1 //===-- PPCFrameLowering.cpp - PPC Frame Information ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the PPC implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCFrameLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPCInstrBuilder.h"
16 #include "PPCInstrInfo.h"
17 #include "PPCMachineFunctionInfo.h"
18 #include "PPCSubtarget.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/RegisterScavenging.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/Target/TargetOptions.h"
33 #define DEBUG_TYPE "framelowering"
34 STATISTIC(NumPESpillVSR
, "Number of spills to vector in prologue");
35 STATISTIC(NumPEReloadVSR
, "Number of reloads from vector in epilogue");
36 STATISTIC(NumPrologProbed
, "Number of prologues probed");
39 EnablePEVectorSpills("ppc-enable-pe-vector-spills",
40 cl::desc("Enable spills in prologue to vector registers."),
41 cl::init(false), cl::Hidden
);
43 static unsigned computeReturnSaveOffset(const PPCSubtarget
&STI
) {
45 return STI
.isPPC64() ? 16 : 8;
47 return STI
.isPPC64() ? 16 : 4;
50 static unsigned computeTOCSaveOffset(const PPCSubtarget
&STI
) {
52 return STI
.isPPC64() ? 40 : 20;
53 return STI
.isELFv2ABI() ? 24 : 40;
56 static unsigned computeFramePointerSaveOffset(const PPCSubtarget
&STI
) {
57 // First slot in the general register save area.
58 return STI
.isPPC64() ? -8U : -4U;
61 static unsigned computeLinkageSize(const PPCSubtarget
&STI
) {
62 if (STI
.isAIXABI() || STI
.isPPC64())
63 return (STI
.isELFv2ABI() ? 4 : 6) * (STI
.isPPC64() ? 8 : 4);
69 static unsigned computeBasePointerSaveOffset(const PPCSubtarget
&STI
) {
70 // Third slot in the general purpose register save area.
71 if (STI
.is32BitELFABI() && STI
.getTargetMachine().isPositionIndependent())
74 // Second slot in the general purpose register save area.
75 return STI
.isPPC64() ? -16U : -8U;
78 static unsigned computeCRSaveOffset(const PPCSubtarget
&STI
) {
79 return (STI
.isAIXABI() && !STI
.isPPC64()) ? 4 : 8;
82 PPCFrameLowering::PPCFrameLowering(const PPCSubtarget
&STI
)
83 : TargetFrameLowering(TargetFrameLowering::StackGrowsDown
,
84 STI
.getPlatformStackAlignment(), 0),
85 Subtarget(STI
), ReturnSaveOffset(computeReturnSaveOffset(Subtarget
)),
86 TOCSaveOffset(computeTOCSaveOffset(Subtarget
)),
87 FramePointerSaveOffset(computeFramePointerSaveOffset(Subtarget
)),
88 LinkageSize(computeLinkageSize(Subtarget
)),
89 BasePointerSaveOffset(computeBasePointerSaveOffset(Subtarget
)),
90 CRSaveOffset(computeCRSaveOffset(Subtarget
)) {}
92 // With the SVR4 ABI, callee-saved registers have fixed offsets on the stack.
93 const PPCFrameLowering::SpillSlot
*PPCFrameLowering::getCalleeSavedSpillSlots(
94 unsigned &NumEntries
) const {
96 // Floating-point register save area offsets.
97 #define CALLEE_SAVED_FPRS \
117 // 32-bit general purpose register save area offsets shared by ELF and
118 // AIX. AIX has an extra CSR with r13.
119 #define CALLEE_SAVED_GPRS32 \
139 // 64-bit general purpose register save area offsets.
140 #define CALLEE_SAVED_GPRS64 \
160 // Vector register save area offsets.
161 #define CALLEE_SAVED_VRS \
175 // Note that the offsets here overlap, but this is fixed up in
176 // processFunctionBeforeFrameFinalized.
178 static const SpillSlot ELFOffsets32
[] = {
182 // CR save area offset. We map each of the nonvolatile CR fields
183 // to the slot for CR2, which is the first of the nonvolatile CR
184 // fields to be assigned, so that we only allocate one save slot.
185 // See PPCRegisterInfo::hasReservedSpillSlot() for more information.
188 // VRSAVE save area offset.
193 // SPE register save area (overlaps Vector save area).
213 static const SpillSlot ELFOffsets64
[] = {
217 // VRSAVE save area offset.
222 static const SpillSlot AIXOffsets32
[] = {CALLEE_SAVED_FPRS
,
224 // Add AIX's extra CSR.
228 static const SpillSlot AIXOffsets64
[] = {
229 CALLEE_SAVED_FPRS
, CALLEE_SAVED_GPRS64
, CALLEE_SAVED_VRS
};
231 if (Subtarget
.is64BitELFABI()) {
232 NumEntries
= std::size(ELFOffsets64
);
236 if (Subtarget
.is32BitELFABI()) {
237 NumEntries
= std::size(ELFOffsets32
);
241 assert(Subtarget
.isAIXABI() && "Unexpected ABI.");
243 if (Subtarget
.isPPC64()) {
244 NumEntries
= std::size(AIXOffsets64
);
248 NumEntries
= std::size(AIXOffsets32
);
252 static bool spillsCR(const MachineFunction
&MF
) {
253 const PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
254 return FuncInfo
->isCRSpilled();
257 static bool hasSpills(const MachineFunction
&MF
) {
258 const PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
259 return FuncInfo
->hasSpills();
262 static bool hasNonRISpills(const MachineFunction
&MF
) {
263 const PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
264 return FuncInfo
->hasNonRISpills();
267 /// MustSaveLR - Return true if this function requires that we save the LR
268 /// register onto the stack in the prolog and restore it in the epilog of the
270 static bool MustSaveLR(const MachineFunction
&MF
, unsigned LR
) {
271 const PPCFunctionInfo
*MFI
= MF
.getInfo
<PPCFunctionInfo
>();
273 // We need a save/restore of LR if there is any def of LR (which is
274 // defined by calls, including the PIC setup sequence), or if there is
275 // some use of the LR stack slot (e.g. for builtin_return_address).
276 // (LR comes in 32 and 64 bit versions.)
277 MachineRegisterInfo::def_iterator RI
= MF
.getRegInfo().def_begin(LR
);
278 return RI
!=MF
.getRegInfo().def_end() || MFI
->isLRStoreRequired();
281 /// determineFrameLayoutAndUpdate - Determine the size of the frame and maximum
282 /// call frame size. Update the MachineFunction object with the stack size.
284 PPCFrameLowering::determineFrameLayoutAndUpdate(MachineFunction
&MF
,
285 bool UseEstimate
) const {
286 unsigned NewMaxCallFrameSize
= 0;
287 uint64_t FrameSize
= determineFrameLayout(MF
, UseEstimate
,
288 &NewMaxCallFrameSize
);
289 MF
.getFrameInfo().setStackSize(FrameSize
);
290 MF
.getFrameInfo().setMaxCallFrameSize(NewMaxCallFrameSize
);
294 /// determineFrameLayout - Determine the size of the frame and maximum call
297 PPCFrameLowering::determineFrameLayout(const MachineFunction
&MF
,
299 unsigned *NewMaxCallFrameSize
) const {
300 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
301 const PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
303 // Get the number of bytes to allocate from the FrameInfo
305 UseEstimate
? MFI
.estimateStackSize(MF
) : MFI
.getStackSize();
307 // Get stack alignments. The frame must be aligned to the greatest of these:
308 Align TargetAlign
= getStackAlign(); // alignment required per the ABI
309 Align MaxAlign
= MFI
.getMaxAlign(); // algmt required by data in frame
310 Align Alignment
= std::max(TargetAlign
, MaxAlign
);
312 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
314 unsigned LR
= RegInfo
->getRARegister();
315 bool DisableRedZone
= MF
.getFunction().hasFnAttribute(Attribute::NoRedZone
);
316 bool CanUseRedZone
= !MFI
.hasVarSizedObjects() && // No dynamic alloca.
317 !MFI
.adjustsStack() && // No calls.
318 !MustSaveLR(MF
, LR
) && // No need to save LR.
319 !FI
->mustSaveTOC() && // No need to save TOC.
320 !RegInfo
->hasBasePointer(MF
) && // No special alignment.
321 !MFI
.isFrameAddressTaken();
323 // Note: for PPC32 SVR4ABI, we can still generate stackless
324 // code if all local vars are reg-allocated.
325 bool FitsInRedZone
= FrameSize
<= Subtarget
.getRedZoneSize();
327 // Check whether we can skip adjusting the stack pointer (by using red zone)
328 if (!DisableRedZone
&& CanUseRedZone
&& FitsInRedZone
) {
333 // Get the maximum call frame size of all the calls.
334 unsigned maxCallFrameSize
= MFI
.getMaxCallFrameSize();
336 // Maximum call frame needs to be at least big enough for linkage area.
337 unsigned minCallFrameSize
= getLinkageSize();
338 maxCallFrameSize
= std::max(maxCallFrameSize
, minCallFrameSize
);
340 // If we have dynamic alloca then maxCallFrameSize needs to be aligned so
341 // that allocations will be aligned.
342 if (MFI
.hasVarSizedObjects())
343 maxCallFrameSize
= alignTo(maxCallFrameSize
, Alignment
);
345 // Update the new max call frame size if the caller passes in a valid pointer.
346 if (NewMaxCallFrameSize
)
347 *NewMaxCallFrameSize
= maxCallFrameSize
;
349 // Include call frame size in total.
350 FrameSize
+= maxCallFrameSize
;
352 // Make sure the frame is aligned.
353 FrameSize
= alignTo(FrameSize
, Alignment
);
358 // hasFPImpl - Return true if the specified function actually has a dedicated
359 // frame pointer register.
360 bool PPCFrameLowering::hasFPImpl(const MachineFunction
&MF
) const {
361 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
362 // FIXME: This is pretty much broken by design: hasFP() might be called really
363 // early, before the stack layout was calculated and thus hasFP() might return
364 // true or false here depending on the time of call.
365 return (MFI
.getStackSize()) && needsFP(MF
);
368 // needsFP - Return true if the specified function should have a dedicated frame
369 // pointer register. This is true if the function has variable sized allocas or
370 // if frame pointer elimination is disabled.
371 bool PPCFrameLowering::needsFP(const MachineFunction
&MF
) const {
372 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
374 // Naked functions have no stack frame pushed, so we don't have a frame
376 if (MF
.getFunction().hasFnAttribute(Attribute::Naked
))
379 return MF
.getTarget().Options
.DisableFramePointerElim(MF
) ||
380 MFI
.hasVarSizedObjects() || MFI
.hasStackMap() || MFI
.hasPatchPoint() ||
381 MF
.exposesReturnsTwice() ||
382 (MF
.getTarget().Options
.GuaranteedTailCallOpt
&&
383 MF
.getInfo
<PPCFunctionInfo
>()->hasFastCall());
386 void PPCFrameLowering::replaceFPWithRealFP(MachineFunction
&MF
) const {
387 // When there is dynamic alloca in this function, we can not use the frame
388 // pointer X31/R31 for the frameaddress lowering. In this case, only X1/R1
389 // always points to the backchain.
390 bool is31
= needsFP(MF
) && !MF
.getFrameInfo().hasVarSizedObjects();
391 unsigned FPReg
= is31
? PPC::R31
: PPC::R1
;
392 unsigned FP8Reg
= is31
? PPC::X31
: PPC::X1
;
394 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
395 bool HasBP
= RegInfo
->hasBasePointer(MF
);
396 unsigned BPReg
= HasBP
? (unsigned) RegInfo
->getBaseRegister(MF
) : FPReg
;
397 unsigned BP8Reg
= HasBP
? (unsigned) PPC::X30
: FP8Reg
;
399 for (MachineBasicBlock
&MBB
: MF
)
400 for (MachineBasicBlock::iterator MBBI
= MBB
.end(); MBBI
!= MBB
.begin();) {
402 for (MachineOperand
&MO
: MBBI
->operands()) {
406 switch (MO
.getReg()) {
425 /* This function will do the following:
426 - If MBB is an entry or exit block, set SR1 and SR2 to R0 and R12
427 respectively (defaults recommended by the ABI) and return true
428 - If MBB is not an entry block, initialize the register scavenger and look
429 for available registers.
430 - If the defaults (R0/R12) are available, return true
431 - If TwoUniqueRegsRequired is set to true, it looks for two unique
432 registers. Otherwise, look for a single available register.
433 - If the required registers are found, set SR1 and SR2 and return true.
434 - If the required registers are not found, set SR2 or both SR1 and SR2 to
435 PPC::NoRegister and return false.
437 Note that if both SR1 and SR2 are valid parameters and TwoUniqueRegsRequired
438 is not set, this function will attempt to find two different registers, but
439 still return true if only one register is available (and set SR1 == SR2).
442 PPCFrameLowering::findScratchRegister(MachineBasicBlock
*MBB
,
444 bool TwoUniqueRegsRequired
,
446 Register
*SR2
) const {
448 Register R0
= Subtarget
.isPPC64() ? PPC::X0
: PPC::R0
;
449 Register R12
= Subtarget
.isPPC64() ? PPC::X12
: PPC::R12
;
451 // Set the defaults for the two scratch registers.
456 assert (SR1
&& "Asking for the second scratch register but not the first?");
460 // If MBB is an entry or exit block, use R0 and R12 as the scratch registers.
461 if ((UseAtEnd
&& MBB
->isReturnBlock()) ||
462 (!UseAtEnd
&& (&MBB
->getParent()->front() == MBB
)))
466 // The scratch register will be used before the first terminator (or at the
467 // end of the block if there are no terminators).
468 MachineBasicBlock::iterator MBBI
= MBB
->getFirstTerminator();
469 if (MBBI
== MBB
->begin()) {
470 RS
.enterBasicBlock(*MBB
);
472 RS
.enterBasicBlockEnd(*MBB
);
476 // The scratch register will be used at the start of the block.
477 RS
.enterBasicBlock(*MBB
);
480 // If the two registers are available, we're all good.
481 // Note that we only return here if both R0 and R12 are available because
482 // although the function may not require two unique registers, it may benefit
483 // from having two so we should try to provide them.
484 if (!RS
.isRegUsed(R0
) && !RS
.isRegUsed(R12
))
487 // Get the list of callee-saved registers for the target.
488 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
489 const MCPhysReg
*CSRegs
= RegInfo
->getCalleeSavedRegs(MBB
->getParent());
491 // Get all the available registers in the block.
492 BitVector BV
= RS
.getRegsAvailable(Subtarget
.isPPC64() ? &PPC::G8RCRegClass
:
495 // We shouldn't use callee-saved registers as scratch registers as they may be
496 // available when looking for a candidate block for shrink wrapping but not
497 // available when the actual prologue/epilogue is being emitted because they
498 // were added as live-in to the prologue block by PrologueEpilogueInserter.
499 for (int i
= 0; CSRegs
[i
]; ++i
)
502 // Set the first scratch register to the first available one.
504 int FirstScratchReg
= BV
.find_first();
505 *SR1
= FirstScratchReg
== -1 ? (unsigned)PPC::NoRegister
: FirstScratchReg
;
508 // If there is another one available, set the second scratch register to that.
509 // Otherwise, set it to either PPC::NoRegister if this function requires two
510 // or to whatever SR1 is set to if this function doesn't require two.
512 int SecondScratchReg
= BV
.find_next(*SR1
);
513 if (SecondScratchReg
!= -1)
514 *SR2
= SecondScratchReg
;
516 *SR2
= TwoUniqueRegsRequired
? Register() : *SR1
;
519 // Now that we've done our best to provide both registers, double check
520 // whether we were unable to provide enough.
521 if (BV
.count() < (TwoUniqueRegsRequired
? 2U : 1U))
527 // We need a scratch register for spilling LR and for spilling CR. By default,
528 // we use two scratch registers to hide latency. However, if only one scratch
529 // register is available, we can adjust for that by not overlapping the spill
530 // code. However, if we need to realign the stack (i.e. have a base pointer)
531 // and the stack frame is large, we need two scratch registers.
532 // Also, stack probe requires two scratch registers, one for old sp, one for
533 // large frame and large probe size.
535 PPCFrameLowering::twoUniqueScratchRegsRequired(MachineBasicBlock
*MBB
) const {
536 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
537 MachineFunction
&MF
= *(MBB
->getParent());
538 bool HasBP
= RegInfo
->hasBasePointer(MF
);
539 unsigned FrameSize
= determineFrameLayout(MF
);
540 int NegFrameSize
= -FrameSize
;
541 bool IsLargeFrame
= !isInt
<16>(NegFrameSize
);
542 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
543 Align MaxAlign
= MFI
.getMaxAlign();
544 bool HasRedZone
= Subtarget
.isPPC64() || !Subtarget
.isSVR4ABI();
545 const PPCTargetLowering
&TLI
= *Subtarget
.getTargetLowering();
547 return ((IsLargeFrame
|| !HasRedZone
) && HasBP
&& MaxAlign
> 1) ||
548 TLI
.hasInlineStackProbe(MF
);
551 bool PPCFrameLowering::canUseAsPrologue(const MachineBasicBlock
&MBB
) const {
552 MachineBasicBlock
*TmpMBB
= const_cast<MachineBasicBlock
*>(&MBB
);
554 return findScratchRegister(TmpMBB
, false,
555 twoUniqueScratchRegsRequired(TmpMBB
));
558 bool PPCFrameLowering::canUseAsEpilogue(const MachineBasicBlock
&MBB
) const {
559 MachineBasicBlock
*TmpMBB
= const_cast<MachineBasicBlock
*>(&MBB
);
561 return findScratchRegister(TmpMBB
, true);
564 bool PPCFrameLowering::stackUpdateCanBeMoved(MachineFunction
&MF
) const {
565 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
566 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
568 // Abort if there is no register info or function info.
572 // Only move the stack update on ELFv2 ABI and PPC64.
573 if (!Subtarget
.isELFv2ABI() || !Subtarget
.isPPC64())
576 // Check the frame size first and return false if it does not fit the
578 // We need a non-zero frame size as well as a frame that will fit in the red
579 // zone. This is because by moving the stack pointer update we are now storing
580 // to the red zone until the stack pointer is updated. If we get an interrupt
581 // inside the prologue but before the stack update we now have a number of
582 // stores to the red zone and those stores must all fit.
583 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
584 unsigned FrameSize
= MFI
.getStackSize();
585 if (!FrameSize
|| FrameSize
> Subtarget
.getRedZoneSize())
588 // Frame pointers and base pointers complicate matters so don't do anything
589 // if we have them. For example having a frame pointer will sometimes require
590 // a copy of r1 into r31 and that makes keeping track of updates to r1 more
591 // difficult. Similar situation exists with setjmp.
592 if (hasFP(MF
) || RegInfo
->hasBasePointer(MF
) || MF
.exposesReturnsTwice())
595 // Calls to fast_cc functions use different rules for passing parameters on
596 // the stack from the ABI and using PIC base in the function imposes
597 // similar restrictions to using the base pointer. It is not generally safe
598 // to move the stack pointer update in these situations.
599 if (FI
->hasFastCall() || FI
->usesPICBase())
602 // Finally we can move the stack update if we do not require register
603 // scavenging. Register scavenging can introduce more spills and so
604 // may make the frame size larger than we have computed.
605 return !RegInfo
->requiresFrameIndexScavenging(MF
);
608 void PPCFrameLowering::emitPrologue(MachineFunction
&MF
,
609 MachineBasicBlock
&MBB
) const {
610 MachineBasicBlock::iterator MBBI
= MBB
.begin();
611 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
612 const PPCInstrInfo
&TII
= *Subtarget
.getInstrInfo();
613 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
614 const PPCTargetLowering
&TLI
= *Subtarget
.getTargetLowering();
616 const MCRegisterInfo
*MRI
= MF
.getContext().getRegisterInfo();
618 // AIX assembler does not support cfi directives.
619 const bool needsCFI
= MF
.needsFrameMoves() && !Subtarget
.isAIXABI();
621 const bool HasFastMFLR
= Subtarget
.hasFastMFLR();
623 // Get processor type.
624 bool isPPC64
= Subtarget
.isPPC64();
626 bool isSVR4ABI
= Subtarget
.isSVR4ABI();
627 bool isELFv2ABI
= Subtarget
.isELFv2ABI();
628 assert((isSVR4ABI
|| Subtarget
.isAIXABI()) && "Unsupported PPC ABI.");
630 // Work out frame sizes.
631 uint64_t FrameSize
= determineFrameLayoutAndUpdate(MF
);
632 int64_t NegFrameSize
= -FrameSize
;
633 if (!isPPC64
&& (!isInt
<32>(FrameSize
) || !isInt
<32>(NegFrameSize
)))
634 llvm_unreachable("Unhandled stack size!");
636 if (MFI
.isFrameAddressTaken())
637 replaceFPWithRealFP(MF
);
639 // Check if the link register (LR) must be saved.
640 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
641 bool MustSaveLR
= FI
->mustSaveLR();
642 bool MustSaveTOC
= FI
->mustSaveTOC();
643 const SmallVectorImpl
<Register
> &MustSaveCRs
= FI
->getMustSaveCRs();
644 bool MustSaveCR
= !MustSaveCRs
.empty();
645 // Do we have a frame pointer and/or base pointer for this function?
646 bool HasFP
= hasFP(MF
);
647 bool HasBP
= RegInfo
->hasBasePointer(MF
);
648 bool HasRedZone
= isPPC64
|| !isSVR4ABI
;
649 bool HasROPProtect
= Subtarget
.hasROPProtect();
650 bool HasPrivileged
= Subtarget
.hasPrivileged();
652 Register SPReg
= isPPC64
? PPC::X1
: PPC::R1
;
653 Register BPReg
= RegInfo
->getBaseRegister(MF
);
654 Register FPReg
= isPPC64
? PPC::X31
: PPC::R31
;
655 Register LRReg
= isPPC64
? PPC::LR8
: PPC::LR
;
656 Register TOCReg
= isPPC64
? PPC::X2
: PPC::R2
;
658 Register TempReg
= isPPC64
? PPC::X12
: PPC::R12
; // another scratch reg
659 // ...(R12/X12 is volatile in both Darwin & SVR4, & can't be a function arg.)
660 const MCInstrDesc
& MFLRInst
= TII
.get(isPPC64
? PPC::MFLR8
662 const MCInstrDesc
& StoreInst
= TII
.get(isPPC64
? PPC::STD
664 const MCInstrDesc
& StoreUpdtInst
= TII
.get(isPPC64
? PPC::STDU
666 const MCInstrDesc
& StoreUpdtIdxInst
= TII
.get(isPPC64
? PPC::STDUX
668 const MCInstrDesc
& OrInst
= TII
.get(isPPC64
? PPC::OR8
670 const MCInstrDesc
& SubtractCarryingInst
= TII
.get(isPPC64
? PPC::SUBFC8
672 const MCInstrDesc
& SubtractImmCarryingInst
= TII
.get(isPPC64
? PPC::SUBFIC8
674 const MCInstrDesc
&MoveFromCondRegInst
= TII
.get(isPPC64
? PPC::MFCR8
676 const MCInstrDesc
&StoreWordInst
= TII
.get(isPPC64
? PPC::STW8
: PPC::STW
);
677 const MCInstrDesc
&HashST
=
678 TII
.get(isPPC64
? (HasPrivileged
? PPC::HASHSTP8
: PPC::HASHST8
)
679 : (HasPrivileged
? PPC::HASHSTP
: PPC::HASHST
));
681 // Regarding this assert: Even though LR is saved in the caller's frame (i.e.,
682 // LROffset is positive), that slot is callee-owned. Because PPC32 SVR4 has no
683 // Red Zone, an asynchronous event (a form of "callee") could claim a frame &
684 // overwrite it, so PPC32 SVR4 must claim at least a minimal frame to save LR.
685 assert((isPPC64
|| !isSVR4ABI
|| !(!FrameSize
&& (MustSaveLR
|| HasFP
))) &&
686 "FrameSize must be >0 to save/restore the FP or LR for 32-bit SVR4.");
688 // Using the same bool variable as below to suppress compiler warnings.
689 bool SingleScratchReg
= findScratchRegister(
690 &MBB
, false, twoUniqueScratchRegsRequired(&MBB
), &ScratchReg
, &TempReg
);
691 assert(SingleScratchReg
&&
692 "Required number of registers not available in this block");
694 SingleScratchReg
= ScratchReg
== TempReg
;
696 int64_t LROffset
= getReturnSaveOffset();
698 int64_t FPOffset
= 0;
700 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
701 int FPIndex
= FI
->getFramePointerSaveIndex();
702 assert(FPIndex
&& "No Frame Pointer Save Slot!");
703 FPOffset
= MFI
.getObjectOffset(FPIndex
);
706 int64_t BPOffset
= 0;
708 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
709 int BPIndex
= FI
->getBasePointerSaveIndex();
710 assert(BPIndex
&& "No Base Pointer Save Slot!");
711 BPOffset
= MFI
.getObjectOffset(BPIndex
);
714 int64_t PBPOffset
= 0;
715 if (FI
->usesPICBase()) {
716 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
717 int PBPIndex
= FI
->getPICBasePointerSaveIndex();
718 assert(PBPIndex
&& "No PIC Base Pointer Save Slot!");
719 PBPOffset
= MFI
.getObjectOffset(PBPIndex
);
722 // Get stack alignments.
723 Align MaxAlign
= MFI
.getMaxAlign();
724 if (HasBP
&& MaxAlign
> 1)
725 assert(Log2(MaxAlign
) < 16 && "Invalid alignment!");
727 // Frames of 32KB & larger require special handling because they cannot be
728 // indexed into with a simple STDU/STWU/STD/STW immediate offset operand.
729 bool isLargeFrame
= !isInt
<16>(NegFrameSize
);
731 // Check if we can move the stack update instruction (stdu) down the prologue
732 // past the callee saves. Hopefully this will avoid the situation where the
733 // saves are waiting for the update on the store with update to complete.
734 MachineBasicBlock::iterator StackUpdateLoc
= MBBI
;
735 bool MovingStackUpdateDown
= false;
737 // Check if we can move the stack update.
738 if (stackUpdateCanBeMoved(MF
)) {
739 const std::vector
<CalleeSavedInfo
> &Info
= MFI
.getCalleeSavedInfo();
740 for (CalleeSavedInfo CSI
: Info
) {
741 // If the callee saved register is spilled to a register instead of the
742 // stack then the spill no longer uses the stack pointer.
743 // This can lead to two consequences:
744 // 1) We no longer need to update the stack because the function does not
745 // spill any callee saved registers to stack.
746 // 2) We have a situation where we still have to update the stack pointer
747 // even though some registers are spilled to other registers. In
748 // this case the current code moves the stack update to an incorrect
750 // In either case we should abort moving the stack update operation.
751 if (CSI
.isSpilledToReg()) {
752 StackUpdateLoc
= MBBI
;
753 MovingStackUpdateDown
= false;
757 int FrIdx
= CSI
.getFrameIdx();
758 // If the frame index is not negative the callee saved info belongs to a
759 // stack object that is not a fixed stack object. We ignore non-fixed
760 // stack objects because we won't move the stack update pointer past them.
764 if (MFI
.isFixedObjectIndex(FrIdx
) && MFI
.getObjectOffset(FrIdx
) < 0) {
766 MovingStackUpdateDown
= true;
768 // We need all of the Frame Indices to meet these conditions.
769 // If they do not, abort the whole operation.
770 StackUpdateLoc
= MBBI
;
771 MovingStackUpdateDown
= false;
776 // If the operation was not aborted then update the object offset.
777 if (MovingStackUpdateDown
) {
778 for (CalleeSavedInfo CSI
: Info
) {
779 int FrIdx
= CSI
.getFrameIdx();
781 MFI
.setObjectOffset(FrIdx
, MFI
.getObjectOffset(FrIdx
) + NegFrameSize
);
786 // Where in the prologue we move the CR fields depends on how many scratch
787 // registers we have, and if we need to save the link register or not. This
788 // lambda is to avoid duplicating the logic in 2 places.
789 auto BuildMoveFromCR
= [&]() {
790 if (isELFv2ABI
&& MustSaveCRs
.size() == 1) {
791 // In the ELFv2 ABI, we are not required to save all CR fields.
792 // If only one CR field is clobbered, it is more efficient to use
793 // mfocrf to selectively save just that field, because mfocrf has short
794 // latency compares to mfcr.
795 assert(isPPC64
&& "V2 ABI is 64-bit only.");
796 MachineInstrBuilder MIB
=
797 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::MFOCRF8
), TempReg
);
798 MIB
.addReg(MustSaveCRs
[0], RegState::Kill
);
800 MachineInstrBuilder MIB
=
801 BuildMI(MBB
, MBBI
, dl
, MoveFromCondRegInst
, TempReg
);
802 for (unsigned CRfield
: MustSaveCRs
)
803 MIB
.addReg(CRfield
, RegState::ImplicitKill
);
807 // If we need to spill the CR and the LR but we don't have two separate
808 // registers available, we must spill them one at a time
809 if (MustSaveCR
&& SingleScratchReg
&& MustSaveLR
) {
811 BuildMI(MBB
, MBBI
, dl
, StoreWordInst
)
812 .addReg(TempReg
, getKillRegState(true))
813 .addImm(CRSaveOffset
)
818 BuildMI(MBB
, MBBI
, dl
, MFLRInst
, ScratchReg
);
820 if (MustSaveCR
&& !(SingleScratchReg
&& MustSaveLR
))
825 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
829 if (FI
->usesPICBase())
830 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
835 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
841 // Generate the instruction to store the LR. In the case where ROP protection
842 // is required the register holding the LR should not be killed as it will be
843 // used by the hash store instruction.
844 auto SaveLR
= [&](int64_t Offset
) {
845 assert(MustSaveLR
&& "LR is not required to be saved!");
846 BuildMI(MBB
, StackUpdateLoc
, dl
, StoreInst
)
847 .addReg(ScratchReg
, getKillRegState(!HasROPProtect
))
851 // Add the ROP protection Hash Store instruction.
852 // NOTE: This is technically a violation of the ABI. The hash can be saved
853 // up to 512 bytes into the Protected Zone. This can be outside of the
854 // initial 288 byte volatile program storage region in the Protected Zone.
855 // However, this restriction will be removed in an upcoming revision of the
858 const int SaveIndex
= FI
->getROPProtectionHashSaveIndex();
859 const int64_t ImmOffset
= MFI
.getObjectOffset(SaveIndex
);
860 assert((ImmOffset
<= -8 && ImmOffset
>= -512) &&
861 "ROP hash save offset out of range.");
862 assert(((ImmOffset
& 0x7) == 0) &&
863 "ROP hash save offset must be 8 byte aligned.");
864 BuildMI(MBB
, StackUpdateLoc
, dl
, HashST
)
865 .addReg(ScratchReg
, getKillRegState(true))
871 if (MustSaveLR
&& HasFastMFLR
)
875 !(SingleScratchReg
&& MustSaveLR
)) {
876 assert(HasRedZone
&& "A red zone is always available on PPC64");
877 BuildMI(MBB
, MBBI
, dl
, StoreWordInst
)
878 .addReg(TempReg
, getKillRegState(true))
879 .addImm(CRSaveOffset
)
883 // Skip the rest if this is a leaf function & all spills fit in the Red Zone.
885 if (MustSaveLR
&& !HasFastMFLR
)
890 // Adjust stack pointer: r1 += NegFrameSize.
891 // If there is a preferred stack alignment, align R1 now
893 if (HasBP
&& HasRedZone
) {
894 // Save a copy of r1 as the base pointer.
895 BuildMI(MBB
, MBBI
, dl
, OrInst
, BPReg
)
900 // Have we generated a STUX instruction to claim stack frame? If so,
901 // the negated frame size will be placed in ScratchReg.
903 (TLI
.hasInlineStackProbe(MF
) && FrameSize
> TLI
.getStackProbeSize(MF
)) ||
904 (HasBP
&& MaxAlign
> 1) || isLargeFrame
;
906 // If we use STUX to update the stack pointer, we need the two scratch
907 // registers TempReg and ScratchReg, we have to save LR here which is stored
909 // If the offset can not be encoded into the store instruction, we also have
911 if (MustSaveLR
&& !HasFastMFLR
&&
912 (HasSTUX
|| !isInt
<16>(FrameSize
+ LROffset
)))
915 // If FrameSize <= TLI.getStackProbeSize(MF), as POWER ABI requires backchain
916 // pointer is always stored at SP, we will get a free probe due to an essential
917 // STU(X) instruction.
918 if (TLI
.hasInlineStackProbe(MF
) && FrameSize
> TLI
.getStackProbeSize(MF
)) {
919 // To be consistent with other targets, a pseudo instruction is emitted and
920 // will be later expanded in `inlineStackProbe`.
921 BuildMI(MBB
, MBBI
, dl
,
922 TII
.get(isPPC64
? PPC::PROBED_STACKALLOC_64
923 : PPC::PROBED_STACKALLOC_32
))
925 .addDef(ScratchReg
) // ScratchReg stores the old sp.
926 .addImm(NegFrameSize
);
927 // FIXME: HasSTUX is only read if HasRedZone is not set, in such case, we
928 // update the ScratchReg to meet the assumption that ScratchReg contains
929 // the NegFrameSize. This solution is rather tricky.
931 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::SUBF
), ScratchReg
)
936 // This condition must be kept in sync with canUseAsPrologue.
937 if (HasBP
&& MaxAlign
> 1) {
939 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::RLDICL
), ScratchReg
)
942 .addImm(64 - Log2(MaxAlign
));
944 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::RLWINM
), ScratchReg
)
947 .addImm(32 - Log2(MaxAlign
))
950 BuildMI(MBB
, MBBI
, dl
, SubtractImmCarryingInst
, ScratchReg
)
951 .addReg(ScratchReg
, RegState::Kill
)
952 .addImm(NegFrameSize
);
954 assert(!SingleScratchReg
&& "Only a single scratch reg available");
955 TII
.materializeImmPostRA(MBB
, MBBI
, dl
, TempReg
, NegFrameSize
);
956 BuildMI(MBB
, MBBI
, dl
, SubtractCarryingInst
, ScratchReg
)
957 .addReg(ScratchReg
, RegState::Kill
)
958 .addReg(TempReg
, RegState::Kill
);
961 BuildMI(MBB
, MBBI
, dl
, StoreUpdtIdxInst
, SPReg
)
962 .addReg(SPReg
, RegState::Kill
)
965 } else if (!isLargeFrame
) {
966 BuildMI(MBB
, StackUpdateLoc
, dl
, StoreUpdtInst
, SPReg
)
968 .addImm(NegFrameSize
)
971 TII
.materializeImmPostRA(MBB
, MBBI
, dl
, ScratchReg
, NegFrameSize
);
972 BuildMI(MBB
, MBBI
, dl
, StoreUpdtIdxInst
, SPReg
)
973 .addReg(SPReg
, RegState::Kill
)
979 // Save the TOC register after the stack pointer update if a prologue TOC
980 // save is required for the function.
982 assert(isELFv2ABI
&& "TOC saves in the prologue only supported on ELFv2");
983 BuildMI(MBB
, StackUpdateLoc
, dl
, TII
.get(PPC::STD
))
984 .addReg(TOCReg
, getKillRegState(true))
985 .addImm(TOCSaveOffset
)
990 assert(!isPPC64
&& "A red zone is always available on PPC64");
992 // The negated frame size is in ScratchReg, and the SPReg has been
993 // decremented by the frame size: SPReg = old SPReg + ScratchReg.
994 // Since FPOffset, PBPOffset, etc. are relative to the beginning of
995 // the stack frame (i.e. the old SP), ideally, we would put the old
996 // SP into a register and use it as the base for the stores. The
997 // problem is that the only available register may be ScratchReg,
998 // which could be R0, and R0 cannot be used as a base address.
1000 // First, set ScratchReg to the old SP. This may need to be modified
1002 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::SUBF
), ScratchReg
)
1003 .addReg(ScratchReg
, RegState::Kill
)
1006 if (ScratchReg
== PPC::R0
) {
1007 // R0 cannot be used as a base register, but it can be used as an
1008 // index in a store-indexed.
1011 // R0 += (FPOffset-LastOffset).
1012 // Need addic, since addi treats R0 as 0.
1013 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::ADDIC
), ScratchReg
)
1015 .addImm(FPOffset
-LastOffset
);
1016 LastOffset
= FPOffset
;
1017 // Store FP into *R0.
1018 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::STWX
))
1019 .addReg(FPReg
, RegState::Kill
) // Save FP.
1021 .addReg(ScratchReg
); // This will be the index (R0 is ok here).
1023 if (FI
->usesPICBase()) {
1024 // R0 += (PBPOffset-LastOffset).
1025 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::ADDIC
), ScratchReg
)
1027 .addImm(PBPOffset
-LastOffset
);
1028 LastOffset
= PBPOffset
;
1029 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::STWX
))
1030 .addReg(PPC::R30
, RegState::Kill
) // Save PIC base pointer.
1032 .addReg(ScratchReg
); // This will be the index (R0 is ok here).
1035 // R0 += (BPOffset-LastOffset).
1036 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::ADDIC
), ScratchReg
)
1038 .addImm(BPOffset
-LastOffset
);
1039 LastOffset
= BPOffset
;
1040 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::STWX
))
1041 .addReg(BPReg
, RegState::Kill
) // Save BP.
1043 .addReg(ScratchReg
); // This will be the index (R0 is ok here).
1044 // BP = R0-LastOffset
1045 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::ADDIC
), BPReg
)
1046 .addReg(ScratchReg
, RegState::Kill
)
1047 .addImm(-LastOffset
);
1050 // ScratchReg is not R0, so use it as the base register. It is
1051 // already set to the old SP, so we can use the offsets directly.
1053 // Now that the stack frame has been allocated, save all the necessary
1054 // registers using ScratchReg as the base address.
1056 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
1059 .addReg(ScratchReg
);
1060 if (FI
->usesPICBase())
1061 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
1064 .addReg(ScratchReg
);
1066 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
1069 .addReg(ScratchReg
);
1070 BuildMI(MBB
, MBBI
, dl
, OrInst
, BPReg
)
1071 .addReg(ScratchReg
, RegState::Kill
)
1072 .addReg(ScratchReg
);
1076 // The frame size is a known 16-bit constant (fitting in the immediate
1077 // field of STWU). To be here we have to be compiling for PPC32.
1078 // Since the SPReg has been decreased by FrameSize, add it back to each
1081 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
1083 .addImm(FrameSize
+ FPOffset
)
1085 if (FI
->usesPICBase())
1086 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
1088 .addImm(FrameSize
+ PBPOffset
)
1091 BuildMI(MBB
, MBBI
, dl
, StoreInst
)
1093 .addImm(FrameSize
+ BPOffset
)
1095 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::ADDI
), BPReg
)
1103 if (!HasSTUX
&& MustSaveLR
&& !HasFastMFLR
&& isInt
<16>(FrameSize
+ LROffset
))
1104 SaveLR(LROffset
+ FrameSize
);
1106 // Add Call Frame Information for the instructions we generated above.
1111 // Define CFA in terms of BP. Do this in preference to using FP/SP,
1112 // because if the stack needed aligning then CFA won't be at a fixed
1113 // offset from FP/SP.
1114 unsigned Reg
= MRI
->getDwarfRegNum(BPReg
, true);
1115 CFIIndex
= MF
.addFrameInst(
1116 MCCFIInstruction::createDefCfaRegister(nullptr, Reg
));
1118 // Adjust the definition of CFA to account for the change in SP.
1119 assert(NegFrameSize
);
1120 CFIIndex
= MF
.addFrameInst(
1121 MCCFIInstruction::cfiDefCfaOffset(nullptr, -NegFrameSize
));
1123 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1124 .addCFIIndex(CFIIndex
);
1127 // Describe where FP was saved, at a fixed offset from CFA.
1128 unsigned Reg
= MRI
->getDwarfRegNum(FPReg
, true);
1129 CFIIndex
= MF
.addFrameInst(
1130 MCCFIInstruction::createOffset(nullptr, Reg
, FPOffset
));
1131 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1132 .addCFIIndex(CFIIndex
);
1135 if (FI
->usesPICBase()) {
1136 // Describe where FP was saved, at a fixed offset from CFA.
1137 unsigned Reg
= MRI
->getDwarfRegNum(PPC::R30
, true);
1138 CFIIndex
= MF
.addFrameInst(
1139 MCCFIInstruction::createOffset(nullptr, Reg
, PBPOffset
));
1140 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1141 .addCFIIndex(CFIIndex
);
1145 // Describe where BP was saved, at a fixed offset from CFA.
1146 unsigned Reg
= MRI
->getDwarfRegNum(BPReg
, true);
1147 CFIIndex
= MF
.addFrameInst(
1148 MCCFIInstruction::createOffset(nullptr, Reg
, BPOffset
));
1149 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1150 .addCFIIndex(CFIIndex
);
1154 // Describe where LR was saved, at a fixed offset from CFA.
1155 unsigned Reg
= MRI
->getDwarfRegNum(LRReg
, true);
1156 CFIIndex
= MF
.addFrameInst(
1157 MCCFIInstruction::createOffset(nullptr, Reg
, LROffset
));
1158 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1159 .addCFIIndex(CFIIndex
);
1163 // If there is a frame pointer, copy R1 into R31
1165 BuildMI(MBB
, MBBI
, dl
, OrInst
, FPReg
)
1169 if (!HasBP
&& needsCFI
) {
1170 // Change the definition of CFA from SP+offset to FP+offset, because SP
1171 // will change at every alloca.
1172 unsigned Reg
= MRI
->getDwarfRegNum(FPReg
, true);
1173 unsigned CFIIndex
= MF
.addFrameInst(
1174 MCCFIInstruction::createDefCfaRegister(nullptr, Reg
));
1176 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1177 .addCFIIndex(CFIIndex
);
1182 // Describe where callee saved registers were saved, at fixed offsets from
1184 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
1185 for (const CalleeSavedInfo
&I
: CSI
) {
1186 Register Reg
= I
.getReg();
1187 if (Reg
== PPC::LR
|| Reg
== PPC::LR8
|| Reg
== PPC::RM
) continue;
1189 // This is a bit of a hack: CR2LT, CR2GT, CR2EQ and CR2UN are just
1190 // subregisters of CR2. We just need to emit a move of CR2.
1191 if (PPC::CRBITRCRegClass
.contains(Reg
))
1194 if ((Reg
== PPC::X2
|| Reg
== PPC::R2
) && MustSaveTOC
)
1197 // For 64-bit SVR4 when we have spilled CRs, the spill location
1198 // is SP+8, not a frame-relative slot.
1199 if (isSVR4ABI
&& isPPC64
&& (PPC::CR2
<= Reg
&& Reg
<= PPC::CR4
)) {
1200 // In the ELFv1 ABI, only CR2 is noted in CFI and stands in for
1201 // the whole CR word. In the ELFv2 ABI, every CR that was
1202 // actually saved gets its own CFI record.
1203 Register CRReg
= isELFv2ABI
? Reg
: PPC::CR2
;
1204 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
1205 nullptr, MRI
->getDwarfRegNum(CRReg
, true), CRSaveOffset
));
1206 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1207 .addCFIIndex(CFIIndex
);
1211 if (I
.isSpilledToReg()) {
1212 unsigned SpilledReg
= I
.getDstReg();
1213 unsigned CFIRegister
= MF
.addFrameInst(MCCFIInstruction::createRegister(
1214 nullptr, MRI
->getDwarfRegNum(Reg
, true),
1215 MRI
->getDwarfRegNum(SpilledReg
, true)));
1216 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1217 .addCFIIndex(CFIRegister
);
1219 int64_t Offset
= MFI
.getObjectOffset(I
.getFrameIdx());
1220 // We have changed the object offset above but we do not want to change
1221 // the actual offsets in the CFI instruction so we have to undo the
1222 // offset change here.
1223 if (MovingStackUpdateDown
)
1224 Offset
-= NegFrameSize
;
1226 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
1227 nullptr, MRI
->getDwarfRegNum(Reg
, true), Offset
));
1228 BuildMI(MBB
, MBBI
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1229 .addCFIIndex(CFIIndex
);
1235 void PPCFrameLowering::inlineStackProbe(MachineFunction
&MF
,
1236 MachineBasicBlock
&PrologMBB
) const {
1237 bool isPPC64
= Subtarget
.isPPC64();
1238 const PPCTargetLowering
&TLI
= *Subtarget
.getTargetLowering();
1239 const PPCInstrInfo
&TII
= *Subtarget
.getInstrInfo();
1240 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1241 const MCRegisterInfo
*MRI
= MF
.getContext().getRegisterInfo();
1242 // AIX assembler does not support cfi directives.
1243 const bool needsCFI
= MF
.needsFrameMoves() && !Subtarget
.isAIXABI();
1244 auto StackAllocMIPos
= llvm::find_if(PrologMBB
, [](MachineInstr
&MI
) {
1245 int Opc
= MI
.getOpcode();
1246 return Opc
== PPC::PROBED_STACKALLOC_64
|| Opc
== PPC::PROBED_STACKALLOC_32
;
1248 if (StackAllocMIPos
== PrologMBB
.end())
1250 const BasicBlock
*ProbedBB
= PrologMBB
.getBasicBlock();
1251 MachineBasicBlock
*CurrentMBB
= &PrologMBB
;
1252 DebugLoc DL
= PrologMBB
.findDebugLoc(StackAllocMIPos
);
1253 MachineInstr
&MI
= *StackAllocMIPos
;
1254 int64_t NegFrameSize
= MI
.getOperand(2).getImm();
1255 unsigned ProbeSize
= TLI
.getStackProbeSize(MF
);
1256 int64_t NegProbeSize
= -(int64_t)ProbeSize
;
1257 assert(isInt
<32>(NegProbeSize
) && "Unhandled probe size");
1258 int64_t NumBlocks
= NegFrameSize
/ NegProbeSize
;
1259 int64_t NegResidualSize
= NegFrameSize
% NegProbeSize
;
1260 Register SPReg
= isPPC64
? PPC::X1
: PPC::R1
;
1261 Register ScratchReg
= MI
.getOperand(0).getReg();
1262 Register FPReg
= MI
.getOperand(1).getReg();
1263 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1264 bool HasBP
= RegInfo
->hasBasePointer(MF
);
1265 Register BPReg
= RegInfo
->getBaseRegister(MF
);
1266 Align MaxAlign
= MFI
.getMaxAlign();
1267 bool HasRedZone
= Subtarget
.isPPC64() || !Subtarget
.isSVR4ABI();
1268 const MCInstrDesc
&CopyInst
= TII
.get(isPPC64
? PPC::OR8
: PPC::OR
);
1269 // Subroutines to generate .cfi_* directives.
1270 auto buildDefCFAReg
= [&](MachineBasicBlock
&MBB
,
1271 MachineBasicBlock::iterator MBBI
, Register Reg
) {
1272 unsigned RegNum
= MRI
->getDwarfRegNum(Reg
, true);
1273 unsigned CFIIndex
= MF
.addFrameInst(
1274 MCCFIInstruction::createDefCfaRegister(nullptr, RegNum
));
1275 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1276 .addCFIIndex(CFIIndex
);
1278 auto buildDefCFA
= [&](MachineBasicBlock
&MBB
,
1279 MachineBasicBlock::iterator MBBI
, Register Reg
,
1281 unsigned RegNum
= MRI
->getDwarfRegNum(Reg
, true);
1282 unsigned CFIIndex
= MBB
.getParent()->addFrameInst(
1283 MCCFIInstruction::cfiDefCfa(nullptr, RegNum
, Offset
));
1284 BuildMI(MBB
, MBBI
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
1285 .addCFIIndex(CFIIndex
);
1287 // Subroutine to determine if we can use the Imm as part of d-form.
1288 auto CanUseDForm
= [](int64_t Imm
) { return isInt
<16>(Imm
) && Imm
% 4 == 0; };
1289 // Subroutine to materialize the Imm into TempReg.
1290 auto MaterializeImm
= [&](MachineBasicBlock
&MBB
,
1291 MachineBasicBlock::iterator MBBI
, int64_t Imm
,
1292 Register
&TempReg
) {
1293 assert(isInt
<32>(Imm
) && "Unhandled imm");
1295 BuildMI(MBB
, MBBI
, DL
, TII
.get(isPPC64
? PPC::LI8
: PPC::LI
), TempReg
)
1298 BuildMI(MBB
, MBBI
, DL
, TII
.get(isPPC64
? PPC::LIS8
: PPC::LIS
), TempReg
)
1300 BuildMI(MBB
, MBBI
, DL
, TII
.get(isPPC64
? PPC::ORI8
: PPC::ORI
), TempReg
)
1302 .addImm(Imm
& 0xFFFF);
1305 // Subroutine to store frame pointer and decrease stack pointer by probe size.
1306 auto allocateAndProbe
= [&](MachineBasicBlock
&MBB
,
1307 MachineBasicBlock::iterator MBBI
, int64_t NegSize
,
1308 Register NegSizeReg
, bool UseDForm
,
1309 Register StoreReg
) {
1311 BuildMI(MBB
, MBBI
, DL
, TII
.get(isPPC64
? PPC::STDU
: PPC::STWU
), SPReg
)
1316 BuildMI(MBB
, MBBI
, DL
, TII
.get(isPPC64
? PPC::STDUX
: PPC::STWUX
), SPReg
)
1319 .addReg(NegSizeReg
);
1321 // Used to probe stack when realignment is required.
1322 // Note that, according to ABI's requirement, *sp must always equals the
1323 // value of back-chain pointer, only st(w|d)u(x) can be used to update sp.
1324 // Following is pseudo code:
1325 // final_sp = (sp & align) + negframesize;
1326 // neg_gap = final_sp - sp;
1327 // while (neg_gap < negprobesize) {
1328 // stdu fp, negprobesize(sp);
1329 // neg_gap -= negprobesize;
1331 // stdux fp, sp, neg_gap
1333 // When HasBP & HasRedzone, back-chain pointer is already saved in BPReg
1334 // before probe code, we don't need to save it, so we get one additional reg
1335 // that can be used to materialize the probeside if needed to use xform.
1336 // Otherwise, we can NOT materialize probeside, so we can only use Dform for
1339 // The allocations are:
1340 // if (HasBP && HasRedzone) {
1341 // r0: materialize the probesize if needed so that we can use xform.
1344 // r0: back-chain pointer
1347 auto probeRealignedStack
= [&](MachineBasicBlock
&MBB
,
1348 MachineBasicBlock::iterator MBBI
,
1349 Register ScratchReg
, Register TempReg
) {
1350 assert(HasBP
&& "The function is supposed to have base pointer when its "
1351 "stack is realigned.");
1352 assert(isPowerOf2_64(ProbeSize
) && "Probe size should be power of 2");
1354 // FIXME: We can eliminate this limitation if we get more infomation about
1355 // which part of redzone are already used. Used redzone can be treated
1356 // probed. But there might be `holes' in redzone probed, this could
1357 // complicate the implementation.
1358 assert(ProbeSize
>= Subtarget
.getRedZoneSize() &&
1359 "Probe size should be larger or equal to the size of red-zone so "
1360 "that red-zone is not clobbered by probing.");
1362 Register
&FinalStackPtr
= TempReg
;
1363 // FIXME: We only support NegProbeSize materializable by DForm currently.
1364 // When HasBP && HasRedzone, we can use xform if we have an additional idle
1366 NegProbeSize
= std::max(NegProbeSize
, -((int64_t)1 << 15));
1367 assert(isInt
<16>(NegProbeSize
) &&
1368 "NegProbeSize should be materializable by DForm");
1369 Register CRReg
= PPC::CR0
;
1370 // Layout of output assembly kinda like:
1373 // sub $scratchreg, $finalsp, r1
1374 // cmpdi $scratchreg, <negprobesize>
1377 // stdu <backchain>, <negprobesize>(r1)
1378 // sub $scratchreg, $scratchreg, negprobesize
1379 // cmpdi $scratchreg, <negprobesize>
1382 // stdux <backchain>, r1, $scratchreg
1383 MachineFunction::iterator MBBInsertPoint
= std::next(MBB
.getIterator());
1384 MachineBasicBlock
*ProbeLoopBodyMBB
= MF
.CreateMachineBasicBlock(ProbedBB
);
1385 MF
.insert(MBBInsertPoint
, ProbeLoopBodyMBB
);
1386 MachineBasicBlock
*ProbeExitMBB
= MF
.CreateMachineBasicBlock(ProbedBB
);
1387 MF
.insert(MBBInsertPoint
, ProbeExitMBB
);
1390 Register BackChainPointer
= HasRedZone
? BPReg
: TempReg
;
1391 allocateAndProbe(*ProbeExitMBB
, ProbeExitMBB
->end(), 0, ScratchReg
, false,
1394 // PROBED_STACKALLOC_64 assumes Operand(1) stores the old sp, copy BPReg
1395 // to TempReg to satisfy it.
1396 BuildMI(*ProbeExitMBB
, ProbeExitMBB
->end(), DL
, CopyInst
, TempReg
)
1399 ProbeExitMBB
->splice(ProbeExitMBB
->end(), &MBB
, MBBI
, MBB
.end());
1400 ProbeExitMBB
->transferSuccessorsAndUpdatePHIs(&MBB
);
1404 BuildMI(&MBB
, DL
, TII
.get(isPPC64
? PPC::SUBF8
: PPC::SUBF
), ScratchReg
)
1406 .addReg(FinalStackPtr
);
1408 BuildMI(&MBB
, DL
, CopyInst
, TempReg
).addReg(SPReg
).addReg(SPReg
);
1409 BuildMI(&MBB
, DL
, TII
.get(isPPC64
? PPC::CMPDI
: PPC::CMPWI
), CRReg
)
1411 .addImm(NegProbeSize
);
1412 BuildMI(&MBB
, DL
, TII
.get(PPC::BCC
))
1413 .addImm(PPC::PRED_GE
)
1415 .addMBB(ProbeExitMBB
);
1416 MBB
.addSuccessor(ProbeLoopBodyMBB
);
1417 MBB
.addSuccessor(ProbeExitMBB
);
1421 Register BackChainPointer
= HasRedZone
? BPReg
: TempReg
;
1422 allocateAndProbe(*ProbeLoopBodyMBB
, ProbeLoopBodyMBB
->end(), NegProbeSize
,
1423 0, true /*UseDForm*/, BackChainPointer
);
1424 BuildMI(ProbeLoopBodyMBB
, DL
, TII
.get(isPPC64
? PPC::ADDI8
: PPC::ADDI
),
1427 .addImm(-NegProbeSize
);
1428 BuildMI(ProbeLoopBodyMBB
, DL
, TII
.get(isPPC64
? PPC::CMPDI
: PPC::CMPWI
),
1431 .addImm(NegProbeSize
);
1432 BuildMI(ProbeLoopBodyMBB
, DL
, TII
.get(PPC::BCC
))
1433 .addImm(PPC::PRED_LT
)
1435 .addMBB(ProbeLoopBodyMBB
);
1436 ProbeLoopBodyMBB
->addSuccessor(ProbeExitMBB
);
1437 ProbeLoopBodyMBB
->addSuccessor(ProbeLoopBodyMBB
);
1440 fullyRecomputeLiveIns({ProbeExitMBB
, ProbeLoopBodyMBB
});
1441 return ProbeExitMBB
;
1443 // For case HasBP && MaxAlign > 1, we have to realign the SP by performing
1444 // SP = SP - SP % MaxAlign, thus make the probe more like dynamic probe since
1445 // the offset subtracted from SP is determined by SP's runtime value.
1446 if (HasBP
&& MaxAlign
> 1) {
1447 // Calculate final stack pointer.
1449 BuildMI(*CurrentMBB
, {MI
}, DL
, TII
.get(PPC::RLDICL
), ScratchReg
)
1452 .addImm(64 - Log2(MaxAlign
));
1454 BuildMI(*CurrentMBB
, {MI
}, DL
, TII
.get(PPC::RLWINM
), ScratchReg
)
1457 .addImm(32 - Log2(MaxAlign
))
1459 BuildMI(*CurrentMBB
, {MI
}, DL
, TII
.get(isPPC64
? PPC::SUBF8
: PPC::SUBF
),
1463 MaterializeImm(*CurrentMBB
, {MI
}, NegFrameSize
, ScratchReg
);
1464 BuildMI(*CurrentMBB
, {MI
}, DL
, TII
.get(isPPC64
? PPC::ADD8
: PPC::ADD4
),
1468 CurrentMBB
= probeRealignedStack(*CurrentMBB
, {MI
}, ScratchReg
, FPReg
);
1470 buildDefCFAReg(*CurrentMBB
, {MI
}, FPReg
);
1472 // Initialize current frame pointer.
1473 BuildMI(*CurrentMBB
, {MI
}, DL
, CopyInst
, FPReg
).addReg(SPReg
).addReg(SPReg
);
1474 // Use FPReg to calculate CFA.
1476 buildDefCFA(*CurrentMBB
, {MI
}, FPReg
, 0);
1477 // Probe residual part.
1478 if (NegResidualSize
) {
1479 bool ResidualUseDForm
= CanUseDForm(NegResidualSize
);
1480 if (!ResidualUseDForm
)
1481 MaterializeImm(*CurrentMBB
, {MI
}, NegResidualSize
, ScratchReg
);
1482 allocateAndProbe(*CurrentMBB
, {MI
}, NegResidualSize
, ScratchReg
,
1483 ResidualUseDForm
, FPReg
);
1485 bool UseDForm
= CanUseDForm(NegProbeSize
);
1486 // If number of blocks is small, just probe them directly.
1487 if (NumBlocks
< 3) {
1489 MaterializeImm(*CurrentMBB
, {MI
}, NegProbeSize
, ScratchReg
);
1490 for (int i
= 0; i
< NumBlocks
; ++i
)
1491 allocateAndProbe(*CurrentMBB
, {MI
}, NegProbeSize
, ScratchReg
, UseDForm
,
1494 // Restore using SPReg to calculate CFA.
1495 buildDefCFAReg(*CurrentMBB
, {MI
}, SPReg
);
1498 // Since CTR is a volatile register and current shrinkwrap implementation
1499 // won't choose an MBB in a loop as the PrologMBB, it's safe to synthesize a
1500 // CTR loop to probe.
1501 // Calculate trip count and stores it in CTRReg.
1502 MaterializeImm(*CurrentMBB
, {MI
}, NumBlocks
, ScratchReg
);
1503 BuildMI(*CurrentMBB
, {MI
}, DL
, TII
.get(isPPC64
? PPC::MTCTR8
: PPC::MTCTR
))
1504 .addReg(ScratchReg
, RegState::Kill
);
1506 MaterializeImm(*CurrentMBB
, {MI
}, NegProbeSize
, ScratchReg
);
1507 // Create MBBs of the loop.
1508 MachineFunction::iterator MBBInsertPoint
=
1509 std::next(CurrentMBB
->getIterator());
1510 MachineBasicBlock
*LoopMBB
= MF
.CreateMachineBasicBlock(ProbedBB
);
1511 MF
.insert(MBBInsertPoint
, LoopMBB
);
1512 MachineBasicBlock
*ExitMBB
= MF
.CreateMachineBasicBlock(ProbedBB
);
1513 MF
.insert(MBBInsertPoint
, ExitMBB
);
1514 // Synthesize the loop body.
1515 allocateAndProbe(*LoopMBB
, LoopMBB
->end(), NegProbeSize
, ScratchReg
,
1517 BuildMI(LoopMBB
, DL
, TII
.get(isPPC64
? PPC::BDNZ8
: PPC::BDNZ
))
1519 LoopMBB
->addSuccessor(ExitMBB
);
1520 LoopMBB
->addSuccessor(LoopMBB
);
1521 // Synthesize the exit MBB.
1522 ExitMBB
->splice(ExitMBB
->end(), CurrentMBB
,
1523 std::next(MachineBasicBlock::iterator(MI
)),
1525 ExitMBB
->transferSuccessorsAndUpdatePHIs(CurrentMBB
);
1526 CurrentMBB
->addSuccessor(LoopMBB
);
1528 // Restore using SPReg to calculate CFA.
1529 buildDefCFAReg(*ExitMBB
, ExitMBB
->begin(), SPReg
);
1532 fullyRecomputeLiveIns({ExitMBB
, LoopMBB
});
1536 MI
.eraseFromParent();
1539 void PPCFrameLowering::emitEpilogue(MachineFunction
&MF
,
1540 MachineBasicBlock
&MBB
) const {
1541 MachineBasicBlock::iterator MBBI
= MBB
.getFirstTerminator();
1544 if (MBBI
!= MBB
.end())
1545 dl
= MBBI
->getDebugLoc();
1547 const PPCInstrInfo
&TII
= *Subtarget
.getInstrInfo();
1548 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1550 // Get alignment info so we know how to restore the SP.
1551 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1553 // Get the number of bytes allocated from the FrameInfo.
1554 int64_t FrameSize
= MFI
.getStackSize();
1556 // Get processor type.
1557 bool isPPC64
= Subtarget
.isPPC64();
1559 // Check if the link register (LR) has been saved.
1560 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
1561 bool MustSaveLR
= FI
->mustSaveLR();
1562 const SmallVectorImpl
<Register
> &MustSaveCRs
= FI
->getMustSaveCRs();
1563 bool MustSaveCR
= !MustSaveCRs
.empty();
1564 // Do we have a frame pointer and/or base pointer for this function?
1565 bool HasFP
= hasFP(MF
);
1566 bool HasBP
= RegInfo
->hasBasePointer(MF
);
1567 bool HasRedZone
= Subtarget
.isPPC64() || !Subtarget
.isSVR4ABI();
1568 bool HasROPProtect
= Subtarget
.hasROPProtect();
1569 bool HasPrivileged
= Subtarget
.hasPrivileged();
1571 Register SPReg
= isPPC64
? PPC::X1
: PPC::R1
;
1572 Register BPReg
= RegInfo
->getBaseRegister(MF
);
1573 Register FPReg
= isPPC64
? PPC::X31
: PPC::R31
;
1574 Register ScratchReg
;
1575 Register TempReg
= isPPC64
? PPC::X12
: PPC::R12
; // another scratch reg
1576 const MCInstrDesc
& MTLRInst
= TII
.get( isPPC64
? PPC::MTLR8
1578 const MCInstrDesc
& LoadInst
= TII
.get( isPPC64
? PPC::LD
1580 const MCInstrDesc
& LoadImmShiftedInst
= TII
.get( isPPC64
? PPC::LIS8
1582 const MCInstrDesc
& OrInst
= TII
.get(isPPC64
? PPC::OR8
1584 const MCInstrDesc
& OrImmInst
= TII
.get( isPPC64
? PPC::ORI8
1586 const MCInstrDesc
& AddImmInst
= TII
.get( isPPC64
? PPC::ADDI8
1588 const MCInstrDesc
& AddInst
= TII
.get( isPPC64
? PPC::ADD8
1590 const MCInstrDesc
& LoadWordInst
= TII
.get( isPPC64
? PPC::LWZ8
1592 const MCInstrDesc
& MoveToCRInst
= TII
.get( isPPC64
? PPC::MTOCRF8
1594 const MCInstrDesc
&HashChk
=
1595 TII
.get(isPPC64
? (HasPrivileged
? PPC::HASHCHKP8
: PPC::HASHCHK8
)
1596 : (HasPrivileged
? PPC::HASHCHKP
: PPC::HASHCHK
));
1597 int64_t LROffset
= getReturnSaveOffset();
1599 int64_t FPOffset
= 0;
1601 // Using the same bool variable as below to suppress compiler warnings.
1602 bool SingleScratchReg
= findScratchRegister(&MBB
, true, false, &ScratchReg
,
1604 assert(SingleScratchReg
&&
1605 "Could not find an available scratch register");
1607 SingleScratchReg
= ScratchReg
== TempReg
;
1610 int FPIndex
= FI
->getFramePointerSaveIndex();
1611 assert(FPIndex
&& "No Frame Pointer Save Slot!");
1612 FPOffset
= MFI
.getObjectOffset(FPIndex
);
1615 int64_t BPOffset
= 0;
1617 int BPIndex
= FI
->getBasePointerSaveIndex();
1618 assert(BPIndex
&& "No Base Pointer Save Slot!");
1619 BPOffset
= MFI
.getObjectOffset(BPIndex
);
1622 int64_t PBPOffset
= 0;
1623 if (FI
->usesPICBase()) {
1624 int PBPIndex
= FI
->getPICBasePointerSaveIndex();
1625 assert(PBPIndex
&& "No PIC Base Pointer Save Slot!");
1626 PBPOffset
= MFI
.getObjectOffset(PBPIndex
);
1629 bool IsReturnBlock
= (MBBI
!= MBB
.end() && MBBI
->isReturn());
1631 if (IsReturnBlock
) {
1632 unsigned RetOpcode
= MBBI
->getOpcode();
1633 bool UsesTCRet
= RetOpcode
== PPC::TCRETURNri
||
1634 RetOpcode
== PPC::TCRETURNdi
||
1635 RetOpcode
== PPC::TCRETURNai
||
1636 RetOpcode
== PPC::TCRETURNri8
||
1637 RetOpcode
== PPC::TCRETURNdi8
||
1638 RetOpcode
== PPC::TCRETURNai8
;
1641 int MaxTCRetDelta
= FI
->getTailCallSPDelta();
1642 MachineOperand
&StackAdjust
= MBBI
->getOperand(1);
1643 assert(StackAdjust
.isImm() && "Expecting immediate value.");
1644 // Adjust stack pointer.
1645 int StackAdj
= StackAdjust
.getImm();
1646 int Delta
= StackAdj
- MaxTCRetDelta
;
1647 assert((Delta
>= 0) && "Delta must be positive");
1648 if (MaxTCRetDelta
>0)
1649 FrameSize
+= (StackAdj
+Delta
);
1651 FrameSize
+= StackAdj
;
1655 // Frames of 32KB & larger require special handling because they cannot be
1656 // indexed into with a simple LD/LWZ immediate offset operand.
1657 bool isLargeFrame
= !isInt
<16>(FrameSize
);
1659 // On targets without red zone, the SP needs to be restored last, so that
1660 // all live contents of the stack frame are upwards of the SP. This means
1661 // that we cannot restore SP just now, since there may be more registers
1662 // to restore from the stack frame (e.g. R31). If the frame size is not
1663 // a simple immediate value, we will need a spare register to hold the
1664 // restored SP. If the frame size is known and small, we can simply adjust
1665 // the offsets of the registers to be restored, and still use SP to restore
1666 // them. In such case, the final update of SP will be to add the frame
1668 // To simplify the code, set RBReg to the base register used to restore
1669 // values from the stack, and set SPAdd to the value that needs to be added
1670 // to the SP at the end. The default values are as if red zone was present.
1671 unsigned RBReg
= SPReg
;
1674 // Check if we can move the stack update instruction up the epilogue
1675 // past the callee saves. This will allow the move to LR instruction
1676 // to be executed before the restores of the callee saves which means
1677 // that the callee saves can hide the latency from the MTLR instrcution.
1678 MachineBasicBlock::iterator StackUpdateLoc
= MBBI
;
1679 if (stackUpdateCanBeMoved(MF
)) {
1680 const std::vector
<CalleeSavedInfo
> & Info
= MFI
.getCalleeSavedInfo();
1681 for (CalleeSavedInfo CSI
: Info
) {
1682 // If the callee saved register is spilled to another register abort the
1683 // stack update movement.
1684 if (CSI
.isSpilledToReg()) {
1685 StackUpdateLoc
= MBBI
;
1688 int FrIdx
= CSI
.getFrameIdx();
1689 // If the frame index is not negative the callee saved info belongs to a
1690 // stack object that is not a fixed stack object. We ignore non-fixed
1691 // stack objects because we won't move the update of the stack pointer
1696 if (MFI
.isFixedObjectIndex(FrIdx
) && MFI
.getObjectOffset(FrIdx
) < 0)
1699 // Abort the operation as we can't update all CSR restores.
1700 StackUpdateLoc
= MBBI
;
1707 // In the prologue, the loaded (or persistent) stack pointer value is
1708 // offset by the STDU/STDUX/STWU/STWUX instruction. For targets with red
1709 // zone add this offset back now.
1711 // If the function has a base pointer, the stack pointer has been copied
1712 // to it so we can restore it by copying in the other direction.
1713 if (HasRedZone
&& HasBP
) {
1714 BuildMI(MBB
, MBBI
, dl
, OrInst
, RBReg
).
1718 // If this function contained a fastcc call and GuaranteedTailCallOpt is
1719 // enabled (=> hasFastCall()==true) the fastcc call might contain a tail
1720 // call which invalidates the stack pointer value in SP(0). So we use the
1721 // value of R31 in this case. Similar situation exists with setjmp.
1722 else if (FI
->hasFastCall() || MF
.exposesReturnsTwice()) {
1723 assert(HasFP
&& "Expecting a valid frame pointer.");
1726 if (!isLargeFrame
) {
1727 BuildMI(MBB
, MBBI
, dl
, AddImmInst
, RBReg
)
1728 .addReg(FPReg
).addImm(FrameSize
);
1730 TII
.materializeImmPostRA(MBB
, MBBI
, dl
, ScratchReg
, FrameSize
);
1731 BuildMI(MBB
, MBBI
, dl
, AddInst
)
1734 .addReg(ScratchReg
);
1736 } else if (!isLargeFrame
&& !HasBP
&& !MFI
.hasVarSizedObjects()) {
1738 BuildMI(MBB
, StackUpdateLoc
, dl
, AddImmInst
, SPReg
)
1742 // Make sure that adding FrameSize will not overflow the max offset
1744 assert(FPOffset
<= 0 && BPOffset
<= 0 && PBPOffset
<= 0 &&
1745 "Local offsets should be negative");
1747 FPOffset
+= FrameSize
;
1748 BPOffset
+= FrameSize
;
1749 PBPOffset
+= FrameSize
;
1752 // We don't want to use ScratchReg as a base register, because it
1753 // could happen to be R0. Use FP instead, but make sure to preserve it.
1755 // If FP is not saved, copy it to ScratchReg.
1757 BuildMI(MBB
, MBBI
, dl
, OrInst
, ScratchReg
)
1762 BuildMI(MBB
, StackUpdateLoc
, dl
, LoadInst
, RBReg
)
1767 assert(RBReg
!= ScratchReg
&& "Should have avoided ScratchReg");
1768 // If there is no red zone, ScratchReg may be needed for holding a useful
1769 // value (although not the base register). Make sure it is not overwritten
1772 // If we need to restore both the LR and the CR and we only have one
1773 // available scratch register, we must do them one at a time.
1774 if (MustSaveCR
&& SingleScratchReg
&& MustSaveLR
) {
1775 // Here TempReg == ScratchReg, and in the absence of red zone ScratchReg
1777 assert(HasRedZone
&& "Expecting red zone");
1778 BuildMI(MBB
, MBBI
, dl
, LoadWordInst
, TempReg
)
1779 .addImm(CRSaveOffset
)
1781 for (unsigned i
= 0, e
= MustSaveCRs
.size(); i
!= e
; ++i
)
1782 BuildMI(MBB
, MBBI
, dl
, MoveToCRInst
, MustSaveCRs
[i
])
1783 .addReg(TempReg
, getKillRegState(i
== e
-1));
1786 // Delay restoring of the LR if ScratchReg is needed. This is ok, since
1787 // LR is stored in the caller's stack frame. ScratchReg will be needed
1788 // if RBReg is anything other than SP. We shouldn't use ScratchReg as
1789 // a base register anyway, because it may happen to be R0.
1790 bool LoadedLR
= false;
1791 if (MustSaveLR
&& RBReg
== SPReg
&& isInt
<16>(LROffset
+SPAdd
)) {
1792 BuildMI(MBB
, StackUpdateLoc
, dl
, LoadInst
, ScratchReg
)
1793 .addImm(LROffset
+SPAdd
)
1798 if (MustSaveCR
&& !(SingleScratchReg
&& MustSaveLR
)) {
1799 assert(RBReg
== SPReg
&& "Should be using SP as a base register");
1800 BuildMI(MBB
, MBBI
, dl
, LoadWordInst
, TempReg
)
1801 .addImm(CRSaveOffset
)
1806 // If there is red zone, restore FP directly, since SP has already been
1807 // restored. Otherwise, restore the value of FP into ScratchReg.
1808 if (HasRedZone
|| RBReg
== SPReg
)
1809 BuildMI(MBB
, MBBI
, dl
, LoadInst
, FPReg
)
1813 BuildMI(MBB
, MBBI
, dl
, LoadInst
, ScratchReg
)
1818 if (FI
->usesPICBase())
1819 BuildMI(MBB
, MBBI
, dl
, LoadInst
, PPC::R30
)
1824 BuildMI(MBB
, MBBI
, dl
, LoadInst
, BPReg
)
1828 // There is nothing more to be loaded from the stack, so now we can
1829 // restore SP: SP = RBReg + SPAdd.
1830 if (RBReg
!= SPReg
|| SPAdd
!= 0) {
1831 assert(!HasRedZone
&& "This should not happen with red zone");
1832 // If SPAdd is 0, generate a copy.
1834 BuildMI(MBB
, MBBI
, dl
, OrInst
, SPReg
)
1838 BuildMI(MBB
, MBBI
, dl
, AddImmInst
, SPReg
)
1842 assert(RBReg
!= ScratchReg
&& "Should be using FP or SP as base register");
1844 BuildMI(MBB
, MBBI
, dl
, OrInst
, FPReg
)
1846 .addReg(ScratchReg
);
1848 // Now load the LR from the caller's stack frame.
1849 if (MustSaveLR
&& !LoadedLR
)
1850 BuildMI(MBB
, MBBI
, dl
, LoadInst
, ScratchReg
)
1856 !(SingleScratchReg
&& MustSaveLR
))
1857 for (unsigned i
= 0, e
= MustSaveCRs
.size(); i
!= e
; ++i
)
1858 BuildMI(MBB
, MBBI
, dl
, MoveToCRInst
, MustSaveCRs
[i
])
1859 .addReg(TempReg
, getKillRegState(i
== e
-1));
1862 // If ROP protection is required, an extra instruction is added to compute a
1863 // hash and then compare it to the hash stored in the prologue.
1864 if (HasROPProtect
) {
1865 const int SaveIndex
= FI
->getROPProtectionHashSaveIndex();
1866 const int64_t ImmOffset
= MFI
.getObjectOffset(SaveIndex
);
1867 assert((ImmOffset
<= -8 && ImmOffset
>= -512) &&
1868 "ROP hash check location offset out of range.");
1869 assert(((ImmOffset
& 0x7) == 0) &&
1870 "ROP hash check location offset must be 8 byte aligned.");
1871 BuildMI(MBB
, StackUpdateLoc
, dl
, HashChk
)
1876 BuildMI(MBB
, StackUpdateLoc
, dl
, MTLRInst
).addReg(ScratchReg
);
1879 // Callee pop calling convention. Pop parameter/linkage area. Used for tail
1880 // call optimization
1881 if (IsReturnBlock
) {
1882 unsigned RetOpcode
= MBBI
->getOpcode();
1883 if (MF
.getTarget().Options
.GuaranteedTailCallOpt
&&
1884 (RetOpcode
== PPC::BLR
|| RetOpcode
== PPC::BLR8
) &&
1885 MF
.getFunction().getCallingConv() == CallingConv::Fast
) {
1886 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
1887 unsigned CallerAllocatedAmt
= FI
->getMinReservedArea();
1889 if (CallerAllocatedAmt
&& isInt
<16>(CallerAllocatedAmt
)) {
1890 BuildMI(MBB
, MBBI
, dl
, AddImmInst
, SPReg
)
1891 .addReg(SPReg
).addImm(CallerAllocatedAmt
);
1893 BuildMI(MBB
, MBBI
, dl
, LoadImmShiftedInst
, ScratchReg
)
1894 .addImm(CallerAllocatedAmt
>> 16);
1895 BuildMI(MBB
, MBBI
, dl
, OrImmInst
, ScratchReg
)
1896 .addReg(ScratchReg
, RegState::Kill
)
1897 .addImm(CallerAllocatedAmt
& 0xFFFF);
1898 BuildMI(MBB
, MBBI
, dl
, AddInst
)
1901 .addReg(ScratchReg
);
1904 createTailCallBranchInstr(MBB
);
1909 void PPCFrameLowering::createTailCallBranchInstr(MachineBasicBlock
&MBB
) const {
1910 MachineBasicBlock::iterator MBBI
= MBB
.getFirstTerminator();
1912 // If we got this far a first terminator should exist.
1913 assert(MBBI
!= MBB
.end() && "Failed to find the first terminator.");
1915 DebugLoc dl
= MBBI
->getDebugLoc();
1916 const PPCInstrInfo
&TII
= *Subtarget
.getInstrInfo();
1918 // Create branch instruction for pseudo tail call return instruction.
1919 // The TCRETURNdi variants are direct calls. Valid targets for those are
1920 // MO_GlobalAddress operands as well as MO_ExternalSymbol with PC-Rel
1921 // since we can tail call external functions with PC-Rel (i.e. we don't need
1922 // to worry about different TOC pointers). Some of the external functions will
1923 // be MO_GlobalAddress while others like memcpy for example, are going to
1924 // be MO_ExternalSymbol.
1925 unsigned RetOpcode
= MBBI
->getOpcode();
1926 if (RetOpcode
== PPC::TCRETURNdi
) {
1927 MBBI
= MBB
.getLastNonDebugInstr();
1928 MachineOperand
&JumpTarget
= MBBI
->getOperand(0);
1929 if (JumpTarget
.isGlobal())
1930 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILB
)).
1931 addGlobalAddress(JumpTarget
.getGlobal(), JumpTarget
.getOffset());
1932 else if (JumpTarget
.isSymbol())
1933 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILB
)).
1934 addExternalSymbol(JumpTarget
.getSymbolName());
1936 llvm_unreachable("Expecting Global or External Symbol");
1937 } else if (RetOpcode
== PPC::TCRETURNri
) {
1938 MBBI
= MBB
.getLastNonDebugInstr();
1939 assert(MBBI
->getOperand(0).isReg() && "Expecting register operand.");
1940 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILBCTR
));
1941 } else if (RetOpcode
== PPC::TCRETURNai
) {
1942 MBBI
= MBB
.getLastNonDebugInstr();
1943 MachineOperand
&JumpTarget
= MBBI
->getOperand(0);
1944 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILBA
)).addImm(JumpTarget
.getImm());
1945 } else if (RetOpcode
== PPC::TCRETURNdi8
) {
1946 MBBI
= MBB
.getLastNonDebugInstr();
1947 MachineOperand
&JumpTarget
= MBBI
->getOperand(0);
1948 if (JumpTarget
.isGlobal())
1949 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILB8
)).
1950 addGlobalAddress(JumpTarget
.getGlobal(), JumpTarget
.getOffset());
1951 else if (JumpTarget
.isSymbol())
1952 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILB8
)).
1953 addExternalSymbol(JumpTarget
.getSymbolName());
1955 llvm_unreachable("Expecting Global or External Symbol");
1956 } else if (RetOpcode
== PPC::TCRETURNri8
) {
1957 MBBI
= MBB
.getLastNonDebugInstr();
1958 assert(MBBI
->getOperand(0).isReg() && "Expecting register operand.");
1959 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILBCTR8
));
1960 } else if (RetOpcode
== PPC::TCRETURNai8
) {
1961 MBBI
= MBB
.getLastNonDebugInstr();
1962 MachineOperand
&JumpTarget
= MBBI
->getOperand(0);
1963 BuildMI(MBB
, MBBI
, dl
, TII
.get(PPC::TAILBA8
)).addImm(JumpTarget
.getImm());
1967 void PPCFrameLowering::determineCalleeSaves(MachineFunction
&MF
,
1968 BitVector
&SavedRegs
,
1969 RegScavenger
*RS
) const {
1970 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
1971 if (Subtarget
.isAIXABI())
1972 updateCalleeSaves(MF
, SavedRegs
);
1974 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1976 // Do not explicitly save the callee saved VSRp registers.
1977 // The individual VSR subregisters will be saved instead.
1978 SavedRegs
.reset(PPC::VSRp26
);
1979 SavedRegs
.reset(PPC::VSRp27
);
1980 SavedRegs
.reset(PPC::VSRp28
);
1981 SavedRegs
.reset(PPC::VSRp29
);
1982 SavedRegs
.reset(PPC::VSRp30
);
1983 SavedRegs
.reset(PPC::VSRp31
);
1985 // Save and clear the LR state.
1986 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
1987 unsigned LR
= RegInfo
->getRARegister();
1988 FI
->setMustSaveLR(MustSaveLR(MF
, LR
));
1989 SavedRegs
.reset(LR
);
1991 // Save R31 if necessary
1992 int FPSI
= FI
->getFramePointerSaveIndex();
1993 const bool isPPC64
= Subtarget
.isPPC64();
1994 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1996 // If the frame pointer save index hasn't been defined yet.
1997 if (!FPSI
&& needsFP(MF
)) {
1998 // Find out what the fix offset of the frame pointer save area.
1999 int FPOffset
= getFramePointerSaveOffset();
2000 // Allocate the frame index for frame pointer save area.
2001 FPSI
= MFI
.CreateFixedObject(isPPC64
? 8 : 4, FPOffset
, true);
2003 FI
->setFramePointerSaveIndex(FPSI
);
2006 int BPSI
= FI
->getBasePointerSaveIndex();
2007 if (!BPSI
&& RegInfo
->hasBasePointer(MF
)) {
2008 int BPOffset
= getBasePointerSaveOffset();
2009 // Allocate the frame index for the base pointer save area.
2010 BPSI
= MFI
.CreateFixedObject(isPPC64
? 8 : 4, BPOffset
, true);
2012 FI
->setBasePointerSaveIndex(BPSI
);
2015 // Reserve stack space for the PIC Base register (R30).
2016 // Only used in SVR4 32-bit.
2017 if (FI
->usesPICBase()) {
2018 int PBPSI
= MFI
.CreateFixedObject(4, -8, true);
2019 FI
->setPICBasePointerSaveIndex(PBPSI
);
2022 // Make sure we don't explicitly spill r31, because, for example, we have
2023 // some inline asm which explicitly clobbers it, when we otherwise have a
2024 // frame pointer and are using r31's spill slot for the prologue/epilogue
2025 // code. Same goes for the base pointer and the PIC base register.
2027 SavedRegs
.reset(isPPC64
? PPC::X31
: PPC::R31
);
2028 if (RegInfo
->hasBasePointer(MF
)) {
2029 SavedRegs
.reset(RegInfo
->getBaseRegister(MF
));
2030 // On AIX, when BaseRegister(R30) is used, need to spill r31 too to match
2031 // AIX trackback table requirement.
2032 if (!needsFP(MF
) && !SavedRegs
.test(isPPC64
? PPC::X31
: PPC::R31
) &&
2033 Subtarget
.isAIXABI()) {
2035 (RegInfo
->getBaseRegister(MF
) == (isPPC64
? PPC::X30
: PPC::R30
)) &&
2036 "Invalid base register on AIX!");
2037 SavedRegs
.set(isPPC64
? PPC::X31
: PPC::R31
);
2040 if (FI
->usesPICBase())
2041 SavedRegs
.reset(PPC::R30
);
2043 // Reserve stack space to move the linkage area to in case of a tail call.
2045 if (MF
.getTarget().Options
.GuaranteedTailCallOpt
&&
2046 (TCSPDelta
= FI
->getTailCallSPDelta()) < 0) {
2047 MFI
.CreateFixedObject(-1 * TCSPDelta
, TCSPDelta
, true);
2050 // Allocate the nonvolatile CR spill slot iff the function uses CR 2, 3, or 4.
2051 // For 64-bit SVR4, and all flavors of AIX we create a FixedStack
2052 // object at the offset of the CR-save slot in the linkage area. The actual
2053 // save and restore of the condition register will be created as part of the
2054 // prologue and epilogue insertion, but the FixedStack object is needed to
2055 // keep the CalleSavedInfo valid.
2056 if ((SavedRegs
.test(PPC::CR2
) || SavedRegs
.test(PPC::CR3
) ||
2057 SavedRegs
.test(PPC::CR4
))) {
2058 const uint64_t SpillSize
= 4; // Condition register is always 4 bytes.
2059 const int64_t SpillOffset
=
2060 Subtarget
.isPPC64() ? 8 : Subtarget
.isAIXABI() ? 4 : -4;
2062 MFI
.CreateFixedObject(SpillSize
, SpillOffset
,
2063 /* IsImmutable */ true, /* IsAliased */ false);
2064 FI
->setCRSpillFrameIndex(FrameIdx
);
2068 void PPCFrameLowering::processFunctionBeforeFrameFinalized(MachineFunction
&MF
,
2069 RegScavenger
*RS
) const {
2070 // Get callee saved register information.
2071 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2072 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
2074 // If the function is shrink-wrapped, and if the function has a tail call, the
2075 // tail call might not be in the new RestoreBlock, so real branch instruction
2076 // won't be generated by emitEpilogue(), because shrink-wrap has chosen new
2077 // RestoreBlock. So we handle this case here.
2078 if (MFI
.getSavePoint() && MFI
.hasTailCall()) {
2079 MachineBasicBlock
*RestoreBlock
= MFI
.getRestorePoint();
2080 for (MachineBasicBlock
&MBB
: MF
) {
2081 if (MBB
.isReturnBlock() && (&MBB
) != RestoreBlock
)
2082 createTailCallBranchInstr(MBB
);
2086 // Early exit if no callee saved registers are modified!
2087 if (CSI
.empty() && !needsFP(MF
)) {
2088 addScavengingSpillSlot(MF
, RS
);
2092 unsigned MinGPR
= PPC::R31
;
2093 unsigned MinG8R
= PPC::X31
;
2094 unsigned MinFPR
= PPC::F31
;
2095 unsigned MinVR
= Subtarget
.hasSPE() ? PPC::S31
: PPC::V31
;
2097 bool HasGPSaveArea
= false;
2098 bool HasG8SaveArea
= false;
2099 bool HasFPSaveArea
= false;
2100 bool HasVRSaveArea
= false;
2102 SmallVector
<CalleeSavedInfo
, 18> GPRegs
;
2103 SmallVector
<CalleeSavedInfo
, 18> G8Regs
;
2104 SmallVector
<CalleeSavedInfo
, 18> FPRegs
;
2105 SmallVector
<CalleeSavedInfo
, 18> VRegs
;
2107 for (const CalleeSavedInfo
&I
: CSI
) {
2108 Register Reg
= I
.getReg();
2109 assert((!MF
.getInfo
<PPCFunctionInfo
>()->mustSaveTOC() ||
2110 (Reg
!= PPC::X2
&& Reg
!= PPC::R2
)) &&
2111 "Not expecting to try to spill R2 in a function that must save TOC");
2112 if (PPC::GPRCRegClass
.contains(Reg
)) {
2113 HasGPSaveArea
= true;
2115 GPRegs
.push_back(I
);
2120 } else if (PPC::G8RCRegClass
.contains(Reg
)) {
2121 HasG8SaveArea
= true;
2123 G8Regs
.push_back(I
);
2128 } else if (PPC::F8RCRegClass
.contains(Reg
)) {
2129 HasFPSaveArea
= true;
2131 FPRegs
.push_back(I
);
2136 } else if (PPC::CRBITRCRegClass
.contains(Reg
) ||
2137 PPC::CRRCRegClass
.contains(Reg
)) {
2138 ; // do nothing, as we already know whether CRs are spilled
2139 } else if (PPC::VRRCRegClass
.contains(Reg
) ||
2140 PPC::SPERCRegClass
.contains(Reg
)) {
2141 // Altivec and SPE are mutually exclusive, but have the same stack
2142 // alignment requirements, so overload the save area for both cases.
2143 HasVRSaveArea
= true;
2151 llvm_unreachable("Unknown RegisterClass!");
2155 PPCFunctionInfo
*PFI
= MF
.getInfo
<PPCFunctionInfo
>();
2156 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
2158 int64_t LowerBound
= 0;
2160 // Take into account stack space reserved for tail calls.
2162 if (MF
.getTarget().Options
.GuaranteedTailCallOpt
&&
2163 (TCSPDelta
= PFI
->getTailCallSPDelta()) < 0) {
2164 LowerBound
= TCSPDelta
;
2167 // The Floating-point register save area is right below the back chain word
2168 // of the previous stack frame.
2169 if (HasFPSaveArea
) {
2170 for (unsigned i
= 0, e
= FPRegs
.size(); i
!= e
; ++i
) {
2171 int FI
= FPRegs
[i
].getFrameIdx();
2173 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2176 LowerBound
-= (31 - TRI
->getEncodingValue(MinFPR
) + 1) * 8;
2179 // Check whether the frame pointer register is allocated. If so, make sure it
2180 // is spilled to the correct offset.
2182 int FI
= PFI
->getFramePointerSaveIndex();
2183 assert(FI
&& "No Frame Pointer Save Slot!");
2184 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2185 // FP is R31/X31, so no need to update MinGPR/MinG8R.
2186 HasGPSaveArea
= true;
2189 if (PFI
->usesPICBase()) {
2190 int FI
= PFI
->getPICBasePointerSaveIndex();
2191 assert(FI
&& "No PIC Base Pointer Save Slot!");
2192 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2194 MinGPR
= std::min
<unsigned>(MinGPR
, PPC::R30
);
2195 HasGPSaveArea
= true;
2198 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
2199 if (RegInfo
->hasBasePointer(MF
)) {
2200 int FI
= PFI
->getBasePointerSaveIndex();
2201 assert(FI
&& "No Base Pointer Save Slot!");
2202 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2204 Register BP
= RegInfo
->getBaseRegister(MF
);
2205 if (PPC::G8RCRegClass
.contains(BP
)) {
2206 MinG8R
= std::min
<unsigned>(MinG8R
, BP
);
2207 HasG8SaveArea
= true;
2208 } else if (PPC::GPRCRegClass
.contains(BP
)) {
2209 MinGPR
= std::min
<unsigned>(MinGPR
, BP
);
2210 HasGPSaveArea
= true;
2214 // General register save area starts right below the Floating-point
2215 // register save area.
2216 if (HasGPSaveArea
|| HasG8SaveArea
) {
2217 // Move general register save area spill slots down, taking into account
2218 // the size of the Floating-point register save area.
2219 for (unsigned i
= 0, e
= GPRegs
.size(); i
!= e
; ++i
) {
2220 if (!GPRegs
[i
].isSpilledToReg()) {
2221 int FI
= GPRegs
[i
].getFrameIdx();
2222 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2226 // Move general register save area spill slots down, taking into account
2227 // the size of the Floating-point register save area.
2228 for (unsigned i
= 0, e
= G8Regs
.size(); i
!= e
; ++i
) {
2229 if (!G8Regs
[i
].isSpilledToReg()) {
2230 int FI
= G8Regs
[i
].getFrameIdx();
2231 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2236 std::min
<unsigned>(TRI
->getEncodingValue(MinGPR
),
2237 TRI
->getEncodingValue(MinG8R
));
2239 const unsigned GPRegSize
= Subtarget
.isPPC64() ? 8 : 4;
2240 LowerBound
-= (31 - MinReg
+ 1) * GPRegSize
;
2243 // For 32-bit only, the CR save area is below the general register
2244 // save area. For 64-bit SVR4, the CR save area is addressed relative
2245 // to the stack pointer and hence does not need an adjustment here.
2246 // Only CR2 (the first nonvolatile spilled) has an associated frame
2247 // index so that we have a single uniform save area.
2248 if (spillsCR(MF
) && Subtarget
.is32BitELFABI()) {
2249 // Adjust the frame index of the CR spill slot.
2250 for (const auto &CSInfo
: CSI
) {
2251 if (CSInfo
.getReg() == PPC::CR2
) {
2252 int FI
= CSInfo
.getFrameIdx();
2253 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2258 LowerBound
-= 4; // The CR save area is always 4 bytes long.
2261 // Both Altivec and SPE have the same alignment and padding requirements
2262 // within the stack frame.
2263 if (HasVRSaveArea
) {
2264 // Insert alignment padding, we need 16-byte alignment. Note: for positive
2265 // number the alignment formula is : y = (x + (n-1)) & (~(n-1)). But since
2266 // we are using negative number here (the stack grows downward). We should
2267 // use formula : y = x & (~(n-1)). Where x is the size before aligning, n
2268 // is the alignment size ( n = 16 here) and y is the size after aligning.
2269 assert(LowerBound
<= 0 && "Expect LowerBound have a non-positive value!");
2270 LowerBound
&= ~(15);
2272 for (unsigned i
= 0, e
= VRegs
.size(); i
!= e
; ++i
) {
2273 int FI
= VRegs
[i
].getFrameIdx();
2275 MFI
.setObjectOffset(FI
, LowerBound
+ MFI
.getObjectOffset(FI
));
2279 addScavengingSpillSlot(MF
, RS
);
2283 PPCFrameLowering::addScavengingSpillSlot(MachineFunction
&MF
,
2284 RegScavenger
*RS
) const {
2285 // Reserve a slot closest to SP or frame pointer if we have a dynalloc or
2286 // a large stack, which will require scavenging a register to materialize a
2289 // We need to have a scavenger spill slot for spills if the frame size is
2290 // large. In case there is no free register for large-offset addressing,
2291 // this slot is used for the necessary emergency spill. Also, we need the
2292 // slot for dynamic stack allocations.
2294 // The scavenger might be invoked if the frame offset does not fit into
2295 // the 16-bit immediate in case of not SPE and 8-bit in case of SPE.
2296 // We don't know the complete frame size here because we've not yet computed
2297 // callee-saved register spills or the needed alignment padding.
2298 unsigned StackSize
= determineFrameLayout(MF
, true);
2299 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2300 bool NeedSpills
= Subtarget
.hasSPE() ? !isInt
<8>(StackSize
) : !isInt
<16>(StackSize
);
2302 if (MFI
.hasVarSizedObjects() || spillsCR(MF
) || hasNonRISpills(MF
) ||
2303 (hasSpills(MF
) && NeedSpills
)) {
2304 const TargetRegisterClass
&GPRC
= PPC::GPRCRegClass
;
2305 const TargetRegisterClass
&G8RC
= PPC::G8RCRegClass
;
2306 const TargetRegisterClass
&RC
= Subtarget
.isPPC64() ? G8RC
: GPRC
;
2307 const TargetRegisterInfo
&TRI
= *Subtarget
.getRegisterInfo();
2308 unsigned Size
= TRI
.getSpillSize(RC
);
2309 Align Alignment
= TRI
.getSpillAlign(RC
);
2310 RS
->addScavengingFrameIndex(MFI
.CreateSpillStackObject(Size
, Alignment
));
2312 // Might we have over-aligned allocas?
2314 MFI
.hasVarSizedObjects() && MFI
.getMaxAlign() > getStackAlign();
2316 // These kinds of spills might need two registers.
2317 if (spillsCR(MF
) || HasAlVars
)
2318 RS
->addScavengingFrameIndex(MFI
.CreateSpillStackObject(Size
, Alignment
));
2322 // This function checks if a callee saved gpr can be spilled to a volatile
2323 // vector register. This occurs for leaf functions when the option
2324 // ppc-enable-pe-vector-spills is enabled. If there are any remaining registers
2325 // which were not spilled to vectors, return false so the target independent
2326 // code can handle them by assigning a FrameIdx to a stack slot.
2327 bool PPCFrameLowering::assignCalleeSavedSpillSlots(
2328 MachineFunction
&MF
, const TargetRegisterInfo
*TRI
,
2329 std::vector
<CalleeSavedInfo
> &CSI
) const {
2332 return true; // Early exit if no callee saved registers are modified!
2334 const PPCRegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
2335 const MCPhysReg
*CSRegs
= RegInfo
->getCalleeSavedRegs(&MF
);
2336 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2338 if (Subtarget
.hasSPE()) {
2339 // In case of SPE we only have SuperRegs and CRs
2340 // in our CalleSaveInfo vector.
2342 for (auto &CalleeSaveReg
: CSI
) {
2343 MCPhysReg Reg
= CalleeSaveReg
.getReg();
2344 MCPhysReg Lower
= RegInfo
->getSubReg(Reg
, 1);
2345 MCPhysReg Higher
= RegInfo
->getSubReg(Reg
, 2);
2347 if ( // Check only for SuperRegs.
2349 // Replace Reg if only lower-32 bits modified
2350 !MRI
.isPhysRegModified(Higher
))
2351 CalleeSaveReg
= CalleeSavedInfo(Lower
);
2355 // Early exit if cannot spill gprs to volatile vector registers.
2356 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2357 if (!EnablePEVectorSpills
|| MFI
.hasCalls() || !Subtarget
.hasP9Vector())
2360 // Build a BitVector of VSRs that can be used for spilling GPRs.
2361 BitVector BVAllocatable
= TRI
->getAllocatableSet(MF
);
2362 BitVector
BVCalleeSaved(TRI
->getNumRegs());
2363 for (unsigned i
= 0; CSRegs
[i
]; ++i
)
2364 BVCalleeSaved
.set(CSRegs
[i
]);
2366 for (unsigned Reg
: BVAllocatable
.set_bits()) {
2367 // Set to 0 if the register is not a volatile VSX register, or if it is
2368 // used in the function.
2369 if (BVCalleeSaved
[Reg
] || !PPC::VSRCRegClass
.contains(Reg
) ||
2370 MRI
.isPhysRegUsed(Reg
))
2371 BVAllocatable
.reset(Reg
);
2374 bool AllSpilledToReg
= true;
2375 unsigned LastVSRUsedForSpill
= 0;
2376 for (auto &CS
: CSI
) {
2377 if (BVAllocatable
.none())
2380 Register Reg
= CS
.getReg();
2382 if (!PPC::G8RCRegClass
.contains(Reg
)) {
2383 AllSpilledToReg
= false;
2387 // For P9, we can reuse LastVSRUsedForSpill to spill two GPRs
2388 // into one VSR using the mtvsrdd instruction.
2389 if (LastVSRUsedForSpill
!= 0) {
2390 CS
.setDstReg(LastVSRUsedForSpill
);
2391 BVAllocatable
.reset(LastVSRUsedForSpill
);
2392 LastVSRUsedForSpill
= 0;
2396 unsigned VolatileVFReg
= BVAllocatable
.find_first();
2397 if (VolatileVFReg
< BVAllocatable
.size()) {
2398 CS
.setDstReg(VolatileVFReg
);
2399 LastVSRUsedForSpill
= VolatileVFReg
;
2401 AllSpilledToReg
= false;
2404 return AllSpilledToReg
;
2407 bool PPCFrameLowering::spillCalleeSavedRegisters(
2408 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2409 ArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
2411 MachineFunction
*MF
= MBB
.getParent();
2412 const PPCInstrInfo
&TII
= *Subtarget
.getInstrInfo();
2413 PPCFunctionInfo
*FI
= MF
->getInfo
<PPCFunctionInfo
>();
2414 bool MustSaveTOC
= FI
->mustSaveTOC();
2416 bool CRSpilled
= false;
2417 MachineInstrBuilder CRMIB
;
2418 BitVector
Spilled(TRI
->getNumRegs());
2420 VSRContainingGPRs
.clear();
2422 // Map each VSR to GPRs to be spilled with into it. Single VSR can contain one
2423 // or two GPRs, so we need table to record information for later save/restore.
2424 for (const CalleeSavedInfo
&Info
: CSI
) {
2425 if (Info
.isSpilledToReg()) {
2426 auto &SpilledVSR
= VSRContainingGPRs
[Info
.getDstReg()];
2427 assert(SpilledVSR
.second
== 0 &&
2428 "Can't spill more than two GPRs into VSR!");
2429 if (SpilledVSR
.first
== 0)
2430 SpilledVSR
.first
= Info
.getReg();
2432 SpilledVSR
.second
= Info
.getReg();
2436 for (const CalleeSavedInfo
&I
: CSI
) {
2437 Register Reg
= I
.getReg();
2439 // CR2 through CR4 are the nonvolatile CR fields.
2440 bool IsCRField
= PPC::CR2
<= Reg
&& Reg
<= PPC::CR4
;
2442 // Add the callee-saved register as live-in; it's killed at the spill.
2443 // Do not do this for callee-saved registers that are live-in to the
2444 // function because they will already be marked live-in and this will be
2445 // adding it for a second time. It is an error to add the same register
2446 // to the set more than once.
2447 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
2448 bool IsLiveIn
= MRI
.isLiveIn(Reg
);
2452 if (CRSpilled
&& IsCRField
) {
2453 CRMIB
.addReg(Reg
, RegState::ImplicitKill
);
2457 // The actual spill will happen in the prologue.
2458 if ((Reg
== PPC::X2
|| Reg
== PPC::R2
) && MustSaveTOC
)
2461 // Insert the spill to the stack frame.
2463 PPCFunctionInfo
*FuncInfo
= MF
->getInfo
<PPCFunctionInfo
>();
2464 if (!Subtarget
.is32BitELFABI()) {
2465 // The actual spill will happen at the start of the prologue.
2466 FuncInfo
->addMustSaveCR(Reg
);
2469 FuncInfo
->setSpillsCR();
2471 // 32-bit: FP-relative. Note that we made sure CR2-CR4 all have
2472 // the same frame index in PPCRegisterInfo::hasReservedSpillSlot.
2473 CRMIB
= BuildMI(*MF
, DL
, TII
.get(PPC::MFCR
), PPC::R12
)
2474 .addReg(Reg
, RegState::ImplicitKill
);
2476 MBB
.insert(MI
, CRMIB
);
2477 MBB
.insert(MI
, addFrameReference(BuildMI(*MF
, DL
, TII
.get(PPC::STW
))
2479 getKillRegState(true)),
2483 if (I
.isSpilledToReg()) {
2484 unsigned Dst
= I
.getDstReg();
2489 if (VSRContainingGPRs
[Dst
].second
!= 0) {
2490 assert(Subtarget
.hasP9Vector() &&
2491 "mtvsrdd is unavailable on pre-P9 targets.");
2494 BuildMI(MBB
, MI
, DL
, TII
.get(PPC::MTVSRDD
), Dst
)
2495 .addReg(VSRContainingGPRs
[Dst
].first
, getKillRegState(true))
2496 .addReg(VSRContainingGPRs
[Dst
].second
, getKillRegState(true));
2497 } else if (VSRContainingGPRs
[Dst
].second
== 0) {
2498 assert(Subtarget
.hasP8Vector() &&
2499 "Can't move GPR to VSR on pre-P8 targets.");
2502 BuildMI(MBB
, MI
, DL
, TII
.get(PPC::MTVSRD
),
2503 TRI
->getSubReg(Dst
, PPC::sub_64
))
2504 .addReg(VSRContainingGPRs
[Dst
].first
, getKillRegState(true));
2506 llvm_unreachable("More than two GPRs spilled to a VSR!");
2510 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
);
2511 // Use !IsLiveIn for the kill flag.
2512 // We do not want to kill registers that are live in this function
2513 // before their use because they will become undefined registers.
2514 // Functions without NoUnwind need to preserve the order of elements in
2515 // saved vector registers.
2516 if (Subtarget
.needsSwapsForVSXMemOps() &&
2517 !MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
))
2518 TII
.storeRegToStackSlotNoUpd(MBB
, MI
, Reg
, !IsLiveIn
,
2519 I
.getFrameIdx(), RC
, TRI
);
2521 TII
.storeRegToStackSlot(MBB
, MI
, Reg
, !IsLiveIn
, I
.getFrameIdx(), RC
,
2529 static void restoreCRs(bool is31
, bool CR2Spilled
, bool CR3Spilled
,
2530 bool CR4Spilled
, MachineBasicBlock
&MBB
,
2531 MachineBasicBlock::iterator MI
,
2532 ArrayRef
<CalleeSavedInfo
> CSI
, unsigned CSIIndex
) {
2534 MachineFunction
*MF
= MBB
.getParent();
2535 const PPCInstrInfo
&TII
= *MF
->getSubtarget
<PPCSubtarget
>().getInstrInfo();
2537 unsigned MoveReg
= PPC::R12
;
2539 // 32-bit: FP-relative
2541 addFrameReference(BuildMI(*MF
, DL
, TII
.get(PPC::LWZ
), MoveReg
),
2542 CSI
[CSIIndex
].getFrameIdx()));
2544 unsigned RestoreOp
= PPC::MTOCRF
;
2546 MBB
.insert(MI
, BuildMI(*MF
, DL
, TII
.get(RestoreOp
), PPC::CR2
)
2547 .addReg(MoveReg
, getKillRegState(!CR3Spilled
&& !CR4Spilled
)));
2550 MBB
.insert(MI
, BuildMI(*MF
, DL
, TII
.get(RestoreOp
), PPC::CR3
)
2551 .addReg(MoveReg
, getKillRegState(!CR4Spilled
)));
2554 MBB
.insert(MI
, BuildMI(*MF
, DL
, TII
.get(RestoreOp
), PPC::CR4
)
2555 .addReg(MoveReg
, getKillRegState(true)));
2558 MachineBasicBlock::iterator
PPCFrameLowering::
2559 eliminateCallFramePseudoInstr(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
2560 MachineBasicBlock::iterator I
) const {
2561 const TargetInstrInfo
&TII
= *Subtarget
.getInstrInfo();
2562 if (MF
.getTarget().Options
.GuaranteedTailCallOpt
&&
2563 I
->getOpcode() == PPC::ADJCALLSTACKUP
) {
2564 // Add (actually subtract) back the amount the callee popped on return.
2565 if (int CalleeAmt
= I
->getOperand(1).getImm()) {
2566 bool is64Bit
= Subtarget
.isPPC64();
2568 unsigned StackReg
= is64Bit
? PPC::X1
: PPC::R1
;
2569 unsigned TmpReg
= is64Bit
? PPC::X0
: PPC::R0
;
2570 unsigned ADDIInstr
= is64Bit
? PPC::ADDI8
: PPC::ADDI
;
2571 unsigned ADDInstr
= is64Bit
? PPC::ADD8
: PPC::ADD4
;
2572 unsigned LISInstr
= is64Bit
? PPC::LIS8
: PPC::LIS
;
2573 unsigned ORIInstr
= is64Bit
? PPC::ORI8
: PPC::ORI
;
2574 const DebugLoc
&dl
= I
->getDebugLoc();
2576 if (isInt
<16>(CalleeAmt
)) {
2577 BuildMI(MBB
, I
, dl
, TII
.get(ADDIInstr
), StackReg
)
2578 .addReg(StackReg
, RegState::Kill
)
2581 MachineBasicBlock::iterator MBBI
= I
;
2582 BuildMI(MBB
, MBBI
, dl
, TII
.get(LISInstr
), TmpReg
)
2583 .addImm(CalleeAmt
>> 16);
2584 BuildMI(MBB
, MBBI
, dl
, TII
.get(ORIInstr
), TmpReg
)
2585 .addReg(TmpReg
, RegState::Kill
)
2586 .addImm(CalleeAmt
& 0xFFFF);
2587 BuildMI(MBB
, MBBI
, dl
, TII
.get(ADDInstr
), StackReg
)
2588 .addReg(StackReg
, RegState::Kill
)
2593 // Simply discard ADJCALLSTACKDOWN, ADJCALLSTACKUP instructions.
2594 return MBB
.erase(I
);
2597 static bool isCalleeSavedCR(unsigned Reg
) {
2598 return PPC::CR2
== Reg
|| Reg
== PPC::CR3
|| Reg
== PPC::CR4
;
2601 bool PPCFrameLowering::restoreCalleeSavedRegisters(
2602 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2603 MutableArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
2604 MachineFunction
*MF
= MBB
.getParent();
2605 const PPCInstrInfo
&TII
= *Subtarget
.getInstrInfo();
2606 PPCFunctionInfo
*FI
= MF
->getInfo
<PPCFunctionInfo
>();
2607 bool MustSaveTOC
= FI
->mustSaveTOC();
2608 bool CR2Spilled
= false;
2609 bool CR3Spilled
= false;
2610 bool CR4Spilled
= false;
2611 unsigned CSIIndex
= 0;
2612 BitVector
Restored(TRI
->getNumRegs());
2614 // Initialize insertion-point logic; we will be restoring in reverse
2616 MachineBasicBlock::iterator I
= MI
, BeforeI
= I
;
2617 bool AtStart
= I
== MBB
.begin();
2622 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
2623 Register Reg
= CSI
[i
].getReg();
2625 if ((Reg
== PPC::X2
|| Reg
== PPC::R2
) && MustSaveTOC
)
2628 // Restore of callee saved condition register field is handled during
2629 // epilogue insertion.
2630 if (isCalleeSavedCR(Reg
) && !Subtarget
.is32BitELFABI())
2633 if (Reg
== PPC::CR2
) {
2635 // The spill slot is associated only with CR2, which is the
2636 // first nonvolatile spilled. Save it here.
2639 } else if (Reg
== PPC::CR3
) {
2642 } else if (Reg
== PPC::CR4
) {
2646 // On 32-bit ELF when we first encounter a non-CR register after seeing at
2647 // least one CR register, restore all spilled CRs together.
2648 if (CR2Spilled
|| CR3Spilled
|| CR4Spilled
) {
2649 bool is31
= needsFP(*MF
);
2650 restoreCRs(is31
, CR2Spilled
, CR3Spilled
, CR4Spilled
, MBB
, I
, CSI
,
2652 CR2Spilled
= CR3Spilled
= CR4Spilled
= false;
2655 if (CSI
[i
].isSpilledToReg()) {
2657 unsigned Dst
= CSI
[i
].getDstReg();
2662 if (VSRContainingGPRs
[Dst
].second
!= 0) {
2663 assert(Subtarget
.hasP9Vector());
2664 NumPEReloadVSR
+= 2;
2665 BuildMI(MBB
, I
, DL
, TII
.get(PPC::MFVSRLD
),
2666 VSRContainingGPRs
[Dst
].second
)
2668 BuildMI(MBB
, I
, DL
, TII
.get(PPC::MFVSRD
),
2669 VSRContainingGPRs
[Dst
].first
)
2670 .addReg(TRI
->getSubReg(Dst
, PPC::sub_64
), getKillRegState(true));
2671 } else if (VSRContainingGPRs
[Dst
].second
== 0) {
2672 assert(Subtarget
.hasP8Vector());
2674 BuildMI(MBB
, I
, DL
, TII
.get(PPC::MFVSRD
),
2675 VSRContainingGPRs
[Dst
].first
)
2676 .addReg(TRI
->getSubReg(Dst
, PPC::sub_64
), getKillRegState(true));
2678 llvm_unreachable("More than two GPRs spilled to a VSR!");
2684 // Default behavior for non-CR saves.
2685 const TargetRegisterClass
*RC
= TRI
->getMinimalPhysRegClass(Reg
);
2687 // Functions without NoUnwind need to preserve the order of elements in
2688 // saved vector registers.
2689 if (Subtarget
.needsSwapsForVSXMemOps() &&
2690 !MF
->getFunction().hasFnAttribute(Attribute::NoUnwind
))
2691 TII
.loadRegFromStackSlotNoUpd(MBB
, I
, Reg
, CSI
[i
].getFrameIdx(), RC
,
2694 TII
.loadRegFromStackSlot(MBB
, I
, Reg
, CSI
[i
].getFrameIdx(), RC
, TRI
,
2697 assert(I
!= MBB
.begin() &&
2698 "loadRegFromStackSlot didn't insert any code!");
2702 // Insert in reverse order.
2711 // If we haven't yet spilled the CRs, do so now.
2712 if (CR2Spilled
|| CR3Spilled
|| CR4Spilled
) {
2713 assert(Subtarget
.is32BitELFABI() &&
2714 "Only set CR[2|3|4]Spilled on 32-bit SVR4.");
2715 bool is31
= needsFP(*MF
);
2716 restoreCRs(is31
, CR2Spilled
, CR3Spilled
, CR4Spilled
, MBB
, I
, CSI
, CSIIndex
);
2722 uint64_t PPCFrameLowering::getTOCSaveOffset() const {
2723 return TOCSaveOffset
;
2726 uint64_t PPCFrameLowering::getFramePointerSaveOffset() const {
2727 return FramePointerSaveOffset
;
2730 uint64_t PPCFrameLowering::getBasePointerSaveOffset() const {
2731 return BasePointerSaveOffset
;
2734 bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction
&MF
) const {
2735 if (MF
.getInfo
<PPCFunctionInfo
>()->shrinkWrapDisabled())
2737 return !MF
.getSubtarget
<PPCSubtarget
>().is32BitELFABI();
2740 void PPCFrameLowering::updateCalleeSaves(const MachineFunction
&MF
,
2741 BitVector
&SavedRegs
) const {
2742 // The AIX ABI uses traceback tables for EH which require that if callee-saved
2743 // register N is used, all registers N-31 must be saved/restored.
2744 // NOTE: The check for AIX is not actually what is relevant. Traceback tables
2745 // on Linux have the same requirements. It is just that AIX is the only ABI
2746 // for which we actually use traceback tables. If another ABI needs to be
2747 // supported that also uses them, we can add a check such as
2748 // Subtarget.usesTraceBackTables().
2749 assert(Subtarget
.isAIXABI() &&
2750 "Function updateCalleeSaves should only be called for AIX.");
2752 // If there are no callee saves then there is nothing to do.
2753 if (SavedRegs
.none())
2756 const MCPhysReg
*CSRegs
=
2757 Subtarget
.getRegisterInfo()->getCalleeSavedRegs(&MF
);
2758 MCPhysReg LowestGPR
= PPC::R31
;
2759 MCPhysReg LowestG8R
= PPC::X31
;
2760 MCPhysReg LowestFPR
= PPC::F31
;
2761 MCPhysReg LowestVR
= PPC::V31
;
2763 // Traverse the CSRs twice so as not to rely on ascending ordering of
2764 // registers in the array. The first pass finds the lowest numbered
2765 // register and the second pass marks all higher numbered registers
2767 for (int i
= 0; CSRegs
[i
]; i
++) {
2768 // Get the lowest numbered register for each class that actually needs
2770 MCPhysReg Cand
= CSRegs
[i
];
2771 if (!SavedRegs
.test(Cand
))
2773 // When R2/X2 is a CSR and not used for passing arguments, it is allocated
2774 // earlier than other volatile registers. R2/X2 is not contiguous with
2775 // R13/X13 to R31/X31.
2776 if (Cand
== PPC::X2
|| Cand
== PPC::R2
) {
2777 SavedRegs
.set(Cand
);
2781 if (PPC::GPRCRegClass
.contains(Cand
) && Cand
< LowestGPR
)
2783 else if (PPC::G8RCRegClass
.contains(Cand
) && Cand
< LowestG8R
)
2785 else if ((PPC::F4RCRegClass
.contains(Cand
) ||
2786 PPC::F8RCRegClass
.contains(Cand
)) &&
2789 else if (PPC::VRRCRegClass
.contains(Cand
) && Cand
< LowestVR
)
2793 for (int i
= 0; CSRegs
[i
]; i
++) {
2794 MCPhysReg Cand
= CSRegs
[i
];
2795 if ((PPC::GPRCRegClass
.contains(Cand
) && Cand
> LowestGPR
) ||
2796 (PPC::G8RCRegClass
.contains(Cand
) && Cand
> LowestG8R
) ||
2797 ((PPC::F4RCRegClass
.contains(Cand
) ||
2798 PPC::F8RCRegClass
.contains(Cand
)) &&
2799 Cand
> LowestFPR
) ||
2800 (PPC::VRRCRegClass
.contains(Cand
) && Cand
> LowestVR
))
2801 SavedRegs
.set(Cand
);
2805 uint64_t PPCFrameLowering::getStackThreshold() const {
2806 // On PPC64, we use `stux r1, r1, <scratch_reg>` to extend the stack;
2807 // use `add r1, r1, <scratch_reg>` to release the stack frame.
2808 // Scratch register contains a signed 64-bit number, which is negative
2809 // when extending the stack and is positive when releasing the stack frame.
2810 // To make `stux` and `add` paired, the absolute value of the number contained
2811 // in the scratch register should be the same. Thus the maximum stack size
2812 // is (2^63)-1, i.e., LONG_MAX.
2813 if (Subtarget
.isPPC64())
2816 return TargetFrameLowering::getStackThreshold();