Add gfx950 mfma instructions to ROCDL dialect (#123361)
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCTargetTransformInfo.cpp
blobc308ec332e84434338d6f563a69c3ef7ba697900
1 //===-- PPCTargetTransformInfo.cpp - PPC specific TTI ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "PPCTargetTransformInfo.h"
10 #include "llvm/Analysis/CodeMetrics.h"
11 #include "llvm/Analysis/TargetLibraryInfo.h"
12 #include "llvm/Analysis/TargetTransformInfo.h"
13 #include "llvm/CodeGen/BasicTTIImpl.h"
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/CodeGen/TargetSchedule.h"
16 #include "llvm/IR/IntrinsicsPowerPC.h"
17 #include "llvm/IR/ProfDataUtils.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Transforms/InstCombine/InstCombiner.h"
20 #include "llvm/Transforms/Utils/Local.h"
21 #include <optional>
23 using namespace llvm;
25 #define DEBUG_TYPE "ppctti"
27 static cl::opt<bool> VecMaskCost("ppc-vec-mask-cost",
28 cl::desc("add masking cost for i1 vectors"), cl::init(true), cl::Hidden);
30 static cl::opt<bool> DisablePPCConstHoist("disable-ppc-constant-hoisting",
31 cl::desc("disable constant hoisting on PPC"), cl::init(false), cl::Hidden);
33 static cl::opt<bool>
34 EnablePPCColdCC("ppc-enable-coldcc", cl::Hidden, cl::init(false),
35 cl::desc("Enable using coldcc calling conv for cold "
36 "internal functions"));
38 static cl::opt<bool>
39 LsrNoInsnsCost("ppc-lsr-no-insns-cost", cl::Hidden, cl::init(false),
40 cl::desc("Do not add instruction count to lsr cost model"));
42 // The latency of mtctr is only justified if there are more than 4
43 // comparisons that will be removed as a result.
44 static cl::opt<unsigned>
45 SmallCTRLoopThreshold("min-ctr-loop-threshold", cl::init(4), cl::Hidden,
46 cl::desc("Loops with a constant trip count smaller than "
47 "this value will not use the count register."));
49 //===----------------------------------------------------------------------===//
51 // PPC cost model.
53 //===----------------------------------------------------------------------===//
55 TargetTransformInfo::PopcntSupportKind
56 PPCTTIImpl::getPopcntSupport(unsigned TyWidth) {
57 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
58 if (ST->hasPOPCNTD() != PPCSubtarget::POPCNTD_Unavailable && TyWidth <= 64)
59 return ST->hasPOPCNTD() == PPCSubtarget::POPCNTD_Slow ?
60 TTI::PSK_SlowHardware : TTI::PSK_FastHardware;
61 return TTI::PSK_Software;
64 std::optional<Instruction *>
65 PPCTTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
66 Intrinsic::ID IID = II.getIntrinsicID();
67 switch (IID) {
68 default:
69 break;
70 case Intrinsic::ppc_altivec_lvx:
71 case Intrinsic::ppc_altivec_lvxl:
72 // Turn PPC lvx -> load if the pointer is known aligned.
73 if (getOrEnforceKnownAlignment(
74 II.getArgOperand(0), Align(16), IC.getDataLayout(), &II,
75 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
76 Value *Ptr = II.getArgOperand(0);
77 return new LoadInst(II.getType(), Ptr, "", false, Align(16));
79 break;
80 case Intrinsic::ppc_vsx_lxvw4x:
81 case Intrinsic::ppc_vsx_lxvd2x: {
82 // Turn PPC VSX loads into normal loads.
83 Value *Ptr = II.getArgOperand(0);
84 return new LoadInst(II.getType(), Ptr, Twine(""), false, Align(1));
86 case Intrinsic::ppc_altivec_stvx:
87 case Intrinsic::ppc_altivec_stvxl:
88 // Turn stvx -> store if the pointer is known aligned.
89 if (getOrEnforceKnownAlignment(
90 II.getArgOperand(1), Align(16), IC.getDataLayout(), &II,
91 &IC.getAssumptionCache(), &IC.getDominatorTree()) >= 16) {
92 Value *Ptr = II.getArgOperand(1);
93 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(16));
95 break;
96 case Intrinsic::ppc_vsx_stxvw4x:
97 case Intrinsic::ppc_vsx_stxvd2x: {
98 // Turn PPC VSX stores into normal stores.
99 Value *Ptr = II.getArgOperand(1);
100 return new StoreInst(II.getArgOperand(0), Ptr, false, Align(1));
102 case Intrinsic::ppc_altivec_vperm:
103 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
104 // Note that ppc_altivec_vperm has a big-endian bias, so when creating
105 // a vectorshuffle for little endian, we must undo the transformation
106 // performed on vec_perm in altivec.h. That is, we must complement
107 // the permutation mask with respect to 31 and reverse the order of
108 // V1 and V2.
109 if (Constant *Mask = dyn_cast<Constant>(II.getArgOperand(2))) {
110 assert(cast<FixedVectorType>(Mask->getType())->getNumElements() == 16 &&
111 "Bad type for intrinsic!");
113 // Check that all of the elements are integer constants or undefs.
114 bool AllEltsOk = true;
115 for (unsigned i = 0; i != 16; ++i) {
116 Constant *Elt = Mask->getAggregateElement(i);
117 if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
118 AllEltsOk = false;
119 break;
123 if (AllEltsOk) {
124 // Cast the input vectors to byte vectors.
125 Value *Op0 =
126 IC.Builder.CreateBitCast(II.getArgOperand(0), Mask->getType());
127 Value *Op1 =
128 IC.Builder.CreateBitCast(II.getArgOperand(1), Mask->getType());
129 Value *Result = UndefValue::get(Op0->getType());
131 // Only extract each element once.
132 Value *ExtractedElts[32];
133 memset(ExtractedElts, 0, sizeof(ExtractedElts));
135 for (unsigned i = 0; i != 16; ++i) {
136 if (isa<UndefValue>(Mask->getAggregateElement(i)))
137 continue;
138 unsigned Idx =
139 cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
140 Idx &= 31; // Match the hardware behavior.
141 if (DL.isLittleEndian())
142 Idx = 31 - Idx;
144 if (!ExtractedElts[Idx]) {
145 Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
146 Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
147 ExtractedElts[Idx] = IC.Builder.CreateExtractElement(
148 Idx < 16 ? Op0ToUse : Op1ToUse, IC.Builder.getInt32(Idx & 15));
151 // Insert this value into the result vector.
152 Result = IC.Builder.CreateInsertElement(Result, ExtractedElts[Idx],
153 IC.Builder.getInt32(i));
155 return CastInst::Create(Instruction::BitCast, Result, II.getType());
158 break;
160 return std::nullopt;
163 InstructionCost PPCTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
164 TTI::TargetCostKind CostKind) {
165 if (DisablePPCConstHoist)
166 return BaseT::getIntImmCost(Imm, Ty, CostKind);
168 assert(Ty->isIntegerTy());
170 unsigned BitSize = Ty->getPrimitiveSizeInBits();
171 if (BitSize == 0)
172 return ~0U;
174 if (Imm == 0)
175 return TTI::TCC_Free;
177 if (Imm.getBitWidth() <= 64) {
178 if (isInt<16>(Imm.getSExtValue()))
179 return TTI::TCC_Basic;
181 if (isInt<32>(Imm.getSExtValue())) {
182 // A constant that can be materialized using lis.
183 if ((Imm.getZExtValue() & 0xFFFF) == 0)
184 return TTI::TCC_Basic;
186 return 2 * TTI::TCC_Basic;
190 return 4 * TTI::TCC_Basic;
193 InstructionCost PPCTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
194 const APInt &Imm, Type *Ty,
195 TTI::TargetCostKind CostKind) {
196 if (DisablePPCConstHoist)
197 return BaseT::getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
199 assert(Ty->isIntegerTy());
201 unsigned BitSize = Ty->getPrimitiveSizeInBits();
202 if (BitSize == 0)
203 return ~0U;
205 switch (IID) {
206 default:
207 return TTI::TCC_Free;
208 case Intrinsic::sadd_with_overflow:
209 case Intrinsic::uadd_with_overflow:
210 case Intrinsic::ssub_with_overflow:
211 case Intrinsic::usub_with_overflow:
212 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<16>(Imm.getSExtValue()))
213 return TTI::TCC_Free;
214 break;
215 case Intrinsic::experimental_stackmap:
216 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
217 return TTI::TCC_Free;
218 break;
219 case Intrinsic::experimental_patchpoint_void:
220 case Intrinsic::experimental_patchpoint:
221 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
222 return TTI::TCC_Free;
223 break;
225 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
228 InstructionCost PPCTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
229 const APInt &Imm, Type *Ty,
230 TTI::TargetCostKind CostKind,
231 Instruction *Inst) {
232 if (DisablePPCConstHoist)
233 return BaseT::getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
235 assert(Ty->isIntegerTy());
237 unsigned BitSize = Ty->getPrimitiveSizeInBits();
238 if (BitSize == 0)
239 return ~0U;
241 unsigned ImmIdx = ~0U;
242 bool ShiftedFree = false, RunFree = false, UnsignedFree = false,
243 ZeroFree = false;
244 switch (Opcode) {
245 default:
246 return TTI::TCC_Free;
247 case Instruction::GetElementPtr:
248 // Always hoist the base address of a GetElementPtr. This prevents the
249 // creation of new constants for every base constant that gets constant
250 // folded with the offset.
251 if (Idx == 0)
252 return 2 * TTI::TCC_Basic;
253 return TTI::TCC_Free;
254 case Instruction::And:
255 RunFree = true; // (for the rotate-and-mask instructions)
256 [[fallthrough]];
257 case Instruction::Add:
258 case Instruction::Or:
259 case Instruction::Xor:
260 ShiftedFree = true;
261 [[fallthrough]];
262 case Instruction::Sub:
263 case Instruction::Mul:
264 case Instruction::Shl:
265 case Instruction::LShr:
266 case Instruction::AShr:
267 ImmIdx = 1;
268 break;
269 case Instruction::ICmp:
270 UnsignedFree = true;
271 ImmIdx = 1;
272 // Zero comparisons can use record-form instructions.
273 [[fallthrough]];
274 case Instruction::Select:
275 ZeroFree = true;
276 break;
277 case Instruction::PHI:
278 case Instruction::Call:
279 case Instruction::Ret:
280 case Instruction::Load:
281 case Instruction::Store:
282 break;
285 if (ZeroFree && Imm == 0)
286 return TTI::TCC_Free;
288 if (Idx == ImmIdx && Imm.getBitWidth() <= 64) {
289 if (isInt<16>(Imm.getSExtValue()))
290 return TTI::TCC_Free;
292 if (RunFree) {
293 if (Imm.getBitWidth() <= 32 &&
294 (isShiftedMask_32(Imm.getZExtValue()) ||
295 isShiftedMask_32(~Imm.getZExtValue())))
296 return TTI::TCC_Free;
298 if (ST->isPPC64() &&
299 (isShiftedMask_64(Imm.getZExtValue()) ||
300 isShiftedMask_64(~Imm.getZExtValue())))
301 return TTI::TCC_Free;
304 if (UnsignedFree && isUInt<16>(Imm.getZExtValue()))
305 return TTI::TCC_Free;
307 if (ShiftedFree && (Imm.getZExtValue() & 0xFFFF) == 0)
308 return TTI::TCC_Free;
311 return PPCTTIImpl::getIntImmCost(Imm, Ty, CostKind);
314 // Check if the current Type is an MMA vector type. Valid MMA types are
315 // v256i1 and v512i1 respectively.
316 static bool isMMAType(Type *Ty) {
317 return Ty->isVectorTy() && (Ty->getScalarSizeInBits() == 1) &&
318 (Ty->getPrimitiveSizeInBits() > 128);
321 InstructionCost PPCTTIImpl::getInstructionCost(const User *U,
322 ArrayRef<const Value *> Operands,
323 TTI::TargetCostKind CostKind) {
324 // We already implement getCastInstrCost and getMemoryOpCost where we perform
325 // the vector adjustment there.
326 if (isa<CastInst>(U) || isa<LoadInst>(U) || isa<StoreInst>(U))
327 return BaseT::getInstructionCost(U, Operands, CostKind);
329 if (U->getType()->isVectorTy()) {
330 // Instructions that need to be split should cost more.
331 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(U->getType());
332 return LT.first * BaseT::getInstructionCost(U, Operands, CostKind);
335 return BaseT::getInstructionCost(U, Operands, CostKind);
338 bool PPCTTIImpl::isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
339 AssumptionCache &AC,
340 TargetLibraryInfo *LibInfo,
341 HardwareLoopInfo &HWLoopInfo) {
342 const PPCTargetMachine &TM = ST->getTargetMachine();
343 TargetSchedModel SchedModel;
344 SchedModel.init(ST);
346 // Do not convert small short loops to CTR loop.
347 unsigned ConstTripCount = SE.getSmallConstantTripCount(L);
348 if (ConstTripCount && ConstTripCount < SmallCTRLoopThreshold) {
349 SmallPtrSet<const Value *, 32> EphValues;
350 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
351 CodeMetrics Metrics;
352 for (BasicBlock *BB : L->blocks())
353 Metrics.analyzeBasicBlock(BB, *this, EphValues);
354 // 6 is an approximate latency for the mtctr instruction.
355 if (Metrics.NumInsts <= (6 * SchedModel.getIssueWidth()))
356 return false;
359 // Check that there is no hardware loop related intrinsics in the loop.
360 for (auto *BB : L->getBlocks())
361 for (auto &I : *BB)
362 if (auto *Call = dyn_cast<IntrinsicInst>(&I))
363 if (Call->getIntrinsicID() == Intrinsic::set_loop_iterations ||
364 Call->getIntrinsicID() == Intrinsic::loop_decrement)
365 return false;
367 SmallVector<BasicBlock*, 4> ExitingBlocks;
368 L->getExitingBlocks(ExitingBlocks);
370 // If there is an exit edge known to be frequently taken,
371 // we should not transform this loop.
372 for (auto &BB : ExitingBlocks) {
373 Instruction *TI = BB->getTerminator();
374 if (!TI) continue;
376 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
377 uint64_t TrueWeight = 0, FalseWeight = 0;
378 if (!BI->isConditional() ||
379 !extractBranchWeights(*BI, TrueWeight, FalseWeight))
380 continue;
382 // If the exit path is more frequent than the loop path,
383 // we return here without further analysis for this loop.
384 bool TrueIsExit = !L->contains(BI->getSuccessor(0));
385 if (( TrueIsExit && FalseWeight < TrueWeight) ||
386 (!TrueIsExit && FalseWeight > TrueWeight))
387 return false;
391 LLVMContext &C = L->getHeader()->getContext();
392 HWLoopInfo.CountType = TM.isPPC64() ?
393 Type::getInt64Ty(C) : Type::getInt32Ty(C);
394 HWLoopInfo.LoopDecrement = ConstantInt::get(HWLoopInfo.CountType, 1);
395 return true;
398 void PPCTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
399 TTI::UnrollingPreferences &UP,
400 OptimizationRemarkEmitter *ORE) {
401 if (ST->getCPUDirective() == PPC::DIR_A2) {
402 // The A2 is in-order with a deep pipeline, and concatenation unrolling
403 // helps expose latency-hiding opportunities to the instruction scheduler.
404 UP.Partial = UP.Runtime = true;
406 // We unroll a lot on the A2 (hundreds of instructions), and the benefits
407 // often outweigh the cost of a division to compute the trip count.
408 UP.AllowExpensiveTripCount = true;
411 BaseT::getUnrollingPreferences(L, SE, UP, ORE);
414 void PPCTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
415 TTI::PeelingPreferences &PP) {
416 BaseT::getPeelingPreferences(L, SE, PP);
418 // This function returns true to allow using coldcc calling convention.
419 // Returning true results in coldcc being used for functions which are cold at
420 // all call sites when the callers of the functions are not calling any other
421 // non coldcc functions.
422 bool PPCTTIImpl::useColdCCForColdCall(Function &F) {
423 return EnablePPCColdCC;
426 bool PPCTTIImpl::enableAggressiveInterleaving(bool LoopHasReductions) {
427 // On the A2, always unroll aggressively.
428 if (ST->getCPUDirective() == PPC::DIR_A2)
429 return true;
431 return LoopHasReductions;
434 PPCTTIImpl::TTI::MemCmpExpansionOptions
435 PPCTTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
436 TTI::MemCmpExpansionOptions Options;
437 Options.LoadSizes = {8, 4, 2, 1};
438 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
439 return Options;
442 bool PPCTTIImpl::enableInterleavedAccessVectorization() {
443 return true;
446 unsigned PPCTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
447 assert(ClassID == GPRRC || ClassID == FPRRC ||
448 ClassID == VRRC || ClassID == VSXRC);
449 if (ST->hasVSX()) {
450 assert(ClassID == GPRRC || ClassID == VSXRC || ClassID == VRRC);
451 return ClassID == VSXRC ? 64 : 32;
453 assert(ClassID == GPRRC || ClassID == FPRRC || ClassID == VRRC);
454 return 32;
457 unsigned PPCTTIImpl::getRegisterClassForType(bool Vector, Type *Ty) const {
458 if (Vector)
459 return ST->hasVSX() ? VSXRC : VRRC;
460 else if (Ty && (Ty->getScalarType()->isFloatTy() ||
461 Ty->getScalarType()->isDoubleTy()))
462 return ST->hasVSX() ? VSXRC : FPRRC;
463 else if (Ty && (Ty->getScalarType()->isFP128Ty() ||
464 Ty->getScalarType()->isPPC_FP128Ty()))
465 return VRRC;
466 else if (Ty && Ty->getScalarType()->isHalfTy())
467 return VSXRC;
468 else
469 return GPRRC;
472 const char* PPCTTIImpl::getRegisterClassName(unsigned ClassID) const {
474 switch (ClassID) {
475 default:
476 llvm_unreachable("unknown register class");
477 return "PPC::unknown register class";
478 case GPRRC: return "PPC::GPRRC";
479 case FPRRC: return "PPC::FPRRC";
480 case VRRC: return "PPC::VRRC";
481 case VSXRC: return "PPC::VSXRC";
485 TypeSize
486 PPCTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
487 switch (K) {
488 case TargetTransformInfo::RGK_Scalar:
489 return TypeSize::getFixed(ST->isPPC64() ? 64 : 32);
490 case TargetTransformInfo::RGK_FixedWidthVector:
491 return TypeSize::getFixed(ST->hasAltivec() ? 128 : 0);
492 case TargetTransformInfo::RGK_ScalableVector:
493 return TypeSize::getScalable(0);
496 llvm_unreachable("Unsupported register kind");
499 unsigned PPCTTIImpl::getCacheLineSize() const {
500 // Starting with P7 we have a cache line size of 128.
501 unsigned Directive = ST->getCPUDirective();
502 // Assume that Future CPU has the same cache line size as the others.
503 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
504 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
505 Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE)
506 return 128;
508 // On other processors return a default of 64 bytes.
509 return 64;
512 unsigned PPCTTIImpl::getPrefetchDistance() const {
513 return 300;
516 unsigned PPCTTIImpl::getMaxInterleaveFactor(ElementCount VF) {
517 unsigned Directive = ST->getCPUDirective();
518 // The 440 has no SIMD support, but floating-point instructions
519 // have a 5-cycle latency, so unroll by 5x for latency hiding.
520 if (Directive == PPC::DIR_440)
521 return 5;
523 // The A2 has no SIMD support, but floating-point instructions
524 // have a 6-cycle latency, so unroll by 6x for latency hiding.
525 if (Directive == PPC::DIR_A2)
526 return 6;
528 // FIXME: For lack of any better information, do no harm...
529 if (Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500)
530 return 1;
532 // For P7 and P8, floating-point instructions have a 6-cycle latency and
533 // there are two execution units, so unroll by 12x for latency hiding.
534 // FIXME: the same for P9 as previous gen until POWER9 scheduling is ready
535 // FIXME: the same for P10 as previous gen until POWER10 scheduling is ready
536 // Assume that future is the same as the others.
537 if (Directive == PPC::DIR_PWR7 || Directive == PPC::DIR_PWR8 ||
538 Directive == PPC::DIR_PWR9 || Directive == PPC::DIR_PWR10 ||
539 Directive == PPC::DIR_PWR11 || Directive == PPC::DIR_PWR_FUTURE)
540 return 12;
542 // For most things, modern systems have two execution units (and
543 // out-of-order execution).
544 return 2;
547 // Returns a cost adjustment factor to adjust the cost of vector instructions
548 // on targets which there is overlap between the vector and scalar units,
549 // thereby reducing the overall throughput of vector code wrt. scalar code.
550 // An invalid instruction cost is returned if the type is an MMA vector type.
551 InstructionCost PPCTTIImpl::vectorCostAdjustmentFactor(unsigned Opcode,
552 Type *Ty1, Type *Ty2) {
553 // If the vector type is of an MMA type (v256i1, v512i1), an invalid
554 // instruction cost is returned. This is to signify to other cost computing
555 // functions to return the maximum instruction cost in order to prevent any
556 // opportunities for the optimizer to produce MMA types within the IR.
557 if (isMMAType(Ty1))
558 return InstructionCost::getInvalid();
560 if (!ST->vectorsUseTwoUnits() || !Ty1->isVectorTy())
561 return InstructionCost(1);
563 std::pair<InstructionCost, MVT> LT1 = getTypeLegalizationCost(Ty1);
564 // If type legalization involves splitting the vector, we don't want to
565 // double the cost at every step - only the last step.
566 if (LT1.first != 1 || !LT1.second.isVector())
567 return InstructionCost(1);
569 int ISD = TLI->InstructionOpcodeToISD(Opcode);
570 if (TLI->isOperationExpand(ISD, LT1.second))
571 return InstructionCost(1);
573 if (Ty2) {
574 std::pair<InstructionCost, MVT> LT2 = getTypeLegalizationCost(Ty2);
575 if (LT2.first != 1 || !LT2.second.isVector())
576 return InstructionCost(1);
579 return InstructionCost(2);
582 InstructionCost PPCTTIImpl::getArithmeticInstrCost(
583 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
584 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
585 ArrayRef<const Value *> Args,
586 const Instruction *CxtI) {
587 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
589 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Ty, nullptr);
590 if (!CostFactor.isValid())
591 return InstructionCost::getMax();
593 // TODO: Handle more cost kinds.
594 if (CostKind != TTI::TCK_RecipThroughput)
595 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
596 Op2Info, Args, CxtI);
598 // Fallback to the default implementation.
599 InstructionCost Cost = BaseT::getArithmeticInstrCost(
600 Opcode, Ty, CostKind, Op1Info, Op2Info);
601 return Cost * CostFactor;
604 InstructionCost PPCTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
605 ArrayRef<int> Mask,
606 TTI::TargetCostKind CostKind,
607 int Index, Type *SubTp,
608 ArrayRef<const Value *> Args,
609 const Instruction *CxtI) {
611 InstructionCost CostFactor =
612 vectorCostAdjustmentFactor(Instruction::ShuffleVector, Tp, nullptr);
613 if (!CostFactor.isValid())
614 return InstructionCost::getMax();
616 // Legalize the type.
617 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
619 // PPC, for both Altivec/VSX, support cheap arbitrary permutations
620 // (at least in the sense that there need only be one non-loop-invariant
621 // instruction). We need one such shuffle instruction for each actual
622 // register (this is not true for arbitrary shuffles, but is true for the
623 // structured types of shuffles covered by TTI::ShuffleKind).
624 return LT.first * CostFactor;
627 InstructionCost PPCTTIImpl::getCFInstrCost(unsigned Opcode,
628 TTI::TargetCostKind CostKind,
629 const Instruction *I) {
630 if (CostKind != TTI::TCK_RecipThroughput)
631 return Opcode == Instruction::PHI ? 0 : 1;
632 // Branches are assumed to be predicted.
633 return 0;
636 InstructionCost PPCTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
637 Type *Src,
638 TTI::CastContextHint CCH,
639 TTI::TargetCostKind CostKind,
640 const Instruction *I) {
641 assert(TLI->InstructionOpcodeToISD(Opcode) && "Invalid opcode");
643 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Dst, Src);
644 if (!CostFactor.isValid())
645 return InstructionCost::getMax();
647 InstructionCost Cost =
648 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
649 Cost *= CostFactor;
650 // TODO: Allow non-throughput costs that aren't binary.
651 if (CostKind != TTI::TCK_RecipThroughput)
652 return Cost == 0 ? 0 : 1;
653 return Cost;
656 InstructionCost PPCTTIImpl::getCmpSelInstrCost(
657 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
658 TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info,
659 TTI::OperandValueInfo Op2Info, const Instruction *I) {
660 InstructionCost CostFactor =
661 vectorCostAdjustmentFactor(Opcode, ValTy, nullptr);
662 if (!CostFactor.isValid())
663 return InstructionCost::getMax();
665 InstructionCost Cost = BaseT::getCmpSelInstrCost(
666 Opcode, ValTy, CondTy, VecPred, CostKind, Op1Info, Op2Info, I);
667 // TODO: Handle other cost kinds.
668 if (CostKind != TTI::TCK_RecipThroughput)
669 return Cost;
670 return Cost * CostFactor;
673 InstructionCost PPCTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
674 TTI::TargetCostKind CostKind,
675 unsigned Index, Value *Op0,
676 Value *Op1) {
677 assert(Val->isVectorTy() && "This must be a vector type");
679 int ISD = TLI->InstructionOpcodeToISD(Opcode);
680 assert(ISD && "Invalid opcode");
682 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Val, nullptr);
683 if (!CostFactor.isValid())
684 return InstructionCost::getMax();
686 InstructionCost Cost =
687 BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
688 Cost *= CostFactor;
690 if (ST->hasVSX() && Val->getScalarType()->isDoubleTy()) {
691 // Double-precision scalars are already located in index #0 (or #1 if LE).
692 if (ISD == ISD::EXTRACT_VECTOR_ELT &&
693 Index == (ST->isLittleEndian() ? 1 : 0))
694 return 0;
696 return Cost;
698 } else if (Val->getScalarType()->isIntegerTy()) {
699 unsigned EltSize = Val->getScalarSizeInBits();
700 // Computing on 1 bit values requires extra mask or compare operations.
701 unsigned MaskCostForOneBitSize = (VecMaskCost && EltSize == 1) ? 1 : 0;
702 // Computing on non const index requires extra mask or compare operations.
703 unsigned MaskCostForIdx = (Index != -1U) ? 0 : 1;
704 if (ST->hasP9Altivec()) {
705 // P10 has vxform insert which can handle non const index. The
706 // MaskCostForIdx is for masking the index.
707 // P9 has insert for const index. A move-to VSR and a permute/insert.
708 // Assume vector operation cost for both (cost will be 2x on P9).
709 if (ISD == ISD::INSERT_VECTOR_ELT) {
710 if (ST->hasP10Vector())
711 return CostFactor + MaskCostForIdx;
712 else if (Index != -1U)
713 return 2 * CostFactor;
714 } else if (ISD == ISD::EXTRACT_VECTOR_ELT) {
715 // It's an extract. Maybe we can do a cheap move-from VSR.
716 unsigned EltSize = Val->getScalarSizeInBits();
717 // P9 has both mfvsrd and mfvsrld for 64 bit integer.
718 if (EltSize == 64 && Index != -1U)
719 return 1;
720 else if (EltSize == 32) {
721 unsigned MfvsrwzIndex = ST->isLittleEndian() ? 2 : 1;
722 if (Index == MfvsrwzIndex)
723 return 1;
725 // For other indexs like non const, P9 has vxform extract. The
726 // MaskCostForIdx is for masking the index.
727 return CostFactor + MaskCostForIdx;
730 // We need a vector extract (or mfvsrld). Assume vector operation cost.
731 // The cost of the load constant for a vector extract is disregarded
732 // (invariant, easily schedulable).
733 return CostFactor + MaskCostForOneBitSize + MaskCostForIdx;
735 } else if (ST->hasDirectMove() && Index != -1U) {
736 // Assume permute has standard cost.
737 // Assume move-to/move-from VSR have 2x standard cost.
738 if (ISD == ISD::INSERT_VECTOR_ELT)
739 return 3;
740 return 3 + MaskCostForOneBitSize;
744 // Estimated cost of a load-hit-store delay. This was obtained
745 // experimentally as a minimum needed to prevent unprofitable
746 // vectorization for the paq8p benchmark. It may need to be
747 // raised further if other unprofitable cases remain.
748 unsigned LHSPenalty = 2;
749 if (ISD == ISD::INSERT_VECTOR_ELT)
750 LHSPenalty += 7;
752 // Vector element insert/extract with Altivec is very expensive,
753 // because they require store and reload with the attendant
754 // processor stall for load-hit-store. Until VSX is available,
755 // these need to be estimated as very costly.
756 if (ISD == ISD::EXTRACT_VECTOR_ELT ||
757 ISD == ISD::INSERT_VECTOR_ELT)
758 return LHSPenalty + Cost;
760 return Cost;
763 InstructionCost PPCTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
764 MaybeAlign Alignment,
765 unsigned AddressSpace,
766 TTI::TargetCostKind CostKind,
767 TTI::OperandValueInfo OpInfo,
768 const Instruction *I) {
770 InstructionCost CostFactor = vectorCostAdjustmentFactor(Opcode, Src, nullptr);
771 if (!CostFactor.isValid())
772 return InstructionCost::getMax();
774 if (TLI->getValueType(DL, Src, true) == MVT::Other)
775 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
776 CostKind);
777 // Legalize the type.
778 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
779 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
780 "Invalid Opcode");
782 InstructionCost Cost =
783 BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
784 // TODO: Handle other cost kinds.
785 if (CostKind != TTI::TCK_RecipThroughput)
786 return Cost;
788 Cost *= CostFactor;
790 bool IsAltivecType = ST->hasAltivec() &&
791 (LT.second == MVT::v16i8 || LT.second == MVT::v8i16 ||
792 LT.second == MVT::v4i32 || LT.second == MVT::v4f32);
793 bool IsVSXType = ST->hasVSX() &&
794 (LT.second == MVT::v2f64 || LT.second == MVT::v2i64);
796 // VSX has 32b/64b load instructions. Legalization can handle loading of
797 // 32b/64b to VSR correctly and cheaply. But BaseT::getMemoryOpCost and
798 // PPCTargetLowering can't compute the cost appropriately. So here we
799 // explicitly check this case. There are also corresponding store
800 // instructions.
801 unsigned MemBits = Src->getPrimitiveSizeInBits();
802 unsigned SrcBytes = LT.second.getStoreSize();
803 if (ST->hasVSX() && IsAltivecType) {
804 if (MemBits == 64 || (ST->hasP8Vector() && MemBits == 32))
805 return 1;
807 // Use lfiwax/xxspltw
808 Align AlignBytes = Alignment ? *Alignment : Align(1);
809 if (Opcode == Instruction::Load && MemBits == 32 && AlignBytes < SrcBytes)
810 return 2;
813 // Aligned loads and stores are easy.
814 if (!SrcBytes || !Alignment || *Alignment >= SrcBytes)
815 return Cost;
817 // If we can use the permutation-based load sequence, then this is also
818 // relatively cheap (not counting loop-invariant instructions): one load plus
819 // one permute (the last load in a series has extra cost, but we're
820 // neglecting that here). Note that on the P7, we could do unaligned loads
821 // for Altivec types using the VSX instructions, but that's more expensive
822 // than using the permutation-based load sequence. On the P8, that's no
823 // longer true.
824 if (Opcode == Instruction::Load && (!ST->hasP8Vector() && IsAltivecType) &&
825 *Alignment >= LT.second.getScalarType().getStoreSize())
826 return Cost + LT.first; // Add the cost of the permutations.
828 // For VSX, we can do unaligned loads and stores on Altivec/VSX types. On the
829 // P7, unaligned vector loads are more expensive than the permutation-based
830 // load sequence, so that might be used instead, but regardless, the net cost
831 // is about the same (not counting loop-invariant instructions).
832 if (IsVSXType || (ST->hasVSX() && IsAltivecType))
833 return Cost;
835 // Newer PPC supports unaligned memory access.
836 if (TLI->allowsMisalignedMemoryAccesses(LT.second, 0))
837 return Cost;
839 // PPC in general does not support unaligned loads and stores. They'll need
840 // to be decomposed based on the alignment factor.
842 // Add the cost of each scalar load or store.
843 assert(Alignment);
844 Cost += LT.first * ((SrcBytes / Alignment->value()) - 1);
846 // For a vector type, there is also scalarization overhead (only for
847 // stores, loads are expanded using the vector-load + permutation sequence,
848 // which is much less expensive).
849 if (Src->isVectorTy() && Opcode == Instruction::Store)
850 for (int i = 0, e = cast<FixedVectorType>(Src)->getNumElements(); i < e;
851 ++i)
852 Cost += getVectorInstrCost(Instruction::ExtractElement, Src, CostKind, i,
853 nullptr, nullptr);
855 return Cost;
858 InstructionCost PPCTTIImpl::getInterleavedMemoryOpCost(
859 unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
860 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
861 bool UseMaskForCond, bool UseMaskForGaps) {
862 InstructionCost CostFactor =
863 vectorCostAdjustmentFactor(Opcode, VecTy, nullptr);
864 if (!CostFactor.isValid())
865 return InstructionCost::getMax();
867 if (UseMaskForCond || UseMaskForGaps)
868 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
869 Alignment, AddressSpace, CostKind,
870 UseMaskForCond, UseMaskForGaps);
872 assert(isa<VectorType>(VecTy) &&
873 "Expect a vector type for interleaved memory op");
875 // Legalize the type.
876 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(VecTy);
878 // Firstly, the cost of load/store operation.
879 InstructionCost Cost = getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment),
880 AddressSpace, CostKind);
882 // PPC, for both Altivec/VSX, support cheap arbitrary permutations
883 // (at least in the sense that there need only be one non-loop-invariant
884 // instruction). For each result vector, we need one shuffle per incoming
885 // vector (except that the first shuffle can take two incoming vectors
886 // because it does not need to take itself).
887 Cost += Factor*(LT.first-1);
889 return Cost;
892 InstructionCost
893 PPCTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
894 TTI::TargetCostKind CostKind) {
895 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
898 bool PPCTTIImpl::areTypesABICompatible(const Function *Caller,
899 const Function *Callee,
900 const ArrayRef<Type *> &Types) const {
902 // We need to ensure that argument promotion does not
903 // attempt to promote pointers to MMA types (__vector_pair
904 // and __vector_quad) since these types explicitly cannot be
905 // passed as arguments. Both of these types are larger than
906 // the 128-bit Altivec vectors and have a scalar size of 1 bit.
907 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
908 return false;
910 return llvm::none_of(Types, [](Type *Ty) {
911 if (Ty->isSized())
912 return Ty->isIntOrIntVectorTy(1) && Ty->getPrimitiveSizeInBits() > 128;
913 return false;
917 bool PPCTTIImpl::canSaveCmp(Loop *L, BranchInst **BI, ScalarEvolution *SE,
918 LoopInfo *LI, DominatorTree *DT,
919 AssumptionCache *AC, TargetLibraryInfo *LibInfo) {
920 // Process nested loops first.
921 for (Loop *I : *L)
922 if (canSaveCmp(I, BI, SE, LI, DT, AC, LibInfo))
923 return false; // Stop search.
925 HardwareLoopInfo HWLoopInfo(L);
927 if (!HWLoopInfo.canAnalyze(*LI))
928 return false;
930 if (!isHardwareLoopProfitable(L, *SE, *AC, LibInfo, HWLoopInfo))
931 return false;
933 if (!HWLoopInfo.isHardwareLoopCandidate(*SE, *LI, *DT))
934 return false;
936 *BI = HWLoopInfo.ExitBranch;
937 return true;
940 bool PPCTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
941 const TargetTransformInfo::LSRCost &C2) {
942 // PowerPC default behaviour here is "instruction number 1st priority".
943 // If LsrNoInsnsCost is set, call default implementation.
944 if (!LsrNoInsnsCost)
945 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost, C1.NumIVMuls,
946 C1.NumBaseAdds, C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
947 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost, C2.NumIVMuls,
948 C2.NumBaseAdds, C2.ScaleCost, C2.ImmCost, C2.SetupCost);
949 else
950 return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
953 bool PPCTTIImpl::isNumRegsMajorCostOfLSR() {
954 return false;
957 bool PPCTTIImpl::shouldBuildRelLookupTables() const {
958 const PPCTargetMachine &TM = ST->getTargetMachine();
959 // XCOFF hasn't implemented lowerRelativeReference, disable non-ELF for now.
960 if (!TM.isELFv2ABI())
961 return false;
962 return BaseT::shouldBuildRelLookupTables();
965 bool PPCTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
966 MemIntrinsicInfo &Info) {
967 switch (Inst->getIntrinsicID()) {
968 case Intrinsic::ppc_altivec_lvx:
969 case Intrinsic::ppc_altivec_lvxl:
970 case Intrinsic::ppc_altivec_lvebx:
971 case Intrinsic::ppc_altivec_lvehx:
972 case Intrinsic::ppc_altivec_lvewx:
973 case Intrinsic::ppc_vsx_lxvd2x:
974 case Intrinsic::ppc_vsx_lxvw4x:
975 case Intrinsic::ppc_vsx_lxvd2x_be:
976 case Intrinsic::ppc_vsx_lxvw4x_be:
977 case Intrinsic::ppc_vsx_lxvl:
978 case Intrinsic::ppc_vsx_lxvll:
979 case Intrinsic::ppc_vsx_lxvp: {
980 Info.PtrVal = Inst->getArgOperand(0);
981 Info.ReadMem = true;
982 Info.WriteMem = false;
983 return true;
985 case Intrinsic::ppc_altivec_stvx:
986 case Intrinsic::ppc_altivec_stvxl:
987 case Intrinsic::ppc_altivec_stvebx:
988 case Intrinsic::ppc_altivec_stvehx:
989 case Intrinsic::ppc_altivec_stvewx:
990 case Intrinsic::ppc_vsx_stxvd2x:
991 case Intrinsic::ppc_vsx_stxvw4x:
992 case Intrinsic::ppc_vsx_stxvd2x_be:
993 case Intrinsic::ppc_vsx_stxvw4x_be:
994 case Intrinsic::ppc_vsx_stxvl:
995 case Intrinsic::ppc_vsx_stxvll:
996 case Intrinsic::ppc_vsx_stxvp: {
997 Info.PtrVal = Inst->getArgOperand(1);
998 Info.ReadMem = false;
999 Info.WriteMem = true;
1000 return true;
1002 case Intrinsic::ppc_stbcx:
1003 case Intrinsic::ppc_sthcx:
1004 case Intrinsic::ppc_stdcx:
1005 case Intrinsic::ppc_stwcx: {
1006 Info.PtrVal = Inst->getArgOperand(0);
1007 Info.ReadMem = false;
1008 Info.WriteMem = true;
1009 return true;
1011 default:
1012 break;
1015 return false;
1018 bool PPCTTIImpl::hasActiveVectorLength(unsigned Opcode, Type *DataType,
1019 Align Alignment) const {
1020 // Only load and stores instructions can have variable vector length on Power.
1021 if (Opcode != Instruction::Load && Opcode != Instruction::Store)
1022 return false;
1023 // Loads/stores with length instructions use bits 0-7 of the GPR operand and
1024 // therefore cannot be used in 32-bit mode.
1025 if ((!ST->hasP9Vector() && !ST->hasP10Vector()) || !ST->isPPC64())
1026 return false;
1027 if (isa<FixedVectorType>(DataType)) {
1028 unsigned VecWidth = DataType->getPrimitiveSizeInBits();
1029 return VecWidth == 128;
1031 Type *ScalarTy = DataType->getScalarType();
1033 if (ScalarTy->isPointerTy())
1034 return true;
1036 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
1037 return true;
1039 if (!ScalarTy->isIntegerTy())
1040 return false;
1042 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
1043 return IntWidth == 8 || IntWidth == 16 || IntWidth == 32 || IntWidth == 64;
1046 InstructionCost PPCTTIImpl::getVPMemoryOpCost(unsigned Opcode, Type *Src,
1047 Align Alignment,
1048 unsigned AddressSpace,
1049 TTI::TargetCostKind CostKind,
1050 const Instruction *I) {
1051 InstructionCost Cost = BaseT::getVPMemoryOpCost(Opcode, Src, Alignment,
1052 AddressSpace, CostKind, I);
1053 if (TLI->getValueType(DL, Src, true) == MVT::Other)
1054 return Cost;
1055 // TODO: Handle other cost kinds.
1056 if (CostKind != TTI::TCK_RecipThroughput)
1057 return Cost;
1059 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
1060 "Invalid Opcode");
1062 auto *SrcVTy = dyn_cast<FixedVectorType>(Src);
1063 assert(SrcVTy && "Expected a vector type for VP memory operations");
1065 if (hasActiveVectorLength(Opcode, Src, Alignment)) {
1066 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
1068 InstructionCost CostFactor =
1069 vectorCostAdjustmentFactor(Opcode, Src, nullptr);
1070 if (!CostFactor.isValid())
1071 return InstructionCost::getMax();
1073 InstructionCost Cost = LT.first * CostFactor;
1074 assert(Cost.isValid() && "Expected valid cost");
1076 // On P9 but not on P10, if the op is misaligned then it will cause a
1077 // pipeline flush. Otherwise the VSX masked memops cost the same as unmasked
1078 // ones.
1079 const Align DesiredAlignment(16);
1080 if (Alignment >= DesiredAlignment || ST->getCPUDirective() != PPC::DIR_PWR9)
1081 return Cost;
1083 // Since alignment may be under estimated, we try to compute the probability
1084 // that the actual address is aligned to the desired boundary. For example
1085 // an 8-byte aligned load is assumed to be actually 16-byte aligned half the
1086 // time, while a 4-byte aligned load has a 25% chance of being 16-byte
1087 // aligned.
1088 float AlignmentProb = ((float)Alignment.value()) / DesiredAlignment.value();
1089 float MisalignmentProb = 1.0 - AlignmentProb;
1090 return (MisalignmentProb * P9PipelineFlushEstimate) +
1091 (AlignmentProb * *Cost.getValue());
1094 // Usually we should not get to this point, but the following is an attempt to
1095 // model the cost of legalization. Currently we can only lower intrinsics with
1096 // evl but no mask, on Power 9/10. Otherwise, we must scalarize.
1097 return getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
1100 bool PPCTTIImpl::supportsTailCallFor(const CallBase *CB) const {
1101 return TLI->supportsTailCallFor(CB);