Str->getElementAsInteger(i);
2042 Record.push_back(V);
2043 isCStr7 &= (V & 128) == 0;
2044 if (isCStrChar6)
2045 isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2048 if (isCStrChar6)
2049 AbbrevToUse = CString6Abbrev;
2050 else if (isCStr7)
2051 AbbrevToUse = CString7Abbrev;
2052 } else if (const ConstantDataSequential *CDS =
2053 dyn_cast<ConstantDataSequential>(C)) {
2054 Code = bitc::CST_CODE_DATA;
2055 Type *EltTy = CDS->getElementType();
2056 if (isa<IntegerType>(EltTy)) {
2057 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2058 Record.push_back(CDS->getElementAsInteger(i));
2059 } else if (EltTy->isFloatTy()) {
2060 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2061 union {
2062 float F;
2063 uint32_t I;
2065 F = CDS->getElementAsFloat(i);
2066 Record.push_back(I);
2068 } else {
2069 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
2070 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
2071 union {
2072 double F;
2073 uint64_t I;
2075 F = CDS->getElementAsDouble(i);
2076 Record.push_back(I);
2079 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
2080 isa<ConstantVector>(C)) {
2081 Code = bitc::CST_CODE_AGGREGATE;
2082 for (const Value *Op : C->operands())
2083 Record.push_back(VE.getValueID(Op));
2084 AbbrevToUse = AggregateAbbrev;
2085 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2086 switch (CE->getOpcode()) {
2087 default:
2088 if (Instruction::isCast(CE->getOpcode())) {
2089 Code = bitc::CST_CODE_CE_CAST;
2090 Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2091 Record.push_back(
2092 getTypeID(C->getOperand(0)->getType(), C->getOperand(0)));
2093 Record.push_back(VE.getValueID(C->getOperand(0)));
2094 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2095 } else {
2096 assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2097 Code = bitc::CST_CODE_CE_BINOP;
2098 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2099 Record.push_back(VE.getValueID(C->getOperand(0)));
2100 Record.push_back(VE.getValueID(C->getOperand(1)));
2101 uint64_t Flags = getOptimizationFlags(CE);
2102 if (Flags != 0)
2103 Record.push_back(Flags);
2105 break;
2106 case Instruction::GetElementPtr: {
2107 Code = bitc::CST_CODE_CE_GEP;
2108 const auto *GO = cast<GEPOperator>(C);
2109 if (GO->isInBounds())
2110 Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2111 Record.push_back(getTypeID(GO->getSourceElementType()));
2112 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2113 Record.push_back(
2114 getTypeID(C->getOperand(i)->getType(), C->getOperand(i)));
2115 Record.push_back(VE.getValueID(C->getOperand(i)));
2117 break;
2119 case Instruction::Select:
2120 Code = bitc::CST_CODE_CE_SELECT;
2121 Record.push_back(VE.getValueID(C->getOperand(0)));
2122 Record.push_back(VE.getValueID(C->getOperand(1)));
2123 Record.push_back(VE.getValueID(C->getOperand(2)));
2124 break;
2125 case Instruction::ExtractElement:
2126 Code = bitc::CST_CODE_CE_EXTRACTELT;
2127 Record.push_back(getTypeID(C->getOperand(0)->getType()));
2128 Record.push_back(VE.getValueID(C->getOperand(0)));
2129 Record.push_back(getTypeID(C->getOperand(1)->getType()));
2130 Record.push_back(VE.getValueID(C->getOperand(1)));
2131 break;
2132 case Instruction::InsertElement:
2133 Code = bitc::CST_CODE_CE_INSERTELT;
2134 Record.push_back(VE.getValueID(C->getOperand(0)));
2135 Record.push_back(VE.getValueID(C->getOperand(1)));
2136 Record.push_back(getTypeID(C->getOperand(2)->getType()));
2137 Record.push_back(VE.getValueID(C->getOperand(2)));
2138 break;
2139 case Instruction::ShuffleVector:
2140 // If the return type and argument types are the same, this is a
2141 // standard shufflevector instruction. If the types are different,
2142 // then the shuffle is widening or truncating the input vectors, and
2143 // the argument type must also be encoded.
2144 if (C->getType() == C->getOperand(0)->getType()) {
2145 Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2146 } else {
2147 Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2148 Record.push_back(getTypeID(C->getOperand(0)->getType()));
2150 Record.push_back(VE.getValueID(C->getOperand(0)));
2151 Record.push_back(VE.getValueID(C->getOperand(1)));
2152 Record.push_back(VE.getValueID(C->getOperand(2)));
2153 break;
2155 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2156 Code = bitc::CST_CODE_BLOCKADDRESS;
2157 Record.push_back(getTypeID(BA->getFunction()->getType()));
2158 Record.push_back(VE.getValueID(BA->getFunction()));
2159 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2160 } else {
2161 #ifndef NDEBUG
2162 C->dump();
2163 #endif
2164 llvm_unreachable("Unknown constant!");
2166 Stream.EmitRecord(Code, Record, AbbrevToUse);
2167 Record.clear();
2170 Stream.ExitBlock();
2173 void DXILBitcodeWriter::writeModuleConstants() {
2174 const ValueEnumerator::ValueList &Vals = VE.getValues();
2176 // Find the first constant to emit, which is the first non-globalvalue value.
2177 // We know globalvalues have been emitted by WriteModuleInfo.
2178 for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2179 if (!isa<GlobalValue>(Vals[i].first)) {
2180 writeConstants(i, Vals.size(), true);
2181 return;
2186 /// pushValueAndType - The file has to encode both the value and type id for
2187 /// many values, because we need to know what type to create for forward
2188 /// references. However, most operands are not forward references, so this type
2189 /// field is not needed.
2191 /// This function adds V's value ID to Vals. If the value ID is higher than the
2192 /// instruction ID, then it is a forward reference, and it also includes the
2193 /// type ID. The value ID that is written is encoded relative to the InstID.
2194 bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2195 SmallVectorImpl<unsigned> &Vals) {
2196 unsigned ValID = VE.getValueID(V);
2197 // Make encoding relative to the InstID.
2198 Vals.push_back(InstID - ValID);
2199 if (ValID >= InstID) {
2200 Vals.push_back(getTypeID(V->getType(), V));
2201 return true;
2203 return false;
2206 /// pushValue - Like pushValueAndType, but where the type of the value is
2207 /// omitted (perhaps it was already encoded in an earlier operand).
2208 void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2209 SmallVectorImpl<unsigned> &Vals) {
2210 unsigned ValID = VE.getValueID(V);
2211 Vals.push_back(InstID - ValID);
2214 void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2215 SmallVectorImpl<uint64_t> &Vals) {
2216 unsigned ValID = VE.getValueID(V);
2217 int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2218 emitSignedInt64(Vals, diff);
2221 /// WriteInstruction - Emit an instruction
2222 void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
2223 SmallVectorImpl<unsigned> &Vals) {
2224 unsigned Code = 0;
2225 unsigned AbbrevToUse = 0;
2226 VE.setInstructionID(&I);
2227 switch (I.getOpcode()) {
2228 default:
2229 if (Instruction::isCast(I.getOpcode())) {
2230 Code = bitc::FUNC_CODE_INST_CAST;
2231 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2232 AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
2233 Vals.push_back(getTypeID(I.getType(), &I));
2234 Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2235 } else {
2236 assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2237 Code = bitc::FUNC_CODE_INST_BINOP;
2238 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2239 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
2240 pushValue(I.getOperand(1), InstID, Vals);
2241 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2242 uint64_t Flags = getOptimizationFlags(&I);
2243 if (Flags != 0) {
2244 if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
2245 AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
2246 Vals.push_back(Flags);
2249 break;
2251 case Instruction::GetElementPtr: {
2252 Code = bitc::FUNC_CODE_INST_GEP;
2253 AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
2254 auto &GEPInst = cast<GetElementPtrInst>(I);
2255 Vals.push_back(GEPInst.isInBounds());
2256 Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
2257 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2258 pushValueAndType(I.getOperand(i), InstID, Vals);
2259 break;
2261 case Instruction::ExtractValue: {
2262 Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2263 pushValueAndType(I.getOperand(0), InstID, Vals);
2264 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2265 Vals.append(EVI->idx_begin(), EVI->idx_end());
2266 break;
2268 case Instruction::InsertValue: {
2269 Code = bitc::FUNC_CODE_INST_INSERTVAL;
2270 pushValueAndType(I.getOperand(0), InstID, Vals);
2271 pushValueAndType(I.getOperand(1), InstID, Vals);
2272 const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2273 Vals.append(IVI->idx_begin(), IVI->idx_end());
2274 break;
2276 case Instruction::Select:
2277 Code = bitc::FUNC_CODE_INST_VSELECT;
2278 pushValueAndType(I.getOperand(1), InstID, Vals);
2279 pushValue(I.getOperand(2), InstID, Vals);
2280 pushValueAndType(I.getOperand(0), InstID, Vals);
2281 break;
2282 case Instruction::ExtractElement:
2283 Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2284 pushValueAndType(I.getOperand(0), InstID, Vals);
2285 pushValueAndType(I.getOperand(1), InstID, Vals);
2286 break;
2287 case Instruction::InsertElement:
2288 Code = bitc::FUNC_CODE_INST_INSERTELT;
2289 pushValueAndType(I.getOperand(0), InstID, Vals);
2290 pushValue(I.getOperand(1), InstID, Vals);
2291 pushValueAndType(I.getOperand(2), InstID, Vals);
2292 break;
2293 case Instruction::ShuffleVector:
2294 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2295 pushValueAndType(I.getOperand(0), InstID, Vals);
2296 pushValue(I.getOperand(1), InstID, Vals);
2297 pushValue(cast<ShuffleVectorInst>(&I)->getShuffleMaskForBitcode(), InstID,
2298 Vals);
2299 break;
2300 case Instruction::ICmp:
2301 case Instruction::FCmp: {
2302 // compare returning Int1Ty or vector of Int1Ty
2303 Code = bitc::FUNC_CODE_INST_CMP2;
2304 pushValueAndType(I.getOperand(0), InstID, Vals);
2305 pushValue(I.getOperand(1), InstID, Vals);
2306 Vals.push_back(cast<CmpInst>(I).getPredicate());
2307 uint64_t Flags = getOptimizationFlags(&I);
2308 if (Flags != 0)
2309 Vals.push_back(Flags);
2310 break;
2313 case Instruction::Ret: {
2314 Code = bitc::FUNC_CODE_INST_RET;
2315 unsigned NumOperands = I.getNumOperands();
2316 if (NumOperands == 0)
2317 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
2318 else if (NumOperands == 1) {
2319 if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2320 AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
2321 } else {
2322 for (unsigned i = 0, e = NumOperands; i != e; ++i)
2323 pushValueAndType(I.getOperand(i), InstID, Vals);
2325 } break;
2326 case Instruction::Br: {
2327 Code = bitc::FUNC_CODE_INST_BR;
2328 const BranchInst &II = cast<BranchInst>(I);
2329 Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2330 if (II.isConditional()) {
2331 Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2332 pushValue(II.getCondition(), InstID, Vals);
2334 } break;
2335 case Instruction::Switch: {
2336 Code = bitc::FUNC_CODE_INST_SWITCH;
2337 const SwitchInst &SI = cast<SwitchInst>(I);
2338 Vals.push_back(getTypeID(SI.getCondition()->getType()));
2339 pushValue(SI.getCondition(), InstID, Vals);
2340 Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2341 for (auto Case : SI.cases()) {
2342 Vals.push_back(VE.getValueID(Case.getCaseValue()));
2343 Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2345 } break;
2346 case Instruction::IndirectBr:
2347 Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2348 Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2349 // Encode the address operand as relative, but not the basic blocks.
2350 pushValue(I.getOperand(0), InstID, Vals);
2351 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2352 Vals.push_back(VE.getValueID(I.getOperand(i)));
2353 break;
2355 case Instruction::Invoke: {
2356 const InvokeInst *II = cast<InvokeInst>(&I);
2357 const Value *Callee = II->getCalledOperand();
2358 FunctionType *FTy = II->getFunctionType();
2359 Code = bitc::FUNC_CODE_INST_INVOKE;
2361 Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2362 Vals.push_back(II->getCallingConv() | 1 << 13);
2363 Vals.push_back(VE.getValueID(II->getNormalDest()));
2364 Vals.push_back(VE.getValueID(II->getUnwindDest()));
2365 Vals.push_back(getTypeID(FTy));
2366 pushValueAndType(Callee, InstID, Vals);
2368 // Emit value #'s for the fixed parameters.
2369 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2370 pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2372 // Emit type/value pairs for varargs params.
2373 if (FTy->isVarArg()) {
2374 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
2375 ++i)
2376 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2378 break;
2380 case Instruction::Resume:
2381 Code = bitc::FUNC_CODE_INST_RESUME;
2382 pushValueAndType(I.getOperand(0), InstID, Vals);
2383 break;
2384 case Instruction::Unreachable:
2385 Code = bitc::FUNC_CODE_INST_UNREACHABLE;
2386 AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
2387 break;
2389 case Instruction::PHI: {
2390 const PHINode &PN = cast<PHINode>(I);
2391 Code = bitc::FUNC_CODE_INST_PHI;
2392 // With the newer instruction encoding, forward references could give
2393 // negative valued IDs. This is most common for PHIs, so we use
2394 // signed VBRs.
2395 SmallVector<uint64_t, 128> Vals64;
2396 Vals64.push_back(getTypeID(PN.getType()));
2397 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
2398 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
2399 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
2401 // Emit a Vals64 vector and exit.
2402 Stream.EmitRecord(Code, Vals64, AbbrevToUse);
2403 Vals64.clear();
2404 return;
2407 case Instruction::LandingPad: {
2408 const LandingPadInst &LP = cast<LandingPadInst>(I);
2409 Code = bitc::FUNC_CODE_INST_LANDINGPAD;
2410 Vals.push_back(getTypeID(LP.getType()));
2411 Vals.push_back(LP.isCleanup());
2412 Vals.push_back(LP.getNumClauses());
2413 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
2414 if (LP.isCatch(I))
2415 Vals.push_back(LandingPadInst::Catch);
2416 else
2417 Vals.push_back(LandingPadInst::Filter);
2418 pushValueAndType(LP.getClause(I), InstID, Vals);
2420 break;
2423 case Instruction::Alloca: {
2424 Code = bitc::FUNC_CODE_INST_ALLOCA;
2425 const AllocaInst &AI = cast<AllocaInst>(I);
2426 Vals.push_back(getTypeID(AI.getAllocatedType()));
2427 Vals.push_back(getTypeID(I.getOperand(0)->getType()));
2428 Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
2429 unsigned AlignRecord = Log2_32(AI.getAlign().value()) + 1;
2430 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64");
2431 AlignRecord |= AI.isUsedWithInAlloca() << 5;
2432 AlignRecord |= 1 << 6;
2433 Vals.push_back(AlignRecord);
2434 break;
2437 case Instruction::Load:
2438 if (cast<LoadInst>(I).isAtomic()) {
2439 Code = bitc::FUNC_CODE_INST_LOADATOMIC;
2440 pushValueAndType(I.getOperand(0), InstID, Vals);
2441 } else {
2442 Code = bitc::FUNC_CODE_INST_LOAD;
2443 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
2444 AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
2446 Vals.push_back(getTypeID(I.getType()));
2447 Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
2448 Vals.push_back(cast<LoadInst>(I).isVolatile());
2449 if (cast<LoadInst>(I).isAtomic()) {
2450 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
2451 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
2453 break;
2454 case Instruction::Store:
2455 if (cast<StoreInst>(I).isAtomic())
2456 Code = bitc::FUNC_CODE_INST_STOREATOMIC;
2457 else
2458 Code = bitc::FUNC_CODE_INST_STORE;
2459 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
2460 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
2461 Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
2462 Vals.push_back(cast<StoreInst>(I).isVolatile());
2463 if (cast<StoreInst>(I).isAtomic()) {
2464 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
2465 Vals.push_back(
2466 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
2468 break;
2469 case Instruction::AtomicCmpXchg:
2470 Code = bitc::FUNC_CODE_INST_CMPXCHG;
2471 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2472 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
2473 pushValue(I.getOperand(2), InstID, Vals); // newval.
2474 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
2475 Vals.push_back(
2476 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
2477 Vals.push_back(
2478 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
2479 Vals.push_back(
2480 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
2481 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
2482 break;
2483 case Instruction::AtomicRMW:
2484 Code = bitc::FUNC_CODE_INST_ATOMICRMW;
2485 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
2486 pushValue(I.getOperand(1), InstID, Vals); // val.
2487 Vals.push_back(
2488 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
2489 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
2490 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
2491 Vals.push_back(
2492 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
2493 break;
2494 case Instruction::Fence:
2495 Code = bitc::FUNC_CODE_INST_FENCE;
2496 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
2497 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
2498 break;
2499 case Instruction::Call: {
2500 const CallInst &CI = cast<CallInst>(I);
2501 FunctionType *FTy = CI.getFunctionType();
2503 Code = bitc::FUNC_CODE_INST_CALL;
2505 Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
2506 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
2507 unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
2508 Vals.push_back(getGlobalObjectValueTypeID(FTy, CI.getCalledFunction()));
2509 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
2511 // Emit value #'s for the fixed parameters.
2512 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
2513 // Check for labels (can happen with asm labels).
2514 if (FTy->getParamType(i)->isLabelTy())
2515 Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
2516 else
2517 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
2520 // Emit type/value pairs for varargs params.
2521 if (FTy->isVarArg()) {
2522 for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
2523 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
2525 break;
2527 case Instruction::VAArg:
2528 Code = bitc::FUNC_CODE_INST_VAARG;
2529 Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
2530 pushValue(I.getOperand(0), InstID, Vals); // valist.
2531 Vals.push_back(getTypeID(I.getType())); // restype.
2532 break;
2535 Stream.EmitRecord(Code, Vals, AbbrevToUse);
2536 Vals.clear();
2539 // Emit names for globals/functions etc.
2540 void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
2541 const ValueSymbolTable &VST) {
2542 if (VST.empty())
2543 return;
2544 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
2546 SmallVector<unsigned, 64> NameVals;
2548 // HLSL Change
2549 // Read the named values from a sorted list instead of the original list
2550 // to ensure the binary is the same no matter what values ever existed.
2551 SmallVector<const ValueName *, 16> SortedTable;
2553 for (auto &VI : VST) {
2554 SortedTable.push_back(VI.second->getValueName());
2556 // The keys are unique, so there shouldn't be stability issues.
2557 llvm::sort(SortedTable, [](const ValueName *A, const ValueName *B) {
2558 return A->first() < B->first();
2561 for (const ValueName *SI : SortedTable) {
2562 auto &Name = *SI;
2564 // Figure out the encoding to use for the name.
2565 bool is7Bit = true;
2566 bool isChar6 = true;
2567 for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
2568 C != E; ++C) {
2569 if (isChar6)
2570 isChar6 = BitCodeAbbrevOp::isChar6(*C);
2571 if ((unsigned char)*C & 128) {
2572 is7Bit = false;
2573 break; // don't bother scanning the rest.
2577 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
2579 // VST_ENTRY: [valueid, namechar x N]
2580 // VST_BBENTRY: [bbid, namechar x N]
2581 unsigned Code;
2582 if (isa<BasicBlock>(SI->getValue())) {
2583 Code = bitc::VST_CODE_BBENTRY;
2584 if (isChar6)
2585 AbbrevToUse = VST_BBENTRY_6_ABBREV;
2586 } else {
2587 Code = bitc::VST_CODE_ENTRY;
2588 if (isChar6)
2589 AbbrevToUse = VST_ENTRY_6_ABBREV;
2590 else if (is7Bit)
2591 AbbrevToUse = VST_ENTRY_7_ABBREV;
2594 NameVals.push_back(VE.getValueID(SI->getValue()));
2595 for (const char *P = Name.getKeyData(),
2596 *E = Name.getKeyData() + Name.getKeyLength();
2597 P != E; ++P)
2598 NameVals.push_back((unsigned char)*P);
2600 // Emit the finished record.
2601 Stream.EmitRecord(Code, NameVals, AbbrevToUse);
2602 NameVals.clear();
2604 Stream.ExitBlock();
2607 /// Emit a function body to the module stream.
2608 void DXILBitcodeWriter::writeFunction(const Function &F) {
2609 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
2610 VE.incorporateFunction(F);
2612 SmallVector<unsigned, 64> Vals;
2614 // Emit the number of basic blocks, so the reader can create them ahead of
2615 // time.
2616 Vals.push_back(VE.getBasicBlocks().size());
2617 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
2618 Vals.clear();
2620 // If there are function-local constants, emit them now.
2621 unsigned CstStart, CstEnd;
2622 VE.getFunctionConstantRange(CstStart, CstEnd);
2623 writeConstants(CstStart, CstEnd, false);
2625 // If there is function-local metadata, emit it now.
2626 writeFunctionMetadata(F);
2628 // Keep a running idea of what the instruction ID is.
2629 unsigned InstID = CstEnd;
2631 bool NeedsMetadataAttachment = F.hasMetadata();
2633 DILocation *LastDL = nullptr;
2635 // Finally, emit all the instructions, in order.
2636 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
2637 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
2638 ++I) {
2639 writeInstruction(*I, InstID, Vals);
2641 if (!I->getType()->isVoidTy())
2642 ++InstID;
2644 // If the instruction has metadata, write a metadata attachment later.
2645 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
2647 // If the instruction has a debug location, emit it.
2648 DILocation *DL = I->getDebugLoc();
2649 if (!DL)
2650 continue;
2652 if (DL == LastDL) {
2653 // Just repeat the same debug loc as last time.
2654 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
2655 continue;
2658 Vals.push_back(DL->getLine());
2659 Vals.push_back(DL->getColumn());
2660 Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
2661 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
2662 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
2663 Vals.clear();
2665 LastDL = DL;
2668 // Emit names for all the instructions etc.
2669 if (auto *Symtab = F.getValueSymbolTable())
2670 writeFunctionLevelValueSymbolTable(*Symtab);
2672 if (NeedsMetadataAttachment)
2673 writeFunctionMetadataAttachment(F);
2675 VE.purgeFunction();
2676 Stream.ExitBlock();
2679 // Emit blockinfo, which defines the standard abbreviations etc.
2680 void DXILBitcodeWriter::writeBlockInfo() {
2681 // We only want to emit block info records for blocks that have multiple
2682 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
2683 // Other blocks can define their abbrevs inline.
2684 Stream.EnterBlockInfoBlock();
2686 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
2687 auto Abbv = std::make_shared<BitCodeAbbrev>();
2688 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
2689 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2690 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2691 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2692 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2693 std::move(Abbv)) != VST_ENTRY_8_ABBREV)
2694 assert(false && "Unexpected abbrev ordering!");
2697 { // 7-bit fixed width VST_ENTRY strings.
2698 auto Abbv = std::make_shared<BitCodeAbbrev>();
2699 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2700 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2701 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2702 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2703 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2704 std::move(Abbv)) != VST_ENTRY_7_ABBREV)
2705 assert(false && "Unexpected abbrev ordering!");
2707 { // 6-bit char6 VST_ENTRY strings.
2708 auto Abbv = std::make_shared<BitCodeAbbrev>();
2709 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
2710 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2711 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2712 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2713 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2714 std::move(Abbv)) != VST_ENTRY_6_ABBREV)
2715 assert(false && "Unexpected abbrev ordering!");
2717 { // 6-bit char6 VST_BBENTRY strings.
2718 auto Abbv = std::make_shared<BitCodeAbbrev>();
2719 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
2720 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2723 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
2724 std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
2725 assert(false && "Unexpected abbrev ordering!");
2728 { // SETTYPE abbrev for CONSTANTS_BLOCK.
2729 auto Abbv = std::make_shared<BitCodeAbbrev>();
2730 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
2731 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
2732 VE.computeBitsRequiredForTypeIndices()));
2733 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2734 CONSTANTS_SETTYPE_ABBREV)
2735 assert(false && "Unexpected abbrev ordering!");
2738 { // INTEGER abbrev for CONSTANTS_BLOCK.
2739 auto Abbv = std::make_shared<BitCodeAbbrev>();
2740 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
2741 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
2742 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2743 CONSTANTS_INTEGER_ABBREV)
2744 assert(false && "Unexpected abbrev ordering!");
2747 { // CE_CAST abbrev for CONSTANTS_BLOCK.
2748 auto Abbv = std::make_shared<BitCodeAbbrev>();
2749 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
2750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
2751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
2752 VE.computeBitsRequiredForTypeIndices()));
2753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
2755 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2756 CONSTANTS_CE_CAST_Abbrev)
2757 assert(false && "Unexpected abbrev ordering!");
2759 { // NULL abbrev for CONSTANTS_BLOCK.
2760 auto Abbv = std::make_shared<BitCodeAbbrev>();
2761 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
2762 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
2763 CONSTANTS_NULL_Abbrev)
2764 assert(false && "Unexpected abbrev ordering!");
2767 // FIXME: This should only use space for first class types!
2769 { // INST_LOAD abbrev for FUNCTION_BLOCK.
2770 auto Abbv = std::make_shared<BitCodeAbbrev>();
2771 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
2772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
2773 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2774 VE.computeBitsRequiredForTypeIndices()));
2775 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
2776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
2777 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2778 (unsigned)FUNCTION_INST_LOAD_ABBREV)
2779 assert(false && "Unexpected abbrev ordering!");
2781 { // INST_BINOP abbrev for FUNCTION_BLOCK.
2782 auto Abbv = std::make_shared<BitCodeAbbrev>();
2783 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2787 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2788 (unsigned)FUNCTION_INST_BINOP_ABBREV)
2789 assert(false && "Unexpected abbrev ordering!");
2791 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
2792 auto Abbv = std::make_shared<BitCodeAbbrev>();
2793 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
2794 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
2795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
2796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
2798 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2799 (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
2800 assert(false && "Unexpected abbrev ordering!");
2802 { // INST_CAST abbrev for FUNCTION_BLOCK.
2803 auto Abbv = std::make_shared<BitCodeAbbrev>();
2804 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
2805 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
2806 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2807 VE.computeBitsRequiredForTypeIndices()));
2808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
2809 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2810 (unsigned)FUNCTION_INST_CAST_ABBREV)
2811 assert(false && "Unexpected abbrev ordering!");
2814 { // INST_RET abbrev for FUNCTION_BLOCK.
2815 auto Abbv = std::make_shared<BitCodeAbbrev>();
2816 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2817 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2818 (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
2819 assert(false && "Unexpected abbrev ordering!");
2821 { // INST_RET abbrev for FUNCTION_BLOCK.
2822 auto Abbv = std::make_shared<BitCodeAbbrev>();
2823 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
2824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
2825 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2826 (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
2827 assert(false && "Unexpected abbrev ordering!");
2829 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
2830 auto Abbv = std::make_shared<BitCodeAbbrev>();
2831 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
2832 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2833 (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
2834 assert(false && "Unexpected abbrev ordering!");
2837 auto Abbv = std::make_shared<BitCodeAbbrev>();
2838 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
2839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
2840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
2841 Log2_32_Ceil(VE.getTypes().size() + 1)));
2842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2844 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
2845 (unsigned)FUNCTION_INST_GEP_ABBREV)
2846 assert(false && "Unexpected abbrev ordering!");
2849 Stream.ExitBlock();
2852 void DXILBitcodeWriter::writeModuleVersion() {
2853 // VERSION: [version#]
2854 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
2857 /// WriteModule - Emit the specified module to the bitstream.
2858 void DXILBitcodeWriter::write() {
2859 // The identification block is new since llvm-3.7, but the old bitcode reader
2860 // will skip it.
2861 // writeIdentificationBlock(Stream);
2863 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
2865 // It is redundant to fully-specify this here, but nice to make it explicit
2866 // so that it is clear the DXIL module version is different.
2867 DXILBitcodeWriter::writeModuleVersion();
2869 // Emit blockinfo, which defines the standard abbreviations etc.
2870 writeBlockInfo();
2872 // Emit information about attribute groups.
2873 writeAttributeGroupTable();
2875 // Emit information about parameter attributes.
2876 writeAttributeTable();
2878 // Emit information describing all of the types in the module.
2879 writeTypeTable();
2881 writeComdats();
2883 // Emit top-level description of module, including target triple, inline asm,
2884 // descriptors for global variables, and function prototype info.
2885 writeModuleInfo();
2887 // Emit constants.
2888 writeModuleConstants();
2890 // Emit metadata.
2891 writeModuleMetadataKinds();
2893 // Emit metadata.
2894 writeModuleMetadata();
2896 // Emit names for globals/functions etc.
2897 // DXIL uses the same format for module-level value symbol table as for the
2898 // function level table.
2899 writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
2901 // Emit function bodies.
2902 for (const Function &F : M)
2903 if (!F.isDeclaration())
2904 writeFunction(F);
2906 Stream.ExitBlock();