1 //===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // A pre-emit peephole for catching opportunities introduced by late passes such
10 // as MachineBlockPlacement.
12 //===----------------------------------------------------------------------===//
15 #include "PPCInstrInfo.h"
16 #include "PPCSubtarget.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/LivePhysRegs.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/RegisterScavenging.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Debug.h"
29 #define DEBUG_TYPE "ppc-pre-emit-peephole"
31 STATISTIC(NumRRConvertedInPreEmit
,
32 "Number of r+r instructions converted to r+i in pre-emit peephole");
33 STATISTIC(NumRemovedInPreEmit
,
34 "Number of instructions deleted in pre-emit peephole");
35 STATISTIC(NumberOfSelfCopies
,
36 "Number of self copy instructions eliminated");
37 STATISTIC(NumFrameOffFoldInPreEmit
,
38 "Number of folding frame offset by using r+r in pre-emit peephole");
39 STATISTIC(NumCmpsInPreEmit
,
40 "Number of compares eliminated in pre-emit peephole");
43 EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden
, cl::init(true),
44 cl::desc("enable PC Relative linker optimization"));
47 RunPreEmitPeephole("ppc-late-peephole", cl::Hidden
, cl::init(true),
48 cl::desc("Run pre-emit peephole optimizations."));
50 static cl::opt
<uint64_t>
51 DSCRValue("ppc-set-dscr", cl::Hidden
,
52 cl::desc("Set the Data Stream Control Register."));
56 static bool hasPCRelativeForm(MachineInstr
&Use
) {
57 switch (Use
.getOpcode()) {
95 class PPCPreEmitPeephole
: public MachineFunctionPass
{
98 PPCPreEmitPeephole() : MachineFunctionPass(ID
) {
99 initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
102 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
103 MachineFunctionPass::getAnalysisUsage(AU
);
106 MachineFunctionProperties
getRequiredProperties() const override
{
107 return MachineFunctionProperties().set(
108 MachineFunctionProperties::Property::NoVRegs
);
111 // This function removes any redundant load immediates. It has two level
112 // loops - The outer loop finds the load immediates BBI that could be used
113 // to replace following redundancy. The inner loop scans instructions that
114 // after BBI to find redundancy and update kill/dead flags accordingly. If
115 // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
116 // that modify the def register of BBI would break the scanning.
117 // DeadOrKillToUnset is a pointer to the previous operand that had the
118 // kill/dead flag set. It keeps track of the def register of BBI, the use
119 // registers of AfterBBIs and the def registers of AfterBBIs.
120 bool removeRedundantLIs(MachineBasicBlock
&MBB
,
121 const TargetRegisterInfo
*TRI
) {
122 LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
123 MBB
.dump(); dbgs() << "\n");
125 DenseSet
<MachineInstr
*> InstrsToErase
;
126 for (auto BBI
= MBB
.instr_begin(); BBI
!= MBB
.instr_end(); ++BBI
) {
127 // Skip load immediate that is marked to be erased later because it
128 // cannot be used to replace any other instructions.
129 if (InstrsToErase
.contains(&*BBI
))
131 // Skip non-load immediate.
132 unsigned Opc
= BBI
->getOpcode();
133 if (Opc
!= PPC::LI
&& Opc
!= PPC::LI8
&& Opc
!= PPC::LIS
&&
136 // Skip load immediate, where the operand is a relocation (e.g., $r3 =
137 // LI target-flags(ppc-lo) %const.0).
138 if (!BBI
->getOperand(1).isImm())
140 assert(BBI
->getOperand(0).isReg() &&
141 "Expected a register for the first operand");
143 LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI
->dump(););
145 Register Reg
= BBI
->getOperand(0).getReg();
146 int64_t Imm
= BBI
->getOperand(1).getImm();
147 MachineOperand
*DeadOrKillToUnset
= nullptr;
148 if (BBI
->getOperand(0).isDead()) {
149 DeadOrKillToUnset
= &BBI
->getOperand(0);
150 LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
151 << " from load immediate " << *BBI
152 << " is a unsetting candidate\n");
154 // This loop scans instructions after BBI to see if there is any
155 // redundant load immediate.
156 for (auto AfterBBI
= std::next(BBI
); AfterBBI
!= MBB
.instr_end();
158 // Track the operand that kill Reg. We would unset the kill flag of
159 // the operand if there is a following redundant load immediate.
160 int KillIdx
= AfterBBI
->findRegisterUseOperandIdx(Reg
, TRI
, true);
162 // We can't just clear implicit kills, so if we encounter one, stop
164 if (KillIdx
!= -1 && AfterBBI
->getOperand(KillIdx
).isImplicit()) {
166 << "Encountered an implicit kill, cannot proceed: ");
167 LLVM_DEBUG(AfterBBI
->dump());
172 assert(!DeadOrKillToUnset
&& "Shouldn't kill same register twice");
173 DeadOrKillToUnset
= &AfterBBI
->getOperand(KillIdx
);
175 << " Kill flag of " << *DeadOrKillToUnset
<< " from "
176 << *AfterBBI
<< " is a unsetting candidate\n");
179 if (!AfterBBI
->modifiesRegister(Reg
, TRI
))
181 // Finish scanning because Reg is overwritten by a non-load
183 if (AfterBBI
->getOpcode() != Opc
)
185 assert(AfterBBI
->getOperand(0).isReg() &&
186 "Expected a register for the first operand");
187 // Finish scanning because Reg is overwritten by a relocation or a
189 if (!AfterBBI
->getOperand(1).isImm() ||
190 AfterBBI
->getOperand(1).getImm() != Imm
)
193 // It loads same immediate value to the same Reg, which is redundant.
194 // We would unset kill flag in previous Reg usage to extend live range
195 // of Reg first, then remove the redundancy.
196 if (DeadOrKillToUnset
) {
198 << " Unset dead/kill flag of " << *DeadOrKillToUnset
199 << " from " << *DeadOrKillToUnset
->getParent());
200 if (DeadOrKillToUnset
->isDef())
201 DeadOrKillToUnset
->setIsDead(false);
203 DeadOrKillToUnset
->setIsKill(false);
206 AfterBBI
->findRegisterDefOperand(Reg
, TRI
, true, true);
207 if (DeadOrKillToUnset
)
209 << " Dead flag of " << *DeadOrKillToUnset
<< " from "
210 << *AfterBBI
<< " is a unsetting candidate\n");
211 InstrsToErase
.insert(&*AfterBBI
);
212 LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
217 for (MachineInstr
*MI
: InstrsToErase
) {
218 MI
->eraseFromParent();
220 NumRemovedInPreEmit
+= InstrsToErase
.size();
221 return !InstrsToErase
.empty();
224 // Check if this instruction is a PLDpc that is part of a GOT indirect
226 bool isGOTPLDpc(MachineInstr
&Instr
) {
227 if (Instr
.getOpcode() != PPC::PLDpc
)
230 // The result must be a register.
231 const MachineOperand
&LoadedAddressReg
= Instr
.getOperand(0);
232 if (!LoadedAddressReg
.isReg())
235 // Make sure that this is a global symbol.
236 const MachineOperand
&SymbolOp
= Instr
.getOperand(1);
237 if (!SymbolOp
.isGlobal())
240 // Finally return true only if the GOT flag is present.
241 return PPCInstrInfo::hasGOTFlag(SymbolOp
.getTargetFlags());
244 bool addLinkerOpt(MachineBasicBlock
&MBB
, const TargetRegisterInfo
*TRI
) {
245 MachineFunction
*MF
= MBB
.getParent();
246 // If the linker opt is disabled then just return.
247 if (!EnablePCRelLinkerOpt
)
250 // Add this linker opt only if we are using PC Relative memops.
251 if (!MF
->getSubtarget
<PPCSubtarget
>().isUsingPCRelativeCalls())
254 // Struct to keep track of one def/use pair for a GOT indirect access.
255 struct GOTDefUsePair
{
256 MachineBasicBlock::iterator DefInst
;
257 MachineBasicBlock::iterator UseInst
;
262 // Vector of def/ues pairs in this basic block.
263 SmallVector
<GOTDefUsePair
, 4> CandPairs
;
264 SmallVector
<GOTDefUsePair
, 4> ValidPairs
;
265 bool MadeChange
= false;
267 // Run through all of the instructions in the basic block and try to
268 // collect potential pairs of GOT indirect access instructions.
269 for (auto BBI
= MBB
.instr_begin(); BBI
!= MBB
.instr_end(); ++BBI
) {
270 // Look for the initial GOT indirect load.
271 if (isGOTPLDpc(*BBI
)) {
272 GOTDefUsePair CurrentPair
{BBI
, MachineBasicBlock::iterator(),
273 BBI
->getOperand(0).getReg(),
274 PPC::NoRegister
, true};
275 CandPairs
.push_back(CurrentPair
);
279 // We haven't encountered any new PLD instructions, nothing to check.
280 if (CandPairs
.empty())
283 // Run through the candidate pairs and see if any of the registers
284 // defined in the PLD instructions are used by this instruction.
285 // Note: the size of CandPairs can change in the loop.
286 for (unsigned Idx
= 0; Idx
< CandPairs
.size(); Idx
++) {
287 GOTDefUsePair
&Pair
= CandPairs
[Idx
];
288 // The instruction does not use or modify this PLD's def reg,
290 if (!BBI
->readsRegister(Pair
.DefReg
, TRI
) &&
291 !BBI
->modifiesRegister(Pair
.DefReg
, TRI
))
294 // The use needs to be used in the address computation and not
295 // as the register being stored for a store.
296 const MachineOperand
*UseOp
=
297 hasPCRelativeForm(*BBI
) ? &BBI
->getOperand(2) : nullptr;
299 // Check for a valid use.
300 if (UseOp
&& UseOp
->isReg() && UseOp
->getReg() == Pair
.DefReg
&&
301 UseOp
->isUse() && UseOp
->isKill()) {
303 Pair
.UseReg
= BBI
->getOperand(0).getReg();
304 ValidPairs
.push_back(Pair
);
306 CandPairs
.erase(CandPairs
.begin() + Idx
);
310 // Go through all of the pairs and check for any more valid uses.
311 for (auto Pair
= ValidPairs
.begin(); Pair
!= ValidPairs
.end(); Pair
++) {
312 // We shouldn't be here if we don't have a valid pair.
313 assert(Pair
->UseInst
.isValid() && Pair
->StillValid
&&
314 "Kept an invalid def/use pair for GOT PCRel opt");
315 // We have found a potential pair. Search through the instructions
316 // between the def and the use to see if it is valid to mark this as a
318 MachineBasicBlock::iterator BBI
= Pair
->DefInst
;
320 for (; BBI
!= Pair
->UseInst
; ++BBI
) {
321 if (BBI
->readsRegister(Pair
->UseReg
, TRI
) ||
322 BBI
->modifiesRegister(Pair
->UseReg
, TRI
)) {
323 Pair
->StillValid
= false;
328 if (!Pair
->StillValid
)
331 // The load/store instruction that uses the address from the PLD will
332 // either use a register (for a store) or define a register (for the
333 // load). That register will be added as an implicit def to the PLD
334 // and as an implicit use on the second memory op. This is a precaution
335 // to prevent future passes from using that register between the two
337 MachineOperand ImplDef
=
338 MachineOperand::CreateReg(Pair
->UseReg
, true, true);
339 MachineOperand ImplUse
=
340 MachineOperand::CreateReg(Pair
->UseReg
, false, true);
341 Pair
->DefInst
->addOperand(ImplDef
);
342 Pair
->UseInst
->addOperand(ImplUse
);
344 // Create the symbol.
345 MCContext
&Context
= MF
->getContext();
346 MCSymbol
*Symbol
= Context
.createNamedTempSymbol("pcrel");
347 MachineOperand PCRelLabel
=
348 MachineOperand::CreateMCSymbol(Symbol
, PPCII::MO_PCREL_OPT_FLAG
);
349 Pair
->DefInst
->addOperand(*MF
, PCRelLabel
);
350 Pair
->UseInst
->addOperand(*MF
, PCRelLabel
);
356 // This function removes redundant pairs of accumulator prime/unprime
357 // instructions. In some situations, it's possible the compiler inserts an
358 // accumulator prime instruction followed by an unprime instruction (e.g.
359 // when we store an accumulator after restoring it from a spill). If the
360 // accumulator is not used between the two, they can be removed. This
361 // function removes these redundant pairs from basic blocks.
362 // The algorithm is quite straightforward - every time we encounter a prime
363 // instruction, the primed register is added to a candidate set. Any use
364 // other than a prime removes the candidate from the set and any de-prime
365 // of a current candidate marks both the prime and de-prime for removal.
366 // This way we ensure we only remove prime/de-prime *pairs* with no
368 bool removeAccPrimeUnprime(MachineBasicBlock
&MBB
) {
369 DenseSet
<MachineInstr
*> InstrsToErase
;
370 // Initially, none of the acc registers are candidates.
371 SmallVector
<MachineInstr
*, 8> Candidates(
372 PPC::UACCRCRegClass
.getNumRegs(), nullptr);
374 for (MachineInstr
&BBI
: MBB
.instrs()) {
375 unsigned Opc
= BBI
.getOpcode();
376 // If we are visiting a xxmtacc instruction, we add it and its operand
377 // register to the candidate set.
378 if (Opc
== PPC::XXMTACC
) {
379 Register Acc
= BBI
.getOperand(0).getReg();
380 assert(PPC::ACCRCRegClass
.contains(Acc
) &&
381 "Unexpected register for XXMTACC");
382 Candidates
[Acc
- PPC::ACC0
] = &BBI
;
384 // If we are visiting a xxmfacc instruction and its operand register is
385 // in the candidate set, we mark the two instructions for removal.
386 else if (Opc
== PPC::XXMFACC
) {
387 Register Acc
= BBI
.getOperand(0).getReg();
388 assert(PPC::ACCRCRegClass
.contains(Acc
) &&
389 "Unexpected register for XXMFACC");
390 if (!Candidates
[Acc
- PPC::ACC0
])
392 InstrsToErase
.insert(&BBI
);
393 InstrsToErase
.insert(Candidates
[Acc
- PPC::ACC0
]);
395 // If we are visiting an instruction using an accumulator register
396 // as operand, we remove it from the candidate set.
398 for (MachineOperand
&Operand
: BBI
.operands()) {
399 if (!Operand
.isReg())
401 Register Reg
= Operand
.getReg();
402 if (PPC::ACCRCRegClass
.contains(Reg
))
403 Candidates
[Reg
- PPC::ACC0
] = nullptr;
408 for (MachineInstr
*MI
: InstrsToErase
)
409 MI
->eraseFromParent();
410 NumRemovedInPreEmit
+= InstrsToErase
.size();
411 return !InstrsToErase
.empty();
414 bool runOnMachineFunction(MachineFunction
&MF
) override
{
415 // If the user wants to set the DSCR using command-line options,
416 // load in the specified value at the start of main.
417 if (DSCRValue
.getNumOccurrences() > 0 && MF
.getName() == "main" &&
418 MF
.getFunction().hasExternalLinkage()) {
419 DSCRValue
= (uint32_t)(DSCRValue
& 0x01FFFFFF); // 25-bit DSCR mask
421 MachineBasicBlock
&MBB
= MF
.front();
422 // Find an unused GPR according to register liveness
423 RS
.enterBasicBlock(MBB
);
424 unsigned InDSCR
= RS
.FindUnusedReg(&PPC::GPRCRegClass
);
426 const PPCInstrInfo
*TII
=
427 MF
.getSubtarget
<PPCSubtarget
>().getInstrInfo();
429 MachineBasicBlock::iterator IP
= MBB
.begin(); // Insert Point
430 // Copy the 32-bit DSCRValue integer into the GPR InDSCR using LIS and
431 // ORI, then move to DSCR. If the requested DSCR value is contained
432 // in a 16-bit signed number, we can emit a single `LI`, but the
433 // impact of saving one instruction in one function does not warrant
434 // any additional complexity in the logic here.
435 BuildMI(MBB
, IP
, dl
, TII
->get(PPC::LIS
), InDSCR
)
436 .addImm(DSCRValue
>> 16);
437 BuildMI(MBB
, IP
, dl
, TII
->get(PPC::ORI
), InDSCR
)
439 .addImm(DSCRValue
& 0xFFFF);
440 BuildMI(MBB
, IP
, dl
, TII
->get(PPC::MTUDSCR
))
441 .addReg(InDSCR
, RegState::Kill
);
443 errs() << "Warning: Ran out of registers - Unable to set DSCR as "
447 if (skipFunction(MF
.getFunction()) || !RunPreEmitPeephole
) {
448 // Remove UNENCODED_NOP even when this pass is disabled.
449 // This needs to be done unconditionally so we don't emit zeros
450 // in the instruction stream.
451 SmallVector
<MachineInstr
*, 4> InstrsToErase
;
452 for (MachineBasicBlock
&MBB
: MF
)
453 for (MachineInstr
&MI
: MBB
)
454 if (MI
.getOpcode() == PPC::UNENCODED_NOP
)
455 InstrsToErase
.push_back(&MI
);
456 for (MachineInstr
*MI
: InstrsToErase
)
457 MI
->eraseFromParent();
460 bool Changed
= false;
461 const PPCInstrInfo
*TII
= MF
.getSubtarget
<PPCSubtarget
>().getInstrInfo();
462 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
463 SmallVector
<MachineInstr
*, 4> InstrsToErase
;
464 for (MachineBasicBlock
&MBB
: MF
) {
465 Changed
|= removeRedundantLIs(MBB
, TRI
);
466 Changed
|= addLinkerOpt(MBB
, TRI
);
467 Changed
|= removeAccPrimeUnprime(MBB
);
468 for (MachineInstr
&MI
: MBB
) {
469 unsigned Opc
= MI
.getOpcode();
470 if (Opc
== PPC::UNENCODED_NOP
) {
471 InstrsToErase
.push_back(&MI
);
474 // Detect self copies - these can result from running AADB.
475 if (PPCInstrInfo::isSameClassPhysRegCopy(Opc
)) {
476 const MCInstrDesc
&MCID
= TII
->get(Opc
);
477 if (MCID
.getNumOperands() == 3 &&
478 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg() &&
479 MI
.getOperand(0).getReg() == MI
.getOperand(2).getReg()) {
480 NumberOfSelfCopies
++;
481 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
482 LLVM_DEBUG(MI
.dump());
483 InstrsToErase
.push_back(&MI
);
486 else if (MCID
.getNumOperands() == 2 &&
487 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg()) {
488 NumberOfSelfCopies
++;
489 LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
490 LLVM_DEBUG(MI
.dump());
491 InstrsToErase
.push_back(&MI
);
495 MachineInstr
*DefMIToErase
= nullptr;
496 SmallSet
<Register
, 4> UpdatedRegs
;
497 if (TII
->convertToImmediateForm(MI
, UpdatedRegs
, &DefMIToErase
)) {
499 NumRRConvertedInPreEmit
++;
500 LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
501 LLVM_DEBUG(MI
.dump());
503 InstrsToErase
.push_back(DefMIToErase
);
506 if (TII
->foldFrameOffset(MI
)) {
508 NumFrameOffFoldInPreEmit
++;
509 LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
510 LLVM_DEBUG(MI
.dump());
512 if (TII
->optimizeCmpPostRA(MI
)) {
515 LLVM_DEBUG(dbgs() << "Optimize compare by using record form: ");
516 LLVM_DEBUG(MI
.dump());
517 InstrsToErase
.push_back(&MI
);
521 // Eliminate conditional branch based on a constant CR bit by
522 // CRSET or CRUNSET. We eliminate the conditional branch or
523 // convert it into an unconditional branch. Also, if the CR bit
524 // is not used by other instructions, we eliminate CRSET as well.
525 auto I
= MBB
.getFirstInstrTerminator();
526 if (I
== MBB
.instr_end())
528 MachineInstr
*Br
= &*I
;
529 if (Br
->getOpcode() != PPC::BC
&& Br
->getOpcode() != PPC::BCn
)
531 MachineInstr
*CRSetMI
= nullptr;
532 Register CRBit
= Br
->getOperand(0).getReg();
533 unsigned CRReg
= getCRFromCRBit(CRBit
);
534 bool SeenUse
= false;
535 MachineBasicBlock::reverse_iterator It
= Br
, Er
= MBB
.rend();
536 for (It
++; It
!= Er
; It
++) {
537 if (It
->modifiesRegister(CRBit
, TRI
)) {
538 if ((It
->getOpcode() == PPC::CRUNSET
||
539 It
->getOpcode() == PPC::CRSET
) &&
540 It
->getOperand(0).getReg() == CRBit
)
544 if (It
->readsRegister(CRBit
, TRI
))
547 if (!CRSetMI
) continue;
549 unsigned CRSetOp
= CRSetMI
->getOpcode();
550 if ((Br
->getOpcode() == PPC::BCn
&& CRSetOp
== PPC::CRSET
) ||
551 (Br
->getOpcode() == PPC::BC
&& CRSetOp
== PPC::CRUNSET
)) {
552 // Remove this branch since it cannot be taken.
553 InstrsToErase
.push_back(Br
);
554 MBB
.removeSuccessor(Br
->getOperand(1).getMBB());
557 // This conditional branch is always taken. So, remove all branches
558 // and insert an unconditional branch to the destination of this.
559 MachineBasicBlock::iterator It
= Br
, Er
= MBB
.end();
560 for (; It
!= Er
; It
++) {
561 if (It
->isDebugInstr()) continue;
562 assert(It
->isTerminator() && "Non-terminator after a terminator");
563 InstrsToErase
.push_back(&*It
);
565 if (!MBB
.isLayoutSuccessor(Br
->getOperand(1).getMBB())) {
566 ArrayRef
<MachineOperand
> NoCond
;
567 TII
->insertBranch(MBB
, Br
->getOperand(1).getMBB(), nullptr,
568 NoCond
, Br
->getDebugLoc());
570 for (auto &Succ
: MBB
.successors())
571 if (Succ
!= Br
->getOperand(1).getMBB()) {
572 MBB
.removeSuccessor(Succ
);
577 // If the CRBit is not used by another instruction, we can eliminate
578 // CRSET/CRUNSET instruction.
580 // We need to check use of the CRBit in successors.
581 for (auto &SuccMBB
: MBB
.successors())
582 if (SuccMBB
->isLiveIn(CRBit
) || SuccMBB
->isLiveIn(CRReg
)) {
587 InstrsToErase
.push_back(CRSetMI
);
590 for (MachineInstr
*MI
: InstrsToErase
) {
591 LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
592 LLVM_DEBUG(MI
->dump());
593 MI
->eraseFromParent();
594 NumRemovedInPreEmit
++;
601 INITIALIZE_PASS(PPCPreEmitPeephole
, DEBUG_TYPE
, "PowerPC Pre-Emit Peephole",
603 char PPCPreEmitPeephole::ID
= 0;
605 FunctionPass
*llvm::createPPCPreEmitPeepholePass() {
606 return new PPCPreEmitPeephole();