AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / Hexagon / HexagonSubtarget.cpp
blobb340bfee3d7e216085e97ca335dc51a903b22c96
1 //===- HexagonSubtarget.cpp - Hexagon Subtarget Information ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Hexagon specific subclass of TargetSubtarget.
11 //===----------------------------------------------------------------------===//
13 #include "HexagonSubtarget.h"
14 #include "HexagonInstrInfo.h"
15 #include "HexagonRegisterInfo.h"
16 #include "MCTargetDesc/HexagonMCTargetDesc.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineOperand.h"
23 #include "llvm/CodeGen/MachineScheduler.h"
24 #include "llvm/CodeGen/ScheduleDAG.h"
25 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
26 #include "llvm/IR/IntrinsicsHexagon.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <map>
33 #include <optional>
35 using namespace llvm;
37 #define DEBUG_TYPE "hexagon-subtarget"
39 #define GET_SUBTARGETINFO_CTOR
40 #define GET_SUBTARGETINFO_TARGET_DESC
41 #include "HexagonGenSubtargetInfo.inc"
43 static cl::opt<bool> EnableBSBSched("enable-bsb-sched", cl::Hidden,
44 cl::init(true));
46 static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched", cl::Hidden,
47 cl::init(false));
49 static cl::opt<bool>
50 EnableDotCurSched("enable-cur-sched", cl::Hidden, cl::init(true),
51 cl::desc("Enable the scheduler to generate .cur"));
53 static cl::opt<bool>
54 DisableHexagonMISched("disable-hexagon-misched", cl::Hidden,
55 cl::desc("Disable Hexagon MI Scheduling"));
57 static cl::opt<bool> OverrideLongCalls(
58 "hexagon-long-calls", cl::Hidden,
59 cl::desc("If present, forces/disables the use of long calls"));
61 static cl::opt<bool>
62 EnablePredicatedCalls("hexagon-pred-calls", cl::Hidden,
63 cl::desc("Consider calls to be predicable"));
65 static cl::opt<bool> SchedPredsCloser("sched-preds-closer", cl::Hidden,
66 cl::init(true));
68 static cl::opt<bool> SchedRetvalOptimization("sched-retval-optimization",
69 cl::Hidden, cl::init(true));
71 static cl::opt<bool> EnableCheckBankConflict(
72 "hexagon-check-bank-conflict", cl::Hidden, cl::init(true),
73 cl::desc("Enable checking for cache bank conflicts"));
75 HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
76 StringRef FS, const TargetMachine &TM)
77 : HexagonGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
78 OptLevel(TM.getOptLevel()),
79 CPUString(std::string(Hexagon_MC::selectHexagonCPU(CPU))),
80 TargetTriple(TT), InstrInfo(initializeSubtargetDependencies(CPU, FS)),
81 RegInfo(getHwMode()), TLInfo(TM, *this),
82 InstrItins(getInstrItineraryForCPU(CPUString)) {
83 Hexagon_MC::addArchSubtarget(this, FS);
84 // Beware of the default constructor of InstrItineraryData: it will
85 // reset all members to 0.
86 assert(InstrItins.Itineraries != nullptr && "InstrItins not initialized");
89 HexagonSubtarget &
90 HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
91 std::optional<Hexagon::ArchEnum> ArchVer = Hexagon::getCpu(CPUString);
92 if (ArchVer)
93 HexagonArchVersion = *ArchVer;
94 else
95 llvm_unreachable("Unrecognized Hexagon processor version");
97 UseHVX128BOps = false;
98 UseHVX64BOps = false;
99 UseAudioOps = false;
100 UseLongCalls = false;
102 SubtargetFeatures Features(FS);
104 // Turn on QFloat if the HVX version is v68+.
105 // The function ParseSubtargetFeatures will set feature bits and initialize
106 // subtarget's variables all in one, so there isn't a good way to preprocess
107 // the feature string, other than by tinkering with it directly.
108 auto IsQFloatFS = [](StringRef F) {
109 return F == "+hvx-qfloat" || F == "-hvx-qfloat";
111 if (!llvm::count_if(Features.getFeatures(), IsQFloatFS)) {
112 auto getHvxVersion = [&Features](StringRef FS) -> StringRef {
113 for (StringRef F : llvm::reverse(Features.getFeatures())) {
114 if (F.starts_with("+hvxv"))
115 return F;
117 for (StringRef F : llvm::reverse(Features.getFeatures())) {
118 if (F == "-hvx")
119 return StringRef();
120 if (F.starts_with("+hvx") || F == "-hvx")
121 return F.take_front(4); // Return "+hvx" or "-hvx".
123 return StringRef();
126 bool AddQFloat = false;
127 StringRef HvxVer = getHvxVersion(FS);
128 if (HvxVer.starts_with("+hvxv")) {
129 int Ver = 0;
130 if (!HvxVer.drop_front(5).consumeInteger(10, Ver) && Ver >= 68)
131 AddQFloat = true;
132 } else if (HvxVer == "+hvx") {
133 if (hasV68Ops())
134 AddQFloat = true;
137 if (AddQFloat)
138 Features.AddFeature("+hvx-qfloat");
141 std::string FeatureString = Features.getString();
142 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, FeatureString);
144 if (useHVXV68Ops())
145 UseHVXFloatingPoint = UseHVXIEEEFPOps || UseHVXQFloatOps;
147 if (UseHVXQFloatOps && UseHVXIEEEFPOps && UseHVXFloatingPoint)
148 LLVM_DEBUG(
149 dbgs() << "Behavior is undefined for simultaneous qfloat and ieee hvx codegen...");
151 if (OverrideLongCalls.getPosition())
152 UseLongCalls = OverrideLongCalls;
154 UseBSBScheduling = hasV60Ops() && EnableBSBSched;
156 if (isTinyCore()) {
157 // Tiny core has a single thread, so back-to-back scheduling is enabled by
158 // default.
159 if (!EnableBSBSched.getPosition())
160 UseBSBScheduling = false;
163 FeatureBitset FeatureBits = getFeatureBits();
164 if (HexagonDisableDuplex)
165 setFeatureBits(FeatureBits.reset(Hexagon::FeatureDuplex));
166 setFeatureBits(Hexagon_MC::completeHVXFeatures(FeatureBits));
168 return *this;
171 bool HexagonSubtarget::isHVXElementType(MVT Ty, bool IncludeBool) const {
172 if (!useHVXOps())
173 return false;
174 if (Ty.isVector())
175 Ty = Ty.getVectorElementType();
176 if (IncludeBool && Ty == MVT::i1)
177 return true;
178 ArrayRef<MVT> ElemTypes = getHVXElementTypes();
179 return llvm::is_contained(ElemTypes, Ty);
182 bool HexagonSubtarget::isHVXVectorType(EVT VecTy, bool IncludeBool) const {
183 if (!VecTy.isSimple())
184 return false;
185 if (!VecTy.isVector() || !useHVXOps() || VecTy.isScalableVector())
186 return false;
187 MVT ElemTy = VecTy.getSimpleVT().getVectorElementType();
188 if (!IncludeBool && ElemTy == MVT::i1)
189 return false;
191 unsigned HwLen = getVectorLength();
192 unsigned NumElems = VecTy.getVectorNumElements();
193 ArrayRef<MVT> ElemTypes = getHVXElementTypes();
195 if (IncludeBool && ElemTy == MVT::i1) {
196 // Boolean HVX vector types are formed from regular HVX vector types
197 // by replacing the element type with i1.
198 for (MVT T : ElemTypes)
199 if (NumElems * T.getSizeInBits() == 8 * HwLen)
200 return true;
201 return false;
204 unsigned VecWidth = VecTy.getSizeInBits();
205 if (VecWidth != 8 * HwLen && VecWidth != 16 * HwLen)
206 return false;
207 return llvm::is_contained(ElemTypes, ElemTy);
210 bool HexagonSubtarget::isTypeForHVX(Type *VecTy, bool IncludeBool) const {
211 if (!VecTy->isVectorTy() || isa<ScalableVectorType>(VecTy))
212 return false;
213 // Avoid types like <2 x i32*>.
214 Type *ScalTy = VecTy->getScalarType();
215 if (!ScalTy->isIntegerTy() &&
216 !(ScalTy->isFloatingPointTy() && useHVXFloatingPoint()))
217 return false;
218 // The given type may be something like <17 x i32>, which is not MVT,
219 // but can be represented as (non-simple) EVT.
220 EVT Ty = EVT::getEVT(VecTy, /*HandleUnknown*/false);
221 if (!Ty.getVectorElementType().isSimple())
222 return false;
224 auto isHvxTy = [this, IncludeBool](MVT SimpleTy) {
225 if (isHVXVectorType(SimpleTy, IncludeBool))
226 return true;
227 auto Action = getTargetLowering()->getPreferredVectorAction(SimpleTy);
228 return Action == TargetLoweringBase::TypeWidenVector;
231 // Round up EVT to have power-of-2 elements, and keep checking if it
232 // qualifies for HVX, dividing it in half after each step.
233 MVT ElemTy = Ty.getVectorElementType().getSimpleVT();
234 unsigned VecLen = PowerOf2Ceil(Ty.getVectorNumElements());
235 while (VecLen > 1) {
236 MVT SimpleTy = MVT::getVectorVT(ElemTy, VecLen);
237 if (SimpleTy.isValid() && isHvxTy(SimpleTy))
238 return true;
239 VecLen /= 2;
242 return false;
245 void HexagonSubtarget::UsrOverflowMutation::apply(ScheduleDAGInstrs *DAG) {
246 for (SUnit &SU : DAG->SUnits) {
247 if (!SU.isInstr())
248 continue;
249 SmallVector<SDep, 4> Erase;
250 for (auto &D : SU.Preds)
251 if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
252 Erase.push_back(D);
253 for (auto &E : Erase)
254 SU.removePred(E);
258 void HexagonSubtarget::HVXMemLatencyMutation::apply(ScheduleDAGInstrs *DAG) {
259 for (SUnit &SU : DAG->SUnits) {
260 // Update the latency of chain edges between v60 vector load or store
261 // instructions to be 1. These instruction cannot be scheduled in the
262 // same packet.
263 MachineInstr &MI1 = *SU.getInstr();
264 auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
265 bool IsStoreMI1 = MI1.mayStore();
266 bool IsLoadMI1 = MI1.mayLoad();
267 if (!QII->isHVXVec(MI1) || !(IsStoreMI1 || IsLoadMI1))
268 continue;
269 for (SDep &SI : SU.Succs) {
270 if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
271 continue;
272 MachineInstr &MI2 = *SI.getSUnit()->getInstr();
273 if (!QII->isHVXVec(MI2))
274 continue;
275 if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
276 SI.setLatency(1);
277 SU.setHeightDirty();
278 // Change the dependence in the opposite direction too.
279 for (SDep &PI : SI.getSUnit()->Preds) {
280 if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
281 continue;
282 PI.setLatency(1);
283 SI.getSUnit()->setDepthDirty();
290 // Check if a call and subsequent A2_tfrpi instructions should maintain
291 // scheduling affinity. We are looking for the TFRI to be consumed in
292 // the next instruction. This should help reduce the instances of
293 // double register pairs being allocated and scheduled before a call
294 // when not used until after the call. This situation is exacerbated
295 // by the fact that we allocate the pair from the callee saves list,
296 // leading to excess spills and restores.
297 bool HexagonSubtarget::CallMutation::shouldTFRICallBind(
298 const HexagonInstrInfo &HII, const SUnit &Inst1,
299 const SUnit &Inst2) const {
300 if (Inst1.getInstr()->getOpcode() != Hexagon::A2_tfrpi)
301 return false;
303 // TypeXTYPE are 64 bit operations.
304 unsigned Type = HII.getType(*Inst2.getInstr());
305 return Type == HexagonII::TypeS_2op || Type == HexagonII::TypeS_3op ||
306 Type == HexagonII::TypeALU64 || Type == HexagonII::TypeM;
309 void HexagonSubtarget::CallMutation::apply(ScheduleDAGInstrs *DAGInstrs) {
310 ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
311 SUnit* LastSequentialCall = nullptr;
312 // Map from virtual register to physical register from the copy.
313 DenseMap<unsigned, unsigned> VRegHoldingReg;
314 // Map from the physical register to the instruction that uses virtual
315 // register. This is used to create the barrier edge.
316 DenseMap<unsigned, SUnit *> LastVRegUse;
317 auto &TRI = *DAG->MF.getSubtarget().getRegisterInfo();
318 auto &HII = *DAG->MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
320 // Currently we only catch the situation when compare gets scheduled
321 // before preceding call.
322 for (unsigned su = 0, e = DAG->SUnits.size(); su != e; ++su) {
323 // Remember the call.
324 if (DAG->SUnits[su].getInstr()->isCall())
325 LastSequentialCall = &DAG->SUnits[su];
326 // Look for a compare that defines a predicate.
327 else if (DAG->SUnits[su].getInstr()->isCompare() && LastSequentialCall)
328 DAG->addEdge(&DAG->SUnits[su], SDep(LastSequentialCall, SDep::Barrier));
329 // Look for call and tfri* instructions.
330 else if (SchedPredsCloser && LastSequentialCall && su > 1 && su < e-1 &&
331 shouldTFRICallBind(HII, DAG->SUnits[su], DAG->SUnits[su+1]))
332 DAG->addEdge(&DAG->SUnits[su], SDep(&DAG->SUnits[su-1], SDep::Barrier));
333 // Prevent redundant register copies due to reads and writes of physical
334 // registers. The original motivation for this was the code generated
335 // between two calls, which are caused both the return value and the
336 // argument for the next call being in %r0.
337 // Example:
338 // 1: <call1>
339 // 2: %vreg = COPY %r0
340 // 3: <use of %vreg>
341 // 4: %r0 = ...
342 // 5: <call2>
343 // The scheduler would often swap 3 and 4, so an additional register is
344 // needed. This code inserts a Barrier dependence between 3 & 4 to prevent
345 // this.
346 // The code below checks for all the physical registers, not just R0/D0/V0.
347 else if (SchedRetvalOptimization) {
348 const MachineInstr *MI = DAG->SUnits[su].getInstr();
349 if (MI->isCopy() && MI->getOperand(1).getReg().isPhysical()) {
350 // %vregX = COPY %r0
351 VRegHoldingReg[MI->getOperand(0).getReg()] = MI->getOperand(1).getReg();
352 LastVRegUse.erase(MI->getOperand(1).getReg());
353 } else {
354 for (const MachineOperand &MO : MI->operands()) {
355 if (!MO.isReg())
356 continue;
357 if (MO.isUse() && !MI->isCopy() &&
358 VRegHoldingReg.count(MO.getReg())) {
359 // <use of %vregX>
360 LastVRegUse[VRegHoldingReg[MO.getReg()]] = &DAG->SUnits[su];
361 } else if (MO.isDef() && MO.getReg().isPhysical()) {
362 for (MCRegAliasIterator AI(MO.getReg(), &TRI, true); AI.isValid();
363 ++AI) {
364 if (LastVRegUse.count(*AI) &&
365 LastVRegUse[*AI] != &DAG->SUnits[su])
366 // %r0 = ...
367 DAG->addEdge(&DAG->SUnits[su], SDep(LastVRegUse[*AI], SDep::Barrier));
368 LastVRegUse.erase(*AI);
377 void HexagonSubtarget::BankConflictMutation::apply(ScheduleDAGInstrs *DAG) {
378 if (!EnableCheckBankConflict)
379 return;
381 const auto &HII = static_cast<const HexagonInstrInfo&>(*DAG->TII);
383 // Create artificial edges between loads that could likely cause a bank
384 // conflict. Since such loads would normally not have any dependency
385 // between them, we cannot rely on existing edges.
386 for (unsigned i = 0, e = DAG->SUnits.size(); i != e; ++i) {
387 SUnit &S0 = DAG->SUnits[i];
388 MachineInstr &L0 = *S0.getInstr();
389 if (!L0.mayLoad() || L0.mayStore() ||
390 HII.getAddrMode(L0) != HexagonII::BaseImmOffset)
391 continue;
392 int64_t Offset0;
393 LocationSize Size0 = 0;
394 MachineOperand *BaseOp0 = HII.getBaseAndOffset(L0, Offset0, Size0);
395 // Is the access size is longer than the L1 cache line, skip the check.
396 if (BaseOp0 == nullptr || !BaseOp0->isReg() || !Size0.hasValue() ||
397 Size0.getValue() >= 32)
398 continue;
399 // Scan only up to 32 instructions ahead (to avoid n^2 complexity).
400 for (unsigned j = i+1, m = std::min(i+32, e); j != m; ++j) {
401 SUnit &S1 = DAG->SUnits[j];
402 MachineInstr &L1 = *S1.getInstr();
403 if (!L1.mayLoad() || L1.mayStore() ||
404 HII.getAddrMode(L1) != HexagonII::BaseImmOffset)
405 continue;
406 int64_t Offset1;
407 LocationSize Size1 = 0;
408 MachineOperand *BaseOp1 = HII.getBaseAndOffset(L1, Offset1, Size1);
409 if (BaseOp1 == nullptr || !BaseOp1->isReg() || !Size0.hasValue() ||
410 Size1.getValue() >= 32 || BaseOp0->getReg() != BaseOp1->getReg())
411 continue;
412 // Check bits 3 and 4 of the offset: if they differ, a bank conflict
413 // is unlikely.
414 if (((Offset0 ^ Offset1) & 0x18) != 0)
415 continue;
416 // Bits 3 and 4 are the same, add an artificial edge and set extra
417 // latency.
418 SDep A(&S0, SDep::Artificial);
419 A.setLatency(1);
420 S1.addPred(A, true);
425 /// Enable use of alias analysis during code generation (during MI
426 /// scheduling, DAGCombine, etc.).
427 bool HexagonSubtarget::useAA() const {
428 if (OptLevel != CodeGenOptLevel::None)
429 return true;
430 return false;
433 /// Perform target specific adjustments to the latency of a schedule
434 /// dependency.
435 void HexagonSubtarget::adjustSchedDependency(
436 SUnit *Src, int SrcOpIdx, SUnit *Dst, int DstOpIdx, SDep &Dep,
437 const TargetSchedModel *SchedModel) const {
438 if (!Src->isInstr() || !Dst->isInstr())
439 return;
441 MachineInstr *SrcInst = Src->getInstr();
442 MachineInstr *DstInst = Dst->getInstr();
443 const HexagonInstrInfo *QII = getInstrInfo();
445 // Instructions with .new operands have zero latency.
446 SmallSet<SUnit *, 4> ExclSrc;
447 SmallSet<SUnit *, 4> ExclDst;
448 if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
449 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
450 Dep.setLatency(0);
451 return;
454 // Set the latency for a copy to zero since we hope that is will get
455 // removed.
456 if (DstInst->isCopy())
457 Dep.setLatency(0);
459 // If it's a REG_SEQUENCE/COPY, use its destination instruction to determine
460 // the correct latency.
461 // If there are multiple uses of the def of COPY/REG_SEQUENCE, set the latency
462 // only if the latencies on all the uses are equal, otherwise set it to
463 // default.
464 if ((DstInst->isRegSequence() || DstInst->isCopy())) {
465 Register DReg = DstInst->getOperand(0).getReg();
466 std::optional<unsigned> DLatency;
467 for (const auto &DDep : Dst->Succs) {
468 MachineInstr *DDst = DDep.getSUnit()->getInstr();
469 int UseIdx = -1;
470 for (unsigned OpNum = 0; OpNum < DDst->getNumOperands(); OpNum++) {
471 const MachineOperand &MO = DDst->getOperand(OpNum);
472 if (MO.isReg() && MO.getReg() && MO.isUse() && MO.getReg() == DReg) {
473 UseIdx = OpNum;
474 break;
478 if (UseIdx == -1)
479 continue;
481 std::optional<unsigned> Latency =
482 InstrInfo.getOperandLatency(&InstrItins, *SrcInst, 0, *DDst, UseIdx);
484 // Set DLatency for the first time.
485 if (!DLatency)
486 DLatency = Latency;
488 // For multiple uses, if the Latency is different across uses, reset
489 // DLatency.
490 if (DLatency != Latency) {
491 DLatency = std::nullopt;
492 break;
495 Dep.setLatency(DLatency.value_or(0));
498 // Try to schedule uses near definitions to generate .cur.
499 ExclSrc.clear();
500 ExclDst.clear();
501 if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
502 isBestZeroLatency(Src, Dst, QII, ExclSrc, ExclDst)) {
503 Dep.setLatency(0);
504 return;
506 int Latency = Dep.getLatency();
507 bool IsArtificial = Dep.isArtificial();
508 Latency = updateLatency(*SrcInst, *DstInst, IsArtificial, Latency);
509 Dep.setLatency(Latency);
512 void HexagonSubtarget::getPostRAMutations(
513 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
514 Mutations.push_back(std::make_unique<UsrOverflowMutation>());
515 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
516 Mutations.push_back(std::make_unique<BankConflictMutation>());
519 void HexagonSubtarget::getSMSMutations(
520 std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
521 Mutations.push_back(std::make_unique<UsrOverflowMutation>());
522 Mutations.push_back(std::make_unique<HVXMemLatencyMutation>());
525 // Pin the vtable to this file.
526 void HexagonSubtarget::anchor() {}
528 bool HexagonSubtarget::enableMachineScheduler() const {
529 if (DisableHexagonMISched.getNumOccurrences())
530 return !DisableHexagonMISched;
531 return true;
534 bool HexagonSubtarget::usePredicatedCalls() const {
535 return EnablePredicatedCalls;
538 int HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
539 MachineInstr &DstInst, bool IsArtificial,
540 int Latency) const {
541 if (IsArtificial)
542 return 1;
543 if (!hasV60Ops())
544 return Latency;
546 auto &QII = static_cast<const HexagonInstrInfo &>(*getInstrInfo());
547 // BSB scheduling.
548 if (QII.isHVXVec(SrcInst) || useBSBScheduling())
549 Latency = (Latency + 1) >> 1;
550 return Latency;
553 void HexagonSubtarget::restoreLatency(SUnit *Src, SUnit *Dst) const {
554 MachineInstr *SrcI = Src->getInstr();
555 for (auto &I : Src->Succs) {
556 if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
557 continue;
558 Register DepR = I.getReg();
559 int DefIdx = -1;
560 for (unsigned OpNum = 0; OpNum < SrcI->getNumOperands(); OpNum++) {
561 const MachineOperand &MO = SrcI->getOperand(OpNum);
562 bool IsSameOrSubReg = false;
563 if (MO.isReg()) {
564 Register MOReg = MO.getReg();
565 if (DepR.isVirtual()) {
566 IsSameOrSubReg = (MOReg == DepR);
567 } else {
568 IsSameOrSubReg = getRegisterInfo()->isSubRegisterEq(DepR, MOReg);
570 if (MO.isDef() && IsSameOrSubReg)
571 DefIdx = OpNum;
574 assert(DefIdx >= 0 && "Def Reg not found in Src MI");
575 MachineInstr *DstI = Dst->getInstr();
576 SDep T = I;
577 for (unsigned OpNum = 0; OpNum < DstI->getNumOperands(); OpNum++) {
578 const MachineOperand &MO = DstI->getOperand(OpNum);
579 if (MO.isReg() && MO.isUse() && MO.getReg() == DepR) {
580 std::optional<unsigned> Latency = InstrInfo.getOperandLatency(
581 &InstrItins, *SrcI, DefIdx, *DstI, OpNum);
583 // For some instructions (ex: COPY), we might end up with < 0 latency
584 // as they don't have any Itinerary class associated with them.
585 if (!Latency)
586 Latency = 0;
587 bool IsArtificial = I.isArtificial();
588 Latency = updateLatency(*SrcI, *DstI, IsArtificial, *Latency);
589 I.setLatency(*Latency);
593 // Update the latency of opposite edge too.
594 T.setSUnit(Src);
595 auto F = find(Dst->Preds, T);
596 assert(F != Dst->Preds.end());
597 F->setLatency(I.getLatency());
601 /// Change the latency between the two SUnits.
602 void HexagonSubtarget::changeLatency(SUnit *Src, SUnit *Dst, unsigned Lat)
603 const {
604 for (auto &I : Src->Succs) {
605 if (!I.isAssignedRegDep() || I.getSUnit() != Dst)
606 continue;
607 SDep T = I;
608 I.setLatency(Lat);
610 // Update the latency of opposite edge too.
611 T.setSUnit(Src);
612 auto F = find(Dst->Preds, T);
613 assert(F != Dst->Preds.end());
614 F->setLatency(Lat);
618 /// If the SUnit has a zero latency edge, return the other SUnit.
619 static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
620 for (auto &I : Deps)
621 if (I.isAssignedRegDep() && I.getLatency() == 0 &&
622 !I.getSUnit()->getInstr()->isPseudo())
623 return I.getSUnit();
624 return nullptr;
627 // Return true if these are the best two instructions to schedule
628 // together with a zero latency. Only one dependence should have a zero
629 // latency. If there are multiple choices, choose the best, and change
630 // the others, if needed.
631 bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
632 const HexagonInstrInfo *TII, SmallSet<SUnit*, 4> &ExclSrc,
633 SmallSet<SUnit*, 4> &ExclDst) const {
634 MachineInstr &SrcInst = *Src->getInstr();
635 MachineInstr &DstInst = *Dst->getInstr();
637 // Ignore Boundary SU nodes as these have null instructions.
638 if (Dst->isBoundaryNode())
639 return false;
641 if (SrcInst.isPHI() || DstInst.isPHI())
642 return false;
644 if (!TII->isToBeScheduledASAP(SrcInst, DstInst) &&
645 !TII->canExecuteInBundle(SrcInst, DstInst))
646 return false;
648 // The architecture doesn't allow three dependent instructions in the same
649 // packet. So, if the destination has a zero latency successor, then it's
650 // not a candidate for a zero latency predecessor.
651 if (getZeroLatency(Dst, Dst->Succs) != nullptr)
652 return false;
654 // Check if the Dst instruction is the best candidate first.
655 SUnit *Best = nullptr;
656 SUnit *DstBest = nullptr;
657 SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
658 if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
659 // Check that Src doesn't have a better candidate.
660 DstBest = getZeroLatency(Src, Src->Succs);
661 if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
662 Best = Dst;
664 if (Best != Dst)
665 return false;
667 // The caller frequently adds the same dependence twice. If so, then
668 // return true for this case too.
669 if ((Src == SrcBest && Dst == DstBest ) ||
670 (SrcBest == nullptr && Dst == DstBest) ||
671 (Src == SrcBest && Dst == nullptr))
672 return true;
674 // Reassign the latency for the previous bests, which requires setting
675 // the dependence edge in both directions.
676 if (SrcBest != nullptr) {
677 if (!hasV60Ops())
678 changeLatency(SrcBest, Dst, 1);
679 else
680 restoreLatency(SrcBest, Dst);
682 if (DstBest != nullptr) {
683 if (!hasV60Ops())
684 changeLatency(Src, DstBest, 1);
685 else
686 restoreLatency(Src, DstBest);
689 // Attempt to find another opprotunity for zero latency in a different
690 // dependence.
691 if (SrcBest && DstBest)
692 // If there is an edge from SrcBest to DstBst, then try to change that
693 // to 0 now.
694 changeLatency(SrcBest, DstBest, 0);
695 else if (DstBest) {
696 // Check if the previous best destination instruction has a new zero
697 // latency dependence opportunity.
698 ExclSrc.insert(Src);
699 for (auto &I : DstBest->Preds)
700 if (ExclSrc.count(I.getSUnit()) == 0 &&
701 isBestZeroLatency(I.getSUnit(), DstBest, TII, ExclSrc, ExclDst))
702 changeLatency(I.getSUnit(), DstBest, 0);
703 } else if (SrcBest) {
704 // Check if previous best source instruction has a new zero latency
705 // dependence opportunity.
706 ExclDst.insert(Dst);
707 for (auto &I : SrcBest->Succs)
708 if (ExclDst.count(I.getSUnit()) == 0 &&
709 isBestZeroLatency(SrcBest, I.getSUnit(), TII, ExclSrc, ExclDst))
710 changeLatency(SrcBest, I.getSUnit(), 0);
713 return true;
716 unsigned HexagonSubtarget::getL1CacheLineSize() const {
717 return 32;
720 unsigned HexagonSubtarget::getL1PrefetchDistance() const {
721 return 32;
724 bool HexagonSubtarget::enableSubRegLiveness() const { return true; }
726 Intrinsic::ID HexagonSubtarget::getIntrinsicId(unsigned Opc) const {
727 struct Scalar {
728 unsigned Opcode;
729 Intrinsic::ID IntId;
731 struct Hvx {
732 unsigned Opcode;
733 Intrinsic::ID Int64Id, Int128Id;
736 static Scalar ScalarInts[] = {
737 #define GET_SCALAR_INTRINSICS
738 #include "HexagonDepInstrIntrinsics.inc"
739 #undef GET_SCALAR_INTRINSICS
742 static Hvx HvxInts[] = {
743 #define GET_HVX_INTRINSICS
744 #include "HexagonDepInstrIntrinsics.inc"
745 #undef GET_HVX_INTRINSICS
748 const auto CmpOpcode = [](auto A, auto B) { return A.Opcode < B.Opcode; };
749 [[maybe_unused]] static bool SortedScalar =
750 (llvm::sort(ScalarInts, CmpOpcode), true);
751 [[maybe_unused]] static bool SortedHvx =
752 (llvm::sort(HvxInts, CmpOpcode), true);
754 auto [BS, ES] = std::make_pair(std::begin(ScalarInts), std::end(ScalarInts));
755 auto [BH, EH] = std::make_pair(std::begin(HvxInts), std::end(HvxInts));
757 auto FoundScalar = std::lower_bound(BS, ES, Scalar{Opc, 0}, CmpOpcode);
758 if (FoundScalar != ES && FoundScalar->Opcode == Opc)
759 return FoundScalar->IntId;
761 auto FoundHvx = std::lower_bound(BH, EH, Hvx{Opc, 0, 0}, CmpOpcode);
762 if (FoundHvx != EH && FoundHvx->Opcode == Opc) {
763 unsigned HwLen = getVectorLength();
764 if (HwLen == 64)
765 return FoundHvx->Int64Id;
766 if (HwLen == 128)
767 return FoundHvx->Int128Id;
770 std::string error = "Invalid opcode (" + std::to_string(Opc) + ")";
771 llvm_unreachable(error.c_str());
772 return 0;