AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCLoopInstrFormPrep.cpp
blob800b96c45aeccd3b5661f57cc505647660f5c47f
1 //===------ PPCLoopInstrFormPrep.cpp - Loop Instr Form Prep Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to prepare loops for ppc preferred addressing
10 // modes, leveraging different instruction form. (eg: DS/DQ form, D/DS form with
11 // update)
12 // Additional PHIs are created for loop induction variables used by load/store
13 // instructions so that preferred addressing modes can be used.
15 // 1: DS/DQ form preparation, prepare the load/store instructions so that they
16 // can satisfy the DS/DQ form displacement requirements.
17 // Generically, this means transforming loops like this:
18 // for (int i = 0; i < n; ++i) {
19 // unsigned long x1 = *(unsigned long *)(p + i + 5);
20 // unsigned long x2 = *(unsigned long *)(p + i + 9);
21 // }
23 // to look like this:
25 // unsigned NewP = p + 5;
26 // for (int i = 0; i < n; ++i) {
27 // unsigned long x1 = *(unsigned long *)(i + NewP);
28 // unsigned long x2 = *(unsigned long *)(i + NewP + 4);
29 // }
31 // 2: D/DS form with update preparation, prepare the load/store instructions so
32 // that we can use update form to do pre-increment.
33 // Generically, this means transforming loops like this:
34 // for (int i = 0; i < n; ++i)
35 // array[i] = c;
37 // to look like this:
39 // T *p = array[-1];
40 // for (int i = 0; i < n; ++i)
41 // *++p = c;
43 // 3: common multiple chains for the load/stores with same offsets in the loop,
44 // so that we can reuse the offsets and reduce the register pressure in the
45 // loop. This transformation can also increase the loop ILP as now each chain
46 // uses its own loop induction add/addi. But this will increase the number of
47 // add/addi in the loop.
49 // Generically, this means transforming loops like this:
51 // char *p;
52 // A1 = p + base1
53 // A2 = p + base1 + offset
54 // B1 = p + base2
55 // B2 = p + base2 + offset
57 // for (int i = 0; i < n; i++)
58 // unsigned long x1 = *(unsigned long *)(A1 + i);
59 // unsigned long x2 = *(unsigned long *)(A2 + i)
60 // unsigned long x3 = *(unsigned long *)(B1 + i);
61 // unsigned long x4 = *(unsigned long *)(B2 + i);
62 // }
64 // to look like this:
66 // A1_new = p + base1 // chain 1
67 // B1_new = p + base2 // chain 2, now inside the loop, common offset is
68 // // reused.
70 // for (long long i = 0; i < n; i+=count) {
71 // unsigned long x1 = *(unsigned long *)(A1_new + i);
72 // unsigned long x2 = *(unsigned long *)((A1_new + i) + offset);
73 // unsigned long x3 = *(unsigned long *)(B1_new + i);
74 // unsigned long x4 = *(unsigned long *)((B1_new + i) + offset);
75 // }
76 //===----------------------------------------------------------------------===//
78 #include "PPC.h"
79 #include "PPCSubtarget.h"
80 #include "PPCTargetMachine.h"
81 #include "llvm/ADT/DepthFirstIterator.h"
82 #include "llvm/ADT/SmallPtrSet.h"
83 #include "llvm/ADT/SmallSet.h"
84 #include "llvm/ADT/SmallVector.h"
85 #include "llvm/ADT/Statistic.h"
86 #include "llvm/Analysis/LoopInfo.h"
87 #include "llvm/Analysis/ScalarEvolution.h"
88 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
89 #include "llvm/IR/BasicBlock.h"
90 #include "llvm/IR/CFG.h"
91 #include "llvm/IR/Dominators.h"
92 #include "llvm/IR/Instruction.h"
93 #include "llvm/IR/Instructions.h"
94 #include "llvm/IR/IntrinsicInst.h"
95 #include "llvm/IR/IntrinsicsPowerPC.h"
96 #include "llvm/IR/Type.h"
97 #include "llvm/IR/Value.h"
98 #include "llvm/InitializePasses.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Transforms/Scalar.h"
104 #include "llvm/Transforms/Utils.h"
105 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
106 #include "llvm/Transforms/Utils/Local.h"
107 #include "llvm/Transforms/Utils/LoopUtils.h"
108 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
109 #include <cassert>
110 #include <cmath>
111 #include <utility>
113 #define DEBUG_TYPE "ppc-loop-instr-form-prep"
115 using namespace llvm;
117 static cl::opt<unsigned>
118 MaxVarsPrep("ppc-formprep-max-vars", cl::Hidden, cl::init(24),
119 cl::desc("Potential common base number threshold per function "
120 "for PPC loop prep"));
122 static cl::opt<bool> PreferUpdateForm("ppc-formprep-prefer-update",
123 cl::init(true), cl::Hidden,
124 cl::desc("prefer update form when ds form is also a update form"));
126 static cl::opt<bool> EnableUpdateFormForNonConstInc(
127 "ppc-formprep-update-nonconst-inc", cl::init(false), cl::Hidden,
128 cl::desc("prepare update form when the load/store increment is a loop "
129 "invariant non-const value."));
131 static cl::opt<bool> EnableChainCommoning(
132 "ppc-formprep-chain-commoning", cl::init(false), cl::Hidden,
133 cl::desc("Enable chain commoning in PPC loop prepare pass."));
135 // Sum of following 3 per loop thresholds for all loops can not be larger
136 // than MaxVarsPrep.
137 // now the thresholds for each kind prep are exterimental values on Power9.
138 static cl::opt<unsigned> MaxVarsUpdateForm("ppc-preinc-prep-max-vars",
139 cl::Hidden, cl::init(3),
140 cl::desc("Potential PHI threshold per loop for PPC loop prep of update "
141 "form"));
143 static cl::opt<unsigned> MaxVarsDSForm("ppc-dsprep-max-vars",
144 cl::Hidden, cl::init(3),
145 cl::desc("Potential PHI threshold per loop for PPC loop prep of DS form"));
147 static cl::opt<unsigned> MaxVarsDQForm("ppc-dqprep-max-vars",
148 cl::Hidden, cl::init(8),
149 cl::desc("Potential PHI threshold per loop for PPC loop prep of DQ form"));
151 // Commoning chain will reduce the register pressure, so we don't consider about
152 // the PHI nodes number.
153 // But commoning chain will increase the addi/add number in the loop and also
154 // increase loop ILP. Maximum chain number should be same with hardware
155 // IssueWidth, because we won't benefit from ILP if the parallel chains number
156 // is bigger than IssueWidth. We assume there are 2 chains in one bucket, so
157 // there would be 4 buckets at most on P9(IssueWidth is 8).
158 static cl::opt<unsigned> MaxVarsChainCommon(
159 "ppc-chaincommon-max-vars", cl::Hidden, cl::init(4),
160 cl::desc("Bucket number per loop for PPC loop chain common"));
162 // If would not be profitable if the common base has only one load/store, ISEL
163 // should already be able to choose best load/store form based on offset for
164 // single load/store. Set minimal profitable value default to 2 and make it as
165 // an option.
166 static cl::opt<unsigned> DispFormPrepMinThreshold("ppc-dispprep-min-threshold",
167 cl::Hidden, cl::init(2),
168 cl::desc("Minimal common base load/store instructions triggering DS/DQ form "
169 "preparation"));
171 static cl::opt<unsigned> ChainCommonPrepMinThreshold(
172 "ppc-chaincommon-min-threshold", cl::Hidden, cl::init(4),
173 cl::desc("Minimal common base load/store instructions triggering chain "
174 "commoning preparation. Must be not smaller than 4"));
176 STATISTIC(PHINodeAlreadyExistsUpdate, "PHI node already in pre-increment form");
177 STATISTIC(PHINodeAlreadyExistsDS, "PHI node already in DS form");
178 STATISTIC(PHINodeAlreadyExistsDQ, "PHI node already in DQ form");
179 STATISTIC(DSFormChainRewritten, "Num of DS form chain rewritten");
180 STATISTIC(DQFormChainRewritten, "Num of DQ form chain rewritten");
181 STATISTIC(UpdFormChainRewritten, "Num of update form chain rewritten");
182 STATISTIC(ChainCommoningRewritten, "Num of commoning chains");
184 namespace {
185 struct BucketElement {
186 BucketElement(const SCEV *O, Instruction *I) : Offset(O), Instr(I) {}
187 BucketElement(Instruction *I) : Offset(nullptr), Instr(I) {}
189 const SCEV *Offset;
190 Instruction *Instr;
193 struct Bucket {
194 Bucket(const SCEV *B, Instruction *I)
195 : BaseSCEV(B), Elements(1, BucketElement(I)) {
196 ChainSize = 0;
199 // The base of the whole bucket.
200 const SCEV *BaseSCEV;
202 // All elements in the bucket. In the bucket, the element with the BaseSCEV
203 // has no offset and all other elements are stored as offsets to the
204 // BaseSCEV.
205 SmallVector<BucketElement, 16> Elements;
207 // The potential chains size. This is used for chain commoning only.
208 unsigned ChainSize;
210 // The base for each potential chain. This is used for chain commoning only.
211 SmallVector<BucketElement, 16> ChainBases;
214 // "UpdateForm" is not a real PPC instruction form, it stands for dform
215 // load/store with update like ldu/stdu, or Prefetch intrinsic.
216 // For DS form instructions, their displacements must be multiple of 4.
217 // For DQ form instructions, their displacements must be multiple of 16.
218 enum PrepForm { UpdateForm = 1, DSForm = 4, DQForm = 16, ChainCommoning };
220 class PPCLoopInstrFormPrep : public FunctionPass {
221 public:
222 static char ID; // Pass ID, replacement for typeid
224 PPCLoopInstrFormPrep() : FunctionPass(ID) {
225 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
228 PPCLoopInstrFormPrep(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) {
229 initializePPCLoopInstrFormPrepPass(*PassRegistry::getPassRegistry());
232 void getAnalysisUsage(AnalysisUsage &AU) const override {
233 AU.addPreserved<DominatorTreeWrapperPass>();
234 AU.addRequired<LoopInfoWrapperPass>();
235 AU.addPreserved<LoopInfoWrapperPass>();
236 AU.addRequired<ScalarEvolutionWrapperPass>();
239 bool runOnFunction(Function &F) override;
241 private:
242 PPCTargetMachine *TM = nullptr;
243 const PPCSubtarget *ST;
244 DominatorTree *DT;
245 LoopInfo *LI;
246 ScalarEvolution *SE;
247 bool PreserveLCSSA;
248 bool HasCandidateForPrepare;
250 /// Successful preparation number for Update/DS/DQ form in all inner most
251 /// loops. One successful preparation will put one common base out of loop,
252 /// this may leads to register presure like LICM does.
253 /// Make sure total preparation number can be controlled by option.
254 unsigned SuccPrepCount;
256 bool runOnLoop(Loop *L);
258 /// Check if required PHI node is already exist in Loop \p L.
259 bool alreadyPrepared(Loop *L, Instruction *MemI,
260 const SCEV *BasePtrStartSCEV,
261 const SCEV *BasePtrIncSCEV, PrepForm Form);
263 /// Get the value which defines the increment SCEV \p BasePtrIncSCEV.
264 Value *getNodeForInc(Loop *L, Instruction *MemI,
265 const SCEV *BasePtrIncSCEV);
267 /// Common chains to reuse offsets for a loop to reduce register pressure.
268 bool chainCommoning(Loop *L, SmallVector<Bucket, 16> &Buckets);
270 /// Find out the potential commoning chains and their bases.
271 bool prepareBasesForCommoningChains(Bucket &BucketChain);
273 /// Rewrite load/store according to the common chains.
274 bool
275 rewriteLoadStoresForCommoningChains(Loop *L, Bucket &Bucket,
276 SmallSet<BasicBlock *, 16> &BBChanged);
278 /// Collect condition matched(\p isValidCandidate() returns true)
279 /// candidates in Loop \p L.
280 SmallVector<Bucket, 16> collectCandidates(
281 Loop *L,
282 std::function<bool(const Instruction *, Value *, const Type *)>
283 isValidCandidate,
284 std::function<bool(const SCEV *)> isValidDiff,
285 unsigned MaxCandidateNum);
287 /// Add a candidate to candidates \p Buckets if diff between candidate and
288 /// one base in \p Buckets matches \p isValidDiff.
289 void addOneCandidate(Instruction *MemI, const SCEV *LSCEV,
290 SmallVector<Bucket, 16> &Buckets,
291 std::function<bool(const SCEV *)> isValidDiff,
292 unsigned MaxCandidateNum);
294 /// Prepare all candidates in \p Buckets for update form.
295 bool updateFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets);
297 /// Prepare all candidates in \p Buckets for displacement form, now for
298 /// ds/dq.
299 bool dispFormPrep(Loop *L, SmallVector<Bucket, 16> &Buckets, PrepForm Form);
301 /// Prepare for one chain \p BucketChain, find the best base element and
302 /// update all other elements in \p BucketChain accordingly.
303 /// \p Form is used to find the best base element.
304 /// If success, best base element must be stored as the first element of
305 /// \p BucketChain.
306 /// Return false if no base element found, otherwise return true.
307 bool prepareBaseForDispFormChain(Bucket &BucketChain, PrepForm Form);
309 /// Prepare for one chain \p BucketChain, find the best base element and
310 /// update all other elements in \p BucketChain accordingly.
311 /// If success, best base element must be stored as the first element of
312 /// \p BucketChain.
313 /// Return false if no base element found, otherwise return true.
314 bool prepareBaseForUpdateFormChain(Bucket &BucketChain);
316 /// Rewrite load/store instructions in \p BucketChain according to
317 /// preparation.
318 bool rewriteLoadStores(Loop *L, Bucket &BucketChain,
319 SmallSet<BasicBlock *, 16> &BBChanged,
320 PrepForm Form);
322 /// Rewrite for the base load/store of a chain.
323 std::pair<Instruction *, Instruction *>
324 rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
325 Instruction *BaseMemI, bool CanPreInc, PrepForm Form,
326 SCEVExpander &SCEVE, SmallPtrSet<Value *, 16> &DeletedPtrs);
328 /// Rewrite for the other load/stores of a chain according to the new \p
329 /// Base.
330 Instruction *
331 rewriteForBucketElement(std::pair<Instruction *, Instruction *> Base,
332 const BucketElement &Element, Value *OffToBase,
333 SmallPtrSet<Value *, 16> &DeletedPtrs);
336 } // end anonymous namespace
338 char PPCLoopInstrFormPrep::ID = 0;
339 static const char *name = "Prepare loop for ppc preferred instruction forms";
340 INITIALIZE_PASS_BEGIN(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
341 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
343 INITIALIZE_PASS_END(PPCLoopInstrFormPrep, DEBUG_TYPE, name, false, false)
345 static constexpr StringRef PHINodeNameSuffix = ".phi";
346 static constexpr StringRef CastNodeNameSuffix = ".cast";
347 static constexpr StringRef GEPNodeIncNameSuffix = ".inc";
348 static constexpr StringRef GEPNodeOffNameSuffix = ".off";
350 FunctionPass *llvm::createPPCLoopInstrFormPrepPass(PPCTargetMachine &TM) {
351 return new PPCLoopInstrFormPrep(TM);
354 static bool IsPtrInBounds(Value *BasePtr) {
355 Value *StrippedBasePtr = BasePtr;
356 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBasePtr))
357 StrippedBasePtr = BC->getOperand(0);
358 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(StrippedBasePtr))
359 return GEP->isInBounds();
361 return false;
364 static std::string getInstrName(const Value *I, StringRef Suffix) {
365 assert(I && "Invalid paramater!");
366 if (I->hasName())
367 return (I->getName() + Suffix).str();
368 else
369 return "";
372 static Value *getPointerOperandAndType(Value *MemI,
373 Type **PtrElementType = nullptr) {
375 Value *PtrValue = nullptr;
376 Type *PointerElementType = nullptr;
378 if (LoadInst *LMemI = dyn_cast<LoadInst>(MemI)) {
379 PtrValue = LMemI->getPointerOperand();
380 PointerElementType = LMemI->getType();
381 } else if (StoreInst *SMemI = dyn_cast<StoreInst>(MemI)) {
382 PtrValue = SMemI->getPointerOperand();
383 PointerElementType = SMemI->getValueOperand()->getType();
384 } else if (IntrinsicInst *IMemI = dyn_cast<IntrinsicInst>(MemI)) {
385 PointerElementType = Type::getInt8Ty(MemI->getContext());
386 if (IMemI->getIntrinsicID() == Intrinsic::prefetch ||
387 IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) {
388 PtrValue = IMemI->getArgOperand(0);
389 } else if (IMemI->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp) {
390 PtrValue = IMemI->getArgOperand(1);
393 /*Get ElementType if PtrElementType is not null.*/
394 if (PtrElementType)
395 *PtrElementType = PointerElementType;
397 return PtrValue;
400 bool PPCLoopInstrFormPrep::runOnFunction(Function &F) {
401 if (skipFunction(F))
402 return false;
404 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
405 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
406 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
407 DT = DTWP ? &DTWP->getDomTree() : nullptr;
408 PreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
409 ST = TM ? TM->getSubtargetImpl(F) : nullptr;
410 SuccPrepCount = 0;
412 bool MadeChange = false;
414 for (Loop *I : *LI)
415 for (Loop *L : depth_first(I))
416 MadeChange |= runOnLoop(L);
418 return MadeChange;
421 // Finding the minimal(chain_number + reusable_offset_number) is a complicated
422 // algorithmic problem.
423 // For now, the algorithm used here is simply adjusted to handle the case for
424 // manually unrolling cases.
425 // FIXME: use a more powerful algorithm to find minimal sum of chain_number and
426 // reusable_offset_number for one base with multiple offsets.
427 bool PPCLoopInstrFormPrep::prepareBasesForCommoningChains(Bucket &CBucket) {
428 // The minimal size for profitable chain commoning:
429 // A1 = base + offset1
430 // A2 = base + offset2 (offset2 - offset1 = X)
431 // A3 = base + offset3
432 // A4 = base + offset4 (offset4 - offset3 = X)
433 // ======>
434 // base1 = base + offset1
435 // base2 = base + offset3
436 // A1 = base1
437 // A2 = base1 + X
438 // A3 = base2
439 // A4 = base2 + X
441 // There is benefit because of reuse of offest 'X'.
443 assert(ChainCommonPrepMinThreshold >= 4 &&
444 "Thredhold can not be smaller than 4!\n");
445 if (CBucket.Elements.size() < ChainCommonPrepMinThreshold)
446 return false;
448 // We simply select the FirstOffset as the first reusable offset between each
449 // chain element 1 and element 0.
450 const SCEV *FirstOffset = CBucket.Elements[1].Offset;
452 // Figure out how many times above FirstOffset is used in the chain.
453 // For a success commoning chain candidate, offset difference between each
454 // chain element 1 and element 0 must be also FirstOffset.
455 unsigned FirstOffsetReusedCount = 1;
457 // Figure out how many times above FirstOffset is used in the first chain.
458 // Chain number is FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain
459 unsigned FirstOffsetReusedCountInFirstChain = 1;
461 unsigned EleNum = CBucket.Elements.size();
462 bool SawChainSeparater = false;
463 for (unsigned j = 2; j != EleNum; ++j) {
464 if (SE->getMinusSCEV(CBucket.Elements[j].Offset,
465 CBucket.Elements[j - 1].Offset) == FirstOffset) {
466 if (!SawChainSeparater)
467 FirstOffsetReusedCountInFirstChain++;
468 FirstOffsetReusedCount++;
469 } else
470 // For now, if we meet any offset which is not FirstOffset, we assume we
471 // find a new Chain.
472 // This makes us miss some opportunities.
473 // For example, we can common:
475 // {OffsetA, Offset A, OffsetB, OffsetA, OffsetA, OffsetB}
477 // as two chains:
478 // {{OffsetA, Offset A, OffsetB}, {OffsetA, OffsetA, OffsetB}}
479 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 2
481 // But we fail to common:
483 // {OffsetA, OffsetB, OffsetA, OffsetA, OffsetB, OffsetA}
484 // FirstOffsetReusedCount = 4; FirstOffsetReusedCountInFirstChain = 1
486 SawChainSeparater = true;
489 // FirstOffset is not reused, skip this bucket.
490 if (FirstOffsetReusedCount == 1)
491 return false;
493 unsigned ChainNum =
494 FirstOffsetReusedCount / FirstOffsetReusedCountInFirstChain;
496 // All elements are increased by FirstOffset.
497 // The number of chains should be sqrt(EleNum).
498 if (!SawChainSeparater)
499 ChainNum = (unsigned)sqrt((double)EleNum);
501 CBucket.ChainSize = (unsigned)(EleNum / ChainNum);
503 // If this is not a perfect chain(eg: not all elements can be put inside
504 // commoning chains.), skip now.
505 if (CBucket.ChainSize * ChainNum != EleNum)
506 return false;
508 if (SawChainSeparater) {
509 // Check that the offset seqs are the same for all chains.
510 for (unsigned i = 1; i < CBucket.ChainSize; i++)
511 for (unsigned j = 1; j < ChainNum; j++)
512 if (CBucket.Elements[i].Offset !=
513 SE->getMinusSCEV(CBucket.Elements[i + j * CBucket.ChainSize].Offset,
514 CBucket.Elements[j * CBucket.ChainSize].Offset))
515 return false;
518 for (unsigned i = 0; i < ChainNum; i++)
519 CBucket.ChainBases.push_back(CBucket.Elements[i * CBucket.ChainSize]);
521 LLVM_DEBUG(dbgs() << "Bucket has " << ChainNum << " chains.\n");
523 return true;
526 bool PPCLoopInstrFormPrep::chainCommoning(Loop *L,
527 SmallVector<Bucket, 16> &Buckets) {
528 bool MadeChange = false;
530 if (Buckets.empty())
531 return MadeChange;
533 SmallSet<BasicBlock *, 16> BBChanged;
535 for (auto &Bucket : Buckets) {
536 if (prepareBasesForCommoningChains(Bucket))
537 MadeChange |= rewriteLoadStoresForCommoningChains(L, Bucket, BBChanged);
540 if (MadeChange)
541 for (auto *BB : BBChanged)
542 DeleteDeadPHIs(BB);
543 return MadeChange;
546 bool PPCLoopInstrFormPrep::rewriteLoadStoresForCommoningChains(
547 Loop *L, Bucket &Bucket, SmallSet<BasicBlock *, 16> &BBChanged) {
548 bool MadeChange = false;
550 assert(Bucket.Elements.size() ==
551 Bucket.ChainBases.size() * Bucket.ChainSize &&
552 "invalid bucket for chain commoning!\n");
553 SmallPtrSet<Value *, 16> DeletedPtrs;
555 BasicBlock *Header = L->getHeader();
556 BasicBlock *LoopPredecessor = L->getLoopPredecessor();
558 SCEVExpander SCEVE(*SE, Header->getDataLayout(),
559 "loopprepare-chaincommon");
561 for (unsigned ChainIdx = 0; ChainIdx < Bucket.ChainBases.size(); ++ChainIdx) {
562 unsigned BaseElemIdx = Bucket.ChainSize * ChainIdx;
563 const SCEV *BaseSCEV =
564 ChainIdx ? SE->getAddExpr(Bucket.BaseSCEV,
565 Bucket.Elements[BaseElemIdx].Offset)
566 : Bucket.BaseSCEV;
567 const SCEVAddRecExpr *BasePtrSCEV = cast<SCEVAddRecExpr>(BaseSCEV);
569 // Make sure the base is able to expand.
570 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
571 return MadeChange;
573 assert(BasePtrSCEV->isAffine() &&
574 "Invalid SCEV type for the base ptr for a candidate chain!\n");
576 std::pair<Instruction *, Instruction *> Base = rewriteForBase(
577 L, BasePtrSCEV, Bucket.Elements[BaseElemIdx].Instr,
578 false /* CanPreInc */, ChainCommoning, SCEVE, DeletedPtrs);
580 if (!Base.first || !Base.second)
581 return MadeChange;
583 // Keep track of the replacement pointer values we've inserted so that we
584 // don't generate more pointer values than necessary.
585 SmallPtrSet<Value *, 16> NewPtrs;
586 NewPtrs.insert(Base.first);
588 for (unsigned Idx = BaseElemIdx + 1; Idx < BaseElemIdx + Bucket.ChainSize;
589 ++Idx) {
590 BucketElement &I = Bucket.Elements[Idx];
591 Value *Ptr = getPointerOperandAndType(I.Instr);
592 assert(Ptr && "No pointer operand");
593 if (NewPtrs.count(Ptr))
594 continue;
596 const SCEV *OffsetSCEV =
597 BaseElemIdx ? SE->getMinusSCEV(Bucket.Elements[Idx].Offset,
598 Bucket.Elements[BaseElemIdx].Offset)
599 : Bucket.Elements[Idx].Offset;
601 // Make sure offset is able to expand. Only need to check one time as the
602 // offsets are reused between different chains.
603 if (!BaseElemIdx)
604 if (!SCEVE.isSafeToExpand(OffsetSCEV))
605 return false;
607 Value *OffsetValue = SCEVE.expandCodeFor(
608 OffsetSCEV, OffsetSCEV->getType(), LoopPredecessor->getTerminator());
610 Instruction *NewPtr = rewriteForBucketElement(Base, Bucket.Elements[Idx],
611 OffsetValue, DeletedPtrs);
613 assert(NewPtr && "Wrong rewrite!\n");
614 NewPtrs.insert(NewPtr);
617 ++ChainCommoningRewritten;
620 // Clear the rewriter cache, because values that are in the rewriter's cache
621 // can be deleted below, causing the AssertingVH in the cache to trigger.
622 SCEVE.clear();
624 for (auto *Ptr : DeletedPtrs) {
625 if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
626 BBChanged.insert(IDel->getParent());
627 RecursivelyDeleteTriviallyDeadInstructions(Ptr);
630 MadeChange = true;
631 return MadeChange;
634 // Rewrite the new base according to BasePtrSCEV.
635 // bb.loop.preheader:
636 // %newstart = ...
637 // bb.loop.body:
638 // %phinode = phi [ %newstart, %bb.loop.preheader ], [ %add, %bb.loop.body ]
639 // ...
640 // %add = getelementptr %phinode, %inc
642 // First returned instruciton is %phinode (or a type cast to %phinode), caller
643 // needs this value to rewrite other load/stores in the same chain.
644 // Second returned instruction is %add, caller needs this value to rewrite other
645 // load/stores in the same chain.
646 std::pair<Instruction *, Instruction *>
647 PPCLoopInstrFormPrep::rewriteForBase(Loop *L, const SCEVAddRecExpr *BasePtrSCEV,
648 Instruction *BaseMemI, bool CanPreInc,
649 PrepForm Form, SCEVExpander &SCEVE,
650 SmallPtrSet<Value *, 16> &DeletedPtrs) {
652 LLVM_DEBUG(dbgs() << "PIP: Transforming: " << *BasePtrSCEV << "\n");
654 assert(BasePtrSCEV->getLoop() == L && "AddRec for the wrong loop?");
656 Value *BasePtr = getPointerOperandAndType(BaseMemI);
657 assert(BasePtr && "No pointer operand");
659 Type *I8Ty = Type::getInt8Ty(BaseMemI->getParent()->getContext());
660 Type *I8PtrTy =
661 PointerType::get(BaseMemI->getParent()->getContext(),
662 BasePtr->getType()->getPointerAddressSpace());
664 bool IsConstantInc = false;
665 const SCEV *BasePtrIncSCEV = BasePtrSCEV->getStepRecurrence(*SE);
666 Value *IncNode = getNodeForInc(L, BaseMemI, BasePtrIncSCEV);
668 const SCEVConstant *BasePtrIncConstantSCEV =
669 dyn_cast<SCEVConstant>(BasePtrIncSCEV);
670 if (BasePtrIncConstantSCEV)
671 IsConstantInc = true;
673 // No valid representation for the increment.
674 if (!IncNode) {
675 LLVM_DEBUG(dbgs() << "Loop Increasement can not be represented!\n");
676 return std::make_pair(nullptr, nullptr);
679 if (Form == UpdateForm && !IsConstantInc && !EnableUpdateFormForNonConstInc) {
680 LLVM_DEBUG(
681 dbgs()
682 << "Update form prepare for non-const increment is not enabled!\n");
683 return std::make_pair(nullptr, nullptr);
686 const SCEV *BasePtrStartSCEV = nullptr;
687 if (CanPreInc) {
688 assert(SE->isLoopInvariant(BasePtrIncSCEV, L) &&
689 "Increment is not loop invariant!\n");
690 BasePtrStartSCEV = SE->getMinusSCEV(BasePtrSCEV->getStart(),
691 IsConstantInc ? BasePtrIncConstantSCEV
692 : BasePtrIncSCEV);
693 } else
694 BasePtrStartSCEV = BasePtrSCEV->getStart();
696 if (alreadyPrepared(L, BaseMemI, BasePtrStartSCEV, BasePtrIncSCEV, Form)) {
697 LLVM_DEBUG(dbgs() << "Instruction form is already prepared!\n");
698 return std::make_pair(nullptr, nullptr);
701 LLVM_DEBUG(dbgs() << "PIP: New start is: " << *BasePtrStartSCEV << "\n");
703 BasicBlock *Header = L->getHeader();
704 unsigned HeaderLoopPredCount = pred_size(Header);
705 BasicBlock *LoopPredecessor = L->getLoopPredecessor();
707 PHINode *NewPHI = PHINode::Create(I8PtrTy, HeaderLoopPredCount,
708 getInstrName(BaseMemI, PHINodeNameSuffix));
709 NewPHI->insertBefore(Header->getFirstNonPHIIt());
711 Value *BasePtrStart = SCEVE.expandCodeFor(BasePtrStartSCEV, I8PtrTy,
712 LoopPredecessor->getTerminator());
714 // Note that LoopPredecessor might occur in the predecessor list multiple
715 // times, and we need to add it the right number of times.
716 for (auto *PI : predecessors(Header)) {
717 if (PI != LoopPredecessor)
718 continue;
720 NewPHI->addIncoming(BasePtrStart, LoopPredecessor);
723 Instruction *PtrInc = nullptr;
724 Instruction *NewBasePtr = nullptr;
725 if (CanPreInc) {
726 BasicBlock::iterator InsPoint = Header->getFirstInsertionPt();
727 PtrInc = GetElementPtrInst::Create(
728 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
729 InsPoint);
730 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
731 for (auto *PI : predecessors(Header)) {
732 if (PI == LoopPredecessor)
733 continue;
735 NewPHI->addIncoming(PtrInc, PI);
737 if (PtrInc->getType() != BasePtr->getType())
738 NewBasePtr =
739 new BitCastInst(PtrInc, BasePtr->getType(),
740 getInstrName(PtrInc, CastNodeNameSuffix), InsPoint);
741 else
742 NewBasePtr = PtrInc;
743 } else {
744 // Note that LoopPredecessor might occur in the predecessor list multiple
745 // times, and we need to make sure no more incoming value for them in PHI.
746 for (auto *PI : predecessors(Header)) {
747 if (PI == LoopPredecessor)
748 continue;
750 // For the latch predecessor, we need to insert a GEP just before the
751 // terminator to increase the address.
752 BasicBlock *BB = PI;
753 BasicBlock::iterator InsPoint = BB->getTerminator()->getIterator();
754 PtrInc = GetElementPtrInst::Create(
755 I8Ty, NewPHI, IncNode, getInstrName(BaseMemI, GEPNodeIncNameSuffix),
756 InsPoint);
757 cast<GetElementPtrInst>(PtrInc)->setIsInBounds(IsPtrInBounds(BasePtr));
759 NewPHI->addIncoming(PtrInc, PI);
761 PtrInc = NewPHI;
762 if (NewPHI->getType() != BasePtr->getType())
763 NewBasePtr = new BitCastInst(NewPHI, BasePtr->getType(),
764 getInstrName(NewPHI, CastNodeNameSuffix),
765 Header->getFirstInsertionPt());
766 else
767 NewBasePtr = NewPHI;
770 BasePtr->replaceAllUsesWith(NewBasePtr);
772 DeletedPtrs.insert(BasePtr);
774 return std::make_pair(NewBasePtr, PtrInc);
777 Instruction *PPCLoopInstrFormPrep::rewriteForBucketElement(
778 std::pair<Instruction *, Instruction *> Base, const BucketElement &Element,
779 Value *OffToBase, SmallPtrSet<Value *, 16> &DeletedPtrs) {
780 Instruction *NewBasePtr = Base.first;
781 Instruction *PtrInc = Base.second;
782 assert((NewBasePtr && PtrInc) && "base does not exist!\n");
784 Type *I8Ty = Type::getInt8Ty(PtrInc->getParent()->getContext());
786 Value *Ptr = getPointerOperandAndType(Element.Instr);
787 assert(Ptr && "No pointer operand");
789 Instruction *RealNewPtr;
790 if (!Element.Offset ||
791 (isa<SCEVConstant>(Element.Offset) &&
792 cast<SCEVConstant>(Element.Offset)->getValue()->isZero())) {
793 RealNewPtr = NewBasePtr;
794 } else {
795 std::optional<BasicBlock::iterator> PtrIP = std::nullopt;
796 if (Instruction *I = dyn_cast<Instruction>(Ptr))
797 PtrIP = I->getIterator();
799 if (PtrIP && isa<Instruction>(NewBasePtr) &&
800 cast<Instruction>(NewBasePtr)->getParent() == (*PtrIP)->getParent())
801 PtrIP = std::nullopt;
802 else if (PtrIP && isa<PHINode>(*PtrIP))
803 PtrIP = (*PtrIP)->getParent()->getFirstInsertionPt();
804 else if (!PtrIP)
805 PtrIP = Element.Instr->getIterator();
807 assert(OffToBase && "There should be an offset for non base element!\n");
808 GetElementPtrInst *NewPtr = GetElementPtrInst::Create(
809 I8Ty, PtrInc, OffToBase,
810 getInstrName(Element.Instr, GEPNodeOffNameSuffix));
811 if (PtrIP)
812 NewPtr->insertBefore(*(*PtrIP)->getParent(), *PtrIP);
813 else
814 NewPtr->insertAfter(cast<Instruction>(PtrInc));
815 NewPtr->setIsInBounds(IsPtrInBounds(Ptr));
816 RealNewPtr = NewPtr;
819 Instruction *ReplNewPtr;
820 if (Ptr->getType() != RealNewPtr->getType()) {
821 ReplNewPtr = new BitCastInst(RealNewPtr, Ptr->getType(),
822 getInstrName(Ptr, CastNodeNameSuffix));
823 ReplNewPtr->insertAfter(RealNewPtr);
824 } else
825 ReplNewPtr = RealNewPtr;
827 Ptr->replaceAllUsesWith(ReplNewPtr);
828 DeletedPtrs.insert(Ptr);
830 return ReplNewPtr;
833 void PPCLoopInstrFormPrep::addOneCandidate(
834 Instruction *MemI, const SCEV *LSCEV, SmallVector<Bucket, 16> &Buckets,
835 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
836 assert((MemI && getPointerOperandAndType(MemI)) &&
837 "Candidate should be a memory instruction.");
838 assert(LSCEV && "Invalid SCEV for Ptr value.");
840 bool FoundBucket = false;
841 for (auto &B : Buckets) {
842 if (cast<SCEVAddRecExpr>(B.BaseSCEV)->getStepRecurrence(*SE) !=
843 cast<SCEVAddRecExpr>(LSCEV)->getStepRecurrence(*SE))
844 continue;
845 const SCEV *Diff = SE->getMinusSCEV(LSCEV, B.BaseSCEV);
846 if (isValidDiff(Diff)) {
847 B.Elements.push_back(BucketElement(Diff, MemI));
848 FoundBucket = true;
849 break;
853 if (!FoundBucket) {
854 if (Buckets.size() == MaxCandidateNum) {
855 LLVM_DEBUG(dbgs() << "Can not prepare more chains, reach maximum limit "
856 << MaxCandidateNum << "\n");
857 return;
859 Buckets.push_back(Bucket(LSCEV, MemI));
863 SmallVector<Bucket, 16> PPCLoopInstrFormPrep::collectCandidates(
864 Loop *L,
865 std::function<bool(const Instruction *, Value *, const Type *)>
866 isValidCandidate,
867 std::function<bool(const SCEV *)> isValidDiff, unsigned MaxCandidateNum) {
868 SmallVector<Bucket, 16> Buckets;
870 for (const auto &BB : L->blocks())
871 for (auto &J : *BB) {
872 Value *PtrValue = nullptr;
873 Type *PointerElementType = nullptr;
874 PtrValue = getPointerOperandAndType(&J, &PointerElementType);
876 if (!PtrValue)
877 continue;
879 if (PtrValue->getType()->getPointerAddressSpace())
880 continue;
882 if (L->isLoopInvariant(PtrValue))
883 continue;
885 const SCEV *LSCEV = SE->getSCEVAtScope(PtrValue, L);
886 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
887 if (!LARSCEV || LARSCEV->getLoop() != L)
888 continue;
890 // Mark that we have candidates for preparing.
891 HasCandidateForPrepare = true;
893 if (isValidCandidate(&J, PtrValue, PointerElementType))
894 addOneCandidate(&J, LSCEV, Buckets, isValidDiff, MaxCandidateNum);
896 return Buckets;
899 bool PPCLoopInstrFormPrep::prepareBaseForDispFormChain(Bucket &BucketChain,
900 PrepForm Form) {
901 // RemainderOffsetInfo details:
902 // key: value of (Offset urem DispConstraint). For DSForm, it can
903 // be [0, 4).
904 // first of pair: the index of first BucketElement whose remainder is equal
905 // to key. For key 0, this value must be 0.
906 // second of pair: number of load/stores with the same remainder.
907 DenseMap<unsigned, std::pair<unsigned, unsigned>> RemainderOffsetInfo;
909 for (unsigned j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
910 if (!BucketChain.Elements[j].Offset)
911 RemainderOffsetInfo[0] = std::make_pair(0, 1);
912 else {
913 unsigned Remainder = cast<SCEVConstant>(BucketChain.Elements[j].Offset)
914 ->getAPInt()
915 .urem(Form);
916 if (!RemainderOffsetInfo.contains(Remainder))
917 RemainderOffsetInfo[Remainder] = std::make_pair(j, 1);
918 else
919 RemainderOffsetInfo[Remainder].second++;
922 // Currently we choose the most profitable base as the one which has the max
923 // number of load/store with same remainder.
924 // FIXME: adjust the base selection strategy according to load/store offset
925 // distribution.
926 // For example, if we have one candidate chain for DS form preparation, which
927 // contains following load/stores with different remainders:
928 // 1: 10 load/store whose remainder is 1;
929 // 2: 9 load/store whose remainder is 2;
930 // 3: 1 for remainder 3 and 0 for remainder 0;
931 // Now we will choose the first load/store whose remainder is 1 as base and
932 // adjust all other load/stores according to new base, so we will get 10 DS
933 // form and 10 X form.
934 // But we should be more clever, for this case we could use two bases, one for
935 // remainder 1 and the other for remainder 2, thus we could get 19 DS form and
936 // 1 X form.
937 unsigned MaxCountRemainder = 0;
938 for (unsigned j = 0; j < (unsigned)Form; j++)
939 if ((RemainderOffsetInfo.contains(j)) &&
940 RemainderOffsetInfo[j].second >
941 RemainderOffsetInfo[MaxCountRemainder].second)
942 MaxCountRemainder = j;
944 // Abort when there are too few insts with common base.
945 if (RemainderOffsetInfo[MaxCountRemainder].second < DispFormPrepMinThreshold)
946 return false;
948 // If the first value is most profitable, no needed to adjust BucketChain
949 // elements as they are substracted the first value when collecting.
950 if (MaxCountRemainder == 0)
951 return true;
953 // Adjust load/store to the new chosen base.
954 const SCEV *Offset =
955 BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first].Offset;
956 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
957 for (auto &E : BucketChain.Elements) {
958 if (E.Offset)
959 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
960 else
961 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
964 std::swap(BucketChain.Elements[RemainderOffsetInfo[MaxCountRemainder].first],
965 BucketChain.Elements[0]);
966 return true;
969 // FIXME: implement a more clever base choosing policy.
970 // Currently we always choose an exist load/store offset. This maybe lead to
971 // suboptimal code sequences. For example, for one DS chain with offsets
972 // {-32769, 2003, 2007, 2011}, we choose -32769 as base offset, and left disp
973 // for load/stores are {0, 34772, 34776, 34780}. Though each offset now is a
974 // multipler of 4, it cannot be represented by sint16.
975 bool PPCLoopInstrFormPrep::prepareBaseForUpdateFormChain(Bucket &BucketChain) {
976 // We have a choice now of which instruction's memory operand we use as the
977 // base for the generated PHI. Always picking the first instruction in each
978 // bucket does not work well, specifically because that instruction might
979 // be a prefetch (and there are no pre-increment dcbt variants). Otherwise,
980 // the choice is somewhat arbitrary, because the backend will happily
981 // generate direct offsets from both the pre-incremented and
982 // post-incremented pointer values. Thus, we'll pick the first non-prefetch
983 // instruction in each bucket, and adjust the recurrence and other offsets
984 // accordingly.
985 for (int j = 0, je = BucketChain.Elements.size(); j != je; ++j) {
986 if (auto *II = dyn_cast<IntrinsicInst>(BucketChain.Elements[j].Instr))
987 if (II->getIntrinsicID() == Intrinsic::prefetch)
988 continue;
990 // If we'd otherwise pick the first element anyway, there's nothing to do.
991 if (j == 0)
992 break;
994 // If our chosen element has no offset from the base pointer, there's
995 // nothing to do.
996 if (!BucketChain.Elements[j].Offset ||
997 cast<SCEVConstant>(BucketChain.Elements[j].Offset)->isZero())
998 break;
1000 const SCEV *Offset = BucketChain.Elements[j].Offset;
1001 BucketChain.BaseSCEV = SE->getAddExpr(BucketChain.BaseSCEV, Offset);
1002 for (auto &E : BucketChain.Elements) {
1003 if (E.Offset)
1004 E.Offset = cast<SCEVConstant>(SE->getMinusSCEV(E.Offset, Offset));
1005 else
1006 E.Offset = cast<SCEVConstant>(SE->getNegativeSCEV(Offset));
1009 std::swap(BucketChain.Elements[j], BucketChain.Elements[0]);
1010 break;
1012 return true;
1015 bool PPCLoopInstrFormPrep::rewriteLoadStores(
1016 Loop *L, Bucket &BucketChain, SmallSet<BasicBlock *, 16> &BBChanged,
1017 PrepForm Form) {
1018 bool MadeChange = false;
1020 const SCEVAddRecExpr *BasePtrSCEV =
1021 cast<SCEVAddRecExpr>(BucketChain.BaseSCEV);
1022 if (!BasePtrSCEV->isAffine())
1023 return MadeChange;
1025 BasicBlock *Header = L->getHeader();
1026 SCEVExpander SCEVE(*SE, Header->getDataLayout(),
1027 "loopprepare-formrewrite");
1028 if (!SCEVE.isSafeToExpand(BasePtrSCEV->getStart()))
1029 return MadeChange;
1031 SmallPtrSet<Value *, 16> DeletedPtrs;
1033 // For some DS form load/store instructions, it can also be an update form,
1034 // if the stride is constant and is a multipler of 4. Use update form if
1035 // prefer it.
1036 bool CanPreInc = (Form == UpdateForm ||
1037 ((Form == DSForm) &&
1038 isa<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE)) &&
1039 !cast<SCEVConstant>(BasePtrSCEV->getStepRecurrence(*SE))
1040 ->getAPInt()
1041 .urem(4) &&
1042 PreferUpdateForm));
1044 std::pair<Instruction *, Instruction *> Base =
1045 rewriteForBase(L, BasePtrSCEV, BucketChain.Elements.begin()->Instr,
1046 CanPreInc, Form, SCEVE, DeletedPtrs);
1048 if (!Base.first || !Base.second)
1049 return MadeChange;
1051 // Keep track of the replacement pointer values we've inserted so that we
1052 // don't generate more pointer values than necessary.
1053 SmallPtrSet<Value *, 16> NewPtrs;
1054 NewPtrs.insert(Base.first);
1056 for (const BucketElement &BE : llvm::drop_begin(BucketChain.Elements)) {
1057 Value *Ptr = getPointerOperandAndType(BE.Instr);
1058 assert(Ptr && "No pointer operand");
1059 if (NewPtrs.count(Ptr))
1060 continue;
1062 Instruction *NewPtr = rewriteForBucketElement(
1063 Base, BE,
1064 BE.Offset ? cast<SCEVConstant>(BE.Offset)->getValue() : nullptr,
1065 DeletedPtrs);
1066 assert(NewPtr && "wrong rewrite!\n");
1067 NewPtrs.insert(NewPtr);
1070 // Clear the rewriter cache, because values that are in the rewriter's cache
1071 // can be deleted below, causing the AssertingVH in the cache to trigger.
1072 SCEVE.clear();
1074 for (auto *Ptr : DeletedPtrs) {
1075 if (Instruction *IDel = dyn_cast<Instruction>(Ptr))
1076 BBChanged.insert(IDel->getParent());
1077 RecursivelyDeleteTriviallyDeadInstructions(Ptr);
1080 MadeChange = true;
1082 SuccPrepCount++;
1084 if (Form == DSForm && !CanPreInc)
1085 DSFormChainRewritten++;
1086 else if (Form == DQForm)
1087 DQFormChainRewritten++;
1088 else if (Form == UpdateForm || (Form == DSForm && CanPreInc))
1089 UpdFormChainRewritten++;
1091 return MadeChange;
1094 bool PPCLoopInstrFormPrep::updateFormPrep(Loop *L,
1095 SmallVector<Bucket, 16> &Buckets) {
1096 bool MadeChange = false;
1097 if (Buckets.empty())
1098 return MadeChange;
1099 SmallSet<BasicBlock *, 16> BBChanged;
1100 for (auto &Bucket : Buckets)
1101 // The base address of each bucket is transformed into a phi and the others
1102 // are rewritten based on new base.
1103 if (prepareBaseForUpdateFormChain(Bucket))
1104 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, UpdateForm);
1106 if (MadeChange)
1107 for (auto *BB : BBChanged)
1108 DeleteDeadPHIs(BB);
1109 return MadeChange;
1112 bool PPCLoopInstrFormPrep::dispFormPrep(Loop *L,
1113 SmallVector<Bucket, 16> &Buckets,
1114 PrepForm Form) {
1115 bool MadeChange = false;
1117 if (Buckets.empty())
1118 return MadeChange;
1120 SmallSet<BasicBlock *, 16> BBChanged;
1121 for (auto &Bucket : Buckets) {
1122 if (Bucket.Elements.size() < DispFormPrepMinThreshold)
1123 continue;
1124 if (prepareBaseForDispFormChain(Bucket, Form))
1125 MadeChange |= rewriteLoadStores(L, Bucket, BBChanged, Form);
1128 if (MadeChange)
1129 for (auto *BB : BBChanged)
1130 DeleteDeadPHIs(BB);
1131 return MadeChange;
1134 // Find the loop invariant increment node for SCEV BasePtrIncSCEV.
1135 // bb.loop.preheader:
1136 // %start = ...
1137 // bb.loop.body:
1138 // %phinode = phi [ %start, %bb.loop.preheader ], [ %add, %bb.loop.body ]
1139 // ...
1140 // %add = add %phinode, %inc ; %inc is what we want to get.
1142 Value *PPCLoopInstrFormPrep::getNodeForInc(Loop *L, Instruction *MemI,
1143 const SCEV *BasePtrIncSCEV) {
1144 // If the increment is a constant, no definition is needed.
1145 // Return the value directly.
1146 if (isa<SCEVConstant>(BasePtrIncSCEV))
1147 return cast<SCEVConstant>(BasePtrIncSCEV)->getValue();
1149 if (!SE->isLoopInvariant(BasePtrIncSCEV, L))
1150 return nullptr;
1152 BasicBlock *BB = MemI->getParent();
1153 if (!BB)
1154 return nullptr;
1156 BasicBlock *LatchBB = L->getLoopLatch();
1158 if (!LatchBB)
1159 return nullptr;
1161 // Run through the PHIs and check their operands to find valid representation
1162 // for the increment SCEV.
1163 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
1164 for (auto &CurrentPHI : PHIIter) {
1165 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
1166 if (!CurrentPHINode)
1167 continue;
1169 if (!SE->isSCEVable(CurrentPHINode->getType()))
1170 continue;
1172 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
1174 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
1175 if (!PHIBasePtrSCEV)
1176 continue;
1178 const SCEV *PHIBasePtrIncSCEV = PHIBasePtrSCEV->getStepRecurrence(*SE);
1180 if (!PHIBasePtrIncSCEV || (PHIBasePtrIncSCEV != BasePtrIncSCEV))
1181 continue;
1183 // Get the incoming value from the loop latch and check if the value has
1184 // the add form with the required increment.
1185 if (CurrentPHINode->getBasicBlockIndex(LatchBB) < 0)
1186 continue;
1187 if (Instruction *I = dyn_cast<Instruction>(
1188 CurrentPHINode->getIncomingValueForBlock(LatchBB))) {
1189 Value *StrippedBaseI = I;
1190 while (BitCastInst *BC = dyn_cast<BitCastInst>(StrippedBaseI))
1191 StrippedBaseI = BC->getOperand(0);
1193 Instruction *StrippedI = dyn_cast<Instruction>(StrippedBaseI);
1194 if (!StrippedI)
1195 continue;
1197 // LSR pass may add a getelementptr instruction to do the loop increment,
1198 // also search in that getelementptr instruction.
1199 if (StrippedI->getOpcode() == Instruction::Add ||
1200 (StrippedI->getOpcode() == Instruction::GetElementPtr &&
1201 StrippedI->getNumOperands() == 2)) {
1202 if (SE->getSCEVAtScope(StrippedI->getOperand(0), L) == BasePtrIncSCEV)
1203 return StrippedI->getOperand(0);
1204 if (SE->getSCEVAtScope(StrippedI->getOperand(1), L) == BasePtrIncSCEV)
1205 return StrippedI->getOperand(1);
1209 return nullptr;
1212 // In order to prepare for the preferred instruction form, a PHI is added.
1213 // This function will check to see if that PHI already exists and will return
1214 // true if it found an existing PHI with the matched start and increment as the
1215 // one we wanted to create.
1216 bool PPCLoopInstrFormPrep::alreadyPrepared(Loop *L, Instruction *MemI,
1217 const SCEV *BasePtrStartSCEV,
1218 const SCEV *BasePtrIncSCEV,
1219 PrepForm Form) {
1220 BasicBlock *BB = MemI->getParent();
1221 if (!BB)
1222 return false;
1224 BasicBlock *PredBB = L->getLoopPredecessor();
1225 BasicBlock *LatchBB = L->getLoopLatch();
1227 if (!PredBB || !LatchBB)
1228 return false;
1230 // Run through the PHIs and see if we have some that looks like a preparation
1231 iterator_range<BasicBlock::phi_iterator> PHIIter = BB->phis();
1232 for (auto & CurrentPHI : PHIIter) {
1233 PHINode *CurrentPHINode = dyn_cast<PHINode>(&CurrentPHI);
1234 if (!CurrentPHINode)
1235 continue;
1237 if (!SE->isSCEVable(CurrentPHINode->getType()))
1238 continue;
1240 const SCEV *PHISCEV = SE->getSCEVAtScope(CurrentPHINode, L);
1242 const SCEVAddRecExpr *PHIBasePtrSCEV = dyn_cast<SCEVAddRecExpr>(PHISCEV);
1243 if (!PHIBasePtrSCEV)
1244 continue;
1246 const SCEVConstant *PHIBasePtrIncSCEV =
1247 dyn_cast<SCEVConstant>(PHIBasePtrSCEV->getStepRecurrence(*SE));
1248 if (!PHIBasePtrIncSCEV)
1249 continue;
1251 if (CurrentPHINode->getNumIncomingValues() == 2) {
1252 if ((CurrentPHINode->getIncomingBlock(0) == LatchBB &&
1253 CurrentPHINode->getIncomingBlock(1) == PredBB) ||
1254 (CurrentPHINode->getIncomingBlock(1) == LatchBB &&
1255 CurrentPHINode->getIncomingBlock(0) == PredBB)) {
1256 if (PHIBasePtrIncSCEV == BasePtrIncSCEV) {
1257 // The existing PHI (CurrentPHINode) has the same start and increment
1258 // as the PHI that we wanted to create.
1259 if ((Form == UpdateForm || Form == ChainCommoning ) &&
1260 PHIBasePtrSCEV->getStart() == BasePtrStartSCEV) {
1261 ++PHINodeAlreadyExistsUpdate;
1262 return true;
1264 if (Form == DSForm || Form == DQForm) {
1265 const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
1266 SE->getMinusSCEV(PHIBasePtrSCEV->getStart(), BasePtrStartSCEV));
1267 if (Diff && !Diff->getAPInt().urem(Form)) {
1268 if (Form == DSForm)
1269 ++PHINodeAlreadyExistsDS;
1270 else
1271 ++PHINodeAlreadyExistsDQ;
1272 return true;
1279 return false;
1282 bool PPCLoopInstrFormPrep::runOnLoop(Loop *L) {
1283 bool MadeChange = false;
1285 // Only prep. the inner-most loop
1286 if (!L->isInnermost())
1287 return MadeChange;
1289 // Return if already done enough preparation.
1290 if (SuccPrepCount >= MaxVarsPrep)
1291 return MadeChange;
1293 LLVM_DEBUG(dbgs() << "PIP: Examining: " << *L << "\n");
1295 BasicBlock *LoopPredecessor = L->getLoopPredecessor();
1296 // If there is no loop predecessor, or the loop predecessor's terminator
1297 // returns a value (which might contribute to determining the loop's
1298 // iteration space), insert a new preheader for the loop.
1299 if (!LoopPredecessor ||
1300 !LoopPredecessor->getTerminator()->getType()->isVoidTy()) {
1301 LoopPredecessor = InsertPreheaderForLoop(L, DT, LI, nullptr, PreserveLCSSA);
1302 if (LoopPredecessor)
1303 MadeChange = true;
1305 if (!LoopPredecessor) {
1306 LLVM_DEBUG(dbgs() << "PIP fails since no predecessor for current loop.\n");
1307 return MadeChange;
1309 // Check if a load/store has update form. This lambda is used by function
1310 // collectCandidates which can collect candidates for types defined by lambda.
1311 auto isUpdateFormCandidate = [&](const Instruction *I, Value *PtrValue,
1312 const Type *PointerElementType) {
1313 assert((PtrValue && I) && "Invalid parameter!");
1314 // There are no update forms for Altivec vector load/stores.
1315 if (ST && ST->hasAltivec() && PointerElementType->isVectorTy())
1316 return false;
1317 // There are no update forms for P10 lxvp/stxvp intrinsic.
1318 auto *II = dyn_cast<IntrinsicInst>(I);
1319 if (II && ((II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp) ||
1320 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp))
1321 return false;
1322 // See getPreIndexedAddressParts, the displacement for LDU/STDU has to
1323 // be 4's multiple (DS-form). For i64 loads/stores when the displacement
1324 // fits in a 16-bit signed field but isn't a multiple of 4, it will be
1325 // useless and possible to break some original well-form addressing mode
1326 // to make this pre-inc prep for it.
1327 if (PointerElementType->isIntegerTy(64)) {
1328 const SCEV *LSCEV = SE->getSCEVAtScope(const_cast<Value *>(PtrValue), L);
1329 const SCEVAddRecExpr *LARSCEV = dyn_cast<SCEVAddRecExpr>(LSCEV);
1330 if (!LARSCEV || LARSCEV->getLoop() != L)
1331 return false;
1332 if (const SCEVConstant *StepConst =
1333 dyn_cast<SCEVConstant>(LARSCEV->getStepRecurrence(*SE))) {
1334 const APInt &ConstInt = StepConst->getValue()->getValue();
1335 if (ConstInt.isSignedIntN(16) && ConstInt.srem(4) != 0)
1336 return false;
1339 return true;
1342 // Check if a load/store has DS form.
1343 auto isDSFormCandidate = [](const Instruction *I, Value *PtrValue,
1344 const Type *PointerElementType) {
1345 assert((PtrValue && I) && "Invalid parameter!");
1346 if (isa<IntrinsicInst>(I))
1347 return false;
1348 return (PointerElementType->isIntegerTy(64)) ||
1349 (PointerElementType->isFloatTy()) ||
1350 (PointerElementType->isDoubleTy()) ||
1351 (PointerElementType->isIntegerTy(32) &&
1352 llvm::any_of(I->users(),
1353 [](const User *U) { return isa<SExtInst>(U); }));
1356 // Check if a load/store has DQ form.
1357 auto isDQFormCandidate = [&](const Instruction *I, Value *PtrValue,
1358 const Type *PointerElementType) {
1359 assert((PtrValue && I) && "Invalid parameter!");
1360 // Check if it is a P10 lxvp/stxvp intrinsic.
1361 auto *II = dyn_cast<IntrinsicInst>(I);
1362 if (II)
1363 return II->getIntrinsicID() == Intrinsic::ppc_vsx_lxvp ||
1364 II->getIntrinsicID() == Intrinsic::ppc_vsx_stxvp;
1365 // Check if it is a P9 vector load/store.
1366 return ST && ST->hasP9Vector() && (PointerElementType->isVectorTy());
1369 // Check if a load/store is candidate for chain commoning.
1370 // If the SCEV is only with one ptr operand in its start, we can use that
1371 // start as a chain separator. Mark this load/store as a candidate.
1372 auto isChainCommoningCandidate = [&](const Instruction *I, Value *PtrValue,
1373 const Type *PointerElementType) {
1374 const SCEVAddRecExpr *ARSCEV =
1375 cast<SCEVAddRecExpr>(SE->getSCEVAtScope(PtrValue, L));
1376 if (!ARSCEV)
1377 return false;
1379 if (!ARSCEV->isAffine())
1380 return false;
1382 const SCEV *Start = ARSCEV->getStart();
1384 // A single pointer. We can treat it as offset 0.
1385 if (isa<SCEVUnknown>(Start) && Start->getType()->isPointerTy())
1386 return true;
1388 const SCEVAddExpr *ASCEV = dyn_cast<SCEVAddExpr>(Start);
1390 // We need a SCEVAddExpr to include both base and offset.
1391 if (!ASCEV)
1392 return false;
1394 // Make sure there is only one pointer operand(base) and all other operands
1395 // are integer type.
1396 bool SawPointer = false;
1397 for (const SCEV *Op : ASCEV->operands()) {
1398 if (Op->getType()->isPointerTy()) {
1399 if (SawPointer)
1400 return false;
1401 SawPointer = true;
1402 } else if (!Op->getType()->isIntegerTy())
1403 return false;
1406 return SawPointer;
1409 // Check if the diff is a constant type. This is used for update/DS/DQ form
1410 // preparation.
1411 auto isValidConstantDiff = [](const SCEV *Diff) {
1412 return dyn_cast<SCEVConstant>(Diff) != nullptr;
1415 // Make sure the diff between the base and new candidate is required type.
1416 // This is used for chain commoning preparation.
1417 auto isValidChainCommoningDiff = [](const SCEV *Diff) {
1418 assert(Diff && "Invalid Diff!\n");
1420 // Don't mess up previous dform prepare.
1421 if (isa<SCEVConstant>(Diff))
1422 return false;
1424 // A single integer type offset.
1425 if (isa<SCEVUnknown>(Diff) && Diff->getType()->isIntegerTy())
1426 return true;
1428 const SCEVNAryExpr *ADiff = dyn_cast<SCEVNAryExpr>(Diff);
1429 if (!ADiff)
1430 return false;
1432 for (const SCEV *Op : ADiff->operands())
1433 if (!Op->getType()->isIntegerTy())
1434 return false;
1436 return true;
1439 HasCandidateForPrepare = false;
1441 LLVM_DEBUG(dbgs() << "Start to prepare for update form.\n");
1442 // Collect buckets of comparable addresses used by loads and stores for update
1443 // form.
1444 SmallVector<Bucket, 16> UpdateFormBuckets = collectCandidates(
1445 L, isUpdateFormCandidate, isValidConstantDiff, MaxVarsUpdateForm);
1447 // Prepare for update form.
1448 if (!UpdateFormBuckets.empty())
1449 MadeChange |= updateFormPrep(L, UpdateFormBuckets);
1450 else if (!HasCandidateForPrepare) {
1451 LLVM_DEBUG(
1452 dbgs()
1453 << "No prepare candidates found, stop praparation for current loop!\n");
1454 // If no candidate for preparing, return early.
1455 return MadeChange;
1458 LLVM_DEBUG(dbgs() << "Start to prepare for DS form.\n");
1459 // Collect buckets of comparable addresses used by loads and stores for DS
1460 // form.
1461 SmallVector<Bucket, 16> DSFormBuckets = collectCandidates(
1462 L, isDSFormCandidate, isValidConstantDiff, MaxVarsDSForm);
1464 // Prepare for DS form.
1465 if (!DSFormBuckets.empty())
1466 MadeChange |= dispFormPrep(L, DSFormBuckets, DSForm);
1468 LLVM_DEBUG(dbgs() << "Start to prepare for DQ form.\n");
1469 // Collect buckets of comparable addresses used by loads and stores for DQ
1470 // form.
1471 SmallVector<Bucket, 16> DQFormBuckets = collectCandidates(
1472 L, isDQFormCandidate, isValidConstantDiff, MaxVarsDQForm);
1474 // Prepare for DQ form.
1475 if (!DQFormBuckets.empty())
1476 MadeChange |= dispFormPrep(L, DQFormBuckets, DQForm);
1478 // Collect buckets of comparable addresses used by loads and stores for chain
1479 // commoning. With chain commoning, we reuse offsets between the chains, so
1480 // the register pressure will be reduced.
1481 if (!EnableChainCommoning) {
1482 LLVM_DEBUG(dbgs() << "Chain commoning is not enabled.\n");
1483 return MadeChange;
1486 LLVM_DEBUG(dbgs() << "Start to prepare for chain commoning.\n");
1487 SmallVector<Bucket, 16> Buckets =
1488 collectCandidates(L, isChainCommoningCandidate, isValidChainCommoningDiff,
1489 MaxVarsChainCommon);
1491 // Prepare for chain commoning.
1492 if (!Buckets.empty())
1493 MadeChange |= chainCommoning(L, Buckets);
1495 return MadeChange;