AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCInstrInfo.h
blobcd8ecc2dcfac8e68260ee8f924d29100fa743a08
1 //===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the PowerPC implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
14 #define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
16 #include "MCTargetDesc/PPCMCTargetDesc.h"
17 #include "PPC.h"
18 #include "PPCRegisterInfo.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/CodeGen/LiveVariables.h"
21 #include "llvm/CodeGen/TargetInstrInfo.h"
23 #define GET_INSTRINFO_HEADER
24 #include "PPCGenInstrInfo.inc"
26 namespace llvm {
28 // Instructions that have an immediate form might be convertible to that
29 // form if the correct input is a result of a load immediate. In order to
30 // know whether the transformation is special, we might need to know some
31 // of the details of the two forms.
32 struct ImmInstrInfo {
33 // Is the immediate field in the immediate form signed or unsigned?
34 uint64_t SignedImm : 1;
35 // Does the immediate need to be a multiple of some value?
36 uint64_t ImmMustBeMultipleOf : 5;
37 // Is R0/X0 treated specially by the original r+r instruction?
38 // If so, in which operand?
39 uint64_t ZeroIsSpecialOrig : 3;
40 // Is R0/X0 treated specially by the new r+i instruction?
41 // If so, in which operand?
42 uint64_t ZeroIsSpecialNew : 3;
43 // Is the operation commutative?
44 uint64_t IsCommutative : 1;
45 // The operand number to check for add-immediate def.
46 uint64_t OpNoForForwarding : 3;
47 // The operand number for the immediate.
48 uint64_t ImmOpNo : 3;
49 // The opcode of the new instruction.
50 uint64_t ImmOpcode : 16;
51 // The size of the immediate.
52 uint64_t ImmWidth : 5;
53 // The immediate should be truncated to N bits.
54 uint64_t TruncateImmTo : 5;
55 // Is the instruction summing the operand
56 uint64_t IsSummingOperands : 1;
59 // Information required to convert an instruction to just a materialized
60 // immediate.
61 struct LoadImmediateInfo {
62 unsigned Imm : 16;
63 unsigned Is64Bit : 1;
64 unsigned SetCR : 1;
67 // Index into the OpcodesForSpill array.
68 enum SpillOpcodeKey {
69 SOK_Int4Spill,
70 SOK_Int8Spill,
71 SOK_Float8Spill,
72 SOK_Float4Spill,
73 SOK_CRSpill,
74 SOK_CRBitSpill,
75 SOK_VRVectorSpill,
76 SOK_VSXVectorSpill,
77 SOK_VectorFloat8Spill,
78 SOK_VectorFloat4Spill,
79 SOK_SpillToVSR,
80 SOK_PairedVecSpill,
81 SOK_AccumulatorSpill,
82 SOK_UAccumulatorSpill,
83 SOK_WAccumulatorSpill,
84 SOK_SPESpill,
85 SOK_PairedG8Spill,
86 SOK_LastOpcodeSpill // This must be last on the enum.
89 // PPC MachineCombiner patterns
90 enum PPCMachineCombinerPattern : unsigned {
91 // These are patterns matched by the PowerPC to reassociate FMA chains.
92 REASSOC_XY_AMM_BMM = MachineCombinerPattern::TARGET_PATTERN_START,
93 REASSOC_XMM_AMM_BMM,
95 // These are patterns matched by the PowerPC to reassociate FMA and FSUB to
96 // reduce register pressure.
97 REASSOC_XY_BCA,
98 REASSOC_XY_BAC,
102 // Define list of load and store spill opcodes.
103 #define NoInstr PPC::INSTRUCTION_LIST_END
104 #define Pwr8LoadOpcodes \
106 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
107 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, \
108 PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVLDD, \
109 PPC::RESTORE_QUADWORD \
112 #define Pwr9LoadOpcodes \
114 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
115 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
116 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, \
117 NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
120 #define Pwr10LoadOpcodes \
122 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
123 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
124 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
125 PPC::RESTORE_UACC, NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
128 #define FutureLoadOpcodes \
130 PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
131 PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
132 PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
133 PPC::RESTORE_UACC, PPC::RESTORE_WACC, NoInstr, PPC::RESTORE_QUADWORD \
136 #define Pwr8StoreOpcodes \
138 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
139 PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, \
140 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVSTDD, \
141 PPC::SPILL_QUADWORD \
144 #define Pwr9StoreOpcodes \
146 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
147 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
148 PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, NoInstr, \
149 PPC::SPILL_QUADWORD \
152 #define Pwr10StoreOpcodes \
154 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
155 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
156 PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
157 NoInstr, NoInstr, PPC::SPILL_QUADWORD \
160 #define FutureStoreOpcodes \
162 PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
163 PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
164 PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
165 PPC::SPILL_WACC, NoInstr, PPC::SPILL_QUADWORD \
168 // Initialize arrays for load and store spill opcodes on supported subtargets.
169 #define StoreOpcodesForSpill \
170 { Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes, FutureStoreOpcodes }
171 #define LoadOpcodesForSpill \
172 { Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes, FutureLoadOpcodes }
174 class PPCSubtarget;
175 class PPCInstrInfo : public PPCGenInstrInfo {
176 PPCSubtarget &Subtarget;
177 const PPCRegisterInfo RI;
178 const unsigned StoreSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
179 StoreOpcodesForSpill;
180 const unsigned LoadSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
181 LoadOpcodesForSpill;
183 void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
184 int FrameIdx, const TargetRegisterClass *RC,
185 SmallVectorImpl<MachineInstr *> &NewMIs) const;
186 void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
187 unsigned DestReg, int FrameIdx,
188 const TargetRegisterClass *RC,
189 SmallVectorImpl<MachineInstr *> &NewMIs) const;
191 // Replace the instruction with single LI if possible. \p DefMI must be LI or
192 // LI8.
193 bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
194 unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
195 // If the inst is imm-form and its register operand is produced by a ADDI, put
196 // the imm into the inst directly and remove the ADDI if possible.
197 bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
198 unsigned OpNoForForwarding) const;
199 // If the inst is x-form and has imm-form and one of its operand is produced
200 // by a LI, put the imm into the inst directly and remove the LI if possible.
201 bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
202 unsigned ConstantOpNo,
203 MachineInstr &DefMI) const;
204 // If the inst is x-form and has imm-form and one of its operand is produced
205 // by an add-immediate, try to transform it when possible.
206 bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
207 unsigned ConstantOpNo, MachineInstr &DefMI,
208 bool KillDefMI) const;
209 // Try to find that, if the instruction 'MI' contains any operand that
210 // could be forwarded from some inst that feeds it. If yes, return the
211 // Def of that operand. And OpNoForForwarding is the operand index in
212 // the 'MI' for that 'Def'. If we see another use of this Def between
213 // the Def and the MI, SeenIntermediateUse becomes 'true'.
214 MachineInstr *getForwardingDefMI(MachineInstr &MI,
215 unsigned &OpNoForForwarding,
216 bool &SeenIntermediateUse) const;
218 // Can the user MI have it's source at index \p OpNoForForwarding
219 // forwarded from an add-immediate that feeds it?
220 bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
221 unsigned OpNoForForwarding) const;
222 bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
223 const ImmInstrInfo &III,
224 MachineOperand *&ImmMO,
225 MachineOperand *&RegMO) const;
226 bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
227 const MachineInstr &DefMI,
228 const ImmInstrInfo &III,
229 int64_t &Imm,
230 int64_t BaseImm = 0) const;
231 bool isRegElgibleForForwarding(const MachineOperand &RegMO,
232 const MachineInstr &DefMI,
233 const MachineInstr &MI, bool KillDefMI,
234 bool &IsFwdFeederRegKilled,
235 bool &SeenIntermediateUse) const;
236 unsigned getSpillTarget() const;
237 ArrayRef<unsigned> getStoreOpcodesForSpillArray() const;
238 ArrayRef<unsigned> getLoadOpcodesForSpillArray() const;
239 unsigned getSpillIndex(const TargetRegisterClass *RC) const;
240 int16_t getFMAOpIdxInfo(unsigned Opcode) const;
241 void reassociateFMA(MachineInstr &Root, unsigned Pattern,
242 SmallVectorImpl<MachineInstr *> &InsInstrs,
243 SmallVectorImpl<MachineInstr *> &DelInstrs,
244 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
245 Register
246 generateLoadForNewConst(unsigned Idx, MachineInstr *MI, Type *Ty,
247 SmallVectorImpl<MachineInstr *> &InsInstrs) const;
248 virtual void anchor();
250 protected:
251 /// Commutes the operands in the given instruction.
252 /// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
254 /// Do not call this method for a non-commutable instruction or for
255 /// non-commutable pair of operand indices OpIdx1 and OpIdx2.
256 /// Even though the instruction is commutable, the method may still
257 /// fail to commute the operands, null pointer is returned in such cases.
259 /// For example, we can commute rlwimi instructions, but only if the
260 /// rotate amt is zero. We also have to munge the immediates a bit.
261 MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
262 unsigned OpIdx1,
263 unsigned OpIdx2) const override;
265 public:
266 explicit PPCInstrInfo(PPCSubtarget &STI);
268 bool isLoadFromConstantPool(MachineInstr *I) const;
269 const Constant *getConstantFromConstantPool(MachineInstr *I) const;
271 /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
272 /// such, whenever a client has an instance of instruction info, it should
273 /// always be able to get register info as well (through this method).
275 const PPCRegisterInfo &getRegisterInfo() const { return RI; }
277 bool isXFormMemOp(unsigned Opcode) const {
278 return get(Opcode).TSFlags & PPCII::XFormMemOp;
280 bool isPrefixed(unsigned Opcode) const {
281 return get(Opcode).TSFlags & PPCII::Prefixed;
283 bool isSExt32To64(unsigned Opcode) const {
284 return get(Opcode).TSFlags & PPCII::SExt32To64;
286 bool isZExt32To64(unsigned Opcode) const {
287 return get(Opcode).TSFlags & PPCII::ZExt32To64;
289 bool isMemriOp(unsigned Opcode) const {
290 return get(Opcode).TSFlags & PPCII::MemriOp;
293 static bool isSameClassPhysRegCopy(unsigned Opcode) {
294 unsigned CopyOpcodes[] = {PPC::OR, PPC::OR8, PPC::FMR,
295 PPC::VOR, PPC::XXLOR, PPC::XXLORf,
296 PPC::XSCPSGNDP, PPC::MCRF, PPC::CROR,
297 PPC::EVOR, -1U};
298 for (int i = 0; CopyOpcodes[i] != -1U; i++)
299 if (Opcode == CopyOpcodes[i])
300 return true;
301 return false;
304 static bool hasPCRelFlag(unsigned TF) {
305 return TF == PPCII::MO_PCREL_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
306 TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
307 TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
308 TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG ||
309 TF == PPCII::MO_GOT_PCREL_FLAG;
312 static bool hasGOTFlag(unsigned TF) {
313 return TF == PPCII::MO_GOT_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
314 TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
315 TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
316 TF == PPCII::MO_GOT_PCREL_FLAG;
319 static bool hasTLSFlag(unsigned TF) {
320 return TF == PPCII::MO_TLSGD_FLAG || TF == PPCII::MO_TPREL_FLAG ||
321 TF == PPCII::MO_TLSLD_FLAG || TF == PPCII::MO_TLSGDM_FLAG ||
322 TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
323 TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
324 TF == PPCII::MO_GOT_TPREL_PCREL_FLAG || TF == PPCII::MO_TPREL_LO ||
325 TF == PPCII::MO_TPREL_HA || TF == PPCII::MO_DTPREL_LO ||
326 TF == PPCII::MO_TLSLD_LO || TF == PPCII::MO_TLS ||
327 TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG;
330 ScheduleHazardRecognizer *
331 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
332 const ScheduleDAG *DAG) const override;
333 ScheduleHazardRecognizer *
334 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
335 const ScheduleDAG *DAG) const override;
337 unsigned getInstrLatency(const InstrItineraryData *ItinData,
338 const MachineInstr &MI,
339 unsigned *PredCost = nullptr) const override;
341 std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
342 const MachineInstr &DefMI,
343 unsigned DefIdx,
344 const MachineInstr &UseMI,
345 unsigned UseIdx) const override;
346 std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
347 SDNode *DefNode, unsigned DefIdx,
348 SDNode *UseNode,
349 unsigned UseIdx) const override {
350 return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
351 UseNode, UseIdx);
354 bool hasLowDefLatency(const TargetSchedModel &SchedModel,
355 const MachineInstr &DefMI,
356 unsigned DefIdx) const override {
357 // Machine LICM should hoist all instructions in low-register-pressure
358 // situations; none are sufficiently free to justify leaving in a loop
359 // body.
360 return false;
363 bool useMachineCombiner() const override {
364 return true;
367 /// When getMachineCombinerPatterns() finds patterns, this function generates
368 /// the instructions that could replace the original code sequence
369 void genAlternativeCodeSequence(
370 MachineInstr &Root, unsigned Pattern,
371 SmallVectorImpl<MachineInstr *> &InsInstrs,
372 SmallVectorImpl<MachineInstr *> &DelInstrs,
373 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
375 /// Return true when there is potentially a faster code sequence for a fma
376 /// chain ending in \p Root. All potential patterns are output in the \p
377 /// P array.
378 bool getFMAPatterns(MachineInstr &Root, SmallVectorImpl<unsigned> &Patterns,
379 bool DoRegPressureReduce) const;
381 CombinerObjective getCombinerObjective(unsigned Pattern) const override;
383 /// Return true when there is potentially a faster code sequence
384 /// for an instruction chain ending in <Root>. All potential patterns are
385 /// output in the <Pattern> array.
386 bool getMachineCombinerPatterns(MachineInstr &Root,
387 SmallVectorImpl<unsigned> &Patterns,
388 bool DoRegPressureReduce) const override;
390 /// On PowerPC, we leverage machine combiner pass to reduce register pressure
391 /// when the register pressure is high for one BB.
392 /// Return true if register pressure for \p MBB is high and ABI is supported
393 /// to reduce register pressure. Otherwise return false.
394 bool shouldReduceRegisterPressure(
395 const MachineBasicBlock *MBB,
396 const RegisterClassInfo *RegClassInfo) const override;
398 /// Fixup the placeholders we put in genAlternativeCodeSequence() for
399 /// MachineCombiner.
400 void
401 finalizeInsInstrs(MachineInstr &Root, unsigned &Pattern,
402 SmallVectorImpl<MachineInstr *> &InsInstrs) const override;
404 bool isAssociativeAndCommutative(const MachineInstr &Inst,
405 bool Invert) const override;
407 /// On PowerPC, we try to reassociate FMA chain which will increase
408 /// instruction size. Set extension resource length limit to 1 for edge case.
409 /// Resource Length is calculated by scaled resource usage in getCycles().
410 /// Because of the division in getCycles(), it returns different cycles due to
411 /// legacy scaled resource usage. So new resource length may be same with
412 /// legacy or 1 bigger than legacy.
413 /// We need to execlude the 1 bigger case even the resource length is not
414 /// perserved for more FMA chain reassociations on PowerPC.
415 int getExtendResourceLenLimit() const override { return 1; }
417 // PowerPC specific version of setSpecialOperandAttr that copies Flags to MI
418 // and clears nuw, nsw, and exact flags.
419 using TargetInstrInfo::setSpecialOperandAttr;
420 void setSpecialOperandAttr(MachineInstr &MI, uint32_t Flags) const;
422 bool isCoalescableExtInstr(const MachineInstr &MI,
423 Register &SrcReg, Register &DstReg,
424 unsigned &SubIdx) const override;
425 Register isLoadFromStackSlot(const MachineInstr &MI,
426 int &FrameIndex) const override;
427 bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
428 Register isStoreToStackSlot(const MachineInstr &MI,
429 int &FrameIndex) const override;
431 bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
432 unsigned &SrcOpIdx2) const override;
434 void insertNoop(MachineBasicBlock &MBB,
435 MachineBasicBlock::iterator MI) const override;
438 // Branch analysis.
439 bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
440 MachineBasicBlock *&FBB,
441 SmallVectorImpl<MachineOperand> &Cond,
442 bool AllowModify) const override;
443 unsigned removeBranch(MachineBasicBlock &MBB,
444 int *BytesRemoved = nullptr) const override;
445 unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
446 MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
447 const DebugLoc &DL,
448 int *BytesAdded = nullptr) const override;
450 // Select analysis.
451 bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
452 Register, Register, Register, int &, int &,
453 int &) const override;
454 void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
455 const DebugLoc &DL, Register DstReg,
456 ArrayRef<MachineOperand> Cond, Register TrueReg,
457 Register FalseReg) const override;
459 void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
460 const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
461 bool KillSrc, bool RenamableDest = false,
462 bool RenamableSrc = false) const override;
464 void storeRegToStackSlot(MachineBasicBlock &MBB,
465 MachineBasicBlock::iterator MBBI, Register SrcReg,
466 bool isKill, int FrameIndex,
467 const TargetRegisterClass *RC,
468 const TargetRegisterInfo *TRI,
469 Register VReg) const override;
471 // Emits a register spill without updating the register class for vector
472 // registers. This ensures that when we spill a vector register the
473 // element order in the register is the same as it was in memory.
474 void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
475 MachineBasicBlock::iterator MBBI,
476 unsigned SrcReg, bool isKill, int FrameIndex,
477 const TargetRegisterClass *RC,
478 const TargetRegisterInfo *TRI) const;
480 void loadRegFromStackSlot(MachineBasicBlock &MBB,
481 MachineBasicBlock::iterator MBBI, Register DestReg,
482 int FrameIndex, const TargetRegisterClass *RC,
483 const TargetRegisterInfo *TRI,
484 Register VReg) const override;
486 // Emits a register reload without updating the register class for vector
487 // registers. This ensures that when we reload a vector register the
488 // element order in the register is the same as it was in memory.
489 void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
490 MachineBasicBlock::iterator MBBI,
491 unsigned DestReg, int FrameIndex,
492 const TargetRegisterClass *RC,
493 const TargetRegisterInfo *TRI) const;
495 unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
497 unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
499 bool
500 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
502 bool foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
503 MachineRegisterInfo *MRI) const override;
505 bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
506 Register Reg) const;
508 // If conversion by predication (only supported by some branch instructions).
509 // All of the profitability checks always return true; it is always
510 // profitable to use the predicated branches.
511 bool isProfitableToIfCvt(MachineBasicBlock &MBB,
512 unsigned NumCycles, unsigned ExtraPredCycles,
513 BranchProbability Probability) const override {
514 return true;
517 bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
518 unsigned NumT, unsigned ExtraT,
519 MachineBasicBlock &FMBB,
520 unsigned NumF, unsigned ExtraF,
521 BranchProbability Probability) const override;
523 bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
524 BranchProbability Probability) const override {
525 return true;
528 bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
529 MachineBasicBlock &FMBB) const override {
530 return false;
533 // Predication support.
534 bool isPredicated(const MachineInstr &MI) const override;
536 bool isSchedulingBoundary(const MachineInstr &MI,
537 const MachineBasicBlock *MBB,
538 const MachineFunction &MF) const override;
540 bool PredicateInstruction(MachineInstr &MI,
541 ArrayRef<MachineOperand> Pred) const override;
543 bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
544 ArrayRef<MachineOperand> Pred2) const override;
546 bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
547 bool SkipDead) const override;
549 // Comparison optimization.
551 bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
552 Register &SrcReg2, int64_t &Mask,
553 int64_t &Value) const override;
555 bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
556 Register SrcReg2, int64_t Mask, int64_t Value,
557 const MachineRegisterInfo *MRI) const override;
560 /// Return true if get the base operand, byte offset of an instruction and
561 /// the memory width. Width is the size of memory that is being
562 /// loaded/stored (e.g. 1, 2, 4, 8).
563 bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
564 const MachineOperand *&BaseOp,
565 int64_t &Offset, LocationSize &Width,
566 const TargetRegisterInfo *TRI) const;
568 bool optimizeCmpPostRA(MachineInstr &MI) const;
570 /// Get the base operand and byte offset of an instruction that reads/writes
571 /// memory.
572 bool getMemOperandsWithOffsetWidth(
573 const MachineInstr &LdSt,
574 SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
575 bool &OffsetIsScalable, LocationSize &Width,
576 const TargetRegisterInfo *TRI) const override;
578 /// Returns true if the two given memory operations should be scheduled
579 /// adjacent.
580 bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
581 int64_t Offset1, bool OffsetIsScalable1,
582 ArrayRef<const MachineOperand *> BaseOps2,
583 int64_t Offset2, bool OffsetIsScalable2,
584 unsigned ClusterSize,
585 unsigned NumBytes) const override;
587 /// Return true if two MIs access different memory addresses and false
588 /// otherwise
589 bool
590 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
591 const MachineInstr &MIb) const override;
593 /// GetInstSize - Return the number of bytes of code the specified
594 /// instruction may be. This returns the maximum number of bytes.
596 unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
598 MCInst getNop() const override;
600 std::pair<unsigned, unsigned>
601 decomposeMachineOperandsTargetFlags(unsigned TF) const override;
603 ArrayRef<std::pair<unsigned, const char *>>
604 getSerializableDirectMachineOperandTargetFlags() const override;
606 // Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
607 bool expandVSXMemPseudo(MachineInstr &MI) const;
609 // Lower pseudo instructions after register allocation.
610 bool expandPostRAPseudo(MachineInstr &MI) const override;
612 const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
613 static int getRecordFormOpcode(unsigned Opcode);
615 bool isTOCSaveMI(const MachineInstr &MI) const;
617 std::pair<bool, bool>
618 isSignOrZeroExtended(const unsigned Reg, const unsigned BinOpDepth,
619 const MachineRegisterInfo *MRI) const;
621 // Return true if the register is sign-extended from 32 to 64 bits.
622 bool isSignExtended(const unsigned Reg,
623 const MachineRegisterInfo *MRI) const {
624 return isSignOrZeroExtended(Reg, 0, MRI).first;
627 // Return true if the register is zero-extended from 32 to 64 bits.
628 bool isZeroExtended(const unsigned Reg,
629 const MachineRegisterInfo *MRI) const {
630 return isSignOrZeroExtended(Reg, 0, MRI).second;
632 void promoteInstr32To64ForElimEXTSW(const Register &Reg,
633 MachineRegisterInfo *MRI,
634 unsigned BinOpDepth,
635 LiveVariables *LV) const;
637 bool convertToImmediateForm(MachineInstr &MI,
638 SmallSet<Register, 4> &RegsToUpdate,
639 MachineInstr **KilledDef = nullptr) const;
640 bool foldFrameOffset(MachineInstr &MI) const;
641 bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
642 bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
643 bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
644 bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
645 unsigned &XFormOpcode,
646 int64_t &OffsetOfImmInstr,
647 ImmInstrInfo &III) const;
648 bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
649 MachineInstr *&ADDIMI, int64_t &OffsetAddi,
650 int64_t OffsetImm) const;
652 void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
653 void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
654 int64_t Imm) const;
656 bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
657 bool PostRA) const;
659 // In PostRA phase, try to find instruction defines \p Reg before \p MI.
660 // \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
661 MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
662 bool &SeenIntermediateUse) const;
664 // Materialize immediate after RA.
665 void materializeImmPostRA(MachineBasicBlock &MBB,
666 MachineBasicBlock::iterator MBBI,
667 const DebugLoc &DL, Register Reg,
668 int64_t Imm) const;
670 /// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
671 bool isBDNZ(unsigned Opcode) const;
673 /// Find the hardware loop instruction used to set-up the specified loop.
674 /// On PPC, we have two instructions used to set-up the hardware loop
675 /// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
676 /// instructions to indicate the end of a loop.
677 MachineInstr *
678 findLoopInstr(MachineBasicBlock &PreHeader,
679 SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
681 /// Analyze loop L, which must be a single-basic-block loop, and if the
682 /// conditions can be understood enough produce a PipelinerLoopInfo object.
683 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
684 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
689 #endif