AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCInstrInfo.cpp
blobfa45a7fb7fabe6cd16f13acd3a067a4512ab2006
1 //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "PPCInstrInfo.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCHazardRecognizers.h"
17 #include "PPCInstrBuilder.h"
18 #include "PPCMachineFunctionInfo.h"
19 #include "PPCTargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineCombinerPattern.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/CodeGen/RegisterClassInfo.h"
32 #include "llvm/CodeGen/RegisterPressure.h"
33 #include "llvm/CodeGen/ScheduleDAG.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/MC/MCInst.h"
38 #include "llvm/MC/TargetRegistry.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/raw_ostream.h"
44 using namespace llvm;
46 #define DEBUG_TYPE "ppc-instr-info"
48 #define GET_INSTRMAP_INFO
49 #define GET_INSTRINFO_CTOR_DTOR
50 #include "PPCGenInstrInfo.inc"
52 STATISTIC(NumStoreSPILLVSRRCAsVec,
53 "Number of spillvsrrc spilled to stack as vec");
54 STATISTIC(NumStoreSPILLVSRRCAsGpr,
55 "Number of spillvsrrc spilled to stack as gpr");
56 STATISTIC(NumGPRtoVSRSpill, "Number of gpr spills to spillvsrrc");
57 STATISTIC(CmpIselsConverted,
58 "Number of ISELs that depend on comparison of constants converted");
59 STATISTIC(MissedConvertibleImmediateInstrs,
60 "Number of compare-immediate instructions fed by constants");
61 STATISTIC(NumRcRotatesConvertedToRcAnd,
62 "Number of record-form rotates converted to record-form andi");
64 static cl::
65 opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden,
66 cl::desc("Disable analysis for CTR loops"));
68 static cl::opt<bool> DisableCmpOpt("disable-ppc-cmp-opt",
69 cl::desc("Disable compare instruction optimization"), cl::Hidden);
71 static cl::opt<bool> VSXSelfCopyCrash("crash-on-ppc-vsx-self-copy",
72 cl::desc("Causes the backend to crash instead of generating a nop VSX copy"),
73 cl::Hidden);
75 static cl::opt<bool>
76 UseOldLatencyCalc("ppc-old-latency-calc", cl::Hidden,
77 cl::desc("Use the old (incorrect) instruction latency calculation"));
79 static cl::opt<float>
80 FMARPFactor("ppc-fma-rp-factor", cl::Hidden, cl::init(1.5),
81 cl::desc("register pressure factor for the transformations."));
83 static cl::opt<bool> EnableFMARegPressureReduction(
84 "ppc-fma-rp-reduction", cl::Hidden, cl::init(true),
85 cl::desc("enable register pressure reduce in machine combiner pass."));
87 // Pin the vtable to this file.
88 void PPCInstrInfo::anchor() {}
90 PPCInstrInfo::PPCInstrInfo(PPCSubtarget &STI)
91 : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP,
92 /* CatchRetOpcode */ -1,
93 STI.isPPC64() ? PPC::BLR8 : PPC::BLR),
94 Subtarget(STI), RI(STI.getTargetMachine()) {}
96 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
97 /// this target when scheduling the DAG.
98 ScheduleHazardRecognizer *
99 PPCInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
100 const ScheduleDAG *DAG) const {
101 unsigned Directive =
102 static_cast<const PPCSubtarget *>(STI)->getCPUDirective();
103 if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 ||
104 Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) {
105 const InstrItineraryData *II =
106 static_cast<const PPCSubtarget *>(STI)->getInstrItineraryData();
107 return new ScoreboardHazardRecognizer(II, DAG);
110 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
113 /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
114 /// to use for this target when scheduling the DAG.
115 ScheduleHazardRecognizer *
116 PPCInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
117 const ScheduleDAG *DAG) const {
118 unsigned Directive =
119 DAG->MF.getSubtarget<PPCSubtarget>().getCPUDirective();
121 // FIXME: Leaving this as-is until we have POWER9 scheduling info
122 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8)
123 return new PPCDispatchGroupSBHazardRecognizer(II, DAG);
125 // Most subtargets use a PPC970 recognizer.
126 if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 &&
127 Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) {
128 assert(DAG->TII && "No InstrInfo?");
130 return new PPCHazardRecognizer970(*DAG);
133 return new ScoreboardHazardRecognizer(II, DAG);
136 unsigned PPCInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
137 const MachineInstr &MI,
138 unsigned *PredCost) const {
139 if (!ItinData || UseOldLatencyCalc)
140 return PPCGenInstrInfo::getInstrLatency(ItinData, MI, PredCost);
142 // The default implementation of getInstrLatency calls getStageLatency, but
143 // getStageLatency does not do the right thing for us. While we have
144 // itinerary, most cores are fully pipelined, and so the itineraries only
145 // express the first part of the pipeline, not every stage. Instead, we need
146 // to use the listed output operand cycle number (using operand 0 here, which
147 // is an output).
149 unsigned Latency = 1;
150 unsigned DefClass = MI.getDesc().getSchedClass();
151 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
152 const MachineOperand &MO = MI.getOperand(i);
153 if (!MO.isReg() || !MO.isDef() || MO.isImplicit())
154 continue;
156 std::optional<unsigned> Cycle = ItinData->getOperandCycle(DefClass, i);
157 if (!Cycle)
158 continue;
160 Latency = std::max(Latency, *Cycle);
163 return Latency;
166 std::optional<unsigned> PPCInstrInfo::getOperandLatency(
167 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
168 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
169 std::optional<unsigned> Latency = PPCGenInstrInfo::getOperandLatency(
170 ItinData, DefMI, DefIdx, UseMI, UseIdx);
172 if (!DefMI.getParent())
173 return Latency;
175 const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
176 Register Reg = DefMO.getReg();
178 bool IsRegCR;
179 if (Reg.isVirtual()) {
180 const MachineRegisterInfo *MRI =
181 &DefMI.getParent()->getParent()->getRegInfo();
182 IsRegCR = MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRRCRegClass) ||
183 MRI->getRegClass(Reg)->hasSuperClassEq(&PPC::CRBITRCRegClass);
184 } else {
185 IsRegCR = PPC::CRRCRegClass.contains(Reg) ||
186 PPC::CRBITRCRegClass.contains(Reg);
189 if (UseMI.isBranch() && IsRegCR) {
190 if (!Latency)
191 Latency = getInstrLatency(ItinData, DefMI);
193 // On some cores, there is an additional delay between writing to a condition
194 // register, and using it from a branch.
195 unsigned Directive = Subtarget.getCPUDirective();
196 switch (Directive) {
197 default: break;
198 case PPC::DIR_7400:
199 case PPC::DIR_750:
200 case PPC::DIR_970:
201 case PPC::DIR_E5500:
202 case PPC::DIR_PWR4:
203 case PPC::DIR_PWR5:
204 case PPC::DIR_PWR5X:
205 case PPC::DIR_PWR6:
206 case PPC::DIR_PWR6X:
207 case PPC::DIR_PWR7:
208 case PPC::DIR_PWR8:
209 // FIXME: Is this needed for POWER9?
210 Latency = *Latency + 2;
211 break;
215 return Latency;
218 void PPCInstrInfo::setSpecialOperandAttr(MachineInstr &MI,
219 uint32_t Flags) const {
220 MI.setFlags(Flags);
221 MI.clearFlag(MachineInstr::MIFlag::NoSWrap);
222 MI.clearFlag(MachineInstr::MIFlag::NoUWrap);
223 MI.clearFlag(MachineInstr::MIFlag::IsExact);
226 // This function does not list all associative and commutative operations, but
227 // only those worth feeding through the machine combiner in an attempt to
228 // reduce the critical path. Mostly, this means floating-point operations,
229 // because they have high latencies(>=5) (compared to other operations, such as
230 // and/or, which are also associative and commutative, but have low latencies).
231 bool PPCInstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst,
232 bool Invert) const {
233 if (Invert)
234 return false;
235 switch (Inst.getOpcode()) {
236 // Floating point:
237 // FP Add:
238 case PPC::FADD:
239 case PPC::FADDS:
240 // FP Multiply:
241 case PPC::FMUL:
242 case PPC::FMULS:
243 // Altivec Add:
244 case PPC::VADDFP:
245 // VSX Add:
246 case PPC::XSADDDP:
247 case PPC::XVADDDP:
248 case PPC::XVADDSP:
249 case PPC::XSADDSP:
250 // VSX Multiply:
251 case PPC::XSMULDP:
252 case PPC::XVMULDP:
253 case PPC::XVMULSP:
254 case PPC::XSMULSP:
255 return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) &&
256 Inst.getFlag(MachineInstr::MIFlag::FmNsz);
257 // Fixed point:
258 // Multiply:
259 case PPC::MULHD:
260 case PPC::MULLD:
261 case PPC::MULHW:
262 case PPC::MULLW:
263 return true;
264 default:
265 return false;
269 #define InfoArrayIdxFMAInst 0
270 #define InfoArrayIdxFAddInst 1
271 #define InfoArrayIdxFMULInst 2
272 #define InfoArrayIdxAddOpIdx 3
273 #define InfoArrayIdxMULOpIdx 4
274 #define InfoArrayIdxFSubInst 5
275 // Array keeps info for FMA instructions:
276 // Index 0(InfoArrayIdxFMAInst): FMA instruction;
277 // Index 1(InfoArrayIdxFAddInst): ADD instruction associated with FMA;
278 // Index 2(InfoArrayIdxFMULInst): MUL instruction associated with FMA;
279 // Index 3(InfoArrayIdxAddOpIdx): ADD operand index in FMA operands;
280 // Index 4(InfoArrayIdxMULOpIdx): first MUL operand index in FMA operands;
281 // second MUL operand index is plus 1;
282 // Index 5(InfoArrayIdxFSubInst): SUB instruction associated with FMA.
283 static const uint16_t FMAOpIdxInfo[][6] = {
284 // FIXME: Add more FMA instructions like XSNMADDADP and so on.
285 {PPC::XSMADDADP, PPC::XSADDDP, PPC::XSMULDP, 1, 2, PPC::XSSUBDP},
286 {PPC::XSMADDASP, PPC::XSADDSP, PPC::XSMULSP, 1, 2, PPC::XSSUBSP},
287 {PPC::XVMADDADP, PPC::XVADDDP, PPC::XVMULDP, 1, 2, PPC::XVSUBDP},
288 {PPC::XVMADDASP, PPC::XVADDSP, PPC::XVMULSP, 1, 2, PPC::XVSUBSP},
289 {PPC::FMADD, PPC::FADD, PPC::FMUL, 3, 1, PPC::FSUB},
290 {PPC::FMADDS, PPC::FADDS, PPC::FMULS, 3, 1, PPC::FSUBS}};
292 // Check if an opcode is a FMA instruction. If it is, return the index in array
293 // FMAOpIdxInfo. Otherwise, return -1.
294 int16_t PPCInstrInfo::getFMAOpIdxInfo(unsigned Opcode) const {
295 for (unsigned I = 0; I < std::size(FMAOpIdxInfo); I++)
296 if (FMAOpIdxInfo[I][InfoArrayIdxFMAInst] == Opcode)
297 return I;
298 return -1;
301 // On PowerPC target, we have two kinds of patterns related to FMA:
302 // 1: Improve ILP.
303 // Try to reassociate FMA chains like below:
305 // Pattern 1:
306 // A = FADD X, Y (Leaf)
307 // B = FMA A, M21, M22 (Prev)
308 // C = FMA B, M31, M32 (Root)
309 // -->
310 // A = FMA X, M21, M22
311 // B = FMA Y, M31, M32
312 // C = FADD A, B
314 // Pattern 2:
315 // A = FMA X, M11, M12 (Leaf)
316 // B = FMA A, M21, M22 (Prev)
317 // C = FMA B, M31, M32 (Root)
318 // -->
319 // A = FMUL M11, M12
320 // B = FMA X, M21, M22
321 // D = FMA A, M31, M32
322 // C = FADD B, D
324 // breaking the dependency between A and B, allowing FMA to be executed in
325 // parallel (or back-to-back in a pipeline) instead of depending on each other.
327 // 2: Reduce register pressure.
328 // Try to reassociate FMA with FSUB and a constant like below:
329 // C is a floating point const.
331 // Pattern 1:
332 // A = FSUB X, Y (Leaf)
333 // D = FMA B, C, A (Root)
334 // -->
335 // A = FMA B, Y, -C
336 // D = FMA A, X, C
338 // Pattern 2:
339 // A = FSUB X, Y (Leaf)
340 // D = FMA B, A, C (Root)
341 // -->
342 // A = FMA B, Y, -C
343 // D = FMA A, X, C
345 // Before the transformation, A must be assigned with different hardware
346 // register with D. After the transformation, A and D must be assigned with
347 // same hardware register due to TIE attribute of FMA instructions.
349 bool PPCInstrInfo::getFMAPatterns(MachineInstr &Root,
350 SmallVectorImpl<unsigned> &Patterns,
351 bool DoRegPressureReduce) const {
352 MachineBasicBlock *MBB = Root.getParent();
353 const MachineRegisterInfo *MRI = &MBB->getParent()->getRegInfo();
354 const TargetRegisterInfo *TRI = &getRegisterInfo();
356 auto IsAllOpsVirtualReg = [](const MachineInstr &Instr) {
357 for (const auto &MO : Instr.explicit_operands())
358 if (!(MO.isReg() && MO.getReg().isVirtual()))
359 return false;
360 return true;
363 auto IsReassociableAddOrSub = [&](const MachineInstr &Instr,
364 unsigned OpType) {
365 if (Instr.getOpcode() !=
366 FMAOpIdxInfo[getFMAOpIdxInfo(Root.getOpcode())][OpType])
367 return false;
369 // Instruction can be reassociated.
370 // fast math flags may prohibit reassociation.
371 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
372 Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
373 return false;
375 // Instruction operands are virtual registers for reassociation.
376 if (!IsAllOpsVirtualReg(Instr))
377 return false;
379 // For register pressure reassociation, the FSub must have only one use as
380 // we want to delete the sub to save its def.
381 if (OpType == InfoArrayIdxFSubInst &&
382 !MRI->hasOneNonDBGUse(Instr.getOperand(0).getReg()))
383 return false;
385 return true;
388 auto IsReassociableFMA = [&](const MachineInstr &Instr, int16_t &AddOpIdx,
389 int16_t &MulOpIdx, bool IsLeaf) {
390 int16_t Idx = getFMAOpIdxInfo(Instr.getOpcode());
391 if (Idx < 0)
392 return false;
394 // Instruction can be reassociated.
395 // fast math flags may prohibit reassociation.
396 if (!(Instr.getFlag(MachineInstr::MIFlag::FmReassoc) &&
397 Instr.getFlag(MachineInstr::MIFlag::FmNsz)))
398 return false;
400 // Instruction operands are virtual registers for reassociation.
401 if (!IsAllOpsVirtualReg(Instr))
402 return false;
404 MulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
405 if (IsLeaf)
406 return true;
408 AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
410 const MachineOperand &OpAdd = Instr.getOperand(AddOpIdx);
411 MachineInstr *MIAdd = MRI->getUniqueVRegDef(OpAdd.getReg());
412 // If 'add' operand's def is not in current block, don't do ILP related opt.
413 if (!MIAdd || MIAdd->getParent() != MBB)
414 return false;
416 // If this is not Leaf FMA Instr, its 'add' operand should only have one use
417 // as this fma will be changed later.
418 return IsLeaf ? true : MRI->hasOneNonDBGUse(OpAdd.getReg());
421 int16_t AddOpIdx = -1;
422 int16_t MulOpIdx = -1;
424 bool IsUsedOnceL = false;
425 bool IsUsedOnceR = false;
426 MachineInstr *MULInstrL = nullptr;
427 MachineInstr *MULInstrR = nullptr;
429 auto IsRPReductionCandidate = [&]() {
430 // Currently, we only support float and double.
431 // FIXME: add support for other types.
432 unsigned Opcode = Root.getOpcode();
433 if (Opcode != PPC::XSMADDASP && Opcode != PPC::XSMADDADP)
434 return false;
436 // Root must be a valid FMA like instruction.
437 // Treat it as leaf as we don't care its add operand.
438 if (IsReassociableFMA(Root, AddOpIdx, MulOpIdx, true)) {
439 assert((MulOpIdx >= 0) && "mul operand index not right!");
440 Register MULRegL = TRI->lookThruSingleUseCopyChain(
441 Root.getOperand(MulOpIdx).getReg(), MRI);
442 Register MULRegR = TRI->lookThruSingleUseCopyChain(
443 Root.getOperand(MulOpIdx + 1).getReg(), MRI);
444 if (!MULRegL && !MULRegR)
445 return false;
447 if (MULRegL && !MULRegR) {
448 MULRegR =
449 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx + 1).getReg(), MRI);
450 IsUsedOnceL = true;
451 } else if (!MULRegL && MULRegR) {
452 MULRegL =
453 TRI->lookThruCopyLike(Root.getOperand(MulOpIdx).getReg(), MRI);
454 IsUsedOnceR = true;
455 } else {
456 IsUsedOnceL = true;
457 IsUsedOnceR = true;
460 if (!MULRegL.isVirtual() || !MULRegR.isVirtual())
461 return false;
463 MULInstrL = MRI->getVRegDef(MULRegL);
464 MULInstrR = MRI->getVRegDef(MULRegR);
465 return true;
467 return false;
470 // Register pressure fma reassociation patterns.
471 if (DoRegPressureReduce && IsRPReductionCandidate()) {
472 assert((MULInstrL && MULInstrR) && "wrong register preduction candidate!");
473 // Register pressure pattern 1
474 if (isLoadFromConstantPool(MULInstrL) && IsUsedOnceR &&
475 IsReassociableAddOrSub(*MULInstrR, InfoArrayIdxFSubInst)) {
476 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BCA\n");
477 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BCA);
478 return true;
481 // Register pressure pattern 2
482 if ((isLoadFromConstantPool(MULInstrR) && IsUsedOnceL &&
483 IsReassociableAddOrSub(*MULInstrL, InfoArrayIdxFSubInst))) {
484 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_BAC\n");
485 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_BAC);
486 return true;
490 // ILP fma reassociation patterns.
491 // Root must be a valid FMA like instruction.
492 AddOpIdx = -1;
493 if (!IsReassociableFMA(Root, AddOpIdx, MulOpIdx, false))
494 return false;
496 assert((AddOpIdx >= 0) && "add operand index not right!");
498 Register RegB = Root.getOperand(AddOpIdx).getReg();
499 MachineInstr *Prev = MRI->getUniqueVRegDef(RegB);
501 // Prev must be a valid FMA like instruction.
502 AddOpIdx = -1;
503 if (!IsReassociableFMA(*Prev, AddOpIdx, MulOpIdx, false))
504 return false;
506 assert((AddOpIdx >= 0) && "add operand index not right!");
508 Register RegA = Prev->getOperand(AddOpIdx).getReg();
509 MachineInstr *Leaf = MRI->getUniqueVRegDef(RegA);
510 AddOpIdx = -1;
511 if (IsReassociableFMA(*Leaf, AddOpIdx, MulOpIdx, true)) {
512 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM);
513 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XMM_AMM_BMM\n");
514 return true;
516 if (IsReassociableAddOrSub(*Leaf, InfoArrayIdxFAddInst)) {
517 Patterns.push_back(PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM);
518 LLVM_DEBUG(dbgs() << "add pattern REASSOC_XY_AMM_BMM\n");
519 return true;
521 return false;
524 void PPCInstrInfo::finalizeInsInstrs(
525 MachineInstr &Root, unsigned &Pattern,
526 SmallVectorImpl<MachineInstr *> &InsInstrs) const {
527 assert(!InsInstrs.empty() && "Instructions set to be inserted is empty!");
529 MachineFunction *MF = Root.getMF();
530 MachineRegisterInfo *MRI = &MF->getRegInfo();
531 const TargetRegisterInfo *TRI = &getRegisterInfo();
532 MachineConstantPool *MCP = MF->getConstantPool();
534 int16_t Idx = getFMAOpIdxInfo(Root.getOpcode());
535 if (Idx < 0)
536 return;
538 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
540 // For now we only need to fix up placeholder for register pressure reduce
541 // patterns.
542 Register ConstReg = 0;
543 switch (Pattern) {
544 case PPCMachineCombinerPattern::REASSOC_XY_BCA:
545 ConstReg =
546 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), MRI);
547 break;
548 case PPCMachineCombinerPattern::REASSOC_XY_BAC:
549 ConstReg =
550 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx + 1).getReg(), MRI);
551 break;
552 default:
553 // Not register pressure reduce patterns.
554 return;
557 MachineInstr *ConstDefInstr = MRI->getVRegDef(ConstReg);
558 // Get const value from const pool.
559 const Constant *C = getConstantFromConstantPool(ConstDefInstr);
560 assert(isa<llvm::ConstantFP>(C) && "not a valid constant!");
562 // Get negative fp const.
563 APFloat F1((dyn_cast<ConstantFP>(C))->getValueAPF());
564 F1.changeSign();
565 Constant *NegC = ConstantFP::get(dyn_cast<ConstantFP>(C)->getContext(), F1);
566 Align Alignment = MF->getDataLayout().getPrefTypeAlign(C->getType());
568 // Put negative fp const into constant pool.
569 unsigned ConstPoolIdx = MCP->getConstantPoolIndex(NegC, Alignment);
571 MachineOperand *Placeholder = nullptr;
572 // Record the placeholder PPC::ZERO8 we add in reassociateFMA.
573 for (auto *Inst : InsInstrs) {
574 for (MachineOperand &Operand : Inst->explicit_operands()) {
575 assert(Operand.isReg() && "Invalid instruction in InsInstrs!");
576 if (Operand.getReg() == PPC::ZERO8) {
577 Placeholder = &Operand;
578 break;
583 assert(Placeholder && "Placeholder does not exist!");
585 // Generate instructions to load the const fp from constant pool.
586 // We only support PPC64 and medium code model.
587 Register LoadNewConst =
588 generateLoadForNewConst(ConstPoolIdx, &Root, C->getType(), InsInstrs);
590 // Fill the placeholder with the new load from constant pool.
591 Placeholder->setReg(LoadNewConst);
594 bool PPCInstrInfo::shouldReduceRegisterPressure(
595 const MachineBasicBlock *MBB, const RegisterClassInfo *RegClassInfo) const {
597 if (!EnableFMARegPressureReduction)
598 return false;
600 // Currently, we only enable register pressure reducing in machine combiner
601 // for: 1: PPC64; 2: Code Model is Medium; 3: Power9 which also has vector
602 // support.
604 // So we need following instructions to access a TOC entry:
606 // %6:g8rc_and_g8rc_nox0 = ADDIStocHA8 $x2, %const.0
607 // %7:vssrc = DFLOADf32 target-flags(ppc-toc-lo) %const.0,
608 // killed %6:g8rc_and_g8rc_nox0, implicit $x2 :: (load 4 from constant-pool)
610 // FIXME: add more supported targets, like Small and Large code model, PPC32,
611 // AIX.
612 if (!(Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
613 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium))
614 return false;
616 const TargetRegisterInfo *TRI = &getRegisterInfo();
617 const MachineFunction *MF = MBB->getParent();
618 const MachineRegisterInfo *MRI = &MF->getRegInfo();
620 auto GetMBBPressure =
621 [&](const MachineBasicBlock *MBB) -> std::vector<unsigned> {
622 RegionPressure Pressure;
623 RegPressureTracker RPTracker(Pressure);
625 // Initialize the register pressure tracker.
626 RPTracker.init(MBB->getParent(), RegClassInfo, nullptr, MBB, MBB->end(),
627 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
629 for (const auto &MI : reverse(*MBB)) {
630 if (MI.isDebugValue() || MI.isDebugLabel())
631 continue;
632 RegisterOperands RegOpers;
633 RegOpers.collect(MI, *TRI, *MRI, false, false);
634 RPTracker.recedeSkipDebugValues();
635 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
636 RPTracker.recede(RegOpers);
639 // Close the RPTracker to finalize live ins.
640 RPTracker.closeRegion();
642 return RPTracker.getPressure().MaxSetPressure;
645 // For now we only care about float and double type fma.
646 unsigned VSSRCLimit =
647 RegClassInfo->getRegPressureSetLimit(PPC::RegisterPressureSets::VSSRC);
649 // Only reduce register pressure when pressure is high.
650 return GetMBBPressure(MBB)[PPC::RegisterPressureSets::VSSRC] >
651 (float)VSSRCLimit * FMARPFactor;
654 bool PPCInstrInfo::isLoadFromConstantPool(MachineInstr *I) const {
655 // I has only one memory operand which is load from constant pool.
656 if (!I->hasOneMemOperand())
657 return false;
659 MachineMemOperand *Op = I->memoperands()[0];
660 return Op->isLoad() && Op->getPseudoValue() &&
661 Op->getPseudoValue()->kind() == PseudoSourceValue::ConstantPool;
664 Register PPCInstrInfo::generateLoadForNewConst(
665 unsigned Idx, MachineInstr *MI, Type *Ty,
666 SmallVectorImpl<MachineInstr *> &InsInstrs) const {
667 // Now we only support PPC64, Medium code model and P9 with vector.
668 // We have immutable pattern to access const pool. See function
669 // shouldReduceRegisterPressure.
670 assert((Subtarget.isPPC64() && Subtarget.hasP9Vector() &&
671 Subtarget.getTargetMachine().getCodeModel() == CodeModel::Medium) &&
672 "Target not supported!\n");
674 MachineFunction *MF = MI->getMF();
675 MachineRegisterInfo *MRI = &MF->getRegInfo();
677 // Generate ADDIStocHA8
678 Register VReg1 = MRI->createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
679 MachineInstrBuilder TOCOffset =
680 BuildMI(*MF, MI->getDebugLoc(), get(PPC::ADDIStocHA8), VReg1)
681 .addReg(PPC::X2)
682 .addConstantPoolIndex(Idx);
684 assert((Ty->isFloatTy() || Ty->isDoubleTy()) &&
685 "Only float and double are supported!");
687 unsigned LoadOpcode;
688 // Should be float type or double type.
689 if (Ty->isFloatTy())
690 LoadOpcode = PPC::DFLOADf32;
691 else
692 LoadOpcode = PPC::DFLOADf64;
694 const TargetRegisterClass *RC = MRI->getRegClass(MI->getOperand(0).getReg());
695 Register VReg2 = MRI->createVirtualRegister(RC);
696 MachineMemOperand *MMO = MF->getMachineMemOperand(
697 MachinePointerInfo::getConstantPool(*MF), MachineMemOperand::MOLoad,
698 Ty->getScalarSizeInBits() / 8, MF->getDataLayout().getPrefTypeAlign(Ty));
700 // Generate Load from constant pool.
701 MachineInstrBuilder Load =
702 BuildMI(*MF, MI->getDebugLoc(), get(LoadOpcode), VReg2)
703 .addConstantPoolIndex(Idx)
704 .addReg(VReg1, getKillRegState(true))
705 .addMemOperand(MMO);
707 Load->getOperand(1).setTargetFlags(PPCII::MO_TOC_LO);
709 // Insert the toc load instructions into InsInstrs.
710 InsInstrs.insert(InsInstrs.begin(), Load);
711 InsInstrs.insert(InsInstrs.begin(), TOCOffset);
712 return VReg2;
715 // This function returns the const value in constant pool if the \p I is a load
716 // from constant pool.
717 const Constant *
718 PPCInstrInfo::getConstantFromConstantPool(MachineInstr *I) const {
719 MachineFunction *MF = I->getMF();
720 MachineRegisterInfo *MRI = &MF->getRegInfo();
721 MachineConstantPool *MCP = MF->getConstantPool();
722 assert(I->mayLoad() && "Should be a load instruction.\n");
723 for (auto MO : I->uses()) {
724 if (!MO.isReg())
725 continue;
726 Register Reg = MO.getReg();
727 if (Reg == 0 || !Reg.isVirtual())
728 continue;
729 // Find the toc address.
730 MachineInstr *DefMI = MRI->getVRegDef(Reg);
731 for (auto MO2 : DefMI->uses())
732 if (MO2.isCPI())
733 return (MCP->getConstants())[MO2.getIndex()].Val.ConstVal;
735 return nullptr;
738 CombinerObjective PPCInstrInfo::getCombinerObjective(unsigned Pattern) const {
739 switch (Pattern) {
740 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
741 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
742 return CombinerObjective::MustReduceDepth;
743 case PPCMachineCombinerPattern::REASSOC_XY_BCA:
744 case PPCMachineCombinerPattern::REASSOC_XY_BAC:
745 return CombinerObjective::MustReduceRegisterPressure;
746 default:
747 return TargetInstrInfo::getCombinerObjective(Pattern);
751 bool PPCInstrInfo::getMachineCombinerPatterns(
752 MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
753 bool DoRegPressureReduce) const {
754 // Using the machine combiner in this way is potentially expensive, so
755 // restrict to when aggressive optimizations are desired.
756 if (Subtarget.getTargetMachine().getOptLevel() != CodeGenOptLevel::Aggressive)
757 return false;
759 if (getFMAPatterns(Root, Patterns, DoRegPressureReduce))
760 return true;
762 return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns,
763 DoRegPressureReduce);
766 void PPCInstrInfo::genAlternativeCodeSequence(
767 MachineInstr &Root, unsigned Pattern,
768 SmallVectorImpl<MachineInstr *> &InsInstrs,
769 SmallVectorImpl<MachineInstr *> &DelInstrs,
770 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
771 switch (Pattern) {
772 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
773 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
774 case PPCMachineCombinerPattern::REASSOC_XY_BCA:
775 case PPCMachineCombinerPattern::REASSOC_XY_BAC:
776 reassociateFMA(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg);
777 break;
778 default:
779 // Reassociate default patterns.
780 TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs,
781 DelInstrs, InstrIdxForVirtReg);
782 break;
786 void PPCInstrInfo::reassociateFMA(
787 MachineInstr &Root, unsigned Pattern,
788 SmallVectorImpl<MachineInstr *> &InsInstrs,
789 SmallVectorImpl<MachineInstr *> &DelInstrs,
790 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
791 MachineFunction *MF = Root.getMF();
792 MachineRegisterInfo &MRI = MF->getRegInfo();
793 const TargetRegisterInfo *TRI = &getRegisterInfo();
794 MachineOperand &OpC = Root.getOperand(0);
795 Register RegC = OpC.getReg();
796 const TargetRegisterClass *RC = MRI.getRegClass(RegC);
797 MRI.constrainRegClass(RegC, RC);
799 unsigned FmaOp = Root.getOpcode();
800 int16_t Idx = getFMAOpIdxInfo(FmaOp);
801 assert(Idx >= 0 && "Root must be a FMA instruction");
803 bool IsILPReassociate =
804 (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) ||
805 (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM);
807 uint16_t AddOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxAddOpIdx];
808 uint16_t FirstMulOpIdx = FMAOpIdxInfo[Idx][InfoArrayIdxMULOpIdx];
810 MachineInstr *Prev = nullptr;
811 MachineInstr *Leaf = nullptr;
812 switch (Pattern) {
813 default:
814 llvm_unreachable("not recognized pattern!");
815 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM:
816 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM:
817 Prev = MRI.getUniqueVRegDef(Root.getOperand(AddOpIdx).getReg());
818 Leaf = MRI.getUniqueVRegDef(Prev->getOperand(AddOpIdx).getReg());
819 break;
820 case PPCMachineCombinerPattern::REASSOC_XY_BAC: {
821 Register MULReg =
822 TRI->lookThruCopyLike(Root.getOperand(FirstMulOpIdx).getReg(), &MRI);
823 Leaf = MRI.getVRegDef(MULReg);
824 break;
826 case PPCMachineCombinerPattern::REASSOC_XY_BCA: {
827 Register MULReg = TRI->lookThruCopyLike(
828 Root.getOperand(FirstMulOpIdx + 1).getReg(), &MRI);
829 Leaf = MRI.getVRegDef(MULReg);
830 break;
834 uint32_t IntersectedFlags = 0;
835 if (IsILPReassociate)
836 IntersectedFlags = Root.getFlags() & Prev->getFlags() & Leaf->getFlags();
837 else
838 IntersectedFlags = Root.getFlags() & Leaf->getFlags();
840 auto GetOperandInfo = [&](const MachineOperand &Operand, Register &Reg,
841 bool &KillFlag) {
842 Reg = Operand.getReg();
843 MRI.constrainRegClass(Reg, RC);
844 KillFlag = Operand.isKill();
847 auto GetFMAInstrInfo = [&](const MachineInstr &Instr, Register &MulOp1,
848 Register &MulOp2, Register &AddOp,
849 bool &MulOp1KillFlag, bool &MulOp2KillFlag,
850 bool &AddOpKillFlag) {
851 GetOperandInfo(Instr.getOperand(FirstMulOpIdx), MulOp1, MulOp1KillFlag);
852 GetOperandInfo(Instr.getOperand(FirstMulOpIdx + 1), MulOp2, MulOp2KillFlag);
853 GetOperandInfo(Instr.getOperand(AddOpIdx), AddOp, AddOpKillFlag);
856 Register RegM11, RegM12, RegX, RegY, RegM21, RegM22, RegM31, RegM32, RegA11,
857 RegA21, RegB;
858 bool KillX = false, KillY = false, KillM11 = false, KillM12 = false,
859 KillM21 = false, KillM22 = false, KillM31 = false, KillM32 = false,
860 KillA11 = false, KillA21 = false, KillB = false;
862 GetFMAInstrInfo(Root, RegM31, RegM32, RegB, KillM31, KillM32, KillB);
864 if (IsILPReassociate)
865 GetFMAInstrInfo(*Prev, RegM21, RegM22, RegA21, KillM21, KillM22, KillA21);
867 if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
868 GetFMAInstrInfo(*Leaf, RegM11, RegM12, RegA11, KillM11, KillM12, KillA11);
869 GetOperandInfo(Leaf->getOperand(AddOpIdx), RegX, KillX);
870 } else if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM) {
871 GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
872 GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
873 } else {
874 // Get FSUB instruction info.
875 GetOperandInfo(Leaf->getOperand(1), RegX, KillX);
876 GetOperandInfo(Leaf->getOperand(2), RegY, KillY);
879 // Create new virtual registers for the new results instead of
880 // recycling legacy ones because the MachineCombiner's computation of the
881 // critical path requires a new register definition rather than an existing
882 // one.
883 // For register pressure reassociation, we only need create one virtual
884 // register for the new fma.
885 Register NewVRA = MRI.createVirtualRegister(RC);
886 InstrIdxForVirtReg.insert(std::make_pair(NewVRA, 0));
888 Register NewVRB = 0;
889 if (IsILPReassociate) {
890 NewVRB = MRI.createVirtualRegister(RC);
891 InstrIdxForVirtReg.insert(std::make_pair(NewVRB, 1));
894 Register NewVRD = 0;
895 if (Pattern == PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM) {
896 NewVRD = MRI.createVirtualRegister(RC);
897 InstrIdxForVirtReg.insert(std::make_pair(NewVRD, 2));
900 auto AdjustOperandOrder = [&](MachineInstr *MI, Register RegAdd, bool KillAdd,
901 Register RegMul1, bool KillRegMul1,
902 Register RegMul2, bool KillRegMul2) {
903 MI->getOperand(AddOpIdx).setReg(RegAdd);
904 MI->getOperand(AddOpIdx).setIsKill(KillAdd);
905 MI->getOperand(FirstMulOpIdx).setReg(RegMul1);
906 MI->getOperand(FirstMulOpIdx).setIsKill(KillRegMul1);
907 MI->getOperand(FirstMulOpIdx + 1).setReg(RegMul2);
908 MI->getOperand(FirstMulOpIdx + 1).setIsKill(KillRegMul2);
911 MachineInstrBuilder NewARegPressure, NewCRegPressure;
912 switch (Pattern) {
913 default:
914 llvm_unreachable("not recognized pattern!");
915 case PPCMachineCombinerPattern::REASSOC_XY_AMM_BMM: {
916 // Create new instructions for insertion.
917 MachineInstrBuilder MINewB =
918 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
919 .addReg(RegX, getKillRegState(KillX))
920 .addReg(RegM21, getKillRegState(KillM21))
921 .addReg(RegM22, getKillRegState(KillM22));
922 MachineInstrBuilder MINewA =
923 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
924 .addReg(RegY, getKillRegState(KillY))
925 .addReg(RegM31, getKillRegState(KillM31))
926 .addReg(RegM32, getKillRegState(KillM32));
927 // If AddOpIdx is not 1, adjust the order.
928 if (AddOpIdx != 1) {
929 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
930 AdjustOperandOrder(MINewA, RegY, KillY, RegM31, KillM31, RegM32, KillM32);
933 MachineInstrBuilder MINewC =
934 BuildMI(*MF, Root.getDebugLoc(),
935 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
936 .addReg(NewVRB, getKillRegState(true))
937 .addReg(NewVRA, getKillRegState(true));
939 // Update flags for newly created instructions.
940 setSpecialOperandAttr(*MINewA, IntersectedFlags);
941 setSpecialOperandAttr(*MINewB, IntersectedFlags);
942 setSpecialOperandAttr(*MINewC, IntersectedFlags);
944 // Record new instructions for insertion.
945 InsInstrs.push_back(MINewA);
946 InsInstrs.push_back(MINewB);
947 InsInstrs.push_back(MINewC);
948 break;
950 case PPCMachineCombinerPattern::REASSOC_XMM_AMM_BMM: {
951 assert(NewVRD && "new FMA register not created!");
952 // Create new instructions for insertion.
953 MachineInstrBuilder MINewA =
954 BuildMI(*MF, Leaf->getDebugLoc(),
955 get(FMAOpIdxInfo[Idx][InfoArrayIdxFMULInst]), NewVRA)
956 .addReg(RegM11, getKillRegState(KillM11))
957 .addReg(RegM12, getKillRegState(KillM12));
958 MachineInstrBuilder MINewB =
959 BuildMI(*MF, Prev->getDebugLoc(), get(FmaOp), NewVRB)
960 .addReg(RegX, getKillRegState(KillX))
961 .addReg(RegM21, getKillRegState(KillM21))
962 .addReg(RegM22, getKillRegState(KillM22));
963 MachineInstrBuilder MINewD =
964 BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRD)
965 .addReg(NewVRA, getKillRegState(true))
966 .addReg(RegM31, getKillRegState(KillM31))
967 .addReg(RegM32, getKillRegState(KillM32));
968 // If AddOpIdx is not 1, adjust the order.
969 if (AddOpIdx != 1) {
970 AdjustOperandOrder(MINewB, RegX, KillX, RegM21, KillM21, RegM22, KillM22);
971 AdjustOperandOrder(MINewD, NewVRA, true, RegM31, KillM31, RegM32,
972 KillM32);
975 MachineInstrBuilder MINewC =
976 BuildMI(*MF, Root.getDebugLoc(),
977 get(FMAOpIdxInfo[Idx][InfoArrayIdxFAddInst]), RegC)
978 .addReg(NewVRB, getKillRegState(true))
979 .addReg(NewVRD, getKillRegState(true));
981 // Update flags for newly created instructions.
982 setSpecialOperandAttr(*MINewA, IntersectedFlags);
983 setSpecialOperandAttr(*MINewB, IntersectedFlags);
984 setSpecialOperandAttr(*MINewD, IntersectedFlags);
985 setSpecialOperandAttr(*MINewC, IntersectedFlags);
987 // Record new instructions for insertion.
988 InsInstrs.push_back(MINewA);
989 InsInstrs.push_back(MINewB);
990 InsInstrs.push_back(MINewD);
991 InsInstrs.push_back(MINewC);
992 break;
994 case PPCMachineCombinerPattern::REASSOC_XY_BAC:
995 case PPCMachineCombinerPattern::REASSOC_XY_BCA: {
996 Register VarReg;
997 bool KillVarReg = false;
998 if (Pattern == PPCMachineCombinerPattern::REASSOC_XY_BCA) {
999 VarReg = RegM31;
1000 KillVarReg = KillM31;
1001 } else {
1002 VarReg = RegM32;
1003 KillVarReg = KillM32;
1005 // We don't want to get negative const from memory pool too early, as the
1006 // created entry will not be deleted even if it has no users. Since all
1007 // operand of Leaf and Root are virtual register, we use zero register
1008 // here as a placeholder. When the InsInstrs is selected in
1009 // MachineCombiner, we call finalizeInsInstrs to replace the zero register
1010 // with a virtual register which is a load from constant pool.
1011 NewARegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), NewVRA)
1012 .addReg(RegB, getKillRegState(RegB))
1013 .addReg(RegY, getKillRegState(KillY))
1014 .addReg(PPC::ZERO8);
1015 NewCRegPressure = BuildMI(*MF, Root.getDebugLoc(), get(FmaOp), RegC)
1016 .addReg(NewVRA, getKillRegState(true))
1017 .addReg(RegX, getKillRegState(KillX))
1018 .addReg(VarReg, getKillRegState(KillVarReg));
1019 // For now, we only support xsmaddadp/xsmaddasp, their add operand are
1020 // both at index 1, no need to adjust.
1021 // FIXME: when add more fma instructions support, like fma/fmas, adjust
1022 // the operand index here.
1023 break;
1027 if (!IsILPReassociate) {
1028 setSpecialOperandAttr(*NewARegPressure, IntersectedFlags);
1029 setSpecialOperandAttr(*NewCRegPressure, IntersectedFlags);
1031 InsInstrs.push_back(NewARegPressure);
1032 InsInstrs.push_back(NewCRegPressure);
1035 assert(!InsInstrs.empty() &&
1036 "Insertion instructions set should not be empty!");
1038 // Record old instructions for deletion.
1039 DelInstrs.push_back(Leaf);
1040 if (IsILPReassociate)
1041 DelInstrs.push_back(Prev);
1042 DelInstrs.push_back(&Root);
1045 // Detect 32 -> 64-bit extensions where we may reuse the low sub-register.
1046 bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
1047 Register &SrcReg, Register &DstReg,
1048 unsigned &SubIdx) const {
1049 switch (MI.getOpcode()) {
1050 default: return false;
1051 case PPC::EXTSW:
1052 case PPC::EXTSW_32:
1053 case PPC::EXTSW_32_64:
1054 SrcReg = MI.getOperand(1).getReg();
1055 DstReg = MI.getOperand(0).getReg();
1056 SubIdx = PPC::sub_32;
1057 return true;
1061 Register PPCInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1062 int &FrameIndex) const {
1063 if (llvm::is_contained(getLoadOpcodesForSpillArray(), MI.getOpcode())) {
1064 // Check for the operands added by addFrameReference (the immediate is the
1065 // offset which defaults to 0).
1066 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1067 MI.getOperand(2).isFI()) {
1068 FrameIndex = MI.getOperand(2).getIndex();
1069 return MI.getOperand(0).getReg();
1072 return 0;
1075 // For opcodes with the ReMaterializable flag set, this function is called to
1076 // verify the instruction is really rematable.
1077 bool PPCInstrInfo::isReallyTriviallyReMaterializable(
1078 const MachineInstr &MI) const {
1079 switch (MI.getOpcode()) {
1080 default:
1081 // Let base implementaion decide.
1082 break;
1083 case PPC::LI:
1084 case PPC::LI8:
1085 case PPC::PLI:
1086 case PPC::PLI8:
1087 case PPC::LIS:
1088 case PPC::LIS8:
1089 case PPC::ADDIStocHA:
1090 case PPC::ADDIStocHA8:
1091 case PPC::ADDItocL:
1092 case PPC::ADDItocL8:
1093 case PPC::LOAD_STACK_GUARD:
1094 case PPC::PPCLdFixedAddr:
1095 case PPC::XXLXORz:
1096 case PPC::XXLXORspz:
1097 case PPC::XXLXORdpz:
1098 case PPC::XXLEQVOnes:
1099 case PPC::XXSPLTI32DX:
1100 case PPC::XXSPLTIW:
1101 case PPC::XXSPLTIDP:
1102 case PPC::V_SET0B:
1103 case PPC::V_SET0H:
1104 case PPC::V_SET0:
1105 case PPC::V_SETALLONESB:
1106 case PPC::V_SETALLONESH:
1107 case PPC::V_SETALLONES:
1108 case PPC::CRSET:
1109 case PPC::CRUNSET:
1110 case PPC::XXSETACCZ:
1111 case PPC::XXSETACCZW:
1112 return true;
1114 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
1117 Register PPCInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1118 int &FrameIndex) const {
1119 if (llvm::is_contained(getStoreOpcodesForSpillArray(), MI.getOpcode())) {
1120 if (MI.getOperand(1).isImm() && !MI.getOperand(1).getImm() &&
1121 MI.getOperand(2).isFI()) {
1122 FrameIndex = MI.getOperand(2).getIndex();
1123 return MI.getOperand(0).getReg();
1126 return 0;
1129 MachineInstr *PPCInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
1130 unsigned OpIdx1,
1131 unsigned OpIdx2) const {
1132 MachineFunction &MF = *MI.getParent()->getParent();
1134 // Normal instructions can be commuted the obvious way.
1135 if (MI.getOpcode() != PPC::RLWIMI && MI.getOpcode() != PPC::RLWIMI_rec)
1136 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
1137 // Note that RLWIMI can be commuted as a 32-bit instruction, but not as a
1138 // 64-bit instruction (so we don't handle PPC::RLWIMI8 here), because
1139 // changing the relative order of the mask operands might change what happens
1140 // to the high-bits of the mask (and, thus, the result).
1142 // Cannot commute if it has a non-zero rotate count.
1143 if (MI.getOperand(3).getImm() != 0)
1144 return nullptr;
1146 // If we have a zero rotate count, we have:
1147 // M = mask(MB,ME)
1148 // Op0 = (Op1 & ~M) | (Op2 & M)
1149 // Change this to:
1150 // M = mask((ME+1)&31, (MB-1)&31)
1151 // Op0 = (Op2 & ~M) | (Op1 & M)
1153 // Swap op1/op2
1154 assert(((OpIdx1 == 1 && OpIdx2 == 2) || (OpIdx1 == 2 && OpIdx2 == 1)) &&
1155 "Only the operands 1 and 2 can be swapped in RLSIMI/RLWIMI_rec.");
1156 Register Reg0 = MI.getOperand(0).getReg();
1157 Register Reg1 = MI.getOperand(1).getReg();
1158 Register Reg2 = MI.getOperand(2).getReg();
1159 unsigned SubReg1 = MI.getOperand(1).getSubReg();
1160 unsigned SubReg2 = MI.getOperand(2).getSubReg();
1161 bool Reg1IsKill = MI.getOperand(1).isKill();
1162 bool Reg2IsKill = MI.getOperand(2).isKill();
1163 bool ChangeReg0 = false;
1164 // If machine instrs are no longer in two-address forms, update
1165 // destination register as well.
1166 if (Reg0 == Reg1) {
1167 // Must be two address instruction (i.e. op1 is tied to op0).
1168 assert(MI.getDesc().getOperandConstraint(1, MCOI::TIED_TO) == 0 &&
1169 "Expecting a two-address instruction!");
1170 assert(MI.getOperand(0).getSubReg() == SubReg1 && "Tied subreg mismatch");
1171 Reg2IsKill = false;
1172 ChangeReg0 = true;
1175 // Masks.
1176 unsigned MB = MI.getOperand(4).getImm();
1177 unsigned ME = MI.getOperand(5).getImm();
1179 // We can't commute a trivial mask (there is no way to represent an all-zero
1180 // mask).
1181 if (MB == 0 && ME == 31)
1182 return nullptr;
1184 if (NewMI) {
1185 // Create a new instruction.
1186 Register Reg0 = ChangeReg0 ? Reg2 : MI.getOperand(0).getReg();
1187 bool Reg0IsDead = MI.getOperand(0).isDead();
1188 return BuildMI(MF, MI.getDebugLoc(), MI.getDesc())
1189 .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
1190 .addReg(Reg2, getKillRegState(Reg2IsKill))
1191 .addReg(Reg1, getKillRegState(Reg1IsKill))
1192 .addImm((ME + 1) & 31)
1193 .addImm((MB - 1) & 31);
1196 if (ChangeReg0) {
1197 MI.getOperand(0).setReg(Reg2);
1198 MI.getOperand(0).setSubReg(SubReg2);
1200 MI.getOperand(2).setReg(Reg1);
1201 MI.getOperand(1).setReg(Reg2);
1202 MI.getOperand(2).setSubReg(SubReg1);
1203 MI.getOperand(1).setSubReg(SubReg2);
1204 MI.getOperand(2).setIsKill(Reg1IsKill);
1205 MI.getOperand(1).setIsKill(Reg2IsKill);
1207 // Swap the mask around.
1208 MI.getOperand(4).setImm((ME + 1) & 31);
1209 MI.getOperand(5).setImm((MB - 1) & 31);
1210 return &MI;
1213 bool PPCInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
1214 unsigned &SrcOpIdx1,
1215 unsigned &SrcOpIdx2) const {
1216 // For VSX A-Type FMA instructions, it is the first two operands that can be
1217 // commuted, however, because the non-encoded tied input operand is listed
1218 // first, the operands to swap are actually the second and third.
1220 int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
1221 if (AltOpc == -1)
1222 return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
1224 // The commutable operand indices are 2 and 3. Return them in SrcOpIdx1
1225 // and SrcOpIdx2.
1226 return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 2, 3);
1229 void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
1230 MachineBasicBlock::iterator MI) const {
1231 // This function is used for scheduling, and the nop wanted here is the type
1232 // that terminates dispatch groups on the POWER cores.
1233 unsigned Directive = Subtarget.getCPUDirective();
1234 unsigned Opcode;
1235 switch (Directive) {
1236 default: Opcode = PPC::NOP; break;
1237 case PPC::DIR_PWR6: Opcode = PPC::NOP_GT_PWR6; break;
1238 case PPC::DIR_PWR7: Opcode = PPC::NOP_GT_PWR7; break;
1239 case PPC::DIR_PWR8: Opcode = PPC::NOP_GT_PWR7; break; /* FIXME: Update when P8 InstrScheduling model is ready */
1240 // FIXME: Update when POWER9 scheduling model is ready.
1241 case PPC::DIR_PWR9: Opcode = PPC::NOP_GT_PWR7; break;
1244 DebugLoc DL;
1245 BuildMI(MBB, MI, DL, get(Opcode));
1248 /// Return the noop instruction to use for a noop.
1249 MCInst PPCInstrInfo::getNop() const {
1250 MCInst Nop;
1251 Nop.setOpcode(PPC::NOP);
1252 return Nop;
1255 // Branch analysis.
1256 // Note: If the condition register is set to CTR or CTR8 then this is a
1257 // BDNZ (imm == 1) or BDZ (imm == 0) branch.
1258 bool PPCInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
1259 MachineBasicBlock *&TBB,
1260 MachineBasicBlock *&FBB,
1261 SmallVectorImpl<MachineOperand> &Cond,
1262 bool AllowModify) const {
1263 bool isPPC64 = Subtarget.isPPC64();
1265 // If the block has no terminators, it just falls into the block after it.
1266 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1267 if (I == MBB.end())
1268 return false;
1270 if (!isUnpredicatedTerminator(*I))
1271 return false;
1273 if (AllowModify) {
1274 // If the BB ends with an unconditional branch to the fallthrough BB,
1275 // we eliminate the branch instruction.
1276 if (I->getOpcode() == PPC::B &&
1277 MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
1278 I->eraseFromParent();
1280 // We update iterator after deleting the last branch.
1281 I = MBB.getLastNonDebugInstr();
1282 if (I == MBB.end() || !isUnpredicatedTerminator(*I))
1283 return false;
1287 // Get the last instruction in the block.
1288 MachineInstr &LastInst = *I;
1290 // If there is only one terminator instruction, process it.
1291 if (I == MBB.begin() || !isUnpredicatedTerminator(*--I)) {
1292 if (LastInst.getOpcode() == PPC::B) {
1293 if (!LastInst.getOperand(0).isMBB())
1294 return true;
1295 TBB = LastInst.getOperand(0).getMBB();
1296 return false;
1297 } else if (LastInst.getOpcode() == PPC::BCC) {
1298 if (!LastInst.getOperand(2).isMBB())
1299 return true;
1300 // Block ends with fall-through condbranch.
1301 TBB = LastInst.getOperand(2).getMBB();
1302 Cond.push_back(LastInst.getOperand(0));
1303 Cond.push_back(LastInst.getOperand(1));
1304 return false;
1305 } else if (LastInst.getOpcode() == PPC::BC) {
1306 if (!LastInst.getOperand(1).isMBB())
1307 return true;
1308 // Block ends with fall-through condbranch.
1309 TBB = LastInst.getOperand(1).getMBB();
1310 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1311 Cond.push_back(LastInst.getOperand(0));
1312 return false;
1313 } else if (LastInst.getOpcode() == PPC::BCn) {
1314 if (!LastInst.getOperand(1).isMBB())
1315 return true;
1316 // Block ends with fall-through condbranch.
1317 TBB = LastInst.getOperand(1).getMBB();
1318 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1319 Cond.push_back(LastInst.getOperand(0));
1320 return false;
1321 } else if (LastInst.getOpcode() == PPC::BDNZ8 ||
1322 LastInst.getOpcode() == PPC::BDNZ) {
1323 if (!LastInst.getOperand(0).isMBB())
1324 return true;
1325 if (DisableCTRLoopAnal)
1326 return true;
1327 TBB = LastInst.getOperand(0).getMBB();
1328 Cond.push_back(MachineOperand::CreateImm(1));
1329 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1330 true));
1331 return false;
1332 } else if (LastInst.getOpcode() == PPC::BDZ8 ||
1333 LastInst.getOpcode() == PPC::BDZ) {
1334 if (!LastInst.getOperand(0).isMBB())
1335 return true;
1336 if (DisableCTRLoopAnal)
1337 return true;
1338 TBB = LastInst.getOperand(0).getMBB();
1339 Cond.push_back(MachineOperand::CreateImm(0));
1340 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1341 true));
1342 return false;
1345 // Otherwise, don't know what this is.
1346 return true;
1349 // Get the instruction before it if it's a terminator.
1350 MachineInstr &SecondLastInst = *I;
1352 // If there are three terminators, we don't know what sort of block this is.
1353 if (I != MBB.begin() && isUnpredicatedTerminator(*--I))
1354 return true;
1356 // If the block ends with PPC::B and PPC:BCC, handle it.
1357 if (SecondLastInst.getOpcode() == PPC::BCC &&
1358 LastInst.getOpcode() == PPC::B) {
1359 if (!SecondLastInst.getOperand(2).isMBB() ||
1360 !LastInst.getOperand(0).isMBB())
1361 return true;
1362 TBB = SecondLastInst.getOperand(2).getMBB();
1363 Cond.push_back(SecondLastInst.getOperand(0));
1364 Cond.push_back(SecondLastInst.getOperand(1));
1365 FBB = LastInst.getOperand(0).getMBB();
1366 return false;
1367 } else if (SecondLastInst.getOpcode() == PPC::BC &&
1368 LastInst.getOpcode() == PPC::B) {
1369 if (!SecondLastInst.getOperand(1).isMBB() ||
1370 !LastInst.getOperand(0).isMBB())
1371 return true;
1372 TBB = SecondLastInst.getOperand(1).getMBB();
1373 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
1374 Cond.push_back(SecondLastInst.getOperand(0));
1375 FBB = LastInst.getOperand(0).getMBB();
1376 return false;
1377 } else if (SecondLastInst.getOpcode() == PPC::BCn &&
1378 LastInst.getOpcode() == PPC::B) {
1379 if (!SecondLastInst.getOperand(1).isMBB() ||
1380 !LastInst.getOperand(0).isMBB())
1381 return true;
1382 TBB = SecondLastInst.getOperand(1).getMBB();
1383 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_UNSET));
1384 Cond.push_back(SecondLastInst.getOperand(0));
1385 FBB = LastInst.getOperand(0).getMBB();
1386 return false;
1387 } else if ((SecondLastInst.getOpcode() == PPC::BDNZ8 ||
1388 SecondLastInst.getOpcode() == PPC::BDNZ) &&
1389 LastInst.getOpcode() == PPC::B) {
1390 if (!SecondLastInst.getOperand(0).isMBB() ||
1391 !LastInst.getOperand(0).isMBB())
1392 return true;
1393 if (DisableCTRLoopAnal)
1394 return true;
1395 TBB = SecondLastInst.getOperand(0).getMBB();
1396 Cond.push_back(MachineOperand::CreateImm(1));
1397 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1398 true));
1399 FBB = LastInst.getOperand(0).getMBB();
1400 return false;
1401 } else if ((SecondLastInst.getOpcode() == PPC::BDZ8 ||
1402 SecondLastInst.getOpcode() == PPC::BDZ) &&
1403 LastInst.getOpcode() == PPC::B) {
1404 if (!SecondLastInst.getOperand(0).isMBB() ||
1405 !LastInst.getOperand(0).isMBB())
1406 return true;
1407 if (DisableCTRLoopAnal)
1408 return true;
1409 TBB = SecondLastInst.getOperand(0).getMBB();
1410 Cond.push_back(MachineOperand::CreateImm(0));
1411 Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR,
1412 true));
1413 FBB = LastInst.getOperand(0).getMBB();
1414 return false;
1417 // If the block ends with two PPC:Bs, handle it. The second one is not
1418 // executed, so remove it.
1419 if (SecondLastInst.getOpcode() == PPC::B && LastInst.getOpcode() == PPC::B) {
1420 if (!SecondLastInst.getOperand(0).isMBB())
1421 return true;
1422 TBB = SecondLastInst.getOperand(0).getMBB();
1423 I = LastInst;
1424 if (AllowModify)
1425 I->eraseFromParent();
1426 return false;
1429 // Otherwise, can't handle this.
1430 return true;
1433 unsigned PPCInstrInfo::removeBranch(MachineBasicBlock &MBB,
1434 int *BytesRemoved) const {
1435 assert(!BytesRemoved && "code size not handled");
1437 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
1438 if (I == MBB.end())
1439 return 0;
1441 if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC &&
1442 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1443 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1444 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
1445 return 0;
1447 // Remove the branch.
1448 I->eraseFromParent();
1450 I = MBB.end();
1452 if (I == MBB.begin()) return 1;
1453 --I;
1454 if (I->getOpcode() != PPC::BCC &&
1455 I->getOpcode() != PPC::BC && I->getOpcode() != PPC::BCn &&
1456 I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ &&
1457 I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ)
1458 return 1;
1460 // Remove the branch.
1461 I->eraseFromParent();
1462 return 2;
1465 unsigned PPCInstrInfo::insertBranch(MachineBasicBlock &MBB,
1466 MachineBasicBlock *TBB,
1467 MachineBasicBlock *FBB,
1468 ArrayRef<MachineOperand> Cond,
1469 const DebugLoc &DL,
1470 int *BytesAdded) const {
1471 // Shouldn't be a fall through.
1472 assert(TBB && "insertBranch must not be told to insert a fallthrough");
1473 assert((Cond.size() == 2 || Cond.size() == 0) &&
1474 "PPC branch conditions have two components!");
1475 assert(!BytesAdded && "code size not handled");
1477 bool isPPC64 = Subtarget.isPPC64();
1479 // One-way branch.
1480 if (!FBB) {
1481 if (Cond.empty()) // Unconditional branch
1482 BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
1483 else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1484 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1485 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1486 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
1487 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1488 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1489 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1490 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1491 else // Conditional branch
1492 BuildMI(&MBB, DL, get(PPC::BCC))
1493 .addImm(Cond[0].getImm())
1494 .add(Cond[1])
1495 .addMBB(TBB);
1496 return 1;
1499 // Two-way Conditional Branch.
1500 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1501 BuildMI(&MBB, DL, get(Cond[0].getImm() ?
1502 (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) :
1503 (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB);
1504 else if (Cond[0].getImm() == PPC::PRED_BIT_SET)
1505 BuildMI(&MBB, DL, get(PPC::BC)).add(Cond[1]).addMBB(TBB);
1506 else if (Cond[0].getImm() == PPC::PRED_BIT_UNSET)
1507 BuildMI(&MBB, DL, get(PPC::BCn)).add(Cond[1]).addMBB(TBB);
1508 else
1509 BuildMI(&MBB, DL, get(PPC::BCC))
1510 .addImm(Cond[0].getImm())
1511 .add(Cond[1])
1512 .addMBB(TBB);
1513 BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
1514 return 2;
1517 // Select analysis.
1518 bool PPCInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
1519 ArrayRef<MachineOperand> Cond,
1520 Register DstReg, Register TrueReg,
1521 Register FalseReg, int &CondCycles,
1522 int &TrueCycles, int &FalseCycles) const {
1523 if (!Subtarget.hasISEL())
1524 return false;
1526 if (Cond.size() != 2)
1527 return false;
1529 // If this is really a bdnz-like condition, then it cannot be turned into a
1530 // select.
1531 if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8)
1532 return false;
1534 // If the conditional branch uses a physical register, then it cannot be
1535 // turned into a select.
1536 if (Cond[1].getReg().isPhysical())
1537 return false;
1539 // Check register classes.
1540 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1541 const TargetRegisterClass *RC =
1542 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1543 if (!RC)
1544 return false;
1546 // isel is for regular integer GPRs only.
1547 if (!PPC::GPRCRegClass.hasSubClassEq(RC) &&
1548 !PPC::GPRC_NOR0RegClass.hasSubClassEq(RC) &&
1549 !PPC::G8RCRegClass.hasSubClassEq(RC) &&
1550 !PPC::G8RC_NOX0RegClass.hasSubClassEq(RC))
1551 return false;
1553 // FIXME: These numbers are for the A2, how well they work for other cores is
1554 // an open question. On the A2, the isel instruction has a 2-cycle latency
1555 // but single-cycle throughput. These numbers are used in combination with
1556 // the MispredictPenalty setting from the active SchedMachineModel.
1557 CondCycles = 1;
1558 TrueCycles = 1;
1559 FalseCycles = 1;
1561 return true;
1564 void PPCInstrInfo::insertSelect(MachineBasicBlock &MBB,
1565 MachineBasicBlock::iterator MI,
1566 const DebugLoc &dl, Register DestReg,
1567 ArrayRef<MachineOperand> Cond, Register TrueReg,
1568 Register FalseReg) const {
1569 assert(Cond.size() == 2 &&
1570 "PPC branch conditions have two components!");
1572 // Get the register classes.
1573 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1574 const TargetRegisterClass *RC =
1575 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
1576 assert(RC && "TrueReg and FalseReg must have overlapping register classes");
1578 bool Is64Bit = PPC::G8RCRegClass.hasSubClassEq(RC) ||
1579 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC);
1580 assert((Is64Bit ||
1581 PPC::GPRCRegClass.hasSubClassEq(RC) ||
1582 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) &&
1583 "isel is for regular integer GPRs only");
1585 unsigned OpCode = Is64Bit ? PPC::ISEL8 : PPC::ISEL;
1586 auto SelectPred = static_cast<PPC::Predicate>(Cond[0].getImm());
1588 unsigned SubIdx = 0;
1589 bool SwapOps = false;
1590 switch (SelectPred) {
1591 case PPC::PRED_EQ:
1592 case PPC::PRED_EQ_MINUS:
1593 case PPC::PRED_EQ_PLUS:
1594 SubIdx = PPC::sub_eq; SwapOps = false; break;
1595 case PPC::PRED_NE:
1596 case PPC::PRED_NE_MINUS:
1597 case PPC::PRED_NE_PLUS:
1598 SubIdx = PPC::sub_eq; SwapOps = true; break;
1599 case PPC::PRED_LT:
1600 case PPC::PRED_LT_MINUS:
1601 case PPC::PRED_LT_PLUS:
1602 SubIdx = PPC::sub_lt; SwapOps = false; break;
1603 case PPC::PRED_GE:
1604 case PPC::PRED_GE_MINUS:
1605 case PPC::PRED_GE_PLUS:
1606 SubIdx = PPC::sub_lt; SwapOps = true; break;
1607 case PPC::PRED_GT:
1608 case PPC::PRED_GT_MINUS:
1609 case PPC::PRED_GT_PLUS:
1610 SubIdx = PPC::sub_gt; SwapOps = false; break;
1611 case PPC::PRED_LE:
1612 case PPC::PRED_LE_MINUS:
1613 case PPC::PRED_LE_PLUS:
1614 SubIdx = PPC::sub_gt; SwapOps = true; break;
1615 case PPC::PRED_UN:
1616 case PPC::PRED_UN_MINUS:
1617 case PPC::PRED_UN_PLUS:
1618 SubIdx = PPC::sub_un; SwapOps = false; break;
1619 case PPC::PRED_NU:
1620 case PPC::PRED_NU_MINUS:
1621 case PPC::PRED_NU_PLUS:
1622 SubIdx = PPC::sub_un; SwapOps = true; break;
1623 case PPC::PRED_BIT_SET: SubIdx = 0; SwapOps = false; break;
1624 case PPC::PRED_BIT_UNSET: SubIdx = 0; SwapOps = true; break;
1627 Register FirstReg = SwapOps ? FalseReg : TrueReg,
1628 SecondReg = SwapOps ? TrueReg : FalseReg;
1630 // The first input register of isel cannot be r0. If it is a member
1631 // of a register class that can be r0, then copy it first (the
1632 // register allocator should eliminate the copy).
1633 if (MRI.getRegClass(FirstReg)->contains(PPC::R0) ||
1634 MRI.getRegClass(FirstReg)->contains(PPC::X0)) {
1635 const TargetRegisterClass *FirstRC =
1636 MRI.getRegClass(FirstReg)->contains(PPC::X0) ?
1637 &PPC::G8RC_NOX0RegClass : &PPC::GPRC_NOR0RegClass;
1638 Register OldFirstReg = FirstReg;
1639 FirstReg = MRI.createVirtualRegister(FirstRC);
1640 BuildMI(MBB, MI, dl, get(TargetOpcode::COPY), FirstReg)
1641 .addReg(OldFirstReg);
1644 BuildMI(MBB, MI, dl, get(OpCode), DestReg)
1645 .addReg(FirstReg).addReg(SecondReg)
1646 .addReg(Cond[1].getReg(), 0, SubIdx);
1649 static unsigned getCRBitValue(unsigned CRBit) {
1650 unsigned Ret = 4;
1651 if (CRBit == PPC::CR0LT || CRBit == PPC::CR1LT ||
1652 CRBit == PPC::CR2LT || CRBit == PPC::CR3LT ||
1653 CRBit == PPC::CR4LT || CRBit == PPC::CR5LT ||
1654 CRBit == PPC::CR6LT || CRBit == PPC::CR7LT)
1655 Ret = 3;
1656 if (CRBit == PPC::CR0GT || CRBit == PPC::CR1GT ||
1657 CRBit == PPC::CR2GT || CRBit == PPC::CR3GT ||
1658 CRBit == PPC::CR4GT || CRBit == PPC::CR5GT ||
1659 CRBit == PPC::CR6GT || CRBit == PPC::CR7GT)
1660 Ret = 2;
1661 if (CRBit == PPC::CR0EQ || CRBit == PPC::CR1EQ ||
1662 CRBit == PPC::CR2EQ || CRBit == PPC::CR3EQ ||
1663 CRBit == PPC::CR4EQ || CRBit == PPC::CR5EQ ||
1664 CRBit == PPC::CR6EQ || CRBit == PPC::CR7EQ)
1665 Ret = 1;
1666 if (CRBit == PPC::CR0UN || CRBit == PPC::CR1UN ||
1667 CRBit == PPC::CR2UN || CRBit == PPC::CR3UN ||
1668 CRBit == PPC::CR4UN || CRBit == PPC::CR5UN ||
1669 CRBit == PPC::CR6UN || CRBit == PPC::CR7UN)
1670 Ret = 0;
1672 assert(Ret != 4 && "Invalid CR bit register");
1673 return Ret;
1676 void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
1677 MachineBasicBlock::iterator I,
1678 const DebugLoc &DL, MCRegister DestReg,
1679 MCRegister SrcReg, bool KillSrc,
1680 bool RenamableDest, bool RenamableSrc) const {
1681 // We can end up with self copies and similar things as a result of VSX copy
1682 // legalization. Promote them here.
1683 const TargetRegisterInfo *TRI = &getRegisterInfo();
1684 if (PPC::F8RCRegClass.contains(DestReg) &&
1685 PPC::VSRCRegClass.contains(SrcReg)) {
1686 MCRegister SuperReg =
1687 TRI->getMatchingSuperReg(DestReg, PPC::sub_64, &PPC::VSRCRegClass);
1689 if (VSXSelfCopyCrash && SrcReg == SuperReg)
1690 llvm_unreachable("nop VSX copy");
1692 DestReg = SuperReg;
1693 } else if (PPC::F8RCRegClass.contains(SrcReg) &&
1694 PPC::VSRCRegClass.contains(DestReg)) {
1695 MCRegister SuperReg =
1696 TRI->getMatchingSuperReg(SrcReg, PPC::sub_64, &PPC::VSRCRegClass);
1698 if (VSXSelfCopyCrash && DestReg == SuperReg)
1699 llvm_unreachable("nop VSX copy");
1701 SrcReg = SuperReg;
1704 // Different class register copy
1705 if (PPC::CRBITRCRegClass.contains(SrcReg) &&
1706 PPC::GPRCRegClass.contains(DestReg)) {
1707 MCRegister CRReg = getCRFromCRBit(SrcReg);
1708 BuildMI(MBB, I, DL, get(PPC::MFOCRF), DestReg).addReg(CRReg);
1709 getKillRegState(KillSrc);
1710 // Rotate the CR bit in the CR fields to be the least significant bit and
1711 // then mask with 0x1 (MB = ME = 31).
1712 BuildMI(MBB, I, DL, get(PPC::RLWINM), DestReg)
1713 .addReg(DestReg, RegState::Kill)
1714 .addImm(TRI->getEncodingValue(CRReg) * 4 + (4 - getCRBitValue(SrcReg)))
1715 .addImm(31)
1716 .addImm(31);
1717 return;
1718 } else if (PPC::CRRCRegClass.contains(SrcReg) &&
1719 (PPC::G8RCRegClass.contains(DestReg) ||
1720 PPC::GPRCRegClass.contains(DestReg))) {
1721 bool Is64Bit = PPC::G8RCRegClass.contains(DestReg);
1722 unsigned MvCode = Is64Bit ? PPC::MFOCRF8 : PPC::MFOCRF;
1723 unsigned ShCode = Is64Bit ? PPC::RLWINM8 : PPC::RLWINM;
1724 unsigned CRNum = TRI->getEncodingValue(SrcReg);
1725 BuildMI(MBB, I, DL, get(MvCode), DestReg).addReg(SrcReg);
1726 getKillRegState(KillSrc);
1727 if (CRNum == 7)
1728 return;
1729 // Shift the CR bits to make the CR field in the lowest 4 bits of GRC.
1730 BuildMI(MBB, I, DL, get(ShCode), DestReg)
1731 .addReg(DestReg, RegState::Kill)
1732 .addImm(CRNum * 4 + 4)
1733 .addImm(28)
1734 .addImm(31);
1735 return;
1736 } else if (PPC::G8RCRegClass.contains(SrcReg) &&
1737 PPC::VSFRCRegClass.contains(DestReg)) {
1738 assert(Subtarget.hasDirectMove() &&
1739 "Subtarget doesn't support directmove, don't know how to copy.");
1740 BuildMI(MBB, I, DL, get(PPC::MTVSRD), DestReg).addReg(SrcReg);
1741 NumGPRtoVSRSpill++;
1742 getKillRegState(KillSrc);
1743 return;
1744 } else if (PPC::VSFRCRegClass.contains(SrcReg) &&
1745 PPC::G8RCRegClass.contains(DestReg)) {
1746 assert(Subtarget.hasDirectMove() &&
1747 "Subtarget doesn't support directmove, don't know how to copy.");
1748 BuildMI(MBB, I, DL, get(PPC::MFVSRD), DestReg).addReg(SrcReg);
1749 getKillRegState(KillSrc);
1750 return;
1751 } else if (PPC::SPERCRegClass.contains(SrcReg) &&
1752 PPC::GPRCRegClass.contains(DestReg)) {
1753 BuildMI(MBB, I, DL, get(PPC::EFSCFD), DestReg).addReg(SrcReg);
1754 getKillRegState(KillSrc);
1755 return;
1756 } else if (PPC::GPRCRegClass.contains(SrcReg) &&
1757 PPC::SPERCRegClass.contains(DestReg)) {
1758 BuildMI(MBB, I, DL, get(PPC::EFDCFS), DestReg).addReg(SrcReg);
1759 getKillRegState(KillSrc);
1760 return;
1763 unsigned Opc;
1764 if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
1765 Opc = PPC::OR;
1766 else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
1767 Opc = PPC::OR8;
1768 else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
1769 Opc = PPC::FMR;
1770 else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
1771 Opc = PPC::MCRF;
1772 else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
1773 Opc = PPC::VOR;
1774 else if (PPC::VSRCRegClass.contains(DestReg, SrcReg))
1775 // There are two different ways this can be done:
1776 // 1. xxlor : This has lower latency (on the P7), 2 cycles, but can only
1777 // issue in VSU pipeline 0.
1778 // 2. xmovdp/xmovsp: This has higher latency (on the P7), 6 cycles, but
1779 // can go to either pipeline.
1780 // We'll always use xxlor here, because in practically all cases where
1781 // copies are generated, they are close enough to some use that the
1782 // lower-latency form is preferable.
1783 Opc = PPC::XXLOR;
1784 else if (PPC::VSFRCRegClass.contains(DestReg, SrcReg) ||
1785 PPC::VSSRCRegClass.contains(DestReg, SrcReg))
1786 Opc = (Subtarget.hasP9Vector()) ? PPC::XSCPSGNDP : PPC::XXLORf;
1787 else if (Subtarget.pairedVectorMemops() &&
1788 PPC::VSRpRCRegClass.contains(DestReg, SrcReg)) {
1789 if (SrcReg > PPC::VSRp15)
1790 SrcReg = PPC::V0 + (SrcReg - PPC::VSRp16) * 2;
1791 else
1792 SrcReg = PPC::VSL0 + (SrcReg - PPC::VSRp0) * 2;
1793 if (DestReg > PPC::VSRp15)
1794 DestReg = PPC::V0 + (DestReg - PPC::VSRp16) * 2;
1795 else
1796 DestReg = PPC::VSL0 + (DestReg - PPC::VSRp0) * 2;
1797 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg).
1798 addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1799 BuildMI(MBB, I, DL, get(PPC::XXLOR), DestReg + 1).
1800 addReg(SrcReg + 1).addReg(SrcReg + 1, getKillRegState(KillSrc));
1801 return;
1803 else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
1804 Opc = PPC::CROR;
1805 else if (PPC::SPERCRegClass.contains(DestReg, SrcReg))
1806 Opc = PPC::EVOR;
1807 else if ((PPC::ACCRCRegClass.contains(DestReg) ||
1808 PPC::UACCRCRegClass.contains(DestReg)) &&
1809 (PPC::ACCRCRegClass.contains(SrcReg) ||
1810 PPC::UACCRCRegClass.contains(SrcReg))) {
1811 // If primed, de-prime the source register, copy the individual registers
1812 // and prime the destination if needed. The vector subregisters are
1813 // vs[(u)acc * 4] - vs[(u)acc * 4 + 3]. If the copy is not a kill and the
1814 // source is primed, we need to re-prime it after the copy as well.
1815 PPCRegisterInfo::emitAccCopyInfo(MBB, DestReg, SrcReg);
1816 bool DestPrimed = PPC::ACCRCRegClass.contains(DestReg);
1817 bool SrcPrimed = PPC::ACCRCRegClass.contains(SrcReg);
1818 MCRegister VSLSrcReg =
1819 PPC::VSL0 + (SrcReg - (SrcPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1820 MCRegister VSLDestReg =
1821 PPC::VSL0 + (DestReg - (DestPrimed ? PPC::ACC0 : PPC::UACC0)) * 4;
1822 if (SrcPrimed)
1823 BuildMI(MBB, I, DL, get(PPC::XXMFACC), SrcReg).addReg(SrcReg);
1824 for (unsigned Idx = 0; Idx < 4; Idx++)
1825 BuildMI(MBB, I, DL, get(PPC::XXLOR), VSLDestReg + Idx)
1826 .addReg(VSLSrcReg + Idx)
1827 .addReg(VSLSrcReg + Idx, getKillRegState(KillSrc));
1828 if (DestPrimed)
1829 BuildMI(MBB, I, DL, get(PPC::XXMTACC), DestReg).addReg(DestReg);
1830 if (SrcPrimed && !KillSrc)
1831 BuildMI(MBB, I, DL, get(PPC::XXMTACC), SrcReg).addReg(SrcReg);
1832 return;
1833 } else if (PPC::G8pRCRegClass.contains(DestReg) &&
1834 PPC::G8pRCRegClass.contains(SrcReg)) {
1835 // TODO: Handle G8RC to G8pRC (and vice versa) copy.
1836 unsigned DestRegIdx = DestReg - PPC::G8p0;
1837 MCRegister DestRegSub0 = PPC::X0 + 2 * DestRegIdx;
1838 MCRegister DestRegSub1 = PPC::X0 + 2 * DestRegIdx + 1;
1839 unsigned SrcRegIdx = SrcReg - PPC::G8p0;
1840 MCRegister SrcRegSub0 = PPC::X0 + 2 * SrcRegIdx;
1841 MCRegister SrcRegSub1 = PPC::X0 + 2 * SrcRegIdx + 1;
1842 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub0)
1843 .addReg(SrcRegSub0)
1844 .addReg(SrcRegSub0, getKillRegState(KillSrc));
1845 BuildMI(MBB, I, DL, get(PPC::OR8), DestRegSub1)
1846 .addReg(SrcRegSub1)
1847 .addReg(SrcRegSub1, getKillRegState(KillSrc));
1848 return;
1849 } else
1850 llvm_unreachable("Impossible reg-to-reg copy");
1852 const MCInstrDesc &MCID = get(Opc);
1853 if (MCID.getNumOperands() == 3)
1854 BuildMI(MBB, I, DL, MCID, DestReg)
1855 .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
1856 else
1857 BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
1860 unsigned PPCInstrInfo::getSpillIndex(const TargetRegisterClass *RC) const {
1861 int OpcodeIndex = 0;
1863 if (PPC::GPRCRegClass.hasSubClassEq(RC) ||
1864 PPC::GPRC_NOR0RegClass.hasSubClassEq(RC)) {
1865 OpcodeIndex = SOK_Int4Spill;
1866 } else if (PPC::G8RCRegClass.hasSubClassEq(RC) ||
1867 PPC::G8RC_NOX0RegClass.hasSubClassEq(RC)) {
1868 OpcodeIndex = SOK_Int8Spill;
1869 } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) {
1870 OpcodeIndex = SOK_Float8Spill;
1871 } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) {
1872 OpcodeIndex = SOK_Float4Spill;
1873 } else if (PPC::SPERCRegClass.hasSubClassEq(RC)) {
1874 OpcodeIndex = SOK_SPESpill;
1875 } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) {
1876 OpcodeIndex = SOK_CRSpill;
1877 } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) {
1878 OpcodeIndex = SOK_CRBitSpill;
1879 } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) {
1880 OpcodeIndex = SOK_VRVectorSpill;
1881 } else if (PPC::VSRCRegClass.hasSubClassEq(RC)) {
1882 OpcodeIndex = SOK_VSXVectorSpill;
1883 } else if (PPC::VSFRCRegClass.hasSubClassEq(RC)) {
1884 OpcodeIndex = SOK_VectorFloat8Spill;
1885 } else if (PPC::VSSRCRegClass.hasSubClassEq(RC)) {
1886 OpcodeIndex = SOK_VectorFloat4Spill;
1887 } else if (PPC::SPILLTOVSRRCRegClass.hasSubClassEq(RC)) {
1888 OpcodeIndex = SOK_SpillToVSR;
1889 } else if (PPC::ACCRCRegClass.hasSubClassEq(RC)) {
1890 assert(Subtarget.pairedVectorMemops() &&
1891 "Register unexpected when paired memops are disabled.");
1892 OpcodeIndex = SOK_AccumulatorSpill;
1893 } else if (PPC::UACCRCRegClass.hasSubClassEq(RC)) {
1894 assert(Subtarget.pairedVectorMemops() &&
1895 "Register unexpected when paired memops are disabled.");
1896 OpcodeIndex = SOK_UAccumulatorSpill;
1897 } else if (PPC::WACCRCRegClass.hasSubClassEq(RC)) {
1898 assert(Subtarget.pairedVectorMemops() &&
1899 "Register unexpected when paired memops are disabled.");
1900 OpcodeIndex = SOK_WAccumulatorSpill;
1901 } else if (PPC::VSRpRCRegClass.hasSubClassEq(RC)) {
1902 assert(Subtarget.pairedVectorMemops() &&
1903 "Register unexpected when paired memops are disabled.");
1904 OpcodeIndex = SOK_PairedVecSpill;
1905 } else if (PPC::G8pRCRegClass.hasSubClassEq(RC)) {
1906 OpcodeIndex = SOK_PairedG8Spill;
1907 } else {
1908 llvm_unreachable("Unknown regclass!");
1910 return OpcodeIndex;
1913 unsigned
1914 PPCInstrInfo::getStoreOpcodeForSpill(const TargetRegisterClass *RC) const {
1915 ArrayRef<unsigned> OpcodesForSpill = getStoreOpcodesForSpillArray();
1916 return OpcodesForSpill[getSpillIndex(RC)];
1919 unsigned
1920 PPCInstrInfo::getLoadOpcodeForSpill(const TargetRegisterClass *RC) const {
1921 ArrayRef<unsigned> OpcodesForSpill = getLoadOpcodesForSpillArray();
1922 return OpcodesForSpill[getSpillIndex(RC)];
1925 void PPCInstrInfo::StoreRegToStackSlot(
1926 MachineFunction &MF, unsigned SrcReg, bool isKill, int FrameIdx,
1927 const TargetRegisterClass *RC,
1928 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1929 unsigned Opcode = getStoreOpcodeForSpill(RC);
1930 DebugLoc DL;
1932 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1933 FuncInfo->setHasSpills();
1935 NewMIs.push_back(addFrameReference(
1936 BuildMI(MF, DL, get(Opcode)).addReg(SrcReg, getKillRegState(isKill)),
1937 FrameIdx));
1939 if (PPC::CRRCRegClass.hasSubClassEq(RC) ||
1940 PPC::CRBITRCRegClass.hasSubClassEq(RC))
1941 FuncInfo->setSpillsCR();
1943 if (isXFormMemOp(Opcode))
1944 FuncInfo->setHasNonRISpills();
1947 void PPCInstrInfo::storeRegToStackSlotNoUpd(
1948 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned SrcReg,
1949 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1950 const TargetRegisterInfo *TRI) const {
1951 MachineFunction &MF = *MBB.getParent();
1952 SmallVector<MachineInstr *, 4> NewMIs;
1954 StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs);
1956 for (MachineInstr *NewMI : NewMIs)
1957 MBB.insert(MI, NewMI);
1959 const MachineFrameInfo &MFI = MF.getFrameInfo();
1960 MachineMemOperand *MMO = MF.getMachineMemOperand(
1961 MachinePointerInfo::getFixedStack(MF, FrameIdx),
1962 MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
1963 MFI.getObjectAlign(FrameIdx));
1964 NewMIs.back()->addMemOperand(MF, MMO);
1967 void PPCInstrInfo::storeRegToStackSlot(
1968 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
1969 bool isKill, int FrameIdx, const TargetRegisterClass *RC,
1970 const TargetRegisterInfo *TRI, Register VReg) const {
1971 // We need to avoid a situation in which the value from a VRRC register is
1972 // spilled using an Altivec instruction and reloaded into a VSRC register
1973 // using a VSX instruction. The issue with this is that the VSX
1974 // load/store instructions swap the doublewords in the vector and the Altivec
1975 // ones don't. The register classes on the spill/reload may be different if
1976 // the register is defined using an Altivec instruction and is then used by a
1977 // VSX instruction.
1978 RC = updatedRC(RC);
1979 storeRegToStackSlotNoUpd(MBB, MI, SrcReg, isKill, FrameIdx, RC, TRI);
1982 void PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
1983 unsigned DestReg, int FrameIdx,
1984 const TargetRegisterClass *RC,
1985 SmallVectorImpl<MachineInstr *> &NewMIs)
1986 const {
1987 unsigned Opcode = getLoadOpcodeForSpill(RC);
1988 NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Opcode), DestReg),
1989 FrameIdx));
1992 void PPCInstrInfo::loadRegFromStackSlotNoUpd(
1993 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg,
1994 int FrameIdx, const TargetRegisterClass *RC,
1995 const TargetRegisterInfo *TRI) const {
1996 MachineFunction &MF = *MBB.getParent();
1997 SmallVector<MachineInstr*, 4> NewMIs;
1998 DebugLoc DL;
1999 if (MI != MBB.end()) DL = MI->getDebugLoc();
2001 LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
2003 for (MachineInstr *NewMI : NewMIs)
2004 MBB.insert(MI, NewMI);
2006 const MachineFrameInfo &MFI = MF.getFrameInfo();
2007 MachineMemOperand *MMO = MF.getMachineMemOperand(
2008 MachinePointerInfo::getFixedStack(MF, FrameIdx),
2009 MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
2010 MFI.getObjectAlign(FrameIdx));
2011 NewMIs.back()->addMemOperand(MF, MMO);
2014 void PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
2015 MachineBasicBlock::iterator MI,
2016 Register DestReg, int FrameIdx,
2017 const TargetRegisterClass *RC,
2018 const TargetRegisterInfo *TRI,
2019 Register VReg) const {
2020 // We need to avoid a situation in which the value from a VRRC register is
2021 // spilled using an Altivec instruction and reloaded into a VSRC register
2022 // using a VSX instruction. The issue with this is that the VSX
2023 // load/store instructions swap the doublewords in the vector and the Altivec
2024 // ones don't. The register classes on the spill/reload may be different if
2025 // the register is defined using an Altivec instruction and is then used by a
2026 // VSX instruction.
2027 RC = updatedRC(RC);
2029 loadRegFromStackSlotNoUpd(MBB, MI, DestReg, FrameIdx, RC, TRI);
2032 bool PPCInstrInfo::
2033 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
2034 assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
2035 if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR)
2036 Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0);
2037 else
2038 // Leave the CR# the same, but invert the condition.
2039 Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
2040 return false;
2043 // For some instructions, it is legal to fold ZERO into the RA register field.
2044 // This function performs that fold by replacing the operand with PPC::ZERO,
2045 // it does not consider whether the load immediate zero is no longer in use.
2046 bool PPCInstrInfo::onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2047 Register Reg) const {
2048 // A zero immediate should always be loaded with a single li.
2049 unsigned DefOpc = DefMI.getOpcode();
2050 if (DefOpc != PPC::LI && DefOpc != PPC::LI8)
2051 return false;
2052 if (!DefMI.getOperand(1).isImm())
2053 return false;
2054 if (DefMI.getOperand(1).getImm() != 0)
2055 return false;
2057 // Note that we cannot here invert the arguments of an isel in order to fold
2058 // a ZERO into what is presented as the second argument. All we have here
2059 // is the condition bit, and that might come from a CR-logical bit operation.
2061 const MCInstrDesc &UseMCID = UseMI.getDesc();
2063 // Only fold into real machine instructions.
2064 if (UseMCID.isPseudo())
2065 return false;
2067 // We need to find which of the User's operands is to be folded, that will be
2068 // the operand that matches the given register ID.
2069 unsigned UseIdx;
2070 for (UseIdx = 0; UseIdx < UseMI.getNumOperands(); ++UseIdx)
2071 if (UseMI.getOperand(UseIdx).isReg() &&
2072 UseMI.getOperand(UseIdx).getReg() == Reg)
2073 break;
2075 assert(UseIdx < UseMI.getNumOperands() && "Cannot find Reg in UseMI");
2076 assert(UseIdx < UseMCID.getNumOperands() && "No operand description for Reg");
2078 const MCOperandInfo *UseInfo = &UseMCID.operands()[UseIdx];
2080 // We can fold the zero if this register requires a GPRC_NOR0/G8RC_NOX0
2081 // register (which might also be specified as a pointer class kind).
2082 if (UseInfo->isLookupPtrRegClass()) {
2083 if (UseInfo->RegClass /* Kind */ != 1)
2084 return false;
2085 } else {
2086 if (UseInfo->RegClass != PPC::GPRC_NOR0RegClassID &&
2087 UseInfo->RegClass != PPC::G8RC_NOX0RegClassID)
2088 return false;
2091 // Make sure this is not tied to an output register (or otherwise
2092 // constrained). This is true for ST?UX registers, for example, which
2093 // are tied to their output registers.
2094 if (UseInfo->Constraints != 0)
2095 return false;
2097 MCRegister ZeroReg;
2098 if (UseInfo->isLookupPtrRegClass()) {
2099 bool isPPC64 = Subtarget.isPPC64();
2100 ZeroReg = isPPC64 ? PPC::ZERO8 : PPC::ZERO;
2101 } else {
2102 ZeroReg = UseInfo->RegClass == PPC::G8RC_NOX0RegClassID ?
2103 PPC::ZERO8 : PPC::ZERO;
2106 LLVM_DEBUG(dbgs() << "Folded immediate zero for: ");
2107 LLVM_DEBUG(UseMI.dump());
2108 UseMI.getOperand(UseIdx).setReg(ZeroReg);
2109 LLVM_DEBUG(dbgs() << "Into: ");
2110 LLVM_DEBUG(UseMI.dump());
2111 return true;
2114 // Folds zero into instructions which have a load immediate zero as an operand
2115 // but also recognize zero as immediate zero. If the definition of the load
2116 // has no more users it is deleted.
2117 bool PPCInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
2118 Register Reg, MachineRegisterInfo *MRI) const {
2119 bool Changed = onlyFoldImmediate(UseMI, DefMI, Reg);
2120 if (MRI->use_nodbg_empty(Reg))
2121 DefMI.eraseFromParent();
2122 return Changed;
2125 static bool MBBDefinesCTR(MachineBasicBlock &MBB) {
2126 for (MachineInstr &MI : MBB)
2127 if (MI.definesRegister(PPC::CTR, /*TRI=*/nullptr) ||
2128 MI.definesRegister(PPC::CTR8, /*TRI=*/nullptr))
2129 return true;
2130 return false;
2133 // We should make sure that, if we're going to predicate both sides of a
2134 // condition (a diamond), that both sides don't define the counter register. We
2135 // can predicate counter-decrement-based branches, but while that predicates
2136 // the branching, it does not predicate the counter decrement. If we tried to
2137 // merge the triangle into one predicated block, we'd decrement the counter
2138 // twice.
2139 bool PPCInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
2140 unsigned NumT, unsigned ExtraT,
2141 MachineBasicBlock &FMBB,
2142 unsigned NumF, unsigned ExtraF,
2143 BranchProbability Probability) const {
2144 return !(MBBDefinesCTR(TMBB) && MBBDefinesCTR(FMBB));
2148 bool PPCInstrInfo::isPredicated(const MachineInstr &MI) const {
2149 // The predicated branches are identified by their type, not really by the
2150 // explicit presence of a predicate. Furthermore, some of them can be
2151 // predicated more than once. Because if conversion won't try to predicate
2152 // any instruction which already claims to be predicated (by returning true
2153 // here), always return false. In doing so, we let isPredicable() be the
2154 // final word on whether not the instruction can be (further) predicated.
2156 return false;
2159 bool PPCInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2160 const MachineBasicBlock *MBB,
2161 const MachineFunction &MF) const {
2162 switch (MI.getOpcode()) {
2163 default:
2164 break;
2165 // Set MFFS and MTFSF as scheduling boundary to avoid unexpected code motion
2166 // across them, since some FP operations may change content of FPSCR.
2167 // TODO: Model FPSCR in PPC instruction definitions and remove the workaround
2168 case PPC::MFFS:
2169 case PPC::MTFSF:
2170 case PPC::FENCE:
2171 return true;
2173 return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF);
2176 bool PPCInstrInfo::PredicateInstruction(MachineInstr &MI,
2177 ArrayRef<MachineOperand> Pred) const {
2178 unsigned OpC = MI.getOpcode();
2179 if (OpC == PPC::BLR || OpC == PPC::BLR8) {
2180 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2181 bool isPPC64 = Subtarget.isPPC64();
2182 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZLR8 : PPC::BDNZLR)
2183 : (isPPC64 ? PPC::BDZLR8 : PPC::BDZLR)));
2184 // Need add Def and Use for CTR implicit operand.
2185 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2186 .addReg(Pred[1].getReg(), RegState::Implicit)
2187 .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2188 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2189 MI.setDesc(get(PPC::BCLR));
2190 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2191 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2192 MI.setDesc(get(PPC::BCLRn));
2193 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2194 } else {
2195 MI.setDesc(get(PPC::BCCLR));
2196 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2197 .addImm(Pred[0].getImm())
2198 .add(Pred[1]);
2201 return true;
2202 } else if (OpC == PPC::B) {
2203 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR) {
2204 bool isPPC64 = Subtarget.isPPC64();
2205 MI.setDesc(get(Pred[0].getImm() ? (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ)
2206 : (isPPC64 ? PPC::BDZ8 : PPC::BDZ)));
2207 // Need add Def and Use for CTR implicit operand.
2208 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2209 .addReg(Pred[1].getReg(), RegState::Implicit)
2210 .addReg(Pred[1].getReg(), RegState::ImplicitDefine);
2211 } else if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2212 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2213 MI.removeOperand(0);
2215 MI.setDesc(get(PPC::BC));
2216 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2217 .add(Pred[1])
2218 .addMBB(MBB);
2219 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2220 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2221 MI.removeOperand(0);
2223 MI.setDesc(get(PPC::BCn));
2224 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2225 .add(Pred[1])
2226 .addMBB(MBB);
2227 } else {
2228 MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
2229 MI.removeOperand(0);
2231 MI.setDesc(get(PPC::BCC));
2232 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2233 .addImm(Pred[0].getImm())
2234 .add(Pred[1])
2235 .addMBB(MBB);
2238 return true;
2239 } else if (OpC == PPC::BCTR || OpC == PPC::BCTR8 || OpC == PPC::BCTRL ||
2240 OpC == PPC::BCTRL8 || OpC == PPC::BCTRL_RM ||
2241 OpC == PPC::BCTRL8_RM) {
2242 if (Pred[1].getReg() == PPC::CTR8 || Pred[1].getReg() == PPC::CTR)
2243 llvm_unreachable("Cannot predicate bctr[l] on the ctr register");
2245 bool setLR = OpC == PPC::BCTRL || OpC == PPC::BCTRL8 ||
2246 OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM;
2247 bool isPPC64 = Subtarget.isPPC64();
2249 if (Pred[0].getImm() == PPC::PRED_BIT_SET) {
2250 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8 : PPC::BCCTR8)
2251 : (setLR ? PPC::BCCTRL : PPC::BCCTR)));
2252 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2253 } else if (Pred[0].getImm() == PPC::PRED_BIT_UNSET) {
2254 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCTRL8n : PPC::BCCTR8n)
2255 : (setLR ? PPC::BCCTRLn : PPC::BCCTRn)));
2256 MachineInstrBuilder(*MI.getParent()->getParent(), MI).add(Pred[1]);
2257 } else {
2258 MI.setDesc(get(isPPC64 ? (setLR ? PPC::BCCCTRL8 : PPC::BCCCTR8)
2259 : (setLR ? PPC::BCCCTRL : PPC::BCCCTR)));
2260 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2261 .addImm(Pred[0].getImm())
2262 .add(Pred[1]);
2265 // Need add Def and Use for LR implicit operand.
2266 if (setLR)
2267 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2268 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::Implicit)
2269 .addReg(isPPC64 ? PPC::LR8 : PPC::LR, RegState::ImplicitDefine);
2270 if (OpC == PPC::BCTRL_RM || OpC == PPC::BCTRL8_RM)
2271 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
2272 .addReg(PPC::RM, RegState::ImplicitDefine);
2274 return true;
2277 return false;
2280 bool PPCInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
2281 ArrayRef<MachineOperand> Pred2) const {
2282 assert(Pred1.size() == 2 && "Invalid PPC first predicate");
2283 assert(Pred2.size() == 2 && "Invalid PPC second predicate");
2285 if (Pred1[1].getReg() == PPC::CTR8 || Pred1[1].getReg() == PPC::CTR)
2286 return false;
2287 if (Pred2[1].getReg() == PPC::CTR8 || Pred2[1].getReg() == PPC::CTR)
2288 return false;
2290 // P1 can only subsume P2 if they test the same condition register.
2291 if (Pred1[1].getReg() != Pred2[1].getReg())
2292 return false;
2294 PPC::Predicate P1 = (PPC::Predicate) Pred1[0].getImm();
2295 PPC::Predicate P2 = (PPC::Predicate) Pred2[0].getImm();
2297 if (P1 == P2)
2298 return true;
2300 // Does P1 subsume P2, e.g. GE subsumes GT.
2301 if (P1 == PPC::PRED_LE &&
2302 (P2 == PPC::PRED_LT || P2 == PPC::PRED_EQ))
2303 return true;
2304 if (P1 == PPC::PRED_GE &&
2305 (P2 == PPC::PRED_GT || P2 == PPC::PRED_EQ))
2306 return true;
2308 return false;
2311 bool PPCInstrInfo::ClobbersPredicate(MachineInstr &MI,
2312 std::vector<MachineOperand> &Pred,
2313 bool SkipDead) const {
2314 // Note: At the present time, the contents of Pred from this function is
2315 // unused by IfConversion. This implementation follows ARM by pushing the
2316 // CR-defining operand. Because the 'DZ' and 'DNZ' count as types of
2317 // predicate, instructions defining CTR or CTR8 are also included as
2318 // predicate-defining instructions.
2320 const TargetRegisterClass *RCs[] =
2321 { &PPC::CRRCRegClass, &PPC::CRBITRCRegClass,
2322 &PPC::CTRRCRegClass, &PPC::CTRRC8RegClass };
2324 bool Found = false;
2325 for (const MachineOperand &MO : MI.operands()) {
2326 for (unsigned c = 0; c < std::size(RCs) && !Found; ++c) {
2327 const TargetRegisterClass *RC = RCs[c];
2328 if (MO.isReg()) {
2329 if (MO.isDef() && RC->contains(MO.getReg())) {
2330 Pred.push_back(MO);
2331 Found = true;
2333 } else if (MO.isRegMask()) {
2334 for (MCPhysReg R : *RC)
2335 if (MO.clobbersPhysReg(R)) {
2336 Pred.push_back(MO);
2337 Found = true;
2343 return Found;
2346 bool PPCInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2347 Register &SrcReg2, int64_t &Mask,
2348 int64_t &Value) const {
2349 unsigned Opc = MI.getOpcode();
2351 switch (Opc) {
2352 default: return false;
2353 case PPC::CMPWI:
2354 case PPC::CMPLWI:
2355 case PPC::CMPDI:
2356 case PPC::CMPLDI:
2357 SrcReg = MI.getOperand(1).getReg();
2358 SrcReg2 = 0;
2359 Value = MI.getOperand(2).getImm();
2360 Mask = 0xFFFF;
2361 return true;
2362 case PPC::CMPW:
2363 case PPC::CMPLW:
2364 case PPC::CMPD:
2365 case PPC::CMPLD:
2366 case PPC::FCMPUS:
2367 case PPC::FCMPUD:
2368 SrcReg = MI.getOperand(1).getReg();
2369 SrcReg2 = MI.getOperand(2).getReg();
2370 Value = 0;
2371 Mask = 0;
2372 return true;
2376 bool PPCInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
2377 Register SrcReg2, int64_t Mask,
2378 int64_t Value,
2379 const MachineRegisterInfo *MRI) const {
2380 if (DisableCmpOpt)
2381 return false;
2383 int OpC = CmpInstr.getOpcode();
2384 Register CRReg = CmpInstr.getOperand(0).getReg();
2386 // FP record forms set CR1 based on the exception status bits, not a
2387 // comparison with zero.
2388 if (OpC == PPC::FCMPUS || OpC == PPC::FCMPUD)
2389 return false;
2391 const TargetRegisterInfo *TRI = &getRegisterInfo();
2392 // The record forms set the condition register based on a signed comparison
2393 // with zero (so says the ISA manual). This is not as straightforward as it
2394 // seems, however, because this is always a 64-bit comparison on PPC64, even
2395 // for instructions that are 32-bit in nature (like slw for example).
2396 // So, on PPC32, for unsigned comparisons, we can use the record forms only
2397 // for equality checks (as those don't depend on the sign). On PPC64,
2398 // we are restricted to equality for unsigned 64-bit comparisons and for
2399 // signed 32-bit comparisons the applicability is more restricted.
2400 bool isPPC64 = Subtarget.isPPC64();
2401 bool is32BitSignedCompare = OpC == PPC::CMPWI || OpC == PPC::CMPW;
2402 bool is32BitUnsignedCompare = OpC == PPC::CMPLWI || OpC == PPC::CMPLW;
2403 bool is64BitUnsignedCompare = OpC == PPC::CMPLDI || OpC == PPC::CMPLD;
2405 // Look through copies unless that gets us to a physical register.
2406 Register ActualSrc = TRI->lookThruCopyLike(SrcReg, MRI);
2407 if (ActualSrc.isVirtual())
2408 SrcReg = ActualSrc;
2410 // Get the unique definition of SrcReg.
2411 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2412 if (!MI) return false;
2414 bool equalityOnly = false;
2415 bool noSub = false;
2416 if (isPPC64) {
2417 if (is32BitSignedCompare) {
2418 // We can perform this optimization only if SrcReg is sign-extending.
2419 if (isSignExtended(SrcReg, MRI))
2420 noSub = true;
2421 else
2422 return false;
2423 } else if (is32BitUnsignedCompare) {
2424 // We can perform this optimization, equality only, if SrcReg is
2425 // zero-extending.
2426 if (isZeroExtended(SrcReg, MRI)) {
2427 noSub = true;
2428 equalityOnly = true;
2429 } else
2430 return false;
2431 } else
2432 equalityOnly = is64BitUnsignedCompare;
2433 } else
2434 equalityOnly = is32BitUnsignedCompare;
2436 if (equalityOnly) {
2437 // We need to check the uses of the condition register in order to reject
2438 // non-equality comparisons.
2439 for (MachineRegisterInfo::use_instr_iterator
2440 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2441 I != IE; ++I) {
2442 MachineInstr *UseMI = &*I;
2443 if (UseMI->getOpcode() == PPC::BCC) {
2444 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2445 unsigned PredCond = PPC::getPredicateCondition(Pred);
2446 // We ignore hint bits when checking for non-equality comparisons.
2447 if (PredCond != PPC::PRED_EQ && PredCond != PPC::PRED_NE)
2448 return false;
2449 } else if (UseMI->getOpcode() == PPC::ISEL ||
2450 UseMI->getOpcode() == PPC::ISEL8) {
2451 unsigned SubIdx = UseMI->getOperand(3).getSubReg();
2452 if (SubIdx != PPC::sub_eq)
2453 return false;
2454 } else
2455 return false;
2459 MachineBasicBlock::iterator I = CmpInstr;
2461 // Scan forward to find the first use of the compare.
2462 for (MachineBasicBlock::iterator EL = CmpInstr.getParent()->end(); I != EL;
2463 ++I) {
2464 bool FoundUse = false;
2465 for (MachineRegisterInfo::use_instr_iterator
2466 J = MRI->use_instr_begin(CRReg), JE = MRI->use_instr_end();
2467 J != JE; ++J)
2468 if (&*J == &*I) {
2469 FoundUse = true;
2470 break;
2473 if (FoundUse)
2474 break;
2477 SmallVector<std::pair<MachineOperand*, PPC::Predicate>, 4> PredsToUpdate;
2478 SmallVector<std::pair<MachineOperand*, unsigned>, 4> SubRegsToUpdate;
2480 // There are two possible candidates which can be changed to set CR[01].
2481 // One is MI, the other is a SUB instruction.
2482 // For CMPrr(r1,r2), we are looking for SUB(r1,r2) or SUB(r2,r1).
2483 MachineInstr *Sub = nullptr;
2484 if (SrcReg2 != 0)
2485 // MI is not a candidate for CMPrr.
2486 MI = nullptr;
2487 // FIXME: Conservatively refuse to convert an instruction which isn't in the
2488 // same BB as the comparison. This is to allow the check below to avoid calls
2489 // (and other explicit clobbers); instead we should really check for these
2490 // more explicitly (in at least a few predecessors).
2491 else if (MI->getParent() != CmpInstr.getParent())
2492 return false;
2493 else if (Value != 0) {
2494 // The record-form instructions set CR bit based on signed comparison
2495 // against 0. We try to convert a compare against 1 or -1 into a compare
2496 // against 0 to exploit record-form instructions. For example, we change
2497 // the condition "greater than -1" into "greater than or equal to 0"
2498 // and "less than 1" into "less than or equal to 0".
2500 // Since we optimize comparison based on a specific branch condition,
2501 // we don't optimize if condition code is used by more than once.
2502 if (equalityOnly || !MRI->hasOneUse(CRReg))
2503 return false;
2505 MachineInstr *UseMI = &*MRI->use_instr_begin(CRReg);
2506 if (UseMI->getOpcode() != PPC::BCC)
2507 return false;
2509 PPC::Predicate Pred = (PPC::Predicate)UseMI->getOperand(0).getImm();
2510 unsigned PredCond = PPC::getPredicateCondition(Pred);
2511 unsigned PredHint = PPC::getPredicateHint(Pred);
2512 int16_t Immed = (int16_t)Value;
2514 // When modifying the condition in the predicate, we propagate hint bits
2515 // from the original predicate to the new one.
2516 if (Immed == -1 && PredCond == PPC::PRED_GT)
2517 // We convert "greater than -1" into "greater than or equal to 0",
2518 // since we are assuming signed comparison by !equalityOnly
2519 Pred = PPC::getPredicate(PPC::PRED_GE, PredHint);
2520 else if (Immed == -1 && PredCond == PPC::PRED_LE)
2521 // We convert "less than or equal to -1" into "less than 0".
2522 Pred = PPC::getPredicate(PPC::PRED_LT, PredHint);
2523 else if (Immed == 1 && PredCond == PPC::PRED_LT)
2524 // We convert "less than 1" into "less than or equal to 0".
2525 Pred = PPC::getPredicate(PPC::PRED_LE, PredHint);
2526 else if (Immed == 1 && PredCond == PPC::PRED_GE)
2527 // We convert "greater than or equal to 1" into "greater than 0".
2528 Pred = PPC::getPredicate(PPC::PRED_GT, PredHint);
2529 else
2530 return false;
2532 // Convert the comparison and its user to a compare against zero with the
2533 // appropriate predicate on the branch. Zero comparison might provide
2534 // optimization opportunities post-RA (see optimization in
2535 // PPCPreEmitPeephole.cpp).
2536 UseMI->getOperand(0).setImm(Pred);
2537 CmpInstr.getOperand(2).setImm(0);
2540 // Search for Sub.
2541 --I;
2543 // Get ready to iterate backward from CmpInstr.
2544 MachineBasicBlock::iterator E = MI, B = CmpInstr.getParent()->begin();
2546 for (; I != E && !noSub; --I) {
2547 const MachineInstr &Instr = *I;
2548 unsigned IOpC = Instr.getOpcode();
2550 if (&*I != &CmpInstr && (Instr.modifiesRegister(PPC::CR0, TRI) ||
2551 Instr.readsRegister(PPC::CR0, TRI)))
2552 // This instruction modifies or uses the record condition register after
2553 // the one we want to change. While we could do this transformation, it
2554 // would likely not be profitable. This transformation removes one
2555 // instruction, and so even forcing RA to generate one move probably
2556 // makes it unprofitable.
2557 return false;
2559 // Check whether CmpInstr can be made redundant by the current instruction.
2560 if ((OpC == PPC::CMPW || OpC == PPC::CMPLW ||
2561 OpC == PPC::CMPD || OpC == PPC::CMPLD) &&
2562 (IOpC == PPC::SUBF || IOpC == PPC::SUBF8) &&
2563 ((Instr.getOperand(1).getReg() == SrcReg &&
2564 Instr.getOperand(2).getReg() == SrcReg2) ||
2565 (Instr.getOperand(1).getReg() == SrcReg2 &&
2566 Instr.getOperand(2).getReg() == SrcReg))) {
2567 Sub = &*I;
2568 break;
2571 if (I == B)
2572 // The 'and' is below the comparison instruction.
2573 return false;
2576 // Return false if no candidates exist.
2577 if (!MI && !Sub)
2578 return false;
2580 // The single candidate is called MI.
2581 if (!MI) MI = Sub;
2583 int NewOpC = -1;
2584 int MIOpC = MI->getOpcode();
2585 if (MIOpC == PPC::ANDI_rec || MIOpC == PPC::ANDI8_rec ||
2586 MIOpC == PPC::ANDIS_rec || MIOpC == PPC::ANDIS8_rec)
2587 NewOpC = MIOpC;
2588 else {
2589 NewOpC = PPC::getRecordFormOpcode(MIOpC);
2590 if (NewOpC == -1 && PPC::getNonRecordFormOpcode(MIOpC) != -1)
2591 NewOpC = MIOpC;
2594 // FIXME: On the non-embedded POWER architectures, only some of the record
2595 // forms are fast, and we should use only the fast ones.
2597 // The defining instruction has a record form (or is already a record
2598 // form). It is possible, however, that we'll need to reverse the condition
2599 // code of the users.
2600 if (NewOpC == -1)
2601 return false;
2603 // This transformation should not be performed if `nsw` is missing and is not
2604 // `equalityOnly` comparison. Since if there is overflow, sub_lt, sub_gt in
2605 // CRReg do not reflect correct order. If `equalityOnly` is true, sub_eq in
2606 // CRReg can reflect if compared values are equal, this optz is still valid.
2607 if (!equalityOnly && (NewOpC == PPC::SUBF_rec || NewOpC == PPC::SUBF8_rec) &&
2608 Sub && !Sub->getFlag(MachineInstr::NoSWrap))
2609 return false;
2611 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based on CMP
2612 // needs to be updated to be based on SUB. Push the condition code
2613 // operands to OperandsToUpdate. If it is safe to remove CmpInstr, the
2614 // condition code of these operands will be modified.
2615 // Here, Value == 0 means we haven't converted comparison against 1 or -1 to
2616 // comparison against 0, which may modify predicate.
2617 bool ShouldSwap = false;
2618 if (Sub && Value == 0) {
2619 ShouldSwap = SrcReg2 != 0 && Sub->getOperand(1).getReg() == SrcReg2 &&
2620 Sub->getOperand(2).getReg() == SrcReg;
2622 // The operands to subf are the opposite of sub, so only in the fixed-point
2623 // case, invert the order.
2624 ShouldSwap = !ShouldSwap;
2627 if (ShouldSwap)
2628 for (MachineRegisterInfo::use_instr_iterator
2629 I = MRI->use_instr_begin(CRReg), IE = MRI->use_instr_end();
2630 I != IE; ++I) {
2631 MachineInstr *UseMI = &*I;
2632 if (UseMI->getOpcode() == PPC::BCC) {
2633 PPC::Predicate Pred = (PPC::Predicate) UseMI->getOperand(0).getImm();
2634 unsigned PredCond = PPC::getPredicateCondition(Pred);
2635 assert((!equalityOnly ||
2636 PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE) &&
2637 "Invalid predicate for equality-only optimization");
2638 (void)PredCond; // To suppress warning in release build.
2639 PredsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(0)),
2640 PPC::getSwappedPredicate(Pred)));
2641 } else if (UseMI->getOpcode() == PPC::ISEL ||
2642 UseMI->getOpcode() == PPC::ISEL8) {
2643 unsigned NewSubReg = UseMI->getOperand(3).getSubReg();
2644 assert((!equalityOnly || NewSubReg == PPC::sub_eq) &&
2645 "Invalid CR bit for equality-only optimization");
2647 if (NewSubReg == PPC::sub_lt)
2648 NewSubReg = PPC::sub_gt;
2649 else if (NewSubReg == PPC::sub_gt)
2650 NewSubReg = PPC::sub_lt;
2652 SubRegsToUpdate.push_back(std::make_pair(&(UseMI->getOperand(3)),
2653 NewSubReg));
2654 } else // We need to abort on a user we don't understand.
2655 return false;
2657 assert(!(Value != 0 && ShouldSwap) &&
2658 "Non-zero immediate support and ShouldSwap"
2659 "may conflict in updating predicate");
2661 // Create a new virtual register to hold the value of the CR set by the
2662 // record-form instruction. If the instruction was not previously in
2663 // record form, then set the kill flag on the CR.
2664 CmpInstr.eraseFromParent();
2666 MachineBasicBlock::iterator MII = MI;
2667 BuildMI(*MI->getParent(), std::next(MII), MI->getDebugLoc(),
2668 get(TargetOpcode::COPY), CRReg)
2669 .addReg(PPC::CR0, MIOpC != NewOpC ? RegState::Kill : 0);
2671 // Even if CR0 register were dead before, it is alive now since the
2672 // instruction we just built uses it.
2673 MI->clearRegisterDeads(PPC::CR0);
2675 if (MIOpC != NewOpC) {
2676 // We need to be careful here: we're replacing one instruction with
2677 // another, and we need to make sure that we get all of the right
2678 // implicit uses and defs. On the other hand, the caller may be holding
2679 // an iterator to this instruction, and so we can't delete it (this is
2680 // specifically the case if this is the instruction directly after the
2681 // compare).
2683 // Rotates are expensive instructions. If we're emitting a record-form
2684 // rotate that can just be an andi/andis, we should just emit that.
2685 if (MIOpC == PPC::RLWINM || MIOpC == PPC::RLWINM8) {
2686 Register GPRRes = MI->getOperand(0).getReg();
2687 int64_t SH = MI->getOperand(2).getImm();
2688 int64_t MB = MI->getOperand(3).getImm();
2689 int64_t ME = MI->getOperand(4).getImm();
2690 // We can only do this if both the start and end of the mask are in the
2691 // same halfword.
2692 bool MBInLoHWord = MB >= 16;
2693 bool MEInLoHWord = ME >= 16;
2694 uint64_t Mask = ~0LLU;
2696 if (MB <= ME && MBInLoHWord == MEInLoHWord && SH == 0) {
2697 Mask = ((1LLU << (32 - MB)) - 1) & ~((1LLU << (31 - ME)) - 1);
2698 // The mask value needs to shift right 16 if we're emitting andis.
2699 Mask >>= MBInLoHWord ? 0 : 16;
2700 NewOpC = MIOpC == PPC::RLWINM
2701 ? (MBInLoHWord ? PPC::ANDI_rec : PPC::ANDIS_rec)
2702 : (MBInLoHWord ? PPC::ANDI8_rec : PPC::ANDIS8_rec);
2703 } else if (MRI->use_empty(GPRRes) && (ME == 31) &&
2704 (ME - MB + 1 == SH) && (MB >= 16)) {
2705 // If we are rotating by the exact number of bits as are in the mask
2706 // and the mask is in the least significant bits of the register,
2707 // that's just an andis. (as long as the GPR result has no uses).
2708 Mask = ((1LLU << 32) - 1) & ~((1LLU << (32 - SH)) - 1);
2709 Mask >>= 16;
2710 NewOpC = MIOpC == PPC::RLWINM ? PPC::ANDIS_rec : PPC::ANDIS8_rec;
2712 // If we've set the mask, we can transform.
2713 if (Mask != ~0LLU) {
2714 MI->removeOperand(4);
2715 MI->removeOperand(3);
2716 MI->getOperand(2).setImm(Mask);
2717 NumRcRotatesConvertedToRcAnd++;
2719 } else if (MIOpC == PPC::RLDICL && MI->getOperand(2).getImm() == 0) {
2720 int64_t MB = MI->getOperand(3).getImm();
2721 if (MB >= 48) {
2722 uint64_t Mask = (1LLU << (63 - MB + 1)) - 1;
2723 NewOpC = PPC::ANDI8_rec;
2724 MI->removeOperand(3);
2725 MI->getOperand(2).setImm(Mask);
2726 NumRcRotatesConvertedToRcAnd++;
2730 const MCInstrDesc &NewDesc = get(NewOpC);
2731 MI->setDesc(NewDesc);
2733 for (MCPhysReg ImpDef : NewDesc.implicit_defs()) {
2734 if (!MI->definesRegister(ImpDef, /*TRI=*/nullptr)) {
2735 MI->addOperand(*MI->getParent()->getParent(),
2736 MachineOperand::CreateReg(ImpDef, true, true));
2739 for (MCPhysReg ImpUse : NewDesc.implicit_uses()) {
2740 if (!MI->readsRegister(ImpUse, /*TRI=*/nullptr)) {
2741 MI->addOperand(*MI->getParent()->getParent(),
2742 MachineOperand::CreateReg(ImpUse, false, true));
2746 assert(MI->definesRegister(PPC::CR0, /*TRI=*/nullptr) &&
2747 "Record-form instruction does not define cr0?");
2749 // Modify the condition code of operands in OperandsToUpdate.
2750 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
2751 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
2752 for (unsigned i = 0, e = PredsToUpdate.size(); i < e; i++)
2753 PredsToUpdate[i].first->setImm(PredsToUpdate[i].second);
2755 for (unsigned i = 0, e = SubRegsToUpdate.size(); i < e; i++)
2756 SubRegsToUpdate[i].first->setSubReg(SubRegsToUpdate[i].second);
2758 return true;
2761 bool PPCInstrInfo::optimizeCmpPostRA(MachineInstr &CmpMI) const {
2762 MachineRegisterInfo *MRI = &CmpMI.getParent()->getParent()->getRegInfo();
2763 if (MRI->isSSA())
2764 return false;
2766 Register SrcReg, SrcReg2;
2767 int64_t CmpMask, CmpValue;
2768 if (!analyzeCompare(CmpMI, SrcReg, SrcReg2, CmpMask, CmpValue))
2769 return false;
2771 // Try to optimize the comparison against 0.
2772 if (CmpValue || !CmpMask || SrcReg2)
2773 return false;
2775 // The record forms set the condition register based on a signed comparison
2776 // with zero (see comments in optimizeCompareInstr). Since we can't do the
2777 // equality checks in post-RA, we are more restricted on a unsigned
2778 // comparison.
2779 unsigned Opc = CmpMI.getOpcode();
2780 if (Opc == PPC::CMPLWI || Opc == PPC::CMPLDI)
2781 return false;
2783 // The record forms are always based on a 64-bit comparison on PPC64
2784 // (similary, a 32-bit comparison on PPC32), while the CMPWI is a 32-bit
2785 // comparison. Since we can't do the equality checks in post-RA, we bail out
2786 // the case.
2787 if (Subtarget.isPPC64() && Opc == PPC::CMPWI)
2788 return false;
2790 // CmpMI can't be deleted if it has implicit def.
2791 if (CmpMI.hasImplicitDef())
2792 return false;
2794 bool SrcRegHasOtherUse = false;
2795 MachineInstr *SrcMI = getDefMIPostRA(SrcReg, CmpMI, SrcRegHasOtherUse);
2796 if (!SrcMI || !SrcMI->definesRegister(SrcReg, /*TRI=*/nullptr))
2797 return false;
2799 MachineOperand RegMO = CmpMI.getOperand(0);
2800 Register CRReg = RegMO.getReg();
2801 if (CRReg != PPC::CR0)
2802 return false;
2804 // Make sure there is no def/use of CRReg between SrcMI and CmpMI.
2805 bool SeenUseOfCRReg = false;
2806 bool IsCRRegKilled = false;
2807 if (!isRegElgibleForForwarding(RegMO, *SrcMI, CmpMI, false, IsCRRegKilled,
2808 SeenUseOfCRReg) ||
2809 SrcMI->definesRegister(CRReg, /*TRI=*/nullptr) || SeenUseOfCRReg)
2810 return false;
2812 int SrcMIOpc = SrcMI->getOpcode();
2813 int NewOpC = PPC::getRecordFormOpcode(SrcMIOpc);
2814 if (NewOpC == -1)
2815 return false;
2817 LLVM_DEBUG(dbgs() << "Replace Instr: ");
2818 LLVM_DEBUG(SrcMI->dump());
2820 const MCInstrDesc &NewDesc = get(NewOpC);
2821 SrcMI->setDesc(NewDesc);
2822 MachineInstrBuilder(*SrcMI->getParent()->getParent(), SrcMI)
2823 .addReg(CRReg, RegState::ImplicitDefine);
2824 SrcMI->clearRegisterDeads(CRReg);
2826 assert(SrcMI->definesRegister(PPC::CR0, /*TRI=*/nullptr) &&
2827 "Record-form instruction does not define cr0?");
2829 LLVM_DEBUG(dbgs() << "with: ");
2830 LLVM_DEBUG(SrcMI->dump());
2831 LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
2832 LLVM_DEBUG(CmpMI.dump());
2833 return true;
2836 bool PPCInstrInfo::getMemOperandsWithOffsetWidth(
2837 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
2838 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
2839 const TargetRegisterInfo *TRI) const {
2840 const MachineOperand *BaseOp;
2841 OffsetIsScalable = false;
2842 if (!getMemOperandWithOffsetWidth(LdSt, BaseOp, Offset, Width, TRI))
2843 return false;
2844 BaseOps.push_back(BaseOp);
2845 return true;
2848 static bool isLdStSafeToCluster(const MachineInstr &LdSt,
2849 const TargetRegisterInfo *TRI) {
2850 // If this is a volatile load/store, don't mess with it.
2851 if (LdSt.hasOrderedMemoryRef() || LdSt.getNumExplicitOperands() != 3)
2852 return false;
2854 if (LdSt.getOperand(2).isFI())
2855 return true;
2857 assert(LdSt.getOperand(2).isReg() && "Expected a reg operand.");
2858 // Can't cluster if the instruction modifies the base register
2859 // or it is update form. e.g. ld r2,3(r2)
2860 if (LdSt.modifiesRegister(LdSt.getOperand(2).getReg(), TRI))
2861 return false;
2863 return true;
2866 // Only cluster instruction pair that have the same opcode, and they are
2867 // clusterable according to PowerPC specification.
2868 static bool isClusterableLdStOpcPair(unsigned FirstOpc, unsigned SecondOpc,
2869 const PPCSubtarget &Subtarget) {
2870 switch (FirstOpc) {
2871 default:
2872 return false;
2873 case PPC::STD:
2874 case PPC::STFD:
2875 case PPC::STXSD:
2876 case PPC::DFSTOREf64:
2877 return FirstOpc == SecondOpc;
2878 // PowerPC backend has opcode STW/STW8 for instruction "stw" to deal with
2879 // 32bit and 64bit instruction selection. They are clusterable pair though
2880 // they are different opcode.
2881 case PPC::STW:
2882 case PPC::STW8:
2883 return SecondOpc == PPC::STW || SecondOpc == PPC::STW8;
2887 bool PPCInstrInfo::shouldClusterMemOps(
2888 ArrayRef<const MachineOperand *> BaseOps1, int64_t OpOffset1,
2889 bool OffsetIsScalable1, ArrayRef<const MachineOperand *> BaseOps2,
2890 int64_t OpOffset2, bool OffsetIsScalable2, unsigned ClusterSize,
2891 unsigned NumBytes) const {
2893 assert(BaseOps1.size() == 1 && BaseOps2.size() == 1);
2894 const MachineOperand &BaseOp1 = *BaseOps1.front();
2895 const MachineOperand &BaseOp2 = *BaseOps2.front();
2896 assert((BaseOp1.isReg() || BaseOp1.isFI()) &&
2897 "Only base registers and frame indices are supported.");
2899 // ClusterSize means the number of memory operations that will have been
2900 // clustered if this hook returns true.
2901 // Don't cluster memory op if there are already two ops clustered at least.
2902 if (ClusterSize > 2)
2903 return false;
2905 // Cluster the load/store only when they have the same base
2906 // register or FI.
2907 if ((BaseOp1.isReg() != BaseOp2.isReg()) ||
2908 (BaseOp1.isReg() && BaseOp1.getReg() != BaseOp2.getReg()) ||
2909 (BaseOp1.isFI() && BaseOp1.getIndex() != BaseOp2.getIndex()))
2910 return false;
2912 // Check if the load/store are clusterable according to the PowerPC
2913 // specification.
2914 const MachineInstr &FirstLdSt = *BaseOp1.getParent();
2915 const MachineInstr &SecondLdSt = *BaseOp2.getParent();
2916 unsigned FirstOpc = FirstLdSt.getOpcode();
2917 unsigned SecondOpc = SecondLdSt.getOpcode();
2918 const TargetRegisterInfo *TRI = &getRegisterInfo();
2919 // Cluster the load/store only when they have the same opcode, and they are
2920 // clusterable opcode according to PowerPC specification.
2921 if (!isClusterableLdStOpcPair(FirstOpc, SecondOpc, Subtarget))
2922 return false;
2924 // Can't cluster load/store that have ordered or volatile memory reference.
2925 if (!isLdStSafeToCluster(FirstLdSt, TRI) ||
2926 !isLdStSafeToCluster(SecondLdSt, TRI))
2927 return false;
2929 int64_t Offset1 = 0, Offset2 = 0;
2930 LocationSize Width1 = 0, Width2 = 0;
2931 const MachineOperand *Base1 = nullptr, *Base2 = nullptr;
2932 if (!getMemOperandWithOffsetWidth(FirstLdSt, Base1, Offset1, Width1, TRI) ||
2933 !getMemOperandWithOffsetWidth(SecondLdSt, Base2, Offset2, Width2, TRI) ||
2934 Width1 != Width2)
2935 return false;
2937 assert(Base1 == &BaseOp1 && Base2 == &BaseOp2 &&
2938 "getMemOperandWithOffsetWidth return incorrect base op");
2939 // The caller should already have ordered FirstMemOp/SecondMemOp by offset.
2940 assert(Offset1 <= Offset2 && "Caller should have ordered offsets.");
2941 return Offset1 + (int64_t)Width1.getValue() == Offset2;
2944 /// GetInstSize - Return the number of bytes of code the specified
2945 /// instruction may be. This returns the maximum number of bytes.
2947 unsigned PPCInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
2948 unsigned Opcode = MI.getOpcode();
2950 if (Opcode == PPC::INLINEASM || Opcode == PPC::INLINEASM_BR) {
2951 const MachineFunction *MF = MI.getParent()->getParent();
2952 const char *AsmStr = MI.getOperand(0).getSymbolName();
2953 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
2954 } else if (Opcode == TargetOpcode::STACKMAP) {
2955 StackMapOpers Opers(&MI);
2956 return Opers.getNumPatchBytes();
2957 } else if (Opcode == TargetOpcode::PATCHPOINT) {
2958 PatchPointOpers Opers(&MI);
2959 return Opers.getNumPatchBytes();
2960 } else {
2961 return get(Opcode).getSize();
2965 std::pair<unsigned, unsigned>
2966 PPCInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
2967 // PPC always uses a direct mask.
2968 return std::make_pair(TF, 0u);
2971 ArrayRef<std::pair<unsigned, const char *>>
2972 PPCInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
2973 using namespace PPCII;
2974 static const std::pair<unsigned, const char *> TargetFlags[] = {
2975 {MO_PLT, "ppc-plt"},
2976 {MO_PIC_FLAG, "ppc-pic"},
2977 {MO_PCREL_FLAG, "ppc-pcrel"},
2978 {MO_GOT_FLAG, "ppc-got"},
2979 {MO_PCREL_OPT_FLAG, "ppc-opt-pcrel"},
2980 {MO_TLSGD_FLAG, "ppc-tlsgd"},
2981 {MO_TPREL_FLAG, "ppc-tprel"},
2982 {MO_TLSLDM_FLAG, "ppc-tlsldm"},
2983 {MO_TLSLD_FLAG, "ppc-tlsld"},
2984 {MO_TLSGDM_FLAG, "ppc-tlsgdm"},
2985 {MO_GOT_TLSGD_PCREL_FLAG, "ppc-got-tlsgd-pcrel"},
2986 {MO_GOT_TLSLD_PCREL_FLAG, "ppc-got-tlsld-pcrel"},
2987 {MO_GOT_TPREL_PCREL_FLAG, "ppc-got-tprel-pcrel"},
2988 {MO_LO, "ppc-lo"},
2989 {MO_HA, "ppc-ha"},
2990 {MO_TPREL_LO, "ppc-tprel-lo"},
2991 {MO_TPREL_HA, "ppc-tprel-ha"},
2992 {MO_DTPREL_LO, "ppc-dtprel-lo"},
2993 {MO_TLSLD_LO, "ppc-tlsld-lo"},
2994 {MO_TOC_LO, "ppc-toc-lo"},
2995 {MO_TLS, "ppc-tls"},
2996 {MO_PIC_HA_FLAG, "ppc-ha-pic"},
2997 {MO_PIC_LO_FLAG, "ppc-lo-pic"},
2998 {MO_TPREL_PCREL_FLAG, "ppc-tprel-pcrel"},
2999 {MO_TLS_PCREL_FLAG, "ppc-tls-pcrel"},
3000 {MO_GOT_PCREL_FLAG, "ppc-got-pcrel"},
3002 return ArrayRef(TargetFlags);
3005 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
3006 // The VSX versions have the advantage of a full 64-register target whereas
3007 // the FP ones have the advantage of lower latency and higher throughput. So
3008 // what we are after is using the faster instructions in low register pressure
3009 // situations and using the larger register file in high register pressure
3010 // situations.
3011 bool PPCInstrInfo::expandVSXMemPseudo(MachineInstr &MI) const {
3012 unsigned UpperOpcode, LowerOpcode;
3013 switch (MI.getOpcode()) {
3014 case PPC::DFLOADf32:
3015 UpperOpcode = PPC::LXSSP;
3016 LowerOpcode = PPC::LFS;
3017 break;
3018 case PPC::DFLOADf64:
3019 UpperOpcode = PPC::LXSD;
3020 LowerOpcode = PPC::LFD;
3021 break;
3022 case PPC::DFSTOREf32:
3023 UpperOpcode = PPC::STXSSP;
3024 LowerOpcode = PPC::STFS;
3025 break;
3026 case PPC::DFSTOREf64:
3027 UpperOpcode = PPC::STXSD;
3028 LowerOpcode = PPC::STFD;
3029 break;
3030 case PPC::XFLOADf32:
3031 UpperOpcode = PPC::LXSSPX;
3032 LowerOpcode = PPC::LFSX;
3033 break;
3034 case PPC::XFLOADf64:
3035 UpperOpcode = PPC::LXSDX;
3036 LowerOpcode = PPC::LFDX;
3037 break;
3038 case PPC::XFSTOREf32:
3039 UpperOpcode = PPC::STXSSPX;
3040 LowerOpcode = PPC::STFSX;
3041 break;
3042 case PPC::XFSTOREf64:
3043 UpperOpcode = PPC::STXSDX;
3044 LowerOpcode = PPC::STFDX;
3045 break;
3046 case PPC::LIWAX:
3047 UpperOpcode = PPC::LXSIWAX;
3048 LowerOpcode = PPC::LFIWAX;
3049 break;
3050 case PPC::LIWZX:
3051 UpperOpcode = PPC::LXSIWZX;
3052 LowerOpcode = PPC::LFIWZX;
3053 break;
3054 case PPC::STIWX:
3055 UpperOpcode = PPC::STXSIWX;
3056 LowerOpcode = PPC::STFIWX;
3057 break;
3058 default:
3059 llvm_unreachable("Unknown Operation!");
3062 Register TargetReg = MI.getOperand(0).getReg();
3063 unsigned Opcode;
3064 if ((TargetReg >= PPC::F0 && TargetReg <= PPC::F31) ||
3065 (TargetReg >= PPC::VSL0 && TargetReg <= PPC::VSL31))
3066 Opcode = LowerOpcode;
3067 else
3068 Opcode = UpperOpcode;
3069 MI.setDesc(get(Opcode));
3070 return true;
3073 static bool isAnImmediateOperand(const MachineOperand &MO) {
3074 return MO.isCPI() || MO.isGlobal() || MO.isImm();
3077 bool PPCInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
3078 auto &MBB = *MI.getParent();
3079 auto DL = MI.getDebugLoc();
3081 switch (MI.getOpcode()) {
3082 case PPC::BUILD_UACC: {
3083 MCRegister ACC = MI.getOperand(0).getReg();
3084 MCRegister UACC = MI.getOperand(1).getReg();
3085 if (ACC - PPC::ACC0 != UACC - PPC::UACC0) {
3086 MCRegister SrcVSR = PPC::VSL0 + (UACC - PPC::UACC0) * 4;
3087 MCRegister DstVSR = PPC::VSL0 + (ACC - PPC::ACC0) * 4;
3088 // FIXME: This can easily be improved to look up to the top of the MBB
3089 // to see if the inputs are XXLOR's. If they are and SrcReg is killed,
3090 // we can just re-target any such XXLOR's to DstVSR + offset.
3091 for (int VecNo = 0; VecNo < 4; VecNo++)
3092 BuildMI(MBB, MI, DL, get(PPC::XXLOR), DstVSR + VecNo)
3093 .addReg(SrcVSR + VecNo)
3094 .addReg(SrcVSR + VecNo);
3096 // BUILD_UACC is expanded to 4 copies of the underlying vsx registers.
3097 // So after building the 4 copies, we can replace the BUILD_UACC instruction
3098 // with a NOP.
3099 [[fallthrough]];
3101 case PPC::KILL_PAIR: {
3102 MI.setDesc(get(PPC::UNENCODED_NOP));
3103 MI.removeOperand(1);
3104 MI.removeOperand(0);
3105 return true;
3107 case TargetOpcode::LOAD_STACK_GUARD: {
3108 auto M = MBB.getParent()->getFunction().getParent();
3109 assert(
3110 (Subtarget.isTargetLinux() || M->getStackProtectorGuard() == "tls") &&
3111 "Only Linux target or tls mode are expected to contain "
3112 "LOAD_STACK_GUARD");
3113 int64_t Offset;
3114 if (M->getStackProtectorGuard() == "tls")
3115 Offset = M->getStackProtectorGuardOffset();
3116 else
3117 Offset = Subtarget.isPPC64() ? -0x7010 : -0x7008;
3118 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3119 MI.setDesc(get(Subtarget.isPPC64() ? PPC::LD : PPC::LWZ));
3120 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3121 .addImm(Offset)
3122 .addReg(Reg);
3123 return true;
3125 case PPC::PPCLdFixedAddr: {
3126 assert(Subtarget.getTargetTriple().isOSGlibc() &&
3127 "Only targets with Glibc expected to contain PPCLdFixedAddr");
3128 int64_t Offset = 0;
3129 const unsigned Reg = Subtarget.isPPC64() ? PPC::X13 : PPC::R2;
3130 MI.setDesc(get(PPC::LWZ));
3131 uint64_t FAType = MI.getOperand(1).getImm();
3132 #undef PPC_LNX_FEATURE
3133 #undef PPC_CPU
3134 #define PPC_LNX_DEFINE_OFFSETS
3135 #include "llvm/TargetParser/PPCTargetParser.def"
3136 bool IsLE = Subtarget.isLittleEndian();
3137 bool Is64 = Subtarget.isPPC64();
3138 if (FAType == PPC_FAWORD_HWCAP) {
3139 if (IsLE)
3140 Offset = Is64 ? PPC_HWCAP_OFFSET_LE64 : PPC_HWCAP_OFFSET_LE32;
3141 else
3142 Offset = Is64 ? PPC_HWCAP_OFFSET_BE64 : PPC_HWCAP_OFFSET_BE32;
3143 } else if (FAType == PPC_FAWORD_HWCAP2) {
3144 if (IsLE)
3145 Offset = Is64 ? PPC_HWCAP2_OFFSET_LE64 : PPC_HWCAP2_OFFSET_LE32;
3146 else
3147 Offset = Is64 ? PPC_HWCAP2_OFFSET_BE64 : PPC_HWCAP2_OFFSET_BE32;
3148 } else if (FAType == PPC_FAWORD_CPUID) {
3149 if (IsLE)
3150 Offset = Is64 ? PPC_CPUID_OFFSET_LE64 : PPC_CPUID_OFFSET_LE32;
3151 else
3152 Offset = Is64 ? PPC_CPUID_OFFSET_BE64 : PPC_CPUID_OFFSET_BE32;
3154 assert(Offset && "Do not know the offset for this fixed addr load");
3155 MI.removeOperand(1);
3156 Subtarget.getTargetMachine().setGlibcHWCAPAccess();
3157 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3158 .addImm(Offset)
3159 .addReg(Reg);
3160 return true;
3161 #define PPC_TGT_PARSER_UNDEF_MACROS
3162 #include "llvm/TargetParser/PPCTargetParser.def"
3163 #undef PPC_TGT_PARSER_UNDEF_MACROS
3165 case PPC::DFLOADf32:
3166 case PPC::DFLOADf64:
3167 case PPC::DFSTOREf32:
3168 case PPC::DFSTOREf64: {
3169 assert(Subtarget.hasP9Vector() &&
3170 "Invalid D-Form Pseudo-ops on Pre-P9 target.");
3171 assert(MI.getOperand(2).isReg() &&
3172 isAnImmediateOperand(MI.getOperand(1)) &&
3173 "D-form op must have register and immediate operands");
3174 return expandVSXMemPseudo(MI);
3176 case PPC::XFLOADf32:
3177 case PPC::XFSTOREf32:
3178 case PPC::LIWAX:
3179 case PPC::LIWZX:
3180 case PPC::STIWX: {
3181 assert(Subtarget.hasP8Vector() &&
3182 "Invalid X-Form Pseudo-ops on Pre-P8 target.");
3183 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3184 "X-form op must have register and register operands");
3185 return expandVSXMemPseudo(MI);
3187 case PPC::XFLOADf64:
3188 case PPC::XFSTOREf64: {
3189 assert(Subtarget.hasVSX() &&
3190 "Invalid X-Form Pseudo-ops on target that has no VSX.");
3191 assert(MI.getOperand(2).isReg() && MI.getOperand(1).isReg() &&
3192 "X-form op must have register and register operands");
3193 return expandVSXMemPseudo(MI);
3195 case PPC::SPILLTOVSR_LD: {
3196 Register TargetReg = MI.getOperand(0).getReg();
3197 if (PPC::VSFRCRegClass.contains(TargetReg)) {
3198 MI.setDesc(get(PPC::DFLOADf64));
3199 return expandPostRAPseudo(MI);
3201 else
3202 MI.setDesc(get(PPC::LD));
3203 return true;
3205 case PPC::SPILLTOVSR_ST: {
3206 Register SrcReg = MI.getOperand(0).getReg();
3207 if (PPC::VSFRCRegClass.contains(SrcReg)) {
3208 NumStoreSPILLVSRRCAsVec++;
3209 MI.setDesc(get(PPC::DFSTOREf64));
3210 return expandPostRAPseudo(MI);
3211 } else {
3212 NumStoreSPILLVSRRCAsGpr++;
3213 MI.setDesc(get(PPC::STD));
3215 return true;
3217 case PPC::SPILLTOVSR_LDX: {
3218 Register TargetReg = MI.getOperand(0).getReg();
3219 if (PPC::VSFRCRegClass.contains(TargetReg))
3220 MI.setDesc(get(PPC::LXSDX));
3221 else
3222 MI.setDesc(get(PPC::LDX));
3223 return true;
3225 case PPC::SPILLTOVSR_STX: {
3226 Register SrcReg = MI.getOperand(0).getReg();
3227 if (PPC::VSFRCRegClass.contains(SrcReg)) {
3228 NumStoreSPILLVSRRCAsVec++;
3229 MI.setDesc(get(PPC::STXSDX));
3230 } else {
3231 NumStoreSPILLVSRRCAsGpr++;
3232 MI.setDesc(get(PPC::STDX));
3234 return true;
3237 // FIXME: Maybe we can expand it in 'PowerPC Expand Atomic' pass.
3238 case PPC::CFENCE:
3239 case PPC::CFENCE8: {
3240 auto Val = MI.getOperand(0).getReg();
3241 unsigned CmpOp = Subtarget.isPPC64() ? PPC::CMPD : PPC::CMPW;
3242 BuildMI(MBB, MI, DL, get(CmpOp), PPC::CR7).addReg(Val).addReg(Val);
3243 BuildMI(MBB, MI, DL, get(PPC::CTRL_DEP))
3244 .addImm(PPC::PRED_NE_MINUS)
3245 .addReg(PPC::CR7)
3246 .addImm(1);
3247 MI.setDesc(get(PPC::ISYNC));
3248 MI.removeOperand(0);
3249 return true;
3252 return false;
3255 // Essentially a compile-time implementation of a compare->isel sequence.
3256 // It takes two constants to compare, along with the true/false registers
3257 // and the comparison type (as a subreg to a CR field) and returns one
3258 // of the true/false registers, depending on the comparison results.
3259 static unsigned selectReg(int64_t Imm1, int64_t Imm2, unsigned CompareOpc,
3260 unsigned TrueReg, unsigned FalseReg,
3261 unsigned CRSubReg) {
3262 // Signed comparisons. The immediates are assumed to be sign-extended.
3263 if (CompareOpc == PPC::CMPWI || CompareOpc == PPC::CMPDI) {
3264 switch (CRSubReg) {
3265 default: llvm_unreachable("Unknown integer comparison type.");
3266 case PPC::sub_lt:
3267 return Imm1 < Imm2 ? TrueReg : FalseReg;
3268 case PPC::sub_gt:
3269 return Imm1 > Imm2 ? TrueReg : FalseReg;
3270 case PPC::sub_eq:
3271 return Imm1 == Imm2 ? TrueReg : FalseReg;
3274 // Unsigned comparisons.
3275 else if (CompareOpc == PPC::CMPLWI || CompareOpc == PPC::CMPLDI) {
3276 switch (CRSubReg) {
3277 default: llvm_unreachable("Unknown integer comparison type.");
3278 case PPC::sub_lt:
3279 return (uint64_t)Imm1 < (uint64_t)Imm2 ? TrueReg : FalseReg;
3280 case PPC::sub_gt:
3281 return (uint64_t)Imm1 > (uint64_t)Imm2 ? TrueReg : FalseReg;
3282 case PPC::sub_eq:
3283 return Imm1 == Imm2 ? TrueReg : FalseReg;
3286 return PPC::NoRegister;
3289 void PPCInstrInfo::replaceInstrOperandWithImm(MachineInstr &MI,
3290 unsigned OpNo,
3291 int64_t Imm) const {
3292 assert(MI.getOperand(OpNo).isReg() && "Operand must be a REG");
3293 // Replace the REG with the Immediate.
3294 Register InUseReg = MI.getOperand(OpNo).getReg();
3295 MI.getOperand(OpNo).ChangeToImmediate(Imm);
3297 // We need to make sure that the MI didn't have any implicit use
3298 // of this REG any more. We don't call MI.implicit_operands().empty() to
3299 // return early, since MI's MCID might be changed in calling context, as a
3300 // result its number of explicit operands may be changed, thus the begin of
3301 // implicit operand is changed.
3302 const TargetRegisterInfo *TRI = &getRegisterInfo();
3303 int UseOpIdx = MI.findRegisterUseOperandIdx(InUseReg, TRI, false);
3304 if (UseOpIdx >= 0) {
3305 MachineOperand &MO = MI.getOperand(UseOpIdx);
3306 if (MO.isImplicit())
3307 // The operands must always be in the following order:
3308 // - explicit reg defs,
3309 // - other explicit operands (reg uses, immediates, etc.),
3310 // - implicit reg defs
3311 // - implicit reg uses
3312 // Therefore, removing the implicit operand won't change the explicit
3313 // operands layout.
3314 MI.removeOperand(UseOpIdx);
3318 // Replace an instruction with one that materializes a constant (and sets
3319 // CR0 if the original instruction was a record-form instruction).
3320 void PPCInstrInfo::replaceInstrWithLI(MachineInstr &MI,
3321 const LoadImmediateInfo &LII) const {
3322 // Remove existing operands.
3323 int OperandToKeep = LII.SetCR ? 1 : 0;
3324 for (int i = MI.getNumOperands() - 1; i > OperandToKeep; i--)
3325 MI.removeOperand(i);
3327 // Replace the instruction.
3328 if (LII.SetCR) {
3329 MI.setDesc(get(LII.Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3330 // Set the immediate.
3331 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3332 .addImm(LII.Imm).addReg(PPC::CR0, RegState::ImplicitDefine);
3333 return;
3335 else
3336 MI.setDesc(get(LII.Is64Bit ? PPC::LI8 : PPC::LI));
3338 // Set the immediate.
3339 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
3340 .addImm(LII.Imm);
3343 MachineInstr *PPCInstrInfo::getDefMIPostRA(unsigned Reg, MachineInstr &MI,
3344 bool &SeenIntermediateUse) const {
3345 assert(!MI.getParent()->getParent()->getRegInfo().isSSA() &&
3346 "Should be called after register allocation.");
3347 const TargetRegisterInfo *TRI = &getRegisterInfo();
3348 MachineBasicBlock::reverse_iterator E = MI.getParent()->rend(), It = MI;
3349 It++;
3350 SeenIntermediateUse = false;
3351 for (; It != E; ++It) {
3352 if (It->modifiesRegister(Reg, TRI))
3353 return &*It;
3354 if (It->readsRegister(Reg, TRI))
3355 SeenIntermediateUse = true;
3357 return nullptr;
3360 void PPCInstrInfo::materializeImmPostRA(MachineBasicBlock &MBB,
3361 MachineBasicBlock::iterator MBBI,
3362 const DebugLoc &DL, Register Reg,
3363 int64_t Imm) const {
3364 assert(!MBB.getParent()->getRegInfo().isSSA() &&
3365 "Register should be in non-SSA form after RA");
3366 bool isPPC64 = Subtarget.isPPC64();
3367 // FIXME: Materialization here is not optimal.
3368 // For some special bit patterns we can use less instructions.
3369 // See `selectI64ImmDirect` in PPCISelDAGToDAG.cpp.
3370 if (isInt<16>(Imm)) {
3371 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LI8 : PPC::LI), Reg).addImm(Imm);
3372 } else if (isInt<32>(Imm)) {
3373 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::LIS8 : PPC::LIS), Reg)
3374 .addImm(Imm >> 16);
3375 if (Imm & 0xFFFF)
3376 BuildMI(MBB, MBBI, DL, get(isPPC64 ? PPC::ORI8 : PPC::ORI), Reg)
3377 .addReg(Reg, RegState::Kill)
3378 .addImm(Imm & 0xFFFF);
3379 } else {
3380 assert(isPPC64 && "Materializing 64-bit immediate to single register is "
3381 "only supported in PPC64");
3382 BuildMI(MBB, MBBI, DL, get(PPC::LIS8), Reg).addImm(Imm >> 48);
3383 if ((Imm >> 32) & 0xFFFF)
3384 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3385 .addReg(Reg, RegState::Kill)
3386 .addImm((Imm >> 32) & 0xFFFF);
3387 BuildMI(MBB, MBBI, DL, get(PPC::RLDICR), Reg)
3388 .addReg(Reg, RegState::Kill)
3389 .addImm(32)
3390 .addImm(31);
3391 BuildMI(MBB, MBBI, DL, get(PPC::ORIS8), Reg)
3392 .addReg(Reg, RegState::Kill)
3393 .addImm((Imm >> 16) & 0xFFFF);
3394 if (Imm & 0xFFFF)
3395 BuildMI(MBB, MBBI, DL, get(PPC::ORI8), Reg)
3396 .addReg(Reg, RegState::Kill)
3397 .addImm(Imm & 0xFFFF);
3401 MachineInstr *PPCInstrInfo::getForwardingDefMI(
3402 MachineInstr &MI,
3403 unsigned &OpNoForForwarding,
3404 bool &SeenIntermediateUse) const {
3405 OpNoForForwarding = ~0U;
3406 MachineInstr *DefMI = nullptr;
3407 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3408 const TargetRegisterInfo *TRI = &getRegisterInfo();
3409 // If we're in SSA, get the defs through the MRI. Otherwise, only look
3410 // within the basic block to see if the register is defined using an
3411 // LI/LI8/ADDI/ADDI8.
3412 if (MRI->isSSA()) {
3413 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3414 if (!MI.getOperand(i).isReg())
3415 continue;
3416 Register Reg = MI.getOperand(i).getReg();
3417 if (!Reg.isVirtual())
3418 continue;
3419 Register TrueReg = TRI->lookThruCopyLike(Reg, MRI);
3420 if (TrueReg.isVirtual()) {
3421 MachineInstr *DefMIForTrueReg = MRI->getVRegDef(TrueReg);
3422 if (DefMIForTrueReg->getOpcode() == PPC::LI ||
3423 DefMIForTrueReg->getOpcode() == PPC::LI8 ||
3424 DefMIForTrueReg->getOpcode() == PPC::ADDI ||
3425 DefMIForTrueReg->getOpcode() == PPC::ADDI8) {
3426 OpNoForForwarding = i;
3427 DefMI = DefMIForTrueReg;
3428 // The ADDI and LI operand maybe exist in one instruction at same
3429 // time. we prefer to fold LI operand as LI only has one Imm operand
3430 // and is more possible to be converted. So if current DefMI is
3431 // ADDI/ADDI8, we continue to find possible LI/LI8.
3432 if (DefMI->getOpcode() == PPC::LI || DefMI->getOpcode() == PPC::LI8)
3433 break;
3437 } else {
3438 // Looking back through the definition for each operand could be expensive,
3439 // so exit early if this isn't an instruction that either has an immediate
3440 // form or is already an immediate form that we can handle.
3441 ImmInstrInfo III;
3442 unsigned Opc = MI.getOpcode();
3443 bool ConvertibleImmForm =
3444 Opc == PPC::CMPWI || Opc == PPC::CMPLWI || Opc == PPC::CMPDI ||
3445 Opc == PPC::CMPLDI || Opc == PPC::ADDI || Opc == PPC::ADDI8 ||
3446 Opc == PPC::ORI || Opc == PPC::ORI8 || Opc == PPC::XORI ||
3447 Opc == PPC::XORI8 || Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec ||
3448 Opc == PPC::RLDICL_32 || Opc == PPC::RLDICL_32_64 ||
3449 Opc == PPC::RLWINM || Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8 ||
3450 Opc == PPC::RLWINM8_rec;
3451 bool IsVFReg = (MI.getNumOperands() && MI.getOperand(0).isReg())
3452 ? PPC::isVFRegister(MI.getOperand(0).getReg())
3453 : false;
3454 if (!ConvertibleImmForm && !instrHasImmForm(Opc, IsVFReg, III, true))
3455 return nullptr;
3457 // Don't convert or %X, %Y, %Y since that's just a register move.
3458 if ((Opc == PPC::OR || Opc == PPC::OR8) &&
3459 MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
3460 return nullptr;
3461 for (int i = 1, e = MI.getNumOperands(); i < e; i++) {
3462 MachineOperand &MO = MI.getOperand(i);
3463 SeenIntermediateUse = false;
3464 if (MO.isReg() && MO.isUse() && !MO.isImplicit()) {
3465 Register Reg = MI.getOperand(i).getReg();
3466 // If we see another use of this reg between the def and the MI,
3467 // we want to flag it so the def isn't deleted.
3468 MachineInstr *DefMI = getDefMIPostRA(Reg, MI, SeenIntermediateUse);
3469 if (DefMI) {
3470 // Is this register defined by some form of add-immediate (including
3471 // load-immediate) within this basic block?
3472 switch (DefMI->getOpcode()) {
3473 default:
3474 break;
3475 case PPC::LI:
3476 case PPC::LI8:
3477 case PPC::ADDItocL8:
3478 case PPC::ADDI:
3479 case PPC::ADDI8:
3480 OpNoForForwarding = i;
3481 return DefMI;
3487 return OpNoForForwarding == ~0U ? nullptr : DefMI;
3490 unsigned PPCInstrInfo::getSpillTarget() const {
3491 // With P10, we may need to spill paired vector registers or accumulator
3492 // registers. MMA implies paired vectors, so we can just check that.
3493 bool IsP10Variant = Subtarget.isISA3_1() || Subtarget.pairedVectorMemops();
3494 // P11 uses the P10 target.
3495 return Subtarget.isISAFuture() ? 3 : IsP10Variant ?
3496 2 : Subtarget.hasP9Vector() ?
3497 1 : 0;
3500 ArrayRef<unsigned> PPCInstrInfo::getStoreOpcodesForSpillArray() const {
3501 return {StoreSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3504 ArrayRef<unsigned> PPCInstrInfo::getLoadOpcodesForSpillArray() const {
3505 return {LoadSpillOpcodesArray[getSpillTarget()], SOK_LastOpcodeSpill};
3508 // This opt tries to convert the following imm form to an index form to save an
3509 // add for stack variables.
3510 // Return false if no such pattern found.
3512 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3513 // ADD instr: ToBeDeletedReg = ADD ToBeChangedReg(killed), ScaleReg
3514 // Imm instr: Reg = op OffsetImm, ToBeDeletedReg(killed)
3516 // can be converted to:
3518 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, (OffsetAddi + OffsetImm)
3519 // Index instr: Reg = opx ScaleReg, ToBeChangedReg(killed)
3521 // In order to eliminate ADD instr, make sure that:
3522 // 1: (OffsetAddi + OffsetImm) must be int16 since this offset will be used in
3523 // new ADDI instr and ADDI can only take int16 Imm.
3524 // 2: ToBeChangedReg must be killed in ADD instr and there is no other use
3525 // between ADDI and ADD instr since its original def in ADDI will be changed
3526 // in new ADDI instr. And also there should be no new def for it between
3527 // ADD and Imm instr as ToBeChangedReg will be used in Index instr.
3528 // 3: ToBeDeletedReg must be killed in Imm instr and there is no other use
3529 // between ADD and Imm instr since ADD instr will be eliminated.
3530 // 4: ScaleReg must not be redefined between ADD and Imm instr since it will be
3531 // moved to Index instr.
3532 bool PPCInstrInfo::foldFrameOffset(MachineInstr &MI) const {
3533 MachineFunction *MF = MI.getParent()->getParent();
3534 MachineRegisterInfo *MRI = &MF->getRegInfo();
3535 bool PostRA = !MRI->isSSA();
3536 // Do this opt after PEI which is after RA. The reason is stack slot expansion
3537 // in PEI may expose such opportunities since in PEI, stack slot offsets to
3538 // frame base(OffsetAddi) are determined.
3539 if (!PostRA)
3540 return false;
3541 unsigned ToBeDeletedReg = 0;
3542 int64_t OffsetImm = 0;
3543 unsigned XFormOpcode = 0;
3544 ImmInstrInfo III;
3546 // Check if Imm instr meets requirement.
3547 if (!isImmInstrEligibleForFolding(MI, ToBeDeletedReg, XFormOpcode, OffsetImm,
3548 III))
3549 return false;
3551 bool OtherIntermediateUse = false;
3552 MachineInstr *ADDMI = getDefMIPostRA(ToBeDeletedReg, MI, OtherIntermediateUse);
3554 // Exit if there is other use between ADD and Imm instr or no def found.
3555 if (OtherIntermediateUse || !ADDMI)
3556 return false;
3558 // Check if ADD instr meets requirement.
3559 if (!isADDInstrEligibleForFolding(*ADDMI))
3560 return false;
3562 unsigned ScaleRegIdx = 0;
3563 int64_t OffsetAddi = 0;
3564 MachineInstr *ADDIMI = nullptr;
3566 // Check if there is a valid ToBeChangedReg in ADDMI.
3567 // 1: It must be killed.
3568 // 2: Its definition must be a valid ADDIMI.
3569 // 3: It must satify int16 offset requirement.
3570 if (isValidToBeChangedReg(ADDMI, 1, ADDIMI, OffsetAddi, OffsetImm))
3571 ScaleRegIdx = 2;
3572 else if (isValidToBeChangedReg(ADDMI, 2, ADDIMI, OffsetAddi, OffsetImm))
3573 ScaleRegIdx = 1;
3574 else
3575 return false;
3577 assert(ADDIMI && "There should be ADDIMI for valid ToBeChangedReg.");
3578 Register ToBeChangedReg = ADDIMI->getOperand(0).getReg();
3579 Register ScaleReg = ADDMI->getOperand(ScaleRegIdx).getReg();
3580 auto NewDefFor = [&](unsigned Reg, MachineBasicBlock::iterator Start,
3581 MachineBasicBlock::iterator End) {
3582 for (auto It = ++Start; It != End; It++)
3583 if (It->modifiesRegister(Reg, &getRegisterInfo()))
3584 return true;
3585 return false;
3588 // We are trying to replace the ImmOpNo with ScaleReg. Give up if it is
3589 // treated as special zero when ScaleReg is R0/X0 register.
3590 if (III.ZeroIsSpecialOrig == III.ImmOpNo &&
3591 (ScaleReg == PPC::R0 || ScaleReg == PPC::X0))
3592 return false;
3594 // Make sure no other def for ToBeChangedReg and ScaleReg between ADD Instr
3595 // and Imm Instr.
3596 if (NewDefFor(ToBeChangedReg, *ADDMI, MI) || NewDefFor(ScaleReg, *ADDMI, MI))
3597 return false;
3599 // Now start to do the transformation.
3600 LLVM_DEBUG(dbgs() << "Replace instruction: "
3601 << "\n");
3602 LLVM_DEBUG(ADDIMI->dump());
3603 LLVM_DEBUG(ADDMI->dump());
3604 LLVM_DEBUG(MI.dump());
3605 LLVM_DEBUG(dbgs() << "with: "
3606 << "\n");
3608 // Update ADDI instr.
3609 ADDIMI->getOperand(2).setImm(OffsetAddi + OffsetImm);
3611 // Update Imm instr.
3612 MI.setDesc(get(XFormOpcode));
3613 MI.getOperand(III.ImmOpNo)
3614 .ChangeToRegister(ScaleReg, false, false,
3615 ADDMI->getOperand(ScaleRegIdx).isKill());
3617 MI.getOperand(III.OpNoForForwarding)
3618 .ChangeToRegister(ToBeChangedReg, false, false, true);
3620 // Eliminate ADD instr.
3621 ADDMI->eraseFromParent();
3623 LLVM_DEBUG(ADDIMI->dump());
3624 LLVM_DEBUG(MI.dump());
3626 return true;
3629 bool PPCInstrInfo::isADDIInstrEligibleForFolding(MachineInstr &ADDIMI,
3630 int64_t &Imm) const {
3631 unsigned Opc = ADDIMI.getOpcode();
3633 // Exit if the instruction is not ADDI.
3634 if (Opc != PPC::ADDI && Opc != PPC::ADDI8)
3635 return false;
3637 // The operand may not necessarily be an immediate - it could be a relocation.
3638 if (!ADDIMI.getOperand(2).isImm())
3639 return false;
3641 Imm = ADDIMI.getOperand(2).getImm();
3643 return true;
3646 bool PPCInstrInfo::isADDInstrEligibleForFolding(MachineInstr &ADDMI) const {
3647 unsigned Opc = ADDMI.getOpcode();
3649 // Exit if the instruction is not ADD.
3650 return Opc == PPC::ADD4 || Opc == PPC::ADD8;
3653 bool PPCInstrInfo::isImmInstrEligibleForFolding(MachineInstr &MI,
3654 unsigned &ToBeDeletedReg,
3655 unsigned &XFormOpcode,
3656 int64_t &OffsetImm,
3657 ImmInstrInfo &III) const {
3658 // Only handle load/store.
3659 if (!MI.mayLoadOrStore())
3660 return false;
3662 unsigned Opc = MI.getOpcode();
3664 XFormOpcode = RI.getMappedIdxOpcForImmOpc(Opc);
3666 // Exit if instruction has no index form.
3667 if (XFormOpcode == PPC::INSTRUCTION_LIST_END)
3668 return false;
3670 // TODO: sync the logic between instrHasImmForm() and ImmToIdxMap.
3671 if (!instrHasImmForm(XFormOpcode,
3672 PPC::isVFRegister(MI.getOperand(0).getReg()), III, true))
3673 return false;
3675 if (!III.IsSummingOperands)
3676 return false;
3678 MachineOperand ImmOperand = MI.getOperand(III.ImmOpNo);
3679 MachineOperand RegOperand = MI.getOperand(III.OpNoForForwarding);
3680 // Only support imm operands, not relocation slots or others.
3681 if (!ImmOperand.isImm())
3682 return false;
3684 assert(RegOperand.isReg() && "Instruction format is not right");
3686 // There are other use for ToBeDeletedReg after Imm instr, can not delete it.
3687 if (!RegOperand.isKill())
3688 return false;
3690 ToBeDeletedReg = RegOperand.getReg();
3691 OffsetImm = ImmOperand.getImm();
3693 return true;
3696 bool PPCInstrInfo::isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
3697 MachineInstr *&ADDIMI,
3698 int64_t &OffsetAddi,
3699 int64_t OffsetImm) const {
3700 assert((Index == 1 || Index == 2) && "Invalid operand index for add.");
3701 MachineOperand &MO = ADDMI->getOperand(Index);
3703 if (!MO.isKill())
3704 return false;
3706 bool OtherIntermediateUse = false;
3708 ADDIMI = getDefMIPostRA(MO.getReg(), *ADDMI, OtherIntermediateUse);
3709 // Currently handle only one "add + Imminstr" pair case, exit if other
3710 // intermediate use for ToBeChangedReg found.
3711 // TODO: handle the cases where there are other "add + Imminstr" pairs
3712 // with same offset in Imminstr which is like:
3714 // ADDI instr: ToBeChangedReg = ADDI FrameBaseReg, OffsetAddi
3715 // ADD instr1: ToBeDeletedReg1 = ADD ToBeChangedReg, ScaleReg1
3716 // Imm instr1: Reg1 = op1 OffsetImm, ToBeDeletedReg1(killed)
3717 // ADD instr2: ToBeDeletedReg2 = ADD ToBeChangedReg(killed), ScaleReg2
3718 // Imm instr2: Reg2 = op2 OffsetImm, ToBeDeletedReg2(killed)
3720 // can be converted to:
3722 // new ADDI instr: ToBeChangedReg = ADDI FrameBaseReg,
3723 // (OffsetAddi + OffsetImm)
3724 // Index instr1: Reg1 = opx1 ScaleReg1, ToBeChangedReg
3725 // Index instr2: Reg2 = opx2 ScaleReg2, ToBeChangedReg(killed)
3727 if (OtherIntermediateUse || !ADDIMI)
3728 return false;
3729 // Check if ADDI instr meets requirement.
3730 if (!isADDIInstrEligibleForFolding(*ADDIMI, OffsetAddi))
3731 return false;
3733 if (isInt<16>(OffsetAddi + OffsetImm))
3734 return true;
3735 return false;
3738 // If this instruction has an immediate form and one of its operands is a
3739 // result of a load-immediate or an add-immediate, convert it to
3740 // the immediate form if the constant is in range.
3741 bool PPCInstrInfo::convertToImmediateForm(MachineInstr &MI,
3742 SmallSet<Register, 4> &RegsToUpdate,
3743 MachineInstr **KilledDef) const {
3744 MachineFunction *MF = MI.getParent()->getParent();
3745 MachineRegisterInfo *MRI = &MF->getRegInfo();
3746 bool PostRA = !MRI->isSSA();
3747 bool SeenIntermediateUse = true;
3748 unsigned ForwardingOperand = ~0U;
3749 MachineInstr *DefMI = getForwardingDefMI(MI, ForwardingOperand,
3750 SeenIntermediateUse);
3751 if (!DefMI)
3752 return false;
3753 assert(ForwardingOperand < MI.getNumOperands() &&
3754 "The forwarding operand needs to be valid at this point");
3755 bool IsForwardingOperandKilled = MI.getOperand(ForwardingOperand).isKill();
3756 bool KillFwdDefMI = !SeenIntermediateUse && IsForwardingOperandKilled;
3757 if (KilledDef && KillFwdDefMI)
3758 *KilledDef = DefMI;
3760 // Conservatively add defs from DefMI and defs/uses from MI to the set of
3761 // registers that need their kill flags updated.
3762 for (const MachineOperand &MO : DefMI->operands())
3763 if (MO.isReg() && MO.isDef())
3764 RegsToUpdate.insert(MO.getReg());
3765 for (const MachineOperand &MO : MI.operands())
3766 if (MO.isReg())
3767 RegsToUpdate.insert(MO.getReg());
3769 // If this is a imm instruction and its register operands is produced by ADDI,
3770 // put the imm into imm inst directly.
3771 if (RI.getMappedIdxOpcForImmOpc(MI.getOpcode()) !=
3772 PPC::INSTRUCTION_LIST_END &&
3773 transformToNewImmFormFedByAdd(MI, *DefMI, ForwardingOperand))
3774 return true;
3776 ImmInstrInfo III;
3777 bool IsVFReg = MI.getOperand(0).isReg()
3778 ? PPC::isVFRegister(MI.getOperand(0).getReg())
3779 : false;
3780 bool HasImmForm = instrHasImmForm(MI.getOpcode(), IsVFReg, III, PostRA);
3781 // If this is a reg+reg instruction that has a reg+imm form,
3782 // and one of the operands is produced by an add-immediate,
3783 // try to convert it.
3784 if (HasImmForm &&
3785 transformToImmFormFedByAdd(MI, III, ForwardingOperand, *DefMI,
3786 KillFwdDefMI))
3787 return true;
3789 // If this is a reg+reg instruction that has a reg+imm form,
3790 // and one of the operands is produced by LI, convert it now.
3791 if (HasImmForm &&
3792 transformToImmFormFedByLI(MI, III, ForwardingOperand, *DefMI))
3793 return true;
3795 // If this is not a reg+reg, but the DefMI is LI/LI8, check if its user MI
3796 // can be simpified to LI.
3797 if (!HasImmForm && simplifyToLI(MI, *DefMI, ForwardingOperand, KilledDef))
3798 return true;
3800 return false;
3803 bool PPCInstrInfo::combineRLWINM(MachineInstr &MI,
3804 MachineInstr **ToErase) const {
3805 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
3806 Register FoldingReg = MI.getOperand(1).getReg();
3807 if (!FoldingReg.isVirtual())
3808 return false;
3809 MachineInstr *SrcMI = MRI->getVRegDef(FoldingReg);
3810 if (SrcMI->getOpcode() != PPC::RLWINM &&
3811 SrcMI->getOpcode() != PPC::RLWINM_rec &&
3812 SrcMI->getOpcode() != PPC::RLWINM8 &&
3813 SrcMI->getOpcode() != PPC::RLWINM8_rec)
3814 return false;
3815 assert((MI.getOperand(2).isImm() && MI.getOperand(3).isImm() &&
3816 MI.getOperand(4).isImm() && SrcMI->getOperand(2).isImm() &&
3817 SrcMI->getOperand(3).isImm() && SrcMI->getOperand(4).isImm()) &&
3818 "Invalid PPC::RLWINM Instruction!");
3819 uint64_t SHSrc = SrcMI->getOperand(2).getImm();
3820 uint64_t SHMI = MI.getOperand(2).getImm();
3821 uint64_t MBSrc = SrcMI->getOperand(3).getImm();
3822 uint64_t MBMI = MI.getOperand(3).getImm();
3823 uint64_t MESrc = SrcMI->getOperand(4).getImm();
3824 uint64_t MEMI = MI.getOperand(4).getImm();
3826 assert((MEMI < 32 && MESrc < 32 && MBMI < 32 && MBSrc < 32) &&
3827 "Invalid PPC::RLWINM Instruction!");
3828 // If MBMI is bigger than MEMI, we always can not get run of ones.
3829 // RotatedSrcMask non-wrap:
3830 // 0........31|32........63
3831 // RotatedSrcMask: B---E B---E
3832 // MaskMI: -----------|--E B------
3833 // Result: ----- --- (Bad candidate)
3835 // RotatedSrcMask wrap:
3836 // 0........31|32........63
3837 // RotatedSrcMask: --E B----|--E B----
3838 // MaskMI: -----------|--E B------
3839 // Result: --- -----|--- ----- (Bad candidate)
3841 // One special case is RotatedSrcMask is a full set mask.
3842 // RotatedSrcMask full:
3843 // 0........31|32........63
3844 // RotatedSrcMask: ------EB---|-------EB---
3845 // MaskMI: -----------|--E B------
3846 // Result: -----------|--- ------- (Good candidate)
3848 // Mark special case.
3849 bool SrcMaskFull = (MBSrc - MESrc == 1) || (MBSrc == 0 && MESrc == 31);
3851 // For other MBMI > MEMI cases, just return.
3852 if ((MBMI > MEMI) && !SrcMaskFull)
3853 return false;
3855 // Handle MBMI <= MEMI cases.
3856 APInt MaskMI = APInt::getBitsSetWithWrap(32, 32 - MEMI - 1, 32 - MBMI);
3857 // In MI, we only need low 32 bits of SrcMI, just consider about low 32
3858 // bit of SrcMI mask. Note that in APInt, lowerest bit is at index 0,
3859 // while in PowerPC ISA, lowerest bit is at index 63.
3860 APInt MaskSrc = APInt::getBitsSetWithWrap(32, 32 - MESrc - 1, 32 - MBSrc);
3862 APInt RotatedSrcMask = MaskSrc.rotl(SHMI);
3863 APInt FinalMask = RotatedSrcMask & MaskMI;
3864 uint32_t NewMB, NewME;
3865 bool Simplified = false;
3867 // If final mask is 0, MI result should be 0 too.
3868 if (FinalMask.isZero()) {
3869 bool Is64Bit =
3870 (MI.getOpcode() == PPC::RLWINM8 || MI.getOpcode() == PPC::RLWINM8_rec);
3871 Simplified = true;
3872 LLVM_DEBUG(dbgs() << "Replace Instr: ");
3873 LLVM_DEBUG(MI.dump());
3875 if (MI.getOpcode() == PPC::RLWINM || MI.getOpcode() == PPC::RLWINM8) {
3876 // Replace MI with "LI 0"
3877 MI.removeOperand(4);
3878 MI.removeOperand(3);
3879 MI.removeOperand(2);
3880 MI.getOperand(1).ChangeToImmediate(0);
3881 MI.setDesc(get(Is64Bit ? PPC::LI8 : PPC::LI));
3882 } else {
3883 // Replace MI with "ANDI_rec reg, 0"
3884 MI.removeOperand(4);
3885 MI.removeOperand(3);
3886 MI.getOperand(2).setImm(0);
3887 MI.setDesc(get(Is64Bit ? PPC::ANDI8_rec : PPC::ANDI_rec));
3888 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3889 if (SrcMI->getOperand(1).isKill()) {
3890 MI.getOperand(1).setIsKill(true);
3891 SrcMI->getOperand(1).setIsKill(false);
3892 } else
3893 // About to replace MI.getOperand(1), clear its kill flag.
3894 MI.getOperand(1).setIsKill(false);
3897 LLVM_DEBUG(dbgs() << "With: ");
3898 LLVM_DEBUG(MI.dump());
3900 } else if ((isRunOfOnes((unsigned)(FinalMask.getZExtValue()), NewMB, NewME) &&
3901 NewMB <= NewME) ||
3902 SrcMaskFull) {
3903 // Here we only handle MBMI <= MEMI case, so NewMB must be no bigger
3904 // than NewME. Otherwise we get a 64 bit value after folding, but MI
3905 // return a 32 bit value.
3906 Simplified = true;
3907 LLVM_DEBUG(dbgs() << "Converting Instr: ");
3908 LLVM_DEBUG(MI.dump());
3910 uint16_t NewSH = (SHSrc + SHMI) % 32;
3911 MI.getOperand(2).setImm(NewSH);
3912 // If SrcMI mask is full, no need to update MBMI and MEMI.
3913 if (!SrcMaskFull) {
3914 MI.getOperand(3).setImm(NewMB);
3915 MI.getOperand(4).setImm(NewME);
3917 MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
3918 if (SrcMI->getOperand(1).isKill()) {
3919 MI.getOperand(1).setIsKill(true);
3920 SrcMI->getOperand(1).setIsKill(false);
3921 } else
3922 // About to replace MI.getOperand(1), clear its kill flag.
3923 MI.getOperand(1).setIsKill(false);
3925 LLVM_DEBUG(dbgs() << "To: ");
3926 LLVM_DEBUG(MI.dump());
3928 if (Simplified & MRI->use_nodbg_empty(FoldingReg) &&
3929 !SrcMI->hasImplicitDef()) {
3930 // If FoldingReg has no non-debug use and it has no implicit def (it
3931 // is not RLWINMO or RLWINM8o), it's safe to delete its def SrcMI.
3932 // Otherwise keep it.
3933 *ToErase = SrcMI;
3934 LLVM_DEBUG(dbgs() << "Delete dead instruction: ");
3935 LLVM_DEBUG(SrcMI->dump());
3937 return Simplified;
3940 bool PPCInstrInfo::instrHasImmForm(unsigned Opc, bool IsVFReg,
3941 ImmInstrInfo &III, bool PostRA) const {
3942 // The vast majority of the instructions would need their operand 2 replaced
3943 // with an immediate when switching to the reg+imm form. A marked exception
3944 // are the update form loads/stores for which a constant operand 2 would need
3945 // to turn into a displacement and move operand 1 to the operand 2 position.
3946 III.ImmOpNo = 2;
3947 III.OpNoForForwarding = 2;
3948 III.ImmWidth = 16;
3949 III.ImmMustBeMultipleOf = 1;
3950 III.TruncateImmTo = 0;
3951 III.IsSummingOperands = false;
3952 switch (Opc) {
3953 default: return false;
3954 case PPC::ADD4:
3955 case PPC::ADD8:
3956 III.SignedImm = true;
3957 III.ZeroIsSpecialOrig = 0;
3958 III.ZeroIsSpecialNew = 1;
3959 III.IsCommutative = true;
3960 III.IsSummingOperands = true;
3961 III.ImmOpcode = Opc == PPC::ADD4 ? PPC::ADDI : PPC::ADDI8;
3962 break;
3963 case PPC::ADDC:
3964 case PPC::ADDC8:
3965 III.SignedImm = true;
3966 III.ZeroIsSpecialOrig = 0;
3967 III.ZeroIsSpecialNew = 0;
3968 III.IsCommutative = true;
3969 III.IsSummingOperands = true;
3970 III.ImmOpcode = Opc == PPC::ADDC ? PPC::ADDIC : PPC::ADDIC8;
3971 break;
3972 case PPC::ADDC_rec:
3973 III.SignedImm = true;
3974 III.ZeroIsSpecialOrig = 0;
3975 III.ZeroIsSpecialNew = 0;
3976 III.IsCommutative = true;
3977 III.IsSummingOperands = true;
3978 III.ImmOpcode = PPC::ADDIC_rec;
3979 break;
3980 case PPC::SUBFC:
3981 case PPC::SUBFC8:
3982 III.SignedImm = true;
3983 III.ZeroIsSpecialOrig = 0;
3984 III.ZeroIsSpecialNew = 0;
3985 III.IsCommutative = false;
3986 III.ImmOpcode = Opc == PPC::SUBFC ? PPC::SUBFIC : PPC::SUBFIC8;
3987 break;
3988 case PPC::CMPW:
3989 case PPC::CMPD:
3990 III.SignedImm = true;
3991 III.ZeroIsSpecialOrig = 0;
3992 III.ZeroIsSpecialNew = 0;
3993 III.IsCommutative = false;
3994 III.ImmOpcode = Opc == PPC::CMPW ? PPC::CMPWI : PPC::CMPDI;
3995 break;
3996 case PPC::CMPLW:
3997 case PPC::CMPLD:
3998 III.SignedImm = false;
3999 III.ZeroIsSpecialOrig = 0;
4000 III.ZeroIsSpecialNew = 0;
4001 III.IsCommutative = false;
4002 III.ImmOpcode = Opc == PPC::CMPLW ? PPC::CMPLWI : PPC::CMPLDI;
4003 break;
4004 case PPC::AND_rec:
4005 case PPC::AND8_rec:
4006 case PPC::OR:
4007 case PPC::OR8:
4008 case PPC::XOR:
4009 case PPC::XOR8:
4010 III.SignedImm = false;
4011 III.ZeroIsSpecialOrig = 0;
4012 III.ZeroIsSpecialNew = 0;
4013 III.IsCommutative = true;
4014 switch(Opc) {
4015 default: llvm_unreachable("Unknown opcode");
4016 case PPC::AND_rec:
4017 III.ImmOpcode = PPC::ANDI_rec;
4018 break;
4019 case PPC::AND8_rec:
4020 III.ImmOpcode = PPC::ANDI8_rec;
4021 break;
4022 case PPC::OR: III.ImmOpcode = PPC::ORI; break;
4023 case PPC::OR8: III.ImmOpcode = PPC::ORI8; break;
4024 case PPC::XOR: III.ImmOpcode = PPC::XORI; break;
4025 case PPC::XOR8: III.ImmOpcode = PPC::XORI8; break;
4027 break;
4028 case PPC::RLWNM:
4029 case PPC::RLWNM8:
4030 case PPC::RLWNM_rec:
4031 case PPC::RLWNM8_rec:
4032 case PPC::SLW:
4033 case PPC::SLW8:
4034 case PPC::SLW_rec:
4035 case PPC::SLW8_rec:
4036 case PPC::SRW:
4037 case PPC::SRW8:
4038 case PPC::SRW_rec:
4039 case PPC::SRW8_rec:
4040 case PPC::SRAW:
4041 case PPC::SRAW_rec:
4042 III.SignedImm = false;
4043 III.ZeroIsSpecialOrig = 0;
4044 III.ZeroIsSpecialNew = 0;
4045 III.IsCommutative = false;
4046 // This isn't actually true, but the instructions ignore any of the
4047 // upper bits, so any immediate loaded with an LI is acceptable.
4048 // This does not apply to shift right algebraic because a value
4049 // out of range will produce a -1/0.
4050 III.ImmWidth = 16;
4051 if (Opc == PPC::RLWNM || Opc == PPC::RLWNM8 || Opc == PPC::RLWNM_rec ||
4052 Opc == PPC::RLWNM8_rec)
4053 III.TruncateImmTo = 5;
4054 else
4055 III.TruncateImmTo = 6;
4056 switch(Opc) {
4057 default: llvm_unreachable("Unknown opcode");
4058 case PPC::RLWNM: III.ImmOpcode = PPC::RLWINM; break;
4059 case PPC::RLWNM8: III.ImmOpcode = PPC::RLWINM8; break;
4060 case PPC::RLWNM_rec:
4061 III.ImmOpcode = PPC::RLWINM_rec;
4062 break;
4063 case PPC::RLWNM8_rec:
4064 III.ImmOpcode = PPC::RLWINM8_rec;
4065 break;
4066 case PPC::SLW: III.ImmOpcode = PPC::RLWINM; break;
4067 case PPC::SLW8: III.ImmOpcode = PPC::RLWINM8; break;
4068 case PPC::SLW_rec:
4069 III.ImmOpcode = PPC::RLWINM_rec;
4070 break;
4071 case PPC::SLW8_rec:
4072 III.ImmOpcode = PPC::RLWINM8_rec;
4073 break;
4074 case PPC::SRW: III.ImmOpcode = PPC::RLWINM; break;
4075 case PPC::SRW8: III.ImmOpcode = PPC::RLWINM8; break;
4076 case PPC::SRW_rec:
4077 III.ImmOpcode = PPC::RLWINM_rec;
4078 break;
4079 case PPC::SRW8_rec:
4080 III.ImmOpcode = PPC::RLWINM8_rec;
4081 break;
4082 case PPC::SRAW:
4083 III.ImmWidth = 5;
4084 III.TruncateImmTo = 0;
4085 III.ImmOpcode = PPC::SRAWI;
4086 break;
4087 case PPC::SRAW_rec:
4088 III.ImmWidth = 5;
4089 III.TruncateImmTo = 0;
4090 III.ImmOpcode = PPC::SRAWI_rec;
4091 break;
4093 break;
4094 case PPC::RLDCL:
4095 case PPC::RLDCL_rec:
4096 case PPC::RLDCR:
4097 case PPC::RLDCR_rec:
4098 case PPC::SLD:
4099 case PPC::SLD_rec:
4100 case PPC::SRD:
4101 case PPC::SRD_rec:
4102 case PPC::SRAD:
4103 case PPC::SRAD_rec:
4104 III.SignedImm = false;
4105 III.ZeroIsSpecialOrig = 0;
4106 III.ZeroIsSpecialNew = 0;
4107 III.IsCommutative = false;
4108 // This isn't actually true, but the instructions ignore any of the
4109 // upper bits, so any immediate loaded with an LI is acceptable.
4110 // This does not apply to shift right algebraic because a value
4111 // out of range will produce a -1/0.
4112 III.ImmWidth = 16;
4113 if (Opc == PPC::RLDCL || Opc == PPC::RLDCL_rec || Opc == PPC::RLDCR ||
4114 Opc == PPC::RLDCR_rec)
4115 III.TruncateImmTo = 6;
4116 else
4117 III.TruncateImmTo = 7;
4118 switch(Opc) {
4119 default: llvm_unreachable("Unknown opcode");
4120 case PPC::RLDCL: III.ImmOpcode = PPC::RLDICL; break;
4121 case PPC::RLDCL_rec:
4122 III.ImmOpcode = PPC::RLDICL_rec;
4123 break;
4124 case PPC::RLDCR: III.ImmOpcode = PPC::RLDICR; break;
4125 case PPC::RLDCR_rec:
4126 III.ImmOpcode = PPC::RLDICR_rec;
4127 break;
4128 case PPC::SLD: III.ImmOpcode = PPC::RLDICR; break;
4129 case PPC::SLD_rec:
4130 III.ImmOpcode = PPC::RLDICR_rec;
4131 break;
4132 case PPC::SRD: III.ImmOpcode = PPC::RLDICL; break;
4133 case PPC::SRD_rec:
4134 III.ImmOpcode = PPC::RLDICL_rec;
4135 break;
4136 case PPC::SRAD:
4137 III.ImmWidth = 6;
4138 III.TruncateImmTo = 0;
4139 III.ImmOpcode = PPC::SRADI;
4140 break;
4141 case PPC::SRAD_rec:
4142 III.ImmWidth = 6;
4143 III.TruncateImmTo = 0;
4144 III.ImmOpcode = PPC::SRADI_rec;
4145 break;
4147 break;
4148 // Loads and stores:
4149 case PPC::LBZX:
4150 case PPC::LBZX8:
4151 case PPC::LHZX:
4152 case PPC::LHZX8:
4153 case PPC::LHAX:
4154 case PPC::LHAX8:
4155 case PPC::LWZX:
4156 case PPC::LWZX8:
4157 case PPC::LWAX:
4158 case PPC::LDX:
4159 case PPC::LFSX:
4160 case PPC::LFDX:
4161 case PPC::STBX:
4162 case PPC::STBX8:
4163 case PPC::STHX:
4164 case PPC::STHX8:
4165 case PPC::STWX:
4166 case PPC::STWX8:
4167 case PPC::STDX:
4168 case PPC::STFSX:
4169 case PPC::STFDX:
4170 III.SignedImm = true;
4171 III.ZeroIsSpecialOrig = 1;
4172 III.ZeroIsSpecialNew = 2;
4173 III.IsCommutative = true;
4174 III.IsSummingOperands = true;
4175 III.ImmOpNo = 1;
4176 III.OpNoForForwarding = 2;
4177 switch(Opc) {
4178 default: llvm_unreachable("Unknown opcode");
4179 case PPC::LBZX: III.ImmOpcode = PPC::LBZ; break;
4180 case PPC::LBZX8: III.ImmOpcode = PPC::LBZ8; break;
4181 case PPC::LHZX: III.ImmOpcode = PPC::LHZ; break;
4182 case PPC::LHZX8: III.ImmOpcode = PPC::LHZ8; break;
4183 case PPC::LHAX: III.ImmOpcode = PPC::LHA; break;
4184 case PPC::LHAX8: III.ImmOpcode = PPC::LHA8; break;
4185 case PPC::LWZX: III.ImmOpcode = PPC::LWZ; break;
4186 case PPC::LWZX8: III.ImmOpcode = PPC::LWZ8; break;
4187 case PPC::LWAX:
4188 III.ImmOpcode = PPC::LWA;
4189 III.ImmMustBeMultipleOf = 4;
4190 break;
4191 case PPC::LDX: III.ImmOpcode = PPC::LD; III.ImmMustBeMultipleOf = 4; break;
4192 case PPC::LFSX: III.ImmOpcode = PPC::LFS; break;
4193 case PPC::LFDX: III.ImmOpcode = PPC::LFD; break;
4194 case PPC::STBX: III.ImmOpcode = PPC::STB; break;
4195 case PPC::STBX8: III.ImmOpcode = PPC::STB8; break;
4196 case PPC::STHX: III.ImmOpcode = PPC::STH; break;
4197 case PPC::STHX8: III.ImmOpcode = PPC::STH8; break;
4198 case PPC::STWX: III.ImmOpcode = PPC::STW; break;
4199 case PPC::STWX8: III.ImmOpcode = PPC::STW8; break;
4200 case PPC::STDX:
4201 III.ImmOpcode = PPC::STD;
4202 III.ImmMustBeMultipleOf = 4;
4203 break;
4204 case PPC::STFSX: III.ImmOpcode = PPC::STFS; break;
4205 case PPC::STFDX: III.ImmOpcode = PPC::STFD; break;
4207 break;
4208 case PPC::LBZUX:
4209 case PPC::LBZUX8:
4210 case PPC::LHZUX:
4211 case PPC::LHZUX8:
4212 case PPC::LHAUX:
4213 case PPC::LHAUX8:
4214 case PPC::LWZUX:
4215 case PPC::LWZUX8:
4216 case PPC::LDUX:
4217 case PPC::LFSUX:
4218 case PPC::LFDUX:
4219 case PPC::STBUX:
4220 case PPC::STBUX8:
4221 case PPC::STHUX:
4222 case PPC::STHUX8:
4223 case PPC::STWUX:
4224 case PPC::STWUX8:
4225 case PPC::STDUX:
4226 case PPC::STFSUX:
4227 case PPC::STFDUX:
4228 III.SignedImm = true;
4229 III.ZeroIsSpecialOrig = 2;
4230 III.ZeroIsSpecialNew = 3;
4231 III.IsCommutative = false;
4232 III.IsSummingOperands = true;
4233 III.ImmOpNo = 2;
4234 III.OpNoForForwarding = 3;
4235 switch(Opc) {
4236 default: llvm_unreachable("Unknown opcode");
4237 case PPC::LBZUX: III.ImmOpcode = PPC::LBZU; break;
4238 case PPC::LBZUX8: III.ImmOpcode = PPC::LBZU8; break;
4239 case PPC::LHZUX: III.ImmOpcode = PPC::LHZU; break;
4240 case PPC::LHZUX8: III.ImmOpcode = PPC::LHZU8; break;
4241 case PPC::LHAUX: III.ImmOpcode = PPC::LHAU; break;
4242 case PPC::LHAUX8: III.ImmOpcode = PPC::LHAU8; break;
4243 case PPC::LWZUX: III.ImmOpcode = PPC::LWZU; break;
4244 case PPC::LWZUX8: III.ImmOpcode = PPC::LWZU8; break;
4245 case PPC::LDUX:
4246 III.ImmOpcode = PPC::LDU;
4247 III.ImmMustBeMultipleOf = 4;
4248 break;
4249 case PPC::LFSUX: III.ImmOpcode = PPC::LFSU; break;
4250 case PPC::LFDUX: III.ImmOpcode = PPC::LFDU; break;
4251 case PPC::STBUX: III.ImmOpcode = PPC::STBU; break;
4252 case PPC::STBUX8: III.ImmOpcode = PPC::STBU8; break;
4253 case PPC::STHUX: III.ImmOpcode = PPC::STHU; break;
4254 case PPC::STHUX8: III.ImmOpcode = PPC::STHU8; break;
4255 case PPC::STWUX: III.ImmOpcode = PPC::STWU; break;
4256 case PPC::STWUX8: III.ImmOpcode = PPC::STWU8; break;
4257 case PPC::STDUX:
4258 III.ImmOpcode = PPC::STDU;
4259 III.ImmMustBeMultipleOf = 4;
4260 break;
4261 case PPC::STFSUX: III.ImmOpcode = PPC::STFSU; break;
4262 case PPC::STFDUX: III.ImmOpcode = PPC::STFDU; break;
4264 break;
4265 // Power9 and up only. For some of these, the X-Form version has access to all
4266 // 64 VSR's whereas the D-Form only has access to the VR's. We replace those
4267 // with pseudo-ops pre-ra and for post-ra, we check that the register loaded
4268 // into or stored from is one of the VR registers.
4269 case PPC::LXVX:
4270 case PPC::LXSSPX:
4271 case PPC::LXSDX:
4272 case PPC::STXVX:
4273 case PPC::STXSSPX:
4274 case PPC::STXSDX:
4275 case PPC::XFLOADf32:
4276 case PPC::XFLOADf64:
4277 case PPC::XFSTOREf32:
4278 case PPC::XFSTOREf64:
4279 if (!Subtarget.hasP9Vector())
4280 return false;
4281 III.SignedImm = true;
4282 III.ZeroIsSpecialOrig = 1;
4283 III.ZeroIsSpecialNew = 2;
4284 III.IsCommutative = true;
4285 III.IsSummingOperands = true;
4286 III.ImmOpNo = 1;
4287 III.OpNoForForwarding = 2;
4288 III.ImmMustBeMultipleOf = 4;
4289 switch(Opc) {
4290 default: llvm_unreachable("Unknown opcode");
4291 case PPC::LXVX:
4292 III.ImmOpcode = PPC::LXV;
4293 III.ImmMustBeMultipleOf = 16;
4294 break;
4295 case PPC::LXSSPX:
4296 if (PostRA) {
4297 if (IsVFReg)
4298 III.ImmOpcode = PPC::LXSSP;
4299 else {
4300 III.ImmOpcode = PPC::LFS;
4301 III.ImmMustBeMultipleOf = 1;
4303 break;
4305 [[fallthrough]];
4306 case PPC::XFLOADf32:
4307 III.ImmOpcode = PPC::DFLOADf32;
4308 break;
4309 case PPC::LXSDX:
4310 if (PostRA) {
4311 if (IsVFReg)
4312 III.ImmOpcode = PPC::LXSD;
4313 else {
4314 III.ImmOpcode = PPC::LFD;
4315 III.ImmMustBeMultipleOf = 1;
4317 break;
4319 [[fallthrough]];
4320 case PPC::XFLOADf64:
4321 III.ImmOpcode = PPC::DFLOADf64;
4322 break;
4323 case PPC::STXVX:
4324 III.ImmOpcode = PPC::STXV;
4325 III.ImmMustBeMultipleOf = 16;
4326 break;
4327 case PPC::STXSSPX:
4328 if (PostRA) {
4329 if (IsVFReg)
4330 III.ImmOpcode = PPC::STXSSP;
4331 else {
4332 III.ImmOpcode = PPC::STFS;
4333 III.ImmMustBeMultipleOf = 1;
4335 break;
4337 [[fallthrough]];
4338 case PPC::XFSTOREf32:
4339 III.ImmOpcode = PPC::DFSTOREf32;
4340 break;
4341 case PPC::STXSDX:
4342 if (PostRA) {
4343 if (IsVFReg)
4344 III.ImmOpcode = PPC::STXSD;
4345 else {
4346 III.ImmOpcode = PPC::STFD;
4347 III.ImmMustBeMultipleOf = 1;
4349 break;
4351 [[fallthrough]];
4352 case PPC::XFSTOREf64:
4353 III.ImmOpcode = PPC::DFSTOREf64;
4354 break;
4356 break;
4358 return true;
4361 // Utility function for swaping two arbitrary operands of an instruction.
4362 static void swapMIOperands(MachineInstr &MI, unsigned Op1, unsigned Op2) {
4363 assert(Op1 != Op2 && "Cannot swap operand with itself.");
4365 unsigned MaxOp = std::max(Op1, Op2);
4366 unsigned MinOp = std::min(Op1, Op2);
4367 MachineOperand MOp1 = MI.getOperand(MinOp);
4368 MachineOperand MOp2 = MI.getOperand(MaxOp);
4369 MI.removeOperand(std::max(Op1, Op2));
4370 MI.removeOperand(std::min(Op1, Op2));
4372 // If the operands we are swapping are the two at the end (the common case)
4373 // we can just remove both and add them in the opposite order.
4374 if (MaxOp - MinOp == 1 && MI.getNumOperands() == MinOp) {
4375 MI.addOperand(MOp2);
4376 MI.addOperand(MOp1);
4377 } else {
4378 // Store all operands in a temporary vector, remove them and re-add in the
4379 // right order.
4380 SmallVector<MachineOperand, 2> MOps;
4381 unsigned TotalOps = MI.getNumOperands() + 2; // We've already removed 2 ops.
4382 for (unsigned i = MI.getNumOperands() - 1; i >= MinOp; i--) {
4383 MOps.push_back(MI.getOperand(i));
4384 MI.removeOperand(i);
4386 // MOp2 needs to be added next.
4387 MI.addOperand(MOp2);
4388 // Now add the rest.
4389 for (unsigned i = MI.getNumOperands(); i < TotalOps; i++) {
4390 if (i == MaxOp)
4391 MI.addOperand(MOp1);
4392 else {
4393 MI.addOperand(MOps.back());
4394 MOps.pop_back();
4400 // Check if the 'MI' that has the index OpNoForForwarding
4401 // meets the requirement described in the ImmInstrInfo.
4402 bool PPCInstrInfo::isUseMIElgibleForForwarding(MachineInstr &MI,
4403 const ImmInstrInfo &III,
4404 unsigned OpNoForForwarding
4405 ) const {
4406 // As the algorithm of checking for PPC::ZERO/PPC::ZERO8
4407 // would not work pre-RA, we can only do the check post RA.
4408 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4409 if (MRI.isSSA())
4410 return false;
4412 // Cannot do the transform if MI isn't summing the operands.
4413 if (!III.IsSummingOperands)
4414 return false;
4416 // The instruction we are trying to replace must have the ZeroIsSpecialOrig set.
4417 if (!III.ZeroIsSpecialOrig)
4418 return false;
4420 // We cannot do the transform if the operand we are trying to replace
4421 // isn't the same as the operand the instruction allows.
4422 if (OpNoForForwarding != III.OpNoForForwarding)
4423 return false;
4425 // Check if the instruction we are trying to transform really has
4426 // the special zero register as its operand.
4427 if (MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO &&
4428 MI.getOperand(III.ZeroIsSpecialOrig).getReg() != PPC::ZERO8)
4429 return false;
4431 // This machine instruction is convertible if it is,
4432 // 1. summing the operands.
4433 // 2. one of the operands is special zero register.
4434 // 3. the operand we are trying to replace is allowed by the MI.
4435 return true;
4438 // Check if the DefMI is the add inst and set the ImmMO and RegMO
4439 // accordingly.
4440 bool PPCInstrInfo::isDefMIElgibleForForwarding(MachineInstr &DefMI,
4441 const ImmInstrInfo &III,
4442 MachineOperand *&ImmMO,
4443 MachineOperand *&RegMO) const {
4444 unsigned Opc = DefMI.getOpcode();
4445 if (Opc != PPC::ADDItocL8 && Opc != PPC::ADDI && Opc != PPC::ADDI8)
4446 return false;
4448 // Skip the optimization of transformTo[NewImm|Imm]FormFedByAdd for ADDItocL8
4449 // on AIX which is used for toc-data access. TODO: Follow up to see if it can
4450 // apply for AIX toc-data as well.
4451 if (Opc == PPC::ADDItocL8 && Subtarget.isAIX())
4452 return false;
4454 assert(DefMI.getNumOperands() >= 3 &&
4455 "Add inst must have at least three operands");
4456 RegMO = &DefMI.getOperand(1);
4457 ImmMO = &DefMI.getOperand(2);
4459 // Before RA, ADDI first operand could be a frame index.
4460 if (!RegMO->isReg())
4461 return false;
4463 // This DefMI is elgible for forwarding if it is:
4464 // 1. add inst
4465 // 2. one of the operands is Imm/CPI/Global.
4466 return isAnImmediateOperand(*ImmMO);
4469 bool PPCInstrInfo::isRegElgibleForForwarding(
4470 const MachineOperand &RegMO, const MachineInstr &DefMI,
4471 const MachineInstr &MI, bool KillDefMI,
4472 bool &IsFwdFeederRegKilled, bool &SeenIntermediateUse) const {
4473 // x = addi y, imm
4474 // ...
4475 // z = lfdx 0, x -> z = lfd imm(y)
4476 // The Reg "y" can be forwarded to the MI(z) only when there is no DEF
4477 // of "y" between the DEF of "x" and "z".
4478 // The query is only valid post RA.
4479 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4480 if (MRI.isSSA())
4481 return false;
4483 Register Reg = RegMO.getReg();
4485 // Walking the inst in reverse(MI-->DefMI) to get the last DEF of the Reg.
4486 MachineBasicBlock::const_reverse_iterator It = MI;
4487 MachineBasicBlock::const_reverse_iterator E = MI.getParent()->rend();
4488 It++;
4489 for (; It != E; ++It) {
4490 if (It->modifiesRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4491 return false;
4492 else if (It->killsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4493 IsFwdFeederRegKilled = true;
4494 if (It->readsRegister(Reg, &getRegisterInfo()) && (&*It) != &DefMI)
4495 SeenIntermediateUse = true;
4496 // Made it to DefMI without encountering a clobber.
4497 if ((&*It) == &DefMI)
4498 break;
4500 assert((&*It) == &DefMI && "DefMI is missing");
4502 // If DefMI also defines the register to be forwarded, we can only forward it
4503 // if DefMI is being erased.
4504 if (DefMI.modifiesRegister(Reg, &getRegisterInfo()))
4505 return KillDefMI;
4507 return true;
4510 bool PPCInstrInfo::isImmElgibleForForwarding(const MachineOperand &ImmMO,
4511 const MachineInstr &DefMI,
4512 const ImmInstrInfo &III,
4513 int64_t &Imm,
4514 int64_t BaseImm) const {
4515 assert(isAnImmediateOperand(ImmMO) && "ImmMO is NOT an immediate");
4516 if (DefMI.getOpcode() == PPC::ADDItocL8) {
4517 // The operand for ADDItocL8 is CPI, which isn't imm at compiling time,
4518 // However, we know that, it is 16-bit width, and has the alignment of 4.
4519 // Check if the instruction met the requirement.
4520 if (III.ImmMustBeMultipleOf > 4 ||
4521 III.TruncateImmTo || III.ImmWidth != 16)
4522 return false;
4524 // Going from XForm to DForm loads means that the displacement needs to be
4525 // not just an immediate but also a multiple of 4, or 16 depending on the
4526 // load. A DForm load cannot be represented if it is a multiple of say 2.
4527 // XForm loads do not have this restriction.
4528 if (ImmMO.isGlobal()) {
4529 const DataLayout &DL = ImmMO.getGlobal()->getDataLayout();
4530 if (ImmMO.getGlobal()->getPointerAlignment(DL) < III.ImmMustBeMultipleOf)
4531 return false;
4534 return true;
4537 if (ImmMO.isImm()) {
4538 // It is Imm, we need to check if the Imm fit the range.
4539 // Sign-extend to 64-bits.
4540 // DefMI may be folded with another imm form instruction, the result Imm is
4541 // the sum of Imm of DefMI and BaseImm which is from imm form instruction.
4542 APInt ActualValue(64, ImmMO.getImm() + BaseImm, true);
4543 if (III.SignedImm && !ActualValue.isSignedIntN(III.ImmWidth))
4544 return false;
4545 if (!III.SignedImm && !ActualValue.isIntN(III.ImmWidth))
4546 return false;
4547 Imm = SignExtend64<16>(ImmMO.getImm() + BaseImm);
4549 if (Imm % III.ImmMustBeMultipleOf)
4550 return false;
4551 if (III.TruncateImmTo)
4552 Imm &= ((1 << III.TruncateImmTo) - 1);
4554 else
4555 return false;
4557 // This ImmMO is forwarded if it meets the requriement describle
4558 // in ImmInstrInfo
4559 return true;
4562 bool PPCInstrInfo::simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
4563 unsigned OpNoForForwarding,
4564 MachineInstr **KilledDef) const {
4565 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4566 !DefMI.getOperand(1).isImm())
4567 return false;
4569 MachineFunction *MF = MI.getParent()->getParent();
4570 MachineRegisterInfo *MRI = &MF->getRegInfo();
4571 bool PostRA = !MRI->isSSA();
4573 int64_t Immediate = DefMI.getOperand(1).getImm();
4574 // Sign-extend to 64-bits.
4575 int64_t SExtImm = SignExtend64<16>(Immediate);
4577 bool ReplaceWithLI = false;
4578 bool Is64BitLI = false;
4579 int64_t NewImm = 0;
4580 bool SetCR = false;
4581 unsigned Opc = MI.getOpcode();
4582 switch (Opc) {
4583 default:
4584 return false;
4586 // FIXME: Any branches conditional on such a comparison can be made
4587 // unconditional. At this time, this happens too infrequently to be worth
4588 // the implementation effort, but if that ever changes, we could convert
4589 // such a pattern here.
4590 case PPC::CMPWI:
4591 case PPC::CMPLWI:
4592 case PPC::CMPDI:
4593 case PPC::CMPLDI: {
4594 // Doing this post-RA would require dataflow analysis to reliably find uses
4595 // of the CR register set by the compare.
4596 // No need to fixup killed/dead flag since this transformation is only valid
4597 // before RA.
4598 if (PostRA)
4599 return false;
4600 // If a compare-immediate is fed by an immediate and is itself an input of
4601 // an ISEL (the most common case) into a COPY of the correct register.
4602 bool Changed = false;
4603 Register DefReg = MI.getOperand(0).getReg();
4604 int64_t Comparand = MI.getOperand(2).getImm();
4605 int64_t SExtComparand = ((uint64_t)Comparand & ~0x7FFFuLL) != 0
4606 ? (Comparand | 0xFFFFFFFFFFFF0000)
4607 : Comparand;
4609 for (auto &CompareUseMI : MRI->use_instructions(DefReg)) {
4610 unsigned UseOpc = CompareUseMI.getOpcode();
4611 if (UseOpc != PPC::ISEL && UseOpc != PPC::ISEL8)
4612 continue;
4613 unsigned CRSubReg = CompareUseMI.getOperand(3).getSubReg();
4614 Register TrueReg = CompareUseMI.getOperand(1).getReg();
4615 Register FalseReg = CompareUseMI.getOperand(2).getReg();
4616 unsigned RegToCopy =
4617 selectReg(SExtImm, SExtComparand, Opc, TrueReg, FalseReg, CRSubReg);
4618 if (RegToCopy == PPC::NoRegister)
4619 continue;
4620 // Can't use PPC::COPY to copy PPC::ZERO[8]. Convert it to LI[8] 0.
4621 if (RegToCopy == PPC::ZERO || RegToCopy == PPC::ZERO8) {
4622 CompareUseMI.setDesc(get(UseOpc == PPC::ISEL8 ? PPC::LI8 : PPC::LI));
4623 replaceInstrOperandWithImm(CompareUseMI, 1, 0);
4624 CompareUseMI.removeOperand(3);
4625 CompareUseMI.removeOperand(2);
4626 continue;
4628 LLVM_DEBUG(
4629 dbgs() << "Found LI -> CMPI -> ISEL, replacing with a copy.\n");
4630 LLVM_DEBUG(DefMI.dump(); MI.dump(); CompareUseMI.dump());
4631 LLVM_DEBUG(dbgs() << "Is converted to:\n");
4632 // Convert to copy and remove unneeded operands.
4633 CompareUseMI.setDesc(get(PPC::COPY));
4634 CompareUseMI.removeOperand(3);
4635 CompareUseMI.removeOperand(RegToCopy == TrueReg ? 2 : 1);
4636 CmpIselsConverted++;
4637 Changed = true;
4638 LLVM_DEBUG(CompareUseMI.dump());
4640 if (Changed)
4641 return true;
4642 // This may end up incremented multiple times since this function is called
4643 // during a fixed-point transformation, but it is only meant to indicate the
4644 // presence of this opportunity.
4645 MissedConvertibleImmediateInstrs++;
4646 return false;
4649 // Immediate forms - may simply be convertable to an LI.
4650 case PPC::ADDI:
4651 case PPC::ADDI8: {
4652 // Does the sum fit in a 16-bit signed field?
4653 int64_t Addend = MI.getOperand(2).getImm();
4654 if (isInt<16>(Addend + SExtImm)) {
4655 ReplaceWithLI = true;
4656 Is64BitLI = Opc == PPC::ADDI8;
4657 NewImm = Addend + SExtImm;
4658 break;
4660 return false;
4662 case PPC::SUBFIC:
4663 case PPC::SUBFIC8: {
4664 // Only transform this if the CARRY implicit operand is dead.
4665 if (MI.getNumOperands() > 3 && !MI.getOperand(3).isDead())
4666 return false;
4667 int64_t Minuend = MI.getOperand(2).getImm();
4668 if (isInt<16>(Minuend - SExtImm)) {
4669 ReplaceWithLI = true;
4670 Is64BitLI = Opc == PPC::SUBFIC8;
4671 NewImm = Minuend - SExtImm;
4672 break;
4674 return false;
4676 case PPC::RLDICL:
4677 case PPC::RLDICL_rec:
4678 case PPC::RLDICL_32:
4679 case PPC::RLDICL_32_64: {
4680 // Use APInt's rotate function.
4681 int64_t SH = MI.getOperand(2).getImm();
4682 int64_t MB = MI.getOperand(3).getImm();
4683 APInt InVal((Opc == PPC::RLDICL || Opc == PPC::RLDICL_rec) ? 64 : 32,
4684 SExtImm, true);
4685 InVal = InVal.rotl(SH);
4686 uint64_t Mask = MB == 0 ? -1LLU : (1LLU << (63 - MB + 1)) - 1;
4687 InVal &= Mask;
4688 // Can't replace negative values with an LI as that will sign-extend
4689 // and not clear the left bits. If we're setting the CR bit, we will use
4690 // ANDI_rec which won't sign extend, so that's safe.
4691 if (isUInt<15>(InVal.getSExtValue()) ||
4692 (Opc == PPC::RLDICL_rec && isUInt<16>(InVal.getSExtValue()))) {
4693 ReplaceWithLI = true;
4694 Is64BitLI = Opc != PPC::RLDICL_32;
4695 NewImm = InVal.getSExtValue();
4696 SetCR = Opc == PPC::RLDICL_rec;
4697 break;
4699 return false;
4701 case PPC::RLWINM:
4702 case PPC::RLWINM8:
4703 case PPC::RLWINM_rec:
4704 case PPC::RLWINM8_rec: {
4705 int64_t SH = MI.getOperand(2).getImm();
4706 int64_t MB = MI.getOperand(3).getImm();
4707 int64_t ME = MI.getOperand(4).getImm();
4708 APInt InVal(32, SExtImm, true);
4709 InVal = InVal.rotl(SH);
4710 APInt Mask = APInt::getBitsSetWithWrap(32, 32 - ME - 1, 32 - MB);
4711 InVal &= Mask;
4712 // Can't replace negative values with an LI as that will sign-extend
4713 // and not clear the left bits. If we're setting the CR bit, we will use
4714 // ANDI_rec which won't sign extend, so that's safe.
4715 bool ValueFits = isUInt<15>(InVal.getSExtValue());
4716 ValueFits |= ((Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec) &&
4717 isUInt<16>(InVal.getSExtValue()));
4718 if (ValueFits) {
4719 ReplaceWithLI = true;
4720 Is64BitLI = Opc == PPC::RLWINM8 || Opc == PPC::RLWINM8_rec;
4721 NewImm = InVal.getSExtValue();
4722 SetCR = Opc == PPC::RLWINM_rec || Opc == PPC::RLWINM8_rec;
4723 break;
4725 return false;
4727 case PPC::ORI:
4728 case PPC::ORI8:
4729 case PPC::XORI:
4730 case PPC::XORI8: {
4731 int64_t LogicalImm = MI.getOperand(2).getImm();
4732 int64_t Result = 0;
4733 if (Opc == PPC::ORI || Opc == PPC::ORI8)
4734 Result = LogicalImm | SExtImm;
4735 else
4736 Result = LogicalImm ^ SExtImm;
4737 if (isInt<16>(Result)) {
4738 ReplaceWithLI = true;
4739 Is64BitLI = Opc == PPC::ORI8 || Opc == PPC::XORI8;
4740 NewImm = Result;
4741 break;
4743 return false;
4747 if (ReplaceWithLI) {
4748 // We need to be careful with CR-setting instructions we're replacing.
4749 if (SetCR) {
4750 // We don't know anything about uses when we're out of SSA, so only
4751 // replace if the new immediate will be reproduced.
4752 bool ImmChanged = (SExtImm & NewImm) != NewImm;
4753 if (PostRA && ImmChanged)
4754 return false;
4756 if (!PostRA) {
4757 // If the defining load-immediate has no other uses, we can just replace
4758 // the immediate with the new immediate.
4759 if (MRI->hasOneUse(DefMI.getOperand(0).getReg()))
4760 DefMI.getOperand(1).setImm(NewImm);
4762 // If we're not using the GPR result of the CR-setting instruction, we
4763 // just need to and with zero/non-zero depending on the new immediate.
4764 else if (MRI->use_empty(MI.getOperand(0).getReg())) {
4765 if (NewImm) {
4766 assert(Immediate && "Transformation converted zero to non-zero?");
4767 NewImm = Immediate;
4769 } else if (ImmChanged)
4770 return false;
4774 LLVM_DEBUG(dbgs() << "Replacing constant instruction:\n");
4775 LLVM_DEBUG(MI.dump());
4776 LLVM_DEBUG(dbgs() << "Fed by:\n");
4777 LLVM_DEBUG(DefMI.dump());
4778 LoadImmediateInfo LII;
4779 LII.Imm = NewImm;
4780 LII.Is64Bit = Is64BitLI;
4781 LII.SetCR = SetCR;
4782 // If we're setting the CR, the original load-immediate must be kept (as an
4783 // operand to ANDI_rec/ANDI8_rec).
4784 if (KilledDef && SetCR)
4785 *KilledDef = nullptr;
4786 replaceInstrWithLI(MI, LII);
4788 if (PostRA)
4789 recomputeLivenessFlags(*MI.getParent());
4791 LLVM_DEBUG(dbgs() << "With:\n");
4792 LLVM_DEBUG(MI.dump());
4793 return true;
4795 return false;
4798 bool PPCInstrInfo::transformToNewImmFormFedByAdd(
4799 MachineInstr &MI, MachineInstr &DefMI, unsigned OpNoForForwarding) const {
4800 MachineRegisterInfo *MRI = &MI.getParent()->getParent()->getRegInfo();
4801 bool PostRA = !MRI->isSSA();
4802 // FIXME: extend this to post-ra. Need to do some change in getForwardingDefMI
4803 // for post-ra.
4804 if (PostRA)
4805 return false;
4807 // Only handle load/store.
4808 if (!MI.mayLoadOrStore())
4809 return false;
4811 unsigned XFormOpcode = RI.getMappedIdxOpcForImmOpc(MI.getOpcode());
4813 assert((XFormOpcode != PPC::INSTRUCTION_LIST_END) &&
4814 "MI must have x-form opcode");
4816 // get Imm Form info.
4817 ImmInstrInfo III;
4818 bool IsVFReg = MI.getOperand(0).isReg()
4819 ? PPC::isVFRegister(MI.getOperand(0).getReg())
4820 : false;
4822 if (!instrHasImmForm(XFormOpcode, IsVFReg, III, PostRA))
4823 return false;
4825 if (!III.IsSummingOperands)
4826 return false;
4828 if (OpNoForForwarding != III.OpNoForForwarding)
4829 return false;
4831 MachineOperand ImmOperandMI = MI.getOperand(III.ImmOpNo);
4832 if (!ImmOperandMI.isImm())
4833 return false;
4835 // Check DefMI.
4836 MachineOperand *ImmMO = nullptr;
4837 MachineOperand *RegMO = nullptr;
4838 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4839 return false;
4840 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4842 // Check Imm.
4843 // Set ImmBase from imm instruction as base and get new Imm inside
4844 // isImmElgibleForForwarding.
4845 int64_t ImmBase = ImmOperandMI.getImm();
4846 int64_t Imm = 0;
4847 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm, ImmBase))
4848 return false;
4850 // Do the transform
4851 LLVM_DEBUG(dbgs() << "Replacing existing reg+imm instruction:\n");
4852 LLVM_DEBUG(MI.dump());
4853 LLVM_DEBUG(dbgs() << "Fed by:\n");
4854 LLVM_DEBUG(DefMI.dump());
4856 MI.getOperand(III.OpNoForForwarding).setReg(RegMO->getReg());
4857 MI.getOperand(III.ImmOpNo).setImm(Imm);
4859 LLVM_DEBUG(dbgs() << "With:\n");
4860 LLVM_DEBUG(MI.dump());
4861 return true;
4864 // If an X-Form instruction is fed by an add-immediate and one of its operands
4865 // is the literal zero, attempt to forward the source of the add-immediate to
4866 // the corresponding D-Form instruction with the displacement coming from
4867 // the immediate being added.
4868 bool PPCInstrInfo::transformToImmFormFedByAdd(
4869 MachineInstr &MI, const ImmInstrInfo &III, unsigned OpNoForForwarding,
4870 MachineInstr &DefMI, bool KillDefMI) const {
4871 // RegMO ImmMO
4872 // | |
4873 // x = addi reg, imm <----- DefMI
4874 // y = op 0 , x <----- MI
4875 // |
4876 // OpNoForForwarding
4877 // Check if the MI meet the requirement described in the III.
4878 if (!isUseMIElgibleForForwarding(MI, III, OpNoForForwarding))
4879 return false;
4881 // Check if the DefMI meet the requirement
4882 // described in the III. If yes, set the ImmMO and RegMO accordingly.
4883 MachineOperand *ImmMO = nullptr;
4884 MachineOperand *RegMO = nullptr;
4885 if (!isDefMIElgibleForForwarding(DefMI, III, ImmMO, RegMO))
4886 return false;
4887 assert(ImmMO && RegMO && "Imm and Reg operand must have been set");
4889 // As we get the Imm operand now, we need to check if the ImmMO meet
4890 // the requirement described in the III. If yes set the Imm.
4891 int64_t Imm = 0;
4892 if (!isImmElgibleForForwarding(*ImmMO, DefMI, III, Imm))
4893 return false;
4895 bool IsFwdFeederRegKilled = false;
4896 bool SeenIntermediateUse = false;
4897 // Check if the RegMO can be forwarded to MI.
4898 if (!isRegElgibleForForwarding(*RegMO, DefMI, MI, KillDefMI,
4899 IsFwdFeederRegKilled, SeenIntermediateUse))
4900 return false;
4902 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4903 bool PostRA = !MRI.isSSA();
4905 // We know that, the MI and DefMI both meet the pattern, and
4906 // the Imm also meet the requirement with the new Imm-form.
4907 // It is safe to do the transformation now.
4908 LLVM_DEBUG(dbgs() << "Replacing indexed instruction:\n");
4909 LLVM_DEBUG(MI.dump());
4910 LLVM_DEBUG(dbgs() << "Fed by:\n");
4911 LLVM_DEBUG(DefMI.dump());
4913 // Update the base reg first.
4914 MI.getOperand(III.OpNoForForwarding).ChangeToRegister(RegMO->getReg(),
4915 false, false,
4916 RegMO->isKill());
4918 // Then, update the imm.
4919 if (ImmMO->isImm()) {
4920 // If the ImmMO is Imm, change the operand that has ZERO to that Imm
4921 // directly.
4922 replaceInstrOperandWithImm(MI, III.ZeroIsSpecialOrig, Imm);
4924 else {
4925 // Otherwise, it is Constant Pool Index(CPI) or Global,
4926 // which is relocation in fact. We need to replace the special zero
4927 // register with ImmMO.
4928 // Before that, we need to fixup the target flags for imm.
4929 // For some reason, we miss to set the flag for the ImmMO if it is CPI.
4930 if (DefMI.getOpcode() == PPC::ADDItocL8)
4931 ImmMO->setTargetFlags(PPCII::MO_TOC_LO);
4933 // MI didn't have the interface such as MI.setOperand(i) though
4934 // it has MI.getOperand(i). To repalce the ZERO MachineOperand with
4935 // ImmMO, we need to remove ZERO operand and all the operands behind it,
4936 // and, add the ImmMO, then, move back all the operands behind ZERO.
4937 SmallVector<MachineOperand, 2> MOps;
4938 for (unsigned i = MI.getNumOperands() - 1; i >= III.ZeroIsSpecialOrig; i--) {
4939 MOps.push_back(MI.getOperand(i));
4940 MI.removeOperand(i);
4943 // Remove the last MO in the list, which is ZERO operand in fact.
4944 MOps.pop_back();
4945 // Add the imm operand.
4946 MI.addOperand(*ImmMO);
4947 // Now add the rest back.
4948 for (auto &MO : MOps)
4949 MI.addOperand(MO);
4952 // Update the opcode.
4953 MI.setDesc(get(III.ImmOpcode));
4955 if (PostRA)
4956 recomputeLivenessFlags(*MI.getParent());
4957 LLVM_DEBUG(dbgs() << "With:\n");
4958 LLVM_DEBUG(MI.dump());
4960 return true;
4963 bool PPCInstrInfo::transformToImmFormFedByLI(MachineInstr &MI,
4964 const ImmInstrInfo &III,
4965 unsigned ConstantOpNo,
4966 MachineInstr &DefMI) const {
4967 // DefMI must be LI or LI8.
4968 if ((DefMI.getOpcode() != PPC::LI && DefMI.getOpcode() != PPC::LI8) ||
4969 !DefMI.getOperand(1).isImm())
4970 return false;
4972 // Get Imm operand and Sign-extend to 64-bits.
4973 int64_t Imm = SignExtend64<16>(DefMI.getOperand(1).getImm());
4975 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4976 bool PostRA = !MRI.isSSA();
4977 // Exit early if we can't convert this.
4978 if ((ConstantOpNo != III.OpNoForForwarding) && !III.IsCommutative)
4979 return false;
4980 if (Imm % III.ImmMustBeMultipleOf)
4981 return false;
4982 if (III.TruncateImmTo)
4983 Imm &= ((1 << III.TruncateImmTo) - 1);
4984 if (III.SignedImm) {
4985 APInt ActualValue(64, Imm, true);
4986 if (!ActualValue.isSignedIntN(III.ImmWidth))
4987 return false;
4988 } else {
4989 uint64_t UnsignedMax = (1 << III.ImmWidth) - 1;
4990 if ((uint64_t)Imm > UnsignedMax)
4991 return false;
4994 // If we're post-RA, the instructions don't agree on whether register zero is
4995 // special, we can transform this as long as the register operand that will
4996 // end up in the location where zero is special isn't R0.
4997 if (PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
4998 unsigned PosForOrigZero = III.ZeroIsSpecialOrig ? III.ZeroIsSpecialOrig :
4999 III.ZeroIsSpecialNew + 1;
5000 Register OrigZeroReg = MI.getOperand(PosForOrigZero).getReg();
5001 Register NewZeroReg = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5002 // If R0 is in the operand where zero is special for the new instruction,
5003 // it is unsafe to transform if the constant operand isn't that operand.
5004 if ((NewZeroReg == PPC::R0 || NewZeroReg == PPC::X0) &&
5005 ConstantOpNo != III.ZeroIsSpecialNew)
5006 return false;
5007 if ((OrigZeroReg == PPC::R0 || OrigZeroReg == PPC::X0) &&
5008 ConstantOpNo != PosForOrigZero)
5009 return false;
5012 unsigned Opc = MI.getOpcode();
5013 bool SpecialShift32 = Opc == PPC::SLW || Opc == PPC::SLW_rec ||
5014 Opc == PPC::SRW || Opc == PPC::SRW_rec ||
5015 Opc == PPC::SLW8 || Opc == PPC::SLW8_rec ||
5016 Opc == PPC::SRW8 || Opc == PPC::SRW8_rec;
5017 bool SpecialShift64 = Opc == PPC::SLD || Opc == PPC::SLD_rec ||
5018 Opc == PPC::SRD || Opc == PPC::SRD_rec;
5019 bool SetCR = Opc == PPC::SLW_rec || Opc == PPC::SRW_rec ||
5020 Opc == PPC::SLD_rec || Opc == PPC::SRD_rec;
5021 bool RightShift = Opc == PPC::SRW || Opc == PPC::SRW_rec || Opc == PPC::SRD ||
5022 Opc == PPC::SRD_rec;
5024 LLVM_DEBUG(dbgs() << "Replacing reg+reg instruction: ");
5025 LLVM_DEBUG(MI.dump());
5026 LLVM_DEBUG(dbgs() << "Fed by load-immediate: ");
5027 LLVM_DEBUG(DefMI.dump());
5028 MI.setDesc(get(III.ImmOpcode));
5029 if (ConstantOpNo == III.OpNoForForwarding) {
5030 // Converting shifts to immediate form is a bit tricky since they may do
5031 // one of three things:
5032 // 1. If the shift amount is between OpSize and 2*OpSize, the result is zero
5033 // 2. If the shift amount is zero, the result is unchanged (save for maybe
5034 // setting CR0)
5035 // 3. If the shift amount is in [1, OpSize), it's just a shift
5036 if (SpecialShift32 || SpecialShift64) {
5037 LoadImmediateInfo LII;
5038 LII.Imm = 0;
5039 LII.SetCR = SetCR;
5040 LII.Is64Bit = SpecialShift64;
5041 uint64_t ShAmt = Imm & (SpecialShift32 ? 0x1F : 0x3F);
5042 if (Imm & (SpecialShift32 ? 0x20 : 0x40))
5043 replaceInstrWithLI(MI, LII);
5044 // Shifts by zero don't change the value. If we don't need to set CR0,
5045 // just convert this to a COPY. Can't do this post-RA since we've already
5046 // cleaned up the copies.
5047 else if (!SetCR && ShAmt == 0 && !PostRA) {
5048 MI.removeOperand(2);
5049 MI.setDesc(get(PPC::COPY));
5050 } else {
5051 // The 32 bit and 64 bit instructions are quite different.
5052 if (SpecialShift32) {
5053 // Left shifts use (N, 0, 31-N).
5054 // Right shifts use (32-N, N, 31) if 0 < N < 32.
5055 // use (0, 0, 31) if N == 0.
5056 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 32 - ShAmt : ShAmt;
5057 uint64_t MB = RightShift ? ShAmt : 0;
5058 uint64_t ME = RightShift ? 31 : 31 - ShAmt;
5059 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5060 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(MB)
5061 .addImm(ME);
5062 } else {
5063 // Left shifts use (N, 63-N).
5064 // Right shifts use (64-N, N) if 0 < N < 64.
5065 // use (0, 0) if N == 0.
5066 uint64_t SH = ShAmt == 0 ? 0 : RightShift ? 64 - ShAmt : ShAmt;
5067 uint64_t ME = RightShift ? ShAmt : 63 - ShAmt;
5068 replaceInstrOperandWithImm(MI, III.OpNoForForwarding, SH);
5069 MachineInstrBuilder(*MI.getParent()->getParent(), MI).addImm(ME);
5072 } else
5073 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5075 // Convert commutative instructions (switch the operands and convert the
5076 // desired one to an immediate.
5077 else if (III.IsCommutative) {
5078 replaceInstrOperandWithImm(MI, ConstantOpNo, Imm);
5079 swapMIOperands(MI, ConstantOpNo, III.OpNoForForwarding);
5080 } else
5081 llvm_unreachable("Should have exited early!");
5083 // For instructions for which the constant register replaces a different
5084 // operand than where the immediate goes, we need to swap them.
5085 if (III.OpNoForForwarding != III.ImmOpNo)
5086 swapMIOperands(MI, III.OpNoForForwarding, III.ImmOpNo);
5088 // If the special R0/X0 register index are different for original instruction
5089 // and new instruction, we need to fix up the register class in new
5090 // instruction.
5091 if (!PostRA && III.ZeroIsSpecialOrig != III.ZeroIsSpecialNew) {
5092 if (III.ZeroIsSpecialNew) {
5093 // If operand at III.ZeroIsSpecialNew is physical reg(eg: ZERO/ZERO8), no
5094 // need to fix up register class.
5095 Register RegToModify = MI.getOperand(III.ZeroIsSpecialNew).getReg();
5096 if (RegToModify.isVirtual()) {
5097 const TargetRegisterClass *NewRC =
5098 MRI.getRegClass(RegToModify)->hasSuperClassEq(&PPC::GPRCRegClass) ?
5099 &PPC::GPRC_and_GPRC_NOR0RegClass : &PPC::G8RC_and_G8RC_NOX0RegClass;
5100 MRI.setRegClass(RegToModify, NewRC);
5105 if (PostRA)
5106 recomputeLivenessFlags(*MI.getParent());
5108 LLVM_DEBUG(dbgs() << "With: ");
5109 LLVM_DEBUG(MI.dump());
5110 LLVM_DEBUG(dbgs() << "\n");
5111 return true;
5114 const TargetRegisterClass *
5115 PPCInstrInfo::updatedRC(const TargetRegisterClass *RC) const {
5116 if (Subtarget.hasVSX() && RC == &PPC::VRRCRegClass)
5117 return &PPC::VSRCRegClass;
5118 return RC;
5121 int PPCInstrInfo::getRecordFormOpcode(unsigned Opcode) {
5122 return PPC::getRecordFormOpcode(Opcode);
5125 static bool isOpZeroOfSubwordPreincLoad(int Opcode) {
5126 return (Opcode == PPC::LBZU || Opcode == PPC::LBZUX || Opcode == PPC::LBZU8 ||
5127 Opcode == PPC::LBZUX8 || Opcode == PPC::LHZU ||
5128 Opcode == PPC::LHZUX || Opcode == PPC::LHZU8 ||
5129 Opcode == PPC::LHZUX8);
5132 // This function checks for sign extension from 32 bits to 64 bits.
5133 static bool definedBySignExtendingOp(const unsigned Reg,
5134 const MachineRegisterInfo *MRI) {
5135 if (!Register::isVirtualRegister(Reg))
5136 return false;
5138 MachineInstr *MI = MRI->getVRegDef(Reg);
5139 if (!MI)
5140 return false;
5142 int Opcode = MI->getOpcode();
5143 const PPCInstrInfo *TII =
5144 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5145 if (TII->isSExt32To64(Opcode))
5146 return true;
5148 // The first def of LBZU/LHZU is sign extended.
5149 if (isOpZeroOfSubwordPreincLoad(Opcode) && MI->getOperand(0).getReg() == Reg)
5150 return true;
5152 // RLDICL generates sign-extended output if it clears at least
5153 // 33 bits from the left (MSB).
5154 if (Opcode == PPC::RLDICL && MI->getOperand(3).getImm() >= 33)
5155 return true;
5157 // If at least one bit from left in a lower word is masked out,
5158 // all of 0 to 32-th bits of the output are cleared.
5159 // Hence the output is already sign extended.
5160 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5161 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec) &&
5162 MI->getOperand(3).getImm() > 0 &&
5163 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5164 return true;
5166 // If the most significant bit of immediate in ANDIS is zero,
5167 // all of 0 to 32-th bits are cleared.
5168 if (Opcode == PPC::ANDIS_rec || Opcode == PPC::ANDIS8_rec) {
5169 uint16_t Imm = MI->getOperand(2).getImm();
5170 if ((Imm & 0x8000) == 0)
5171 return true;
5174 return false;
5177 // This function checks the machine instruction that defines the input register
5178 // Reg. If that machine instruction always outputs a value that has only zeros
5179 // in the higher 32 bits then this function will return true.
5180 static bool definedByZeroExtendingOp(const unsigned Reg,
5181 const MachineRegisterInfo *MRI) {
5182 if (!Register::isVirtualRegister(Reg))
5183 return false;
5185 MachineInstr *MI = MRI->getVRegDef(Reg);
5186 if (!MI)
5187 return false;
5189 int Opcode = MI->getOpcode();
5190 const PPCInstrInfo *TII =
5191 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5192 if (TII->isZExt32To64(Opcode))
5193 return true;
5195 // The first def of LBZU/LHZU/LWZU are zero extended.
5196 if ((isOpZeroOfSubwordPreincLoad(Opcode) || Opcode == PPC::LWZU ||
5197 Opcode == PPC::LWZUX || Opcode == PPC::LWZU8 || Opcode == PPC::LWZUX8) &&
5198 MI->getOperand(0).getReg() == Reg)
5199 return true;
5201 // The 16-bit immediate is sign-extended in li/lis.
5202 // If the most significant bit is zero, all higher bits are zero.
5203 if (Opcode == PPC::LI || Opcode == PPC::LI8 ||
5204 Opcode == PPC::LIS || Opcode == PPC::LIS8) {
5205 int64_t Imm = MI->getOperand(1).getImm();
5206 if (((uint64_t)Imm & ~0x7FFFuLL) == 0)
5207 return true;
5210 // We have some variations of rotate-and-mask instructions
5211 // that clear higher 32-bits.
5212 if ((Opcode == PPC::RLDICL || Opcode == PPC::RLDICL_rec ||
5213 Opcode == PPC::RLDCL || Opcode == PPC::RLDCL_rec ||
5214 Opcode == PPC::RLDICL_32_64) &&
5215 MI->getOperand(3).getImm() >= 32)
5216 return true;
5218 if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDIC_rec) &&
5219 MI->getOperand(3).getImm() >= 32 &&
5220 MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
5221 return true;
5223 if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINM_rec ||
5224 Opcode == PPC::RLWNM || Opcode == PPC::RLWNM_rec ||
5225 Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
5226 MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
5227 return true;
5229 return false;
5232 // This function returns true if the input MachineInstr is a TOC save
5233 // instruction.
5234 bool PPCInstrInfo::isTOCSaveMI(const MachineInstr &MI) const {
5235 if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isReg())
5236 return false;
5237 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5238 unsigned StackOffset = MI.getOperand(1).getImm();
5239 Register StackReg = MI.getOperand(2).getReg();
5240 Register SPReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
5241 if (StackReg == SPReg && StackOffset == TOCSaveOffset)
5242 return true;
5244 return false;
5247 // We limit the max depth to track incoming values of PHIs or binary ops
5248 // (e.g. AND) to avoid excessive cost.
5249 const unsigned MAX_BINOP_DEPTH = 1;
5251 // This function will promote the instruction which defines the register `Reg`
5252 // in the parameter from a 32-bit to a 64-bit instruction if needed. The logic
5253 // used to check whether an instruction needs to be promoted or not is similar
5254 // to the logic used to check whether or not a defined register is sign or zero
5255 // extended within the function PPCInstrInfo::isSignOrZeroExtended.
5256 // Additionally, the `promoteInstr32To64ForElimEXTSW` function is recursive.
5257 // BinOpDepth does not count all of the recursions. The parameter BinOpDepth is
5258 // incremented only when `promoteInstr32To64ForElimEXTSW` calls itself more
5259 // than once. This is done to prevent exponential recursion.
5260 void PPCInstrInfo::promoteInstr32To64ForElimEXTSW(const Register &Reg,
5261 MachineRegisterInfo *MRI,
5262 unsigned BinOpDepth,
5263 LiveVariables *LV) const {
5264 if (!Reg.isVirtual())
5265 return;
5267 MachineInstr *MI = MRI->getVRegDef(Reg);
5268 if (!MI)
5269 return;
5271 unsigned Opcode = MI->getOpcode();
5273 switch (Opcode) {
5274 case PPC::OR:
5275 case PPC::ISEL:
5276 case PPC::OR8:
5277 case PPC::PHI: {
5278 if (BinOpDepth >= MAX_BINOP_DEPTH)
5279 break;
5280 unsigned OperandEnd = 3, OperandStride = 1;
5281 if (Opcode == PPC::PHI) {
5282 OperandEnd = MI->getNumOperands();
5283 OperandStride = 2;
5286 for (unsigned I = 1; I < OperandEnd; I += OperandStride) {
5287 assert(MI->getOperand(I).isReg() && "Operand must be register");
5288 promoteInstr32To64ForElimEXTSW(MI->getOperand(I).getReg(), MRI,
5289 BinOpDepth + 1, LV);
5292 break;
5294 case PPC::COPY: {
5295 // Refers to the logic of the `case PPC::COPY` statement in the function
5296 // PPCInstrInfo::isSignOrZeroExtended().
5298 Register SrcReg = MI->getOperand(1).getReg();
5299 // In both ELFv1 and v2 ABI, method parameters and the return value
5300 // are sign- or zero-extended.
5301 const MachineFunction *MF = MI->getMF();
5302 if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5303 // If this is a copy from another register, we recursively promote the
5304 // source.
5305 promoteInstr32To64ForElimEXTSW(SrcReg, MRI, BinOpDepth, LV);
5306 return;
5309 // From here on everything is SVR4ABI. COPY will be eliminated in the other
5310 // pass, we do not need promote the COPY pseudo opcode.
5312 if (SrcReg != PPC::X3)
5313 // If this is a copy from another register, we recursively promote the
5314 // source.
5315 promoteInstr32To64ForElimEXTSW(SrcReg, MRI, BinOpDepth, LV);
5316 return;
5318 case PPC::ORI:
5319 case PPC::XORI:
5320 case PPC::ORIS:
5321 case PPC::XORIS:
5322 case PPC::ORI8:
5323 case PPC::XORI8:
5324 case PPC::ORIS8:
5325 case PPC::XORIS8:
5326 promoteInstr32To64ForElimEXTSW(MI->getOperand(1).getReg(), MRI, BinOpDepth,
5327 LV);
5328 break;
5329 case PPC::AND:
5330 case PPC::AND8:
5331 if (BinOpDepth >= MAX_BINOP_DEPTH)
5332 break;
5334 promoteInstr32To64ForElimEXTSW(MI->getOperand(1).getReg(), MRI,
5335 BinOpDepth + 1, LV);
5336 promoteInstr32To64ForElimEXTSW(MI->getOperand(2).getReg(), MRI,
5337 BinOpDepth + 1, LV);
5338 break;
5341 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
5342 if (RC == &PPC::G8RCRegClass || RC == &PPC::G8RC_and_G8RC_NOX0RegClass)
5343 return;
5345 const PPCInstrInfo *TII =
5346 MI->getMF()->getSubtarget<PPCSubtarget>().getInstrInfo();
5348 // Map the 32bit to 64bit opcodes for instructions that are not signed or zero
5349 // extended themselves, but may have operands who's destination registers of
5350 // signed or zero extended instructions.
5351 std::unordered_map<unsigned, unsigned> OpcodeMap = {
5352 {PPC::OR, PPC::OR8}, {PPC::ISEL, PPC::ISEL8},
5353 {PPC::ORI, PPC::ORI8}, {PPC::XORI, PPC::XORI8},
5354 {PPC::ORIS, PPC::ORIS8}, {PPC::XORIS, PPC::XORIS8},
5355 {PPC::AND, PPC::AND8}};
5357 int NewOpcode = -1;
5358 auto It = OpcodeMap.find(Opcode);
5359 if (It != OpcodeMap.end()) {
5360 // Set the new opcode to the mapped 64-bit version.
5361 NewOpcode = It->second;
5362 } else {
5363 if (!TII->isSExt32To64(Opcode))
5364 return;
5366 // The TableGen function `get64BitInstrFromSignedExt32BitInstr` is used to
5367 // map the 32-bit instruction with the `SExt32To64` flag to the 64-bit
5368 // instruction with the same opcode.
5369 NewOpcode = PPC::get64BitInstrFromSignedExt32BitInstr(Opcode);
5372 assert(NewOpcode != -1 &&
5373 "Must have a 64-bit opcode to map the 32-bit opcode!");
5375 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
5376 const MCInstrDesc &MCID = TII->get(NewOpcode);
5377 const TargetRegisterClass *NewRC =
5378 TRI->getRegClass(MCID.operands()[0].RegClass);
5380 Register SrcReg = MI->getOperand(0).getReg();
5381 const TargetRegisterClass *SrcRC = MRI->getRegClass(SrcReg);
5383 // If the register class of the defined register in the 32-bit instruction
5384 // is the same as the register class of the defined register in the promoted
5385 // 64-bit instruction, we do not need to promote the instruction.
5386 if (NewRC == SrcRC)
5387 return;
5389 DebugLoc DL = MI->getDebugLoc();
5390 auto MBB = MI->getParent();
5392 // Since the pseudo-opcode of the instruction is promoted from 32-bit to
5393 // 64-bit, if the source reg class of the original instruction belongs to
5394 // PPC::GRCRegClass or PPC::GPRC_and_GPRC_NOR0RegClass, we need to promote
5395 // the operand to PPC::G8CRegClass or PPC::G8RC_and_G8RC_NOR0RegClass,
5396 // respectively.
5397 DenseMap<unsigned, Register> PromoteRegs;
5398 for (unsigned i = 1; i < MI->getNumOperands(); i++) {
5399 MachineOperand &Operand = MI->getOperand(i);
5400 if (!Operand.isReg())
5401 continue;
5403 Register OperandReg = Operand.getReg();
5404 if (!OperandReg.isVirtual())
5405 continue;
5407 const TargetRegisterClass *NewUsedRegRC =
5408 TRI->getRegClass(MCID.operands()[i].RegClass);
5409 const TargetRegisterClass *OrgRC = MRI->getRegClass(OperandReg);
5410 if (NewUsedRegRC != OrgRC && (OrgRC == &PPC::GPRCRegClass ||
5411 OrgRC == &PPC::GPRC_and_GPRC_NOR0RegClass)) {
5412 // Promote the used 32-bit register to 64-bit register.
5413 Register TmpReg = MRI->createVirtualRegister(NewUsedRegRC);
5414 Register DstTmpReg = MRI->createVirtualRegister(NewUsedRegRC);
5415 BuildMI(*MBB, MI, DL, TII->get(PPC::IMPLICIT_DEF), TmpReg);
5416 BuildMI(*MBB, MI, DL, TII->get(PPC::INSERT_SUBREG), DstTmpReg)
5417 .addReg(TmpReg)
5418 .addReg(OperandReg)
5419 .addImm(PPC::sub_32);
5420 PromoteRegs[i] = DstTmpReg;
5424 Register NewDefinedReg = MRI->createVirtualRegister(NewRC);
5426 BuildMI(*MBB, MI, DL, TII->get(NewOpcode), NewDefinedReg);
5427 MachineBasicBlock::instr_iterator Iter(MI);
5428 --Iter;
5429 MachineInstrBuilder MIBuilder(*Iter->getMF(), Iter);
5430 for (unsigned i = 1; i < MI->getNumOperands(); i++) {
5431 if (PromoteRegs.find(i) != PromoteRegs.end())
5432 MIBuilder.addReg(PromoteRegs[i], RegState::Kill);
5433 else
5434 Iter->addOperand(MI->getOperand(i));
5437 for (unsigned i = 1; i < Iter->getNumOperands(); i++) {
5438 MachineOperand &Operand = Iter->getOperand(i);
5439 if (!Operand.isReg())
5440 continue;
5441 Register OperandReg = Operand.getReg();
5442 if (!OperandReg.isVirtual())
5443 continue;
5444 LV->recomputeForSingleDefVirtReg(OperandReg);
5447 MI->eraseFromParent();
5449 // A defined register may be used by other instructions that are 32-bit.
5450 // After the defined register is promoted to 64-bit for the promoted
5451 // instruction, we need to demote the 64-bit defined register back to a
5452 // 32-bit register
5453 BuildMI(*MBB, ++Iter, DL, TII->get(PPC::COPY), SrcReg)
5454 .addReg(NewDefinedReg, RegState::Kill, PPC::sub_32);
5455 LV->recomputeForSingleDefVirtReg(NewDefinedReg);
5458 // The isSignOrZeroExtended function is recursive. The parameter BinOpDepth
5459 // does not count all of the recursions. The parameter BinOpDepth is incremented
5460 // only when isSignOrZeroExtended calls itself more than once. This is done to
5461 // prevent expontential recursion. There is no parameter to track linear
5462 // recursion.
5463 std::pair<bool, bool>
5464 PPCInstrInfo::isSignOrZeroExtended(const unsigned Reg,
5465 const unsigned BinOpDepth,
5466 const MachineRegisterInfo *MRI) const {
5467 if (!Register::isVirtualRegister(Reg))
5468 return std::pair<bool, bool>(false, false);
5470 MachineInstr *MI = MRI->getVRegDef(Reg);
5471 if (!MI)
5472 return std::pair<bool, bool>(false, false);
5474 bool IsSExt = definedBySignExtendingOp(Reg, MRI);
5475 bool IsZExt = definedByZeroExtendingOp(Reg, MRI);
5477 // If we know the instruction always returns sign- and zero-extended result,
5478 // return here.
5479 if (IsSExt && IsZExt)
5480 return std::pair<bool, bool>(IsSExt, IsZExt);
5482 switch (MI->getOpcode()) {
5483 case PPC::COPY: {
5484 Register SrcReg = MI->getOperand(1).getReg();
5486 // In both ELFv1 and v2 ABI, method parameters and the return value
5487 // are sign- or zero-extended.
5488 const MachineFunction *MF = MI->getMF();
5490 if (!MF->getSubtarget<PPCSubtarget>().isSVR4ABI()) {
5491 // If this is a copy from another register, we recursively check source.
5492 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5493 return std::pair<bool, bool>(SrcExt.first || IsSExt,
5494 SrcExt.second || IsZExt);
5497 // From here on everything is SVR4ABI
5498 const PPCFunctionInfo *FuncInfo = MF->getInfo<PPCFunctionInfo>();
5499 // We check the ZExt/SExt flags for a method parameter.
5500 if (MI->getParent()->getBasicBlock() ==
5501 &MF->getFunction().getEntryBlock()) {
5502 Register VReg = MI->getOperand(0).getReg();
5503 if (MF->getRegInfo().isLiveIn(VReg)) {
5504 IsSExt |= FuncInfo->isLiveInSExt(VReg);
5505 IsZExt |= FuncInfo->isLiveInZExt(VReg);
5506 return std::pair<bool, bool>(IsSExt, IsZExt);
5510 if (SrcReg != PPC::X3) {
5511 // If this is a copy from another register, we recursively check source.
5512 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5513 return std::pair<bool, bool>(SrcExt.first || IsSExt,
5514 SrcExt.second || IsZExt);
5517 // For a method return value, we check the ZExt/SExt flags in attribute.
5518 // We assume the following code sequence for method call.
5519 // ADJCALLSTACKDOWN 32, implicit dead %r1, implicit %r1
5520 // BL8_NOP @func,...
5521 // ADJCALLSTACKUP 32, 0, implicit dead %r1, implicit %r1
5522 // %5 = COPY %x3; G8RC:%5
5523 const MachineBasicBlock *MBB = MI->getParent();
5524 std::pair<bool, bool> IsExtendPair = std::pair<bool, bool>(IsSExt, IsZExt);
5525 MachineBasicBlock::const_instr_iterator II =
5526 MachineBasicBlock::const_instr_iterator(MI);
5527 if (II == MBB->instr_begin() || (--II)->getOpcode() != PPC::ADJCALLSTACKUP)
5528 return IsExtendPair;
5530 const MachineInstr &CallMI = *(--II);
5531 if (!CallMI.isCall() || !CallMI.getOperand(0).isGlobal())
5532 return IsExtendPair;
5534 const Function *CalleeFn =
5535 dyn_cast_if_present<Function>(CallMI.getOperand(0).getGlobal());
5536 if (!CalleeFn)
5537 return IsExtendPair;
5538 const IntegerType *IntTy = dyn_cast<IntegerType>(CalleeFn->getReturnType());
5539 if (IntTy && IntTy->getBitWidth() <= 32) {
5540 const AttributeSet &Attrs = CalleeFn->getAttributes().getRetAttrs();
5541 IsSExt |= Attrs.hasAttribute(Attribute::SExt);
5542 IsZExt |= Attrs.hasAttribute(Attribute::ZExt);
5543 return std::pair<bool, bool>(IsSExt, IsZExt);
5546 return IsExtendPair;
5549 // OR, XOR with 16-bit immediate does not change the upper 48 bits.
5550 // So, we track the operand register as we do for register copy.
5551 case PPC::ORI:
5552 case PPC::XORI:
5553 case PPC::ORI8:
5554 case PPC::XORI8: {
5555 Register SrcReg = MI->getOperand(1).getReg();
5556 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5557 return std::pair<bool, bool>(SrcExt.first || IsSExt,
5558 SrcExt.second || IsZExt);
5561 // OR, XOR with shifted 16-bit immediate does not change the upper
5562 // 32 bits. So, we track the operand register for zero extension.
5563 // For sign extension when the MSB of the immediate is zero, we also
5564 // track the operand register since the upper 33 bits are unchanged.
5565 case PPC::ORIS:
5566 case PPC::XORIS:
5567 case PPC::ORIS8:
5568 case PPC::XORIS8: {
5569 Register SrcReg = MI->getOperand(1).getReg();
5570 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth, MRI);
5571 uint16_t Imm = MI->getOperand(2).getImm();
5572 if (Imm & 0x8000)
5573 return std::pair<bool, bool>(false, SrcExt.second || IsZExt);
5574 else
5575 return std::pair<bool, bool>(SrcExt.first || IsSExt,
5576 SrcExt.second || IsZExt);
5579 // If all incoming values are sign-/zero-extended,
5580 // the output of OR, ISEL or PHI is also sign-/zero-extended.
5581 case PPC::OR:
5582 case PPC::OR8:
5583 case PPC::ISEL:
5584 case PPC::PHI: {
5585 if (BinOpDepth >= MAX_BINOP_DEPTH)
5586 return std::pair<bool, bool>(false, false);
5588 // The input registers for PHI are operand 1, 3, ...
5589 // The input registers for others are operand 1 and 2.
5590 unsigned OperandEnd = 3, OperandStride = 1;
5591 if (MI->getOpcode() == PPC::PHI) {
5592 OperandEnd = MI->getNumOperands();
5593 OperandStride = 2;
5596 IsSExt = true;
5597 IsZExt = true;
5598 for (unsigned I = 1; I != OperandEnd; I += OperandStride) {
5599 if (!MI->getOperand(I).isReg())
5600 return std::pair<bool, bool>(false, false);
5602 Register SrcReg = MI->getOperand(I).getReg();
5603 auto SrcExt = isSignOrZeroExtended(SrcReg, BinOpDepth + 1, MRI);
5604 IsSExt &= SrcExt.first;
5605 IsZExt &= SrcExt.second;
5607 return std::pair<bool, bool>(IsSExt, IsZExt);
5610 // If at least one of the incoming values of an AND is zero extended
5611 // then the output is also zero-extended. If both of the incoming values
5612 // are sign-extended then the output is also sign extended.
5613 case PPC::AND:
5614 case PPC::AND8: {
5615 if (BinOpDepth >= MAX_BINOP_DEPTH)
5616 return std::pair<bool, bool>(false, false);
5618 Register SrcReg1 = MI->getOperand(1).getReg();
5619 Register SrcReg2 = MI->getOperand(2).getReg();
5620 auto Src1Ext = isSignOrZeroExtended(SrcReg1, BinOpDepth + 1, MRI);
5621 auto Src2Ext = isSignOrZeroExtended(SrcReg2, BinOpDepth + 1, MRI);
5622 return std::pair<bool, bool>(Src1Ext.first && Src2Ext.first,
5623 Src1Ext.second || Src2Ext.second);
5626 default:
5627 break;
5629 return std::pair<bool, bool>(IsSExt, IsZExt);
5632 bool PPCInstrInfo::isBDNZ(unsigned Opcode) const {
5633 return (Opcode == (Subtarget.isPPC64() ? PPC::BDNZ8 : PPC::BDNZ));
5636 namespace {
5637 class PPCPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
5638 MachineInstr *Loop, *EndLoop, *LoopCount;
5639 MachineFunction *MF;
5640 const TargetInstrInfo *TII;
5641 int64_t TripCount;
5643 public:
5644 PPCPipelinerLoopInfo(MachineInstr *Loop, MachineInstr *EndLoop,
5645 MachineInstr *LoopCount)
5646 : Loop(Loop), EndLoop(EndLoop), LoopCount(LoopCount),
5647 MF(Loop->getParent()->getParent()),
5648 TII(MF->getSubtarget().getInstrInfo()) {
5649 // Inspect the Loop instruction up-front, as it may be deleted when we call
5650 // createTripCountGreaterCondition.
5651 if (LoopCount->getOpcode() == PPC::LI8 || LoopCount->getOpcode() == PPC::LI)
5652 TripCount = LoopCount->getOperand(1).getImm();
5653 else
5654 TripCount = -1;
5657 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
5658 // Only ignore the terminator.
5659 return MI == EndLoop;
5662 std::optional<bool> createTripCountGreaterCondition(
5663 int TC, MachineBasicBlock &MBB,
5664 SmallVectorImpl<MachineOperand> &Cond) override {
5665 if (TripCount == -1) {
5666 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5667 // so we don't need to generate any thing here.
5668 Cond.push_back(MachineOperand::CreateImm(0));
5669 Cond.push_back(MachineOperand::CreateReg(
5670 MF->getSubtarget<PPCSubtarget>().isPPC64() ? PPC::CTR8 : PPC::CTR,
5671 true));
5672 return {};
5675 return TripCount > TC;
5678 void setPreheader(MachineBasicBlock *NewPreheader) override {
5679 // Do nothing. We want the LOOP setup instruction to stay in the *old*
5680 // preheader, so we can use BDZ in the prologs to adapt the loop trip count.
5683 void adjustTripCount(int TripCountAdjust) override {
5684 // If the loop trip count is a compile-time value, then just change the
5685 // value.
5686 if (LoopCount->getOpcode() == PPC::LI8 ||
5687 LoopCount->getOpcode() == PPC::LI) {
5688 int64_t TripCount = LoopCount->getOperand(1).getImm() + TripCountAdjust;
5689 LoopCount->getOperand(1).setImm(TripCount);
5690 return;
5693 // Since BDZ/BDZ8 that we will insert will also decrease the ctr by 1,
5694 // so we don't need to generate any thing here.
5697 void disposed() override {
5698 Loop->eraseFromParent();
5699 // Ensure the loop setup instruction is deleted too.
5700 LoopCount->eraseFromParent();
5703 } // namespace
5705 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
5706 PPCInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
5707 // We really "analyze" only hardware loops right now.
5708 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
5709 MachineBasicBlock *Preheader = *LoopBB->pred_begin();
5710 if (Preheader == LoopBB)
5711 Preheader = *std::next(LoopBB->pred_begin());
5712 MachineFunction *MF = Preheader->getParent();
5714 if (I != LoopBB->end() && isBDNZ(I->getOpcode())) {
5715 SmallPtrSet<MachineBasicBlock *, 8> Visited;
5716 if (MachineInstr *LoopInst = findLoopInstr(*Preheader, Visited)) {
5717 Register LoopCountReg = LoopInst->getOperand(0).getReg();
5718 MachineRegisterInfo &MRI = MF->getRegInfo();
5719 MachineInstr *LoopCount = MRI.getUniqueVRegDef(LoopCountReg);
5720 return std::make_unique<PPCPipelinerLoopInfo>(LoopInst, &*I, LoopCount);
5723 return nullptr;
5726 MachineInstr *PPCInstrInfo::findLoopInstr(
5727 MachineBasicBlock &PreHeader,
5728 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const {
5730 unsigned LOOPi = (Subtarget.isPPC64() ? PPC::MTCTR8loop : PPC::MTCTRloop);
5732 // The loop set-up instruction should be in preheader
5733 for (auto &I : PreHeader.instrs())
5734 if (I.getOpcode() == LOOPi)
5735 return &I;
5736 return nullptr;
5739 // Return true if get the base operand, byte offset of an instruction and the
5740 // memory width. Width is the size of memory that is being loaded/stored.
5741 bool PPCInstrInfo::getMemOperandWithOffsetWidth(
5742 const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
5743 LocationSize &Width, const TargetRegisterInfo *TRI) const {
5744 if (!LdSt.mayLoadOrStore() || LdSt.getNumExplicitOperands() != 3)
5745 return false;
5747 // Handle only loads/stores with base register followed by immediate offset.
5748 if (!LdSt.getOperand(1).isImm() ||
5749 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5750 return false;
5751 if (!LdSt.getOperand(1).isImm() ||
5752 (!LdSt.getOperand(2).isReg() && !LdSt.getOperand(2).isFI()))
5753 return false;
5755 if (!LdSt.hasOneMemOperand())
5756 return false;
5758 Width = (*LdSt.memoperands_begin())->getSize();
5759 Offset = LdSt.getOperand(1).getImm();
5760 BaseReg = &LdSt.getOperand(2);
5761 return true;
5764 bool PPCInstrInfo::areMemAccessesTriviallyDisjoint(
5765 const MachineInstr &MIa, const MachineInstr &MIb) const {
5766 assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
5767 assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
5769 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
5770 MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
5771 return false;
5773 // Retrieve the base register, offset from the base register and width. Width
5774 // is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
5775 // base registers are identical, and the offset of a lower memory access +
5776 // the width doesn't overlap the offset of a higher memory access,
5777 // then the memory accesses are different.
5778 const TargetRegisterInfo *TRI = &getRegisterInfo();
5779 const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
5780 int64_t OffsetA = 0, OffsetB = 0;
5781 LocationSize WidthA = 0, WidthB = 0;
5782 if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
5783 getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
5784 if (BaseOpA->isIdenticalTo(*BaseOpB)) {
5785 int LowOffset = std::min(OffsetA, OffsetB);
5786 int HighOffset = std::max(OffsetA, OffsetB);
5787 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
5788 if (LowWidth.hasValue() &&
5789 LowOffset + (int)LowWidth.getValue() <= HighOffset)
5790 return true;
5793 return false;