[OptTable] Fix typo VALUE => VALUES (NFCI) (#121523)
[llvm-project.git] / llvm / lib / Target / RISCV / RISCVCodeGenPrepare.cpp
blob5be5345cca73a9ccea040b0002e8d2c1cfb2b261
1 //===----- RISCVCodeGenPrepare.cpp ----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is a RISC-V specific version of CodeGenPrepare.
10 // It munges the code in the input function to better prepare it for
11 // SelectionDAG-based code generation. This works around limitations in it's
12 // basic-block-at-a-time approach.
14 //===----------------------------------------------------------------------===//
16 #include "RISCV.h"
17 #include "RISCVTargetMachine.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/Dominators.h"
22 #include "llvm/IR/IRBuilder.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
29 using namespace llvm;
31 #define DEBUG_TYPE "riscv-codegenprepare"
32 #define PASS_NAME "RISC-V CodeGenPrepare"
34 namespace {
36 class RISCVCodeGenPrepare : public FunctionPass,
37 public InstVisitor<RISCVCodeGenPrepare, bool> {
38 const DataLayout *DL;
39 const DominatorTree *DT;
40 const RISCVSubtarget *ST;
42 public:
43 static char ID;
45 RISCVCodeGenPrepare() : FunctionPass(ID) {}
47 bool runOnFunction(Function &F) override;
49 StringRef getPassName() const override { return PASS_NAME; }
51 void getAnalysisUsage(AnalysisUsage &AU) const override {
52 AU.setPreservesCFG();
53 AU.addRequired<DominatorTreeWrapperPass>();
54 AU.addRequired<TargetPassConfig>();
57 bool visitInstruction(Instruction &I) { return false; }
58 bool visitAnd(BinaryOperator &BO);
59 bool visitIntrinsicInst(IntrinsicInst &I);
60 bool expandVPStrideLoad(IntrinsicInst &I);
63 } // end anonymous namespace
65 // Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set,
66 // but bits 63:32 are zero. If we know that bit 31 of X is 0, we can fill
67 // the upper 32 bits with ones.
68 bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) {
69 if (!ST->is64Bit())
70 return false;
72 if (!BO.getType()->isIntegerTy(64))
73 return false;
75 using namespace PatternMatch;
77 // Left hand side should be a zext nneg.
78 Value *LHSSrc;
79 if (!match(BO.getOperand(0), m_NNegZExt(m_Value(LHSSrc))))
80 return false;
82 if (!LHSSrc->getType()->isIntegerTy(32))
83 return false;
85 // Right hand side should be a constant.
86 Value *RHS = BO.getOperand(1);
88 auto *CI = dyn_cast<ConstantInt>(RHS);
89 if (!CI)
90 return false;
91 uint64_t C = CI->getZExtValue();
93 // Look for constants that fit in 32 bits but not simm12, and can be made
94 // into simm12 by sign extending bit 31. This will allow use of ANDI.
95 // TODO: Is worth making simm32?
96 if (!isUInt<32>(C) || isInt<12>(C) || !isInt<12>(SignExtend64<32>(C)))
97 return false;
99 // Sign extend the constant and replace the And operand.
100 C = SignExtend64<32>(C);
101 BO.setOperand(1, ConstantInt::get(RHS->getType(), C));
103 return true;
106 // LLVM vector reduction intrinsics return a scalar result, but on RISC-V vector
107 // reduction instructions write the result in the first element of a vector
108 // register. So when a reduction in a loop uses a scalar phi, we end up with
109 // unnecessary scalar moves:
111 // loop:
112 // vfmv.s.f v10, fa0
113 // vfredosum.vs v8, v8, v10
114 // vfmv.f.s fa0, v8
116 // This mainly affects ordered fadd reductions, since other types of reduction
117 // typically use element-wise vectorisation in the loop body. This tries to
118 // vectorize any scalar phis that feed into a fadd reduction:
120 // loop:
121 // %phi = phi <float> [ ..., %entry ], [ %acc, %loop ]
122 // %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %phi,
123 // <vscale x 2 x float> %vec)
125 // ->
127 // loop:
128 // %phi = phi <vscale x 2 x float> [ ..., %entry ], [ %acc.vec, %loop ]
129 // %phi.scalar = extractelement <vscale x 2 x float> %phi, i64 0
130 // %acc = call float @llvm.vector.reduce.fadd.nxv2f32(float %x,
131 // <vscale x 2 x float> %vec)
132 // %acc.vec = insertelement <vscale x 2 x float> poison, float %acc.next, i64 0
134 // Which eliminates the scalar -> vector -> scalar crossing during instruction
135 // selection.
136 bool RISCVCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
137 if (expandVPStrideLoad(I))
138 return true;
140 if (I.getIntrinsicID() != Intrinsic::vector_reduce_fadd)
141 return false;
143 auto *PHI = dyn_cast<PHINode>(I.getOperand(0));
144 if (!PHI || !PHI->hasOneUse() ||
145 !llvm::is_contained(PHI->incoming_values(), &I))
146 return false;
148 Type *VecTy = I.getOperand(1)->getType();
149 IRBuilder<> Builder(PHI);
150 auto *VecPHI = Builder.CreatePHI(VecTy, PHI->getNumIncomingValues());
152 for (auto *BB : PHI->blocks()) {
153 Builder.SetInsertPoint(BB->getTerminator());
154 Value *InsertElt = Builder.CreateInsertElement(
155 VecTy, PHI->getIncomingValueForBlock(BB), (uint64_t)0);
156 VecPHI->addIncoming(InsertElt, BB);
159 Builder.SetInsertPoint(&I);
160 I.setOperand(0, Builder.CreateExtractElement(VecPHI, (uint64_t)0));
162 PHI->eraseFromParent();
164 return true;
167 // Always expand zero strided loads so we match more .vx splat patterns, even if
168 // we have +optimized-zero-stride-loads. RISCVDAGToDAGISel::Select will convert
169 // it back to a strided load if it's optimized.
170 bool RISCVCodeGenPrepare::expandVPStrideLoad(IntrinsicInst &II) {
171 Value *BasePtr, *VL;
173 using namespace PatternMatch;
174 if (!match(&II, m_Intrinsic<Intrinsic::experimental_vp_strided_load>(
175 m_Value(BasePtr), m_Zero(), m_AllOnes(), m_Value(VL))))
176 return false;
178 // If SEW>XLEN then a splat will get lowered as a zero strided load anyway, so
179 // avoid expanding here.
180 if (II.getType()->getScalarSizeInBits() > ST->getXLen())
181 return false;
183 if (!isKnownNonZero(VL, {*DL, DT, nullptr, &II}))
184 return false;
186 auto *VTy = cast<VectorType>(II.getType());
188 IRBuilder<> Builder(&II);
189 Type *STy = VTy->getElementType();
190 Value *Val = Builder.CreateLoad(STy, BasePtr);
191 Value *Res = Builder.CreateIntrinsic(Intrinsic::experimental_vp_splat, {VTy},
192 {Val, II.getOperand(2), VL});
194 II.replaceAllUsesWith(Res);
195 II.eraseFromParent();
196 return true;
199 bool RISCVCodeGenPrepare::runOnFunction(Function &F) {
200 if (skipFunction(F))
201 return false;
203 auto &TPC = getAnalysis<TargetPassConfig>();
204 auto &TM = TPC.getTM<RISCVTargetMachine>();
205 ST = &TM.getSubtarget<RISCVSubtarget>(F);
207 DL = &F.getDataLayout();
208 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
210 bool MadeChange = false;
211 for (auto &BB : F)
212 for (Instruction &I : llvm::make_early_inc_range(BB))
213 MadeChange |= visit(I);
215 return MadeChange;
218 INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
219 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
220 INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
222 char RISCVCodeGenPrepare::ID = 0;
224 FunctionPass *llvm::createRISCVCodeGenPreparePass() {
225 return new RISCVCodeGenPrepare();