[clang-format] Add BinPackLongBracedList style option (#112482)
[llvm-project.git] / llvm / lib / Target / DirectX / DXILWriter / DXILValueEnumerator.cpp
blob9a8d0afa629261bced3262d993cbaf060aea9254
1 //===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ValueEnumerator class.
10 // Forked from lib/Bitcode/Writer
12 //===----------------------------------------------------------------------===//
14 #include "DXILValueEnumerator.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Config/llvm-config.h"
17 #include "llvm/IR/Argument.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/GlobalIFunc.h"
25 #include "llvm/IR/GlobalObject.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/TypedPointerType.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/Compiler.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <algorithm>
45 #include <cstddef>
46 #include <iterator>
47 #include <tuple>
49 using namespace llvm;
50 using namespace llvm::dxil;
52 namespace {
54 struct OrderMap {
55 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
56 unsigned LastGlobalConstantID = 0;
57 unsigned LastGlobalValueID = 0;
59 OrderMap() = default;
61 bool isGlobalConstant(unsigned ID) const {
62 return ID <= LastGlobalConstantID;
65 bool isGlobalValue(unsigned ID) const {
66 return ID <= LastGlobalValueID && !isGlobalConstant(ID);
69 unsigned size() const { return IDs.size(); }
70 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
72 std::pair<unsigned, bool> lookup(const Value *V) const {
73 return IDs.lookup(V);
76 void index(const Value *V) {
77 // Explicitly sequence get-size and insert-value operations to avoid UB.
78 unsigned ID = IDs.size() + 1;
79 IDs[V].first = ID;
83 } // end anonymous namespace
85 static void orderValue(const Value *V, OrderMap &OM) {
86 if (OM.lookup(V).first)
87 return;
89 if (const Constant *C = dyn_cast<Constant>(V)) {
90 if (C->getNumOperands() && !isa<GlobalValue>(C)) {
91 for (const Value *Op : C->operands())
92 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
93 orderValue(Op, OM);
94 if (auto *CE = dyn_cast<ConstantExpr>(C))
95 if (CE->getOpcode() == Instruction::ShuffleVector)
96 orderValue(CE->getShuffleMaskForBitcode(), OM);
100 // Note: we cannot cache this lookup above, since inserting into the map
101 // changes the map's size, and thus affects the other IDs.
102 OM.index(V);
105 static OrderMap orderModule(const Module &M) {
106 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
107 // and ValueEnumerator::incorporateFunction().
108 OrderMap OM;
110 // In the reader, initializers of GlobalValues are set *after* all the
111 // globals have been read. Rather than awkwardly modeling this behaviour
112 // directly in predictValueUseListOrderImpl(), just assign IDs to
113 // initializers of GlobalValues before GlobalValues themselves to model this
114 // implicitly.
115 for (const GlobalVariable &G : M.globals())
116 if (G.hasInitializer())
117 if (!isa<GlobalValue>(G.getInitializer()))
118 orderValue(G.getInitializer(), OM);
119 for (const GlobalAlias &A : M.aliases())
120 if (!isa<GlobalValue>(A.getAliasee()))
121 orderValue(A.getAliasee(), OM);
122 for (const GlobalIFunc &I : M.ifuncs())
123 if (!isa<GlobalValue>(I.getResolver()))
124 orderValue(I.getResolver(), OM);
125 for (const Function &F : M) {
126 for (const Use &U : F.operands())
127 if (!isa<GlobalValue>(U.get()))
128 orderValue(U.get(), OM);
131 // As constants used in metadata operands are emitted as module-level
132 // constants, we must order them before other operands. Also, we must order
133 // these before global values, as these will be read before setting the
134 // global values' initializers. The latter matters for constants which have
135 // uses towards other constants that are used as initializers.
136 auto orderConstantValue = [&OM](const Value *V) {
137 if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
138 orderValue(V, OM);
140 for (const Function &F : M) {
141 if (F.isDeclaration())
142 continue;
143 for (const BasicBlock &BB : F)
144 for (const Instruction &I : BB)
145 for (const Value *V : I.operands()) {
146 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
147 if (const auto *VAM =
148 dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
149 orderConstantValue(VAM->getValue());
150 } else if (const auto *AL =
151 dyn_cast<DIArgList>(MAV->getMetadata())) {
152 for (const auto *VAM : AL->getArgs())
153 orderConstantValue(VAM->getValue());
158 OM.LastGlobalConstantID = OM.size();
160 // Initializers of GlobalValues are processed in
161 // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
162 // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
163 // by giving IDs in reverse order.
165 // Since GlobalValues never reference each other directly (just through
166 // initializers), their relative IDs only matter for determining order of
167 // uses in their initializers.
168 for (const Function &F : M)
169 orderValue(&F, OM);
170 for (const GlobalAlias &A : M.aliases())
171 orderValue(&A, OM);
172 for (const GlobalIFunc &I : M.ifuncs())
173 orderValue(&I, OM);
174 for (const GlobalVariable &G : M.globals())
175 orderValue(&G, OM);
176 OM.LastGlobalValueID = OM.size();
178 for (const Function &F : M) {
179 if (F.isDeclaration())
180 continue;
181 // Here we need to match the union of ValueEnumerator::incorporateFunction()
182 // and WriteFunction(). Basic blocks are implicitly declared before
183 // anything else (by declaring their size).
184 for (const BasicBlock &BB : F)
185 orderValue(&BB, OM);
186 for (const Argument &A : F.args())
187 orderValue(&A, OM);
188 for (const BasicBlock &BB : F)
189 for (const Instruction &I : BB) {
190 for (const Value *Op : I.operands())
191 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
192 isa<InlineAsm>(*Op))
193 orderValue(Op, OM);
194 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
195 orderValue(SVI->getShuffleMaskForBitcode(), OM);
197 for (const BasicBlock &BB : F)
198 for (const Instruction &I : BB)
199 orderValue(&I, OM);
201 return OM;
204 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
205 unsigned ID, const OrderMap &OM,
206 UseListOrderStack &Stack) {
207 // Predict use-list order for this one.
208 using Entry = std::pair<const Use *, unsigned>;
209 SmallVector<Entry, 64> List;
210 for (const Use &U : V->uses())
211 // Check if this user will be serialized.
212 if (OM.lookup(U.getUser()).first)
213 List.push_back(std::make_pair(&U, List.size()));
215 if (List.size() < 2)
216 // We may have lost some users.
217 return;
219 bool IsGlobalValue = OM.isGlobalValue(ID);
220 llvm::sort(List, [&](const Entry &L, const Entry &R) {
221 const Use *LU = L.first;
222 const Use *RU = R.first;
223 if (LU == RU)
224 return false;
226 auto LID = OM.lookup(LU->getUser()).first;
227 auto RID = OM.lookup(RU->getUser()).first;
229 // Global values are processed in reverse order.
231 // Moreover, initializers of GlobalValues are set *after* all the globals
232 // have been read (despite having earlier IDs). Rather than awkwardly
233 // modeling this behaviour here, orderModule() has assigned IDs to
234 // initializers of GlobalValues before GlobalValues themselves.
235 if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) {
236 if (LID == RID)
237 return LU->getOperandNo() > RU->getOperandNo();
238 return LID < RID;
241 // If ID is 4, then expect: 7 6 5 1 2 3.
242 if (LID < RID) {
243 if (RID <= ID)
244 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
245 return true;
246 return false;
248 if (RID < LID) {
249 if (LID <= ID)
250 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
251 return false;
252 return true;
255 // LID and RID are equal, so we have different operands of the same user.
256 // Assume operands are added in order for all instructions.
257 if (LID <= ID)
258 if (!IsGlobalValue) // GlobalValue uses don't get reversed.
259 return LU->getOperandNo() < RU->getOperandNo();
260 return LU->getOperandNo() > RU->getOperandNo();
263 if (llvm::is_sorted(List, llvm::less_second()))
264 // Order is already correct.
265 return;
267 // Store the shuffle.
268 Stack.emplace_back(V, F, List.size());
269 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
270 for (size_t I = 0, E = List.size(); I != E; ++I)
271 Stack.back().Shuffle[I] = List[I].second;
274 static void predictValueUseListOrder(const Value *V, const Function *F,
275 OrderMap &OM, UseListOrderStack &Stack) {
276 auto &IDPair = OM[V];
277 assert(IDPair.first && "Unmapped value");
278 if (IDPair.second)
279 // Already predicted.
280 return;
282 // Do the actual prediction.
283 IDPair.second = true;
284 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
285 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
287 // Recursive descent into constants.
288 if (const Constant *C = dyn_cast<Constant>(V)) {
289 if (C->getNumOperands()) { // Visit GlobalValues.
290 for (const Value *Op : C->operands())
291 if (isa<Constant>(Op)) // Visit GlobalValues.
292 predictValueUseListOrder(Op, F, OM, Stack);
293 if (auto *CE = dyn_cast<ConstantExpr>(C))
294 if (CE->getOpcode() == Instruction::ShuffleVector)
295 predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
296 Stack);
301 static UseListOrderStack predictUseListOrder(const Module &M) {
302 OrderMap OM = orderModule(M);
304 // Use-list orders need to be serialized after all the users have been added
305 // to a value, or else the shuffles will be incomplete. Store them per
306 // function in a stack.
308 // Aside from function order, the order of values doesn't matter much here.
309 UseListOrderStack Stack;
311 // We want to visit the functions backward now so we can list function-local
312 // constants in the last Function they're used in. Module-level constants
313 // have already been visited above.
314 for (const Function &F : llvm::reverse(M)) {
315 if (F.isDeclaration())
316 continue;
317 for (const BasicBlock &BB : F)
318 predictValueUseListOrder(&BB, &F, OM, Stack);
319 for (const Argument &A : F.args())
320 predictValueUseListOrder(&A, &F, OM, Stack);
321 for (const BasicBlock &BB : F)
322 for (const Instruction &I : BB) {
323 for (const Value *Op : I.operands())
324 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
325 predictValueUseListOrder(Op, &F, OM, Stack);
326 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
327 predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
328 Stack);
330 for (const BasicBlock &BB : F)
331 for (const Instruction &I : BB)
332 predictValueUseListOrder(&I, &F, OM, Stack);
335 // Visit globals last, since the module-level use-list block will be seen
336 // before the function bodies are processed.
337 for (const GlobalVariable &G : M.globals())
338 predictValueUseListOrder(&G, nullptr, OM, Stack);
339 for (const Function &F : M)
340 predictValueUseListOrder(&F, nullptr, OM, Stack);
341 for (const GlobalAlias &A : M.aliases())
342 predictValueUseListOrder(&A, nullptr, OM, Stack);
343 for (const GlobalIFunc &I : M.ifuncs())
344 predictValueUseListOrder(&I, nullptr, OM, Stack);
345 for (const GlobalVariable &G : M.globals())
346 if (G.hasInitializer())
347 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
348 for (const GlobalAlias &A : M.aliases())
349 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
350 for (const GlobalIFunc &I : M.ifuncs())
351 predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
352 for (const Function &F : M) {
353 for (const Use &U : F.operands())
354 predictValueUseListOrder(U.get(), nullptr, OM, Stack);
357 return Stack;
360 ValueEnumerator::ValueEnumerator(const Module &M, Type *PrefixType) {
361 EnumerateType(PrefixType);
363 UseListOrders = predictUseListOrder(M);
365 // Enumerate the global variables.
366 for (const GlobalVariable &GV : M.globals()) {
367 EnumerateValue(&GV);
368 EnumerateType(GV.getValueType());
371 // Enumerate the functions.
372 for (const Function &F : M) {
373 EnumerateValue(&F);
374 EnumerateType(F.getValueType());
375 EnumerateType(
376 TypedPointerType::get(F.getFunctionType(), F.getAddressSpace()));
377 EnumerateAttributes(F.getAttributes());
380 // Enumerate the aliases.
381 for (const GlobalAlias &GA : M.aliases()) {
382 EnumerateValue(&GA);
383 EnumerateType(GA.getValueType());
386 // Enumerate the ifuncs.
387 for (const GlobalIFunc &GIF : M.ifuncs()) {
388 EnumerateValue(&GIF);
389 EnumerateType(GIF.getValueType());
392 // Enumerate the global variable initializers and attributes.
393 for (const GlobalVariable &GV : M.globals()) {
394 if (GV.hasInitializer())
395 EnumerateValue(GV.getInitializer());
396 EnumerateType(
397 TypedPointerType::get(GV.getValueType(), GV.getAddressSpace()));
398 if (GV.hasAttributes())
399 EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
402 // Enumerate the aliasees.
403 for (const GlobalAlias &GA : M.aliases())
404 EnumerateValue(GA.getAliasee());
406 // Enumerate the ifunc resolvers.
407 for (const GlobalIFunc &GIF : M.ifuncs())
408 EnumerateValue(GIF.getResolver());
410 // Enumerate any optional Function data.
411 for (const Function &F : M)
412 for (const Use &U : F.operands())
413 EnumerateValue(U.get());
415 // Enumerate the metadata type.
417 // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
418 // only encodes the metadata type when it's used as a value.
419 EnumerateType(Type::getMetadataTy(M.getContext()));
421 // Insert constants and metadata that are named at module level into the slot
422 // pool so that the module symbol table can refer to them...
423 EnumerateValueSymbolTable(M.getValueSymbolTable());
424 EnumerateNamedMetadata(M);
426 SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
427 for (const GlobalVariable &GV : M.globals()) {
428 MDs.clear();
429 GV.getAllMetadata(MDs);
430 for (const auto &I : MDs)
431 // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
432 // to write metadata to the global variable's own metadata block
433 // (PR28134).
434 EnumerateMetadata(nullptr, I.second);
437 // Enumerate types used by function bodies and argument lists.
438 for (const Function &F : M) {
439 for (const Argument &A : F.args())
440 EnumerateType(A.getType());
442 // Enumerate metadata attached to this function.
443 MDs.clear();
444 F.getAllMetadata(MDs);
445 for (const auto &I : MDs)
446 EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
448 for (const BasicBlock &BB : F)
449 for (const Instruction &I : BB) {
450 for (const Use &Op : I.operands()) {
451 auto *MD = dyn_cast<MetadataAsValue>(&Op);
452 if (!MD) {
453 EnumerateOperandType(Op);
454 continue;
457 // Local metadata is enumerated during function-incorporation, but
458 // any ConstantAsMetadata arguments in a DIArgList should be examined
459 // now.
460 if (isa<LocalAsMetadata>(MD->getMetadata()))
461 continue;
462 if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
463 for (auto *VAM : AL->getArgs())
464 if (isa<ConstantAsMetadata>(VAM))
465 EnumerateMetadata(&F, VAM);
466 continue;
469 EnumerateMetadata(&F, MD->getMetadata());
471 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
472 EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
473 if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
474 EnumerateType(GEP->getSourceElementType());
475 if (auto *AI = dyn_cast<AllocaInst>(&I))
476 EnumerateType(AI->getAllocatedType());
477 EnumerateType(I.getType());
478 if (const auto *Call = dyn_cast<CallBase>(&I)) {
479 EnumerateAttributes(Call->getAttributes());
480 EnumerateType(Call->getFunctionType());
483 // Enumerate metadata attached with this instruction.
484 MDs.clear();
485 I.getAllMetadataOtherThanDebugLoc(MDs);
486 for (unsigned i = 0, e = MDs.size(); i != e; ++i)
487 EnumerateMetadata(&F, MDs[i].second);
489 // Don't enumerate the location directly -- it has a special record
490 // type -- but enumerate its operands.
491 if (DILocation *L = I.getDebugLoc())
492 for (const Metadata *Op : L->operands())
493 EnumerateMetadata(&F, Op);
497 // Organize metadata ordering.
498 organizeMetadata();
501 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
502 InstructionMapType::const_iterator I = InstructionMap.find(Inst);
503 assert(I != InstructionMap.end() && "Instruction is not mapped!");
504 return I->second;
507 unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
508 unsigned ComdatID = Comdats.idFor(C);
509 assert(ComdatID && "Comdat not found!");
510 return ComdatID;
513 void ValueEnumerator::setInstructionID(const Instruction *I) {
514 InstructionMap[I] = InstructionCount++;
517 unsigned ValueEnumerator::getValueID(const Value *V) const {
518 if (auto *MD = dyn_cast<MetadataAsValue>(V))
519 return getMetadataID(MD->getMetadata());
521 ValueMapType::const_iterator I = ValueMap.find(V);
522 assert(I != ValueMap.end() && "Value not in slotcalculator!");
523 return I->second - 1;
526 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
527 LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
528 print(dbgs(), ValueMap, "Default");
529 dbgs() << '\n';
530 print(dbgs(), MetadataMap, "MetaData");
531 dbgs() << '\n';
533 #endif
535 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
536 const char *Name) const {
537 OS << "Map Name: " << Name << "\n";
538 OS << "Size: " << Map.size() << "\n";
539 for (const auto &I : Map) {
540 const Value *V = I.first;
541 if (V->hasName())
542 OS << "Value: " << V->getName();
543 else
544 OS << "Value: [null]\n";
545 V->print(errs());
546 errs() << '\n';
548 OS << " Uses(" << V->getNumUses() << "):";
549 for (const Use &U : V->uses()) {
550 if (&U != &*V->use_begin())
551 OS << ",";
552 if (U->hasName())
553 OS << " " << U->getName();
554 else
555 OS << " [null]";
557 OS << "\n\n";
561 void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
562 const char *Name) const {
563 OS << "Map Name: " << Name << "\n";
564 OS << "Size: " << Map.size() << "\n";
565 for (const auto &I : Map) {
566 const Metadata *MD = I.first;
567 OS << "Metadata: slot = " << I.second.ID << "\n";
568 OS << "Metadata: function = " << I.second.F << "\n";
569 MD->print(OS);
570 OS << "\n";
574 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
575 /// table into the values table.
576 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
577 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
578 VI != VE; ++VI)
579 EnumerateValue(VI->getValue());
582 /// Insert all of the values referenced by named metadata in the specified
583 /// module.
584 void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
585 for (const auto &I : M.named_metadata())
586 EnumerateNamedMDNode(&I);
589 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
590 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
591 EnumerateMetadata(nullptr, MD->getOperand(i));
594 unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
595 return F ? getValueID(F) + 1 : 0;
598 void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
599 EnumerateMetadata(getMetadataFunctionID(F), MD);
602 void ValueEnumerator::EnumerateFunctionLocalMetadata(
603 const Function &F, const LocalAsMetadata *Local) {
604 EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
607 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
608 const Function &F, const DIArgList *ArgList) {
609 EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
612 void ValueEnumerator::dropFunctionFromMetadata(
613 MetadataMapType::value_type &FirstMD) {
614 SmallVector<const MDNode *, 64> Worklist;
615 auto push = [&Worklist](MetadataMapType::value_type &MD) {
616 auto &Entry = MD.second;
618 // Nothing to do if this metadata isn't tagged.
619 if (!Entry.F)
620 return;
622 // Drop the function tag.
623 Entry.F = 0;
625 // If this is has an ID and is an MDNode, then its operands have entries as
626 // well. We need to drop the function from them too.
627 if (Entry.ID)
628 if (auto *N = dyn_cast<MDNode>(MD.first))
629 Worklist.push_back(N);
631 push(FirstMD);
632 while (!Worklist.empty())
633 for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
634 if (!Op)
635 continue;
636 auto MD = MetadataMap.find(Op);
637 if (MD != MetadataMap.end())
638 push(*MD);
642 void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
643 // It's vital for reader efficiency that uniqued subgraphs are done in
644 // post-order; it's expensive when their operands have forward references.
645 // If a distinct node is referenced from a uniqued node, it'll be delayed
646 // until the uniqued subgraph has been completely traversed.
647 SmallVector<const MDNode *, 32> DelayedDistinctNodes;
649 // Start by enumerating MD, and then work through its transitive operands in
650 // post-order. This requires a depth-first search.
651 SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
652 if (const MDNode *N = enumerateMetadataImpl(F, MD))
653 Worklist.push_back(std::make_pair(N, N->op_begin()));
655 while (!Worklist.empty()) {
656 const MDNode *N = Worklist.back().first;
658 // Enumerate operands until we hit a new node. We need to traverse these
659 // nodes' operands before visiting the rest of N's operands.
660 MDNode::op_iterator I = std::find_if(
661 Worklist.back().second, N->op_end(),
662 [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
663 if (I != N->op_end()) {
664 auto *Op = cast<MDNode>(*I);
665 Worklist.back().second = ++I;
667 // Delay traversing Op if it's a distinct node and N is uniqued.
668 if (Op->isDistinct() && !N->isDistinct())
669 DelayedDistinctNodes.push_back(Op);
670 else
671 Worklist.push_back(std::make_pair(Op, Op->op_begin()));
672 continue;
675 // All the operands have been visited. Now assign an ID.
676 Worklist.pop_back();
677 MDs.push_back(N);
678 MetadataMap[N].ID = MDs.size();
680 // Flush out any delayed distinct nodes; these are all the distinct nodes
681 // that are leaves in last uniqued subgraph.
682 if (Worklist.empty() || Worklist.back().first->isDistinct()) {
683 for (const MDNode *N : DelayedDistinctNodes)
684 Worklist.push_back(std::make_pair(N, N->op_begin()));
685 DelayedDistinctNodes.clear();
690 const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F,
691 const Metadata *MD) {
692 if (!MD)
693 return nullptr;
695 assert(
696 (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
697 "Invalid metadata kind");
699 auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
700 MDIndex &Entry = Insertion.first->second;
701 if (!Insertion.second) {
702 // Already mapped. If F doesn't match the function tag, drop it.
703 if (Entry.hasDifferentFunction(F))
704 dropFunctionFromMetadata(*Insertion.first);
705 return nullptr;
708 // Don't assign IDs to metadata nodes.
709 if (auto *N = dyn_cast<MDNode>(MD))
710 return N;
712 // Save the metadata.
713 MDs.push_back(MD);
714 Entry.ID = MDs.size();
716 // Enumerate the constant, if any.
717 if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
718 EnumerateValue(C->getValue());
720 return nullptr;
723 /// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
724 /// information reachable from the metadata.
725 void ValueEnumerator::EnumerateFunctionLocalMetadata(
726 unsigned F, const LocalAsMetadata *Local) {
727 assert(F && "Expected a function");
729 // Check to see if it's already in!
730 MDIndex &Index = MetadataMap[Local];
731 if (Index.ID) {
732 assert(Index.F == F && "Expected the same function");
733 return;
736 MDs.push_back(Local);
737 Index.F = F;
738 Index.ID = MDs.size();
740 EnumerateValue(Local->getValue());
743 /// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
744 /// information reachable from the metadata.
745 void ValueEnumerator::EnumerateFunctionLocalListMetadata(
746 unsigned F, const DIArgList *ArgList) {
747 assert(F && "Expected a function");
749 // Check to see if it's already in!
750 MDIndex &Index = MetadataMap[ArgList];
751 if (Index.ID) {
752 assert(Index.F == F && "Expected the same function");
753 return;
756 for (ValueAsMetadata *VAM : ArgList->getArgs()) {
757 if (isa<LocalAsMetadata>(VAM)) {
758 assert(MetadataMap.count(VAM) &&
759 "LocalAsMetadata should be enumerated before DIArgList");
760 assert(MetadataMap[VAM].F == F &&
761 "Expected LocalAsMetadata in the same function");
762 } else {
763 assert(isa<ConstantAsMetadata>(VAM) &&
764 "Expected LocalAsMetadata or ConstantAsMetadata");
765 assert(ValueMap.count(VAM->getValue()) &&
766 "Constant should be enumerated beforeDIArgList");
767 EnumerateMetadata(F, VAM);
771 MDs.push_back(ArgList);
772 Index.F = F;
773 Index.ID = MDs.size();
776 static unsigned getMetadataTypeOrder(const Metadata *MD) {
777 // Strings are emitted in bulk and must come first.
778 if (isa<MDString>(MD))
779 return 0;
781 // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
782 // to the front since we can detect it.
783 auto *N = dyn_cast<MDNode>(MD);
784 if (!N)
785 return 1;
787 // The reader is fast forward references for distinct node operands, but slow
788 // when uniqued operands are unresolved.
789 return N->isDistinct() ? 2 : 3;
792 void ValueEnumerator::organizeMetadata() {
793 assert(MetadataMap.size() == MDs.size() &&
794 "Metadata map and vector out of sync");
796 if (MDs.empty())
797 return;
799 // Copy out the index information from MetadataMap in order to choose a new
800 // order.
801 SmallVector<MDIndex, 64> Order;
802 Order.reserve(MetadataMap.size());
803 for (const Metadata *MD : MDs)
804 Order.push_back(MetadataMap.lookup(MD));
806 // Partition:
807 // - by function, then
808 // - by isa<MDString>
809 // and then sort by the original/current ID. Since the IDs are guaranteed to
810 // be unique, the result of llvm::sort will be deterministic. There's no need
811 // for std::stable_sort.
812 llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
813 return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
814 std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
817 // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
818 // and fix up MetadataMap.
819 std::vector<const Metadata *> OldMDs;
820 MDs.swap(OldMDs);
821 MDs.reserve(OldMDs.size());
822 for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
823 auto *MD = Order[I].get(OldMDs);
824 MDs.push_back(MD);
825 MetadataMap[MD].ID = I + 1;
826 if (isa<MDString>(MD))
827 ++NumMDStrings;
830 // Return early if there's nothing for the functions.
831 if (MDs.size() == Order.size())
832 return;
834 // Build the function metadata ranges.
835 MDRange R;
836 FunctionMDs.reserve(OldMDs.size());
837 unsigned PrevF = 0;
838 for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
839 ++I) {
840 unsigned F = Order[I].F;
841 if (!PrevF) {
842 PrevF = F;
843 } else if (PrevF != F) {
844 R.Last = FunctionMDs.size();
845 std::swap(R, FunctionMDInfo[PrevF]);
846 R.First = FunctionMDs.size();
848 ID = MDs.size();
849 PrevF = F;
852 auto *MD = Order[I].get(OldMDs);
853 FunctionMDs.push_back(MD);
854 MetadataMap[MD].ID = ++ID;
855 if (isa<MDString>(MD))
856 ++R.NumStrings;
858 R.Last = FunctionMDs.size();
859 FunctionMDInfo[PrevF] = R;
862 void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
863 NumModuleMDs = MDs.size();
865 auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
866 NumMDStrings = R.NumStrings;
867 MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
868 FunctionMDs.begin() + R.Last);
871 void ValueEnumerator::EnumerateValue(const Value *V) {
872 assert(!V->getType()->isVoidTy() && "Can't insert void values!");
873 assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
875 // Check to see if it's already in!
876 unsigned &ValueID = ValueMap[V];
877 if (ValueID) {
878 // Increment use count.
879 Values[ValueID - 1].second++;
880 return;
883 if (auto *GO = dyn_cast<GlobalObject>(V))
884 if (const Comdat *C = GO->getComdat())
885 Comdats.insert(C);
887 // Enumerate the type of this value.
888 EnumerateType(V->getType());
890 if (const Constant *C = dyn_cast<Constant>(V)) {
891 if (isa<GlobalValue>(C)) {
892 // Initializers for globals are handled explicitly elsewhere.
893 } else if (C->getNumOperands()) {
894 // If a constant has operands, enumerate them. This makes sure that if a
895 // constant has uses (for example an array of const ints), that they are
896 // inserted also.
898 // We prefer to enumerate them with values before we enumerate the user
899 // itself. This makes it more likely that we can avoid forward references
900 // in the reader. We know that there can be no cycles in the constants
901 // graph that don't go through a global variable.
902 for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E;
903 ++I)
904 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
905 EnumerateValue(*I);
906 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
907 if (CE->getOpcode() == Instruction::ShuffleVector)
908 EnumerateValue(CE->getShuffleMaskForBitcode());
909 if (auto *GEP = dyn_cast<GEPOperator>(CE))
910 EnumerateType(GEP->getSourceElementType());
913 // Finally, add the value. Doing this could make the ValueID reference be
914 // dangling, don't reuse it.
915 Values.push_back(std::make_pair(V, 1U));
916 ValueMap[V] = Values.size();
917 return;
921 // Add the value.
922 Values.push_back(std::make_pair(V, 1U));
923 ValueID = Values.size();
926 void ValueEnumerator::EnumerateType(Type *Ty) {
927 unsigned *TypeID = &TypeMap[Ty];
929 // We've already seen this type.
930 if (*TypeID)
931 return;
933 // If it is a non-anonymous struct, mark the type as being visited so that we
934 // don't recursively visit it. This is safe because we allow forward
935 // references of these in the bitcode reader.
936 if (StructType *STy = dyn_cast<StructType>(Ty))
937 if (!STy->isLiteral())
938 *TypeID = ~0U;
940 // Enumerate all of the subtypes before we enumerate this type. This ensures
941 // that the type will be enumerated in an order that can be directly built.
942 for (Type *SubTy : Ty->subtypes())
943 EnumerateType(SubTy);
945 // Refresh the TypeID pointer in case the table rehashed.
946 TypeID = &TypeMap[Ty];
948 // Check to see if we got the pointer another way. This can happen when
949 // enumerating recursive types that hit the base case deeper than they start.
951 // If this is actually a struct that we are treating as forward ref'able,
952 // then emit the definition now that all of its contents are available.
953 if (*TypeID && *TypeID != ~0U)
954 return;
956 // Add this type now that its contents are all happily enumerated.
957 Types.push_back(Ty);
959 *TypeID = Types.size();
962 // Enumerate the types for the specified value. If the value is a constant,
963 // walk through it, enumerating the types of the constant.
964 void ValueEnumerator::EnumerateOperandType(const Value *V) {
965 EnumerateType(V->getType());
967 assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
969 const Constant *C = dyn_cast<Constant>(V);
970 if (!C)
971 return;
973 // If this constant is already enumerated, ignore it, we know its type must
974 // be enumerated.
975 if (ValueMap.count(C))
976 return;
978 // This constant may have operands, make sure to enumerate the types in
979 // them.
980 for (const Value *Op : C->operands()) {
981 // Don't enumerate basic blocks here, this happens as operands to
982 // blockaddress.
983 if (isa<BasicBlock>(Op))
984 continue;
986 EnumerateOperandType(Op);
988 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
989 if (CE->getOpcode() == Instruction::ShuffleVector)
990 EnumerateOperandType(CE->getShuffleMaskForBitcode());
991 if (CE->getOpcode() == Instruction::GetElementPtr)
992 EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
996 void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
997 if (PAL.isEmpty())
998 return; // null is always 0.
1000 // Do a lookup.
1001 unsigned &Entry = AttributeListMap[PAL];
1002 if (Entry == 0) {
1003 // Never saw this before, add it.
1004 AttributeLists.push_back(PAL);
1005 Entry = AttributeLists.size();
1008 // Do lookups for all attribute groups.
1009 for (unsigned i : PAL.indexes()) {
1010 AttributeSet AS = PAL.getAttributes(i);
1011 if (!AS.hasAttributes())
1012 continue;
1013 IndexAndAttrSet Pair = {i, AS};
1014 unsigned &Entry = AttributeGroupMap[Pair];
1015 if (Entry == 0) {
1016 AttributeGroups.push_back(Pair);
1017 Entry = AttributeGroups.size();
1019 for (Attribute Attr : AS) {
1020 if (Attr.isTypeAttribute())
1021 EnumerateType(Attr.getValueAsType());
1027 void ValueEnumerator::incorporateFunction(const Function &F) {
1028 InstructionCount = 0;
1029 NumModuleValues = Values.size();
1031 // Add global metadata to the function block. This doesn't include
1032 // LocalAsMetadata.
1033 incorporateFunctionMetadata(F);
1035 // Adding function arguments to the value table.
1036 for (const auto &I : F.args()) {
1037 EnumerateValue(&I);
1038 if (I.hasAttribute(Attribute::ByVal))
1039 EnumerateType(I.getParamByValType());
1040 else if (I.hasAttribute(Attribute::StructRet))
1041 EnumerateType(I.getParamStructRetType());
1042 else if (I.hasAttribute(Attribute::ByRef))
1043 EnumerateType(I.getParamByRefType());
1045 FirstFuncConstantID = Values.size();
1047 // Add all function-level constants to the value table.
1048 for (const BasicBlock &BB : F) {
1049 for (const Instruction &I : BB) {
1050 for (const Use &OI : I.operands()) {
1051 if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
1052 EnumerateValue(OI);
1054 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
1055 EnumerateValue(SVI->getShuffleMaskForBitcode());
1057 BasicBlocks.push_back(&BB);
1058 ValueMap[&BB] = BasicBlocks.size();
1061 // Add the function's parameter attributes so they are available for use in
1062 // the function's instruction.
1063 EnumerateAttributes(F.getAttributes());
1065 FirstInstID = Values.size();
1067 SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
1068 SmallVector<DIArgList *, 8> ArgListMDVector;
1069 // Add all of the instructions.
1070 for (const BasicBlock &BB : F) {
1071 for (const Instruction &I : BB) {
1072 for (const Use &OI : I.operands()) {
1073 if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
1074 if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
1075 // Enumerate metadata after the instructions they might refer to.
1076 FnLocalMDVector.push_back(Local);
1077 } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
1078 ArgListMDVector.push_back(ArgList);
1079 for (ValueAsMetadata *VMD : ArgList->getArgs()) {
1080 if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
1081 // Enumerate metadata after the instructions they might refer
1082 // to.
1083 FnLocalMDVector.push_back(Local);
1090 if (!I.getType()->isVoidTy())
1091 EnumerateValue(&I);
1095 // Add all of the function-local metadata.
1096 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
1097 // At this point, every local values have been incorporated, we shouldn't
1098 // have a metadata operand that references a value that hasn't been seen.
1099 assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
1100 "Missing value for metadata operand");
1101 EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
1103 // DIArgList entries must come after function-local metadata, as it is not
1104 // possible to forward-reference them.
1105 for (const DIArgList *ArgList : ArgListMDVector)
1106 EnumerateFunctionLocalListMetadata(F, ArgList);
1109 void ValueEnumerator::purgeFunction() {
1110 /// Remove purged values from the ValueMap.
1111 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
1112 ValueMap.erase(Values[i].first);
1113 for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
1114 MetadataMap.erase(MDs[i]);
1115 for (const BasicBlock *BB : BasicBlocks)
1116 ValueMap.erase(BB);
1118 Values.resize(NumModuleValues);
1119 MDs.resize(NumModuleMDs);
1120 BasicBlocks.clear();
1121 NumMDStrings = 0;
1124 static void IncorporateFunctionInfoGlobalBBIDs(
1125 const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) {
1126 unsigned Counter = 0;
1127 for (const BasicBlock &BB : *F)
1128 IDMap[&BB] = ++Counter;
1131 /// getGlobalBasicBlockID - This returns the function-specific ID for the
1132 /// specified basic block. This is relatively expensive information, so it
1133 /// should only be used by rare constructs such as address-of-label.
1134 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
1135 unsigned &Idx = GlobalBasicBlockIDs[BB];
1136 if (Idx != 0)
1137 return Idx - 1;
1139 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
1140 return getGlobalBasicBlockID(BB);
1143 uint64_t ValueEnumerator::computeBitsRequiredForTypeIndices() const {
1144 return Log2_32_Ceil(getTypes().size() + 1);