[C++20] [Modules] Fix may-be incorrect ADL for module local entities (#123931)
[llvm-project.git] / llvm / lib / Target / RISCV / MCTargetDesc / RISCVBaseInfo.cpp
blob3b2c0cba66d1217576d00be3fc07b030cf06079c
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
12 //===----------------------------------------------------------------------===//
14 #include "RISCVBaseInfo.h"
15 #include "llvm/MC/MCInst.h"
16 #include "llvm/MC/MCRegisterInfo.h"
17 #include "llvm/MC/MCSubtargetInfo.h"
18 #include "llvm/Support/raw_ostream.h"
19 #include "llvm/TargetParser/TargetParser.h"
20 #include "llvm/TargetParser/Triple.h"
22 namespace llvm {
24 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
26 namespace RISCVSysReg {
27 #define GET_SysRegsList_IMPL
28 #include "RISCVGenSearchableTables.inc"
29 } // namespace RISCVSysReg
31 namespace RISCVInsnOpcode {
32 #define GET_RISCVOpcodesList_IMPL
33 #include "RISCVGenSearchableTables.inc"
34 } // namespace RISCVInsnOpcode
36 namespace RISCVABI {
37 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
38 StringRef ABIName) {
39 auto TargetABI = getTargetABI(ABIName);
40 bool IsRV64 = TT.isArch64Bit();
41 bool IsRVE = FeatureBits[RISCV::FeatureStdExtE];
43 if (!ABIName.empty() && TargetABI == ABI_Unknown) {
44 errs()
45 << "'" << ABIName
46 << "' is not a recognized ABI for this target (ignoring target-abi)\n";
47 } else if (ABIName.starts_with("ilp32") && IsRV64) {
48 errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
49 "target-abi)\n";
50 TargetABI = ABI_Unknown;
51 } else if (ABIName.starts_with("lp64") && !IsRV64) {
52 errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
53 "target-abi)\n";
54 TargetABI = ABI_Unknown;
55 } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
56 TargetABI != ABI_Unknown) {
57 // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
58 errs()
59 << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
60 TargetABI = ABI_Unknown;
61 } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
62 TargetABI != ABI_Unknown) {
63 // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
64 errs()
65 << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
66 TargetABI = ABI_Unknown;
69 if ((TargetABI == RISCVABI::ABI::ABI_ILP32E ||
70 (TargetABI == ABI_Unknown && IsRVE && !IsRV64)) &&
71 FeatureBits[RISCV::FeatureStdExtD])
72 report_fatal_error("ILP32E cannot be used with the D ISA extension");
74 if (TargetABI != ABI_Unknown)
75 return TargetABI;
77 // If no explicit ABI is given, try to compute the default ABI.
78 auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
79 if (!ISAInfo)
80 report_fatal_error(ISAInfo.takeError());
81 return getTargetABI((*ISAInfo)->computeDefaultABI());
84 ABI getTargetABI(StringRef ABIName) {
85 auto TargetABI = StringSwitch<ABI>(ABIName)
86 .Case("ilp32", ABI_ILP32)
87 .Case("ilp32f", ABI_ILP32F)
88 .Case("ilp32d", ABI_ILP32D)
89 .Case("ilp32e", ABI_ILP32E)
90 .Case("lp64", ABI_LP64)
91 .Case("lp64f", ABI_LP64F)
92 .Case("lp64d", ABI_LP64D)
93 .Case("lp64e", ABI_LP64E)
94 .Default(ABI_Unknown);
95 return TargetABI;
98 // To avoid the BP value clobbered by a function call, we need to choose a
99 // callee saved register to save the value. RV32E only has X8 and X9 as callee
100 // saved registers and X8 will be used as fp. So we choose X9 as bp.
101 MCRegister getBPReg() { return RISCV::X9; }
103 // Returns the register holding shadow call stack pointer.
104 MCRegister getSCSPReg() { return RISCV::X3; }
106 } // namespace RISCVABI
108 namespace RISCVFeatures {
110 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
111 if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
112 report_fatal_error("RV64 target requires an RV64 CPU");
113 if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
114 report_fatal_error("RV32 target requires an RV32 CPU");
115 if (FeatureBits[RISCV::Feature32Bit] &&
116 FeatureBits[RISCV::Feature64Bit])
117 report_fatal_error("RV32 and RV64 can't be combined");
120 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
121 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
122 unsigned XLen = IsRV64 ? 64 : 32;
123 std::vector<std::string> FeatureVector;
124 // Convert FeatureBitset to FeatureVector.
125 for (auto Feature : RISCVFeatureKV) {
126 if (FeatureBits[Feature.Value] &&
127 llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
128 FeatureVector.push_back(std::string("+") + Feature.Key);
130 return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
133 } // namespace RISCVFeatures
135 // Include the auto-generated portion of the compress emitter.
136 #define GEN_UNCOMPRESS_INSTR
137 #define GEN_COMPRESS_INSTR
138 #include "RISCVGenCompressInstEmitter.inc"
140 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
141 const MCSubtargetInfo &STI) {
142 return compressInst(OutInst, MI, STI);
145 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
146 const MCSubtargetInfo &STI) {
147 return uncompressInst(OutInst, MI, STI);
150 // Lookup table for fli.s for entries 2-31.
151 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
152 {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
153 {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
154 {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
155 {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
156 {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
157 {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
158 {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
159 {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
160 {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
161 {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
164 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
165 assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
166 &FPImm.getSemantics() == &APFloat::IEEEdouble() ||
167 &FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
168 "Unexpected semantics");
170 // Handle the minimum normalized value which is different for each type.
171 if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
172 return 1;
174 // Convert to single precision to use its lookup table.
175 bool LosesInfo;
176 APFloat::opStatus Status = FPImm.convert(
177 APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
178 if (Status != APFloat::opOK || LosesInfo)
179 return -1;
181 APInt Imm = FPImm.bitcastToAPInt();
183 if (Imm.extractBitsAsZExtValue(21, 0) != 0)
184 return -1;
186 bool Sign = Imm.extractBitsAsZExtValue(1, 31);
187 uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
188 uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
190 auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
191 if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
192 EMI->second != Mantissa)
193 return -1;
195 // Table doesn't have entry 0 or 1.
196 int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
198 // The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
199 if (Sign) {
200 if (Entry == 16)
201 return 0;
202 return -1;
205 return Entry;
208 float RISCVLoadFPImm::getFPImm(unsigned Imm) {
209 assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
211 // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
212 uint32_t Sign = 0;
213 if (Imm == 0) {
214 Sign = 0b1;
215 Imm = 16;
218 uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
219 uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
221 uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
222 return bit_cast<float>(I);
225 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
226 OS << "{ra";
227 if (SlistEncode > 4) {
228 OS << ", s0";
229 if (SlistEncode == 15)
230 OS << "-s11";
231 else if (SlistEncode > 5 && SlistEncode <= 14)
232 OS << "-s" << (SlistEncode - 5);
234 OS << "}";
237 } // namespace llvm