AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCAsmPrinter.cpp
blob162d11058266f33de8ce4c52ee8161cb35d8ff3a
1 //===-- PPCAsmPrinter.cpp - Print machine instrs to PowerPC assembly ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to PowerPC assembly language. This printer is
11 // the output mechanism used by `llc'.
13 // Documentation at http://developer.apple.com/documentation/DeveloperTools/
14 // Reference/Assembler/ASMIntroduction/chapter_1_section_1.html
16 //===----------------------------------------------------------------------===//
18 #include "MCTargetDesc/PPCInstPrinter.h"
19 #include "MCTargetDesc/PPCMCExpr.h"
20 #include "MCTargetDesc/PPCMCTargetDesc.h"
21 #include "MCTargetDesc/PPCPredicates.h"
22 #include "PPC.h"
23 #include "PPCInstrInfo.h"
24 #include "PPCMachineFunctionInfo.h"
25 #include "PPCSubtarget.h"
26 #include "PPCTargetMachine.h"
27 #include "PPCTargetStreamer.h"
28 #include "TargetInfo/PowerPCTargetInfo.h"
29 #include "llvm/ADT/MapVector.h"
30 #include "llvm/ADT/SetVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/BinaryFormat/ELF.h"
36 #include "llvm/CodeGen/AsmPrinter.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/StackMaps.h"
45 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/MC/MCAsmInfo.h"
51 #include "llvm/MC/MCContext.h"
52 #include "llvm/MC/MCDirectives.h"
53 #include "llvm/MC/MCExpr.h"
54 #include "llvm/MC/MCInst.h"
55 #include "llvm/MC/MCInstBuilder.h"
56 #include "llvm/MC/MCSectionELF.h"
57 #include "llvm/MC/MCSectionXCOFF.h"
58 #include "llvm/MC/MCStreamer.h"
59 #include "llvm/MC/MCSymbol.h"
60 #include "llvm/MC/MCSymbolELF.h"
61 #include "llvm/MC/MCSymbolXCOFF.h"
62 #include "llvm/MC/SectionKind.h"
63 #include "llvm/MC/TargetRegistry.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CodeGen.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/MathExtras.h"
70 #include "llvm/Support/Process.h"
71 #include "llvm/Support/Threading.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include "llvm/TargetParser/PPCTargetParser.h"
75 #include "llvm/TargetParser/Triple.h"
76 #include "llvm/Transforms/Utils/ModuleUtils.h"
77 #include <cassert>
78 #include <cstdint>
79 #include <memory>
80 #include <new>
82 using namespace llvm;
83 using namespace llvm::XCOFF;
85 #define DEBUG_TYPE "asmprinter"
87 STATISTIC(NumTOCEntries, "Number of Total TOC Entries Emitted.");
88 STATISTIC(NumTOCConstPool, "Number of Constant Pool TOC Entries.");
89 STATISTIC(NumTOCGlobalInternal,
90 "Number of Internal Linkage Global TOC Entries.");
91 STATISTIC(NumTOCGlobalExternal,
92 "Number of External Linkage Global TOC Entries.");
93 STATISTIC(NumTOCJumpTable, "Number of Jump Table TOC Entries.");
94 STATISTIC(NumTOCThreadLocal, "Number of Thread Local TOC Entries.");
95 STATISTIC(NumTOCBlockAddress, "Number of Block Address TOC Entries.");
96 STATISTIC(NumTOCEHBlock, "Number of EH Block TOC Entries.");
98 static cl::opt<bool> EnableSSPCanaryBitInTB(
99 "aix-ssp-tb-bit", cl::init(false),
100 cl::desc("Enable Passing SSP Canary info in Trackback on AIX"), cl::Hidden);
102 // Specialize DenseMapInfo to allow
103 // std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind> in DenseMap.
104 // This specialization is needed here because that type is used as keys in the
105 // map representing TOC entries.
106 namespace llvm {
107 template <>
108 struct DenseMapInfo<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>> {
109 using TOCKey = std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>;
111 static inline TOCKey getEmptyKey() {
112 return {nullptr, MCSymbolRefExpr::VariantKind::VK_None};
114 static inline TOCKey getTombstoneKey() {
115 return {nullptr, MCSymbolRefExpr::VariantKind::VK_Invalid};
117 static unsigned getHashValue(const TOCKey &PairVal) {
118 return detail::combineHashValue(
119 DenseMapInfo<const MCSymbol *>::getHashValue(PairVal.first),
120 DenseMapInfo<int>::getHashValue(PairVal.second));
122 static bool isEqual(const TOCKey &A, const TOCKey &B) { return A == B; }
124 } // end namespace llvm
126 namespace {
128 enum {
129 // GNU attribute tags for PowerPC ABI
130 Tag_GNU_Power_ABI_FP = 4,
131 Tag_GNU_Power_ABI_Vector = 8,
132 Tag_GNU_Power_ABI_Struct_Return = 12,
134 // GNU attribute values for PowerPC float ABI, as combination of two parts
135 Val_GNU_Power_ABI_NoFloat = 0b00,
136 Val_GNU_Power_ABI_HardFloat_DP = 0b01,
137 Val_GNU_Power_ABI_SoftFloat_DP = 0b10,
138 Val_GNU_Power_ABI_HardFloat_SP = 0b11,
140 Val_GNU_Power_ABI_LDBL_IBM128 = 0b0100,
141 Val_GNU_Power_ABI_LDBL_64 = 0b1000,
142 Val_GNU_Power_ABI_LDBL_IEEE128 = 0b1100,
145 class PPCAsmPrinter : public AsmPrinter {
146 protected:
147 // For TLS on AIX, we need to be able to identify TOC entries of specific
148 // VariantKind so we can add the right relocations when we generate the
149 // entries. So each entry is represented by a pair of MCSymbol and
150 // VariantKind. For example, we need to be able to identify the following
151 // entry as a TLSGD entry so we can add the @m relocation:
152 // .tc .i[TC],i[TL]@m
153 // By default, VK_None is used for the VariantKind.
154 MapVector<std::pair<const MCSymbol *, MCSymbolRefExpr::VariantKind>,
155 MCSymbol *>
156 TOC;
157 const PPCSubtarget *Subtarget = nullptr;
159 // Keep track of the number of TLS variables and their corresponding
160 // addresses, which is then used for the assembly printing of
161 // non-TOC-based local-exec variables.
162 MapVector<const GlobalValue *, uint64_t> TLSVarsToAddressMapping;
164 public:
165 explicit PPCAsmPrinter(TargetMachine &TM,
166 std::unique_ptr<MCStreamer> Streamer)
167 : AsmPrinter(TM, std::move(Streamer)) {}
169 StringRef getPassName() const override { return "PowerPC Assembly Printer"; }
171 enum TOCEntryType {
172 TOCType_ConstantPool,
173 TOCType_GlobalExternal,
174 TOCType_GlobalInternal,
175 TOCType_JumpTable,
176 TOCType_ThreadLocal,
177 TOCType_BlockAddress,
178 TOCType_EHBlock
181 MCSymbol *lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type,
182 MCSymbolRefExpr::VariantKind Kind =
183 MCSymbolRefExpr::VariantKind::VK_None);
185 bool doInitialization(Module &M) override {
186 if (!TOC.empty())
187 TOC.clear();
188 return AsmPrinter::doInitialization(M);
191 void emitInstruction(const MachineInstr *MI) override;
193 /// This function is for PrintAsmOperand and PrintAsmMemoryOperand,
194 /// invoked by EmitMSInlineAsmStr and EmitGCCInlineAsmStr only.
195 /// The \p MI would be INLINEASM ONLY.
196 void printOperand(const MachineInstr *MI, unsigned OpNo, raw_ostream &O);
198 void PrintSymbolOperand(const MachineOperand &MO, raw_ostream &O) override;
199 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
200 const char *ExtraCode, raw_ostream &O) override;
201 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
202 const char *ExtraCode, raw_ostream &O) override;
204 void LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI);
205 void LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI);
206 void EmitTlsCall(const MachineInstr *MI, MCSymbolRefExpr::VariantKind VK);
207 void EmitAIXTlsCallHelper(const MachineInstr *MI);
208 const MCExpr *getAdjustedFasterLocalExpr(const MachineOperand &MO,
209 int64_t Offset);
210 bool runOnMachineFunction(MachineFunction &MF) override {
211 Subtarget = &MF.getSubtarget<PPCSubtarget>();
212 bool Changed = AsmPrinter::runOnMachineFunction(MF);
213 emitXRayTable();
214 return Changed;
218 /// PPCLinuxAsmPrinter - PowerPC assembly printer, customized for Linux
219 class PPCLinuxAsmPrinter : public PPCAsmPrinter {
220 public:
221 explicit PPCLinuxAsmPrinter(TargetMachine &TM,
222 std::unique_ptr<MCStreamer> Streamer)
223 : PPCAsmPrinter(TM, std::move(Streamer)) {}
225 StringRef getPassName() const override {
226 return "Linux PPC Assembly Printer";
229 void emitGNUAttributes(Module &M);
231 void emitStartOfAsmFile(Module &M) override;
232 void emitEndOfAsmFile(Module &) override;
234 void emitFunctionEntryLabel() override;
236 void emitFunctionBodyStart() override;
237 void emitFunctionBodyEnd() override;
238 void emitInstruction(const MachineInstr *MI) override;
241 class PPCAIXAsmPrinter : public PPCAsmPrinter {
242 private:
243 /// Symbols lowered from ExternalSymbolSDNodes, we will need to emit extern
244 /// linkage for them in AIX.
245 SmallSetVector<MCSymbol *, 8> ExtSymSDNodeSymbols;
247 /// A format indicator and unique trailing identifier to form part of the
248 /// sinit/sterm function names.
249 std::string FormatIndicatorAndUniqueModId;
251 // Record a list of GlobalAlias associated with a GlobalObject.
252 // This is used for AIX's extra-label-at-definition aliasing strategy.
253 DenseMap<const GlobalObject *, SmallVector<const GlobalAlias *, 1>>
254 GOAliasMap;
256 uint16_t getNumberOfVRSaved();
257 void emitTracebackTable();
259 SmallVector<const GlobalVariable *, 8> TOCDataGlobalVars;
261 void emitGlobalVariableHelper(const GlobalVariable *);
263 // Get the offset of an alias based on its AliaseeObject.
264 uint64_t getAliasOffset(const Constant *C);
266 public:
267 PPCAIXAsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
268 : PPCAsmPrinter(TM, std::move(Streamer)) {
269 if (MAI->isLittleEndian())
270 report_fatal_error(
271 "cannot create AIX PPC Assembly Printer for a little-endian target");
274 StringRef getPassName() const override { return "AIX PPC Assembly Printer"; }
276 bool doInitialization(Module &M) override;
278 void emitXXStructorList(const DataLayout &DL, const Constant *List,
279 bool IsCtor) override;
281 void SetupMachineFunction(MachineFunction &MF) override;
283 void emitGlobalVariable(const GlobalVariable *GV) override;
285 void emitFunctionDescriptor() override;
287 void emitFunctionEntryLabel() override;
289 void emitFunctionBodyEnd() override;
291 void emitPGORefs(Module &M);
293 void emitGCOVRefs();
295 void emitEndOfAsmFile(Module &) override;
297 void emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const override;
299 void emitInstruction(const MachineInstr *MI) override;
301 bool doFinalization(Module &M) override;
303 void emitTTypeReference(const GlobalValue *GV, unsigned Encoding) override;
305 void emitModuleCommandLines(Module &M) override;
308 } // end anonymous namespace
310 void PPCAsmPrinter::PrintSymbolOperand(const MachineOperand &MO,
311 raw_ostream &O) {
312 // Computing the address of a global symbol, not calling it.
313 const GlobalValue *GV = MO.getGlobal();
314 getSymbol(GV)->print(O, MAI);
315 printOffset(MO.getOffset(), O);
318 void PPCAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
319 raw_ostream &O) {
320 const DataLayout &DL = getDataLayout();
321 const MachineOperand &MO = MI->getOperand(OpNo);
323 switch (MO.getType()) {
324 case MachineOperand::MO_Register: {
325 // The MI is INLINEASM ONLY and UseVSXReg is always false.
326 const char *RegName = PPCInstPrinter::getRegisterName(MO.getReg());
328 // Linux assembler (Others?) does not take register mnemonics.
329 // FIXME - What about special registers used in mfspr/mtspr?
330 O << PPC::stripRegisterPrefix(RegName);
331 return;
333 case MachineOperand::MO_Immediate:
334 O << MO.getImm();
335 return;
337 case MachineOperand::MO_MachineBasicBlock:
338 MO.getMBB()->getSymbol()->print(O, MAI);
339 return;
340 case MachineOperand::MO_ConstantPoolIndex:
341 O << DL.getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
342 << MO.getIndex();
343 return;
344 case MachineOperand::MO_BlockAddress:
345 GetBlockAddressSymbol(MO.getBlockAddress())->print(O, MAI);
346 return;
347 case MachineOperand::MO_GlobalAddress: {
348 PrintSymbolOperand(MO, O);
349 return;
352 default:
353 O << "<unknown operand type: " << (unsigned)MO.getType() << ">";
354 return;
358 /// PrintAsmOperand - Print out an operand for an inline asm expression.
360 bool PPCAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
361 const char *ExtraCode, raw_ostream &O) {
362 // Does this asm operand have a single letter operand modifier?
363 if (ExtraCode && ExtraCode[0]) {
364 if (ExtraCode[1] != 0) return true; // Unknown modifier.
366 switch (ExtraCode[0]) {
367 default:
368 // See if this is a generic print operand
369 return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, O);
370 case 'L': // Write second word of DImode reference.
371 // Verify that this operand has two consecutive registers.
372 if (!MI->getOperand(OpNo).isReg() ||
373 OpNo+1 == MI->getNumOperands() ||
374 !MI->getOperand(OpNo+1).isReg())
375 return true;
376 ++OpNo; // Return the high-part.
377 break;
378 case 'I':
379 // Write 'i' if an integer constant, otherwise nothing. Used to print
380 // addi vs add, etc.
381 if (MI->getOperand(OpNo).isImm())
382 O << "i";
383 return false;
384 case 'x':
385 if(!MI->getOperand(OpNo).isReg())
386 return true;
387 // This operand uses VSX numbering.
388 // If the operand is a VMX register, convert it to a VSX register.
389 Register Reg = MI->getOperand(OpNo).getReg();
390 if (PPC::isVRRegister(Reg))
391 Reg = PPC::VSX32 + (Reg - PPC::V0);
392 else if (PPC::isVFRegister(Reg))
393 Reg = PPC::VSX32 + (Reg - PPC::VF0);
394 const char *RegName;
395 RegName = PPCInstPrinter::getRegisterName(Reg);
396 RegName = PPC::stripRegisterPrefix(RegName);
397 O << RegName;
398 return false;
402 printOperand(MI, OpNo, O);
403 return false;
406 // At the moment, all inline asm memory operands are a single register.
407 // In any case, the output of this routine should always be just one
408 // assembler operand.
409 bool PPCAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNo,
410 const char *ExtraCode,
411 raw_ostream &O) {
412 if (ExtraCode && ExtraCode[0]) {
413 if (ExtraCode[1] != 0) return true; // Unknown modifier.
415 switch (ExtraCode[0]) {
416 default: return true; // Unknown modifier.
417 case 'L': // A memory reference to the upper word of a double word op.
418 O << getDataLayout().getPointerSize() << "(";
419 printOperand(MI, OpNo, O);
420 O << ")";
421 return false;
422 case 'y': // A memory reference for an X-form instruction
423 O << "0, ";
424 printOperand(MI, OpNo, O);
425 return false;
426 case 'I':
427 // Write 'i' if an integer constant, otherwise nothing. Used to print
428 // addi vs add, etc.
429 if (MI->getOperand(OpNo).isImm())
430 O << "i";
431 return false;
432 case 'U': // Print 'u' for update form.
433 case 'X': // Print 'x' for indexed form.
434 // FIXME: Currently for PowerPC memory operands are always loaded
435 // into a register, so we never get an update or indexed form.
436 // This is bad even for offset forms, since even if we know we
437 // have a value in -16(r1), we will generate a load into r<n>
438 // and then load from 0(r<n>). Until that issue is fixed,
439 // tolerate 'U' and 'X' but don't output anything.
440 assert(MI->getOperand(OpNo).isReg());
441 return false;
445 assert(MI->getOperand(OpNo).isReg());
446 O << "0(";
447 printOperand(MI, OpNo, O);
448 O << ")";
449 return false;
452 static void collectTOCStats(PPCAsmPrinter::TOCEntryType Type) {
453 ++NumTOCEntries;
454 switch (Type) {
455 case PPCAsmPrinter::TOCType_ConstantPool:
456 ++NumTOCConstPool;
457 break;
458 case PPCAsmPrinter::TOCType_GlobalInternal:
459 ++NumTOCGlobalInternal;
460 break;
461 case PPCAsmPrinter::TOCType_GlobalExternal:
462 ++NumTOCGlobalExternal;
463 break;
464 case PPCAsmPrinter::TOCType_JumpTable:
465 ++NumTOCJumpTable;
466 break;
467 case PPCAsmPrinter::TOCType_ThreadLocal:
468 ++NumTOCThreadLocal;
469 break;
470 case PPCAsmPrinter::TOCType_BlockAddress:
471 ++NumTOCBlockAddress;
472 break;
473 case PPCAsmPrinter::TOCType_EHBlock:
474 ++NumTOCEHBlock;
475 break;
479 static CodeModel::Model getCodeModel(const PPCSubtarget &S,
480 const TargetMachine &TM,
481 const MachineOperand &MO) {
482 CodeModel::Model ModuleModel = TM.getCodeModel();
484 // If the operand is not a global address then there is no
485 // global variable to carry an attribute.
486 if (!(MO.getType() == MachineOperand::MO_GlobalAddress))
487 return ModuleModel;
489 const GlobalValue *GV = MO.getGlobal();
490 assert(GV && "expected global for MO_GlobalAddress");
492 return S.getCodeModel(TM, GV);
495 static void setOptionalCodeModel(MCSymbolXCOFF *XSym, CodeModel::Model CM) {
496 switch (CM) {
497 case CodeModel::Large:
498 XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Large);
499 return;
500 case CodeModel::Small:
501 XSym->setPerSymbolCodeModel(MCSymbolXCOFF::CM_Small);
502 return;
503 default:
504 report_fatal_error("Invalid code model for AIX");
508 /// lookUpOrCreateTOCEntry -- Given a symbol, look up whether a TOC entry
509 /// exists for it. If not, create one. Then return a symbol that references
510 /// the TOC entry.
511 MCSymbol *
512 PPCAsmPrinter::lookUpOrCreateTOCEntry(const MCSymbol *Sym, TOCEntryType Type,
513 MCSymbolRefExpr::VariantKind Kind) {
514 // If this is a new TOC entry add statistics about it.
515 if (!TOC.contains({Sym, Kind}))
516 collectTOCStats(Type);
518 MCSymbol *&TOCEntry = TOC[{Sym, Kind}];
519 if (!TOCEntry)
520 TOCEntry = createTempSymbol("C");
521 return TOCEntry;
524 void PPCAsmPrinter::LowerSTACKMAP(StackMaps &SM, const MachineInstr &MI) {
525 unsigned NumNOPBytes = MI.getOperand(1).getImm();
527 auto &Ctx = OutStreamer->getContext();
528 MCSymbol *MILabel = Ctx.createTempSymbol();
529 OutStreamer->emitLabel(MILabel);
531 SM.recordStackMap(*MILabel, MI);
532 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
534 // Scan ahead to trim the shadow.
535 const MachineBasicBlock &MBB = *MI.getParent();
536 MachineBasicBlock::const_iterator MII(MI);
537 ++MII;
538 while (NumNOPBytes > 0) {
539 if (MII == MBB.end() || MII->isCall() ||
540 MII->getOpcode() == PPC::DBG_VALUE ||
541 MII->getOpcode() == TargetOpcode::PATCHPOINT ||
542 MII->getOpcode() == TargetOpcode::STACKMAP)
543 break;
544 ++MII;
545 NumNOPBytes -= 4;
548 // Emit nops.
549 for (unsigned i = 0; i < NumNOPBytes; i += 4)
550 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
553 // Lower a patchpoint of the form:
554 // [<def>], <id>, <numBytes>, <target>, <numArgs>
555 void PPCAsmPrinter::LowerPATCHPOINT(StackMaps &SM, const MachineInstr &MI) {
556 auto &Ctx = OutStreamer->getContext();
557 MCSymbol *MILabel = Ctx.createTempSymbol();
558 OutStreamer->emitLabel(MILabel);
560 SM.recordPatchPoint(*MILabel, MI);
561 PatchPointOpers Opers(&MI);
563 unsigned EncodedBytes = 0;
564 const MachineOperand &CalleeMO = Opers.getCallTarget();
566 if (CalleeMO.isImm()) {
567 int64_t CallTarget = CalleeMO.getImm();
568 if (CallTarget) {
569 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
570 "High 16 bits of call target should be zero.");
571 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
572 EncodedBytes = 0;
573 // Materialize the jump address:
574 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI8)
575 .addReg(ScratchReg)
576 .addImm((CallTarget >> 32) & 0xFFFF));
577 ++EncodedBytes;
578 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::RLDIC)
579 .addReg(ScratchReg)
580 .addReg(ScratchReg)
581 .addImm(32).addImm(16));
582 ++EncodedBytes;
583 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORIS8)
584 .addReg(ScratchReg)
585 .addReg(ScratchReg)
586 .addImm((CallTarget >> 16) & 0xFFFF));
587 ++EncodedBytes;
588 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ORI8)
589 .addReg(ScratchReg)
590 .addReg(ScratchReg)
591 .addImm(CallTarget & 0xFFFF));
593 // Save the current TOC pointer before the remote call.
594 int TOCSaveOffset = Subtarget->getFrameLowering()->getTOCSaveOffset();
595 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::STD)
596 .addReg(PPC::X2)
597 .addImm(TOCSaveOffset)
598 .addReg(PPC::X1));
599 ++EncodedBytes;
601 // If we're on ELFv1, then we need to load the actual function pointer
602 // from the function descriptor.
603 if (!Subtarget->isELFv2ABI()) {
604 // Load the new TOC pointer and the function address, but not r11
605 // (needing this is rare, and loading it here would prevent passing it
606 // via a 'nest' parameter.
607 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
608 .addReg(PPC::X2)
609 .addImm(8)
610 .addReg(ScratchReg));
611 ++EncodedBytes;
612 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
613 .addReg(ScratchReg)
614 .addImm(0)
615 .addReg(ScratchReg));
616 ++EncodedBytes;
619 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTCTR8)
620 .addReg(ScratchReg));
621 ++EncodedBytes;
622 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BCTRL8));
623 ++EncodedBytes;
625 // Restore the TOC pointer after the call.
626 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
627 .addReg(PPC::X2)
628 .addImm(TOCSaveOffset)
629 .addReg(PPC::X1));
630 ++EncodedBytes;
632 } else if (CalleeMO.isGlobal()) {
633 const GlobalValue *GValue = CalleeMO.getGlobal();
634 MCSymbol *MOSymbol = getSymbol(GValue);
635 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, OutContext);
637 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL8_NOP)
638 .addExpr(SymVar));
639 EncodedBytes += 2;
642 // Each instruction is 4 bytes.
643 EncodedBytes *= 4;
645 // Emit padding.
646 unsigned NumBytes = Opers.getNumPatchBytes();
647 assert(NumBytes >= EncodedBytes &&
648 "Patchpoint can't request size less than the length of a call.");
649 assert((NumBytes - EncodedBytes) % 4 == 0 &&
650 "Invalid number of NOP bytes requested!");
651 for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
652 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
655 /// This helper function creates the TlsGetAddr/TlsGetMod MCSymbol for AIX. We
656 /// will create the csect and use the qual-name symbol instead of creating just
657 /// the external symbol.
658 static MCSymbol *createMCSymbolForTlsGetAddr(MCContext &Ctx, unsigned MIOpc) {
659 StringRef SymName;
660 switch (MIOpc) {
661 default:
662 SymName = ".__tls_get_addr";
663 break;
664 case PPC::GETtlsTpointer32AIX:
665 SymName = ".__get_tpointer";
666 break;
667 case PPC::GETtlsMOD32AIX:
668 case PPC::GETtlsMOD64AIX:
669 SymName = ".__tls_get_mod";
670 break;
672 return Ctx
673 .getXCOFFSection(SymName, SectionKind::getText(),
674 XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER))
675 ->getQualNameSymbol();
678 void PPCAsmPrinter::EmitAIXTlsCallHelper(const MachineInstr *MI) {
679 assert(Subtarget->isAIXABI() &&
680 "Only expecting to emit calls to get the thread pointer on AIX!");
682 MCSymbol *TlsCall = createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
683 const MCExpr *TlsRef =
684 MCSymbolRefExpr::create(TlsCall, MCSymbolRefExpr::VK_None, OutContext);
685 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BLA).addExpr(TlsRef));
688 /// EmitTlsCall -- Given a GETtls[ld]ADDR[32] instruction, print a
689 /// call to __tls_get_addr to the current output stream.
690 void PPCAsmPrinter::EmitTlsCall(const MachineInstr *MI,
691 MCSymbolRefExpr::VariantKind VK) {
692 MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
693 unsigned Opcode = PPC::BL8_NOP_TLS;
695 assert(MI->getNumOperands() >= 3 && "Expecting at least 3 operands from MI");
696 if (MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
697 MI->getOperand(2).getTargetFlags() == PPCII::MO_GOT_TLSLD_PCREL_FLAG) {
698 Kind = MCSymbolRefExpr::VK_PPC_NOTOC;
699 Opcode = PPC::BL8_NOTOC_TLS;
701 const Module *M = MF->getFunction().getParent();
703 assert(MI->getOperand(0).isReg() &&
704 ((Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::X3) ||
705 (!Subtarget->isPPC64() && MI->getOperand(0).getReg() == PPC::R3)) &&
706 "GETtls[ld]ADDR[32] must define GPR3");
707 assert(MI->getOperand(1).isReg() &&
708 ((Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::X3) ||
709 (!Subtarget->isPPC64() && MI->getOperand(1).getReg() == PPC::R3)) &&
710 "GETtls[ld]ADDR[32] must read GPR3");
712 if (Subtarget->isAIXABI()) {
713 // For TLSGD, the variable offset should already be in R4 and the region
714 // handle should already be in R3. We generate an absolute branch to
715 // .__tls_get_addr. For TLSLD, the module handle should already be in R3.
716 // We generate an absolute branch to .__tls_get_mod.
717 Register VarOffsetReg = Subtarget->isPPC64() ? PPC::X4 : PPC::R4;
718 (void)VarOffsetReg;
719 assert((MI->getOpcode() == PPC::GETtlsMOD32AIX ||
720 MI->getOpcode() == PPC::GETtlsMOD64AIX ||
721 (MI->getOperand(2).isReg() &&
722 MI->getOperand(2).getReg() == VarOffsetReg)) &&
723 "GETtls[ld]ADDR[32] must read GPR4");
724 EmitAIXTlsCallHelper(MI);
725 return;
728 MCSymbol *TlsGetAddr = OutContext.getOrCreateSymbol("__tls_get_addr");
730 if (Subtarget->is32BitELFABI() && isPositionIndependent())
731 Kind = MCSymbolRefExpr::VK_PLT;
733 const MCExpr *TlsRef =
734 MCSymbolRefExpr::create(TlsGetAddr, Kind, OutContext);
736 // Add 32768 offset to the symbol so we follow up the latest GOT/PLT ABI.
737 if (Kind == MCSymbolRefExpr::VK_PLT && Subtarget->isSecurePlt() &&
738 M->getPICLevel() == PICLevel::BigPIC)
739 TlsRef = MCBinaryExpr::createAdd(
740 TlsRef, MCConstantExpr::create(32768, OutContext), OutContext);
741 const MachineOperand &MO = MI->getOperand(2);
742 const GlobalValue *GValue = MO.getGlobal();
743 MCSymbol *MOSymbol = getSymbol(GValue);
744 const MCExpr *SymVar = MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
745 EmitToStreamer(*OutStreamer,
746 MCInstBuilder(Subtarget->isPPC64() ? Opcode
747 : (unsigned)PPC::BL_TLS)
748 .addExpr(TlsRef)
749 .addExpr(SymVar));
752 /// Map a machine operand for a TOC pseudo-machine instruction to its
753 /// corresponding MCSymbol.
754 static MCSymbol *getMCSymbolForTOCPseudoMO(const MachineOperand &MO,
755 AsmPrinter &AP) {
756 switch (MO.getType()) {
757 case MachineOperand::MO_GlobalAddress:
758 return AP.getSymbol(MO.getGlobal());
759 case MachineOperand::MO_ConstantPoolIndex:
760 return AP.GetCPISymbol(MO.getIndex());
761 case MachineOperand::MO_JumpTableIndex:
762 return AP.GetJTISymbol(MO.getIndex());
763 case MachineOperand::MO_BlockAddress:
764 return AP.GetBlockAddressSymbol(MO.getBlockAddress());
765 default:
766 llvm_unreachable("Unexpected operand type to get symbol.");
770 static PPCAsmPrinter::TOCEntryType
771 getTOCEntryTypeForMO(const MachineOperand &MO) {
772 // Use the target flags to determine if this MO is Thread Local.
773 // If we don't do this it comes out as Global.
774 if (PPCInstrInfo::hasTLSFlag(MO.getTargetFlags()))
775 return PPCAsmPrinter::TOCType_ThreadLocal;
777 switch (MO.getType()) {
778 case MachineOperand::MO_GlobalAddress: {
779 const GlobalValue *GlobalV = MO.getGlobal();
780 GlobalValue::LinkageTypes Linkage = GlobalV->getLinkage();
781 if (Linkage == GlobalValue::ExternalLinkage ||
782 Linkage == GlobalValue::AvailableExternallyLinkage ||
783 Linkage == GlobalValue::ExternalWeakLinkage)
784 return PPCAsmPrinter::TOCType_GlobalExternal;
786 return PPCAsmPrinter::TOCType_GlobalInternal;
788 case MachineOperand::MO_ConstantPoolIndex:
789 return PPCAsmPrinter::TOCType_ConstantPool;
790 case MachineOperand::MO_JumpTableIndex:
791 return PPCAsmPrinter::TOCType_JumpTable;
792 case MachineOperand::MO_BlockAddress:
793 return PPCAsmPrinter::TOCType_BlockAddress;
794 default:
795 llvm_unreachable("Unexpected operand type to get TOC type.");
798 /// EmitInstruction -- Print out a single PowerPC MI in Darwin syntax to
799 /// the current output stream.
801 void PPCAsmPrinter::emitInstruction(const MachineInstr *MI) {
802 PPC_MC::verifyInstructionPredicates(MI->getOpcode(),
803 getSubtargetInfo().getFeatureBits());
805 MCInst TmpInst;
806 const bool IsPPC64 = Subtarget->isPPC64();
807 const bool IsAIX = Subtarget->isAIXABI();
808 const bool HasAIXSmallLocalTLS = Subtarget->hasAIXSmallLocalExecTLS() ||
809 Subtarget->hasAIXSmallLocalDynamicTLS();
810 const Module *M = MF->getFunction().getParent();
811 PICLevel::Level PL = M->getPICLevel();
813 #ifndef NDEBUG
814 // Validate that SPE and FPU are mutually exclusive in codegen
815 if (!MI->isInlineAsm()) {
816 for (const MachineOperand &MO: MI->operands()) {
817 if (MO.isReg()) {
818 Register Reg = MO.getReg();
819 if (Subtarget->hasSPE()) {
820 if (PPC::F4RCRegClass.contains(Reg) ||
821 PPC::F8RCRegClass.contains(Reg) ||
822 PPC::VFRCRegClass.contains(Reg) ||
823 PPC::VRRCRegClass.contains(Reg) ||
824 PPC::VSFRCRegClass.contains(Reg) ||
825 PPC::VSSRCRegClass.contains(Reg)
827 llvm_unreachable("SPE targets cannot have FPRegs!");
828 } else {
829 if (PPC::SPERCRegClass.contains(Reg))
830 llvm_unreachable("SPE register found in FPU-targeted code!");
835 #endif
837 auto getTOCRelocAdjustedExprForXCOFF = [this](const MCExpr *Expr,
838 ptrdiff_t OriginalOffset) {
839 // Apply an offset to the TOC-based expression such that the adjusted
840 // notional offset from the TOC base (to be encoded into the instruction's D
841 // or DS field) is the signed 16-bit truncation of the original notional
842 // offset from the TOC base.
843 // This is consistent with the treatment used both by XL C/C++ and
844 // by AIX ld -r.
845 ptrdiff_t Adjustment =
846 OriginalOffset - llvm::SignExtend32<16>(OriginalOffset);
847 return MCBinaryExpr::createAdd(
848 Expr, MCConstantExpr::create(-Adjustment, OutContext), OutContext);
851 auto getTOCEntryLoadingExprForXCOFF =
852 [IsPPC64, getTOCRelocAdjustedExprForXCOFF,
853 this](const MCSymbol *MOSymbol, const MCExpr *Expr,
854 MCSymbolRefExpr::VariantKind VK =
855 MCSymbolRefExpr::VariantKind::VK_None) -> const MCExpr * {
856 const unsigned EntryByteSize = IsPPC64 ? 8 : 4;
857 const auto TOCEntryIter = TOC.find({MOSymbol, VK});
858 assert(TOCEntryIter != TOC.end() &&
859 "Could not find the TOC entry for this symbol.");
860 const ptrdiff_t EntryDistanceFromTOCBase =
861 (TOCEntryIter - TOC.begin()) * EntryByteSize;
862 constexpr int16_t PositiveTOCRange = INT16_MAX;
864 if (EntryDistanceFromTOCBase > PositiveTOCRange)
865 return getTOCRelocAdjustedExprForXCOFF(Expr, EntryDistanceFromTOCBase);
867 return Expr;
869 auto GetVKForMO = [&](const MachineOperand &MO) {
870 // For TLS initial-exec and local-exec accesses on AIX, we have one TOC
871 // entry for the symbol (with the variable offset), which is differentiated
872 // by MO_TPREL_FLAG.
873 unsigned Flag = MO.getTargetFlags();
874 if (Flag == PPCII::MO_TPREL_FLAG ||
875 Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
876 Flag == PPCII::MO_TPREL_PCREL_FLAG) {
877 assert(MO.isGlobal() && "Only expecting a global MachineOperand here!\n");
878 TLSModel::Model Model = TM.getTLSModel(MO.getGlobal());
879 if (Model == TLSModel::LocalExec)
880 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLE;
881 if (Model == TLSModel::InitialExec)
882 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSIE;
883 // On AIX, TLS model opt may have turned local-dynamic accesses into
884 // initial-exec accesses.
885 PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
886 if (Model == TLSModel::LocalDynamic &&
887 FuncInfo->isAIXFuncUseTLSIEForLD()) {
888 LLVM_DEBUG(
889 dbgs() << "Current function uses IE access for default LD vars.\n");
890 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSIE;
892 llvm_unreachable("Only expecting local-exec or initial-exec accesses!");
894 // For GD TLS access on AIX, we have two TOC entries for the symbol (one for
895 // the variable offset and the other for the region handle). They are
896 // differentiated by MO_TLSGD_FLAG and MO_TLSGDM_FLAG.
897 if (Flag == PPCII::MO_TLSGDM_FLAG)
898 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM;
899 if (Flag == PPCII::MO_TLSGD_FLAG || Flag == PPCII::MO_GOT_TLSGD_PCREL_FLAG)
900 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD;
901 // For local-dynamic TLS access on AIX, we have one TOC entry for the symbol
902 // (the variable offset) and one shared TOC entry for the module handle.
903 // They are differentiated by MO_TLSLD_FLAG and MO_TLSLDM_FLAG.
904 if (Flag == PPCII::MO_TLSLD_FLAG && IsAIX)
905 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLD;
906 if (Flag == PPCII::MO_TLSLDM_FLAG && IsAIX)
907 return MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSML;
908 return MCSymbolRefExpr::VariantKind::VK_None;
911 // Lower multi-instruction pseudo operations.
912 switch (MI->getOpcode()) {
913 default: break;
914 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
915 assert(!Subtarget->isAIXABI() &&
916 "AIX does not support patchable function entry!");
917 // PATCHABLE_FUNCTION_ENTER on little endian is for XRAY support which is
918 // handled in PPCLinuxAsmPrinter.
919 if (MAI->isLittleEndian())
920 return;
921 const Function &F = MF->getFunction();
922 unsigned Num = 0;
923 (void)F.getFnAttribute("patchable-function-entry")
924 .getValueAsString()
925 .getAsInteger(10, Num);
926 if (!Num)
927 return;
928 emitNops(Num);
929 return;
931 case TargetOpcode::DBG_VALUE:
932 llvm_unreachable("Should be handled target independently");
933 case TargetOpcode::STACKMAP:
934 return LowerSTACKMAP(SM, *MI);
935 case TargetOpcode::PATCHPOINT:
936 return LowerPATCHPOINT(SM, *MI);
938 case PPC::MoveGOTtoLR: {
939 // Transform %lr = MoveGOTtoLR
940 // Into this: bl _GLOBAL_OFFSET_TABLE_@local-4
941 // _GLOBAL_OFFSET_TABLE_@local-4 (instruction preceding
942 // _GLOBAL_OFFSET_TABLE_) has exactly one instruction:
943 // blrl
944 // This will return the pointer to _GLOBAL_OFFSET_TABLE_@local
945 MCSymbol *GOTSymbol =
946 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
947 const MCExpr *OffsExpr =
948 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol,
949 MCSymbolRefExpr::VK_PPC_LOCAL,
950 OutContext),
951 MCConstantExpr::create(4, OutContext),
952 OutContext);
954 // Emit the 'bl'.
955 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL).addExpr(OffsExpr));
956 return;
958 case PPC::MovePCtoLR:
959 case PPC::MovePCtoLR8: {
960 // Transform %lr = MovePCtoLR
961 // Into this, where the label is the PIC base:
962 // bl L1$pb
963 // L1$pb:
964 MCSymbol *PICBase = MF->getPICBaseSymbol();
966 // Emit the 'bl'.
967 EmitToStreamer(*OutStreamer,
968 MCInstBuilder(PPC::BL)
969 // FIXME: We would like an efficient form for this, so we
970 // don't have to do a lot of extra uniquing.
971 .addExpr(MCSymbolRefExpr::create(PICBase, OutContext)));
973 // Emit the label.
974 OutStreamer->emitLabel(PICBase);
975 return;
977 case PPC::UpdateGBR: {
978 // Transform %rd = UpdateGBR(%rt, %ri)
979 // Into: lwz %rt, .L0$poff - .L0$pb(%ri)
980 // add %rd, %rt, %ri
981 // or into (if secure plt mode is on):
982 // addis r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@ha
983 // addi r30, r30, {.LTOC,_GLOBAL_OFFSET_TABLE} - .L0$pb@l
984 // Get the offset from the GOT Base Register to the GOT
985 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
986 if (Subtarget->isSecurePlt() && isPositionIndependent() ) {
987 unsigned PICR = TmpInst.getOperand(0).getReg();
988 MCSymbol *BaseSymbol = OutContext.getOrCreateSymbol(
989 M->getPICLevel() == PICLevel::SmallPIC ? "_GLOBAL_OFFSET_TABLE_"
990 : ".LTOC");
991 const MCExpr *PB =
992 MCSymbolRefExpr::create(MF->getPICBaseSymbol(), OutContext);
994 const MCExpr *DeltaExpr = MCBinaryExpr::createSub(
995 MCSymbolRefExpr::create(BaseSymbol, OutContext), PB, OutContext);
997 const MCExpr *DeltaHi = PPCMCExpr::createHa(DeltaExpr, OutContext);
998 EmitToStreamer(
999 *OutStreamer,
1000 MCInstBuilder(PPC::ADDIS).addReg(PICR).addReg(PICR).addExpr(DeltaHi));
1002 const MCExpr *DeltaLo = PPCMCExpr::createLo(DeltaExpr, OutContext);
1003 EmitToStreamer(
1004 *OutStreamer,
1005 MCInstBuilder(PPC::ADDI).addReg(PICR).addReg(PICR).addExpr(DeltaLo));
1006 return;
1007 } else {
1008 MCSymbol *PICOffset =
1009 MF->getInfo<PPCFunctionInfo>()->getPICOffsetSymbol(*MF);
1010 TmpInst.setOpcode(PPC::LWZ);
1011 const MCExpr *Exp =
1012 MCSymbolRefExpr::create(PICOffset, MCSymbolRefExpr::VK_None, OutContext);
1013 const MCExpr *PB =
1014 MCSymbolRefExpr::create(MF->getPICBaseSymbol(),
1015 MCSymbolRefExpr::VK_None,
1016 OutContext);
1017 const MCOperand TR = TmpInst.getOperand(1);
1018 const MCOperand PICR = TmpInst.getOperand(0);
1020 // Step 1: lwz %rt, .L$poff - .L$pb(%ri)
1021 TmpInst.getOperand(1) =
1022 MCOperand::createExpr(MCBinaryExpr::createSub(Exp, PB, OutContext));
1023 TmpInst.getOperand(0) = TR;
1024 TmpInst.getOperand(2) = PICR;
1025 EmitToStreamer(*OutStreamer, TmpInst);
1027 TmpInst.setOpcode(PPC::ADD4);
1028 TmpInst.getOperand(0) = PICR;
1029 TmpInst.getOperand(1) = TR;
1030 TmpInst.getOperand(2) = PICR;
1031 EmitToStreamer(*OutStreamer, TmpInst);
1032 return;
1035 case PPC::LWZtoc: {
1036 // Transform %rN = LWZtoc @op1, %r2
1037 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1039 // Change the opcode to LWZ.
1040 TmpInst.setOpcode(PPC::LWZ);
1042 const MachineOperand &MO = MI->getOperand(1);
1043 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1044 "Invalid operand for LWZtoc.");
1046 // Map the operand to its corresponding MCSymbol.
1047 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1049 // Create a reference to the GOT entry for the symbol. The GOT entry will be
1050 // synthesized later.
1051 if (PL == PICLevel::SmallPIC && !IsAIX) {
1052 const MCExpr *Exp =
1053 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_GOT,
1054 OutContext);
1055 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1056 EmitToStreamer(*OutStreamer, TmpInst);
1057 return;
1060 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1062 // Otherwise, use the TOC. 'TOCEntry' is a label used to reference the
1063 // storage allocated in the TOC which contains the address of
1064 // 'MOSymbol'. Said TOC entry will be synthesized later.
1065 MCSymbol *TOCEntry =
1066 lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1067 const MCExpr *Exp =
1068 MCSymbolRefExpr::create(TOCEntry, MCSymbolRefExpr::VK_None, OutContext);
1070 // AIX uses the label directly as the lwz displacement operand for
1071 // references into the toc section. The displacement value will be generated
1072 // relative to the toc-base.
1073 if (IsAIX) {
1074 assert(
1075 getCodeModel(*Subtarget, TM, MO) == CodeModel::Small &&
1076 "This pseudo should only be selected for 32-bit small code model.");
1077 Exp = getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK);
1078 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1080 // Print MO for better readability
1081 if (isVerbose())
1082 OutStreamer->getCommentOS() << MO << '\n';
1083 EmitToStreamer(*OutStreamer, TmpInst);
1084 return;
1087 // Create an explicit subtract expression between the local symbol and
1088 // '.LTOC' to manifest the toc-relative offset.
1089 const MCExpr *PB = MCSymbolRefExpr::create(
1090 OutContext.getOrCreateSymbol(Twine(".LTOC")), OutContext);
1091 Exp = MCBinaryExpr::createSub(Exp, PB, OutContext);
1092 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1093 EmitToStreamer(*OutStreamer, TmpInst);
1094 return;
1096 case PPC::ADDItoc:
1097 case PPC::ADDItoc8: {
1098 assert(IsAIX && TM.getCodeModel() == CodeModel::Small &&
1099 "PseudoOp only valid for small code model AIX");
1101 // Transform %rN = ADDItoc/8 %r2, @op1.
1102 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1104 // Change the opcode to load address.
1105 TmpInst.setOpcode((!IsPPC64) ? (PPC::LA) : (PPC::LA8));
1107 const MachineOperand &MO = MI->getOperand(2);
1108 assert(MO.isGlobal() && "Invalid operand for ADDItoc[8].");
1110 // Map the operand to its corresponding MCSymbol.
1111 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1113 const MCExpr *Exp =
1114 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_None, OutContext);
1116 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1117 EmitToStreamer(*OutStreamer, TmpInst);
1118 return;
1120 case PPC::LDtocJTI:
1121 case PPC::LDtocCPT:
1122 case PPC::LDtocBA:
1123 case PPC::LDtoc: {
1124 // Transform %x3 = LDtoc @min1, %x2
1125 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1127 // Change the opcode to LD.
1128 TmpInst.setOpcode(PPC::LD);
1130 const MachineOperand &MO = MI->getOperand(1);
1131 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1132 "Invalid operand!");
1134 // Map the operand to its corresponding MCSymbol.
1135 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1137 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1139 // Map the machine operand to its corresponding MCSymbol, then map the
1140 // global address operand to be a reference to the TOC entry we will
1141 // synthesize later.
1142 MCSymbol *TOCEntry =
1143 lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1145 MCSymbolRefExpr::VariantKind VKExpr =
1146 IsAIX ? MCSymbolRefExpr::VK_None : MCSymbolRefExpr::VK_PPC_TOC;
1147 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry, VKExpr, OutContext);
1148 TmpInst.getOperand(1) = MCOperand::createExpr(
1149 IsAIX ? getTOCEntryLoadingExprForXCOFF(MOSymbol, Exp, VK) : Exp);
1151 // Print MO for better readability
1152 if (isVerbose() && IsAIX)
1153 OutStreamer->getCommentOS() << MO << '\n';
1154 EmitToStreamer(*OutStreamer, TmpInst);
1155 return;
1157 case PPC::ADDIStocHA: {
1158 const MachineOperand &MO = MI->getOperand(2);
1160 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1161 "Invalid operand for ADDIStocHA.");
1162 assert((IsAIX && !IsPPC64 &&
1163 getCodeModel(*Subtarget, TM, MO) == CodeModel::Large) &&
1164 "This pseudo should only be selected for 32-bit large code model on"
1165 " AIX.");
1167 // Transform %rd = ADDIStocHA %rA, @sym(%r2)
1168 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1170 // Change the opcode to ADDIS.
1171 TmpInst.setOpcode(PPC::ADDIS);
1173 // Map the machine operand to its corresponding MCSymbol.
1174 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1176 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1178 // Map the global address operand to be a reference to the TOC entry we
1179 // will synthesize later. 'TOCEntry' is a label used to reference the
1180 // storage allocated in the TOC which contains the address of 'MOSymbol'.
1181 // If the symbol does not have the toc-data attribute, then we create the
1182 // TOC entry on AIX. If the toc-data attribute is used, the TOC entry
1183 // contains the data rather than the address of the MOSymbol.
1184 if (![](const MachineOperand &MO) {
1185 if (!MO.isGlobal())
1186 return false;
1188 const GlobalVariable *GV = dyn_cast<GlobalVariable>(MO.getGlobal());
1189 if (!GV)
1190 return false;
1191 return GV->hasAttribute("toc-data");
1192 }(MO)) {
1193 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1196 const MCExpr *Exp = MCSymbolRefExpr::create(
1197 MOSymbol, MCSymbolRefExpr::VK_PPC_U, OutContext);
1198 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1199 EmitToStreamer(*OutStreamer, TmpInst);
1200 return;
1202 case PPC::LWZtocL: {
1203 const MachineOperand &MO = MI->getOperand(1);
1205 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1206 "Invalid operand for LWZtocL.");
1207 assert(IsAIX && !IsPPC64 &&
1208 getCodeModel(*Subtarget, TM, MO) == CodeModel::Large &&
1209 "This pseudo should only be selected for 32-bit large code model on"
1210 " AIX.");
1212 // Transform %rd = LWZtocL @sym, %rs.
1213 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1215 // Change the opcode to lwz.
1216 TmpInst.setOpcode(PPC::LWZ);
1218 // Map the machine operand to its corresponding MCSymbol.
1219 MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1221 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1223 // Always use TOC on AIX. Map the global address operand to be a reference
1224 // to the TOC entry we will synthesize later. 'TOCEntry' is a label used to
1225 // reference the storage allocated in the TOC which contains the address of
1226 // 'MOSymbol'.
1227 MCSymbol *TOCEntry =
1228 lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1229 const MCExpr *Exp = MCSymbolRefExpr::create(TOCEntry,
1230 MCSymbolRefExpr::VK_PPC_L,
1231 OutContext);
1232 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1233 EmitToStreamer(*OutStreamer, TmpInst);
1234 return;
1236 case PPC::ADDIStocHA8: {
1237 // Transform %xd = ADDIStocHA8 %x2, @sym
1238 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1240 // Change the opcode to ADDIS8. If the global address is the address of
1241 // an external symbol, is a jump table address, is a block address, or is a
1242 // constant pool index with large code model enabled, then generate a TOC
1243 // entry and reference that. Otherwise, reference the symbol directly.
1244 TmpInst.setOpcode(PPC::ADDIS8);
1246 const MachineOperand &MO = MI->getOperand(2);
1247 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isBlockAddress()) &&
1248 "Invalid operand for ADDIStocHA8!");
1250 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1252 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1254 const bool GlobalToc =
1255 MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal());
1257 const CodeModel::Model CM =
1258 IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
1260 if (GlobalToc || MO.isJTI() || MO.isBlockAddress() ||
1261 (MO.isCPI() && CM == CodeModel::Large))
1262 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1264 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_U : MCSymbolRefExpr::VK_PPC_TOC_HA;
1266 const MCExpr *Exp =
1267 MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1269 if (!MO.isJTI() && MO.getOffset())
1270 Exp = MCBinaryExpr::createAdd(Exp,
1271 MCConstantExpr::create(MO.getOffset(),
1272 OutContext),
1273 OutContext);
1275 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1276 EmitToStreamer(*OutStreamer, TmpInst);
1277 return;
1279 case PPC::LDtocL: {
1280 // Transform %xd = LDtocL @sym, %xs
1281 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1283 // Change the opcode to LD. If the global address is the address of
1284 // an external symbol, is a jump table address, is a block address, or is
1285 // a constant pool index with large code model enabled, then generate a
1286 // TOC entry and reference that. Otherwise, reference the symbol directly.
1287 TmpInst.setOpcode(PPC::LD);
1289 const MachineOperand &MO = MI->getOperand(1);
1290 assert((MO.isGlobal() || MO.isCPI() || MO.isJTI() ||
1291 MO.isBlockAddress()) &&
1292 "Invalid operand for LDtocL!");
1294 LLVM_DEBUG(assert(
1295 (!MO.isGlobal() || Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1296 "LDtocL used on symbol that could be accessed directly is "
1297 "invalid. Must match ADDIStocHA8."));
1299 const MCSymbol *MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1301 MCSymbolRefExpr::VariantKind VK = GetVKForMO(MO);
1302 CodeModel::Model CM =
1303 IsAIX ? getCodeModel(*Subtarget, TM, MO) : TM.getCodeModel();
1304 if (!MO.isCPI() || CM == CodeModel::Large)
1305 MOSymbol = lookUpOrCreateTOCEntry(MOSymbol, getTOCEntryTypeForMO(MO), VK);
1307 VK = IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO;
1308 const MCExpr *Exp =
1309 MCSymbolRefExpr::create(MOSymbol, VK, OutContext);
1310 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1311 EmitToStreamer(*OutStreamer, TmpInst);
1312 return;
1314 case PPC::ADDItocL:
1315 case PPC::ADDItocL8: {
1316 // Transform %xd = ADDItocL %xs, @sym
1317 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1319 unsigned Op = MI->getOpcode();
1321 // Change the opcode to load address for toc-data.
1322 // ADDItocL is only used for 32-bit toc-data on AIX and will always use LA.
1323 TmpInst.setOpcode(Op == PPC::ADDItocL8 ? (IsAIX ? PPC::LA8 : PPC::ADDI8)
1324 : PPC::LA);
1326 const MachineOperand &MO = MI->getOperand(2);
1327 assert((Op == PPC::ADDItocL8)
1328 ? (MO.isGlobal() || MO.isCPI())
1329 : MO.isGlobal() && "Invalid operand for ADDItocL8.");
1330 assert(!(MO.isGlobal() && Subtarget->isGVIndirectSymbol(MO.getGlobal())) &&
1331 "Interposable definitions must use indirect accesses.");
1333 // Map the operand to its corresponding MCSymbol.
1334 const MCSymbol *const MOSymbol = getMCSymbolForTOCPseudoMO(MO, *this);
1336 const MCExpr *Exp = MCSymbolRefExpr::create(
1337 MOSymbol,
1338 IsAIX ? MCSymbolRefExpr::VK_PPC_L : MCSymbolRefExpr::VK_PPC_TOC_LO,
1339 OutContext);
1341 TmpInst.getOperand(2) = MCOperand::createExpr(Exp);
1342 EmitToStreamer(*OutStreamer, TmpInst);
1343 return;
1345 case PPC::ADDISgotTprelHA: {
1346 // Transform: %xd = ADDISgotTprelHA %x2, @sym
1347 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1348 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1349 const MachineOperand &MO = MI->getOperand(2);
1350 const GlobalValue *GValue = MO.getGlobal();
1351 MCSymbol *MOSymbol = getSymbol(GValue);
1352 const MCExpr *SymGotTprel =
1353 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA,
1354 OutContext);
1355 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1356 .addReg(MI->getOperand(0).getReg())
1357 .addReg(MI->getOperand(1).getReg())
1358 .addExpr(SymGotTprel));
1359 return;
1361 case PPC::LDgotTprelL:
1362 case PPC::LDgotTprelL32: {
1363 // Transform %xd = LDgotTprelL @sym, %xs
1364 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1366 // Change the opcode to LD.
1367 TmpInst.setOpcode(IsPPC64 ? PPC::LD : PPC::LWZ);
1368 const MachineOperand &MO = MI->getOperand(1);
1369 const GlobalValue *GValue = MO.getGlobal();
1370 MCSymbol *MOSymbol = getSymbol(GValue);
1371 const MCExpr *Exp = MCSymbolRefExpr::create(
1372 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO
1373 : MCSymbolRefExpr::VK_PPC_GOT_TPREL,
1374 OutContext);
1375 TmpInst.getOperand(1) = MCOperand::createExpr(Exp);
1376 EmitToStreamer(*OutStreamer, TmpInst);
1377 return;
1380 case PPC::PPC32PICGOT: {
1381 MCSymbol *GOTSymbol = OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1382 MCSymbol *GOTRef = OutContext.createTempSymbol();
1383 MCSymbol *NextInstr = OutContext.createTempSymbol();
1385 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::BL)
1386 // FIXME: We would like an efficient form for this, so we don't have to do
1387 // a lot of extra uniquing.
1388 .addExpr(MCSymbolRefExpr::create(NextInstr, OutContext)));
1389 const MCExpr *OffsExpr =
1390 MCBinaryExpr::createSub(MCSymbolRefExpr::create(GOTSymbol, OutContext),
1391 MCSymbolRefExpr::create(GOTRef, OutContext),
1392 OutContext);
1393 OutStreamer->emitLabel(GOTRef);
1394 OutStreamer->emitValue(OffsExpr, 4);
1395 OutStreamer->emitLabel(NextInstr);
1396 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR)
1397 .addReg(MI->getOperand(0).getReg()));
1398 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LWZ)
1399 .addReg(MI->getOperand(1).getReg())
1400 .addImm(0)
1401 .addReg(MI->getOperand(0).getReg()));
1402 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD4)
1403 .addReg(MI->getOperand(0).getReg())
1404 .addReg(MI->getOperand(1).getReg())
1405 .addReg(MI->getOperand(0).getReg()));
1406 return;
1408 case PPC::PPC32GOT: {
1409 MCSymbol *GOTSymbol =
1410 OutContext.getOrCreateSymbol(StringRef("_GLOBAL_OFFSET_TABLE_"));
1411 const MCExpr *SymGotTlsL = MCSymbolRefExpr::create(
1412 GOTSymbol, MCSymbolRefExpr::VK_PPC_LO, OutContext);
1413 const MCExpr *SymGotTlsHA = MCSymbolRefExpr::create(
1414 GOTSymbol, MCSymbolRefExpr::VK_PPC_HA, OutContext);
1415 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LI)
1416 .addReg(MI->getOperand(0).getReg())
1417 .addExpr(SymGotTlsL));
1418 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
1419 .addReg(MI->getOperand(0).getReg())
1420 .addReg(MI->getOperand(0).getReg())
1421 .addExpr(SymGotTlsHA));
1422 return;
1424 case PPC::ADDIStlsgdHA: {
1425 // Transform: %xd = ADDIStlsgdHA %x2, @sym
1426 // Into: %xd = ADDIS8 %x2, sym@got@tlsgd@ha
1427 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1428 const MachineOperand &MO = MI->getOperand(2);
1429 const GlobalValue *GValue = MO.getGlobal();
1430 MCSymbol *MOSymbol = getSymbol(GValue);
1431 const MCExpr *SymGotTlsGD =
1432 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA,
1433 OutContext);
1434 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1435 .addReg(MI->getOperand(0).getReg())
1436 .addReg(MI->getOperand(1).getReg())
1437 .addExpr(SymGotTlsGD));
1438 return;
1440 case PPC::ADDItlsgdL:
1441 // Transform: %xd = ADDItlsgdL %xs, @sym
1442 // Into: %xd = ADDI8 %xs, sym@got@tlsgd@l
1443 case PPC::ADDItlsgdL32: {
1444 // Transform: %rd = ADDItlsgdL32 %rs, @sym
1445 // Into: %rd = ADDI %rs, sym@got@tlsgd
1446 const MachineOperand &MO = MI->getOperand(2);
1447 const GlobalValue *GValue = MO.getGlobal();
1448 MCSymbol *MOSymbol = getSymbol(GValue);
1449 const MCExpr *SymGotTlsGD = MCSymbolRefExpr::create(
1450 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO
1451 : MCSymbolRefExpr::VK_PPC_GOT_TLSGD,
1452 OutContext);
1453 EmitToStreamer(*OutStreamer,
1454 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1455 .addReg(MI->getOperand(0).getReg())
1456 .addReg(MI->getOperand(1).getReg())
1457 .addExpr(SymGotTlsGD));
1458 return;
1460 case PPC::GETtlsMOD32AIX:
1461 case PPC::GETtlsMOD64AIX:
1462 // Transform: %r3 = GETtlsMODNNAIX %r3 (for NN == 32/64).
1463 // Into: BLA .__tls_get_mod()
1464 // Input parameter is a module handle (_$TLSML[TC]@ml) for all variables.
1465 case PPC::GETtlsADDR:
1466 // Transform: %x3 = GETtlsADDR %x3, @sym
1467 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsgd)
1468 case PPC::GETtlsADDRPCREL:
1469 case PPC::GETtlsADDR32AIX:
1470 case PPC::GETtlsADDR64AIX:
1471 // Transform: %r3 = GETtlsADDRNNAIX %r3, %r4 (for NN == 32/64).
1472 // Into: BLA .__tls_get_addr()
1473 // Unlike on Linux, there is no symbol or relocation needed for this call.
1474 case PPC::GETtlsADDR32: {
1475 // Transform: %r3 = GETtlsADDR32 %r3, @sym
1476 // Into: BL_TLS __tls_get_addr(sym at tlsgd)@PLT
1477 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSGD);
1478 return;
1480 case PPC::GETtlsTpointer32AIX: {
1481 // Transform: %r3 = GETtlsTpointer32AIX
1482 // Into: BLA .__get_tpointer()
1483 EmitAIXTlsCallHelper(MI);
1484 return;
1486 case PPC::ADDIStlsldHA: {
1487 // Transform: %xd = ADDIStlsldHA %x2, @sym
1488 // Into: %xd = ADDIS8 %x2, sym@got@tlsld@ha
1489 assert(IsPPC64 && "Not supported for 32-bit PowerPC");
1490 const MachineOperand &MO = MI->getOperand(2);
1491 const GlobalValue *GValue = MO.getGlobal();
1492 MCSymbol *MOSymbol = getSymbol(GValue);
1493 const MCExpr *SymGotTlsLD =
1494 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA,
1495 OutContext);
1496 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS8)
1497 .addReg(MI->getOperand(0).getReg())
1498 .addReg(MI->getOperand(1).getReg())
1499 .addExpr(SymGotTlsLD));
1500 return;
1502 case PPC::ADDItlsldL:
1503 // Transform: %xd = ADDItlsldL %xs, @sym
1504 // Into: %xd = ADDI8 %xs, sym@got@tlsld@l
1505 case PPC::ADDItlsldL32: {
1506 // Transform: %rd = ADDItlsldL32 %rs, @sym
1507 // Into: %rd = ADDI %rs, sym@got@tlsld
1508 const MachineOperand &MO = MI->getOperand(2);
1509 const GlobalValue *GValue = MO.getGlobal();
1510 MCSymbol *MOSymbol = getSymbol(GValue);
1511 const MCExpr *SymGotTlsLD = MCSymbolRefExpr::create(
1512 MOSymbol, IsPPC64 ? MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO
1513 : MCSymbolRefExpr::VK_PPC_GOT_TLSLD,
1514 OutContext);
1515 EmitToStreamer(*OutStreamer,
1516 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1517 .addReg(MI->getOperand(0).getReg())
1518 .addReg(MI->getOperand(1).getReg())
1519 .addExpr(SymGotTlsLD));
1520 return;
1522 case PPC::GETtlsldADDR:
1523 // Transform: %x3 = GETtlsldADDR %x3, @sym
1524 // Into: BL8_NOP_TLS __tls_get_addr(sym at tlsld)
1525 case PPC::GETtlsldADDRPCREL:
1526 case PPC::GETtlsldADDR32: {
1527 // Transform: %r3 = GETtlsldADDR32 %r3, @sym
1528 // Into: BL_TLS __tls_get_addr(sym at tlsld)@PLT
1529 EmitTlsCall(MI, MCSymbolRefExpr::VK_PPC_TLSLD);
1530 return;
1532 case PPC::ADDISdtprelHA:
1533 // Transform: %xd = ADDISdtprelHA %xs, @sym
1534 // Into: %xd = ADDIS8 %xs, sym@dtprel@ha
1535 case PPC::ADDISdtprelHA32: {
1536 // Transform: %rd = ADDISdtprelHA32 %rs, @sym
1537 // Into: %rd = ADDIS %rs, sym@dtprel@ha
1538 const MachineOperand &MO = MI->getOperand(2);
1539 const GlobalValue *GValue = MO.getGlobal();
1540 MCSymbol *MOSymbol = getSymbol(GValue);
1541 const MCExpr *SymDtprel =
1542 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_HA,
1543 OutContext);
1544 EmitToStreamer(
1545 *OutStreamer,
1546 MCInstBuilder(IsPPC64 ? PPC::ADDIS8 : PPC::ADDIS)
1547 .addReg(MI->getOperand(0).getReg())
1548 .addReg(MI->getOperand(1).getReg())
1549 .addExpr(SymDtprel));
1550 return;
1552 case PPC::PADDIdtprel: {
1553 // Transform: %rd = PADDIdtprel %rs, @sym
1554 // Into: %rd = PADDI8 %rs, sym@dtprel
1555 const MachineOperand &MO = MI->getOperand(2);
1556 const GlobalValue *GValue = MO.getGlobal();
1557 MCSymbol *MOSymbol = getSymbol(GValue);
1558 const MCExpr *SymDtprel = MCSymbolRefExpr::create(
1559 MOSymbol, MCSymbolRefExpr::VK_DTPREL, OutContext);
1560 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::PADDI8)
1561 .addReg(MI->getOperand(0).getReg())
1562 .addReg(MI->getOperand(1).getReg())
1563 .addExpr(SymDtprel));
1564 return;
1567 case PPC::ADDIdtprelL:
1568 // Transform: %xd = ADDIdtprelL %xs, @sym
1569 // Into: %xd = ADDI8 %xs, sym@dtprel@l
1570 case PPC::ADDIdtprelL32: {
1571 // Transform: %rd = ADDIdtprelL32 %rs, @sym
1572 // Into: %rd = ADDI %rs, sym@dtprel@l
1573 const MachineOperand &MO = MI->getOperand(2);
1574 const GlobalValue *GValue = MO.getGlobal();
1575 MCSymbol *MOSymbol = getSymbol(GValue);
1576 const MCExpr *SymDtprel =
1577 MCSymbolRefExpr::create(MOSymbol, MCSymbolRefExpr::VK_PPC_DTPREL_LO,
1578 OutContext);
1579 EmitToStreamer(*OutStreamer,
1580 MCInstBuilder(IsPPC64 ? PPC::ADDI8 : PPC::ADDI)
1581 .addReg(MI->getOperand(0).getReg())
1582 .addReg(MI->getOperand(1).getReg())
1583 .addExpr(SymDtprel));
1584 return;
1586 case PPC::MFOCRF:
1587 case PPC::MFOCRF8:
1588 if (!Subtarget->hasMFOCRF()) {
1589 // Transform: %r3 = MFOCRF %cr7
1590 // Into: %r3 = MFCR ;; cr7
1591 unsigned NewOpcode =
1592 MI->getOpcode() == PPC::MFOCRF ? PPC::MFCR : PPC::MFCR8;
1593 OutStreamer->AddComment(PPCInstPrinter::
1594 getRegisterName(MI->getOperand(1).getReg()));
1595 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1596 .addReg(MI->getOperand(0).getReg()));
1597 return;
1599 break;
1600 case PPC::MTOCRF:
1601 case PPC::MTOCRF8:
1602 if (!Subtarget->hasMFOCRF()) {
1603 // Transform: %cr7 = MTOCRF %r3
1604 // Into: MTCRF mask, %r3 ;; cr7
1605 unsigned NewOpcode =
1606 MI->getOpcode() == PPC::MTOCRF ? PPC::MTCRF : PPC::MTCRF8;
1607 unsigned Mask = 0x80 >> OutContext.getRegisterInfo()
1608 ->getEncodingValue(MI->getOperand(0).getReg());
1609 OutStreamer->AddComment(PPCInstPrinter::
1610 getRegisterName(MI->getOperand(0).getReg()));
1611 EmitToStreamer(*OutStreamer, MCInstBuilder(NewOpcode)
1612 .addImm(Mask)
1613 .addReg(MI->getOperand(1).getReg()));
1614 return;
1616 break;
1617 case PPC::LD:
1618 case PPC::STD:
1619 case PPC::LWA_32:
1620 case PPC::LWA: {
1621 // Verify alignment is legal, so we don't create relocations
1622 // that can't be supported.
1623 unsigned OpNum = (MI->getOpcode() == PPC::STD) ? 2 : 1;
1624 // For non-TOC-based local-exec TLS accesses with non-zero offsets, the
1625 // machine operand (which is a TargetGlobalTLSAddress) is expected to be
1626 // the same operand for both loads and stores.
1627 for (const MachineOperand &TempMO : MI->operands()) {
1628 if (((TempMO.getTargetFlags() == PPCII::MO_TPREL_FLAG ||
1629 TempMO.getTargetFlags() == PPCII::MO_TLSLD_FLAG)) &&
1630 TempMO.getOperandNo() == 1)
1631 OpNum = 1;
1633 const MachineOperand &MO = MI->getOperand(OpNum);
1634 if (MO.isGlobal()) {
1635 const DataLayout &DL = MO.getGlobal()->getDataLayout();
1636 if (MO.getGlobal()->getPointerAlignment(DL) < 4)
1637 llvm_unreachable("Global must be word-aligned for LD, STD, LWA!");
1639 // As these load/stores share common code with the following load/stores,
1640 // fall through to the subsequent cases in order to either process the
1641 // non-TOC-based local-exec sequence or to process the instruction normally.
1642 [[fallthrough]];
1644 case PPC::LBZ:
1645 case PPC::LBZ8:
1646 case PPC::LHA:
1647 case PPC::LHA8:
1648 case PPC::LHZ:
1649 case PPC::LHZ8:
1650 case PPC::LWZ:
1651 case PPC::LWZ8:
1652 case PPC::STB:
1653 case PPC::STB8:
1654 case PPC::STH:
1655 case PPC::STH8:
1656 case PPC::STW:
1657 case PPC::STW8:
1658 case PPC::LFS:
1659 case PPC::STFS:
1660 case PPC::LFD:
1661 case PPC::STFD:
1662 case PPC::ADDI8: {
1663 // A faster non-TOC-based local-[exec|dynamic] sequence is represented by
1664 // `addi` or a load/store instruction (that directly loads or stores off of
1665 // the thread pointer) with an immediate operand having the
1666 // [MO_TPREL_FLAG|MO_TLSLD_FLAG]. Such instructions do not otherwise arise.
1667 if (!HasAIXSmallLocalTLS)
1668 break;
1669 bool IsMIADDI8 = MI->getOpcode() == PPC::ADDI8;
1670 unsigned OpNum = IsMIADDI8 ? 2 : 1;
1671 const MachineOperand &MO = MI->getOperand(OpNum);
1672 unsigned Flag = MO.getTargetFlags();
1673 if (Flag == PPCII::MO_TPREL_FLAG ||
1674 Flag == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
1675 Flag == PPCII::MO_TPREL_PCREL_FLAG || Flag == PPCII::MO_TLSLD_FLAG) {
1676 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1678 const MCExpr *Expr = getAdjustedFasterLocalExpr(MO, MO.getOffset());
1679 if (Expr)
1680 TmpInst.getOperand(OpNum) = MCOperand::createExpr(Expr);
1682 // Change the opcode to load address if the original opcode is an `addi`.
1683 if (IsMIADDI8)
1684 TmpInst.setOpcode(PPC::LA8);
1686 EmitToStreamer(*OutStreamer, TmpInst);
1687 return;
1689 // Now process the instruction normally.
1690 break;
1692 case PPC::PseudoEIEIO: {
1693 EmitToStreamer(
1694 *OutStreamer,
1695 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1696 EmitToStreamer(
1697 *OutStreamer,
1698 MCInstBuilder(PPC::ORI).addReg(PPC::X2).addReg(PPC::X2).addImm(0));
1699 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::EnforceIEIO));
1700 return;
1704 LowerPPCMachineInstrToMCInst(MI, TmpInst, *this);
1705 EmitToStreamer(*OutStreamer, TmpInst);
1708 // For non-TOC-based local-[exec|dynamic] variables that have a non-zero offset,
1709 // we need to create a new MCExpr that adds the non-zero offset to the address
1710 // of the local-[exec|dynamic] variable that will be used in either an addi,
1711 // load or store. However, the final displacement for these instructions must be
1712 // between [-32768, 32768), so if the TLS address + its non-zero offset is
1713 // greater than 32KB, a new MCExpr is produced to accommodate this situation.
1714 const MCExpr *
1715 PPCAsmPrinter::getAdjustedFasterLocalExpr(const MachineOperand &MO,
1716 int64_t Offset) {
1717 // Non-zero offsets (for loads, stores or `addi`) require additional handling.
1718 // When the offset is zero, there is no need to create an adjusted MCExpr.
1719 if (!Offset)
1720 return nullptr;
1722 assert(MO.isGlobal() && "Only expecting a global MachineOperand here!");
1723 const GlobalValue *GValue = MO.getGlobal();
1724 TLSModel::Model Model = TM.getTLSModel(GValue);
1725 assert((Model == TLSModel::LocalExec || Model == TLSModel::LocalDynamic) &&
1726 "Only local-[exec|dynamic] accesses are handled!");
1728 bool IsGlobalADeclaration = GValue->isDeclarationForLinker();
1729 // Find the GlobalVariable that corresponds to the particular TLS variable
1730 // in the TLS variable-to-address mapping. All TLS variables should exist
1731 // within this map, with the exception of TLS variables marked as extern.
1732 const auto TLSVarsMapEntryIter = TLSVarsToAddressMapping.find(GValue);
1733 if (TLSVarsMapEntryIter == TLSVarsToAddressMapping.end())
1734 assert(IsGlobalADeclaration &&
1735 "Only expecting to find extern TLS variables not present in the TLS "
1736 "variable-to-address map!");
1738 unsigned TLSVarAddress =
1739 IsGlobalADeclaration ? 0 : TLSVarsMapEntryIter->second;
1740 ptrdiff_t FinalAddress = (TLSVarAddress + Offset);
1741 // If the address of the TLS variable + the offset is less than 32KB,
1742 // or if the TLS variable is extern, we simply produce an MCExpr to add the
1743 // non-zero offset to the TLS variable address.
1744 // For when TLS variables are extern, this is safe to do because we can
1745 // assume that the address of extern TLS variables are zero.
1746 const MCExpr *Expr = MCSymbolRefExpr::create(
1747 getSymbol(GValue),
1748 Model == TLSModel::LocalExec ? MCSymbolRefExpr::VK_PPC_AIX_TLSLE
1749 : MCSymbolRefExpr::VK_PPC_AIX_TLSLD,
1750 OutContext);
1751 Expr = MCBinaryExpr::createAdd(
1752 Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
1753 if (FinalAddress >= 32768) {
1754 // Handle the written offset for cases where:
1755 // TLS variable address + Offset > 32KB.
1757 // The assembly that is printed will look like:
1758 // TLSVar@le + Offset - Delta
1759 // where Delta is a multiple of 64KB: ((FinalAddress + 32768) & ~0xFFFF).
1760 ptrdiff_t Delta = ((FinalAddress + 32768) & ~0xFFFF);
1761 // Check that the total instruction displacement fits within [-32768,32768).
1762 [[maybe_unused]] ptrdiff_t InstDisp = TLSVarAddress + Offset - Delta;
1763 assert(
1764 ((InstDisp < 32768) && (InstDisp >= -32768)) &&
1765 "Expecting the instruction displacement for local-[exec|dynamic] TLS "
1766 "variables to be between [-32768, 32768)!");
1767 Expr = MCBinaryExpr::createAdd(
1768 Expr, MCConstantExpr::create(-Delta, OutContext), OutContext);
1771 return Expr;
1774 void PPCLinuxAsmPrinter::emitGNUAttributes(Module &M) {
1775 // Emit float ABI into GNU attribute
1776 Metadata *MD = M.getModuleFlag("float-abi");
1777 MDString *FloatABI = dyn_cast_or_null<MDString>(MD);
1778 if (!FloatABI)
1779 return;
1780 StringRef flt = FloatABI->getString();
1781 // TODO: Support emitting soft-fp and hard double/single attributes.
1782 if (flt == "doubledouble")
1783 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1784 Val_GNU_Power_ABI_HardFloat_DP |
1785 Val_GNU_Power_ABI_LDBL_IBM128);
1786 else if (flt == "ieeequad")
1787 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1788 Val_GNU_Power_ABI_HardFloat_DP |
1789 Val_GNU_Power_ABI_LDBL_IEEE128);
1790 else if (flt == "ieeedouble")
1791 OutStreamer->emitGNUAttribute(Tag_GNU_Power_ABI_FP,
1792 Val_GNU_Power_ABI_HardFloat_DP |
1793 Val_GNU_Power_ABI_LDBL_64);
1796 void PPCLinuxAsmPrinter::emitInstruction(const MachineInstr *MI) {
1797 if (!Subtarget->isPPC64())
1798 return PPCAsmPrinter::emitInstruction(MI);
1800 switch (MI->getOpcode()) {
1801 default:
1802 break;
1803 case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
1804 // .begin:
1805 // b .end # lis 0, FuncId[16..32]
1806 // nop # li 0, FuncId[0..15]
1807 // std 0, -8(1)
1808 // mflr 0
1809 // bl __xray_FunctionEntry
1810 // mtlr 0
1811 // .end:
1813 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1814 // of instructions change.
1815 // XRAY is only supported on PPC Linux little endian.
1816 if (!MAI->isLittleEndian())
1817 break;
1818 MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1819 MCSymbol *EndOfSled = OutContext.createTempSymbol();
1820 OutStreamer->emitLabel(BeginOfSled);
1821 EmitToStreamer(*OutStreamer,
1822 MCInstBuilder(PPC::B).addExpr(
1823 MCSymbolRefExpr::create(EndOfSled, OutContext)));
1824 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1825 EmitToStreamer(
1826 *OutStreamer,
1827 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1828 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1829 EmitToStreamer(*OutStreamer,
1830 MCInstBuilder(PPC::BL8_NOP)
1831 .addExpr(MCSymbolRefExpr::create(
1832 OutContext.getOrCreateSymbol("__xray_FunctionEntry"),
1833 OutContext)));
1834 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1835 OutStreamer->emitLabel(EndOfSled);
1836 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_ENTER, 2);
1837 break;
1839 case TargetOpcode::PATCHABLE_RET: {
1840 unsigned RetOpcode = MI->getOperand(0).getImm();
1841 MCInst RetInst;
1842 RetInst.setOpcode(RetOpcode);
1843 for (const auto &MO : llvm::drop_begin(MI->operands())) {
1844 MCOperand MCOp;
1845 if (LowerPPCMachineOperandToMCOperand(MO, MCOp, *this))
1846 RetInst.addOperand(MCOp);
1849 bool IsConditional;
1850 if (RetOpcode == PPC::BCCLR) {
1851 IsConditional = true;
1852 } else if (RetOpcode == PPC::TCRETURNdi8 || RetOpcode == PPC::TCRETURNri8 ||
1853 RetOpcode == PPC::TCRETURNai8) {
1854 break;
1855 } else if (RetOpcode == PPC::BLR8 || RetOpcode == PPC::TAILB8) {
1856 IsConditional = false;
1857 } else {
1858 EmitToStreamer(*OutStreamer, RetInst);
1859 return;
1862 MCSymbol *FallthroughLabel;
1863 if (IsConditional) {
1864 // Before:
1865 // bgtlr cr0
1867 // After:
1868 // ble cr0, .end
1869 // .p2align 3
1870 // .begin:
1871 // blr # lis 0, FuncId[16..32]
1872 // nop # li 0, FuncId[0..15]
1873 // std 0, -8(1)
1874 // mflr 0
1875 // bl __xray_FunctionExit
1876 // mtlr 0
1877 // blr
1878 // .end:
1880 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1881 // of instructions change.
1882 FallthroughLabel = OutContext.createTempSymbol();
1883 EmitToStreamer(
1884 *OutStreamer,
1885 MCInstBuilder(PPC::BCC)
1886 .addImm(PPC::InvertPredicate(
1887 static_cast<PPC::Predicate>(MI->getOperand(1).getImm())))
1888 .addReg(MI->getOperand(2).getReg())
1889 .addExpr(MCSymbolRefExpr::create(FallthroughLabel, OutContext)));
1890 RetInst = MCInst();
1891 RetInst.setOpcode(PPC::BLR8);
1893 // .p2align 3
1894 // .begin:
1895 // b(lr)? # lis 0, FuncId[16..32]
1896 // nop # li 0, FuncId[0..15]
1897 // std 0, -8(1)
1898 // mflr 0
1899 // bl __xray_FunctionExit
1900 // mtlr 0
1901 // b(lr)?
1903 // Update compiler-rt/lib/xray/xray_powerpc64.cc accordingly when number
1904 // of instructions change.
1905 OutStreamer->emitCodeAlignment(Align(8), &getSubtargetInfo());
1906 MCSymbol *BeginOfSled = OutContext.createTempSymbol();
1907 OutStreamer->emitLabel(BeginOfSled);
1908 EmitToStreamer(*OutStreamer, RetInst);
1909 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::NOP));
1910 EmitToStreamer(
1911 *OutStreamer,
1912 MCInstBuilder(PPC::STD).addReg(PPC::X0).addImm(-8).addReg(PPC::X1));
1913 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MFLR8).addReg(PPC::X0));
1914 EmitToStreamer(*OutStreamer,
1915 MCInstBuilder(PPC::BL8_NOP)
1916 .addExpr(MCSymbolRefExpr::create(
1917 OutContext.getOrCreateSymbol("__xray_FunctionExit"),
1918 OutContext)));
1919 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::MTLR8).addReg(PPC::X0));
1920 EmitToStreamer(*OutStreamer, RetInst);
1921 if (IsConditional)
1922 OutStreamer->emitLabel(FallthroughLabel);
1923 recordSled(BeginOfSled, *MI, SledKind::FUNCTION_EXIT, 2);
1924 return;
1926 case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1927 llvm_unreachable("PATCHABLE_FUNCTION_EXIT should never be emitted");
1928 case TargetOpcode::PATCHABLE_TAIL_CALL:
1929 // TODO: Define a trampoline `__xray_FunctionTailExit` and differentiate a
1930 // normal function exit from a tail exit.
1931 llvm_unreachable("Tail call is handled in the normal case. See comments "
1932 "around this assert.");
1934 return PPCAsmPrinter::emitInstruction(MI);
1937 void PPCLinuxAsmPrinter::emitStartOfAsmFile(Module &M) {
1938 if (static_cast<const PPCTargetMachine &>(TM).isELFv2ABI()) {
1939 PPCTargetStreamer *TS =
1940 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
1941 TS->emitAbiVersion(2);
1944 if (static_cast<const PPCTargetMachine &>(TM).isPPC64() ||
1945 !isPositionIndependent())
1946 return AsmPrinter::emitStartOfAsmFile(M);
1948 if (M.getPICLevel() == PICLevel::SmallPIC)
1949 return AsmPrinter::emitStartOfAsmFile(M);
1951 OutStreamer->switchSection(OutContext.getELFSection(
1952 ".got2", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC));
1954 MCSymbol *TOCSym = OutContext.getOrCreateSymbol(Twine(".LTOC"));
1955 MCSymbol *CurrentPos = OutContext.createTempSymbol();
1957 OutStreamer->emitLabel(CurrentPos);
1959 // The GOT pointer points to the middle of the GOT, in order to reference the
1960 // entire 64kB range. 0x8000 is the midpoint.
1961 const MCExpr *tocExpr =
1962 MCBinaryExpr::createAdd(MCSymbolRefExpr::create(CurrentPos, OutContext),
1963 MCConstantExpr::create(0x8000, OutContext),
1964 OutContext);
1966 OutStreamer->emitAssignment(TOCSym, tocExpr);
1968 OutStreamer->switchSection(getObjFileLowering().getTextSection());
1971 void PPCLinuxAsmPrinter::emitFunctionEntryLabel() {
1972 // linux/ppc32 - Normal entry label.
1973 if (!Subtarget->isPPC64() &&
1974 (!isPositionIndependent() ||
1975 MF->getFunction().getParent()->getPICLevel() == PICLevel::SmallPIC))
1976 return AsmPrinter::emitFunctionEntryLabel();
1978 if (!Subtarget->isPPC64()) {
1979 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
1980 if (PPCFI->usesPICBase() && !Subtarget->isSecurePlt()) {
1981 MCSymbol *RelocSymbol = PPCFI->getPICOffsetSymbol(*MF);
1982 MCSymbol *PICBase = MF->getPICBaseSymbol();
1983 OutStreamer->emitLabel(RelocSymbol);
1985 const MCExpr *OffsExpr =
1986 MCBinaryExpr::createSub(
1987 MCSymbolRefExpr::create(OutContext.getOrCreateSymbol(Twine(".LTOC")),
1988 OutContext),
1989 MCSymbolRefExpr::create(PICBase, OutContext),
1990 OutContext);
1991 OutStreamer->emitValue(OffsExpr, 4);
1992 OutStreamer->emitLabel(CurrentFnSym);
1993 return;
1994 } else
1995 return AsmPrinter::emitFunctionEntryLabel();
1998 // ELFv2 ABI - Normal entry label.
1999 if (Subtarget->isELFv2ABI()) {
2000 // In the Large code model, we allow arbitrary displacements between
2001 // the text section and its associated TOC section. We place the
2002 // full 8-byte offset to the TOC in memory immediately preceding
2003 // the function global entry point.
2004 if (TM.getCodeModel() == CodeModel::Large
2005 && !MF->getRegInfo().use_empty(PPC::X2)) {
2006 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
2008 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2009 MCSymbol *GlobalEPSymbol = PPCFI->getGlobalEPSymbol(*MF);
2010 const MCExpr *TOCDeltaExpr =
2011 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
2012 MCSymbolRefExpr::create(GlobalEPSymbol,
2013 OutContext),
2014 OutContext);
2016 OutStreamer->emitLabel(PPCFI->getTOCOffsetSymbol(*MF));
2017 OutStreamer->emitValue(TOCDeltaExpr, 8);
2019 return AsmPrinter::emitFunctionEntryLabel();
2022 // Emit an official procedure descriptor.
2023 MCSectionSubPair Current = OutStreamer->getCurrentSection();
2024 MCSectionELF *Section = OutStreamer->getContext().getELFSection(
2025 ".opd", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
2026 OutStreamer->switchSection(Section);
2027 OutStreamer->emitLabel(CurrentFnSym);
2028 OutStreamer->emitValueToAlignment(Align(8));
2029 MCSymbol *Symbol1 = CurrentFnSymForSize;
2030 // Generates a R_PPC64_ADDR64 (from FK_DATA_8) relocation for the function
2031 // entry point.
2032 OutStreamer->emitValue(MCSymbolRefExpr::create(Symbol1, OutContext),
2033 8 /*size*/);
2034 MCSymbol *Symbol2 = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2035 // Generates a R_PPC64_TOC relocation for TOC base insertion.
2036 OutStreamer->emitValue(
2037 MCSymbolRefExpr::create(Symbol2, MCSymbolRefExpr::VK_PPC_TOCBASE, OutContext),
2038 8/*size*/);
2039 // Emit a null environment pointer.
2040 OutStreamer->emitIntValue(0, 8 /* size */);
2041 OutStreamer->switchSection(Current.first, Current.second);
2044 void PPCLinuxAsmPrinter::emitEndOfAsmFile(Module &M) {
2045 const DataLayout &DL = getDataLayout();
2047 bool isPPC64 = DL.getPointerSizeInBits() == 64;
2049 PPCTargetStreamer *TS =
2050 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2052 // If we are using any values provided by Glibc at fixed addresses,
2053 // we need to ensure that the Glibc used at link time actually provides
2054 // those values. All versions of Glibc that do will define the symbol
2055 // named "__parse_hwcap_and_convert_at_platform".
2056 if (static_cast<const PPCTargetMachine &>(TM).hasGlibcHWCAPAccess())
2057 OutStreamer->emitSymbolValue(
2058 GetExternalSymbolSymbol("__parse_hwcap_and_convert_at_platform"),
2059 MAI->getCodePointerSize());
2060 emitGNUAttributes(M);
2062 if (!TOC.empty()) {
2063 const char *Name = isPPC64 ? ".toc" : ".got2";
2064 MCSectionELF *Section = OutContext.getELFSection(
2065 Name, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
2066 OutStreamer->switchSection(Section);
2067 if (!isPPC64)
2068 OutStreamer->emitValueToAlignment(Align(4));
2070 for (const auto &TOCMapPair : TOC) {
2071 const MCSymbol *const TOCEntryTarget = TOCMapPair.first.first;
2072 MCSymbol *const TOCEntryLabel = TOCMapPair.second;
2074 OutStreamer->emitLabel(TOCEntryLabel);
2075 if (isPPC64)
2076 TS->emitTCEntry(*TOCEntryTarget, TOCMapPair.first.second);
2077 else
2078 OutStreamer->emitSymbolValue(TOCEntryTarget, 4);
2082 PPCAsmPrinter::emitEndOfAsmFile(M);
2085 /// EmitFunctionBodyStart - Emit a global entry point prefix for ELFv2.
2086 void PPCLinuxAsmPrinter::emitFunctionBodyStart() {
2087 // In the ELFv2 ABI, in functions that use the TOC register, we need to
2088 // provide two entry points. The ABI guarantees that when calling the
2089 // local entry point, r2 is set up by the caller to contain the TOC base
2090 // for this function, and when calling the global entry point, r12 is set
2091 // up by the caller to hold the address of the global entry point. We
2092 // thus emit a prefix sequence along the following lines:
2094 // func:
2095 // .Lfunc_gepNN:
2096 // # global entry point
2097 // addis r2,r12,(.TOC.-.Lfunc_gepNN)@ha
2098 // addi r2,r2,(.TOC.-.Lfunc_gepNN)@l
2099 // .Lfunc_lepNN:
2100 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
2101 // # local entry point, followed by function body
2103 // For the Large code model, we create
2105 // .Lfunc_tocNN:
2106 // .quad .TOC.-.Lfunc_gepNN # done by EmitFunctionEntryLabel
2107 // func:
2108 // .Lfunc_gepNN:
2109 // # global entry point
2110 // ld r2,.Lfunc_tocNN-.Lfunc_gepNN(r12)
2111 // add r2,r2,r12
2112 // .Lfunc_lepNN:
2113 // .localentry func, .Lfunc_lepNN-.Lfunc_gepNN
2114 // # local entry point, followed by function body
2116 // This ensures we have r2 set up correctly while executing the function
2117 // body, no matter which entry point is called.
2118 const PPCFunctionInfo *PPCFI = MF->getInfo<PPCFunctionInfo>();
2119 const bool UsesX2OrR2 = !MF->getRegInfo().use_empty(PPC::X2) ||
2120 !MF->getRegInfo().use_empty(PPC::R2);
2121 const bool PCrelGEPRequired = Subtarget->isUsingPCRelativeCalls() &&
2122 UsesX2OrR2 && PPCFI->usesTOCBasePtr();
2123 const bool NonPCrelGEPRequired = !Subtarget->isUsingPCRelativeCalls() &&
2124 Subtarget->isELFv2ABI() && UsesX2OrR2;
2126 // Only do all that if the function uses R2 as the TOC pointer
2127 // in the first place. We don't need the global entry point if the
2128 // function uses R2 as an allocatable register.
2129 if (NonPCrelGEPRequired || PCrelGEPRequired) {
2130 // Note: The logic here must be synchronized with the code in the
2131 // branch-selection pass which sets the offset of the first block in the
2132 // function. This matters because it affects the alignment.
2133 MCSymbol *GlobalEntryLabel = PPCFI->getGlobalEPSymbol(*MF);
2134 OutStreamer->emitLabel(GlobalEntryLabel);
2135 const MCSymbolRefExpr *GlobalEntryLabelExp =
2136 MCSymbolRefExpr::create(GlobalEntryLabel, OutContext);
2138 if (TM.getCodeModel() != CodeModel::Large) {
2139 MCSymbol *TOCSymbol = OutContext.getOrCreateSymbol(StringRef(".TOC."));
2140 const MCExpr *TOCDeltaExpr =
2141 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCSymbol, OutContext),
2142 GlobalEntryLabelExp, OutContext);
2144 const MCExpr *TOCDeltaHi = PPCMCExpr::createHa(TOCDeltaExpr, OutContext);
2145 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDIS)
2146 .addReg(PPC::X2)
2147 .addReg(PPC::X12)
2148 .addExpr(TOCDeltaHi));
2150 const MCExpr *TOCDeltaLo = PPCMCExpr::createLo(TOCDeltaExpr, OutContext);
2151 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADDI)
2152 .addReg(PPC::X2)
2153 .addReg(PPC::X2)
2154 .addExpr(TOCDeltaLo));
2155 } else {
2156 MCSymbol *TOCOffset = PPCFI->getTOCOffsetSymbol(*MF);
2157 const MCExpr *TOCOffsetDeltaExpr =
2158 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCOffset, OutContext),
2159 GlobalEntryLabelExp, OutContext);
2161 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::LD)
2162 .addReg(PPC::X2)
2163 .addExpr(TOCOffsetDeltaExpr)
2164 .addReg(PPC::X12));
2165 EmitToStreamer(*OutStreamer, MCInstBuilder(PPC::ADD8)
2166 .addReg(PPC::X2)
2167 .addReg(PPC::X2)
2168 .addReg(PPC::X12));
2171 MCSymbol *LocalEntryLabel = PPCFI->getLocalEPSymbol(*MF);
2172 OutStreamer->emitLabel(LocalEntryLabel);
2173 const MCSymbolRefExpr *LocalEntryLabelExp =
2174 MCSymbolRefExpr::create(LocalEntryLabel, OutContext);
2175 const MCExpr *LocalOffsetExp =
2176 MCBinaryExpr::createSub(LocalEntryLabelExp,
2177 GlobalEntryLabelExp, OutContext);
2179 PPCTargetStreamer *TS =
2180 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2181 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym), LocalOffsetExp);
2182 } else if (Subtarget->isUsingPCRelativeCalls()) {
2183 // When generating the entry point for a function we have a few scenarios
2184 // based on whether or not that function uses R2 and whether or not that
2185 // function makes calls (or is a leaf function).
2186 // 1) A leaf function that does not use R2 (or treats it as callee-saved
2187 // and preserves it). In this case st_other=0 and both
2188 // the local and global entry points for the function are the same.
2189 // No special entry point code is required.
2190 // 2) A function uses the TOC pointer R2. This function may or may not have
2191 // calls. In this case st_other=[2,6] and the global and local entry
2192 // points are different. Code to correctly setup the TOC pointer in R2
2193 // is put between the global and local entry points. This case is
2194 // covered by the if statatement above.
2195 // 3) A function does not use the TOC pointer R2 but does have calls.
2196 // In this case st_other=1 since we do not know whether or not any
2197 // of the callees clobber R2. This case is dealt with in this else if
2198 // block. Tail calls are considered calls and the st_other should also
2199 // be set to 1 in that case as well.
2200 // 4) The function does not use the TOC pointer but R2 is used inside
2201 // the function. In this case st_other=1 once again.
2202 // 5) This function uses inline asm. We mark R2 as reserved if the function
2203 // has inline asm as we have to assume that it may be used.
2204 if (MF->getFrameInfo().hasCalls() || MF->getFrameInfo().hasTailCall() ||
2205 MF->hasInlineAsm() || (!PPCFI->usesTOCBasePtr() && UsesX2OrR2)) {
2206 PPCTargetStreamer *TS =
2207 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
2208 TS->emitLocalEntry(cast<MCSymbolELF>(CurrentFnSym),
2209 MCConstantExpr::create(1, OutContext));
2214 /// EmitFunctionBodyEnd - Print the traceback table before the .size
2215 /// directive.
2217 void PPCLinuxAsmPrinter::emitFunctionBodyEnd() {
2218 // Only the 64-bit target requires a traceback table. For now,
2219 // we only emit the word of zeroes that GDB requires to find
2220 // the end of the function, and zeroes for the eight-byte
2221 // mandatory fields.
2222 // FIXME: We should fill in the eight-byte mandatory fields as described in
2223 // the PPC64 ELF ABI (this is a low-priority item because GDB does not
2224 // currently make use of these fields).
2225 if (Subtarget->isPPC64()) {
2226 OutStreamer->emitIntValue(0, 4/*size*/);
2227 OutStreamer->emitIntValue(0, 8/*size*/);
2231 void PPCAIXAsmPrinter::emitLinkage(const GlobalValue *GV,
2232 MCSymbol *GVSym) const {
2233 MCSymbolAttr LinkageAttr = MCSA_Invalid;
2234 switch (GV->getLinkage()) {
2235 case GlobalValue::ExternalLinkage:
2236 LinkageAttr = GV->isDeclaration() ? MCSA_Extern : MCSA_Global;
2237 break;
2238 case GlobalValue::LinkOnceAnyLinkage:
2239 case GlobalValue::LinkOnceODRLinkage:
2240 case GlobalValue::WeakAnyLinkage:
2241 case GlobalValue::WeakODRLinkage:
2242 case GlobalValue::ExternalWeakLinkage:
2243 LinkageAttr = MCSA_Weak;
2244 break;
2245 case GlobalValue::AvailableExternallyLinkage:
2246 LinkageAttr = MCSA_Extern;
2247 break;
2248 case GlobalValue::PrivateLinkage:
2249 return;
2250 case GlobalValue::InternalLinkage:
2251 assert(GV->getVisibility() == GlobalValue::DefaultVisibility &&
2252 "InternalLinkage should not have other visibility setting.");
2253 LinkageAttr = MCSA_LGlobal;
2254 break;
2255 case GlobalValue::AppendingLinkage:
2256 llvm_unreachable("Should never emit this");
2257 case GlobalValue::CommonLinkage:
2258 llvm_unreachable("CommonLinkage of XCOFF should not come to this path");
2261 assert(LinkageAttr != MCSA_Invalid && "LinkageAttr should not MCSA_Invalid.");
2263 MCSymbolAttr VisibilityAttr = MCSA_Invalid;
2264 if (!TM.getIgnoreXCOFFVisibility()) {
2265 if (GV->hasDLLExportStorageClass() && !GV->hasDefaultVisibility())
2266 report_fatal_error(
2267 "Cannot not be both dllexport and non-default visibility");
2268 switch (GV->getVisibility()) {
2270 // TODO: "internal" Visibility needs to go here.
2271 case GlobalValue::DefaultVisibility:
2272 if (GV->hasDLLExportStorageClass())
2273 VisibilityAttr = MAI->getExportedVisibilityAttr();
2274 break;
2275 case GlobalValue::HiddenVisibility:
2276 VisibilityAttr = MAI->getHiddenVisibilityAttr();
2277 break;
2278 case GlobalValue::ProtectedVisibility:
2279 VisibilityAttr = MAI->getProtectedVisibilityAttr();
2280 break;
2284 // Do not emit the _$TLSML symbol.
2285 if (GV->getThreadLocalMode() == GlobalVariable::LocalDynamicTLSModel &&
2286 GV->hasName() && GV->getName() == "_$TLSML")
2287 return;
2289 OutStreamer->emitXCOFFSymbolLinkageWithVisibility(GVSym, LinkageAttr,
2290 VisibilityAttr);
2293 void PPCAIXAsmPrinter::SetupMachineFunction(MachineFunction &MF) {
2294 // Setup CurrentFnDescSym and its containing csect.
2295 MCSectionXCOFF *FnDescSec =
2296 cast<MCSectionXCOFF>(getObjFileLowering().getSectionForFunctionDescriptor(
2297 &MF.getFunction(), TM));
2298 FnDescSec->setAlignment(Align(Subtarget->isPPC64() ? 8 : 4));
2300 CurrentFnDescSym = FnDescSec->getQualNameSymbol();
2302 return AsmPrinter::SetupMachineFunction(MF);
2305 uint16_t PPCAIXAsmPrinter::getNumberOfVRSaved() {
2306 // Calculate the number of VRs be saved.
2307 // Vector registers 20 through 31 are marked as reserved and cannot be used
2308 // in the default ABI.
2309 const PPCSubtarget &Subtarget = MF->getSubtarget<PPCSubtarget>();
2310 if (Subtarget.isAIXABI() && Subtarget.hasAltivec() &&
2311 TM.getAIXExtendedAltivecABI()) {
2312 const MachineRegisterInfo &MRI = MF->getRegInfo();
2313 for (unsigned Reg = PPC::V20; Reg <= PPC::V31; ++Reg)
2314 if (MRI.isPhysRegModified(Reg))
2315 // Number of VRs saved.
2316 return PPC::V31 - Reg + 1;
2318 return 0;
2321 void PPCAIXAsmPrinter::emitFunctionBodyEnd() {
2323 if (!TM.getXCOFFTracebackTable())
2324 return;
2326 emitTracebackTable();
2328 // If ShouldEmitEHBlock returns true, then the eh info table
2329 // will be emitted via `AIXException::endFunction`. Otherwise, we
2330 // need to emit a dumy eh info table when VRs are saved. We could not
2331 // consolidate these two places into one because there is no easy way
2332 // to access register information in `AIXException` class.
2333 if (!TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) &&
2334 (getNumberOfVRSaved() > 0)) {
2335 // Emit dummy EH Info Table.
2336 OutStreamer->switchSection(getObjFileLowering().getCompactUnwindSection());
2337 MCSymbol *EHInfoLabel =
2338 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2339 OutStreamer->emitLabel(EHInfoLabel);
2341 // Version number.
2342 OutStreamer->emitInt32(0);
2344 const DataLayout &DL = MMI->getModule()->getDataLayout();
2345 const unsigned PointerSize = DL.getPointerSize();
2346 // Add necessary paddings in 64 bit mode.
2347 OutStreamer->emitValueToAlignment(Align(PointerSize));
2349 OutStreamer->emitIntValue(0, PointerSize);
2350 OutStreamer->emitIntValue(0, PointerSize);
2351 OutStreamer->switchSection(MF->getSection());
2355 void PPCAIXAsmPrinter::emitTracebackTable() {
2357 // Create a symbol for the end of function.
2358 MCSymbol *FuncEnd = createTempSymbol(MF->getName());
2359 OutStreamer->emitLabel(FuncEnd);
2361 OutStreamer->AddComment("Traceback table begin");
2362 // Begin with a fullword of zero.
2363 OutStreamer->emitIntValueInHexWithPadding(0, 4 /*size*/);
2365 SmallString<128> CommentString;
2366 raw_svector_ostream CommentOS(CommentString);
2368 auto EmitComment = [&]() {
2369 OutStreamer->AddComment(CommentOS.str());
2370 CommentString.clear();
2373 auto EmitCommentAndValue = [&](uint64_t Value, int Size) {
2374 EmitComment();
2375 OutStreamer->emitIntValueInHexWithPadding(Value, Size);
2378 unsigned int Version = 0;
2379 CommentOS << "Version = " << Version;
2380 EmitCommentAndValue(Version, 1);
2382 // There is a lack of information in the IR to assist with determining the
2383 // source language. AIX exception handling mechanism would only search for
2384 // personality routine and LSDA area when such language supports exception
2385 // handling. So to be conservatively correct and allow runtime to do its job,
2386 // we need to set it to C++ for now.
2387 TracebackTable::LanguageID LanguageIdentifier =
2388 TracebackTable::CPlusPlus; // C++
2390 CommentOS << "Language = "
2391 << getNameForTracebackTableLanguageId(LanguageIdentifier);
2392 EmitCommentAndValue(LanguageIdentifier, 1);
2394 // This is only populated for the third and fourth bytes.
2395 uint32_t FirstHalfOfMandatoryField = 0;
2397 // Emit the 3rd byte of the mandatory field.
2399 // We always set traceback offset bit to true.
2400 FirstHalfOfMandatoryField |= TracebackTable::HasTraceBackTableOffsetMask;
2402 const PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
2403 const MachineRegisterInfo &MRI = MF->getRegInfo();
2405 // Check the function uses floating-point processor instructions or not
2406 for (unsigned Reg = PPC::F0; Reg <= PPC::F31; ++Reg) {
2407 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2408 FirstHalfOfMandatoryField |= TracebackTable::IsFloatingPointPresentMask;
2409 break;
2413 #define GENBOOLCOMMENT(Prefix, V, Field) \
2414 CommentOS << (Prefix) << ((V) & (TracebackTable::Field##Mask) ? "+" : "-") \
2415 << #Field
2417 #define GENVALUECOMMENT(PrefixAndName, V, Field) \
2418 CommentOS << (PrefixAndName) << " = " \
2419 << static_cast<unsigned>(((V) & (TracebackTable::Field##Mask)) >> \
2420 (TracebackTable::Field##Shift))
2422 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsGlobaLinkage);
2423 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsOutOfLineEpilogOrPrologue);
2424 EmitComment();
2426 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasTraceBackTableOffset);
2427 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsInternalProcedure);
2428 EmitComment();
2430 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, HasControlledStorage);
2431 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsTOCless);
2432 EmitComment();
2434 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsFloatingPointPresent);
2435 EmitComment();
2436 GENBOOLCOMMENT("", FirstHalfOfMandatoryField,
2437 IsFloatingPointOperationLogOrAbortEnabled);
2438 EmitComment();
2440 OutStreamer->emitIntValueInHexWithPadding(
2441 (FirstHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2443 // Set the 4th byte of the mandatory field.
2444 FirstHalfOfMandatoryField |= TracebackTable::IsFunctionNamePresentMask;
2446 const PPCRegisterInfo *RegInfo =
2447 static_cast<const PPCRegisterInfo *>(Subtarget->getRegisterInfo());
2448 Register FrameReg = RegInfo->getFrameRegister(*MF);
2449 if (FrameReg == (Subtarget->isPPC64() ? PPC::X31 : PPC::R31))
2450 FirstHalfOfMandatoryField |= TracebackTable::IsAllocaUsedMask;
2452 const SmallVectorImpl<Register> &MustSaveCRs = FI->getMustSaveCRs();
2453 if (!MustSaveCRs.empty())
2454 FirstHalfOfMandatoryField |= TracebackTable::IsCRSavedMask;
2456 if (FI->mustSaveLR())
2457 FirstHalfOfMandatoryField |= TracebackTable::IsLRSavedMask;
2459 GENBOOLCOMMENT("", FirstHalfOfMandatoryField, IsInterruptHandler);
2460 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsFunctionNamePresent);
2461 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsAllocaUsed);
2462 EmitComment();
2463 GENVALUECOMMENT("OnConditionDirective", FirstHalfOfMandatoryField,
2464 OnConditionDirective);
2465 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsCRSaved);
2466 GENBOOLCOMMENT(", ", FirstHalfOfMandatoryField, IsLRSaved);
2467 EmitComment();
2468 OutStreamer->emitIntValueInHexWithPadding((FirstHalfOfMandatoryField & 0xff),
2471 // Set the 5th byte of mandatory field.
2472 uint32_t SecondHalfOfMandatoryField = 0;
2474 SecondHalfOfMandatoryField |= MF->getFrameInfo().getStackSize()
2475 ? TracebackTable::IsBackChainStoredMask
2476 : 0;
2478 uint32_t FPRSaved = 0;
2479 for (unsigned Reg = PPC::F14; Reg <= PPC::F31; ++Reg) {
2480 if (MRI.isPhysRegModified(Reg)) {
2481 FPRSaved = PPC::F31 - Reg + 1;
2482 break;
2485 SecondHalfOfMandatoryField |= (FPRSaved << TracebackTable::FPRSavedShift) &
2486 TracebackTable::FPRSavedMask;
2487 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, IsBackChainStored);
2488 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, IsFixup);
2489 GENVALUECOMMENT(", NumOfFPRsSaved", SecondHalfOfMandatoryField, FPRSaved);
2490 EmitComment();
2491 OutStreamer->emitIntValueInHexWithPadding(
2492 (SecondHalfOfMandatoryField & 0xff000000) >> 24, 1);
2494 // Set the 6th byte of mandatory field.
2496 // Check whether has Vector Instruction,We only treat instructions uses vector
2497 // register as vector instructions.
2498 bool HasVectorInst = false;
2499 for (unsigned Reg = PPC::V0; Reg <= PPC::V31; ++Reg)
2500 if (MRI.isPhysRegUsed(Reg, /* SkipRegMaskTest */ true)) {
2501 // Has VMX instruction.
2502 HasVectorInst = true;
2503 break;
2506 if (FI->hasVectorParms() || HasVectorInst)
2507 SecondHalfOfMandatoryField |= TracebackTable::HasVectorInfoMask;
2509 uint16_t NumOfVRSaved = getNumberOfVRSaved();
2510 bool ShouldEmitEHBlock =
2511 TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(MF) || NumOfVRSaved > 0;
2513 if (ShouldEmitEHBlock)
2514 SecondHalfOfMandatoryField |= TracebackTable::HasExtensionTableMask;
2516 uint32_t GPRSaved = 0;
2518 // X13 is reserved under 64-bit environment.
2519 unsigned GPRBegin = Subtarget->isPPC64() ? PPC::X14 : PPC::R13;
2520 unsigned GPREnd = Subtarget->isPPC64() ? PPC::X31 : PPC::R31;
2522 for (unsigned Reg = GPRBegin; Reg <= GPREnd; ++Reg) {
2523 if (MRI.isPhysRegModified(Reg)) {
2524 GPRSaved = GPREnd - Reg + 1;
2525 break;
2529 SecondHalfOfMandatoryField |= (GPRSaved << TracebackTable::GPRSavedShift) &
2530 TracebackTable::GPRSavedMask;
2532 GENBOOLCOMMENT("", SecondHalfOfMandatoryField, HasExtensionTable);
2533 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasVectorInfo);
2534 GENVALUECOMMENT(", NumOfGPRsSaved", SecondHalfOfMandatoryField, GPRSaved);
2535 EmitComment();
2536 OutStreamer->emitIntValueInHexWithPadding(
2537 (SecondHalfOfMandatoryField & 0x00ff0000) >> 16, 1);
2539 // Set the 7th byte of mandatory field.
2540 uint32_t NumberOfFixedParms = FI->getFixedParmsNum();
2541 SecondHalfOfMandatoryField |=
2542 (NumberOfFixedParms << TracebackTable::NumberOfFixedParmsShift) &
2543 TracebackTable::NumberOfFixedParmsMask;
2544 GENVALUECOMMENT("NumberOfFixedParms", SecondHalfOfMandatoryField,
2545 NumberOfFixedParms);
2546 EmitComment();
2547 OutStreamer->emitIntValueInHexWithPadding(
2548 (SecondHalfOfMandatoryField & 0x0000ff00) >> 8, 1);
2550 // Set the 8th byte of mandatory field.
2552 // Always set parameter on stack.
2553 SecondHalfOfMandatoryField |= TracebackTable::HasParmsOnStackMask;
2555 uint32_t NumberOfFPParms = FI->getFloatingPointParmsNum();
2556 SecondHalfOfMandatoryField |=
2557 (NumberOfFPParms << TracebackTable::NumberOfFloatingPointParmsShift) &
2558 TracebackTable::NumberOfFloatingPointParmsMask;
2560 GENVALUECOMMENT("NumberOfFPParms", SecondHalfOfMandatoryField,
2561 NumberOfFloatingPointParms);
2562 GENBOOLCOMMENT(", ", SecondHalfOfMandatoryField, HasParmsOnStack);
2563 EmitComment();
2564 OutStreamer->emitIntValueInHexWithPadding(SecondHalfOfMandatoryField & 0xff,
2567 // Generate the optional fields of traceback table.
2569 // Parameter type.
2570 if (NumberOfFixedParms || NumberOfFPParms) {
2571 uint32_t ParmsTypeValue = FI->getParmsType();
2573 Expected<SmallString<32>> ParmsType =
2574 FI->hasVectorParms()
2575 ? XCOFF::parseParmsTypeWithVecInfo(
2576 ParmsTypeValue, NumberOfFixedParms, NumberOfFPParms,
2577 FI->getVectorParmsNum())
2578 : XCOFF::parseParmsType(ParmsTypeValue, NumberOfFixedParms,
2579 NumberOfFPParms);
2581 assert(ParmsType && toString(ParmsType.takeError()).c_str());
2582 if (ParmsType) {
2583 CommentOS << "Parameter type = " << ParmsType.get();
2584 EmitComment();
2586 OutStreamer->emitIntValueInHexWithPadding(ParmsTypeValue,
2587 sizeof(ParmsTypeValue));
2589 // Traceback table offset.
2590 OutStreamer->AddComment("Function size");
2591 if (FirstHalfOfMandatoryField & TracebackTable::HasTraceBackTableOffsetMask) {
2592 MCSymbol *FuncSectSym = getObjFileLowering().getFunctionEntryPointSymbol(
2593 &(MF->getFunction()), TM);
2594 OutStreamer->emitAbsoluteSymbolDiff(FuncEnd, FuncSectSym, 4);
2597 // Since we unset the Int_Handler.
2598 if (FirstHalfOfMandatoryField & TracebackTable::IsInterruptHandlerMask)
2599 report_fatal_error("Hand_Mask not implement yet");
2601 if (FirstHalfOfMandatoryField & TracebackTable::HasControlledStorageMask)
2602 report_fatal_error("Ctl_Info not implement yet");
2604 if (FirstHalfOfMandatoryField & TracebackTable::IsFunctionNamePresentMask) {
2605 StringRef Name = MF->getName().substr(0, INT16_MAX);
2606 int16_t NameLength = Name.size();
2607 CommentOS << "Function name len = "
2608 << static_cast<unsigned int>(NameLength);
2609 EmitCommentAndValue(NameLength, 2);
2610 OutStreamer->AddComment("Function Name");
2611 OutStreamer->emitBytes(Name);
2614 if (FirstHalfOfMandatoryField & TracebackTable::IsAllocaUsedMask) {
2615 uint8_t AllocReg = XCOFF::AllocRegNo;
2616 OutStreamer->AddComment("AllocaUsed");
2617 OutStreamer->emitIntValueInHex(AllocReg, sizeof(AllocReg));
2620 if (SecondHalfOfMandatoryField & TracebackTable::HasVectorInfoMask) {
2621 uint16_t VRData = 0;
2622 if (NumOfVRSaved) {
2623 // Number of VRs saved.
2624 VRData |= (NumOfVRSaved << TracebackTable::NumberOfVRSavedShift) &
2625 TracebackTable::NumberOfVRSavedMask;
2626 // This bit is supposed to set only when the special register
2627 // VRSAVE is saved on stack.
2628 // However, IBM XL compiler sets the bit when any vector registers
2629 // are saved on the stack. We will follow XL's behavior on AIX
2630 // so that we don't get surprise behavior change for C code.
2631 VRData |= TracebackTable::IsVRSavedOnStackMask;
2634 // Set has_varargs.
2635 if (FI->getVarArgsFrameIndex())
2636 VRData |= TracebackTable::HasVarArgsMask;
2638 // Vector parameters number.
2639 unsigned VectorParmsNum = FI->getVectorParmsNum();
2640 VRData |= (VectorParmsNum << TracebackTable::NumberOfVectorParmsShift) &
2641 TracebackTable::NumberOfVectorParmsMask;
2643 if (HasVectorInst)
2644 VRData |= TracebackTable::HasVMXInstructionMask;
2646 GENVALUECOMMENT("NumOfVRsSaved", VRData, NumberOfVRSaved);
2647 GENBOOLCOMMENT(", ", VRData, IsVRSavedOnStack);
2648 GENBOOLCOMMENT(", ", VRData, HasVarArgs);
2649 EmitComment();
2650 OutStreamer->emitIntValueInHexWithPadding((VRData & 0xff00) >> 8, 1);
2652 GENVALUECOMMENT("NumOfVectorParams", VRData, NumberOfVectorParms);
2653 GENBOOLCOMMENT(", ", VRData, HasVMXInstruction);
2654 EmitComment();
2655 OutStreamer->emitIntValueInHexWithPadding(VRData & 0x00ff, 1);
2657 uint32_t VecParmTypeValue = FI->getVecExtParmsType();
2659 Expected<SmallString<32>> VecParmsType =
2660 XCOFF::parseVectorParmsType(VecParmTypeValue, VectorParmsNum);
2661 assert(VecParmsType && toString(VecParmsType.takeError()).c_str());
2662 if (VecParmsType) {
2663 CommentOS << "Vector Parameter type = " << VecParmsType.get();
2664 EmitComment();
2666 OutStreamer->emitIntValueInHexWithPadding(VecParmTypeValue,
2667 sizeof(VecParmTypeValue));
2668 // Padding 2 bytes.
2669 CommentOS << "Padding";
2670 EmitCommentAndValue(0, 2);
2673 uint8_t ExtensionTableFlag = 0;
2674 if (SecondHalfOfMandatoryField & TracebackTable::HasExtensionTableMask) {
2675 if (ShouldEmitEHBlock)
2676 ExtensionTableFlag |= ExtendedTBTableFlag::TB_EH_INFO;
2677 if (EnableSSPCanaryBitInTB &&
2678 TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(MF))
2679 ExtensionTableFlag |= ExtendedTBTableFlag::TB_SSP_CANARY;
2681 CommentOS << "ExtensionTableFlag = "
2682 << getExtendedTBTableFlagString(ExtensionTableFlag);
2683 EmitCommentAndValue(ExtensionTableFlag, sizeof(ExtensionTableFlag));
2686 if (ExtensionTableFlag & ExtendedTBTableFlag::TB_EH_INFO) {
2687 auto &Ctx = OutStreamer->getContext();
2688 MCSymbol *EHInfoSym =
2689 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(MF);
2690 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(EHInfoSym, TOCType_EHBlock);
2691 const MCSymbol *TOCBaseSym =
2692 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2693 ->getQualNameSymbol();
2694 const MCExpr *Exp =
2695 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
2696 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
2698 const DataLayout &DL = getDataLayout();
2699 OutStreamer->emitValueToAlignment(Align(4));
2700 OutStreamer->AddComment("EHInfo Table");
2701 OutStreamer->emitValue(Exp, DL.getPointerSize());
2703 #undef GENBOOLCOMMENT
2704 #undef GENVALUECOMMENT
2707 static bool isSpecialLLVMGlobalArrayToSkip(const GlobalVariable *GV) {
2708 return GV->hasAppendingLinkage() &&
2709 StringSwitch<bool>(GV->getName())
2710 // TODO: Linker could still eliminate the GV if we just skip
2711 // handling llvm.used array. Skipping them for now until we or the
2712 // AIX OS team come up with a good solution.
2713 .Case("llvm.used", true)
2714 // It's correct to just skip llvm.compiler.used array here.
2715 .Case("llvm.compiler.used", true)
2716 .Default(false);
2719 static bool isSpecialLLVMGlobalArrayForStaticInit(const GlobalVariable *GV) {
2720 return StringSwitch<bool>(GV->getName())
2721 .Cases("llvm.global_ctors", "llvm.global_dtors", true)
2722 .Default(false);
2725 uint64_t PPCAIXAsmPrinter::getAliasOffset(const Constant *C) {
2726 if (auto *GA = dyn_cast<GlobalAlias>(C))
2727 return getAliasOffset(GA->getAliasee());
2728 if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2729 const MCExpr *LowC = lowerConstant(CE);
2730 const MCBinaryExpr *CBE = dyn_cast<MCBinaryExpr>(LowC);
2731 if (!CBE)
2732 return 0;
2733 if (CBE->getOpcode() != MCBinaryExpr::Add)
2734 report_fatal_error("Only adding an offset is supported now.");
2735 auto *RHS = dyn_cast<MCConstantExpr>(CBE->getRHS());
2736 if (!RHS)
2737 report_fatal_error("Unable to get the offset of alias.");
2738 return RHS->getValue();
2740 return 0;
2743 static void tocDataChecks(unsigned PointerSize, const GlobalVariable *GV) {
2744 // TODO: These asserts should be updated as more support for the toc data
2745 // transformation is added (struct support, etc.).
2746 assert(
2747 PointerSize >= GV->getAlign().valueOrOne().value() &&
2748 "GlobalVariables with an alignment requirement stricter than TOC entry "
2749 "size not supported by the toc data transformation.");
2751 Type *GVType = GV->getValueType();
2752 assert(GVType->isSized() && "A GlobalVariable's size must be known to be "
2753 "supported by the toc data transformation.");
2754 if (GV->getDataLayout().getTypeSizeInBits(GVType) >
2755 PointerSize * 8)
2756 report_fatal_error(
2757 "A GlobalVariable with size larger than a TOC entry is not currently "
2758 "supported by the toc data transformation.");
2759 if (GV->hasPrivateLinkage())
2760 report_fatal_error("A GlobalVariable with private linkage is not "
2761 "currently supported by the toc data transformation.");
2764 void PPCAIXAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
2765 // Special LLVM global arrays have been handled at the initialization.
2766 if (isSpecialLLVMGlobalArrayToSkip(GV) || isSpecialLLVMGlobalArrayForStaticInit(GV))
2767 return;
2769 // If the Global Variable has the toc-data attribute, it needs to be emitted
2770 // when we emit the .toc section.
2771 if (GV->hasAttribute("toc-data")) {
2772 unsigned PointerSize = GV->getDataLayout().getPointerSize();
2773 tocDataChecks(PointerSize, GV);
2774 TOCDataGlobalVars.push_back(GV);
2775 return;
2778 emitGlobalVariableHelper(GV);
2781 void PPCAIXAsmPrinter::emitGlobalVariableHelper(const GlobalVariable *GV) {
2782 assert(!GV->getName().starts_with("llvm.") &&
2783 "Unhandled intrinsic global variable.");
2785 if (GV->hasComdat())
2786 report_fatal_error("COMDAT not yet supported by AIX.");
2788 MCSymbolXCOFF *GVSym = cast<MCSymbolXCOFF>(getSymbol(GV));
2790 if (GV->isDeclarationForLinker()) {
2791 emitLinkage(GV, GVSym);
2792 return;
2795 SectionKind GVKind = getObjFileLowering().getKindForGlobal(GV, TM);
2796 if (!GVKind.isGlobalWriteableData() && !GVKind.isReadOnly() &&
2797 !GVKind.isThreadLocal()) // Checks for both ThreadData and ThreadBSS.
2798 report_fatal_error("Encountered a global variable kind that is "
2799 "not supported yet.");
2801 // Print GV in verbose mode
2802 if (isVerbose()) {
2803 if (GV->hasInitializer()) {
2804 GV->printAsOperand(OutStreamer->getCommentOS(),
2805 /*PrintType=*/false, GV->getParent());
2806 OutStreamer->getCommentOS() << '\n';
2810 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
2811 getObjFileLowering().SectionForGlobal(GV, GVKind, TM));
2813 // Switch to the containing csect.
2814 OutStreamer->switchSection(Csect);
2816 const DataLayout &DL = GV->getDataLayout();
2818 // Handle common and zero-initialized local symbols.
2819 if (GV->hasCommonLinkage() || GVKind.isBSSLocal() ||
2820 GVKind.isThreadBSSLocal()) {
2821 Align Alignment = GV->getAlign().value_or(DL.getPreferredAlign(GV));
2822 uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
2823 GVSym->setStorageClass(
2824 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GV));
2826 if (GVKind.isBSSLocal() && Csect->getMappingClass() == XCOFF::XMC_TD) {
2827 OutStreamer->emitZeros(Size);
2828 } else if (GVKind.isBSSLocal() || GVKind.isThreadBSSLocal()) {
2829 assert(Csect->getMappingClass() != XCOFF::XMC_TD &&
2830 "BSS local toc-data already handled and TLS variables "
2831 "incompatible with XMC_TD");
2832 OutStreamer->emitXCOFFLocalCommonSymbol(
2833 OutContext.getOrCreateSymbol(GVSym->getSymbolTableName()), Size,
2834 GVSym, Alignment);
2835 } else {
2836 OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
2838 return;
2841 MCSymbol *EmittedInitSym = GVSym;
2843 // Emit linkage for the global variable and its aliases.
2844 emitLinkage(GV, EmittedInitSym);
2845 for (const GlobalAlias *GA : GOAliasMap[GV])
2846 emitLinkage(GA, getSymbol(GA));
2848 emitAlignment(getGVAlignment(GV, DL), GV);
2850 // When -fdata-sections is enabled, every GlobalVariable will
2851 // be put into its own csect; therefore, label is not necessary here.
2852 if (!TM.getDataSections() || GV->hasSection()) {
2853 if (Csect->getMappingClass() != XCOFF::XMC_TD)
2854 OutStreamer->emitLabel(EmittedInitSym);
2857 // No alias to emit.
2858 if (!GOAliasMap[GV].size()) {
2859 emitGlobalConstant(GV->getDataLayout(), GV->getInitializer());
2860 return;
2863 // Aliases with the same offset should be aligned. Record the list of aliases
2864 // associated with the offset.
2865 AliasMapTy AliasList;
2866 for (const GlobalAlias *GA : GOAliasMap[GV])
2867 AliasList[getAliasOffset(GA->getAliasee())].push_back(GA);
2869 // Emit alias label and element value for global variable.
2870 emitGlobalConstant(GV->getDataLayout(), GV->getInitializer(),
2871 &AliasList);
2874 void PPCAIXAsmPrinter::emitFunctionDescriptor() {
2875 const DataLayout &DL = getDataLayout();
2876 const unsigned PointerSize = DL.getPointerSizeInBits() == 64 ? 8 : 4;
2878 MCSectionSubPair Current = OutStreamer->getCurrentSection();
2879 // Emit function descriptor.
2880 OutStreamer->switchSection(
2881 cast<MCSymbolXCOFF>(CurrentFnDescSym)->getRepresentedCsect());
2883 // Emit aliasing label for function descriptor csect.
2884 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2885 OutStreamer->emitLabel(getSymbol(Alias));
2887 // Emit function entry point address.
2888 OutStreamer->emitValue(MCSymbolRefExpr::create(CurrentFnSym, OutContext),
2889 PointerSize);
2890 // Emit TOC base address.
2891 const MCSymbol *TOCBaseSym =
2892 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
2893 ->getQualNameSymbol();
2894 OutStreamer->emitValue(MCSymbolRefExpr::create(TOCBaseSym, OutContext),
2895 PointerSize);
2896 // Emit a null environment pointer.
2897 OutStreamer->emitIntValue(0, PointerSize);
2899 OutStreamer->switchSection(Current.first, Current.second);
2902 void PPCAIXAsmPrinter::emitFunctionEntryLabel() {
2903 // For functions without user defined section, it's not necessary to emit the
2904 // label when we have individual function in its own csect.
2905 if (!TM.getFunctionSections() || MF->getFunction().hasSection())
2906 PPCAsmPrinter::emitFunctionEntryLabel();
2908 // Emit aliasing label for function entry point label.
2909 for (const GlobalAlias *Alias : GOAliasMap[&MF->getFunction()])
2910 OutStreamer->emitLabel(
2911 getObjFileLowering().getFunctionEntryPointSymbol(Alias, TM));
2914 void PPCAIXAsmPrinter::emitPGORefs(Module &M) {
2915 if (!OutContext.hasXCOFFSection(
2916 "__llvm_prf_cnts",
2917 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2918 return;
2920 // When inside a csect `foo`, a .ref directive referring to a csect `bar`
2921 // translates into a relocation entry from `foo` to` bar`. The referring
2922 // csect, `foo`, is identified by its address. If multiple csects have the
2923 // same address (because one or more of them are zero-length), the referring
2924 // csect cannot be determined. Hence, we don't generate the .ref directives
2925 // if `__llvm_prf_cnts` is an empty section.
2926 bool HasNonZeroLengthPrfCntsSection = false;
2927 const DataLayout &DL = M.getDataLayout();
2928 for (GlobalVariable &GV : M.globals())
2929 if (GV.hasSection() && GV.getSection() == "__llvm_prf_cnts" &&
2930 DL.getTypeAllocSize(GV.getValueType()) > 0) {
2931 HasNonZeroLengthPrfCntsSection = true;
2932 break;
2935 if (HasNonZeroLengthPrfCntsSection) {
2936 MCSection *CntsSection = OutContext.getXCOFFSection(
2937 "__llvm_prf_cnts", SectionKind::getData(),
2938 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
2939 /*MultiSymbolsAllowed*/ true);
2941 OutStreamer->switchSection(CntsSection);
2942 if (OutContext.hasXCOFFSection(
2943 "__llvm_prf_data",
2944 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2945 MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_data[RW]");
2946 OutStreamer->emitXCOFFRefDirective(S);
2948 if (OutContext.hasXCOFFSection(
2949 "__llvm_prf_names",
2950 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD))) {
2951 MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_names[RO]");
2952 OutStreamer->emitXCOFFRefDirective(S);
2954 if (OutContext.hasXCOFFSection(
2955 "__llvm_prf_vnds",
2956 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD))) {
2957 MCSymbol *S = OutContext.getOrCreateSymbol("__llvm_prf_vnds[RW]");
2958 OutStreamer->emitXCOFFRefDirective(S);
2963 void PPCAIXAsmPrinter::emitGCOVRefs() {
2964 if (!OutContext.hasXCOFFSection(
2965 "__llvm_gcov_ctr_section",
2966 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)))
2967 return;
2969 MCSection *CtrSection = OutContext.getXCOFFSection(
2970 "__llvm_gcov_ctr_section", SectionKind::getData(),
2971 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD),
2972 /*MultiSymbolsAllowed*/ true);
2974 OutStreamer->switchSection(CtrSection);
2975 const XCOFF::StorageMappingClass MappingClass =
2976 TM.Options.XCOFFReadOnlyPointers ? XCOFF::XMC_RO : XCOFF::XMC_RW;
2977 if (OutContext.hasXCOFFSection(
2978 "__llvm_covinit",
2979 XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD))) {
2980 const char *SymbolStr = TM.Options.XCOFFReadOnlyPointers
2981 ? "__llvm_covinit[RO]"
2982 : "__llvm_covinit[RW]";
2983 MCSymbol *S = OutContext.getOrCreateSymbol(SymbolStr);
2984 OutStreamer->emitXCOFFRefDirective(S);
2988 void PPCAIXAsmPrinter::emitEndOfAsmFile(Module &M) {
2989 // If there are no functions and there are no toc-data definitions in this
2990 // module, we will never need to reference the TOC base.
2991 if (M.empty() && TOCDataGlobalVars.empty())
2992 return;
2994 emitPGORefs(M);
2995 emitGCOVRefs();
2997 // Switch to section to emit TOC base.
2998 OutStreamer->switchSection(getObjFileLowering().getTOCBaseSection());
3000 PPCTargetStreamer *TS =
3001 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
3003 for (auto &I : TOC) {
3004 MCSectionXCOFF *TCEntry;
3005 // Setup the csect for the current TC entry. If the variant kind is
3006 // VK_PPC_AIX_TLSGDM the entry represents the region handle, we create a
3007 // new symbol to prefix the name with a dot.
3008 // If TLS model opt is turned on, create a new symbol to prefix the name
3009 // with a dot.
3010 if (I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM ||
3011 (Subtarget->hasAIXShLibTLSModelOpt() &&
3012 I.first.second == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLD)) {
3013 SmallString<128> Name;
3014 StringRef Prefix = ".";
3015 Name += Prefix;
3016 Name += cast<MCSymbolXCOFF>(I.first.first)->getSymbolTableName();
3017 MCSymbol *S = OutContext.getOrCreateSymbol(Name);
3018 TCEntry = cast<MCSectionXCOFF>(
3019 getObjFileLowering().getSectionForTOCEntry(S, TM));
3020 } else {
3021 TCEntry = cast<MCSectionXCOFF>(
3022 getObjFileLowering().getSectionForTOCEntry(I.first.first, TM));
3024 OutStreamer->switchSection(TCEntry);
3026 OutStreamer->emitLabel(I.second);
3027 TS->emitTCEntry(*I.first.first, I.first.second);
3030 // Traverse the list of global variables twice, emitting all of the
3031 // non-common global variables before the common ones, as emitting a
3032 // .comm directive changes the scope from .toc to the common symbol.
3033 for (const auto *GV : TOCDataGlobalVars) {
3034 if (!GV->hasCommonLinkage())
3035 emitGlobalVariableHelper(GV);
3037 for (const auto *GV : TOCDataGlobalVars) {
3038 if (GV->hasCommonLinkage())
3039 emitGlobalVariableHelper(GV);
3043 bool PPCAIXAsmPrinter::doInitialization(Module &M) {
3044 const bool Result = PPCAsmPrinter::doInitialization(M);
3046 // Emit the .machine directive on AIX.
3047 const Triple &Target = TM.getTargetTriple();
3048 XCOFF::CFileCpuId TargetCpuId = XCOFF::TCPU_INVALID;
3049 // Walk through the "target-cpu" attribute of functions and use the newest
3050 // level as the CPU of the module.
3051 for (auto &F : M) {
3052 XCOFF::CFileCpuId FunCpuId =
3053 XCOFF::getCpuID(TM.getSubtargetImpl(F)->getCPU());
3054 if (FunCpuId > TargetCpuId)
3055 TargetCpuId = FunCpuId;
3057 // If there is no "target-cpu" attribute within the functions, take the
3058 // "-mcpu" value. If both are omitted, use getNormalizedPPCTargetCPU() to
3059 // determine the default CPU.
3060 if (!TargetCpuId) {
3061 StringRef TargetCPU = TM.getTargetCPU();
3062 TargetCpuId = XCOFF::getCpuID(
3063 TargetCPU.empty() ? PPC::getNormalizedPPCTargetCPU(Target) : TargetCPU);
3066 PPCTargetStreamer *TS =
3067 static_cast<PPCTargetStreamer *>(OutStreamer->getTargetStreamer());
3068 TS->emitMachine(XCOFF::getTCPUString(TargetCpuId));
3070 auto setCsectAlignment = [this](const GlobalObject *GO) {
3071 // Declarations have 0 alignment which is set by default.
3072 if (GO->isDeclarationForLinker())
3073 return;
3075 SectionKind GOKind = getObjFileLowering().getKindForGlobal(GO, TM);
3076 MCSectionXCOFF *Csect = cast<MCSectionXCOFF>(
3077 getObjFileLowering().SectionForGlobal(GO, GOKind, TM));
3079 Align GOAlign = getGVAlignment(GO, GO->getDataLayout());
3080 Csect->ensureMinAlignment(GOAlign);
3083 // For all TLS variables, calculate their corresponding addresses and store
3084 // them into TLSVarsToAddressMapping, which will be used to determine whether
3085 // or not local-exec TLS variables require special assembly printing.
3086 uint64_t TLSVarAddress = 0;
3087 auto DL = M.getDataLayout();
3088 for (const auto &G : M.globals()) {
3089 if (G.isThreadLocal() && !G.isDeclaration()) {
3090 TLSVarAddress = alignTo(TLSVarAddress, getGVAlignment(&G, DL));
3091 TLSVarsToAddressMapping[&G] = TLSVarAddress;
3092 TLSVarAddress += DL.getTypeAllocSize(G.getValueType());
3096 // We need to know, up front, the alignment of csects for the assembly path,
3097 // because once a .csect directive gets emitted, we could not change the
3098 // alignment value on it.
3099 for (const auto &G : M.globals()) {
3100 if (isSpecialLLVMGlobalArrayToSkip(&G))
3101 continue;
3103 if (isSpecialLLVMGlobalArrayForStaticInit(&G)) {
3104 // Generate a format indicator and a unique module id to be a part of
3105 // the sinit and sterm function names.
3106 if (FormatIndicatorAndUniqueModId.empty()) {
3107 std::string UniqueModuleId = getUniqueModuleId(&M);
3108 if (UniqueModuleId != "")
3109 // TODO: Use source file full path to generate the unique module id
3110 // and add a format indicator as a part of function name in case we
3111 // will support more than one format.
3112 FormatIndicatorAndUniqueModId = "clang_" + UniqueModuleId.substr(1);
3113 else {
3114 // Use threadId, Pid, and current time as the unique module id when we
3115 // cannot generate one based on a module's strong external symbols.
3116 auto CurTime =
3117 std::chrono::duration_cast<std::chrono::nanoseconds>(
3118 std::chrono::steady_clock::now().time_since_epoch())
3119 .count();
3120 FormatIndicatorAndUniqueModId =
3121 "clangPidTidTime_" + llvm::itostr(sys::Process::getProcessId()) +
3122 "_" + llvm::itostr(llvm::get_threadid()) + "_" +
3123 llvm::itostr(CurTime);
3127 emitSpecialLLVMGlobal(&G);
3128 continue;
3131 setCsectAlignment(&G);
3132 std::optional<CodeModel::Model> OptionalCodeModel = G.getCodeModel();
3133 if (OptionalCodeModel)
3134 setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&G)),
3135 *OptionalCodeModel);
3138 for (const auto &F : M)
3139 setCsectAlignment(&F);
3141 // Construct an aliasing list for each GlobalObject.
3142 for (const auto &Alias : M.aliases()) {
3143 const GlobalObject *Aliasee = Alias.getAliaseeObject();
3144 if (!Aliasee)
3145 report_fatal_error(
3146 "alias without a base object is not yet supported on AIX");
3148 if (Aliasee->hasCommonLinkage()) {
3149 report_fatal_error("Aliases to common variables are not allowed on AIX:"
3150 "\n\tAlias attribute for " +
3151 Alias.getGlobalIdentifier() +
3152 " is invalid because " + Aliasee->getName() +
3153 " is common.",
3154 false);
3157 const GlobalVariable *GVar =
3158 dyn_cast_or_null<GlobalVariable>(Alias.getAliaseeObject());
3159 if (GVar) {
3160 std::optional<CodeModel::Model> OptionalCodeModel = GVar->getCodeModel();
3161 if (OptionalCodeModel)
3162 setOptionalCodeModel(cast<MCSymbolXCOFF>(getSymbol(&Alias)),
3163 *OptionalCodeModel);
3166 GOAliasMap[Aliasee].push_back(&Alias);
3169 return Result;
3172 void PPCAIXAsmPrinter::emitInstruction(const MachineInstr *MI) {
3173 switch (MI->getOpcode()) {
3174 default:
3175 break;
3176 case PPC::TW:
3177 case PPC::TWI:
3178 case PPC::TD:
3179 case PPC::TDI: {
3180 if (MI->getNumOperands() < 5)
3181 break;
3182 const MachineOperand &LangMO = MI->getOperand(3);
3183 const MachineOperand &ReasonMO = MI->getOperand(4);
3184 if (!LangMO.isImm() || !ReasonMO.isImm())
3185 break;
3186 MCSymbol *TempSym = OutContext.createNamedTempSymbol();
3187 OutStreamer->emitLabel(TempSym);
3188 OutStreamer->emitXCOFFExceptDirective(
3189 CurrentFnSym, TempSym, LangMO.getImm(), ReasonMO.getImm(),
3190 Subtarget->isPPC64() ? MI->getMF()->getInstructionCount() * 8
3191 : MI->getMF()->getInstructionCount() * 4,
3192 hasDebugInfo());
3193 break;
3195 case PPC::GETtlsMOD32AIX:
3196 case PPC::GETtlsMOD64AIX:
3197 case PPC::GETtlsTpointer32AIX:
3198 case PPC::GETtlsADDR64AIX:
3199 case PPC::GETtlsADDR32AIX: {
3200 // A reference to .__tls_get_mod/.__tls_get_addr/.__get_tpointer is unknown
3201 // to the assembler so we need to emit an external symbol reference.
3202 MCSymbol *TlsGetAddr =
3203 createMCSymbolForTlsGetAddr(OutContext, MI->getOpcode());
3204 ExtSymSDNodeSymbols.insert(TlsGetAddr);
3205 break;
3207 case PPC::BL8:
3208 case PPC::BL:
3209 case PPC::BL8_NOP:
3210 case PPC::BL_NOP: {
3211 const MachineOperand &MO = MI->getOperand(0);
3212 if (MO.isSymbol()) {
3213 MCSymbolXCOFF *S =
3214 cast<MCSymbolXCOFF>(OutContext.getOrCreateSymbol(MO.getSymbolName()));
3215 ExtSymSDNodeSymbols.insert(S);
3217 } break;
3218 case PPC::BL_TLS:
3219 case PPC::BL8_TLS:
3220 case PPC::BL8_TLS_:
3221 case PPC::BL8_NOP_TLS:
3222 report_fatal_error("TLS call not yet implemented");
3223 case PPC::TAILB:
3224 case PPC::TAILB8:
3225 case PPC::TAILBA:
3226 case PPC::TAILBA8:
3227 case PPC::TAILBCTR:
3228 case PPC::TAILBCTR8:
3229 if (MI->getOperand(0).isSymbol())
3230 report_fatal_error("Tail call for extern symbol not yet supported.");
3231 break;
3232 case PPC::DST:
3233 case PPC::DST64:
3234 case PPC::DSTT:
3235 case PPC::DSTT64:
3236 case PPC::DSTST:
3237 case PPC::DSTST64:
3238 case PPC::DSTSTT:
3239 case PPC::DSTSTT64:
3240 EmitToStreamer(
3241 *OutStreamer,
3242 MCInstBuilder(PPC::ORI).addReg(PPC::R0).addReg(PPC::R0).addImm(0));
3243 return;
3245 return PPCAsmPrinter::emitInstruction(MI);
3248 bool PPCAIXAsmPrinter::doFinalization(Module &M) {
3249 // Do streamer related finalization for DWARF.
3250 if (hasDebugInfo()) {
3251 // Emit section end. This is used to tell the debug line section where the
3252 // end is for a text section if we don't use .loc to represent the debug
3253 // line.
3254 auto *Sec = OutContext.getObjectFileInfo()->getTextSection();
3255 OutStreamer->switchSectionNoPrint(Sec);
3256 MCSymbol *Sym = Sec->getEndSymbol(OutContext);
3257 OutStreamer->emitLabel(Sym);
3260 for (MCSymbol *Sym : ExtSymSDNodeSymbols)
3261 OutStreamer->emitSymbolAttribute(Sym, MCSA_Extern);
3262 return PPCAsmPrinter::doFinalization(M);
3265 static unsigned mapToSinitPriority(int P) {
3266 if (P < 0 || P > 65535)
3267 report_fatal_error("invalid init priority");
3269 if (P <= 20)
3270 return P;
3272 if (P < 81)
3273 return 20 + (P - 20) * 16;
3275 if (P <= 1124)
3276 return 1004 + (P - 81);
3278 if (P < 64512)
3279 return 2047 + (P - 1124) * 33878;
3281 return 2147482625u + (P - 64512);
3284 static std::string convertToSinitPriority(int Priority) {
3285 // This helper function converts clang init priority to values used in sinit
3286 // and sterm functions.
3288 // The conversion strategies are:
3289 // We map the reserved clang/gnu priority range [0, 100] into the sinit/sterm
3290 // reserved priority range [0, 1023] by
3291 // - directly mapping the first 21 and the last 20 elements of the ranges
3292 // - linear interpolating the intermediate values with a step size of 16.
3294 // We map the non reserved clang/gnu priority range of [101, 65535] into the
3295 // sinit/sterm priority range [1024, 2147483648] by:
3296 // - directly mapping the first and the last 1024 elements of the ranges
3297 // - linear interpolating the intermediate values with a step size of 33878.
3298 unsigned int P = mapToSinitPriority(Priority);
3300 std::string PrioritySuffix;
3301 llvm::raw_string_ostream os(PrioritySuffix);
3302 os << llvm::format_hex_no_prefix(P, 8);
3303 return PrioritySuffix;
3306 void PPCAIXAsmPrinter::emitXXStructorList(const DataLayout &DL,
3307 const Constant *List, bool IsCtor) {
3308 SmallVector<Structor, 8> Structors;
3309 preprocessXXStructorList(DL, List, Structors);
3310 if (Structors.empty())
3311 return;
3313 unsigned Index = 0;
3314 for (Structor &S : Structors) {
3315 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(S.Func))
3316 S.Func = CE->getOperand(0);
3318 llvm::GlobalAlias::create(
3319 GlobalValue::ExternalLinkage,
3320 (IsCtor ? llvm::Twine("__sinit") : llvm::Twine("__sterm")) +
3321 llvm::Twine(convertToSinitPriority(S.Priority)) +
3322 llvm::Twine("_", FormatIndicatorAndUniqueModId) +
3323 llvm::Twine("_", llvm::utostr(Index++)),
3324 cast<Function>(S.Func));
3328 void PPCAIXAsmPrinter::emitTTypeReference(const GlobalValue *GV,
3329 unsigned Encoding) {
3330 if (GV) {
3331 TOCEntryType GlobalType = TOCType_GlobalInternal;
3332 GlobalValue::LinkageTypes Linkage = GV->getLinkage();
3333 if (Linkage == GlobalValue::ExternalLinkage ||
3334 Linkage == GlobalValue::AvailableExternallyLinkage ||
3335 Linkage == GlobalValue::ExternalWeakLinkage)
3336 GlobalType = TOCType_GlobalExternal;
3337 MCSymbol *TypeInfoSym = TM.getSymbol(GV);
3338 MCSymbol *TOCEntry = lookUpOrCreateTOCEntry(TypeInfoSym, GlobalType);
3339 const MCSymbol *TOCBaseSym =
3340 cast<MCSectionXCOFF>(getObjFileLowering().getTOCBaseSection())
3341 ->getQualNameSymbol();
3342 auto &Ctx = OutStreamer->getContext();
3343 const MCExpr *Exp =
3344 MCBinaryExpr::createSub(MCSymbolRefExpr::create(TOCEntry, Ctx),
3345 MCSymbolRefExpr::create(TOCBaseSym, Ctx), Ctx);
3346 OutStreamer->emitValue(Exp, GetSizeOfEncodedValue(Encoding));
3347 } else
3348 OutStreamer->emitIntValue(0, GetSizeOfEncodedValue(Encoding));
3351 // Return a pass that prints the PPC assembly code for a MachineFunction to the
3352 // given output stream.
3353 static AsmPrinter *
3354 createPPCAsmPrinterPass(TargetMachine &tm,
3355 std::unique_ptr<MCStreamer> &&Streamer) {
3356 if (tm.getTargetTriple().isOSAIX())
3357 return new PPCAIXAsmPrinter(tm, std::move(Streamer));
3359 return new PPCLinuxAsmPrinter(tm, std::move(Streamer));
3362 void PPCAIXAsmPrinter::emitModuleCommandLines(Module &M) {
3363 const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
3364 if (!NMD || !NMD->getNumOperands())
3365 return;
3367 std::string S;
3368 raw_string_ostream RSOS(S);
3369 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3370 const MDNode *N = NMD->getOperand(i);
3371 assert(N->getNumOperands() == 1 &&
3372 "llvm.commandline metadata entry can have only one operand");
3373 const MDString *MDS = cast<MDString>(N->getOperand(0));
3374 // Add "@(#)" to support retrieving the command line information with the
3375 // AIX "what" command
3376 RSOS << "@(#)opt " << MDS->getString() << "\n";
3377 RSOS.write('\0');
3379 OutStreamer->emitXCOFFCInfoSym(".GCC.command.line", RSOS.str());
3382 // Force static initialization.
3383 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCAsmPrinter() {
3384 TargetRegistry::RegisterAsmPrinter(getThePPC32Target(),
3385 createPPCAsmPrinterPass);
3386 TargetRegistry::RegisterAsmPrinter(getThePPC32LETarget(),
3387 createPPCAsmPrinterPass);
3388 TargetRegistry::RegisterAsmPrinter(getThePPC64Target(),
3389 createPPCAsmPrinterPass);
3390 TargetRegistry::RegisterAsmPrinter(getThePPC64LETarget(),
3391 createPPCAsmPrinterPass);