Add gfx950 mfma instructions to ROCDL dialect (#123361)
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonGenInsert.cpp
blob5e52cf03cfbc7a046f3d87227c47f52d38472269
1 //===- HexagonGenInsert.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "BitTracker.h"
10 #include "HexagonBitTracker.h"
11 #include "HexagonInstrInfo.h"
12 #include "HexagonRegisterInfo.h"
13 #include "HexagonSubtarget.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineDominators.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/TargetRegisterInfo.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/InitializePasses.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/Timer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <cstdint>
42 #include <iterator>
43 #include <utility>
44 #include <vector>
46 #define DEBUG_TYPE "hexinsert"
48 using namespace llvm;
50 static cl::opt<unsigned>
51 VRegIndexCutoff("insert-vreg-cutoff", cl::init(~0U), cl::Hidden,
52 cl::desc("Vreg# cutoff for insert generation."));
53 // The distance cutoff is selected based on the precheckin-perf results:
54 // cutoffs 20, 25, 35, and 40 are worse than 30.
55 static cl::opt<unsigned>
56 VRegDistCutoff("insert-dist-cutoff", cl::init(30U), cl::Hidden,
57 cl::desc("Vreg distance cutoff for insert "
58 "generation."));
60 // Limit the container sizes for extreme cases where we run out of memory.
61 static cl::opt<unsigned>
62 MaxORLSize("insert-max-orl", cl::init(4096), cl::Hidden,
63 cl::desc("Maximum size of OrderedRegisterList"));
64 static cl::opt<unsigned> MaxIFMSize("insert-max-ifmap", cl::init(1024),
65 cl::Hidden,
66 cl::desc("Maximum size of IFMap"));
68 static cl::opt<bool> OptTiming("insert-timing", cl::Hidden,
69 cl::desc("Enable timing of insert generation"));
70 static cl::opt<bool>
71 OptTimingDetail("insert-timing-detail", cl::Hidden,
72 cl::desc("Enable detailed timing of insert "
73 "generation"));
75 static cl::opt<bool> OptSelectAll0("insert-all0", cl::init(false), cl::Hidden);
76 static cl::opt<bool> OptSelectHas0("insert-has0", cl::init(false), cl::Hidden);
77 // Whether to construct constant values via "insert". Could eliminate constant
78 // extenders, but often not practical.
79 static cl::opt<bool> OptConst("insert-const", cl::init(false), cl::Hidden);
81 // The preprocessor gets confused when the DEBUG macro is passed larger
82 // chunks of code. Use this function to detect debugging.
83 inline static bool isDebug() {
84 #ifndef NDEBUG
85 return DebugFlag && isCurrentDebugType(DEBUG_TYPE);
86 #else
87 return false;
88 #endif
91 namespace {
93 // Set of virtual registers, based on BitVector.
94 struct RegisterSet : private BitVector {
95 RegisterSet() = default;
96 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
97 RegisterSet(const RegisterSet &RS) = default;
98 RegisterSet &operator=(const RegisterSet &RS) = default;
100 using BitVector::clear;
102 unsigned find_first() const {
103 int First = BitVector::find_first();
104 if (First < 0)
105 return 0;
106 return x2v(First);
109 unsigned find_next(unsigned Prev) const {
110 int Next = BitVector::find_next(v2x(Prev));
111 if (Next < 0)
112 return 0;
113 return x2v(Next);
116 RegisterSet &insert(unsigned R) {
117 unsigned Idx = v2x(R);
118 ensure(Idx);
119 return static_cast<RegisterSet&>(BitVector::set(Idx));
121 RegisterSet &remove(unsigned R) {
122 unsigned Idx = v2x(R);
123 if (Idx >= size())
124 return *this;
125 return static_cast<RegisterSet&>(BitVector::reset(Idx));
128 RegisterSet &insert(const RegisterSet &Rs) {
129 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
131 RegisterSet &remove(const RegisterSet &Rs) {
132 return static_cast<RegisterSet&>(BitVector::reset(Rs));
135 reference operator[](unsigned R) {
136 unsigned Idx = v2x(R);
137 ensure(Idx);
138 return BitVector::operator[](Idx);
140 bool operator[](unsigned R) const {
141 unsigned Idx = v2x(R);
142 assert(Idx < size());
143 return BitVector::operator[](Idx);
145 bool has(unsigned R) const {
146 unsigned Idx = v2x(R);
147 if (Idx >= size())
148 return false;
149 return BitVector::test(Idx);
152 bool empty() const {
153 return !BitVector::any();
155 bool includes(const RegisterSet &Rs) const {
156 // A.BitVector::test(B) <=> A-B != {}
157 return !Rs.BitVector::test(*this);
159 bool intersects(const RegisterSet &Rs) const {
160 return BitVector::anyCommon(Rs);
163 private:
164 void ensure(unsigned Idx) {
165 if (size() <= Idx)
166 resize(std::max(Idx+1, 32U));
169 static inline unsigned v2x(unsigned v) {
170 return Register::virtReg2Index(v);
173 static inline unsigned x2v(unsigned x) {
174 return Register::index2VirtReg(x);
178 struct PrintRegSet {
179 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
180 : RS(S), TRI(RI) {}
182 friend raw_ostream &operator<< (raw_ostream &OS,
183 const PrintRegSet &P);
185 private:
186 const RegisterSet &RS;
187 const TargetRegisterInfo *TRI;
190 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
191 OS << '{';
192 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
193 OS << ' ' << printReg(R, P.TRI);
194 OS << " }";
195 return OS;
198 // A convenience class to associate unsigned numbers (such as virtual
199 // registers) with unsigned numbers.
200 struct UnsignedMap : public DenseMap<unsigned,unsigned> {
201 UnsignedMap() = default;
203 private:
204 using BaseType = DenseMap<unsigned, unsigned>;
207 // A utility to establish an ordering between virtual registers:
208 // VRegA < VRegB <=> RegisterOrdering[VRegA] < RegisterOrdering[VRegB]
209 // This is meant as a cache for the ordering of virtual registers defined
210 // by a potentially expensive comparison function, or obtained by a proce-
211 // dure that should not be repeated each time two registers are compared.
212 struct RegisterOrdering : public UnsignedMap {
213 RegisterOrdering() = default;
215 unsigned operator[](unsigned VR) const {
216 const_iterator F = find(VR);
217 assert(F != end());
218 return F->second;
221 // Add operator(), so that objects of this class can be used as
222 // comparators in std::sort et al.
223 bool operator() (unsigned VR1, unsigned VR2) const {
224 return operator[](VR1) < operator[](VR2);
228 // Ordering of bit values. This class does not have operator[], but
229 // is supplies a comparison operator() for use in std:: algorithms.
230 // The order is as follows:
231 // - 0 < 1 < ref
232 // - ref1 < ref2, if ord(ref1.Reg) < ord(ref2.Reg),
233 // or ord(ref1.Reg) == ord(ref2.Reg), and ref1.Pos < ref2.Pos.
234 struct BitValueOrdering {
235 BitValueOrdering(const RegisterOrdering &RB) : BaseOrd(RB) {}
237 bool operator() (const BitTracker::BitValue &V1,
238 const BitTracker::BitValue &V2) const;
240 const RegisterOrdering &BaseOrd;
243 } // end anonymous namespace
245 bool BitValueOrdering::operator() (const BitTracker::BitValue &V1,
246 const BitTracker::BitValue &V2) const {
247 if (V1 == V2)
248 return false;
249 // V1==0 => true, V2==0 => false
250 if (V1.is(0) || V2.is(0))
251 return V1.is(0);
252 // Neither of V1,V2 is 0, and V1!=V2.
253 // V2==1 => false, V1==1 => true
254 if (V2.is(1) || V1.is(1))
255 return !V2.is(1);
256 // Both V1,V2 are refs.
257 unsigned Ind1 = BaseOrd[V1.RefI.Reg], Ind2 = BaseOrd[V2.RefI.Reg];
258 if (Ind1 != Ind2)
259 return Ind1 < Ind2;
260 // If V1.Pos==V2.Pos
261 assert(V1.RefI.Pos != V2.RefI.Pos && "Bit values should be different");
262 return V1.RefI.Pos < V2.RefI.Pos;
265 namespace {
267 // Cache for the BitTracker's cell map. Map lookup has a logarithmic
268 // complexity, this class will memoize the lookup results to reduce
269 // the access time for repeated lookups of the same cell.
270 struct CellMapShadow {
271 CellMapShadow(const BitTracker &T) : BT(T) {}
273 const BitTracker::RegisterCell &lookup(unsigned VR) {
274 unsigned RInd = Register::virtReg2Index(VR);
275 // Grow the vector to at least 32 elements.
276 if (RInd >= CVect.size())
277 CVect.resize(std::max(RInd+16, 32U), nullptr);
278 const BitTracker::RegisterCell *CP = CVect[RInd];
279 if (CP == nullptr)
280 CP = CVect[RInd] = &BT.lookup(VR);
281 return *CP;
284 const BitTracker &BT;
286 private:
287 using CellVectType = std::vector<const BitTracker::RegisterCell *>;
289 CellVectType CVect;
292 // Comparator class for lexicographic ordering of virtual registers
293 // according to the corresponding BitTracker::RegisterCell objects.
294 struct RegisterCellLexCompare {
295 RegisterCellLexCompare(const BitValueOrdering &BO, CellMapShadow &M)
296 : BitOrd(BO), CM(M) {}
298 bool operator() (unsigned VR1, unsigned VR2) const;
300 private:
301 const BitValueOrdering &BitOrd;
302 CellMapShadow &CM;
305 // Comparator class for lexicographic ordering of virtual registers
306 // according to the specified bits of the corresponding BitTracker::
307 // RegisterCell objects.
308 // Specifically, this class will be used to compare bit B of a register
309 // cell for a selected virtual register R with bit N of any register
310 // other than R.
311 struct RegisterCellBitCompareSel {
312 RegisterCellBitCompareSel(unsigned R, unsigned B, unsigned N,
313 const BitValueOrdering &BO, CellMapShadow &M)
314 : SelR(R), SelB(B), BitN(N), BitOrd(BO), CM(M) {}
316 bool operator() (unsigned VR1, unsigned VR2) const;
318 private:
319 const unsigned SelR, SelB;
320 const unsigned BitN;
321 const BitValueOrdering &BitOrd;
322 CellMapShadow &CM;
325 } // end anonymous namespace
327 bool RegisterCellLexCompare::operator() (unsigned VR1, unsigned VR2) const {
328 // Ordering of registers, made up from two given orderings:
329 // - the ordering of the register numbers, and
330 // - the ordering of register cells.
331 // Def. R1 < R2 if:
332 // - cell(R1) < cell(R2), or
333 // - cell(R1) == cell(R2), and index(R1) < index(R2).
335 // For register cells, the ordering is lexicographic, with index 0 being
336 // the most significant.
337 if (VR1 == VR2)
338 return false;
340 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1), &RC2 = CM.lookup(VR2);
341 uint16_t W1 = RC1.width(), W2 = RC2.width();
342 for (uint16_t i = 0, w = std::min(W1, W2); i < w; ++i) {
343 const BitTracker::BitValue &V1 = RC1[i], &V2 = RC2[i];
344 if (V1 != V2)
345 return BitOrd(V1, V2);
347 // Cells are equal up until the common length.
348 if (W1 != W2)
349 return W1 < W2;
351 return BitOrd.BaseOrd[VR1] < BitOrd.BaseOrd[VR2];
354 bool RegisterCellBitCompareSel::operator() (unsigned VR1, unsigned VR2) const {
355 if (VR1 == VR2)
356 return false;
357 const BitTracker::RegisterCell &RC1 = CM.lookup(VR1);
358 const BitTracker::RegisterCell &RC2 = CM.lookup(VR2);
359 uint16_t W1 = RC1.width(), W2 = RC2.width();
360 uint16_t Bit1 = (VR1 == SelR) ? SelB : BitN;
361 uint16_t Bit2 = (VR2 == SelR) ? SelB : BitN;
362 // If Bit1 exceeds the width of VR1, then:
363 // - return false, if at the same time Bit2 exceeds VR2, or
364 // - return true, otherwise.
365 // (I.e. "a bit value that does not exist is less than any bit value
366 // that does exist".)
367 if (W1 <= Bit1)
368 return Bit2 < W2;
369 // If Bit1 is within VR1, but Bit2 is not within VR2, return false.
370 if (W2 <= Bit2)
371 return false;
373 const BitTracker::BitValue &V1 = RC1[Bit1], V2 = RC2[Bit2];
374 if (V1 != V2)
375 return BitOrd(V1, V2);
376 return false;
379 namespace {
381 class OrderedRegisterList {
382 using ListType = std::vector<unsigned>;
383 const unsigned MaxSize;
385 public:
386 OrderedRegisterList(const RegisterOrdering &RO)
387 : MaxSize(MaxORLSize), Ord(RO) {}
389 void insert(unsigned VR);
390 void remove(unsigned VR);
392 unsigned operator[](unsigned Idx) const {
393 assert(Idx < Seq.size());
394 return Seq[Idx];
397 unsigned size() const {
398 return Seq.size();
401 using iterator = ListType::iterator;
402 using const_iterator = ListType::const_iterator;
404 iterator begin() { return Seq.begin(); }
405 iterator end() { return Seq.end(); }
406 const_iterator begin() const { return Seq.begin(); }
407 const_iterator end() const { return Seq.end(); }
409 // Convenience function to convert an iterator to the corresponding index.
410 unsigned idx(iterator It) const { return It-begin(); }
412 private:
413 ListType Seq;
414 const RegisterOrdering &Ord;
417 struct PrintORL {
418 PrintORL(const OrderedRegisterList &L, const TargetRegisterInfo *RI)
419 : RL(L), TRI(RI) {}
421 friend raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P);
423 private:
424 const OrderedRegisterList &RL;
425 const TargetRegisterInfo *TRI;
428 raw_ostream &operator<< (raw_ostream &OS, const PrintORL &P) {
429 OS << '(';
430 OrderedRegisterList::const_iterator B = P.RL.begin(), E = P.RL.end();
431 for (OrderedRegisterList::const_iterator I = B; I != E; ++I) {
432 if (I != B)
433 OS << ", ";
434 OS << printReg(*I, P.TRI);
436 OS << ')';
437 return OS;
440 } // end anonymous namespace
442 void OrderedRegisterList::insert(unsigned VR) {
443 iterator L = llvm::lower_bound(Seq, VR, Ord);
444 if (L == Seq.end())
445 Seq.push_back(VR);
446 else
447 Seq.insert(L, VR);
449 unsigned S = Seq.size();
450 if (S > MaxSize)
451 Seq.resize(MaxSize);
452 assert(Seq.size() <= MaxSize);
455 void OrderedRegisterList::remove(unsigned VR) {
456 iterator L = llvm::lower_bound(Seq, VR, Ord);
457 if (L != Seq.end())
458 Seq.erase(L);
461 namespace {
463 // A record of the insert form. The fields correspond to the operands
464 // of the "insert" instruction:
465 // ... = insert(SrcR, InsR, #Wdh, #Off)
466 struct IFRecord {
467 IFRecord(unsigned SR = 0, unsigned IR = 0, uint16_t W = 0, uint16_t O = 0)
468 : SrcR(SR), InsR(IR), Wdh(W), Off(O) {}
470 unsigned SrcR, InsR;
471 uint16_t Wdh, Off;
474 struct PrintIFR {
475 PrintIFR(const IFRecord &R, const TargetRegisterInfo *RI)
476 : IFR(R), TRI(RI) {}
478 private:
479 friend raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P);
481 const IFRecord &IFR;
482 const TargetRegisterInfo *TRI;
485 raw_ostream &operator<< (raw_ostream &OS, const PrintIFR &P) {
486 unsigned SrcR = P.IFR.SrcR, InsR = P.IFR.InsR;
487 OS << '(' << printReg(SrcR, P.TRI) << ',' << printReg(InsR, P.TRI)
488 << ",#" << P.IFR.Wdh << ",#" << P.IFR.Off << ')';
489 return OS;
492 using IFRecordWithRegSet = std::pair<IFRecord, RegisterSet>;
494 } // end anonymous namespace
496 namespace llvm {
498 void initializeHexagonGenInsertPass(PassRegistry&);
499 FunctionPass *createHexagonGenInsert();
501 } // end namespace llvm
503 namespace {
505 class HexagonGenInsert : public MachineFunctionPass {
506 public:
507 static char ID;
509 HexagonGenInsert() : MachineFunctionPass(ID) {
510 initializeHexagonGenInsertPass(*PassRegistry::getPassRegistry());
513 StringRef getPassName() const override {
514 return "Hexagon generate \"insert\" instructions";
517 void getAnalysisUsage(AnalysisUsage &AU) const override {
518 AU.addRequired<MachineDominatorTreeWrapperPass>();
519 AU.addPreserved<MachineDominatorTreeWrapperPass>();
520 MachineFunctionPass::getAnalysisUsage(AU);
523 bool runOnMachineFunction(MachineFunction &MF) override;
525 private:
526 using PairMapType = DenseMap<std::pair<unsigned, unsigned>, unsigned>;
528 void buildOrderingMF(RegisterOrdering &RO) const;
529 void buildOrderingBT(RegisterOrdering &RB, RegisterOrdering &RO) const;
530 bool isIntClass(const TargetRegisterClass *RC) const;
531 bool isConstant(unsigned VR) const;
532 bool isSmallConstant(unsigned VR) const;
533 bool isValidInsertForm(unsigned DstR, unsigned SrcR, unsigned InsR,
534 uint16_t L, uint16_t S) const;
535 bool findSelfReference(unsigned VR) const;
536 bool findNonSelfReference(unsigned VR) const;
537 void getInstrDefs(const MachineInstr *MI, RegisterSet &Defs) const;
538 void getInstrUses(const MachineInstr *MI, RegisterSet &Uses) const;
539 unsigned distance(const MachineBasicBlock *FromB,
540 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
541 PairMapType &M) const;
542 unsigned distance(MachineBasicBlock::const_iterator FromI,
543 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
544 PairMapType &M) const;
545 bool findRecordInsertForms(unsigned VR, OrderedRegisterList &AVs);
546 void collectInBlock(MachineBasicBlock *B, OrderedRegisterList &AVs);
547 void findRemovableRegisters(unsigned VR, IFRecord IF,
548 RegisterSet &RMs) const;
549 void computeRemovableRegisters();
551 void pruneEmptyLists();
552 void pruneCoveredSets(unsigned VR);
553 void pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO, PairMapType &M);
554 void pruneRegCopies(unsigned VR);
555 void pruneCandidates();
556 void selectCandidates();
557 bool generateInserts();
559 bool removeDeadCode(MachineDomTreeNode *N);
561 // IFRecord coupled with a set of potentially removable registers:
562 using IFListType = std::vector<IFRecordWithRegSet>;
563 using IFMapType = DenseMap<unsigned, IFListType>; // vreg -> IFListType
565 void dump_map() const;
567 const HexagonInstrInfo *HII = nullptr;
568 const HexagonRegisterInfo *HRI = nullptr;
570 MachineFunction *MFN;
571 MachineRegisterInfo *MRI;
572 MachineDominatorTree *MDT;
573 CellMapShadow *CMS;
575 RegisterOrdering BaseOrd;
576 RegisterOrdering CellOrd;
577 IFMapType IFMap;
580 } // end anonymous namespace
582 char HexagonGenInsert::ID = 0;
584 void HexagonGenInsert::dump_map() const {
585 for (const auto &I : IFMap) {
586 dbgs() << " " << printReg(I.first, HRI) << ":\n";
587 const IFListType &LL = I.second;
588 for (const auto &J : LL)
589 dbgs() << " " << PrintIFR(J.first, HRI) << ", "
590 << PrintRegSet(J.second, HRI) << '\n';
594 void HexagonGenInsert::buildOrderingMF(RegisterOrdering &RO) const {
595 unsigned Index = 0;
597 for (const MachineBasicBlock &B : *MFN) {
598 if (!CMS->BT.reached(&B))
599 continue;
601 for (const MachineInstr &MI : B) {
602 for (const MachineOperand &MO : MI.operands()) {
603 if (MO.isReg() && MO.isDef()) {
604 Register R = MO.getReg();
605 assert(MO.getSubReg() == 0 && "Unexpected subregister in definition");
606 if (R.isVirtual())
607 RO.insert(std::make_pair(R, Index++));
612 // Since some virtual registers may have had their def and uses eliminated,
613 // they are no longer referenced in the code, and so they will not appear
614 // in the map.
617 void HexagonGenInsert::buildOrderingBT(RegisterOrdering &RB,
618 RegisterOrdering &RO) const {
619 // Create a vector of all virtual registers (collect them from the base
620 // ordering RB), and then sort it using the RegisterCell comparator.
621 BitValueOrdering BVO(RB);
622 RegisterCellLexCompare LexCmp(BVO, *CMS);
624 using SortableVectorType = std::vector<unsigned>;
626 SortableVectorType VRs;
627 for (auto &I : RB)
628 VRs.push_back(I.first);
629 llvm::sort(VRs, LexCmp);
630 // Transfer the results to the outgoing register ordering.
631 for (unsigned i = 0, n = VRs.size(); i < n; ++i)
632 RO.insert(std::make_pair(VRs[i], i));
635 inline bool HexagonGenInsert::isIntClass(const TargetRegisterClass *RC) const {
636 return RC == &Hexagon::IntRegsRegClass || RC == &Hexagon::DoubleRegsRegClass;
639 bool HexagonGenInsert::isConstant(unsigned VR) const {
640 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
641 uint16_t W = RC.width();
642 for (uint16_t i = 0; i < W; ++i) {
643 const BitTracker::BitValue &BV = RC[i];
644 if (BV.is(0) || BV.is(1))
645 continue;
646 return false;
648 return true;
651 bool HexagonGenInsert::isSmallConstant(unsigned VR) const {
652 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
653 uint16_t W = RC.width();
654 if (W > 64)
655 return false;
656 uint64_t V = 0, B = 1;
657 for (uint16_t i = 0; i < W; ++i) {
658 const BitTracker::BitValue &BV = RC[i];
659 if (BV.is(1))
660 V |= B;
661 else if (!BV.is(0))
662 return false;
663 B <<= 1;
666 // For 32-bit registers, consider: Rd = #s16.
667 if (W == 32)
668 return isInt<16>(V);
670 // For 64-bit registers, it's Rdd = #s8 or Rdd = combine(#s8,#s8)
671 return isInt<8>(Lo_32(V)) && isInt<8>(Hi_32(V));
674 bool HexagonGenInsert::isValidInsertForm(unsigned DstR, unsigned SrcR,
675 unsigned InsR, uint16_t L, uint16_t S) const {
676 const TargetRegisterClass *DstRC = MRI->getRegClass(DstR);
677 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcR);
678 const TargetRegisterClass *InsRC = MRI->getRegClass(InsR);
679 // Only integet (32-/64-bit) register classes.
680 if (!isIntClass(DstRC) || !isIntClass(SrcRC) || !isIntClass(InsRC))
681 return false;
682 // The "source" register must be of the same class as DstR.
683 if (DstRC != SrcRC)
684 return false;
685 if (DstRC == InsRC)
686 return true;
687 // A 64-bit register can only be generated from other 64-bit registers.
688 if (DstRC == &Hexagon::DoubleRegsRegClass)
689 return false;
690 // Otherwise, the L and S cannot span 32-bit word boundary.
691 if (S < 32 && S+L > 32)
692 return false;
693 return true;
696 bool HexagonGenInsert::findSelfReference(unsigned VR) const {
697 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
698 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
699 const BitTracker::BitValue &V = RC[i];
700 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == VR)
701 return true;
703 return false;
706 bool HexagonGenInsert::findNonSelfReference(unsigned VR) const {
707 BitTracker::RegisterCell RC = CMS->lookup(VR);
708 for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
709 const BitTracker::BitValue &V = RC[i];
710 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != VR)
711 return true;
713 return false;
716 void HexagonGenInsert::getInstrDefs(const MachineInstr *MI,
717 RegisterSet &Defs) const {
718 for (const MachineOperand &MO : MI->operands()) {
719 if (!MO.isReg() || !MO.isDef())
720 continue;
721 Register R = MO.getReg();
722 if (!R.isVirtual())
723 continue;
724 Defs.insert(R);
728 void HexagonGenInsert::getInstrUses(const MachineInstr *MI,
729 RegisterSet &Uses) const {
730 for (const MachineOperand &MO : MI->operands()) {
731 if (!MO.isReg() || !MO.isUse())
732 continue;
733 Register R = MO.getReg();
734 if (!R.isVirtual())
735 continue;
736 Uses.insert(R);
740 unsigned HexagonGenInsert::distance(const MachineBasicBlock *FromB,
741 const MachineBasicBlock *ToB, const UnsignedMap &RPO,
742 PairMapType &M) const {
743 // Forward distance from the end of a block to the beginning of it does
744 // not make sense. This function should not be called with FromB == ToB.
745 assert(FromB != ToB);
747 unsigned FromN = FromB->getNumber(), ToN = ToB->getNumber();
748 // If we have already computed it, return the cached result.
749 PairMapType::iterator F = M.find(std::make_pair(FromN, ToN));
750 if (F != M.end())
751 return F->second;
752 unsigned ToRPO = RPO.lookup(ToN);
754 unsigned MaxD = 0;
756 for (const MachineBasicBlock *PB : ToB->predecessors()) {
757 // Skip back edges. Also, if FromB is a predecessor of ToB, the distance
758 // along that path will be 0, and we don't need to do any calculations
759 // on it.
760 if (PB == FromB || RPO.lookup(PB->getNumber()) >= ToRPO)
761 continue;
762 unsigned D = PB->size() + distance(FromB, PB, RPO, M);
763 if (D > MaxD)
764 MaxD = D;
767 // Memoize the result for later lookup.
768 M.insert(std::make_pair(std::make_pair(FromN, ToN), MaxD));
769 return MaxD;
772 unsigned HexagonGenInsert::distance(MachineBasicBlock::const_iterator FromI,
773 MachineBasicBlock::const_iterator ToI, const UnsignedMap &RPO,
774 PairMapType &M) const {
775 const MachineBasicBlock *FB = FromI->getParent(), *TB = ToI->getParent();
776 if (FB == TB)
777 return std::distance(FromI, ToI);
778 unsigned D1 = std::distance(TB->begin(), ToI);
779 unsigned D2 = distance(FB, TB, RPO, M);
780 unsigned D3 = std::distance(FromI, FB->end());
781 return D1+D2+D3;
784 bool HexagonGenInsert::findRecordInsertForms(unsigned VR,
785 OrderedRegisterList &AVs) {
786 if (isDebug()) {
787 dbgs() << __func__ << ": " << printReg(VR, HRI)
788 << " AVs: " << PrintORL(AVs, HRI) << "\n";
790 if (AVs.size() == 0)
791 return false;
793 using iterator = OrderedRegisterList::iterator;
795 BitValueOrdering BVO(BaseOrd);
796 const BitTracker::RegisterCell &RC = CMS->lookup(VR);
797 uint16_t W = RC.width();
799 using RSRecord = std::pair<unsigned, uint16_t>; // (reg,shift)
800 using RSListType = std::vector<RSRecord>;
801 // Have a map, with key being the matching prefix length, and the value
802 // being the list of pairs (R,S), where R's prefix matches VR at S.
803 // (DenseMap<uint16_t,RSListType> fails to instantiate.)
804 using LRSMapType = DenseMap<unsigned, RSListType>;
805 LRSMapType LM;
807 // Conceptually, rotate the cell RC right (i.e. towards the LSB) by S,
808 // and find matching prefixes from AVs with the rotated RC. Such a prefix
809 // would match a string of bits (of length L) in RC starting at S.
810 for (uint16_t S = 0; S < W; ++S) {
811 iterator B = AVs.begin(), E = AVs.end();
812 // The registers in AVs are ordered according to the lexical order of
813 // the corresponding register cells. This means that the range of regis-
814 // ters in AVs that match a prefix of length L+1 will be contained in
815 // the range that matches a prefix of length L. This means that we can
816 // keep narrowing the search space as the prefix length goes up. This
817 // helps reduce the overall complexity of the search.
818 uint16_t L;
819 for (L = 0; L < W-S; ++L) {
820 // Compare against VR's bits starting at S, which emulates rotation
821 // of VR by S.
822 RegisterCellBitCompareSel RCB(VR, S+L, L, BVO, *CMS);
823 iterator NewB = std::lower_bound(B, E, VR, RCB);
824 iterator NewE = std::upper_bound(NewB, E, VR, RCB);
825 // For the registers that are eliminated from the next range, L is
826 // the longest prefix matching VR at position S (their prefixes
827 // differ from VR at S+L). If L>0, record this information for later
828 // use.
829 if (L > 0) {
830 for (iterator I = B; I != NewB; ++I)
831 LM[L].push_back(std::make_pair(*I, S));
832 for (iterator I = NewE; I != E; ++I)
833 LM[L].push_back(std::make_pair(*I, S));
835 B = NewB, E = NewE;
836 if (B == E)
837 break;
839 // Record the final register range. If this range is non-empty, then
840 // L=W-S.
841 assert(B == E || L == W-S);
842 if (B != E) {
843 for (iterator I = B; I != E; ++I)
844 LM[L].push_back(std::make_pair(*I, S));
845 // If B!=E, then we found a range of registers whose prefixes cover the
846 // rest of VR from position S. There is no need to further advance S.
847 break;
851 if (isDebug()) {
852 dbgs() << "Prefixes matching register " << printReg(VR, HRI) << "\n";
853 for (const auto &I : LM) {
854 dbgs() << " L=" << I.first << ':';
855 const RSListType &LL = I.second;
856 for (const auto &J : LL)
857 dbgs() << " (" << printReg(J.first, HRI) << ",@" << J.second << ')';
858 dbgs() << '\n';
862 bool Recorded = false;
864 for (unsigned SrcR : AVs) {
865 int FDi = -1, LDi = -1; // First/last different bit.
866 const BitTracker::RegisterCell &AC = CMS->lookup(SrcR);
867 uint16_t AW = AC.width();
868 for (uint16_t i = 0, w = std::min(W, AW); i < w; ++i) {
869 if (RC[i] == AC[i])
870 continue;
871 if (FDi == -1)
872 FDi = i;
873 LDi = i;
875 if (FDi == -1)
876 continue; // TODO (future): Record identical registers.
877 // Look for a register whose prefix could patch the range [FD..LD]
878 // where VR and SrcR differ.
879 uint16_t FD = FDi, LD = LDi; // Switch to unsigned type.
880 uint16_t MinL = LD-FD+1;
881 for (uint16_t L = MinL; L < W; ++L) {
882 LRSMapType::iterator F = LM.find(L);
883 if (F == LM.end())
884 continue;
885 RSListType &LL = F->second;
886 for (const auto &I : LL) {
887 uint16_t S = I.second;
888 // MinL is the minimum length of the prefix. Any length above MinL
889 // allows some flexibility as to where the prefix can start:
890 // given the extra length EL=L-MinL, the prefix must start between
891 // max(0,FD-EL) and FD.
892 if (S > FD) // Starts too late.
893 continue;
894 uint16_t EL = L-MinL;
895 uint16_t LowS = (EL < FD) ? FD-EL : 0;
896 if (S < LowS) // Starts too early.
897 continue;
898 unsigned InsR = I.first;
899 if (!isValidInsertForm(VR, SrcR, InsR, L, S))
900 continue;
901 if (isDebug()) {
902 dbgs() << printReg(VR, HRI) << " = insert(" << printReg(SrcR, HRI)
903 << ',' << printReg(InsR, HRI) << ",#" << L << ",#"
904 << S << ")\n";
906 IFRecordWithRegSet RR(IFRecord(SrcR, InsR, L, S), RegisterSet());
907 IFMap[VR].push_back(RR);
908 Recorded = true;
913 return Recorded;
916 void HexagonGenInsert::collectInBlock(MachineBasicBlock *B,
917 OrderedRegisterList &AVs) {
918 if (isDebug())
919 dbgs() << "visiting block " << printMBBReference(*B) << "\n";
921 // First, check if this block is reachable at all. If not, the bit tracker
922 // will not have any information about registers in it.
923 if (!CMS->BT.reached(B))
924 return;
926 bool DoConst = OptConst;
927 // Keep a separate set of registers defined in this block, so that we
928 // can remove them from the list of available registers once all DT
929 // successors have been processed.
930 RegisterSet BlockDefs, InsDefs;
931 for (MachineInstr &MI : *B) {
932 InsDefs.clear();
933 getInstrDefs(&MI, InsDefs);
934 // Leave those alone. They are more transparent than "insert".
935 bool Skip = MI.isCopy() || MI.isRegSequence();
937 if (!Skip) {
938 // Visit all defined registers, and attempt to find the corresponding
939 // "insert" representations.
940 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR)) {
941 // Do not collect registers that are known to be compile-time cons-
942 // tants, unless requested.
943 if (!DoConst && isConstant(VR))
944 continue;
945 // If VR's cell contains a reference to VR, then VR cannot be defined
946 // via "insert". If VR is a constant that can be generated in a single
947 // instruction (without constant extenders), generating it via insert
948 // makes no sense.
949 if (findSelfReference(VR) || isSmallConstant(VR))
950 continue;
952 findRecordInsertForms(VR, AVs);
953 // Stop if the map size is too large.
954 if (IFMap.size() > MaxIFMSize)
955 return;
959 // Insert the defined registers into the list of available registers
960 // after they have been processed.
961 for (unsigned VR = InsDefs.find_first(); VR; VR = InsDefs.find_next(VR))
962 AVs.insert(VR);
963 BlockDefs.insert(InsDefs);
966 for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(B))) {
967 MachineBasicBlock *SB = DTN->getBlock();
968 collectInBlock(SB, AVs);
971 for (unsigned VR = BlockDefs.find_first(); VR; VR = BlockDefs.find_next(VR))
972 AVs.remove(VR);
975 void HexagonGenInsert::findRemovableRegisters(unsigned VR, IFRecord IF,
976 RegisterSet &RMs) const {
977 // For a given register VR and a insert form, find the registers that are
978 // used by the current definition of VR, and which would no longer be
979 // needed for it after the definition of VR is replaced with the insert
980 // form. These are the registers that could potentially become dead.
981 RegisterSet Regs[2];
983 unsigned S = 0; // Register set selector.
984 Regs[S].insert(VR);
986 while (!Regs[S].empty()) {
987 // Breadth-first search.
988 unsigned OtherS = 1-S;
989 Regs[OtherS].clear();
990 for (unsigned R = Regs[S].find_first(); R; R = Regs[S].find_next(R)) {
991 Regs[S].remove(R);
992 if (R == IF.SrcR || R == IF.InsR)
993 continue;
994 // Check if a given register has bits that are references to any other
995 // registers. This is to detect situations where the instruction that
996 // defines register R takes register Q as an operand, but R itself does
997 // not contain any bits from Q. Loads are examples of how this could
998 // happen:
999 // R = load Q
1000 // In this case (assuming we do not have any knowledge about the loaded
1001 // value), we must not treat R as a "conveyance" of the bits from Q.
1002 // (The information in BT about R's bits would have them as constants,
1003 // in case of zero-extending loads, or refs to R.)
1004 if (!findNonSelfReference(R))
1005 continue;
1006 RMs.insert(R);
1007 const MachineInstr *DefI = MRI->getVRegDef(R);
1008 assert(DefI);
1009 // Do not iterate past PHI nodes to avoid infinite loops. This can
1010 // make the final set a bit less accurate, but the removable register
1011 // sets are an approximation anyway.
1012 if (DefI->isPHI())
1013 continue;
1014 getInstrUses(DefI, Regs[OtherS]);
1016 S = OtherS;
1018 // The register VR is added to the list as a side-effect of the algorithm,
1019 // but it is not "potentially removable". A potentially removable register
1020 // is one that may become unused (dead) after conversion to the insert form
1021 // IF, and obviously VR (or its replacement) will not become dead by apply-
1022 // ing IF.
1023 RMs.remove(VR);
1026 void HexagonGenInsert::computeRemovableRegisters() {
1027 for (auto &I : IFMap) {
1028 IFListType &LL = I.second;
1029 for (auto &J : LL)
1030 findRemovableRegisters(I.first, J.first, J.second);
1034 void HexagonGenInsert::pruneEmptyLists() {
1035 // Remove all entries from the map, where the register has no insert forms
1036 // associated with it.
1037 using IterListType = SmallVector<IFMapType::iterator, 16>;
1038 IterListType Prune;
1039 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1040 if (I->second.empty())
1041 Prune.push_back(I);
1043 for (const auto &It : Prune)
1044 IFMap.erase(It);
1047 void HexagonGenInsert::pruneCoveredSets(unsigned VR) {
1048 IFMapType::iterator F = IFMap.find(VR);
1049 assert(F != IFMap.end());
1050 IFListType &LL = F->second;
1052 // First, examine the IF candidates for register VR whose removable-regis-
1053 // ter sets are empty. This means that a given candidate will not help eli-
1054 // minate any registers, but since "insert" is not a constant-extendable
1055 // instruction, using such a candidate may reduce code size if the defini-
1056 // tion of VR is constant-extended.
1057 // If there exists a candidate with a non-empty set, the ones with empty
1058 // sets will not be used and can be removed.
1059 MachineInstr *DefVR = MRI->getVRegDef(VR);
1060 bool DefEx = HII->isConstExtended(*DefVR);
1061 bool HasNE = false;
1062 for (const auto &I : LL) {
1063 if (I.second.empty())
1064 continue;
1065 HasNE = true;
1066 break;
1068 if (!DefEx || HasNE) {
1069 // The definition of VR is not constant-extended, or there is a candidate
1070 // with a non-empty set. Remove all candidates with empty sets.
1071 auto IsEmpty = [] (const IFRecordWithRegSet &IR) -> bool {
1072 return IR.second.empty();
1074 llvm::erase_if(LL, IsEmpty);
1075 } else {
1076 // The definition of VR is constant-extended, and all candidates have
1077 // empty removable-register sets. Pick the maximum candidate, and remove
1078 // all others. The "maximum" does not have any special meaning here, it
1079 // is only so that the candidate that will remain on the list is selec-
1080 // ted deterministically.
1081 IFRecord MaxIF = LL[0].first;
1082 for (unsigned i = 1, n = LL.size(); i < n; ++i) {
1083 // If LL[MaxI] < LL[i], then MaxI = i.
1084 const IFRecord &IF = LL[i].first;
1085 unsigned M0 = BaseOrd[MaxIF.SrcR], M1 = BaseOrd[MaxIF.InsR];
1086 unsigned R0 = BaseOrd[IF.SrcR], R1 = BaseOrd[IF.InsR];
1087 if (M0 > R0)
1088 continue;
1089 if (M0 == R0) {
1090 if (M1 > R1)
1091 continue;
1092 if (M1 == R1) {
1093 if (MaxIF.Wdh > IF.Wdh)
1094 continue;
1095 if (MaxIF.Wdh == IF.Wdh && MaxIF.Off >= IF.Off)
1096 continue;
1099 // MaxIF < IF.
1100 MaxIF = IF;
1102 // Remove everything except the maximum candidate. All register sets
1103 // are empty, so no need to preserve anything.
1104 LL.clear();
1105 LL.push_back(std::make_pair(MaxIF, RegisterSet()));
1108 // Now, remove those whose sets of potentially removable registers are
1109 // contained in another IF candidate for VR. For example, given these
1110 // candidates for %45,
1111 // %45:
1112 // (%44,%41,#9,#8), { %42 }
1113 // (%43,%41,#9,#8), { %42 %44 }
1114 // remove the first one, since it is contained in the second one.
1115 for (unsigned i = 0, n = LL.size(); i < n; ) {
1116 const RegisterSet &RMi = LL[i].second;
1117 unsigned j = 0;
1118 while (j < n) {
1119 if (j != i && LL[j].second.includes(RMi))
1120 break;
1121 j++;
1123 if (j == n) { // RMi not contained in anything else.
1124 i++;
1125 continue;
1127 LL.erase(LL.begin()+i);
1128 n = LL.size();
1132 void HexagonGenInsert::pruneUsesTooFar(unsigned VR, const UnsignedMap &RPO,
1133 PairMapType &M) {
1134 IFMapType::iterator F = IFMap.find(VR);
1135 assert(F != IFMap.end());
1136 IFListType &LL = F->second;
1137 unsigned Cutoff = VRegDistCutoff;
1138 const MachineInstr *DefV = MRI->getVRegDef(VR);
1140 for (unsigned i = LL.size(); i > 0; --i) {
1141 unsigned SR = LL[i-1].first.SrcR, IR = LL[i-1].first.InsR;
1142 const MachineInstr *DefS = MRI->getVRegDef(SR);
1143 const MachineInstr *DefI = MRI->getVRegDef(IR);
1144 unsigned DSV = distance(DefS, DefV, RPO, M);
1145 if (DSV < Cutoff) {
1146 unsigned DIV = distance(DefI, DefV, RPO, M);
1147 if (DIV < Cutoff)
1148 continue;
1150 LL.erase(LL.begin()+(i-1));
1154 void HexagonGenInsert::pruneRegCopies(unsigned VR) {
1155 IFMapType::iterator F = IFMap.find(VR);
1156 assert(F != IFMap.end());
1157 IFListType &LL = F->second;
1159 auto IsCopy = [] (const IFRecordWithRegSet &IR) -> bool {
1160 return IR.first.Wdh == 32 && (IR.first.Off == 0 || IR.first.Off == 32);
1162 llvm::erase_if(LL, IsCopy);
1165 void HexagonGenInsert::pruneCandidates() {
1166 // Remove candidates that are not beneficial, regardless of the final
1167 // selection method.
1168 // First, remove candidates whose potentially removable set is a subset
1169 // of another candidate's set.
1170 for (const auto &I : IFMap)
1171 pruneCoveredSets(I.first);
1173 UnsignedMap RPO;
1175 using RPOTType = ReversePostOrderTraversal<const MachineFunction *>;
1177 RPOTType RPOT(MFN);
1178 unsigned RPON = 0;
1179 for (const auto &I : RPOT)
1180 RPO[I->getNumber()] = RPON++;
1182 PairMapType Memo; // Memoization map for distance calculation.
1183 // Remove candidates that would use registers defined too far away.
1184 for (const auto &I : IFMap)
1185 pruneUsesTooFar(I.first, RPO, Memo);
1187 pruneEmptyLists();
1189 for (const auto &I : IFMap)
1190 pruneRegCopies(I.first);
1193 namespace {
1195 // Class for comparing IF candidates for registers that have multiple of
1196 // them. The smaller the candidate, according to this ordering, the better.
1197 // First, compare the number of zeros in the associated potentially remova-
1198 // ble register sets. "Zero" indicates that the register is very likely to
1199 // become dead after this transformation.
1200 // Second, compare "averages", i.e. use-count per size. The lower wins.
1201 // After that, it does not really matter which one is smaller. Resolve
1202 // the tie in some deterministic way.
1203 struct IFOrdering {
1204 IFOrdering(const UnsignedMap &UC, const RegisterOrdering &BO)
1205 : UseC(UC), BaseOrd(BO) {}
1207 bool operator() (const IFRecordWithRegSet &A,
1208 const IFRecordWithRegSet &B) const;
1210 private:
1211 void stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1212 unsigned &Sum) const;
1214 const UnsignedMap &UseC;
1215 const RegisterOrdering &BaseOrd;
1218 } // end anonymous namespace
1220 bool IFOrdering::operator() (const IFRecordWithRegSet &A,
1221 const IFRecordWithRegSet &B) const {
1222 unsigned SizeA = 0, ZeroA = 0, SumA = 0;
1223 unsigned SizeB = 0, ZeroB = 0, SumB = 0;
1224 stats(A.second, SizeA, ZeroA, SumA);
1225 stats(B.second, SizeB, ZeroB, SumB);
1227 // We will pick the minimum element. The more zeros, the better.
1228 if (ZeroA != ZeroB)
1229 return ZeroA > ZeroB;
1230 // Compare SumA/SizeA with SumB/SizeB, lower is better.
1231 uint64_t AvgA = SumA*SizeB, AvgB = SumB*SizeA;
1232 if (AvgA != AvgB)
1233 return AvgA < AvgB;
1235 // The sets compare identical so far. Resort to comparing the IF records.
1236 // The actual values don't matter, this is only for determinism.
1237 unsigned OSA = BaseOrd[A.first.SrcR], OSB = BaseOrd[B.first.SrcR];
1238 if (OSA != OSB)
1239 return OSA < OSB;
1240 unsigned OIA = BaseOrd[A.first.InsR], OIB = BaseOrd[B.first.InsR];
1241 if (OIA != OIB)
1242 return OIA < OIB;
1243 if (A.first.Wdh != B.first.Wdh)
1244 return A.first.Wdh < B.first.Wdh;
1245 return A.first.Off < B.first.Off;
1248 void IFOrdering::stats(const RegisterSet &Rs, unsigned &Size, unsigned &Zero,
1249 unsigned &Sum) const {
1250 for (unsigned R = Rs.find_first(); R; R = Rs.find_next(R)) {
1251 UnsignedMap::const_iterator F = UseC.find(R);
1252 assert(F != UseC.end());
1253 unsigned UC = F->second;
1254 if (UC == 0)
1255 Zero++;
1256 Sum += UC;
1257 Size++;
1261 void HexagonGenInsert::selectCandidates() {
1262 // Some registers may have multiple valid candidates. Pick the best one
1263 // (or decide not to use any).
1265 // Compute the "removability" measure of R:
1266 // For each potentially removable register R, record the number of regis-
1267 // ters with IF candidates, where R appears in at least one set.
1268 RegisterSet AllRMs;
1269 UnsignedMap UseC, RemC;
1270 IFMapType::iterator End = IFMap.end();
1272 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1273 const IFListType &LL = I->second;
1274 RegisterSet TT;
1275 for (const auto &J : LL)
1276 TT.insert(J.second);
1277 for (unsigned R = TT.find_first(); R; R = TT.find_next(R))
1278 RemC[R]++;
1279 AllRMs.insert(TT);
1282 for (unsigned R = AllRMs.find_first(); R; R = AllRMs.find_next(R)) {
1283 using use_iterator = MachineRegisterInfo::use_nodbg_iterator;
1284 using InstrSet = SmallSet<const MachineInstr *, 16>;
1286 InstrSet UIs;
1287 // Count as the number of instructions in which R is used, not the
1288 // number of operands.
1289 use_iterator E = MRI->use_nodbg_end();
1290 for (use_iterator I = MRI->use_nodbg_begin(R); I != E; ++I)
1291 UIs.insert(I->getParent());
1292 unsigned C = UIs.size();
1293 // Calculate a measure, which is the number of instructions using R,
1294 // minus the "removability" count computed earlier.
1295 unsigned D = RemC[R];
1296 UseC[R] = (C > D) ? C-D : 0; // doz
1299 bool SelectAll0 = OptSelectAll0, SelectHas0 = OptSelectHas0;
1300 if (!SelectAll0 && !SelectHas0)
1301 SelectAll0 = true;
1303 // The smaller the number UseC for a given register R, the "less used"
1304 // R is aside from the opportunities for removal offered by generating
1305 // "insert" instructions.
1306 // Iterate over the IF map, and for those registers that have multiple
1307 // candidates, pick the minimum one according to IFOrdering.
1308 IFOrdering IFO(UseC, BaseOrd);
1309 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1310 IFListType &LL = I->second;
1311 if (LL.empty())
1312 continue;
1313 // Get the minimum element, remember it and clear the list. If the
1314 // element found is adequate, we will put it back on the list, other-
1315 // wise the list will remain empty, and the entry for this register
1316 // will be removed (i.e. this register will not be replaced by insert).
1317 IFListType::iterator MinI = llvm::min_element(LL, IFO);
1318 assert(MinI != LL.end());
1319 IFRecordWithRegSet M = *MinI;
1320 LL.clear();
1322 // We want to make sure that this replacement will have a chance to be
1323 // beneficial, and that means that we want to have indication that some
1324 // register will be removed. The most likely registers to be eliminated
1325 // are the use operands in the definition of I->first. Accept/reject a
1326 // candidate based on how many of its uses it can potentially eliminate.
1328 RegisterSet Us;
1329 const MachineInstr *DefI = MRI->getVRegDef(I->first);
1330 getInstrUses(DefI, Us);
1331 bool Accept = false;
1333 if (SelectAll0) {
1334 bool All0 = true;
1335 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1336 if (UseC[R] == 0)
1337 continue;
1338 All0 = false;
1339 break;
1341 Accept = All0;
1342 } else if (SelectHas0) {
1343 bool Has0 = false;
1344 for (unsigned R = Us.find_first(); R; R = Us.find_next(R)) {
1345 if (UseC[R] != 0)
1346 continue;
1347 Has0 = true;
1348 break;
1350 Accept = Has0;
1352 if (Accept)
1353 LL.push_back(M);
1356 // Remove candidates that add uses of removable registers, unless the
1357 // removable registers are among replacement candidates.
1358 // Recompute the removable registers, since some candidates may have
1359 // been eliminated.
1360 AllRMs.clear();
1361 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1362 const IFListType &LL = I->second;
1363 if (!LL.empty())
1364 AllRMs.insert(LL[0].second);
1366 for (IFMapType::iterator I = IFMap.begin(); I != End; ++I) {
1367 IFListType &LL = I->second;
1368 if (LL.empty())
1369 continue;
1370 unsigned SR = LL[0].first.SrcR, IR = LL[0].first.InsR;
1371 if (AllRMs[SR] || AllRMs[IR])
1372 LL.clear();
1375 pruneEmptyLists();
1378 bool HexagonGenInsert::generateInserts() {
1379 // Create a new register for each one from IFMap, and store them in the
1380 // map.
1381 UnsignedMap RegMap;
1382 for (auto &I : IFMap) {
1383 unsigned VR = I.first;
1384 const TargetRegisterClass *RC = MRI->getRegClass(VR);
1385 Register NewVR = MRI->createVirtualRegister(RC);
1386 RegMap[VR] = NewVR;
1389 // We can generate the "insert" instructions using potentially stale re-
1390 // gisters: SrcR and InsR for a given VR may be among other registers that
1391 // are also replaced. This is fine, we will do the mass "rauw" a bit later.
1392 for (auto &I : IFMap) {
1393 MachineInstr *MI = MRI->getVRegDef(I.first);
1394 MachineBasicBlock &B = *MI->getParent();
1395 DebugLoc DL = MI->getDebugLoc();
1396 unsigned NewR = RegMap[I.first];
1397 bool R32 = MRI->getRegClass(NewR) == &Hexagon::IntRegsRegClass;
1398 const MCInstrDesc &D = R32 ? HII->get(Hexagon::S2_insert)
1399 : HII->get(Hexagon::S2_insertp);
1400 IFRecord IF = I.second[0].first;
1401 unsigned Wdh = IF.Wdh, Off = IF.Off;
1402 unsigned InsS = 0;
1403 if (R32 && MRI->getRegClass(IF.InsR) == &Hexagon::DoubleRegsRegClass) {
1404 InsS = Hexagon::isub_lo;
1405 if (Off >= 32) {
1406 InsS = Hexagon::isub_hi;
1407 Off -= 32;
1410 // Advance to the proper location for inserting instructions. This could
1411 // be B.end().
1412 MachineBasicBlock::iterator At = MI;
1413 if (MI->isPHI())
1414 At = B.getFirstNonPHI();
1416 BuildMI(B, At, DL, D, NewR)
1417 .addReg(IF.SrcR)
1418 .addReg(IF.InsR, 0, InsS)
1419 .addImm(Wdh)
1420 .addImm(Off);
1422 MRI->clearKillFlags(IF.SrcR);
1423 MRI->clearKillFlags(IF.InsR);
1426 for (const auto &I : IFMap) {
1427 MachineInstr *DefI = MRI->getVRegDef(I.first);
1428 MRI->replaceRegWith(I.first, RegMap[I.first]);
1429 DefI->eraseFromParent();
1432 return true;
1435 bool HexagonGenInsert::removeDeadCode(MachineDomTreeNode *N) {
1436 bool Changed = false;
1438 for (auto *DTN : children<MachineDomTreeNode*>(N))
1439 Changed |= removeDeadCode(DTN);
1441 MachineBasicBlock *B = N->getBlock();
1442 std::vector<MachineInstr*> Instrs;
1443 for (MachineInstr &MI : llvm::reverse(*B))
1444 Instrs.push_back(&MI);
1446 for (MachineInstr *MI : Instrs) {
1447 unsigned Opc = MI->getOpcode();
1448 // Do not touch lifetime markers. This is why the target-independent DCE
1449 // cannot be used.
1450 if (Opc == TargetOpcode::LIFETIME_START ||
1451 Opc == TargetOpcode::LIFETIME_END)
1452 continue;
1453 bool Store = false;
1454 if (MI->isInlineAsm() || !MI->isSafeToMove(Store))
1455 continue;
1457 bool AllDead = true;
1458 SmallVector<unsigned,2> Regs;
1459 for (const MachineOperand &MO : MI->operands()) {
1460 if (!MO.isReg() || !MO.isDef())
1461 continue;
1462 Register R = MO.getReg();
1463 if (!R.isVirtual() || !MRI->use_nodbg_empty(R)) {
1464 AllDead = false;
1465 break;
1467 Regs.push_back(R);
1469 if (!AllDead)
1470 continue;
1472 B->erase(MI);
1473 for (unsigned Reg : Regs)
1474 MRI->markUsesInDebugValueAsUndef(Reg);
1475 Changed = true;
1478 return Changed;
1481 bool HexagonGenInsert::runOnMachineFunction(MachineFunction &MF) {
1482 if (skipFunction(MF.getFunction()))
1483 return false;
1485 bool Timing = OptTiming, TimingDetail = Timing && OptTimingDetail;
1486 bool Changed = false;
1488 // Verify: one, but not both.
1489 assert(!OptSelectAll0 || !OptSelectHas0);
1491 IFMap.clear();
1492 BaseOrd.clear();
1493 CellOrd.clear();
1495 const auto &ST = MF.getSubtarget<HexagonSubtarget>();
1496 HII = ST.getInstrInfo();
1497 HRI = ST.getRegisterInfo();
1498 MFN = &MF;
1499 MRI = &MF.getRegInfo();
1500 MDT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
1502 // Clean up before any further processing, so that dead code does not
1503 // get used in a newly generated "insert" instruction. Have a custom
1504 // version of DCE that preserves lifetime markers. Without it, merging
1505 // of stack objects can fail to recognize and merge disjoint objects
1506 // leading to unnecessary stack growth.
1507 Changed = removeDeadCode(MDT->getRootNode());
1509 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
1510 BitTracker BTLoc(HE, MF);
1511 BTLoc.trace(isDebug());
1512 BTLoc.run();
1513 CellMapShadow MS(BTLoc);
1514 CMS = &MS;
1516 buildOrderingMF(BaseOrd);
1517 buildOrderingBT(BaseOrd, CellOrd);
1519 if (isDebug()) {
1520 dbgs() << "Cell ordering:\n";
1521 for (const auto &I : CellOrd) {
1522 unsigned VR = I.first, Pos = I.second;
1523 dbgs() << printReg(VR, HRI) << " -> " << Pos << "\n";
1527 // Collect candidates for conversion into the insert forms.
1528 MachineBasicBlock *RootB = MDT->getRoot();
1529 OrderedRegisterList AvailR(CellOrd);
1531 const char *const TGName = "hexinsert";
1532 const char *const TGDesc = "Generate Insert Instructions";
1535 NamedRegionTimer _T("collection", "collection", TGName, TGDesc,
1536 TimingDetail);
1537 collectInBlock(RootB, AvailR);
1538 // Complete the information gathered in IFMap.
1539 computeRemovableRegisters();
1542 if (isDebug()) {
1543 dbgs() << "Candidates after collection:\n";
1544 dump_map();
1547 if (IFMap.empty())
1548 return Changed;
1551 NamedRegionTimer _T("pruning", "pruning", TGName, TGDesc, TimingDetail);
1552 pruneCandidates();
1555 if (isDebug()) {
1556 dbgs() << "Candidates after pruning:\n";
1557 dump_map();
1560 if (IFMap.empty())
1561 return Changed;
1564 NamedRegionTimer _T("selection", "selection", TGName, TGDesc, TimingDetail);
1565 selectCandidates();
1568 if (isDebug()) {
1569 dbgs() << "Candidates after selection:\n";
1570 dump_map();
1573 // Filter out vregs beyond the cutoff.
1574 if (VRegIndexCutoff.getPosition()) {
1575 unsigned Cutoff = VRegIndexCutoff;
1577 using IterListType = SmallVector<IFMapType::iterator, 16>;
1579 IterListType Out;
1580 for (IFMapType::iterator I = IFMap.begin(), E = IFMap.end(); I != E; ++I) {
1581 unsigned Idx = Register::virtReg2Index(I->first);
1582 if (Idx >= Cutoff)
1583 Out.push_back(I);
1585 for (const auto &It : Out)
1586 IFMap.erase(It);
1588 if (IFMap.empty())
1589 return Changed;
1592 NamedRegionTimer _T("generation", "generation", TGName, TGDesc,
1593 TimingDetail);
1594 generateInserts();
1597 return true;
1600 FunctionPass *llvm::createHexagonGenInsert() {
1601 return new HexagonGenInsert();
1604 //===----------------------------------------------------------------------===//
1605 // Public Constructor Functions
1606 //===----------------------------------------------------------------------===//
1608 INITIALIZE_PASS_BEGIN(HexagonGenInsert, "hexinsert",
1609 "Hexagon generate \"insert\" instructions", false, false)
1610 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
1611 INITIALIZE_PASS_END(HexagonGenInsert, "hexinsert",
1612 "Hexagon generate \"insert\" instructions", false, false)