1 Target Independent Opportunities:
3 //===---------------------------------------------------------------------===//
5 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
6 precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
7 safe in general, even on darwin. See the libm implementation of hypot for
8 examples (which special case when x/y are exactly zero to get signed zeros etc
11 //===---------------------------------------------------------------------===//
13 On targets with expensive 64-bit multiply, we could LSR this:
20 for (i = ...; ++i, tmp+=tmp)
23 This would be a win on ppc32, but not x86 or ppc64.
25 //===---------------------------------------------------------------------===//
27 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
29 //===---------------------------------------------------------------------===//
31 Reassociate should turn things like:
33 int factorial(int X) {
34 return X*X*X*X*X*X*X*X;
37 into llvm.powi calls, allowing the code generator to produce balanced
40 First, the intrinsic needs to be extended to support integers, and second the
41 code generator needs to be enhanced to lower these to multiplication trees.
43 //===---------------------------------------------------------------------===//
45 Interesting? testcase for add/shift/mul reassoc:
47 int bar(int x, int y) {
48 return x*x*x+y+x*x*x*x*x*y*y*y*y;
50 int foo(int z, int n) {
51 return bar(z, n) + bar(2*z, 2*n);
54 This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue
55 is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X,
56 which is the same number of multiplies and is canonical, because the 2*X has
57 multiple uses. Here's a simple example:
59 define i32 @test15(i32 %X1) {
60 %B = mul i32 %X1, 47 ; X1*47
66 //===---------------------------------------------------------------------===//
68 Reassociate should handle the example in GCC PR16157:
70 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4;
71 void f () { /* this can be optimized to four additions... */
72 b4 = a4 + a3 + a2 + a1 + a0;
73 b3 = a3 + a2 + a1 + a0;
78 This requires reassociating to forms of expressions that are already available,
79 something that reassoc doesn't think about yet.
82 //===---------------------------------------------------------------------===//
84 These two functions should generate the same code on big-endian systems:
86 int g(int *j,int *l) { return memcmp(j,l,4); }
87 int h(int *j, int *l) { return *j - *l; }
89 this could be done in SelectionDAGISel.cpp, along with other special cases,
92 //===---------------------------------------------------------------------===//
94 It would be nice to revert this patch:
95 http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
97 And teach the dag combiner enough to simplify the code expanded before
98 legalize. It seems plausible that this knowledge would let it simplify other
101 //===---------------------------------------------------------------------===//
103 For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
104 to the type size. It works but can be overly conservative as the alignment of
105 specific vector types are target dependent.
107 //===---------------------------------------------------------------------===//
109 We should produce an unaligned load from code like this:
111 v4sf example(float *P) {
112 return (v4sf){P[0], P[1], P[2], P[3] };
115 //===---------------------------------------------------------------------===//
117 Add support for conditional increments, and other related patterns. Instead
122 je LBB16_2 #cond_next
133 //===---------------------------------------------------------------------===//
135 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
137 Expand these to calls of sin/cos and stores:
138 double sincos(double x, double *sin, double *cos);
139 float sincosf(float x, float *sin, float *cos);
140 long double sincosl(long double x, long double *sin, long double *cos);
142 Doing so could allow SROA of the destination pointers. See also:
143 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
145 This is now easily doable with MRVs. We could even make an intrinsic for this
146 if anyone cared enough about sincos.
148 //===---------------------------------------------------------------------===//
150 quantum_sigma_x in 462.libquantum contains the following loop:
152 for(i=0; i<reg->size; i++)
154 /* Flip the target bit of each basis state */
155 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
158 Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
159 so cool to turn it into something like:
161 long long Res = ((MAX_UNSIGNED) 1 << target);
163 for(i=0; i<reg->size; i++)
164 reg->node[i].state ^= Res & 0xFFFFFFFFULL;
166 for(i=0; i<reg->size; i++)
167 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
170 ... which would only do one 32-bit XOR per loop iteration instead of two.
172 It would also be nice to recognize the reg->size doesn't alias reg->node[i],
173 but this requires TBAA.
175 //===---------------------------------------------------------------------===//
177 This isn't recognized as bswap by instcombine (yes, it really is bswap):
179 unsigned long reverse(unsigned v) {
181 t = v ^ ((v << 16) | (v >> 16));
183 v = (v << 24) | (v >> 8);
187 //===---------------------------------------------------------------------===//
191 We don't delete this output free loop, because trip count analysis doesn't
192 realize that it is finite (if it were infinite, it would be undefined). Not
193 having this blocks Loop Idiom from matching strlen and friends.
201 //===---------------------------------------------------------------------===//
205 These idioms should be recognized as popcount (see PR1488):
207 unsigned countbits_slow(unsigned v) {
209 for (c = 0; v; v >>= 1)
214 unsigned int popcount(unsigned int input) {
215 unsigned int count = 0;
216 for (unsigned int i = 0; i < 4 * 8; i++)
217 count += (input >> i) & i;
221 This should be recognized as CLZ: https://github.com/llvm/llvm-project/issues/64167
223 unsigned clz_a(unsigned a) {
231 This sort of thing should be added to the loop idiom pass.
233 //===---------------------------------------------------------------------===//
235 These should turn into single 16-bit (unaligned?) loads on little/big endian
238 unsigned short read_16_le(const unsigned char *adr) {
239 return adr[0] | (adr[1] << 8);
241 unsigned short read_16_be(const unsigned char *adr) {
242 return (adr[0] << 8) | adr[1];
245 //===---------------------------------------------------------------------===//
247 -instcombine should handle this transform:
248 icmp pred (sdiv X / C1 ), C2
249 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
251 Currently InstCombine avoids this transform but will do it when the signs of
252 the operands and the sign of the divide match. See the FIXME in
253 InstructionCombining.cpp in the visitSetCondInst method after the switch case
254 for Instruction::UDiv (around line 4447) for more details.
256 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
259 //===---------------------------------------------------------------------===//
263 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
264 opportunities in its double_array_divs_variable function: it needs loop
265 interchange, memory promotion (which LICM already does), vectorization and
266 variable trip count loop unrolling (since it has a constant trip count). ICC
267 apparently produces this very nice code with -ffast-math:
269 ..B1.70: # Preds ..B1.70 ..B1.69
270 mulpd %xmm0, %xmm1 #108.2
271 mulpd %xmm0, %xmm1 #108.2
272 mulpd %xmm0, %xmm1 #108.2
273 mulpd %xmm0, %xmm1 #108.2
275 cmpl $131072, %edx #108.2
276 jb ..B1.70 # Prob 99% #108.2
278 It would be better to count down to zero, but this is a lot better than what we
281 //===---------------------------------------------------------------------===//
285 typedef unsigned U32;
286 typedef unsigned long long U64;
287 int test (U32 *inst, U64 *regs) {
290 int r1 = (temp >> 20) & 0xf;
291 int b2 = (temp >> 16) & 0xf;
292 effective_addr2 = temp & 0xfff;
293 if (b2) effective_addr2 += regs[b2];
294 b2 = (temp >> 12) & 0xf;
295 if (b2) effective_addr2 += regs[b2];
296 effective_addr2 &= regs[4];
297 if ((effective_addr2 & 3) == 0)
302 Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
303 we don't eliminate the computation of the top half of effective_addr2 because
304 we don't have whole-function selection dags. On x86, this means we use one
305 extra register for the function when effective_addr2 is declared as U64 than
306 when it is declared U32.
308 PHI Slicing could be extended to do this.
310 //===---------------------------------------------------------------------===//
312 Tail call elim should be more aggressive, checking to see if the call is
313 followed by an uncond branch to an exit block.
315 ; This testcase is due to tail-duplication not wanting to copy the return
316 ; instruction into the terminating blocks because there was other code
317 ; optimized out of the function after the taildup happened.
318 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
320 define i32 @t4(i32 %a) {
322 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
323 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
324 br i1 %tmp.2, label %then.0, label %else.0
326 then.0: ; preds = %entry
327 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
328 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
331 else.0: ; preds = %entry
332 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
333 br i1 %tmp.7, label %then.1, label %return
335 then.1: ; preds = %else.0
336 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
337 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
340 return: ; preds = %then.1, %else.0, %then.0
341 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
346 //===---------------------------------------------------------------------===//
348 Tail recursion elimination should handle:
353 return 2 * pow2m1 (n - 1) + 1;
356 Also, multiplies can be turned into SHL's, so they should be handled as if
357 they were associative. "return foo() << 1" can be tail recursion eliminated.
359 //===---------------------------------------------------------------------===//
361 Argument promotion should promote arguments for recursive functions, like
364 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
366 define internal i32 @foo(i32* %x) {
368 %tmp = load i32* %x ; <i32> [#uses=0]
369 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
373 define i32 @bar(i32* %x) {
375 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
379 //===---------------------------------------------------------------------===//
381 We should investigate an instruction sinking pass. Consider this silly
397 je LBB1_2 # cond_true
405 The PIC base computation (call+popl) is only used on one path through the
406 code, but is currently always computed in the entry block. It would be
407 better to sink the picbase computation down into the block for the
408 assertion, as it is the only one that uses it. This happens for a lot of
409 code with early outs.
411 Another example is loads of arguments, which are usually emitted into the
412 entry block on targets like x86. If not used in all paths through a
413 function, they should be sunk into the ones that do.
415 In this case, whole-function-isel would also handle this.
417 //===---------------------------------------------------------------------===//
419 Investigate lowering of sparse switch statements into perfect hash tables:
420 http://burtleburtle.net/bob/hash/perfect.html
422 //===---------------------------------------------------------------------===//
424 We should turn things like "load+fabs+store" and "load+fneg+store" into the
425 corresponding integer operations. On a yonah, this loop:
430 for (b = 0; b < 10000000; b++)
431 for (i = 0; i < 256; i++)
435 is twice as slow as this loop:
440 for (b = 0; b < 10000000; b++)
441 for (i = 0; i < 256; i++)
442 a[i] ^= (1ULL << 63);
445 and I suspect other processors are similar. On X86 in particular this is a
446 big win because doing this with integers allows the use of read/modify/write
449 //===---------------------------------------------------------------------===//
451 DAG Combiner should try to combine small loads into larger loads when
452 profitable. For example, we compile this C++ example:
454 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
455 extern THotKey m_HotKey;
456 THotKey GetHotKey () { return m_HotKey; }
458 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
460 __Z9GetHotKeyv: ## @_Z9GetHotKeyv
461 movq _m_HotKey@GOTPCREL(%rip), %rax
474 //===---------------------------------------------------------------------===//
476 We should add an FRINT node to the DAG to model targets that have legal
477 implementations of ceil/floor/rint.
479 //===---------------------------------------------------------------------===//
484 long long input[8] = {1,0,1,0,1,0,1,0};
488 Clang compiles this into:
490 call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
491 %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
492 store i64 1, i64* %0, align 16
493 %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
494 store i64 1, i64* %1, align 16
495 %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
496 store i64 1, i64* %2, align 16
497 %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
498 store i64 1, i64* %3, align 16
500 Which gets codegen'd into:
503 movaps %xmm0, -16(%rbp)
504 movaps %xmm0, -32(%rbp)
505 movaps %xmm0, -48(%rbp)
506 movaps %xmm0, -64(%rbp)
512 It would be better to have 4 movq's of 0 instead of the movaps's.
514 //===---------------------------------------------------------------------===//
516 http://llvm.org/PR717:
518 The following code should compile into "ret int undef". Instead, LLVM
519 produces "ret int 0":
528 //===---------------------------------------------------------------------===//
530 The loop unroller should partially unroll loops (instead of peeling them)
531 when code growth isn't too bad and when an unroll count allows simplification
532 of some code within the loop. One trivial example is:
538 for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
547 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
548 reduction in code size. The resultant code would then also be suitable for
549 exit value computation.
551 //===---------------------------------------------------------------------===//
553 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
554 etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
555 matching code in dag combine doesn't look through truncates aggressively
556 enough. Here are some testcases reduces from GCC PR17886:
558 unsigned long long f5(unsigned long long x, unsigned long long y) {
559 return (x << 8) | ((y >> 48) & 0xffull);
561 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
564 return (x << 8) | ((y >> 48) & 0xffull);
566 return (x << 16) | ((y >> 40) & 0xffffull);
568 return (x << 24) | ((y >> 32) & 0xffffffull);
570 return (x << 32) | ((y >> 24) & 0xffffffffull);
572 return (x << 40) | ((y >> 16) & 0xffffffffffull);
576 //===---------------------------------------------------------------------===//
578 This (and similar related idioms):
580 unsigned int foo(unsigned char i) {
581 return i | (i<<8) | (i<<16) | (i<<24);
586 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
588 %conv = zext i8 %i to i32
589 %shl = shl i32 %conv, 8
590 %shl5 = shl i32 %conv, 16
591 %shl9 = shl i32 %conv, 24
592 %or = or i32 %shl9, %conv
593 %or6 = or i32 %or, %shl5
594 %or10 = or i32 %or6, %shl
598 it would be better as:
600 unsigned int bar(unsigned char i) {
601 unsigned int j=i | (i << 8);
607 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
609 %conv = zext i8 %i to i32
610 %shl = shl i32 %conv, 8
611 %or = or i32 %shl, %conv
612 %shl5 = shl i32 %or, 16
613 %or6 = or i32 %shl5, %or
617 or even i*0x01010101, depending on the speed of the multiplier. The best way to
618 handle this is to canonicalize it to a multiply in IR and have codegen handle
619 lowering multiplies to shifts on cpus where shifts are faster.
621 //===---------------------------------------------------------------------===//
623 We do a number of simplifications in simplify libcalls to strength reduce
624 standard library functions, but we don't currently merge them together. For
625 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
626 be done safely if "b" isn't modified between the strlen and memcpy of course.
628 //===---------------------------------------------------------------------===//
630 We compile this program: (from GCC PR11680)
631 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
633 Into code that runs the same speed in fast/slow modes, but both modes run 2x
634 slower than when compile with GCC (either 4.0 or 4.2):
636 $ llvm-g++ perf.cpp -O3 -fno-exceptions
638 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
640 $ g++ perf.cpp -O3 -fno-exceptions
642 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
644 It looks like we are making the same inlining decisions, so this may be raw
645 codegen badness or something else (haven't investigated).
647 //===---------------------------------------------------------------------===//
649 Divisibility by constant can be simplified (according to GCC PR12849) from
650 being a mulhi to being a mul lo (cheaper). Testcase:
652 void bar(unsigned n) {
657 This is equivalent to the following, where 2863311531 is the multiplicative
658 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
659 void bar(unsigned n) {
660 if (n * 2863311531U < 1431655766U)
664 The same transformation can work with an even modulo with the addition of a
665 rotate: rotate the result of the multiply to the right by the number of bits
666 which need to be zero for the condition to be true, and shrink the compare RHS
667 by the same amount. Unless the target supports rotates, though, that
668 transformation probably isn't worthwhile.
670 The transformation can also easily be made to work with non-zero equality
671 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
673 //===---------------------------------------------------------------------===//
675 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
676 bunch of other stuff from this example (see PR1604):
686 std::scanf("%d", &t.val);
687 std::printf("%d\n", t.val);
690 //===---------------------------------------------------------------------===//
692 These functions perform the same computation, but produce different assembly.
694 define i8 @select(i8 %x) readnone nounwind {
695 %A = icmp ult i8 %x, 250
696 %B = select i1 %A, i8 0, i8 1
700 define i8 @addshr(i8 %x) readnone nounwind {
701 %A = zext i8 %x to i9
702 %B = add i9 %A, 6 ;; 256 - 250 == 6
704 %D = trunc i9 %C to i8
708 //===---------------------------------------------------------------------===//
712 f (unsigned long a, unsigned long b, unsigned long c)
714 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
717 f (unsigned long a, unsigned long b, unsigned long c)
719 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
721 Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
722 "clang -emit-llvm-bc | opt -O3".
724 //===---------------------------------------------------------------------===//
727 #define PMD_MASK (~((1UL << 23) - 1))
728 void clear_pmd_range(unsigned long start, unsigned long end)
730 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
733 The expression should optimize to something like
734 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
735 -emit-llvm-bc | opt -O3".
737 //===---------------------------------------------------------------------===//
739 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
741 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
742 These should combine to the same thing. Currently, the first function
743 produces better code on X86.
745 //===---------------------------------------------------------------------===//
748 #define abs(x) x>0?x:-x
751 return (abs(x)) >= 0;
753 This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
754 optimized with "clang -emit-llvm-bc | opt -O3".
756 //===---------------------------------------------------------------------===//
760 rotate_cst (unsigned int a)
762 a = (a << 10) | (a >> 22);
767 minus_cst (unsigned int a)
776 mask_gt (unsigned int a)
778 /* This is equivalent to a > 15. */
783 rshift_gt (unsigned int a)
785 /* This is equivalent to a > 23. */
790 All should simplify to a single comparison. All of these are
791 currently not optimized with "clang -emit-llvm-bc | opt
794 //===---------------------------------------------------------------------===//
797 int c(int* x) {return (char*)x+2 == (char*)x;}
798 Should combine to 0. Currently not optimized with "clang
799 -emit-llvm-bc | opt -O3" (although llc can optimize it).
801 //===---------------------------------------------------------------------===//
803 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
804 Should be combined to "((b >> 1) | b) & 1". Currently not optimized
805 with "clang -emit-llvm-bc | opt -O3".
807 //===---------------------------------------------------------------------===//
809 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
810 Should combine to "x | (y & 3)". Currently not optimized with "clang
811 -emit-llvm-bc | opt -O3".
813 //===---------------------------------------------------------------------===//
815 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
816 Should fold to "(~a & c) | (a & b)". Currently not optimized with
817 "clang -emit-llvm-bc | opt -O3".
819 //===---------------------------------------------------------------------===//
821 int a(int a,int b) {return (~(a|b))|a;}
822 Should fold to "a|~b". Currently not optimized with "clang
823 -emit-llvm-bc | opt -O3".
825 //===---------------------------------------------------------------------===//
827 int a(int a, int b) {return (a&&b) || (a&&!b);}
828 Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
831 //===---------------------------------------------------------------------===//
833 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
834 Should fold to "a ? b : c", or at least something sane. Currently not
835 optimized with "clang -emit-llvm-bc | opt -O3".
837 //===---------------------------------------------------------------------===//
839 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
840 Should fold to a && (b || c). Currently not optimized with "clang
841 -emit-llvm-bc | opt -O3".
843 //===---------------------------------------------------------------------===//
845 int a(int x) {return x | ((x & 8) ^ 8);}
846 Should combine to x | 8. Currently not optimized with "clang
847 -emit-llvm-bc | opt -O3".
849 //===---------------------------------------------------------------------===//
851 int a(int x) {return x ^ ((x & 8) ^ 8);}
852 Should also combine to x | 8. Currently not optimized with "clang
853 -emit-llvm-bc | opt -O3".
855 //===---------------------------------------------------------------------===//
857 int a(int x) {return ((x | -9) ^ 8) & x;}
858 Should combine to x & -9. Currently not optimized with "clang
859 -emit-llvm-bc | opt -O3".
861 //===---------------------------------------------------------------------===//
863 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
864 Should combine to "a * 0x88888888 >> 31". Currently not optimized
865 with "clang -emit-llvm-bc | opt -O3".
867 //===---------------------------------------------------------------------===//
869 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
870 There's an unnecessary zext in the generated code with "clang
871 -emit-llvm-bc | opt -O3".
873 //===---------------------------------------------------------------------===//
875 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
876 Should combine to "20 * (((unsigned)x) & -2)". Currently not
877 optimized with "clang -emit-llvm-bc | opt -O3".
879 //===---------------------------------------------------------------------===//
881 int g(int x) { return (x - 10) < 0; }
882 Should combine to "x <= 9" (the sub has nsw). Currently not
883 optimized with "clang -emit-llvm-bc | opt -O3".
885 //===---------------------------------------------------------------------===//
887 int g(int x) { return (x + 10) < 0; }
888 Should combine to "x < -10" (the add has nsw). Currently not
889 optimized with "clang -emit-llvm-bc | opt -O3".
891 //===---------------------------------------------------------------------===//
893 int f(int i, int j) { return i < j + 1; }
894 int g(int i, int j) { return j > i - 1; }
895 Should combine to "i <= j" (the add/sub has nsw). Currently not
896 optimized with "clang -emit-llvm-bc | opt -O3".
898 //===---------------------------------------------------------------------===//
900 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
901 The & 15 part should be optimized away, it doesn't change the result. Currently
902 not optimized with "clang -emit-llvm-bc | opt -O3".
904 //===---------------------------------------------------------------------===//
906 This was noticed in the entryblock for grokdeclarator in 403.gcc:
908 %tmp = icmp eq i32 %decl_context, 4
909 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
910 %tmp1 = icmp eq i32 %decl_context_addr.0, 1
911 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
913 tmp1 should be simplified to something like:
914 (!tmp || decl_context == 1)
916 This allows recursive simplifications, tmp1 is used all over the place in
917 the function, e.g. by:
919 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
920 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
921 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
925 //===---------------------------------------------------------------------===//
929 Store sinking: This code:
931 void f (int n, int *cond, int *res) {
934 for (i = 0; i < n; i++)
936 *res ^= 234; /* (*) */
939 On this function GVN hoists the fully redundant value of *res, but nothing
940 moves the store out. This gives us this code:
942 bb: ; preds = %bb2, %entry
943 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
944 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
945 %1 = load i32* %cond, align 4
946 %2 = icmp eq i32 %1, 0
947 br i1 %2, label %bb2, label %bb1
950 %3 = xor i32 %.rle, 234
951 store i32 %3, i32* %res, align 4
954 bb2: ; preds = %bb, %bb1
955 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
956 %indvar.next = add i32 %i.05, 1
957 %exitcond = icmp eq i32 %indvar.next, %n
958 br i1 %exitcond, label %return, label %bb
960 DSE should sink partially dead stores to get the store out of the loop.
962 Here's another partial dead case:
963 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
965 //===---------------------------------------------------------------------===//
967 Scalar PRE hoists the mul in the common block up to the else:
969 int test (int a, int b, int c, int g) {
979 It would be better to do the mul once to reduce codesize above the if.
983 //===---------------------------------------------------------------------===//
984 This simple function from 179.art:
987 struct { double y; int reset; } *Y;
992 for (i=0;i<numf2s;i++)
993 if (Y[i].y > Y[winner].y)
997 Compiles into (with clang TBAA):
999 for.body: ; preds = %for.inc, %bb.nph
1000 %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
1001 %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
1002 %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
1003 %tmp5 = load double* %tmp4, align 8, !tbaa !4
1004 %idxprom7 = sext i32 %i.01718 to i64
1005 %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
1006 %tmp11 = load double* %tmp10, align 8, !tbaa !4
1007 %cmp12 = fcmp ogt double %tmp5, %tmp11
1008 br i1 %cmp12, label %if.then, label %for.inc
1010 if.then: ; preds = %for.body
1011 %i.017 = trunc i64 %indvar to i32
1014 for.inc: ; preds = %for.body, %if.then
1015 %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
1016 %indvar.next = add i64 %indvar, 1
1017 %exitcond = icmp eq i64 %indvar.next, %tmp22
1018 br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
1021 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
1022 sunk the store to winner out.
1024 However, this is awful on several levels: the conditional truncate in the loop
1025 (-indvars at fault? why can't we completely promote the IV to i64?).
1027 Beyond that, we have a partially redundant load in the loop: if "winner" (aka
1028 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
1029 Similarly, the addressing that feeds it (including the sext) is redundant. In
1030 the end we get this generated assembly:
1032 LBB0_2: ## %for.body
1033 ## =>This Inner Loop Header: Depth=1
1037 ucomisd (%rcx,%r8), %xmm0
1046 All things considered this isn't too bad, but we shouldn't need the movslq or
1047 the shlq instruction, or the load folded into ucomisd every time through the
1050 On an x86-specific topic, if the loop can't be restructure, the movl should be a
1053 //===---------------------------------------------------------------------===//
1057 GCC PR37810 is an interesting case where we should sink load/store reload
1058 into the if block and outside the loop, so we don't reload/store it on the
1079 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1080 we don't sink the store. We need partially dead store sinking.
1082 //===---------------------------------------------------------------------===//
1084 [LOAD PRE CRIT EDGE SPLITTING]
1086 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1087 leading to excess stack traffic. This could be handled by GVN with some crazy
1088 symbolic phi translation. The code we get looks like (g is on the stack):
1092 %9 = getelementptr %struct.f* %g, i32 0, i32 0
1093 store i32 %8, i32* %9, align bel %bb3
1095 bb3: ; preds = %bb1, %bb2, %bb
1096 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1097 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1098 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1099 %11 = load i32* %10, align 4
1101 %11 is partially redundant, an in BB2 it should have the value %8.
1103 GCC PR33344 and PR35287 are similar cases.
1106 //===---------------------------------------------------------------------===//
1110 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1111 GCC testsuite, ones we don't get yet are (checked through loadpre25):
1113 [CRIT EDGE BREAKING]
1116 [PRE OF READONLY CALL]
1119 [TURN SELECT INTO BRANCH]
1120 loadpre14.c loadpre15.c
1122 actually a conditional increment: loadpre18.c loadpre19.c
1124 //===---------------------------------------------------------------------===//
1126 [LOAD PRE / STORE SINKING / SPEC HACK]
1128 This is a chunk of code from 456.hmmer:
1130 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1131 int *tpdm, int xmb, int *bp, int *ms) {
1133 for (k = 1; k <= M; k++) {
1134 mc[k] = mpp[k-1] + tpmm[k-1];
1135 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
1136 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
1137 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
1142 It is very profitable for this benchmark to turn the conditional stores to mc[k]
1143 into a conditional move (select instr in IR) and allow the final store to do the
1144 store. See GCC PR27313 for more details. Note that this is valid to xform even
1145 with the new C++ memory model, since mc[k] is previously loaded and later
1148 //===---------------------------------------------------------------------===//
1151 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1154 //===---------------------------------------------------------------------===//
1156 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1157 GCC testsuite. For example, we get the first example in predcom-1.c, but
1158 miss the second one:
1163 __attribute__ ((noinline))
1164 void count_averages(int n) {
1166 for (i = 1; i < n; i++)
1167 avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1170 which compiles into two loads instead of one in the loop.
1172 predcom-2.c is the same as predcom-1.c
1174 predcom-3.c is very similar but needs loads feeding each other instead of
1178 //===---------------------------------------------------------------------===//
1182 Type based alias analysis:
1183 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1185 We should do better analysis of posix_memalign. At the least it should
1186 no-capture its pointer argument, at best, we should know that the out-value
1187 result doesn't point to anything (like malloc). One example of this is in
1188 SingleSource/Benchmarks/Misc/dt.c
1190 //===---------------------------------------------------------------------===//
1192 Interesting missed case because of control flow flattening (should be 2 loads):
1193 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1194 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
1195 opt -mem2reg -gvn -instcombine | llvm-dis
1196 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1197 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1199 //===---------------------------------------------------------------------===//
1201 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1202 We could eliminate the branch condition here, loading from null is undefined:
1204 struct S { int w, x, y, z; };
1205 struct T { int r; struct S s; };
1206 void bar (struct S, int);
1207 void foo (int a, struct T b)
1215 //===---------------------------------------------------------------------===//
1217 simplifylibcalls should do several optimizations for strspn/strcspn:
1219 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1221 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1223 register size_t __result = 0;
1224 while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1225 __s[__result] != __reject2 && __s[__result] != __reject3)
1230 This should turn into a switch on the character. See PR3253 for some notes on
1233 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
1235 //===---------------------------------------------------------------------===//
1237 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
1239 char buf1[6], buf2[6], buf3[4], buf4[4];
1243 int ret = snprintf (buf1, sizeof buf1, "abcde");
1244 ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
1245 ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
1246 ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
1250 //===---------------------------------------------------------------------===//
1252 "gas" uses this idiom:
1253 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1255 else if (strchr ("<>", *intel_parser.op_string)
1257 Those should be turned into a switch. SimplifyLibCalls only gets the second
1260 //===---------------------------------------------------------------------===//
1262 252.eon contains this interesting code:
1264 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1265 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1266 %strlen = call i32 @strlen(i8* %3072) ; uses = 1
1267 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1268 call void @llvm.memcpy.i32(i8* %endptr,
1269 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1270 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly
1272 This is interesting for a couple reasons. First, in this:
1274 The memcpy+strlen strlen can be replaced with:
1276 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
1278 Because the destination was just copied into the specified memory buffer. This,
1279 in turn, can be constant folded to "4".
1281 In other code, it contains:
1283 %endptr6978 = bitcast i8* %endptr69 to i32*
1284 store i32 7107374, i32* %endptr6978, align 1
1285 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
1287 Which could also be constant folded. Whatever is producing this should probably
1288 be fixed to leave this as a memcpy from a string.
1290 Further, eon also has an interesting partially redundant strlen call:
1292 bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1293 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
1294 %683 = load i8** %682, align 4 ; <i8*> [#uses=4]
1295 %684 = load i8* %683, align 1 ; <i8> [#uses=1]
1296 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
1297 br i1 %685, label %bb10, label %bb9
1300 %686 = call i32 @strlen(i8* %683) nounwind readonly
1301 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
1302 br i1 %687, label %bb10, label %bb11
1304 bb10: ; preds = %bb9, %bb8
1305 %688 = call i32 @strlen(i8* %683) nounwind readonly
1307 This could be eliminated by doing the strlen once in bb8, saving code size and
1308 improving perf on the bb8->9->10 path.
1310 //===---------------------------------------------------------------------===//
1312 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1314 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
1317 bb62: ; preds = %bb55, %bb53
1318 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
1319 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1320 %172 = add i32 %171, -1 ; <i32> [#uses=1]
1321 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
1324 br i1 %or.cond, label %bb65, label %bb72
1326 bb65: ; preds = %bb62
1327 store i8 0, i8* %173, align 1
1330 bb72: ; preds = %bb65, %bb62
1331 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
1332 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1334 Note that on the bb62->bb72 path, that the %177 strlen call is partially
1335 redundant with the %171 call. At worst, we could shove the %177 strlen call
1336 up into the bb65 block moving it out of the bb62->bb72 path. However, note
1337 that bb65 stores to the string, zeroing out the last byte. This means that on
1338 that path the value of %177 is actually just %171-1. A sub is cheaper than a
1341 This pattern repeats several times, basically doing:
1346 where it is "obvious" that B = A-1.
1348 //===---------------------------------------------------------------------===//
1350 186.crafty has this interesting pattern with the "out.4543" variable:
1352 call void @llvm.memcpy.i32(
1353 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1354 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
1355 %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
1357 It is basically doing:
1359 memcpy(globalarray, "string");
1360 printf(..., globalarray);
1362 Anyway, by knowing that printf just reads the memory and forward substituting
1363 the string directly into the printf, this eliminates reads from globalarray.
1364 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1365 other similar functions) there are many stores to "out". Once all the printfs
1366 stop using "out", all that is left is the memcpy's into it. This should allow
1367 globalopt to remove the "stored only" global.
1369 //===---------------------------------------------------------------------===//
1373 define inreg i32 @foo(i8* inreg %p) nounwind {
1375 %tmp1 = ashr i8 %tmp0, 5
1376 %tmp2 = sext i8 %tmp1 to i32
1380 could be dagcombine'd to a sign-extending load with a shift.
1381 For example, on x86 this currently gets this:
1387 while it could get this:
1392 //===---------------------------------------------------------------------===//
1396 int test(int x) { return 1-x == x; } // --> return false
1397 int test2(int x) { return 2-x == x; } // --> return x == 1 ?
1399 Always foldable for odd constants, what is the rule for even?
1401 //===---------------------------------------------------------------------===//
1403 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1404 for next field in struct (which is at same address).
1406 For example: store of float into { {{}}, float } could be turned into a store to
1409 //===---------------------------------------------------------------------===//
1411 The arg promotion pass should make use of nocapture to make its alias analysis
1412 stuff much more precise.
1414 //===---------------------------------------------------------------------===//
1416 The following functions should be optimized to use a select instead of a
1417 branch (from gcc PR40072):
1419 char char_int(int m) {if(m>7) return 0; return m;}
1420 int int_char(char m) {if(m>7) return 0; return m;}
1422 //===---------------------------------------------------------------------===//
1424 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1428 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1430 %0 = and i32 %a, 128 ; <i32> [#uses=1]
1431 %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1]
1432 %2 = or i32 %b, 128 ; <i32> [#uses=1]
1433 %3 = and i32 %b, -129 ; <i32> [#uses=1]
1434 %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1]
1438 However, it's functionally equivalent to:
1440 b = (b & ~0x80) | (a & 0x80);
1442 Which generates this:
1444 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1446 %0 = and i32 %b, -129 ; <i32> [#uses=1]
1447 %1 = and i32 %a, 128 ; <i32> [#uses=1]
1448 %2 = or i32 %0, %1 ; <i32> [#uses=1]
1452 This can be generalized for other forms:
1454 b = (b & ~0x80) | (a & 0x40) << 1;
1456 //===---------------------------------------------------------------------===//
1458 These two functions produce different code. They shouldn't:
1462 uint8_t p1(uint8_t b, uint8_t a) {
1463 b = (b & ~0xc0) | (a & 0xc0);
1467 uint8_t p2(uint8_t b, uint8_t a) {
1468 b = (b & ~0x40) | (a & 0x40);
1469 b = (b & ~0x80) | (a & 0x80);
1473 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1475 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1476 %1 = and i8 %a, -64 ; <i8> [#uses=1]
1477 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1481 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1483 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1484 %.masked = and i8 %a, 64 ; <i8> [#uses=1]
1485 %1 = and i8 %a, -128 ; <i8> [#uses=1]
1486 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1487 %3 = or i8 %2, %.masked ; <i8> [#uses=1]
1491 //===---------------------------------------------------------------------===//
1493 IPSCCP does not currently propagate argument dependent constants through
1494 functions where it does not not all of the callers. This includes functions
1495 with normal external linkage as well as templates, C99 inline functions etc.
1496 Specifically, it does nothing to:
1498 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1500 %0 = add nsw i32 %y, %z
1503 %3 = add nsw i32 %1, %2
1507 define i32 @test2() nounwind {
1509 %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1513 It would be interesting extend IPSCCP to be able to handle simple cases like
1514 this, where all of the arguments to a call are constant. Because IPSCCP runs
1515 before inlining, trivial templates and inline functions are not yet inlined.
1516 The results for a function + set of constant arguments should be memoized in a
1519 //===---------------------------------------------------------------------===//
1521 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1522 libanalysis' constantfolding logic. This would allow IPSCCP to be able to
1523 handle simple things like this:
1525 static int foo(const char *X) { return strlen(X); }
1526 int bar() { return foo("abcd"); }
1528 //===---------------------------------------------------------------------===//
1530 function-attrs doesn't know much about memcpy/memset. This function should be
1531 marked readnone rather than readonly, since it only twiddles local memory, but
1532 function-attrs doesn't handle memset/memcpy/memmove aggressively:
1534 struct X { int *p; int *q; };
1541 p = __builtin_memcpy (&x, &y, sizeof (int *));
1545 This can be seen at:
1546 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -function-attrs -S
1549 //===---------------------------------------------------------------------===//
1551 Missed instcombine transformation:
1552 define i1 @a(i32 %x) nounwind readnone {
1554 %cmp = icmp eq i32 %x, 30
1555 %sub = add i32 %x, -30
1556 %cmp2 = icmp ugt i32 %sub, 9
1557 %or = or i1 %cmp, %cmp2
1560 This should be optimized to a single compare. Testcase derived from gcc.
1562 //===---------------------------------------------------------------------===//
1564 Missed instcombine or reassociate transformation:
1565 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1567 The sgt and slt should be combined into a single comparison. Testcase derived
1570 //===---------------------------------------------------------------------===//
1572 Missed instcombine transformation:
1574 %382 = srem i32 %tmp14.i, 64 ; [#uses=1]
1575 %383 = zext i32 %382 to i64 ; [#uses=1]
1576 %384 = shl i64 %381, %383 ; [#uses=1]
1577 %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1]
1579 The srem can be transformed to an and because if %tmp14.i is negative, the
1580 shift is undefined. Testcase derived from 403.gcc.
1582 //===---------------------------------------------------------------------===//
1584 This is a range comparison on a divided result (from 403.gcc):
1586 %1337 = sdiv i32 %1336, 8 ; [#uses=1]
1587 %.off.i208 = add i32 %1336, 7 ; [#uses=1]
1588 %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1]
1590 We already catch this (removing the sdiv) if there isn't an add, we should
1591 handle the 'add' as well. This is a common idiom with it's builtin_alloca code.
1594 int a(int x) { return (unsigned)(x/16+7) < 15; }
1596 Another similar case involves truncations on 64-bit targets:
1598 %361 = sdiv i64 %.046, 8 ; [#uses=1]
1599 %362 = trunc i64 %361 to i32 ; [#uses=2]
1601 %367 = icmp eq i32 %362, 0 ; [#uses=1]
1603 //===---------------------------------------------------------------------===//
1605 Missed instcombine/dagcombine transformation:
1606 define void @lshift_lt(i8 zeroext %a) nounwind {
1608 %conv = zext i8 %a to i32
1609 %shl = shl i32 %conv, 3
1610 %cmp = icmp ult i32 %shl, 33
1611 br i1 %cmp, label %if.then, label %if.end
1614 tail call void @bar() nounwind
1620 declare void @bar() nounwind
1622 The shift should be eliminated. Testcase derived from gcc.
1624 //===---------------------------------------------------------------------===//
1626 These compile into different code, one gets recognized as a switch and the
1627 other doesn't due to phase ordering issues (PR6212):
1629 int test1(int mainType, int subType) {
1632 else if (mainType == 9)
1634 else if (mainType == 11)
1639 int test2(int mainType, int subType) {
1649 //===---------------------------------------------------------------------===//
1651 The following test case (from PR6576):
1653 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1655 %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1]
1656 br i1 %cond1, label %exit, label %bb.nph
1657 bb.nph: ; preds = %entry
1658 %tmp = mul i32 %b, %a ; <i32> [#uses=1]
1660 exit: ; preds = %entry
1664 could be reduced to:
1666 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1668 %tmp = mul i32 %b, %a
1672 //===---------------------------------------------------------------------===//
1674 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1677 Another interesting case is that something related could be used for variables
1678 that go const after their ctor has finished. In these cases, globalopt (which
1679 can statically run the constructor) could mark the global const (so it gets put
1680 in the readonly section). A testcase would be:
1683 using namespace std;
1684 const complex<char> should_be_in_rodata (42,-42);
1685 complex<char> should_be_in_data (42,-42);
1686 complex<char> should_be_in_bss;
1688 Where we currently evaluate the ctors but the globals don't become const because
1689 the optimizer doesn't know they "become const" after the ctor is done. See
1690 GCC PR4131 for more examples.
1692 //===---------------------------------------------------------------------===//
1697 return x > 1 ? x : 1;
1700 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1701 and cheaper on most targets.
1703 LLVM prefers comparisons with zero over non-zero in general, but in this
1704 case it choses instead to keep the max operation obvious.
1706 //===---------------------------------------------------------------------===//
1708 define void @a(i32 %x) nounwind {
1710 switch i32 %x, label %if.end [
1711 i32 0, label %if.then
1712 i32 1, label %if.then
1713 i32 2, label %if.then
1714 i32 3, label %if.then
1715 i32 5, label %if.then
1718 tail call void @foo() nounwind
1725 Generated code on x86-64 (other platforms give similar results):
1736 If we wanted to be really clever, we could simplify the whole thing to
1737 something like the following, which eliminates a branch:
1745 //===---------------------------------------------------------------------===//
1749 int foo(int a) { return (a & (~15)) / 16; }
1753 define i32 @foo(i32 %a) nounwind readnone ssp {
1755 %and = and i32 %a, -16
1756 %div = sdiv i32 %and, 16
1760 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
1761 should be instcombined into just "a >> 4".
1763 We do get this at the codegen level, so something knows about it, but
1764 instcombine should catch it earlier:
1772 //===---------------------------------------------------------------------===//
1774 This code (from GCC PR28685):
1776 int test(int a, int b) {
1786 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
1788 %cmp = icmp slt i32 %a, %b
1789 br i1 %cmp, label %return, label %if.end
1791 if.end: ; preds = %entry
1792 %cmp5 = icmp eq i32 %a, %b
1793 %conv6 = zext i1 %cmp5 to i32
1796 return: ; preds = %entry
1802 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
1804 %0 = icmp sle i32 %a, %b
1805 %retval = zext i1 %0 to i32
1809 //===---------------------------------------------------------------------===//
1811 This code can be seen in viterbi:
1813 %64 = call noalias i8* @malloc(i64 %62) nounwind
1815 %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
1816 %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
1818 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
1819 fold to %62. This is a security win (overflows of malloc will get caught)
1820 and also a performance win by exposing more memsets to the optimizer.
1822 This occurs several times in viterbi.
1824 Note that this would change the semantics of @llvm.objectsize which by its
1825 current definition always folds to a constant. We also should make sure that
1826 we remove checking in code like
1828 char *p = malloc(strlen(s)+1);
1829 __strcpy_chk(p, s, __builtin_object_size(p, 0));
1831 //===---------------------------------------------------------------------===//
1833 clang -O3 currently compiles this code
1835 int g(unsigned int a) {
1836 unsigned int c[100];
1839 unsigned int b = c[10] + c[11];
1847 define i32 @g(i32 a) nounwind readnone {
1848 %add = shl i32 %a, 1
1849 %mul = shl i32 %a, 1
1850 %cmp = icmp ugt i32 %add, %mul
1851 %a.addr.0 = select i1 %cmp, i32 11, i32 15
1855 The icmp should fold to false. This CSE opportunity is only available
1856 after GVN and InstCombine have run.
1858 //===---------------------------------------------------------------------===//
1860 memcpyopt should turn this:
1862 define i8* @test10(i32 %x) {
1863 %alloc = call noalias i8* @malloc(i32 %x) nounwind
1864 call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
1868 into a call to calloc. We should make sure that we analyze calloc as
1869 aggressively as malloc though.
1871 //===---------------------------------------------------------------------===//
1873 clang -O3 doesn't optimize this:
1875 void f1(int* begin, int* end) {
1876 std::fill(begin, end, 0);
1879 into a memset. This is PR8942.
1881 //===---------------------------------------------------------------------===//
1883 clang -O3 -fno-exceptions currently compiles this code:
1886 std::vector<int> v(N);
1888 extern void sink(void*); sink(&v);
1893 define void @_Z1fi(i32 %N) nounwind {
1895 %v2 = alloca [3 x i32*], align 8
1896 %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
1897 %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
1898 %conv = sext i32 %N to i64
1899 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1900 %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
1901 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1902 %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
1903 store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1904 %cmp.i.i.i.i = icmp eq i32 %N, 0
1905 br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
1907 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
1908 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1909 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1910 %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
1911 store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1912 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
1914 cond.true.i.i.i.i: ; preds = %entry
1915 %cmp.i.i.i.i.i = icmp slt i32 %N, 0
1916 br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
1918 if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i
1919 call void @_ZSt17__throw_bad_allocv() noreturn nounwind
1922 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i
1923 %mul.i.i.i.i.i = shl i64 %conv, 2
1924 %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
1925 %0 = bitcast i8* %call3.i.i.i.i.i to i32*
1926 store i32* %0, i32** %v2.sub, align 8, !tbaa !0
1927 store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1928 %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
1929 store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1930 call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
1931 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
1933 This is just the handling the construction of the vector. Most surprising here
1934 is the fact that all three null stores in %entry are dead (because we do no
1937 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
1938 This is a because the client of LazyValueInfo doesn't simplify all instruction
1939 operands, just selected ones.
1941 //===---------------------------------------------------------------------===//
1943 clang -O3 -fno-exceptions currently compiles this code:
1945 void f(char* a, int n) {
1946 __builtin_memset(a, 0, n);
1947 for (int i = 0; i < n; ++i)
1953 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
1955 %conv = sext i32 %n to i64
1956 tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
1957 %cmp8 = icmp sgt i32 %n, 0
1958 br i1 %cmp8, label %for.body.lr.ph, label %for.end
1960 for.body.lr.ph: ; preds = %entry
1961 %tmp10 = add i32 %n, -1
1962 %tmp11 = zext i32 %tmp10 to i64
1963 %tmp12 = add i64 %tmp11, 1
1964 call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
1967 for.end: ; preds = %entry
1971 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
1972 the two memset's together.
1974 The issue with the addition only occurs in 64-bit mode, and appears to be at
1975 least partially caused by Scalar Evolution not keeping its cache updated: it
1976 returns the "wrong" result immediately after indvars runs, but figures out the
1977 expected result if it is run from scratch on IR resulting from running indvars.
1979 //===---------------------------------------------------------------------===//
1981 clang -O3 -fno-exceptions currently compiles this code:
1984 unsigned short m1, m2;
1985 unsigned char m3, m4;
1989 std::vector<S> v(N);
1990 extern void sink(void*); sink(&v);
1993 into poor code for zero-initializing 'v' when N is >0. The problem is that
1994 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
1995 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
1998 In order to handle this we have to:
1999 A) Teach clang to generate metadata for memsets of structs that have holes in
2001 B) Teach clang to use such a memset for zero init of this struct (since it has
2002 a hole), instead of doing elementwise zeroing.
2004 //===---------------------------------------------------------------------===//
2006 clang -O3 currently compiles this code:
2008 extern const int magic;
2009 double f() { return 0.0 * magic; }
2013 @magic = external constant i32
2015 define double @_Z1fv() nounwind readnone {
2017 %tmp = load i32* @magic, align 4, !tbaa !0
2018 %conv = sitofp i32 %tmp to double
2019 %mul = fmul double %conv, 0.000000e+00
2023 We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0)
2024 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
2025 not an INF. The CannotBeNegativeZero predicate in value tracking should be
2026 extended to support general "fpclassify" operations that can return
2027 yes/no/unknown for each of these predicates.
2029 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
2030 we know that it isn't +/-Inf if the floating point type has enough exponent bits
2031 to represent the largest integer value as < inf.
2033 //===---------------------------------------------------------------------===//
2035 When optimizing a transformation that can change the sign of 0.0 (such as the
2036 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
2037 expression doesn't matter. For example, by the above rules, we can't transform
2038 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
2039 expression is defined to be -0.0.
2041 If we look at the uses of the fmul for example, we might be able to prove that
2042 all uses don't care about the sign of zero. For example, if we have:
2044 fadd(fmul(sitofp(x), 0.0), 2.0)
2046 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
2047 transform the fmul to 0.0, and then the fadd to 2.0.
2049 //===---------------------------------------------------------------------===//
2051 We should enhance memcpy/memcpy/memset to allow a metadata node on them
2052 indicating that some bytes of the transfer are undefined. This is useful for
2053 frontends like clang when lowering struct copies, when some elements of the
2054 struct are undefined. Consider something like this:
2060 void foo(struct x*P);
2061 struct x testfunc() {
2069 We currently compile this to:
2070 $ clang t.c -S -o - -O0 -emit-llvm | opt -sroa -S
2073 %struct.x = type { i8, [4 x i32] }
2075 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
2077 %V1 = alloca %struct.x, align 4
2078 call void @foo(%struct.x* %V1)
2079 %tmp1 = bitcast %struct.x* %V1 to i8*
2080 %0 = bitcast %struct.x* %V1 to i160*
2081 %srcval1 = load i160* %0, align 4
2082 %tmp2 = bitcast %struct.x* %agg.result to i8*
2083 %1 = bitcast %struct.x* %agg.result to i160*
2084 store i160 %srcval1, i160* %1, align 4
2088 This happens because SRoA sees that the temp alloca has is being memcpy'd into
2089 and out of and it has holes and it has to be conservative. If we knew about the
2090 holes, then this could be much much better.
2092 Having information about these holes would also improve memcpy (etc) lowering at
2093 llc time when it gets inlined, because we can use smaller transfers. This also
2094 avoids partial register stalls in some important cases.
2096 //===---------------------------------------------------------------------===//
2098 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
2099 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
2102 %indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses
2103 %tmp96 = add i64 %tmp95, 1 ;; Has 1 use
2104 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
2106 We don't fold this because we don't want to introduce an overlapped live range
2107 of the ivar. However if we can make this more aggressive without causing
2108 performance issues in two ways:
2110 1. If *either* the LHS or RHS has a single use, we can definitely do the
2111 transformation. In the overlapping liverange case we're trading one register
2112 use for one fewer operation, which is a reasonable trade. Before doing this
2113 we should verify that the llc output actually shrinks for some benchmarks.
2114 2. If both ops have multiple uses, we can still fold it if the operations are
2115 both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
2116 increase register pressure.
2118 There are a ton of icmp's we aren't simplifying because of the reg pressure
2119 concern. Care is warranted here though because many of these are induction
2120 variables and other cases that matter a lot to performance, like the above.
2121 Here's a blob of code that you can drop into the bottom of visitICmp to see some
2124 { Value *A, *B, *C, *D;
2125 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2126 match(Op1, m_Add(m_Value(C), m_Value(D))) &&
2127 (A == C || A == D || B == C || B == D)) {
2128 errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n";
2129 errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n";
2130 errs() << "CMP = " << I << "\n\n";
2134 //===---------------------------------------------------------------------===//
2136 define i1 @test1(i32 %x) nounwind {
2137 %and = and i32 %x, 3
2138 %cmp = icmp ult i32 %and, 2
2142 Can be folded to (x & 2) == 0.
2144 define i1 @test2(i32 %x) nounwind {
2145 %and = and i32 %x, 3
2146 %cmp = icmp ugt i32 %and, 1
2150 Can be folded to (x & 2) != 0.
2152 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
2155 //===---------------------------------------------------------------------===//
2181 Compiles into this IR (on x86-64 at least):
2183 %struct.t1 = type { i8, [3 x i8] }
2184 @s2 = global %struct.t1 zeroinitializer, align 4
2185 @s1 = global %struct.t1 zeroinitializer, align 4
2186 define void @func1() nounwind ssp noredzone {
2188 %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
2189 %bf.val.sext5 = and i32 %0, 1
2190 %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
2192 %3 = or i32 %2, %bf.val.sext5
2193 %bf.val.sext26 = and i32 %0, 2
2194 %4 = or i32 %3, %bf.val.sext26
2195 store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
2199 The two or/and's should be merged into one each.
2201 //===---------------------------------------------------------------------===//
2203 Machine level code hoisting can be useful in some cases. For example, PR9408
2211 void foo(funcs f, int which) {
2220 which we compile to:
2240 Note that bb1 and bb2 are the same. This doesn't happen at the IR level
2241 because one call is passing an i32 and the other is passing an i64.
2243 //===---------------------------------------------------------------------===//
2245 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
2246 store_bit_field). The rem should be replaced with a multiply and subtract:
2248 %3 = sdiv i32 %A, %B
2249 %4 = srem i32 %A, %B
2251 Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM,
2252 which can do this in a single operation (instruction or libcall). It is
2253 probably best to do this in the code generator.
2255 //===---------------------------------------------------------------------===//
2257 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
2258 should fold to (x & y) == 0.
2260 //===---------------------------------------------------------------------===//
2262 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
2263 should fold to x > y.
2265 //===---------------------------------------------------------------------===//