1 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the Hexagon implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
14 #define LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H
16 #include "MCTargetDesc/HexagonBaseInfo.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/TargetInstrInfo.h"
21 #include "llvm/CodeGen/ValueTypes.h"
22 #include "llvm/CodeGenTypes/MachineValueType.h"
26 #define GET_INSTRINFO_HEADER
27 #include "HexagonGenInstrInfo.inc"
31 class HexagonSubtarget
;
32 class MachineBranchProbabilityInfo
;
33 class MachineFunction
;
36 class TargetRegisterInfo
;
38 class HexagonInstrInfo
: public HexagonGenInstrInfo
{
39 const HexagonSubtarget
&Subtarget
;
41 enum BundleAttribute
{
42 memShufDisabledMask
= 0x4
45 virtual void anchor();
48 explicit HexagonInstrInfo(HexagonSubtarget
&ST
);
50 /// TargetInstrInfo overrides.
52 /// If the specified machine instruction is a direct
53 /// load from a stack slot, return the virtual or physical register number of
54 /// the destination along with the FrameIndex of the loaded stack slot. If
55 /// not, return 0. This predicate must return 0 if the instruction has
56 /// any side effects other than loading from the stack slot.
57 Register
isLoadFromStackSlot(const MachineInstr
&MI
,
58 int &FrameIndex
) const override
;
60 /// If the specified machine instruction is a direct
61 /// store to a stack slot, return the virtual or physical register number of
62 /// the source reg along with the FrameIndex of the loaded stack slot. If
63 /// not, return 0. This predicate must return 0 if the instruction has
64 /// any side effects other than storing to the stack slot.
65 Register
isStoreToStackSlot(const MachineInstr
&MI
,
66 int &FrameIndex
) const override
;
68 /// Check if the instruction or the bundle of instructions has
69 /// load from stack slots. Return the frameindex and machine memory operand
71 bool hasLoadFromStackSlot(
72 const MachineInstr
&MI
,
73 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const override
;
75 /// Check if the instruction or the bundle of instructions has
76 /// store to stack slots. Return the frameindex and machine memory operand
78 bool hasStoreToStackSlot(
79 const MachineInstr
&MI
,
80 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const override
;
82 /// Analyze the branching code at the end of MBB, returning
83 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
84 /// implemented for a target). Upon success, this returns false and returns
85 /// with the following information in various cases:
87 /// 1. If this block ends with no branches (it just falls through to its succ)
88 /// just return false, leaving TBB/FBB null.
89 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
90 /// the destination block.
91 /// 3. If this block ends with a conditional branch and it falls through to a
92 /// successor block, it sets TBB to be the branch destination block and a
93 /// list of operands that evaluate the condition. These operands can be
94 /// passed to other TargetInstrInfo methods to create new branches.
95 /// 4. If this block ends with a conditional branch followed by an
96 /// unconditional branch, it returns the 'true' destination in TBB, the
97 /// 'false' destination in FBB, and a list of operands that evaluate the
98 /// condition. These operands can be passed to other TargetInstrInfo
99 /// methods to create new branches.
101 /// Note that removeBranch and insertBranch must be implemented to support
102 /// cases where this method returns success.
104 /// If AllowModify is true, then this routine is allowed to modify the basic
105 /// block (e.g. delete instructions after the unconditional branch).
106 bool analyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
107 MachineBasicBlock
*&FBB
,
108 SmallVectorImpl
<MachineOperand
> &Cond
,
109 bool AllowModify
) const override
;
111 /// Remove the branching code at the end of the specific MBB.
112 /// This is only invoked in cases where analyzeBranch returns success. It
113 /// returns the number of instructions that were removed.
114 unsigned removeBranch(MachineBasicBlock
&MBB
,
115 int *BytesRemoved
= nullptr) const override
;
117 /// Insert branch code into the end of the specified MachineBasicBlock.
118 /// The operands to this method are the same as those
119 /// returned by analyzeBranch. This is only invoked in cases where
120 /// analyzeBranch returns success. It returns the number of instructions
123 /// It is also invoked by tail merging to add unconditional branches in
124 /// cases where analyzeBranch doesn't apply because there was no original
125 /// branch to analyze. At least this much must be implemented, else tail
126 /// merging needs to be disabled.
127 unsigned insertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
128 MachineBasicBlock
*FBB
, ArrayRef
<MachineOperand
> Cond
,
130 int *BytesAdded
= nullptr) const override
;
132 /// Analyze loop L, which must be a single-basic-block loop, and if the
133 /// conditions can be understood enough produce a PipelinerLoopInfo object.
134 std::unique_ptr
<PipelinerLoopInfo
>
135 analyzeLoopForPipelining(MachineBasicBlock
*LoopBB
) const override
;
137 /// Return true if it's profitable to predicate
138 /// instructions with accumulated instruction latency of "NumCycles"
139 /// of the specified basic block, where the probability of the instructions
140 /// being executed is given by Probability, and Confidence is a measure
141 /// of our confidence that it will be properly predicted.
142 bool isProfitableToIfCvt(MachineBasicBlock
&MBB
, unsigned NumCycles
,
143 unsigned ExtraPredCycles
,
144 BranchProbability Probability
) const override
;
146 /// Second variant of isProfitableToIfCvt. This one
147 /// checks for the case where two basic blocks from true and false path
148 /// of a if-then-else (diamond) are predicated on mutally exclusive
149 /// predicates, where the probability of the true path being taken is given
150 /// by Probability, and Confidence is a measure of our confidence that it
151 /// will be properly predicted.
152 bool isProfitableToIfCvt(MachineBasicBlock
&TMBB
,
153 unsigned NumTCycles
, unsigned ExtraTCycles
,
154 MachineBasicBlock
&FMBB
,
155 unsigned NumFCycles
, unsigned ExtraFCycles
,
156 BranchProbability Probability
) const override
;
158 /// Return true if it's profitable for if-converter to duplicate instructions
159 /// of specified accumulated instruction latencies in the specified MBB to
160 /// enable if-conversion.
161 /// The probability of the instructions being executed is given by
162 /// Probability, and Confidence is a measure of our confidence that it
163 /// will be properly predicted.
164 bool isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
, unsigned NumCycles
,
165 BranchProbability Probability
) const override
;
167 /// Emit instructions to copy a pair of physical registers.
169 /// This function should support copies within any legal register class as
170 /// well as any cross-class copies created during instruction selection.
172 /// The source and destination registers may overlap, which may require a
173 /// careful implementation when multiple copy instructions are required for
174 /// large registers. See for example the ARM target.
175 void copyPhysReg(MachineBasicBlock
&MBB
, MachineBasicBlock::iterator I
,
176 const DebugLoc
&DL
, MCRegister DestReg
, MCRegister SrcReg
,
177 bool KillSrc
, bool RenamableDest
= false,
178 bool RenamableSrc
= false) const override
;
180 /// Store the specified register of the given register class to the specified
181 /// stack frame index. The store instruction is to be added to the given
182 /// machine basic block before the specified machine instruction. If isKill
183 /// is true, the register operand is the last use and must be marked kill.
184 void storeRegToStackSlot(MachineBasicBlock
&MBB
,
185 MachineBasicBlock::iterator MBBI
, Register SrcReg
,
186 bool isKill
, int FrameIndex
,
187 const TargetRegisterClass
*RC
,
188 const TargetRegisterInfo
*TRI
,
189 Register VReg
) const override
;
191 /// Load the specified register of the given register class from the specified
192 /// stack frame index. The load instruction is to be added to the given
193 /// machine basic block before the specified machine instruction.
194 void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
195 MachineBasicBlock::iterator MBBI
, Register DestReg
,
196 int FrameIndex
, const TargetRegisterClass
*RC
,
197 const TargetRegisterInfo
*TRI
,
198 Register VReg
) const override
;
200 /// This function is called for all pseudo instructions
201 /// that remain after register allocation. Many pseudo instructions are
202 /// created to help register allocation. This is the place to convert them
203 /// into real instructions. The target can edit MI in place, or it can insert
204 /// new instructions and erase MI. The function should return true if
205 /// anything was changed.
206 bool expandPostRAPseudo(MachineInstr
&MI
) const override
;
208 /// Get the base register and byte offset of a load/store instr.
209 bool getMemOperandsWithOffsetWidth(
210 const MachineInstr
&LdSt
,
211 SmallVectorImpl
<const MachineOperand
*> &BaseOps
, int64_t &Offset
,
212 bool &OffsetIsScalable
, LocationSize
&Width
,
213 const TargetRegisterInfo
*TRI
) const override
;
215 /// Reverses the branch condition of the specified condition list,
216 /// returning false on success and true if it cannot be reversed.
217 bool reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
)
220 /// Insert a noop into the instruction stream at the specified point.
221 void insertNoop(MachineBasicBlock
&MBB
,
222 MachineBasicBlock::iterator MI
) const override
;
224 /// Returns true if the instruction is already predicated.
225 bool isPredicated(const MachineInstr
&MI
) const override
;
227 /// Return true for post-incremented instructions.
228 bool isPostIncrement(const MachineInstr
&MI
) const override
;
230 /// Convert the instruction into a predicated instruction.
231 /// It returns true if the operation was successful.
232 bool PredicateInstruction(MachineInstr
&MI
,
233 ArrayRef
<MachineOperand
> Cond
) const override
;
235 /// Returns true if the first specified predicate
236 /// subsumes the second, e.g. GE subsumes GT.
237 bool SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
238 ArrayRef
<MachineOperand
> Pred2
) const override
;
240 /// If the specified instruction defines any predicate
241 /// or condition code register(s) used for predication, returns true as well
242 /// as the definition predicate(s) by reference.
243 bool ClobbersPredicate(MachineInstr
&MI
, std::vector
<MachineOperand
> &Pred
,
244 bool SkipDead
) const override
;
246 /// Return true if the specified instruction can be predicated.
247 /// By default, this returns true for every instruction with a
248 /// PredicateOperand.
249 bool isPredicable(const MachineInstr
&MI
) const override
;
251 /// Test if the given instruction should be considered a scheduling boundary.
252 /// This primarily includes labels and terminators.
253 bool isSchedulingBoundary(const MachineInstr
&MI
,
254 const MachineBasicBlock
*MBB
,
255 const MachineFunction
&MF
) const override
;
257 /// Measure the specified inline asm to determine an approximation of its
259 unsigned getInlineAsmLength(
261 const MCAsmInfo
&MAI
,
262 const TargetSubtargetInfo
*STI
= nullptr) const override
;
264 /// Allocate and return a hazard recognizer to use for this target when
265 /// scheduling the machine instructions after register allocation.
266 ScheduleHazardRecognizer
*
267 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*II
,
268 const ScheduleDAG
*DAG
) const override
;
270 /// For a comparison instruction, return the source registers
271 /// in SrcReg and SrcReg2 if having two register operands, and the value it
272 /// compares against in CmpValue. Return true if the comparison instruction
274 bool analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
275 Register
&SrcReg2
, int64_t &Mask
,
276 int64_t &Value
) const override
;
278 /// Compute the instruction latency of a given instruction.
279 /// If the instruction has higher cost when predicated, it's returned via
281 unsigned getInstrLatency(const InstrItineraryData
*ItinData
,
282 const MachineInstr
&MI
,
283 unsigned *PredCost
= nullptr) const override
;
285 /// Create machine specific model for scheduling.
287 CreateTargetScheduleState(const TargetSubtargetInfo
&STI
) const override
;
289 // Sometimes, it is possible for the target
290 // to tell, even without aliasing information, that two MIs access different
291 // memory addresses. This function returns true if two MIs access different
292 // memory addresses and false otherwise.
294 areMemAccessesTriviallyDisjoint(const MachineInstr
&MIa
,
295 const MachineInstr
&MIb
) const override
;
297 /// For instructions with a base and offset, return the position of the
298 /// base register and offset operands.
299 bool getBaseAndOffsetPosition(const MachineInstr
&MI
, unsigned &BasePos
,
300 unsigned &OffsetPos
) const override
;
302 /// If the instruction is an increment of a constant value, return the amount.
303 bool getIncrementValue(const MachineInstr
&MI
, int &Value
) const override
;
305 /// getOperandLatency - Compute and return the use operand latency of a given
306 /// pair of def and use.
307 /// In most cases, the static scheduling itinerary was enough to determine the
308 /// operand latency. But it may not be possible for instructions with variable
309 /// number of defs / uses.
311 /// This is a raw interface to the itinerary that may be directly overriden by
312 /// a target. Use computeOperandLatency to get the best estimate of latency.
313 std::optional
<unsigned> getOperandLatency(const InstrItineraryData
*ItinData
,
314 const MachineInstr
&DefMI
,
316 const MachineInstr
&UseMI
,
317 unsigned UseIdx
) const override
;
319 /// Decompose the machine operand's target flags into two values - the direct
320 /// target flag value and any of bit flags that are applied.
321 std::pair
<unsigned, unsigned>
322 decomposeMachineOperandsTargetFlags(unsigned TF
) const override
;
324 /// Return an array that contains the direct target flag values and their
327 /// MIR Serialization is able to serialize only the target flags that are
328 /// defined by this method.
329 ArrayRef
<std::pair
<unsigned, const char *>>
330 getSerializableDirectMachineOperandTargetFlags() const override
;
332 /// Return an array that contains the bitmask target flag values and their
335 /// MIR Serialization is able to serialize only the target flags that are
336 /// defined by this method.
337 ArrayRef
<std::pair
<unsigned, const char *>>
338 getSerializableBitmaskMachineOperandTargetFlags() const override
;
340 bool isTailCall(const MachineInstr
&MI
) const override
;
341 bool isAsCheapAsAMove(const MachineInstr
&MI
) const override
;
343 // Return true if the instruction should be sunk by MachineSink.
344 // MachineSink determines on its own whether the instruction is safe to sink;
345 // this gives the target a hook to override the default behavior with regards
346 // to which instructions should be sunk.
347 bool shouldSink(const MachineInstr
&MI
) const override
;
349 /// HexagonInstrInfo specifics.
351 Register
createVR(MachineFunction
*MF
, MVT VT
) const;
352 MachineInstr
*findLoopInstr(MachineBasicBlock
*BB
, unsigned EndLoopOp
,
353 MachineBasicBlock
*TargetBB
,
354 SmallPtrSet
<MachineBasicBlock
*, 8> &Visited
) const;
356 bool isAbsoluteSet(const MachineInstr
&MI
) const;
357 bool isAccumulator(const MachineInstr
&MI
) const;
358 bool isAddrModeWithOffset(const MachineInstr
&MI
) const;
359 bool isBaseImmOffset(const MachineInstr
&MI
) const;
360 bool isComplex(const MachineInstr
&MI
) const;
361 bool isCompoundBranchInstr(const MachineInstr
&MI
) const;
362 bool isConstExtended(const MachineInstr
&MI
) const;
363 bool isDeallocRet(const MachineInstr
&MI
) const;
364 bool isDependent(const MachineInstr
&ProdMI
,
365 const MachineInstr
&ConsMI
) const;
366 bool isDotCurInst(const MachineInstr
&MI
) const;
367 bool isDotNewInst(const MachineInstr
&MI
) const;
368 bool isDuplexPair(const MachineInstr
&MIa
, const MachineInstr
&MIb
) const;
369 bool isEndLoopN(unsigned Opcode
) const;
370 bool isExpr(unsigned OpType
) const;
371 bool isExtendable(const MachineInstr
&MI
) const;
372 bool isExtended(const MachineInstr
&MI
) const;
373 bool isFloat(const MachineInstr
&MI
) const;
374 bool isHVXMemWithAIndirect(const MachineInstr
&I
,
375 const MachineInstr
&J
) const;
376 bool isIndirectCall(const MachineInstr
&MI
) const;
377 bool isIndirectL4Return(const MachineInstr
&MI
) const;
378 bool isJumpR(const MachineInstr
&MI
) const;
379 bool isJumpWithinBranchRange(const MachineInstr
&MI
, unsigned offset
) const;
380 bool isLateSourceInstr(const MachineInstr
&MI
) const;
381 bool isLoopN(const MachineInstr
&MI
) const;
382 bool isMemOp(const MachineInstr
&MI
) const;
383 bool isNewValue(const MachineInstr
&MI
) const;
384 bool isNewValue(unsigned Opcode
) const;
385 bool isNewValueInst(const MachineInstr
&MI
) const;
386 bool isNewValueJump(const MachineInstr
&MI
) const;
387 bool isNewValueJump(unsigned Opcode
) const;
388 bool isNewValueStore(const MachineInstr
&MI
) const;
389 bool isNewValueStore(unsigned Opcode
) const;
390 bool isOperandExtended(const MachineInstr
&MI
, unsigned OperandNum
) const;
391 bool isPredicatedNew(const MachineInstr
&MI
) const;
392 bool isPredicatedNew(unsigned Opcode
) const;
393 bool isPredicatedTrue(const MachineInstr
&MI
) const;
394 bool isPredicatedTrue(unsigned Opcode
) const;
395 bool isPredicated(unsigned Opcode
) const;
396 bool isPredicateLate(unsigned Opcode
) const;
397 bool isPredictedTaken(unsigned Opcode
) const;
398 bool isPureSlot0(const MachineInstr
&MI
) const;
399 bool isRestrictNoSlot1Store(const MachineInstr
&MI
) const;
400 bool isSaveCalleeSavedRegsCall(const MachineInstr
&MI
) const;
401 bool isSignExtendingLoad(const MachineInstr
&MI
) const;
402 bool isSolo(const MachineInstr
&MI
) const;
403 bool isSpillPredRegOp(const MachineInstr
&MI
) const;
404 bool isTC1(const MachineInstr
&MI
) const;
405 bool isTC2(const MachineInstr
&MI
) const;
406 bool isTC2Early(const MachineInstr
&MI
) const;
407 bool isTC4x(const MachineInstr
&MI
) const;
408 bool isToBeScheduledASAP(const MachineInstr
&MI1
,
409 const MachineInstr
&MI2
) const;
410 bool isHVXVec(const MachineInstr
&MI
) const;
411 bool isValidAutoIncImm(const EVT VT
, const int Offset
) const;
412 bool isValidOffset(unsigned Opcode
, int Offset
,
413 const TargetRegisterInfo
*TRI
, bool Extend
= true) const;
414 bool isVecAcc(const MachineInstr
&MI
) const;
415 bool isVecALU(const MachineInstr
&MI
) const;
416 bool isVecUsableNextPacket(const MachineInstr
&ProdMI
,
417 const MachineInstr
&ConsMI
) const;
418 bool isZeroExtendingLoad(const MachineInstr
&MI
) const;
420 bool addLatencyToSchedule(const MachineInstr
&MI1
,
421 const MachineInstr
&MI2
) const;
422 bool canExecuteInBundle(const MachineInstr
&First
,
423 const MachineInstr
&Second
) const;
424 bool doesNotReturn(const MachineInstr
&CallMI
) const;
425 bool hasEHLabel(const MachineBasicBlock
*B
) const;
426 bool hasNonExtEquivalent(const MachineInstr
&MI
) const;
427 bool hasPseudoInstrPair(const MachineInstr
&MI
) const;
428 bool hasUncondBranch(const MachineBasicBlock
*B
) const;
429 bool mayBeCurLoad(const MachineInstr
&MI
) const;
430 bool mayBeNewStore(const MachineInstr
&MI
) const;
431 bool producesStall(const MachineInstr
&ProdMI
,
432 const MachineInstr
&ConsMI
) const;
433 bool producesStall(const MachineInstr
&MI
,
434 MachineBasicBlock::const_instr_iterator MII
) const;
435 bool predCanBeUsedAsDotNew(const MachineInstr
&MI
, Register PredReg
) const;
436 bool PredOpcodeHasJMP_c(unsigned Opcode
) const;
437 bool predOpcodeHasNot(ArrayRef
<MachineOperand
> Cond
) const;
439 unsigned getAddrMode(const MachineInstr
&MI
) const;
440 MachineOperand
*getBaseAndOffset(const MachineInstr
&MI
, int64_t &Offset
,
441 LocationSize
&AccessSize
) const;
442 SmallVector
<MachineInstr
*,2> getBranchingInstrs(MachineBasicBlock
& MBB
) const;
443 unsigned getCExtOpNum(const MachineInstr
&MI
) const;
444 HexagonII::CompoundGroup
445 getCompoundCandidateGroup(const MachineInstr
&MI
) const;
446 unsigned getCompoundOpcode(const MachineInstr
&GA
,
447 const MachineInstr
&GB
) const;
448 int getDuplexOpcode(const MachineInstr
&MI
, bool ForBigCore
= true) const;
449 int getCondOpcode(int Opc
, bool sense
) const;
450 int getDotCurOp(const MachineInstr
&MI
) const;
451 int getNonDotCurOp(const MachineInstr
&MI
) const;
452 int getDotNewOp(const MachineInstr
&MI
) const;
453 int getDotNewPredJumpOp(const MachineInstr
&MI
,
454 const MachineBranchProbabilityInfo
*MBPI
) const;
455 int getDotNewPredOp(const MachineInstr
&MI
,
456 const MachineBranchProbabilityInfo
*MBPI
) const;
457 int getDotOldOp(const MachineInstr
&MI
) const;
458 HexagonII::SubInstructionGroup
getDuplexCandidateGroup(const MachineInstr
&MI
)
460 short getEquivalentHWInstr(const MachineInstr
&MI
) const;
461 unsigned getInstrTimingClassLatency(const InstrItineraryData
*ItinData
,
462 const MachineInstr
&MI
) const;
463 bool getInvertedPredSense(SmallVectorImpl
<MachineOperand
> &Cond
) const;
464 unsigned getInvertedPredicatedOpcode(const int Opc
) const;
465 int getMaxValue(const MachineInstr
&MI
) const;
466 unsigned getMemAccessSize(const MachineInstr
&MI
) const;
467 int getMinValue(const MachineInstr
&MI
) const;
468 short getNonExtOpcode(const MachineInstr
&MI
) const;
469 bool getPredReg(ArrayRef
<MachineOperand
> Cond
, Register
&PredReg
,
470 unsigned &PredRegPos
, unsigned &PredRegFlags
) const;
471 short getPseudoInstrPair(const MachineInstr
&MI
) const;
472 short getRegForm(const MachineInstr
&MI
) const;
473 unsigned getSize(const MachineInstr
&MI
) const;
474 uint64_t getType(const MachineInstr
&MI
) const;
475 InstrStage::FuncUnits
getUnits(const MachineInstr
&MI
) const;
477 MachineBasicBlock::instr_iterator
expandVGatherPseudo(MachineInstr
&MI
) const;
479 /// getInstrTimingClassLatency - Compute the instruction latency of a given
480 /// instruction using Timing Class information, if available.
481 unsigned nonDbgBBSize(const MachineBasicBlock
*BB
) const;
482 unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead
) const;
484 void immediateExtend(MachineInstr
&MI
) const;
485 bool invertAndChangeJumpTarget(MachineInstr
&MI
,
486 MachineBasicBlock
*NewTarget
) const;
487 void genAllInsnTimingClasses(MachineFunction
&MF
) const;
488 bool reversePredSense(MachineInstr
&MI
) const;
489 unsigned reversePrediction(unsigned Opcode
) const;
490 bool validateBranchCond(const ArrayRef
<MachineOperand
> &Cond
) const;
492 void setBundleNoShuf(MachineBasicBlock::instr_iterator MIB
) const;
493 bool getBundleNoShuf(const MachineInstr
&MIB
) const;
495 // When TinyCore with Duplexes is enabled, this function is used to translate
496 // tiny-instructions to big-instructions and vice versa to get the slot
498 void changeDuplexOpcode(MachineBasicBlock::instr_iterator MII
,
499 bool ToBigInstrs
) const;
500 void translateInstrsForDup(MachineFunction
&MF
,
501 bool ToBigInstrs
= true) const;
502 void translateInstrsForDup(MachineBasicBlock::instr_iterator MII
,
503 bool ToBigInstrs
) const;
505 // Addressing mode relations.
506 short changeAddrMode_abs_io(short Opc
) const;
507 short changeAddrMode_io_abs(short Opc
) const;
508 short changeAddrMode_io_pi(short Opc
) const;
509 short changeAddrMode_io_rr(short Opc
) const;
510 short changeAddrMode_pi_io(short Opc
) const;
511 short changeAddrMode_rr_io(short Opc
) const;
512 short changeAddrMode_rr_ur(short Opc
) const;
513 short changeAddrMode_ur_rr(short Opc
) const;
515 short changeAddrMode_abs_io(const MachineInstr
&MI
) const {
516 return changeAddrMode_abs_io(MI
.getOpcode());
518 short changeAddrMode_io_abs(const MachineInstr
&MI
) const {
519 return changeAddrMode_io_abs(MI
.getOpcode());
521 short changeAddrMode_io_rr(const MachineInstr
&MI
) const {
522 return changeAddrMode_io_rr(MI
.getOpcode());
524 short changeAddrMode_rr_io(const MachineInstr
&MI
) const {
525 return changeAddrMode_rr_io(MI
.getOpcode());
527 short changeAddrMode_rr_ur(const MachineInstr
&MI
) const {
528 return changeAddrMode_rr_ur(MI
.getOpcode());
530 short changeAddrMode_ur_rr(const MachineInstr
&MI
) const {
531 return changeAddrMode_ur_rr(MI
.getOpcode());
534 MCInst
getNop() const override
;
537 } // end namespace llvm
539 #endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONINSTRINFO_H