AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / PowerPC / PPCVSXSwapRemoval.cpp
blob573b30ccbcf2eae649c428dc1546ccf9690d9c1a
1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===---------------------------------------------------------------------===//
8 //
9 // This pass analyzes vector computations and removes unnecessary
10 // doubleword swaps (xxswapd instructions). This pass is performed
11 // only for little-endian VSX code generation.
13 // For this specific case, loads and stores of v4i32, v4f32, v2i64,
14 // and v2f64 vectors are inefficient. These are implemented using
15 // the lxvd2x and stxvd2x instructions, which invert the order of
16 // doublewords in a vector register. Thus code generation inserts
17 // an xxswapd after each such load, and prior to each such store.
19 // The extra xxswapd instructions reduce performance. The purpose
20 // of this pass is to reduce the number of xxswapd instructions
21 // required for correctness.
23 // The primary insight is that much code that operates on vectors
24 // does not care about the relative order of elements in a register,
25 // so long as the correct memory order is preserved. If we have a
26 // computation where all input values are provided by lxvd2x/xxswapd,
27 // all outputs are stored using xxswapd/lxvd2x, and all intermediate
28 // computations are lane-insensitive (independent of element order),
29 // then all the xxswapd instructions associated with the loads and
30 // stores may be removed without changing observable semantics.
32 // This pass uses standard equivalence class infrastructure to create
33 // maximal webs of computations fitting the above description. Each
34 // such web is then optimized by removing its unnecessary xxswapd
35 // instructions.
37 // There are some lane-sensitive operations for which we can still
38 // permit the optimization, provided we modify those operations
39 // accordingly. Such operations are identified as using "special
40 // handling" within this module.
42 //===---------------------------------------------------------------------===//
44 #include "PPC.h"
45 #include "PPCInstrInfo.h"
46 #include "PPCTargetMachine.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/EquivalenceClasses.h"
49 #include "llvm/CodeGen/MachineFunctionPass.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/Config/llvm-config.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/Format.h"
55 #include "llvm/Support/raw_ostream.h"
57 using namespace llvm;
59 #define DEBUG_TYPE "ppc-vsx-swaps"
61 namespace {
63 // A PPCVSXSwapEntry is created for each machine instruction that
64 // is relevant to a vector computation.
65 struct PPCVSXSwapEntry {
66 // Pointer to the instruction.
67 MachineInstr *VSEMI;
69 // Unique ID (position in the swap vector).
70 int VSEId;
72 // Attributes of this node.
73 unsigned int IsLoad : 1;
74 unsigned int IsStore : 1;
75 unsigned int IsSwap : 1;
76 unsigned int MentionsPhysVR : 1;
77 unsigned int IsSwappable : 1;
78 unsigned int MentionsPartialVR : 1;
79 unsigned int SpecialHandling : 3;
80 unsigned int WebRejected : 1;
81 unsigned int WillRemove : 1;
84 enum SHValues {
85 SH_NONE = 0,
86 SH_EXTRACT,
87 SH_INSERT,
88 SH_NOSWAP_LD,
89 SH_NOSWAP_ST,
90 SH_SPLAT,
91 SH_XXPERMDI,
92 SH_COPYWIDEN
95 struct PPCVSXSwapRemoval : public MachineFunctionPass {
97 static char ID;
98 const PPCInstrInfo *TII;
99 MachineFunction *MF;
100 MachineRegisterInfo *MRI;
102 // Swap entries are allocated in a vector for better performance.
103 std::vector<PPCVSXSwapEntry> SwapVector;
105 // A mapping is maintained between machine instructions and
106 // their swap entries. The key is the address of the MI.
107 DenseMap<MachineInstr*, int> SwapMap;
109 // Equivalence classes are used to gather webs of related computation.
110 // Swap entries are represented by their VSEId fields.
111 EquivalenceClasses<int> *EC;
113 PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
114 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
117 private:
118 // Initialize data structures.
119 void initialize(MachineFunction &MFParm);
121 // Walk the machine instructions to gather vector usage information.
122 // Return true iff vector mentions are present.
123 bool gatherVectorInstructions();
125 // Add an entry to the swap vector and swap map.
126 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
128 // Hunt backwards through COPY and SUBREG_TO_REG chains for a
129 // source register. VecIdx indicates the swap vector entry to
130 // mark as mentioning a physical register if the search leads
131 // to one.
132 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
134 // Generate equivalence classes for related computations (webs).
135 void formWebs();
137 // Analyze webs and determine those that cannot be optimized.
138 void recordUnoptimizableWebs();
140 // Record which swap instructions can be safely removed.
141 void markSwapsForRemoval();
143 // Remove swaps and update other instructions requiring special
144 // handling. Return true iff any changes are made.
145 bool removeSwaps();
147 // Insert a swap instruction from SrcReg to DstReg at the given
148 // InsertPoint.
149 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
150 unsigned DstReg, unsigned SrcReg);
152 // Update instructions requiring special handling.
153 void handleSpecialSwappables(int EntryIdx);
155 // Dump a description of the entries in the swap vector.
156 void dumpSwapVector();
158 // Return true iff the given register is in the given class.
159 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
160 if (Register::isVirtualRegister(Reg))
161 return RC->hasSubClassEq(MRI->getRegClass(Reg));
162 return RC->contains(Reg);
165 // Return true iff the given register is a full vector register.
166 bool isVecReg(unsigned Reg) {
167 return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
168 isRegInClass(Reg, &PPC::VRRCRegClass));
171 // Return true iff the given register is a partial vector register.
172 bool isScalarVecReg(unsigned Reg) {
173 return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
174 isRegInClass(Reg, &PPC::VSSRCRegClass));
177 // Return true iff the given register mentions all or part of a
178 // vector register. Also sets Partial to true if the mention
179 // is for just the floating-point register overlap of the register.
180 bool isAnyVecReg(unsigned Reg, bool &Partial) {
181 if (isScalarVecReg(Reg))
182 Partial = true;
183 return isScalarVecReg(Reg) || isVecReg(Reg);
186 public:
187 // Main entry point for this pass.
188 bool runOnMachineFunction(MachineFunction &MF) override {
189 if (skipFunction(MF.getFunction()))
190 return false;
192 // If we don't have VSX on the subtarget, don't do anything.
193 // Also, on Power 9 the load and store ops preserve element order and so
194 // the swaps are not required.
195 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
196 if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
197 return false;
199 bool Changed = false;
200 initialize(MF);
202 if (gatherVectorInstructions()) {
203 formWebs();
204 recordUnoptimizableWebs();
205 markSwapsForRemoval();
206 Changed = removeSwaps();
209 // FIXME: See the allocation of EC in initialize().
210 delete EC;
211 return Changed;
215 // Initialize data structures for this pass. In particular, clear the
216 // swap vector and allocate the equivalence class mapping before
217 // processing each function.
218 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
219 MF = &MFParm;
220 MRI = &MF->getRegInfo();
221 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
223 // An initial vector size of 256 appears to work well in practice.
224 // Small/medium functions with vector content tend not to incur a
225 // reallocation at this size. Three of the vector tests in
226 // projects/test-suite reallocate, which seems like a reasonable rate.
227 const int InitialVectorSize(256);
228 SwapVector.clear();
229 SwapVector.reserve(InitialVectorSize);
231 // FIXME: Currently we allocate EC each time because we don't have
232 // access to the set representation on which to call clear(). Should
233 // consider adding a clear() method to the EquivalenceClasses class.
234 EC = new EquivalenceClasses<int>;
237 // Create an entry in the swap vector for each instruction that mentions
238 // a full vector register, recording various characteristics of the
239 // instructions there.
240 bool PPCVSXSwapRemoval::gatherVectorInstructions() {
241 bool RelevantFunction = false;
243 for (MachineBasicBlock &MBB : *MF) {
244 for (MachineInstr &MI : MBB) {
246 if (MI.isDebugInstr())
247 continue;
249 bool RelevantInstr = false;
250 bool Partial = false;
252 for (const MachineOperand &MO : MI.operands()) {
253 if (!MO.isReg())
254 continue;
255 Register Reg = MO.getReg();
256 // All operands need to be checked because there are instructions that
257 // operate on a partial register and produce a full register (such as
258 // XXPERMDIs).
259 if (isAnyVecReg(Reg, Partial))
260 RelevantInstr = true;
263 if (!RelevantInstr)
264 continue;
266 RelevantFunction = true;
268 // Create a SwapEntry initialized to zeros, then fill in the
269 // instruction and ID fields before pushing it to the back
270 // of the swap vector.
271 PPCVSXSwapEntry SwapEntry{};
272 int VecIdx = addSwapEntry(&MI, SwapEntry);
274 switch(MI.getOpcode()) {
275 default:
276 // Unless noted otherwise, an instruction is considered
277 // safe for the optimization. There are a large number of
278 // such true-SIMD instructions (all vector math, logical,
279 // select, compare, etc.). However, if the instruction
280 // mentions a partial vector register and does not have
281 // special handling defined, it is not swappable.
282 if (Partial)
283 SwapVector[VecIdx].MentionsPartialVR = 1;
284 else
285 SwapVector[VecIdx].IsSwappable = 1;
286 break;
287 case PPC::XXPERMDI: {
288 // This is a swap if it is of the form XXPERMDI t, s, s, 2.
289 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
290 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
291 // for example. We have to look through chains of COPY and
292 // SUBREG_TO_REG to find the real source value for comparison.
293 // If the real source value is a physical register, then mark the
294 // XXPERMDI as mentioning a physical register.
295 int immed = MI.getOperand(3).getImm();
296 if (immed == 2) {
297 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
298 VecIdx);
299 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
300 VecIdx);
301 if (trueReg1 == trueReg2)
302 SwapVector[VecIdx].IsSwap = 1;
303 else {
304 // We can still handle these if the two registers are not
305 // identical, by adjusting the form of the XXPERMDI.
306 SwapVector[VecIdx].IsSwappable = 1;
307 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
309 // This is a doubleword splat if it is of the form
310 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we
311 // must look through chains of copy-likes to find the source
312 // register. We turn off the marking for mention of a physical
313 // register, because splatting it is safe; the optimization
314 // will not swap the value in the physical register. Whether
315 // or not the two input registers are identical, we can handle
316 // these by adjusting the form of the XXPERMDI.
317 } else if (immed == 0 || immed == 3) {
319 SwapVector[VecIdx].IsSwappable = 1;
320 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
322 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
323 VecIdx);
324 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
325 VecIdx);
326 if (trueReg1 == trueReg2)
327 SwapVector[VecIdx].MentionsPhysVR = 0;
329 } else {
330 // We can still handle these by adjusting the form of the XXPERMDI.
331 SwapVector[VecIdx].IsSwappable = 1;
332 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
334 break;
336 case PPC::LVX:
337 // Non-permuting loads are currently unsafe. We can use special
338 // handling for this in the future. By not marking these as
339 // IsSwap, we ensure computations containing them will be rejected
340 // for now.
341 SwapVector[VecIdx].IsLoad = 1;
342 break;
343 case PPC::LXVD2X:
344 case PPC::LXVW4X:
345 // Permuting loads are marked as both load and swap, and are
346 // safe for optimization.
347 SwapVector[VecIdx].IsLoad = 1;
348 SwapVector[VecIdx].IsSwap = 1;
349 break;
350 case PPC::LXSDX:
351 case PPC::LXSSPX:
352 case PPC::XFLOADf64:
353 case PPC::XFLOADf32:
354 // A load of a floating-point value into the high-order half of
355 // a vector register is safe, provided that we introduce a swap
356 // following the load, which will be done by the SUBREG_TO_REG
357 // support. So just mark these as safe.
358 SwapVector[VecIdx].IsLoad = 1;
359 SwapVector[VecIdx].IsSwappable = 1;
360 break;
361 case PPC::STVX:
362 // Non-permuting stores are currently unsafe. We can use special
363 // handling for this in the future. By not marking these as
364 // IsSwap, we ensure computations containing them will be rejected
365 // for now.
366 SwapVector[VecIdx].IsStore = 1;
367 break;
368 case PPC::STXVD2X:
369 case PPC::STXVW4X:
370 // Permuting stores are marked as both store and swap, and are
371 // safe for optimization.
372 SwapVector[VecIdx].IsStore = 1;
373 SwapVector[VecIdx].IsSwap = 1;
374 break;
375 case PPC::COPY:
376 // These are fine provided they are moving between full vector
377 // register classes.
378 if (isVecReg(MI.getOperand(0).getReg()) &&
379 isVecReg(MI.getOperand(1).getReg()))
380 SwapVector[VecIdx].IsSwappable = 1;
381 // If we have a copy from one scalar floating-point register
382 // to another, we can accept this even if it is a physical
383 // register. The only way this gets involved is if it feeds
384 // a SUBREG_TO_REG, which is handled by introducing a swap.
385 else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
386 isScalarVecReg(MI.getOperand(1).getReg()))
387 SwapVector[VecIdx].IsSwappable = 1;
388 break;
389 case PPC::SUBREG_TO_REG: {
390 // These are fine provided they are moving between full vector
391 // register classes. If they are moving from a scalar
392 // floating-point class to a vector class, we can handle those
393 // as well, provided we introduce a swap. It is generally the
394 // case that we will introduce fewer swaps than we remove, but
395 // (FIXME) a cost model could be used. However, introduced
396 // swaps could potentially be CSEd, so this is not trivial.
397 if (isVecReg(MI.getOperand(0).getReg()) &&
398 isVecReg(MI.getOperand(2).getReg()))
399 SwapVector[VecIdx].IsSwappable = 1;
400 else if (isVecReg(MI.getOperand(0).getReg()) &&
401 isScalarVecReg(MI.getOperand(2).getReg())) {
402 SwapVector[VecIdx].IsSwappable = 1;
403 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
405 break;
407 case PPC::VSPLTB:
408 case PPC::VSPLTH:
409 case PPC::VSPLTW:
410 case PPC::XXSPLTW:
411 // Splats are lane-sensitive, but we can use special handling
412 // to adjust the source lane for the splat.
413 SwapVector[VecIdx].IsSwappable = 1;
414 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
415 break;
416 // The presence of the following lane-sensitive operations in a
417 // web will kill the optimization, at least for now. For these
418 // we do nothing, causing the optimization to fail.
419 // FIXME: Some of these could be permitted with special handling,
420 // and will be phased in as time permits.
421 // FIXME: There is no simple and maintainable way to express a set
422 // of opcodes having a common attribute in TableGen. Should this
423 // change, this is a prime candidate to use such a mechanism.
424 case PPC::INLINEASM:
425 case PPC::INLINEASM_BR:
426 case PPC::EXTRACT_SUBREG:
427 case PPC::INSERT_SUBREG:
428 case PPC::COPY_TO_REGCLASS:
429 case PPC::LVEBX:
430 case PPC::LVEHX:
431 case PPC::LVEWX:
432 case PPC::LVSL:
433 case PPC::LVSR:
434 case PPC::LVXL:
435 case PPC::STVEBX:
436 case PPC::STVEHX:
437 case PPC::STVEWX:
438 case PPC::STVXL:
439 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
440 // by adding special handling for narrowing copies as well as
441 // widening ones. However, I've experimented with this, and in
442 // practice we currently do not appear to use STXSDX fed by
443 // a narrowing copy from a full vector register. Since I can't
444 // generate any useful test cases, I've left this alone for now.
445 case PPC::STXSDX:
446 case PPC::STXSSPX:
447 case PPC::VCIPHER:
448 case PPC::VCIPHERLAST:
449 case PPC::VMRGHB:
450 case PPC::VMRGHH:
451 case PPC::VMRGHW:
452 case PPC::VMRGLB:
453 case PPC::VMRGLH:
454 case PPC::VMRGLW:
455 case PPC::VMULESB:
456 case PPC::VMULESH:
457 case PPC::VMULESW:
458 case PPC::VMULEUB:
459 case PPC::VMULEUH:
460 case PPC::VMULEUW:
461 case PPC::VMULOSB:
462 case PPC::VMULOSH:
463 case PPC::VMULOSW:
464 case PPC::VMULOUB:
465 case PPC::VMULOUH:
466 case PPC::VMULOUW:
467 case PPC::VNCIPHER:
468 case PPC::VNCIPHERLAST:
469 case PPC::VPERM:
470 case PPC::VPERMXOR:
471 case PPC::VPKPX:
472 case PPC::VPKSHSS:
473 case PPC::VPKSHUS:
474 case PPC::VPKSDSS:
475 case PPC::VPKSDUS:
476 case PPC::VPKSWSS:
477 case PPC::VPKSWUS:
478 case PPC::VPKUDUM:
479 case PPC::VPKUDUS:
480 case PPC::VPKUHUM:
481 case PPC::VPKUHUS:
482 case PPC::VPKUWUM:
483 case PPC::VPKUWUS:
484 case PPC::VPMSUMB:
485 case PPC::VPMSUMD:
486 case PPC::VPMSUMH:
487 case PPC::VPMSUMW:
488 case PPC::VRLB:
489 case PPC::VRLD:
490 case PPC::VRLH:
491 case PPC::VRLW:
492 case PPC::VSBOX:
493 case PPC::VSHASIGMAD:
494 case PPC::VSHASIGMAW:
495 case PPC::VSL:
496 case PPC::VSLDOI:
497 case PPC::VSLO:
498 case PPC::VSR:
499 case PPC::VSRO:
500 case PPC::VSUM2SWS:
501 case PPC::VSUM4SBS:
502 case PPC::VSUM4SHS:
503 case PPC::VSUM4UBS:
504 case PPC::VSUMSWS:
505 case PPC::VUPKHPX:
506 case PPC::VUPKHSB:
507 case PPC::VUPKHSH:
508 case PPC::VUPKHSW:
509 case PPC::VUPKLPX:
510 case PPC::VUPKLSB:
511 case PPC::VUPKLSH:
512 case PPC::VUPKLSW:
513 case PPC::XXMRGHW:
514 case PPC::XXMRGLW:
515 // XXSLDWI could be replaced by a general permute with one of three
516 // permute control vectors (for shift values 1, 2, 3). However,
517 // VPERM has a more restrictive register class.
518 case PPC::XXSLDWI:
519 case PPC::XSCVDPSPN:
520 case PPC::XSCVSPDPN:
521 case PPC::MTVSCR:
522 case PPC::MFVSCR:
523 break;
528 if (RelevantFunction) {
529 LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
530 LLVM_DEBUG(dumpSwapVector());
533 return RelevantFunction;
536 // Add an entry to the swap vector and swap map, and make a
537 // singleton equivalence class for the entry.
538 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
539 PPCVSXSwapEntry& SwapEntry) {
540 SwapEntry.VSEMI = MI;
541 SwapEntry.VSEId = SwapVector.size();
542 SwapVector.push_back(SwapEntry);
543 EC->insert(SwapEntry.VSEId);
544 SwapMap[MI] = SwapEntry.VSEId;
545 return SwapEntry.VSEId;
548 // This is used to find the "true" source register for an
549 // XXPERMDI instruction, since MachineCSE does not handle the
550 // "copy-like" operations (Copy and SubregToReg). Returns
551 // the original SrcReg unless it is the target of a copy-like
552 // operation, in which case we chain backwards through all
553 // such operations to the ultimate source register. If a
554 // physical register is encountered, we stop the search and
555 // flag the swap entry indicated by VecIdx (the original
556 // XXPERMDI) as mentioning a physical register.
557 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
558 unsigned VecIdx) {
559 MachineInstr *MI = MRI->getVRegDef(SrcReg);
560 if (!MI->isCopyLike())
561 return SrcReg;
563 unsigned CopySrcReg;
564 if (MI->isCopy())
565 CopySrcReg = MI->getOperand(1).getReg();
566 else {
567 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
568 CopySrcReg = MI->getOperand(2).getReg();
571 if (!Register::isVirtualRegister(CopySrcReg)) {
572 if (!isScalarVecReg(CopySrcReg))
573 SwapVector[VecIdx].MentionsPhysVR = 1;
574 return CopySrcReg;
577 return lookThruCopyLike(CopySrcReg, VecIdx);
580 // Generate equivalence classes for related computations (webs) by
581 // def-use relationships of virtual registers. Mention of a physical
582 // register terminates the generation of equivalence classes as this
583 // indicates a use of a parameter, definition of a return value, use
584 // of a value returned from a call, or definition of a parameter to a
585 // call. Computations with physical register mentions are flagged
586 // as such so their containing webs will not be optimized.
587 void PPCVSXSwapRemoval::formWebs() {
589 LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
591 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
593 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
595 LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
596 LLVM_DEBUG(MI->dump());
598 // It's sufficient to walk vector uses and join them to their unique
599 // definitions. In addition, check full vector register operands
600 // for physical regs. We exclude partial-vector register operands
601 // because we can handle them if copied to a full vector.
602 for (const MachineOperand &MO : MI->operands()) {
603 if (!MO.isReg())
604 continue;
606 Register Reg = MO.getReg();
607 if (!isVecReg(Reg) && !isScalarVecReg(Reg))
608 continue;
610 if (!Reg.isVirtual()) {
611 if (!(MI->isCopy() && isScalarVecReg(Reg)))
612 SwapVector[EntryIdx].MentionsPhysVR = 1;
613 continue;
616 if (!MO.isUse())
617 continue;
619 MachineInstr* DefMI = MRI->getVRegDef(Reg);
620 assert(SwapMap.contains(DefMI) &&
621 "Inconsistency: def of vector reg not found in swap map!");
622 int DefIdx = SwapMap[DefMI];
623 (void)EC->unionSets(SwapVector[DefIdx].VSEId,
624 SwapVector[EntryIdx].VSEId);
626 LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
627 SwapVector[DefIdx].VSEId,
628 SwapVector[EntryIdx].VSEId));
629 LLVM_DEBUG(dbgs() << " Def: ");
630 LLVM_DEBUG(DefMI->dump());
635 // Walk the swap vector entries looking for conditions that prevent their
636 // containing computations from being optimized. When such conditions are
637 // found, mark the representative of the computation's equivalence class
638 // as rejected.
639 void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
641 LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
643 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
644 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
646 // If representative is already rejected, don't waste further time.
647 if (SwapVector[Repr].WebRejected)
648 continue;
650 // Reject webs containing mentions of physical or partial registers, or
651 // containing operations that we don't know how to handle in a lane-
652 // permuted region.
653 if (SwapVector[EntryIdx].MentionsPhysVR ||
654 SwapVector[EntryIdx].MentionsPartialVR ||
655 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
657 SwapVector[Repr].WebRejected = 1;
659 LLVM_DEBUG(
660 dbgs() << format("Web %d rejected for physreg, partial reg, or not "
661 "swap[pable]\n",
662 Repr));
663 LLVM_DEBUG(dbgs() << " in " << EntryIdx << ": ");
664 LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump());
665 LLVM_DEBUG(dbgs() << "\n");
668 // Reject webs than contain swapping loads that feed something other
669 // than a swap instruction.
670 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
671 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
672 Register DefReg = MI->getOperand(0).getReg();
674 // We skip debug instructions in the analysis. (Note that debug
675 // location information is still maintained by this optimization
676 // because it remains on the LXVD2X and STXVD2X instructions after
677 // the XXPERMDIs are removed.)
678 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
679 int UseIdx = SwapMap[&UseMI];
681 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
682 SwapVector[UseIdx].IsStore) {
684 SwapVector[Repr].WebRejected = 1;
686 LLVM_DEBUG(dbgs() << format(
687 "Web %d rejected for load not feeding swap\n", Repr));
688 LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": ");
689 LLVM_DEBUG(MI->dump());
690 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
691 LLVM_DEBUG(UseMI.dump());
692 LLVM_DEBUG(dbgs() << "\n");
695 // It is possible that the load feeds a swap and that swap feeds a
696 // store. In such a case, the code is actually trying to store a swapped
697 // vector. We must reject such webs.
698 if (SwapVector[UseIdx].IsSwap && !SwapVector[UseIdx].IsLoad &&
699 !SwapVector[UseIdx].IsStore) {
700 Register SwapDefReg = UseMI.getOperand(0).getReg();
701 for (MachineInstr &UseOfUseMI :
702 MRI->use_nodbg_instructions(SwapDefReg)) {
703 int UseOfUseIdx = SwapMap[&UseOfUseMI];
704 if (SwapVector[UseOfUseIdx].IsStore) {
705 SwapVector[Repr].WebRejected = 1;
706 LLVM_DEBUG(
707 dbgs() << format(
708 "Web %d rejected for load/swap feeding a store\n", Repr));
709 LLVM_DEBUG(dbgs() << " def " << EntryIdx << ": ");
710 LLVM_DEBUG(MI->dump());
711 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
712 LLVM_DEBUG(UseMI.dump());
713 LLVM_DEBUG(dbgs() << "\n");
719 // Reject webs that contain swapping stores that are fed by something
720 // other than a swap instruction.
721 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
722 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
723 Register UseReg = MI->getOperand(0).getReg();
724 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
725 Register DefReg = DefMI->getOperand(0).getReg();
726 int DefIdx = SwapMap[DefMI];
728 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
729 SwapVector[DefIdx].IsStore) {
731 SwapVector[Repr].WebRejected = 1;
733 LLVM_DEBUG(dbgs() << format(
734 "Web %d rejected for store not fed by swap\n", Repr));
735 LLVM_DEBUG(dbgs() << " def " << DefIdx << ": ");
736 LLVM_DEBUG(DefMI->dump());
737 LLVM_DEBUG(dbgs() << " use " << EntryIdx << ": ");
738 LLVM_DEBUG(MI->dump());
739 LLVM_DEBUG(dbgs() << "\n");
742 // Ensure all uses of the register defined by DefMI feed store
743 // instructions
744 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
745 int UseIdx = SwapMap[&UseMI];
747 if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
748 SwapVector[Repr].WebRejected = 1;
750 LLVM_DEBUG(
751 dbgs() << format(
752 "Web %d rejected for swap not feeding only stores\n", Repr));
753 LLVM_DEBUG(dbgs() << " def "
754 << " : ");
755 LLVM_DEBUG(DefMI->dump());
756 LLVM_DEBUG(dbgs() << " use " << UseIdx << ": ");
757 LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump());
758 LLVM_DEBUG(dbgs() << "\n");
764 LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
765 LLVM_DEBUG(dumpSwapVector());
768 // Walk the swap vector entries looking for swaps fed by permuting loads
769 // and swaps that feed permuting stores. If the containing computation
770 // has not been marked rejected, mark each such swap for removal.
771 // (Removal is delayed in case optimization has disturbed the pattern,
772 // such that multiple loads feed the same swap, etc.)
773 void PPCVSXSwapRemoval::markSwapsForRemoval() {
775 LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
777 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
779 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
780 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
782 if (!SwapVector[Repr].WebRejected) {
783 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
784 Register DefReg = MI->getOperand(0).getReg();
786 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
787 int UseIdx = SwapMap[&UseMI];
788 SwapVector[UseIdx].WillRemove = 1;
790 LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
791 LLVM_DEBUG(UseMI.dump());
795 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
796 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
798 if (!SwapVector[Repr].WebRejected) {
799 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
800 Register UseReg = MI->getOperand(0).getReg();
801 MachineInstr *DefMI = MRI->getVRegDef(UseReg);
802 int DefIdx = SwapMap[DefMI];
803 SwapVector[DefIdx].WillRemove = 1;
805 LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
806 LLVM_DEBUG(DefMI->dump());
809 } else if (SwapVector[EntryIdx].IsSwappable &&
810 SwapVector[EntryIdx].SpecialHandling != 0) {
811 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
813 if (!SwapVector[Repr].WebRejected)
814 handleSpecialSwappables(EntryIdx);
819 // Create an xxswapd instruction and insert it prior to the given point.
820 // MI is used to determine basic block and debug loc information.
821 // FIXME: When inserting a swap, we should check whether SrcReg is
822 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so,
823 // then instead we should generate a copy from Reg to DstReg.
824 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
825 MachineBasicBlock::iterator InsertPoint,
826 unsigned DstReg, unsigned SrcReg) {
827 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
828 TII->get(PPC::XXPERMDI), DstReg)
829 .addReg(SrcReg)
830 .addReg(SrcReg)
831 .addImm(2);
834 // The identified swap entry requires special handling to allow its
835 // containing computation to be optimized. Perform that handling
836 // here.
837 // FIXME: Additional opportunities will be phased in with subsequent
838 // patches.
839 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
840 switch (SwapVector[EntryIdx].SpecialHandling) {
842 default:
843 llvm_unreachable("Unexpected special handling type");
845 // For splats based on an index into a vector, add N/2 modulo N
846 // to the index, where N is the number of vector elements.
847 case SHValues::SH_SPLAT: {
848 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
849 unsigned NElts;
851 LLVM_DEBUG(dbgs() << "Changing splat: ");
852 LLVM_DEBUG(MI->dump());
854 switch (MI->getOpcode()) {
855 default:
856 llvm_unreachable("Unexpected splat opcode");
857 case PPC::VSPLTB: NElts = 16; break;
858 case PPC::VSPLTH: NElts = 8; break;
859 case PPC::VSPLTW:
860 case PPC::XXSPLTW: NElts = 4; break;
863 unsigned EltNo;
864 if (MI->getOpcode() == PPC::XXSPLTW)
865 EltNo = MI->getOperand(2).getImm();
866 else
867 EltNo = MI->getOperand(1).getImm();
869 EltNo = (EltNo + NElts / 2) % NElts;
870 if (MI->getOpcode() == PPC::XXSPLTW)
871 MI->getOperand(2).setImm(EltNo);
872 else
873 MI->getOperand(1).setImm(EltNo);
875 LLVM_DEBUG(dbgs() << " Into: ");
876 LLVM_DEBUG(MI->dump());
877 break;
880 // For an XXPERMDI that isn't handled otherwise, we need to
881 // reverse the order of the operands. If the selector operand
882 // has a value of 0 or 3, we need to change it to 3 or 0,
883 // respectively. Otherwise we should leave it alone. (This
884 // is equivalent to reversing the two bits of the selector
885 // operand and complementing the result.)
886 case SHValues::SH_XXPERMDI: {
887 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
889 LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
890 LLVM_DEBUG(MI->dump());
892 unsigned Selector = MI->getOperand(3).getImm();
893 if (Selector == 0 || Selector == 3)
894 Selector = 3 - Selector;
895 MI->getOperand(3).setImm(Selector);
897 Register Reg1 = MI->getOperand(1).getReg();
898 Register Reg2 = MI->getOperand(2).getReg();
899 MI->getOperand(1).setReg(Reg2);
900 MI->getOperand(2).setReg(Reg1);
902 // We also need to swap kill flag associated with the register.
903 bool IsKill1 = MI->getOperand(1).isKill();
904 bool IsKill2 = MI->getOperand(2).isKill();
905 MI->getOperand(1).setIsKill(IsKill2);
906 MI->getOperand(2).setIsKill(IsKill1);
908 LLVM_DEBUG(dbgs() << " Into: ");
909 LLVM_DEBUG(MI->dump());
910 break;
913 // For a copy from a scalar floating-point register to a vector
914 // register, removing swaps will leave the copied value in the
915 // wrong lane. Insert a swap following the copy to fix this.
916 case SHValues::SH_COPYWIDEN: {
917 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
919 LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
920 LLVM_DEBUG(MI->dump());
922 Register DstReg = MI->getOperand(0).getReg();
923 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
924 Register NewVReg = MRI->createVirtualRegister(DstRC);
926 MI->getOperand(0).setReg(NewVReg);
927 LLVM_DEBUG(dbgs() << " Into: ");
928 LLVM_DEBUG(MI->dump());
930 auto InsertPoint = ++MachineBasicBlock::iterator(MI);
932 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
933 // is copying to a VRRC, we need to be careful to avoid a register
934 // assignment problem. In this case we must copy from VRRC to VSRC
935 // prior to the swap, and from VSRC to VRRC following the swap.
936 // Coalescing will usually remove all this mess.
937 if (DstRC == &PPC::VRRCRegClass) {
938 Register VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
939 Register VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
941 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
942 TII->get(PPC::COPY), VSRCTmp1)
943 .addReg(NewVReg);
944 LLVM_DEBUG(std::prev(InsertPoint)->dump());
946 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
947 LLVM_DEBUG(std::prev(InsertPoint)->dump());
949 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
950 TII->get(PPC::COPY), DstReg)
951 .addReg(VSRCTmp2);
952 LLVM_DEBUG(std::prev(InsertPoint)->dump());
954 } else {
955 insertSwap(MI, InsertPoint, DstReg, NewVReg);
956 LLVM_DEBUG(std::prev(InsertPoint)->dump());
958 break;
963 // Walk the swap vector and replace each entry marked for removal with
964 // a copy operation.
965 bool PPCVSXSwapRemoval::removeSwaps() {
967 LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
969 bool Changed = false;
971 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
972 if (SwapVector[EntryIdx].WillRemove) {
973 Changed = true;
974 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
975 MachineBasicBlock *MBB = MI->getParent();
976 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
977 MI->getOperand(0).getReg())
978 .add(MI->getOperand(1));
980 LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
981 SwapVector[EntryIdx].VSEId));
982 LLVM_DEBUG(MI->dump());
984 MI->eraseFromParent();
988 return Changed;
991 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
992 // For debug purposes, dump the contents of the swap vector.
993 LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
995 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
997 MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
998 int ID = SwapVector[EntryIdx].VSEId;
1000 dbgs() << format("%6d", ID);
1001 dbgs() << format("%6d", EC->getLeaderValue(ID));
1002 dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
1003 dbgs() << format(" %14s ", TII->getName(MI->getOpcode()).str().c_str());
1005 if (SwapVector[EntryIdx].IsLoad)
1006 dbgs() << "load ";
1007 if (SwapVector[EntryIdx].IsStore)
1008 dbgs() << "store ";
1009 if (SwapVector[EntryIdx].IsSwap)
1010 dbgs() << "swap ";
1011 if (SwapVector[EntryIdx].MentionsPhysVR)
1012 dbgs() << "physreg ";
1013 if (SwapVector[EntryIdx].MentionsPartialVR)
1014 dbgs() << "partialreg ";
1016 if (SwapVector[EntryIdx].IsSwappable) {
1017 dbgs() << "swappable ";
1018 switch(SwapVector[EntryIdx].SpecialHandling) {
1019 default:
1020 dbgs() << "special:**unknown**";
1021 break;
1022 case SH_NONE:
1023 break;
1024 case SH_EXTRACT:
1025 dbgs() << "special:extract ";
1026 break;
1027 case SH_INSERT:
1028 dbgs() << "special:insert ";
1029 break;
1030 case SH_NOSWAP_LD:
1031 dbgs() << "special:load ";
1032 break;
1033 case SH_NOSWAP_ST:
1034 dbgs() << "special:store ";
1035 break;
1036 case SH_SPLAT:
1037 dbgs() << "special:splat ";
1038 break;
1039 case SH_XXPERMDI:
1040 dbgs() << "special:xxpermdi ";
1041 break;
1042 case SH_COPYWIDEN:
1043 dbgs() << "special:copywiden ";
1044 break;
1048 if (SwapVector[EntryIdx].WebRejected)
1049 dbgs() << "rejected ";
1050 if (SwapVector[EntryIdx].WillRemove)
1051 dbgs() << "remove ";
1053 dbgs() << "\n";
1055 // For no-asserts builds.
1056 (void)MI;
1057 (void)ID;
1060 dbgs() << "\n";
1062 #endif
1064 } // end default namespace
1066 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1067 "PowerPC VSX Swap Removal", false, false)
1068 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1069 "PowerPC VSX Swap Removal", false, false)
1071 char PPCVSXSwapRemoval::ID = 0;
1072 FunctionPass*
1073 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }