1 //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 def IsTargetXPLINK64 : Predicate<"Subtarget->isTargetXPLINK64()">;
10 def IsTargetELF : Predicate<"Subtarget->isTargetELF()">;
12 //===----------------------------------------------------------------------===//
14 //===----------------------------------------------------------------------===//
16 // These pseudos carry values needed to compute the MaxcallFrameSize of the
17 // function. The callseq_start node requires the hasSideEffects flag.
18 let usesCustomInserter = 1, hasNoSchedulingInfo = 1, hasSideEffects = 1 in {
19 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
20 [(callseq_start timm:$amt1, timm:$amt2)]>;
21 def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
22 [(callseq_end timm:$amt1, timm:$amt2)]>;
25 // Takes as input the value of the stack pointer after a dynamic allocation
26 // has been made. Sets the output to the address of the dynamically-
27 // allocated area itself, skipping the outgoing arguments.
29 // This expands to an LA or LAY instruction. We restrict the offset
30 // to the range of LA and keep the LAY range in reserve for when
31 // the size of the outgoing arguments is added.
32 def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src),
33 [(set GR64:$dst, dynalloc12only:$src)]>;
35 let Defs = [R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
36 usesCustomInserter = 1 in
37 def PROBED_ALLOCA : Pseudo<(outs GR64:$dst),
38 (ins GR64:$oldSP, GR64:$space),
39 [(set GR64:$dst, (z_probed_alloca GR64:$oldSP, GR64:$space))]>;
41 let Defs = [R1D, R15D, CC], Uses = [R15D], hasNoSchedulingInfo = 1,
43 def PROBED_STACKALLOC : Pseudo<(outs), (ins i64imm:$stacksize), []>;
45 let Defs = [R3D, CC], Uses = [R3D, R4D], hasNoSchedulingInfo = 1,
47 def XPLINK_STACKALLOC : Pseudo<(outs), (ins), []>;
49 //===----------------------------------------------------------------------===//
50 // Branch instructions
51 //===----------------------------------------------------------------------===//
53 // Conditional branches.
54 let isBranch = 1, isTerminator = 1, Uses = [CC] in {
55 // It's easier for LLVM to handle these branches in their raw BRC/BRCL form
56 // with the condition-code mask being the first operand. It seems friendlier
57 // to use mnemonic forms like JE and JLH when writing out the assembly though.
58 let isCodeGenOnly = 1 in {
59 // An assembler extended mnemonic for BRC.
60 def BRC : CondBranchRI <"j#", 0xA74, z_br_ccmask>;
61 // An assembler extended mnemonic for BRCL. (The extension is "G"
62 // rather than "L" because "JL" is "Jump if Less".)
63 def BRCL : CondBranchRIL<"jg#", 0xC04>;
64 let isIndirectBranch = 1 in {
65 def BC : CondBranchRX<"b#", 0x47>;
66 def BCR : CondBranchRR<"b#r", 0x07>;
67 def BIC : CondBranchRXY<"bi#", 0xe347>,
68 Requires<[FeatureMiscellaneousExtensions2]>;
72 // Allow using the raw forms directly from the assembler (and occasional
73 // special code generation needs) as well.
74 def BRCAsm : AsmCondBranchRI <"brc", 0xA74>;
75 def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>;
76 let isIndirectBranch = 1 in {
77 def BCAsm : AsmCondBranchRX<"bc", 0x47>;
78 def BCRAsm : AsmCondBranchRR<"bcr", 0x07>;
79 def BICAsm : AsmCondBranchRXY<"bic", 0xe347>,
80 Requires<[FeatureMiscellaneousExtensions2]>;
83 // Define AsmParser extended mnemonics for each general condition-code mask
84 // (integer or floating-point)
85 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
86 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
87 def JAsm#V : FixedCondBranchRI <CV<V>, "j#", 0xA74>;
88 def JGAsm#V : FixedCondBranchRIL<CV<V>, "j{g|l}#", 0xC04>;
89 let isIndirectBranch = 1 in {
90 def BAsm#V : FixedCondBranchRX <CV<V>, "b#", 0x47>;
91 def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>;
92 def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>,
93 Requires<[FeatureMiscellaneousExtensions2]>;
98 // Unconditional branches. These are in fact simply variants of the
99 // conditional branches with the condition mask set to "always".
100 let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
101 def J : FixedCondBranchRI <CondAlways, "j", 0xA74, br>;
102 def JG : FixedCondBranchRIL<CondAlways, "j{g|lu}", 0xC04>;
103 let isIndirectBranch = 1 in {
104 def B : FixedCondBranchRX<CondAlways, "b", 0x47>;
105 def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>;
106 def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>,
107 Requires<[FeatureMiscellaneousExtensions2]>;
111 // NOPs. These are again variants of the conditional branches, with the
112 // condition mask set to "never".
113 defm NOP : NeverCondBranchRX<"nop", 0x47>;
114 defm NOPR : NeverCondBranchRR<"nopr", 0x07>;
115 def JNOP : NeverCondBranchRI<"jnop", 0xA74>;
116 def JGNOP : NeverCondBranchRIL<"j{g|l}nop", 0xC04>;
118 // Fused compare-and-branch instructions.
120 // These instructions do not use or clobber the condition codes.
121 // We nevertheless pretend that the relative compare-and-branch
122 // instructions clobber CC, so that we can lower them to separate
123 // comparisons and BRCLs if the branch ends up being out of range.
124 let isBranch = 1, isTerminator = 1 in {
125 // As for normal branches, we handle these instructions internally in
126 // their raw CRJ-like form, but use assembly macros like CRJE when writing
127 // them out. Using the *Pair multiclasses, we also create the raw forms.
129 defm CRJ : CmpBranchRIEbPair<"crj", 0xEC76, GR32>;
130 defm CGRJ : CmpBranchRIEbPair<"cgrj", 0xEC64, GR64>;
131 defm CIJ : CmpBranchRIEcPair<"cij", 0xEC7E, GR32, imm32sx8>;
132 defm CGIJ : CmpBranchRIEcPair<"cgij", 0xEC7C, GR64, imm64sx8>;
133 defm CLRJ : CmpBranchRIEbPair<"clrj", 0xEC77, GR32>;
134 defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>;
135 defm CLIJ : CmpBranchRIEcPair<"clij", 0xEC7F, GR32, imm32zx8>;
136 defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>;
138 let isIndirectBranch = 1 in {
139 defm CRB : CmpBranchRRSPair<"crb", 0xECF6, GR32>;
140 defm CGRB : CmpBranchRRSPair<"cgrb", 0xECE4, GR64>;
141 defm CIB : CmpBranchRISPair<"cib", 0xECFE, GR32, imm32sx8>;
142 defm CGIB : CmpBranchRISPair<"cgib", 0xECFC, GR64, imm64sx8>;
143 defm CLRB : CmpBranchRRSPair<"clrb", 0xECF7, GR32>;
144 defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>;
145 defm CLIB : CmpBranchRISPair<"clib", 0xECFF, GR32, imm32zx8>;
146 defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>;
149 // Define AsmParser mnemonics for each integer condition-code mask.
150 foreach V = [ "E", "H", "L", "HE", "LE", "LH",
151 "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
153 def CRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "crj", 0xEC76, GR32>;
154 def CGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "cgrj", 0xEC64, GR64>;
155 def CIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cij", 0xEC7E, GR32,
157 def CGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cgij", 0xEC7C, GR64,
159 def CLRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clrj", 0xEC77, GR32>;
160 def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>;
161 def CLIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clij", 0xEC7F, GR32,
163 def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64,
166 let isIndirectBranch = 1 in {
167 def CRBAsm#V : FixedCmpBranchRRS<ICV<V>, "crb", 0xECF6, GR32>;
168 def CGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "cgrb", 0xECE4, GR64>;
169 def CIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cib", 0xECFE, GR32,
171 def CGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cgib", 0xECFC, GR64,
173 def CLRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clrb", 0xECF7, GR32>;
174 def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>;
175 def CLIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clib", 0xECFF, GR32,
177 def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64,
183 // Decrement a register and branch if it is nonzero. These don't clobber CC,
184 // but we might need to split long relative branches into sequences that do.
185 let isBranch = 1, isTerminator = 1 in {
187 def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>;
188 def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>;
190 // This doesn't need to clobber CC since we never need to split it.
191 def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>,
192 Requires<[FeatureHighWord]>;
194 def BCT : BranchUnaryRX<"bct", 0x46,GR32>;
195 def BCTR : BranchUnaryRR<"bctr", 0x06, GR32>;
196 def BCTG : BranchUnaryRXY<"bctg", 0xE346, GR64>;
197 def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>;
200 let isBranch = 1, isTerminator = 1 in {
202 def BRXH : BranchBinaryRSI<"brxh", 0x84, GR32>;
203 def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>;
204 def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>;
205 def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>;
207 def BXH : BranchBinaryRS<"bxh", 0x86, GR32>;
208 def BXLE : BranchBinaryRS<"bxle", 0x87, GR32>;
209 def BXHG : BranchBinaryRSY<"bxhg", 0xEB44, GR64>;
210 def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>;
213 //===----------------------------------------------------------------------===//
215 //===----------------------------------------------------------------------===//
217 // Unconditional trap.
218 let hasCtrlDep = 1, hasSideEffects = 1 in
219 def Trap : Alias<4, (outs), (ins), [(trap)]>;
222 let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in
223 def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
225 // Fused compare-and-trap instructions.
226 let hasCtrlDep = 1, hasSideEffects = 1 in {
227 // These patterns work the same way as for compare-and-branch.
228 defm CRT : CmpBranchRRFcPair<"crt", 0xB972, GR32>;
229 defm CGRT : CmpBranchRRFcPair<"cgrt", 0xB960, GR64>;
230 defm CLRT : CmpBranchRRFcPair<"clrt", 0xB973, GR32>;
231 defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>;
232 defm CIT : CmpBranchRIEaPair<"cit", 0xEC72, GR32, imm32sx16>;
233 defm CGIT : CmpBranchRIEaPair<"cgit", 0xEC70, GR64, imm64sx16>;
234 defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>;
235 defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>;
236 let Predicates = [FeatureMiscellaneousExtensions] in {
237 defm CLT : CmpBranchRSYbPair<"clt", 0xEB23, GR32>;
238 defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>;
241 foreach V = [ "E", "H", "L", "HE", "LE", "LH",
242 "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in {
243 def CRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "crt", 0xB972, GR32>;
244 def CGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "cgrt", 0xB960, GR64>;
245 def CLRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clrt", 0xB973, GR32>;
246 def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>;
247 def CITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cit", 0xEC72, GR32,
249 def CGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cgit", 0xEC70, GR64,
251 def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32,
253 def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64,
255 let Predicates = [FeatureMiscellaneousExtensions] in {
256 def CLTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clt", 0xEB23, GR32>;
257 def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>;
262 //===----------------------------------------------------------------------===//
263 // Call and return instructions
264 //===----------------------------------------------------------------------===//
266 // Define the general form of the call instructions for the asm parser.
267 // These instructions don't hard-code %r14 as the return address register.
268 let isCall = 1, Defs = [CC] in {
269 def BRAS : CallRI <"bras", 0xA75>;
270 def BRASL : CallRIL<"brasl", 0xC05>;
271 def BAS : CallRX <"bas", 0x4D>;
272 def BASR : CallRR <"basr", 0x0D>;
275 // A symbol in the ADA (z/OS only).
276 def adasym : Operand<i64>;
279 let Predicates = [IsTargetXPLINK64] in {
280 let isCall = 1, Defs = [R7D, CC], Uses = [FPC] in {
281 def CallBRASL_XPLINK64 : Alias<8, (outs), (ins pcrel32:$I2, variable_ops),
282 [(z_call pcrel32:$I2)]>;
283 def CallBASR_XPLINK64 : Alias<4, (outs), (ins ADDR64:$R2, variable_ops),
284 [(z_call ADDR64:$R2)]>;
287 let isCall = 1, Defs = [R3D, CC], Uses = [FPC] in {
288 def CallBASR_STACKEXT : Alias<4, (outs), (ins ADDR64:$R2), []>;
291 let hasNoSchedulingInfo = 1, Defs = [CC] in {
292 def ADA_ENTRY : Alias<12, (outs ADDR64:$Reg), (ins adasym:$addr,
293 ADDR64:$ADA, imm64:$Offset),
294 [(set i64:$Reg, (z_ada_entry i64:$addr,
295 i64:$ADA, i64:$Offset))]>;
297 let mayLoad = 1, AddedComplexity = 20, hasNoSchedulingInfo = 1, Defs = [CC] in {
298 def ADA_ENTRY_VALUE : Alias<12, (outs ADDR64:$Reg), (ins adasym:$addr,
299 ADDR64:$ADA, imm64:$Offset),
300 [(set i64:$Reg, (z_load (z_ada_entry
301 iPTR:$addr, iPTR:$ADA, i64:$Offset)))]>;
307 let Predicates = [IsTargetELF] in {
308 let isCall = 1, Defs = [R14D, CC], Uses = [FPC] in {
309 def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops),
310 [(z_call pcrel32:$I2)]>;
311 def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops),
312 [(z_call ADDR64:$R2)]>;
315 // TLS calls. These will be lowered into a call to __tls_get_offset,
316 // with an extra relocation specifying the TLS symbol.
317 let isCall = 1, Defs = [R14D, CC] in {
318 def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
319 [(z_tls_gdcall tglobaltlsaddr:$I2)]>;
320 def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops),
321 [(z_tls_ldcall tglobaltlsaddr:$I2)]>;
325 // Sibling calls. Indirect sibling calls must be via R6 for XPLink,
327 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in {
328 def CallJG : Alias<6, (outs), (ins pcrel32:$I2),
329 [(z_sibcall pcrel32:$I2)]>;
330 def CallBR : Alias<2, (outs), (ins ADDR64:$R2),
331 [(z_sibcall ADDR64:$R2)]>;
334 // Conditional sibling calls.
335 let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in {
336 def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1,
338 def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1,
342 // Fused compare and conditional sibling calls.
343 let isCall = 1, isTerminator = 1, isReturn = 1 in {
344 def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
345 def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
346 def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
347 def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3, ADDR64:$R4), []>;
348 def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3, ADDR64:$R4), []>;
349 def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3, ADDR64:$R4), []>;
350 def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
351 def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3, ADDR64:$R4), []>;
354 let Predicates = [IsTargetXPLINK64] in {
355 // A return instruction (b 2(%r7)).
356 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
357 def Return_XPLINK : Alias<4, (outs), (ins), [(z_retglue)]>;
359 // A conditional return instruction (bc <cond>, 2(%r7)).
360 let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
361 def CondReturn_XPLINK : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>;
364 let Predicates = [IsTargetELF] in {
365 // A return instruction (br %r14).
366 let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in
367 def Return : Alias<2, (outs), (ins), [(z_retglue)]>;
369 // A conditional return instruction (bcr <cond>, %r14).
370 let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in
371 def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>;
374 // Fused compare and conditional returns.
375 let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in {
376 def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
377 def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
378 def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>;
379 def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>;
380 def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>;
381 def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>;
382 def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>;
383 def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>;
386 //===----------------------------------------------------------------------===//
387 // Select instructions
388 //===----------------------------------------------------------------------===//
390 def Select32 : SelectWrapper<i32, GR32>,
391 Requires<[FeatureNoLoadStoreOnCond]>;
392 def Select64 : SelectWrapper<i64, GR64>,
393 Requires<[FeatureNoLoadStoreOnCond]>;
395 // We don't define 32-bit Mux stores if we don't have STOCFH, because the
396 // low-only STOC should then always be used if possible.
397 defm CondStore8Mux : CondStores<GRX32, nonvolatile_truncstorei8,
398 nonvolatile_anyextloadi8, bdxaddr20only>,
399 Requires<[FeatureHighWord]>;
400 defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16,
401 nonvolatile_anyextloadi16, bdxaddr20only>,
402 Requires<[FeatureHighWord]>;
403 defm CondStore32Mux : CondStores<GRX32, simple_store,
404 simple_load, bdxaddr20only>,
405 Requires<[FeatureLoadStoreOnCond2]>;
406 defm CondStore8 : CondStores<GR32, nonvolatile_truncstorei8,
407 nonvolatile_anyextloadi8, bdxaddr20only>;
408 defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16,
409 nonvolatile_anyextloadi16, bdxaddr20only>;
410 defm CondStore32 : CondStores<GR32, simple_store,
411 simple_load, bdxaddr20only>;
413 defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8,
414 nonvolatile_anyextloadi8, bdxaddr20only>;
415 defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16,
416 nonvolatile_anyextloadi16, bdxaddr20only>;
417 defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32,
418 nonvolatile_anyextloadi32, bdxaddr20only>;
419 defm CondStore64 : CondStores<GR64, simple_store,
420 simple_load, bdxaddr20only>;
422 //===----------------------------------------------------------------------===//
424 //===----------------------------------------------------------------------===//
427 def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>;
428 def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>;
430 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
431 def LTR : UnaryRR <"ltr", 0x12, null_frag, GR32, GR32>;
432 def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>;
435 let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
436 def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>;
439 let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
440 // 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF,
441 // deopending on the choice of register.
442 def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
443 Requires<[FeatureHighWord]>;
444 def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
445 def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
447 // Other 16-bit immediates.
448 def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>;
449 def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>;
450 def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>;
451 def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>;
453 // 32-bit immediates.
454 def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>;
455 def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>;
456 def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>;
458 def LLGFI : InstAlias<"llgfi\t$R1, $RI1", (LLILF GR64:$R1, imm64lf32:$RI1)>;
459 def LLGHI : InstAlias<"llghi\t$R1, $RI1", (LLILL GR64:$R1, imm64ll16:$RI1)>;
462 let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in {
463 // Expands to L, LY or LFH, depending on the choice of register.
464 def LMux : UnaryRXYPseudo<"l", z_load, GRX32, 4>,
465 Requires<[FeatureHighWord]>;
466 defm L : UnaryRXPair<"l", 0x58, 0xE358, z_load, GR32, 4>;
467 def LFH : UnaryRXY<"lfh", 0xE3CA, z_load, GRH32, 4>,
468 Requires<[FeatureHighWord]>;
469 def LG : UnaryRXY<"lg", 0xE304, z_load, GR64, 8>;
471 // These instructions are split after register allocation, so we don't
472 // want a custom inserter.
473 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
474 def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src),
475 [(set GR128:$dst, (load bdxaddr20only128:$src))]>;
478 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
479 def LT : UnaryRXY<"lt", 0xE312, z_load, GR32, 4>;
480 def LTG : UnaryRXY<"ltg", 0xE302, z_load, GR64, 8>;
483 let canFoldAsLoad = 1 in {
484 def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_z_load, GR32>;
485 def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_z_load, GR64>;
488 // Load and zero rightmost byte.
489 let Predicates = [FeatureLoadAndZeroRightmostByte] in {
490 def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>;
491 def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>;
492 def : Pat<(and (i32 (z_load bdxaddr20only:$src)), 0xffffff00),
493 (LZRF bdxaddr20only:$src)>;
494 def : Pat<(and (i64 (z_load bdxaddr20only:$src)), 0xffffffffffffff00),
495 (LZRG bdxaddr20only:$src)>;
499 let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
500 def LAT : UnaryRXY<"lat", 0xE39F, null_frag, GR32, 4>;
501 def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>;
502 def LGAT : UnaryRXY<"lgat", 0xE385, null_frag, GR64, 8>;
506 let SimpleBDXStore = 1, mayStore = 1 in {
507 // Expands to ST, STY or STFH, depending on the choice of register.
508 def STMux : StoreRXYPseudo<store, GRX32, 4>,
509 Requires<[FeatureHighWord]>;
510 defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>;
511 def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>,
512 Requires<[FeatureHighWord]>;
513 def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>;
515 // These instructions are split after register allocation, so we don't
516 // want a custom inserter.
517 let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in {
518 def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst),
519 [(store GR128:$src, bdxaddr20only128:$dst)]>;
522 def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>;
523 def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>;
525 // 8-bit immediate stores to 8-bit fields.
526 defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>;
528 // 16-bit immediate stores to 16-, 32- or 64-bit fields.
529 def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>;
530 def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>;
531 def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>;
533 // Memory-to-memory moves.
534 let mayLoad = 1, mayStore = 1 in
535 defm MVC : MemorySS<"mvc", 0xD2, z_mvc>;
536 let mayLoad = 1, mayStore = 1, Defs = [CC] in {
537 def MVCL : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>;
538 def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>;
539 def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>;
542 // Memset[Length][Byte] pseudos.
543 def MemsetImmImm : MemsetPseudo<imm64, imm32zx8trunc>;
544 def MemsetImmReg : MemsetPseudo<imm64, GR32>;
545 def MemsetRegImm : MemsetPseudo<ADDR64, imm32zx8trunc>;
546 def MemsetRegReg : MemsetPseudo<ADDR64, GR32>;
549 let Predicates = [FeatureMiscellaneousExtensions3],
550 mayLoad = 1, mayStore = 1, Uses = [R0L] in
551 def MVCRL : SideEffectBinarySSE<"mvcrl", 0xE50A>;
554 let mayLoad = 1, mayStore = 1, Defs = [CC] in
555 defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>;
557 //===----------------------------------------------------------------------===//
558 // Conditional move instructions
559 //===----------------------------------------------------------------------===//
561 let Predicates = [FeatureMiscellaneousExtensions3], Uses = [CC] in {
563 let isCommutable = 1 in {
564 // Expands to SELR or SELFHR or a branch-and-move sequence,
565 // depending on the choice of registers.
566 def SELRMux : CondBinaryRRFaPseudo<"MUXselr", GRX32, GRX32, GRX32>;
567 defm SELFHR : CondBinaryRRFaPair<"selfhr", 0xB9C0, GRH32, GRH32, GRH32>;
568 defm SELR : CondBinaryRRFaPair<"selr", 0xB9F0, GR32, GR32, GR32>;
569 defm SELGR : CondBinaryRRFaPair<"selgr", 0xB9E3, GR64, GR64, GR64>;
572 // Define AsmParser extended mnemonics for each general condition-code mask.
573 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
574 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
575 def SELRAsm#V : FixedCondBinaryRRFa<CV<V>, "selr", 0xB9F0,
577 def SELFHRAsm#V : FixedCondBinaryRRFa<CV<V>, "selfhr", 0xB9C0,
578 GRH32, GRH32, GRH32>;
579 def SELGRAsm#V : FixedCondBinaryRRFa<CV<V>, "selgr", 0xB9E3,
584 let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in {
585 // Load immediate on condition. Matched via DAG pattern and created
586 // by the PeepholeOptimizer via FoldImmediate.
588 // Expands to LOCHI or LOCHHI, depending on the choice of register.
589 def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>;
590 defm LOCHHI : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>;
591 defm LOCHI : CondBinaryRIEPair<"lochi", 0xEC42, GR32, imm32sx16>;
592 defm LOCGHI : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>;
594 // Move register on condition. Matched via DAG pattern and
595 // created by early if-conversion.
596 let isCommutable = 1 in {
597 // Expands to LOCR or LOCFHR or a branch-and-move sequence,
598 // depending on the choice of registers.
599 def LOCRMux : CondBinaryRRFPseudo<"MUXlocr", GRX32, GRX32>;
600 defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>;
603 // Load on condition. Matched via DAG pattern.
604 // Expands to LOC or LOCFH, depending on the choice of register.
605 defm LOCMux : CondUnaryRSYPseudoAndMemFold<"MUXloc", simple_load, GRX32, 4>;
606 defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, simple_load, GRH32, 4>;
608 // Store on condition. Expanded from CondStore* pseudos.
609 // Expands to STOC or STOCFH, depending on the choice of register.
610 def STOCMux : CondStoreRSYPseudo<GRX32, 4>;
611 defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>;
613 // Define AsmParser extended mnemonics for each general condition-code mask.
614 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
615 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
616 def LOCHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochi", 0xEC42, GR32,
618 def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64,
620 def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32,
622 def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>;
623 def LOCFHAsm#V : FixedCondUnaryRSY<CV<V>, "locfh", 0xEBE0, GRH32, 4>;
624 def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>;
628 let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in {
629 // Move register on condition. Matched via DAG pattern and
630 // created by early if-conversion.
631 let isCommutable = 1 in {
632 defm LOCR : CondBinaryRRFPair<"locr", 0xB9F2, GR32, GR32>;
633 defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>;
636 // Load on condition. Matched via DAG pattern.
637 defm LOC : CondUnaryRSYPair<"loc", 0xEBF2, simple_load, GR32, 4>;
638 defm LOCG : CondUnaryRSYPairAndMemFold<"locg", 0xEBE2, simple_load, GR64, 8>;
640 // Store on condition. Expanded from CondStore* pseudos.
641 defm STOC : CondStoreRSYPair<"stoc", 0xEBF3, GR32, 4>;
642 defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>;
644 // Define AsmParser extended mnemonics for each general condition-code mask.
645 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
646 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
647 def LOCRAsm#V : FixedCondBinaryRRF<CV<V>, "locr", 0xB9F2, GR32, GR32>;
648 def LOCGRAsm#V : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>;
649 def LOCAsm#V : FixedCondUnaryRSY<CV<V>, "loc", 0xEBF2, GR32, 4>;
650 def LOCGAsm#V : FixedCondUnaryRSY<CV<V>, "locg", 0xEBE2, GR64, 8>;
651 def STOCAsm#V : FixedCondStoreRSY<CV<V>, "stoc", 0xEBF3, GR32, 4>;
652 def STOCGAsm#V : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>;
655 //===----------------------------------------------------------------------===//
657 //===----------------------------------------------------------------------===//
659 // Note that putting these before zero extensions mean that we will prefer
660 // them for anyextload*. There's not really much to choose between the two
661 // either way, but signed-extending loads have a short LH and a long LHY,
662 // while zero-extending loads have only the long LLH.
664 //===----------------------------------------------------------------------===//
666 // 32-bit extensions from registers.
667 def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>;
668 def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>;
670 // 64-bit extensions from registers.
671 def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>;
672 def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>;
673 def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>;
675 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
676 def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>;
678 // Match 32-to-64-bit sign extensions in which the source is already
679 // in a 64-bit register.
680 def : Pat<(sext_inreg GR64:$src, i32),
681 (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
683 // 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH,
684 // depending on the choice of register.
685 def LBMux : UnaryRXYPseudo<"lb", z_asextloadi8, GRX32, 1>,
686 Requires<[FeatureHighWord]>;
687 def LB : UnaryRXY<"lb", 0xE376, z_asextloadi8, GR32, 1>;
688 def LBH : UnaryRXY<"lbh", 0xE3C0, z_asextloadi8, GRH32, 1>,
689 Requires<[FeatureHighWord]>;
691 // 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH,
692 // depending on the choice of register.
693 def LHMux : UnaryRXYPseudo<"lh", z_asextloadi16, GRX32, 2>,
694 Requires<[FeatureHighWord]>;
695 defm LH : UnaryRXPair<"lh", 0x48, 0xE378, z_asextloadi16, GR32, 2>;
696 def LHH : UnaryRXY<"lhh", 0xE3C4, z_asextloadi16, GRH32, 2>,
697 Requires<[FeatureHighWord]>;
698 def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_z_asextloadi16, GR32>;
700 // 64-bit extensions from memory.
701 def LGB : UnaryRXY<"lgb", 0xE377, z_asextloadi8, GR64, 1>;
702 def LGH : UnaryRXY<"lgh", 0xE315, z_asextloadi16, GR64, 2>;
703 def LGF : UnaryRXY<"lgf", 0xE314, z_asextloadi32, GR64, 4>;
704 def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_z_asextloadi16, GR64>;
705 def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_z_asextloadi32, GR64>;
706 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in
707 def LTGF : UnaryRXY<"ltgf", 0xE332, z_asextloadi32, GR64, 4>;
709 //===----------------------------------------------------------------------===//
711 //===----------------------------------------------------------------------===//
713 // 32-bit extensions from registers.
715 // Expands to LLCR or RISB[LH]G, depending on the choice of registers.
716 def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>,
717 Requires<[FeatureHighWord]>;
718 def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>;
719 // Expands to LLHR or RISB[LH]G, depending on the choice of registers.
720 def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>,
721 Requires<[FeatureHighWord]>;
722 def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>;
724 // 64-bit extensions from registers.
725 def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>;
726 def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>;
727 def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>;
729 // Match 32-to-64-bit zero extensions in which the source is already
730 // in a 64-bit register.
731 def : Pat<(and GR64:$src, 0xffffffff),
732 (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>;
734 // 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH,
735 // depending on the choice of register.
736 def LLCMux : UnaryRXYPseudo<"llc", z_azextloadi8, GRX32, 1>,
737 Requires<[FeatureHighWord]>;
738 def LLC : UnaryRXY<"llc", 0xE394, z_azextloadi8, GR32, 1>;
739 def LLCH : UnaryRXY<"llch", 0xE3C2, z_azextloadi8, GRH32, 1>,
740 Requires<[FeatureHighWord]>;
742 // 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH,
743 // depending on the choice of register.
744 def LLHMux : UnaryRXYPseudo<"llh", z_azextloadi16, GRX32, 2>,
745 Requires<[FeatureHighWord]>;
746 def LLH : UnaryRXY<"llh", 0xE395, z_azextloadi16, GR32, 2>;
747 def LLHH : UnaryRXY<"llhh", 0xE3C6, z_azextloadi16, GRH32, 2>,
748 Requires<[FeatureHighWord]>;
749 def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_z_azextloadi16, GR32>;
751 // 64-bit extensions from memory.
752 def LLGC : UnaryRXY<"llgc", 0xE390, z_azextloadi8, GR64, 1>;
753 def LLGH : UnaryRXY<"llgh", 0xE391, z_azextloadi16, GR64, 2>;
754 def LLGF : UnaryRXY<"llgf", 0xE316, z_azextloadi32, GR64, 4>;
755 def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_z_azextloadi16, GR64>;
756 def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_z_azextloadi32, GR64>;
758 // 31-to-64-bit zero extensions.
759 def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>;
760 def LLGT : UnaryRXY<"llgt", 0xE317, null_frag, GR64, 4>;
761 def : Pat<(and GR64:$src, 0x7fffffff),
763 def : Pat<(and (i64 (z_azextloadi32 bdxaddr20only:$src)), 0x7fffffff),
764 (LLGT bdxaddr20only:$src)>;
766 // Load and zero rightmost byte.
767 let Predicates = [FeatureLoadAndZeroRightmostByte] in {
768 def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>;
769 def : Pat<(and (i64 (z_azextloadi32 bdxaddr20only:$src)), 0xffffff00),
770 (LLZRGF bdxaddr20only:$src)>;
774 let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in {
775 def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>;
776 def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>;
779 // Extend GR64s to GR128s.
780 let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
781 def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
783 //===----------------------------------------------------------------------===//
785 //===----------------------------------------------------------------------===//
787 // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext.
788 def : Pat<(i64 (anyext GR32:$src)),
789 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>;
791 // Extend GR64s to GR128s.
792 let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
793 def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>;
795 //===----------------------------------------------------------------------===//
797 //===----------------------------------------------------------------------===//
799 // Truncations of 64-bit registers to 32-bit registers.
800 def : Pat<(i32 (trunc GR64:$src)),
801 (EXTRACT_SUBREG GR64:$src, subreg_l32)>;
803 // Truncations of 32-bit registers to 8-bit memory. STCMux expands to
804 // STC, STCY or STCH, depending on the choice of register.
805 def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>,
806 Requires<[FeatureHighWord]>;
807 defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>;
808 def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>,
809 Requires<[FeatureHighWord]>;
811 // Truncations of 32-bit registers to 16-bit memory. STHMux expands to
812 // STH, STHY or STHH, depending on the choice of register.
813 def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>,
814 Requires<[FeatureHighWord]>;
815 defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>;
816 def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>,
817 Requires<[FeatureHighWord]>;
818 def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>;
820 // Truncations of 64-bit registers to memory.
821 defm : StoreGR64Pair<STC, STCY, truncstorei8>;
822 defm : StoreGR64Pair<STH, STHY, truncstorei16>;
823 def : StoreGR64PC<STHRL, aligned_truncstorei16>;
824 defm : StoreGR64Pair<ST, STY, truncstorei32>;
825 def : StoreGR64PC<STRL, aligned_truncstorei32>;
827 // Store characters under mask -- not (yet) used for codegen.
828 defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>;
829 def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>;
831 //===----------------------------------------------------------------------===//
832 // Multi-register moves
833 //===----------------------------------------------------------------------===//
835 // Multi-register loads.
836 defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>;
837 def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>;
838 def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>;
839 def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>;
841 // Multi-register stores.
842 defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>;
843 def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>;
844 def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>;
846 //===----------------------------------------------------------------------===//
848 //===----------------------------------------------------------------------===//
850 // Byte-swapping register moves.
851 def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>;
852 def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>;
854 // Byte-swapping loads.
855 def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>;
856 def LRV : UnaryRXY<"lrv", 0xE31E, z_loadbswap32, GR32, 4>;
857 def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>;
859 // Byte-swapping stores.
860 def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>;
861 def STRV : StoreRXY<"strv", 0xE33E, z_storebswap32, GR32, 4>;
862 def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>;
864 // Byte-swapping memory-to-memory moves.
865 let mayLoad = 1, mayStore = 1 in
866 def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>;
868 //===----------------------------------------------------------------------===//
869 // Load address instructions
870 //===----------------------------------------------------------------------===//
872 // Load BDX-style addresses.
873 let isAsCheapAsAMove = 1, isReMaterializable = 1 in
874 defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>;
876 // Load a PC-relative address. There's no version of this instruction
877 // with a 16-bit offset, so there's no relaxation.
878 let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
879 def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>;
881 // Load the Global Offset Table address. This will be lowered into a
882 // larl $R1, _GLOBAL_OFFSET_TABLE_
884 def GOT : Alias<6, (outs GR64:$R1), (ins),
885 [(set GR64:$R1, (global_offset_table))]>;
887 // Load (logical) indexed address.
888 let Predicates = [FeatureMiscellaneousExtensions4] in {
889 defm LXAB : LoadIndexedAddressRXY<"lxab", 0xE360, sext32>;
890 defm LXAH : LoadIndexedAddressRXY<"lxah", 0xE362, sext32, shl1>;
891 defm LXAF : LoadIndexedAddressRXY<"lxaf", 0xE364, sext32, shl2>;
892 defm LXAG : LoadIndexedAddressRXY<"lxag", 0xE366, sext32, shl3>;
893 defm LXAQ : LoadIndexedAddressRXY<"lxaq", 0xE368, sext32, shl4>;
894 defm LLXAB : LoadIndexedAddressRXY<"llxab", 0xE361, zext32>;
895 defm LLXAH : LoadIndexedAddressRXY<"llxah", 0xE363, zext32, shl1>;
896 defm LLXAF : LoadIndexedAddressRXY<"llxaf", 0xE365, zext32, shl2>;
897 defm LLXAG : LoadIndexedAddressRXY<"llxag", 0xE367, zext32, shl3>;
898 defm LLXAQ : LoadIndexedAddressRXY<"llxaq", 0xE369, zext32, shl4>;
900 // Peepholes to use load (logical) indexed address to implement
901 // add + shift of an already extended value.
902 def : Pat<(add ADDR64:$base, (shl1 (assertsext32 ADDR64:$index))),
903 (LXAH ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
904 def : Pat<(add ADDR64:$base, (shl2 (assertsext32 ADDR64:$index))),
905 (LXAF ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
906 def : Pat<(add ADDR64:$base, (shl3 (assertsext32 ADDR64:$index))),
907 (LXAG ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
908 def : Pat<(add ADDR64:$base, (shl4 (assertsext32 ADDR64:$index))),
909 (LXAQ ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
910 def : Pat<(add ADDR64:$base, (shl1 (assertzext32 ADDR64:$index))),
911 (LLXAH ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
912 def : Pat<(add ADDR64:$base, (shl2 (assertzext32 ADDR64:$index))),
913 (LLXAF ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
914 def : Pat<(add ADDR64:$base, (shl3 (assertzext32 ADDR64:$index))),
915 (LLXAG ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
916 def : Pat<(add ADDR64:$base, (shl4 (assertzext32 ADDR64:$index))),
917 (LLXAQ ADDR64:$base, 0, (EXTRACT_SUBREG ADDR64:$index, subreg_l32))>;
920 //===----------------------------------------------------------------------===//
921 // Absolute and Negation
922 //===----------------------------------------------------------------------===//
925 let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
926 def LPR : UnaryRR <"lpr", 0x10, abs, GR32, GR32>;
927 def LPGR : UnaryRRE<"lpgr", 0xB900, abs, GR64, GR64>;
929 let CCValues = 0xE, CompareZeroCCMask = 0xE in
930 def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>;
932 defm : SXU<abs, LPGFR>;
935 let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
936 def LNR : UnaryRR <"lnr", 0x11, z_inegabs, GR32, GR32>;
937 def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>;
939 let CCValues = 0xE, CompareZeroCCMask = 0xE in
940 def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>;
942 defm : SXU<z_inegabs, LNGFR>;
945 let CCValues = 0xF, CompareZeroCCMask = 0x8 in {
946 def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>;
947 def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>;
949 let CCValues = 0xE, CompareZeroCCMask = 0xE in
950 def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>;
952 defm : SXU<ineg, LCGFR>;
954 //===----------------------------------------------------------------------===//
956 //===----------------------------------------------------------------------===//
958 let isCodeGenOnly = 1 in
959 defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, z_azextloadi8, 1>;
960 defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, z_azextloadi8, 1>;
962 defm : InsertMem<"inserti8", IC32, GR32, z_azextloadi8, bdxaddr12pair>;
963 defm : InsertMem<"inserti8", IC32Y, GR32, z_azextloadi8, bdxaddr20pair>;
965 defm : InsertMem<"inserti8", IC, GR64, z_azextloadi8, bdxaddr12pair>;
966 defm : InsertMem<"inserti8", ICY, GR64, z_azextloadi8, bdxaddr20pair>;
968 // Insert characters under mask -- not (yet) used for codegen.
970 defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>;
971 def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>;
974 // Insertions of a 16-bit immediate, leaving other bits unaffected.
975 // We don't have or_as_insert equivalents of these operations because
976 // OI is available instead.
978 // IIxMux expands to II[LH]x, depending on the choice of register.
979 def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>,
980 Requires<[FeatureHighWord]>;
981 def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>,
982 Requires<[FeatureHighWord]>;
983 def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>;
984 def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>;
985 def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>;
986 def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>;
987 def IILL64 : BinaryAliasRI<insertll64, GR64, imm64ll16>;
988 def IILH64 : BinaryAliasRI<insertlh64, GR64, imm64lh16>;
989 def IIHL64 : BinaryAliasRI<inserthl64, GR64, imm64hl16>;
990 def IIHH64 : BinaryAliasRI<inserthh64, GR64, imm64hh16>;
992 // ...likewise for 32-bit immediates. For GR32s this is a general
993 // full-width move. (We use IILF rather than something like LLILF
994 // for 32-bit moves because IILF leaves the upper 32 bits of the
996 let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
997 def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
998 Requires<[FeatureHighWord]>;
999 def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
1000 def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
1002 def LFI : InstAlias<"lfi\t$R1, $RI1", (IILF GR32:$R1, uimm32:$RI1)>;
1003 def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
1004 def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
1006 // An alternative model of inserthf, with the first operand being
1007 // a zero-extended value.
1008 def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
1009 (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
1012 //===----------------------------------------------------------------------===//
1014 //===----------------------------------------------------------------------===//
1016 // Addition producing a signed overflow flag.
1017 let Defs = [CC], CCValues = 0xF, CCIfNoSignedWrap = 1 in {
1018 // Addition of a register.
1019 let isCommutable = 1 in {
1020 defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>;
1021 defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>;
1023 def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>;
1025 // Addition to a high register.
1026 def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>,
1027 Requires<[FeatureHighWord]>;
1028 def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>,
1029 Requires<[FeatureHighWord]>;
1031 // Addition of signed 16-bit immediates.
1032 defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>;
1033 defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>;
1034 defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>;
1036 // Addition of signed 32-bit immediates.
1037 def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>,
1038 Requires<[FeatureHighWord]>;
1039 def AFI : BinaryRIL<"afi", 0xC29, z_sadd, GR32, simm32>;
1040 def AIH : BinaryRIL<"aih", 0xCC8, z_sadd, GRH32, simm32>,
1041 Requires<[FeatureHighWord]>;
1042 def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>;
1044 // Addition of memory.
1045 defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, z_asextloadi16, 2>;
1046 defm A : BinaryRXPairAndPseudo<"a", 0x5A, 0xE35A, z_sadd, GR32, z_load, 4>;
1047 def AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, z_asextloadi16, 2>,
1048 Requires<[FeatureMiscellaneousExtensions2]>;
1049 def AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, z_asextloadi32, 4>;
1050 defm AG : BinaryRXYAndPseudo<"ag", 0xE308, z_sadd, GR64, z_load, 8>;
1052 // Addition to memory.
1053 def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>;
1054 def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>;
1056 defm : SXB<z_sadd, GR64, AGFR>;
1058 // Addition producing a carry.
1059 let Defs = [CC], CCValues = 0xF, IsLogical = 1 in {
1060 // Addition of a register.
1061 let isCommutable = 1 in {
1062 defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>;
1063 defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>;
1065 def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>;
1067 // Addition to a high register.
1068 def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>,
1069 Requires<[FeatureHighWord]>;
1070 def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>,
1071 Requires<[FeatureHighWord]>;
1073 // Addition of signed 16-bit immediates.
1074 def ALHSIK : BinaryRIE<"alhsik", 0xECDA, z_uadd, GR32, imm32sx16>,
1075 Requires<[FeatureDistinctOps]>;
1076 def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>,
1077 Requires<[FeatureDistinctOps]>;
1079 // Addition of unsigned 32-bit immediates.
1080 def ALFI : BinaryRIL<"alfi", 0xC2B, z_uadd, GR32, uimm32>;
1081 def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>;
1083 // Addition of signed 32-bit immediates.
1084 def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>,
1085 Requires<[FeatureHighWord]>;
1087 // Addition of memory.
1088 defm AL : BinaryRXPairAndPseudo<"al", 0x5E, 0xE35E, z_uadd, GR32, z_load, 4>;
1089 def ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, z_azextloadi32, 4>;
1090 defm ALG : BinaryRXYAndPseudo<"alg", 0xE30A, z_uadd, GR64, z_load, 8>;
1092 // Addition to memory.
1093 def ALSI : BinarySIY<"alsi", 0xEB6E, null_frag, imm32sx8>;
1094 def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>;
1096 defm : ZXB<z_uadd, GR64, ALGFR>;
1098 // Addition producing and using a carry.
1099 let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1100 // Addition of a register.
1101 def ALCR : BinaryRRE<"alcr", 0xB998, z_addcarry, GR32, GR32>;
1102 def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>;
1104 // Addition of memory.
1105 def ALC : BinaryRXY<"alc", 0xE398, z_addcarry, GR32, z_load, 4>;
1106 def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, z_load, 8>;
1109 // Addition that does not modify the condition code.
1110 def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>,
1111 Requires<[FeatureHighWord]>;
1114 //===----------------------------------------------------------------------===//
1116 //===----------------------------------------------------------------------===//
1118 // Subtraction producing a signed overflow flag.
1119 let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8,
1120 CCIfNoSignedWrap = 1 in {
1121 // Subtraction of a register.
1122 defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>;
1123 def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>;
1124 defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>;
1126 // Subtraction from a high register.
1127 def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>,
1128 Requires<[FeatureHighWord]>;
1129 def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>,
1130 Requires<[FeatureHighWord]>;
1132 // Subtraction of memory.
1133 defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, z_asextloadi16, 2>;
1134 defm S : BinaryRXPairAndPseudo<"s", 0x5B, 0xE35B, z_ssub, GR32, z_load, 4>;
1135 def SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, z_asextloadi16, 2>,
1136 Requires<[FeatureMiscellaneousExtensions2]>;
1137 def SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, z_asextloadi32, 4>;
1138 defm SG : BinaryRXYAndPseudo<"sg", 0xE309, z_ssub, GR64, z_load, 8>;
1140 defm : SXB<z_ssub, GR64, SGFR>;
1142 // Subtracting an immediate is the same as adding the negated immediate.
1143 let AddedComplexity = 1 in {
1144 def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1145 (AHIMux GR32:$src1, imm32sx16n:$src2)>,
1146 Requires<[FeatureHighWord]>;
1147 def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1148 (AFIMux GR32:$src1, simm32n:$src2)>,
1149 Requires<[FeatureHighWord]>;
1150 def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2),
1151 (AHI GR32:$src1, imm32sx16n:$src2)>;
1152 def : Pat<(z_ssub GR32:$src1, simm32n:$src2),
1153 (AFI GR32:$src1, simm32n:$src2)>;
1154 def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2),
1155 (AGHI GR64:$src1, imm64sx16n:$src2)>;
1156 def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2),
1157 (AGFI GR64:$src1, imm64sx32n:$src2)>;
1160 // And vice versa in one special case, where we need to load a
1161 // constant into a register in any case, but the negated constant
1162 // requires fewer instructions to load.
1163 def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2),
1164 (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>;
1165 def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2),
1166 (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>;
1168 // Subtraction producing a carry.
1169 let Defs = [CC], CCValues = 0x7, IsLogical = 1 in {
1170 // Subtraction of a register.
1171 defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>;
1172 def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>;
1173 defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>;
1175 // Subtraction from a high register.
1176 def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>,
1177 Requires<[FeatureHighWord]>;
1178 def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>,
1179 Requires<[FeatureHighWord]>;
1181 // Subtraction of unsigned 32-bit immediates.
1182 def SLFI : BinaryRIL<"slfi", 0xC25, z_usub, GR32, uimm32>;
1183 def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>;
1185 // Subtraction of memory.
1186 defm SL : BinaryRXPairAndPseudo<"sl", 0x5F, 0xE35F, z_usub, GR32, z_load, 4>;
1187 def SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, z_azextloadi32, 4>;
1188 defm SLG : BinaryRXYAndPseudo<"slg", 0xE30B, z_usub, GR64, z_load, 8>;
1190 defm : ZXB<z_usub, GR64, SLGFR>;
1192 // Subtracting an immediate is the same as adding the negated immediate.
1193 let AddedComplexity = 1 in {
1194 def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2),
1195 (ALHSIK GR32:$src1, imm32sx16n:$src2)>,
1196 Requires<[FeatureDistinctOps]>;
1197 def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2),
1198 (ALGHSIK GR64:$src1, imm64sx16n:$src2)>,
1199 Requires<[FeatureDistinctOps]>;
1202 // And vice versa in one special case (but we prefer addition).
1203 def : Pat<(add GR64:$src1, imm64zx32n:$src2),
1204 (SLGFI GR64:$src1, imm64zx32n:$src2)>;
1206 // Subtraction producing and using a carry.
1207 let Defs = [CC], Uses = [CC], CCValues = 0xF, IsLogical = 1 in {
1208 // Subtraction of a register.
1209 def SLBR : BinaryRRE<"slbr", 0xB999, z_subcarry, GR32, GR32>;
1210 def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>;
1212 // Subtraction of memory.
1213 def SLB : BinaryRXY<"slb", 0xE399, z_subcarry, GR32, z_load, 4>;
1214 def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, z_load, 8>;
1218 //===----------------------------------------------------------------------===//
1220 //===----------------------------------------------------------------------===//
1222 let Defs = [CC] in {
1223 // ANDs of a register.
1224 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1225 defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>;
1226 defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>;
1229 let isConvertibleToThreeAddress = 1 in {
1230 // ANDs of a 16-bit immediate, leaving other bits unaffected.
1231 // The CC result only reflects the 16-bit field, not the full register.
1233 // NIxMux expands to NI[LH]x, depending on the choice of register.
1234 def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>,
1235 Requires<[FeatureHighWord]>;
1236 def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>,
1237 Requires<[FeatureHighWord]>;
1238 def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>;
1239 def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>;
1240 def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>;
1241 def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>;
1242 def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>;
1243 def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>;
1244 def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>;
1245 def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>;
1247 // ANDs of a 32-bit immediate, leaving other bits unaffected.
1248 // The CC result only reflects the 32-bit field, which means we can
1249 // use it as a zero indicator for i32 operations but not otherwise.
1250 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1251 // Expands to NILF or NIHF, depending on the choice of register.
1252 def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>,
1253 Requires<[FeatureHighWord]>;
1254 def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>;
1255 def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>;
1257 def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>;
1258 def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>;
1262 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1263 defm N : BinaryRXPairAndPseudo<"n", 0x54, 0xE354, and, GR32, z_load, 4>;
1264 defm NG : BinaryRXYAndPseudo<"ng", 0xE380, and, GR64, z_load, 8>;
1268 defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>;
1271 let mayLoad = 1, mayStore = 1 in
1272 defm NC : MemorySS<"nc", 0xD4, z_nc>;
1274 defm : RMWIByte<and, bdaddr12pair, NI>;
1275 defm : RMWIByte<and, bdaddr20pair, NIY>;
1277 //===----------------------------------------------------------------------===//
1279 //===----------------------------------------------------------------------===//
1281 let Defs = [CC] in {
1282 // ORs of a register.
1283 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1284 defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>;
1285 defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>;
1288 // ORs of a 16-bit immediate, leaving other bits unaffected.
1289 // The CC result only reflects the 16-bit field, not the full register.
1291 // OIxMux expands to OI[LH]x, depending on the choice of register.
1292 def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>,
1293 Requires<[FeatureHighWord]>;
1294 def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>,
1295 Requires<[FeatureHighWord]>;
1296 def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>;
1297 def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>;
1298 def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>;
1299 def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>;
1300 def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>;
1301 def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>;
1302 def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>;
1303 def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>;
1305 // ORs of a 32-bit immediate, leaving other bits unaffected.
1306 // The CC result only reflects the 32-bit field, which means we can
1307 // use it as a zero indicator for i32 operations but not otherwise.
1308 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1309 // Expands to OILF or OIHF, depending on the choice of register.
1310 def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>,
1311 Requires<[FeatureHighWord]>;
1312 def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>;
1313 def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>;
1315 def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>;
1316 def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>;
1319 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1320 defm O : BinaryRXPairAndPseudo<"o", 0x56, 0xE356, or, GR32, z_load, 4>;
1321 defm OG : BinaryRXYAndPseudo<"og", 0xE381, or, GR64, z_load, 8>;
1325 defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>;
1328 let mayLoad = 1, mayStore = 1 in
1329 defm OC : MemorySS<"oc", 0xD6, z_oc>;
1331 defm : RMWIByte<or, bdaddr12pair, OI>;
1332 defm : RMWIByte<or, bdaddr20pair, OIY>;
1334 //===----------------------------------------------------------------------===//
1336 //===----------------------------------------------------------------------===//
1338 let Defs = [CC] in {
1339 // XORs of a register.
1340 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1341 defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>;
1342 defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>;
1345 // XORs of a 32-bit immediate, leaving other bits unaffected.
1346 // The CC result only reflects the 32-bit field, which means we can
1347 // use it as a zero indicator for i32 operations but not otherwise.
1348 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1349 // Expands to XILF or XIHF, depending on the choice of register.
1350 def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>,
1351 Requires<[FeatureHighWord]>;
1352 def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>;
1353 def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>;
1355 def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>;
1356 def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>;
1359 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1360 defm X : BinaryRXPairAndPseudo<"x",0x57, 0xE357, xor, GR32, z_load, 4>;
1361 defm XG : BinaryRXYAndPseudo<"xg", 0xE382, xor, GR64, z_load, 8>;
1365 defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>;
1368 let mayLoad = 1, mayStore = 1 in
1369 defm XC : MemorySS<"xc", 0xD7, z_xc>;
1371 defm : RMWIByte<xor, bdaddr12pair, XI>;
1372 defm : RMWIByte<xor, bdaddr20pair, XIY>;
1374 //===----------------------------------------------------------------------===//
1375 // Combined logical operations
1376 //===----------------------------------------------------------------------===//
1378 let Predicates = [FeatureMiscellaneousExtensions3],
1380 // AND with complement.
1381 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1382 def NCRK : BinaryRRFa<"ncrk", 0xB9F5, andc, GR32, GR32, GR32>;
1383 def NCGRK : BinaryRRFa<"ncgrk", 0xB9E5, andc, GR64, GR64, GR64>;
1386 // OR with complement.
1387 let CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1388 def OCRK : BinaryRRFa<"ocrk", 0xB975, orc, GR32, GR32, GR32>;
1389 def OCGRK : BinaryRRFa<"ocgrk", 0xB965, orc, GR64, GR64, GR64>;
1393 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1394 def NNRK : BinaryRRFa<"nnrk", 0xB974, nand, GR32, GR32, GR32>;
1395 def NNGRK : BinaryRRFa<"nngrk", 0xB964, nand, GR64, GR64, GR64>;
1399 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1400 def NORK : BinaryRRFa<"nork", 0xB976, nor, GR32, GR32, GR32>;
1401 def NOGRK : BinaryRRFa<"nogrk", 0xB966, nor, GR64, GR64, GR64>;
1402 let isAsmParserOnly = 1 in {
1403 def NOTR : UnaryRRFa<"notr", 0xB976, nor, GR32, GR32>;
1404 def NOTGR : UnaryRRFa<"notgr", 0xB966, nor, GR64, GR64>;
1409 let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in {
1410 def NXRK : BinaryRRFa<"nxrk", 0xB977, nxor, GR32, GR32, GR32>;
1411 def NXGRK : BinaryRRFa<"nxgrk", 0xB967, nxor, GR64, GR64, GR64>;
1415 //===----------------------------------------------------------------------===//
1417 //===----------------------------------------------------------------------===//
1419 // Multiplication of a register, setting the condition code. We prefer these
1420 // over MS(G)R if available, even though we cannot use the condition code,
1421 // since they are three-operand instructions.
1422 let Predicates = [FeatureMiscellaneousExtensions2],
1423 Defs = [CC], isCommutable = 1 in {
1424 def MSRKC : BinaryRRFa<"msrkc", 0xB9FD, mul, GR32, GR32, GR32>;
1425 def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>;
1428 // Multiplication of a register.
1429 let isCommutable = 1 in {
1430 def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>;
1431 def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>;
1433 def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>;
1434 defm : SXB<mul, GR64, MSGFR>;
1436 // Multiplication of a signed 16-bit immediate.
1437 def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>;
1438 def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>;
1440 // Multiplication of a signed 32-bit immediate.
1441 def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>;
1442 def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>;
1444 // Multiplication of memory.
1445 defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, z_asextloadi16, 2>;
1446 defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, z_load, 4>;
1447 def MGH : BinaryRXY<"mgh", 0xE33C, mul, GR64, z_asextloadi16, 2>,
1448 Requires<[FeatureMiscellaneousExtensions2]>;
1449 def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, z_asextloadi32, 4>;
1450 def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, z_load, 8>;
1452 // Multiplication of memory, setting the condition code.
1453 let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in {
1454 defm MSC : BinaryRXYAndPseudo<"msc", 0xE353, null_frag, GR32, z_load, 4>;
1455 defm MSGC : BinaryRXYAndPseudo<"msgc", 0xE383, null_frag, GR64, z_load, 8>;
1458 // Multiplication of a register, producing two results.
1459 def MR : BinaryRR <"mr", 0x1C, null_frag, GR128, GR32>;
1460 def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>,
1461 Requires<[FeatureMiscellaneousExtensions2]>;
1462 def MLR : BinaryRRE<"mlr", 0xB996, null_frag, GR128, GR32>;
1463 def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>;
1465 def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2),
1466 (MGRK GR64:$src1, GR64:$src2)>;
1467 def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2),
1468 (MLGR (AEXT128 GR64:$src1), GR64:$src2)>;
1470 // Multiplication of memory, producing two results.
1471 def M : BinaryRX <"m", 0x5C, null_frag, GR128, z_load, 4>;
1472 def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, z_load, 4>;
1473 def MG : BinaryRXY<"mg", 0xE384, null_frag, GR128, z_load, 8>,
1474 Requires<[FeatureMiscellaneousExtensions2]>;
1475 def ML : BinaryRXY<"ml", 0xE396, null_frag, GR128, z_load, 4>;
1476 def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, z_load, 8>;
1478 def : Pat<(z_smul_lohi GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1479 (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1480 def : Pat<(z_umul_lohi GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1481 (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1483 //===----------------------------------------------------------------------===//
1484 // Division and remainder
1485 //===----------------------------------------------------------------------===//
1487 let hasSideEffects = 1 in { // Do not speculatively execute.
1488 // Division and remainder, from registers.
1489 def DR : BinaryRR <"dr", 0x1D, null_frag, GR128, GR32>;
1490 def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>;
1491 def DSGR : BinaryRRE<"dsgr", 0xB90D, null_frag, GR128, GR64>;
1492 def DLR : BinaryRRE<"dlr", 0xB997, null_frag, GR128, GR32>;
1493 def DLGR : BinaryRRE<"dlgr", 0xB987, null_frag, GR128, GR64>;
1495 // Division and remainder, from memory.
1496 def D : BinaryRX <"d", 0x5D, null_frag, GR128, z_load, 4>;
1497 def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, z_load, 4>;
1498 def DSG : BinaryRXY<"dsg", 0xE30D, null_frag, GR128, z_load, 8>;
1499 def DL : BinaryRXY<"dl", 0xE397, null_frag, GR128, z_load, 4>;
1500 def DLG : BinaryRXY<"dlg", 0xE387, null_frag, GR128, z_load, 8>;
1502 def : Pat<(z_sdivrem GR64:$src1, GR32:$src2),
1503 (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>;
1504 def : Pat<(z_sdivrem GR64:$src1, (i32 (z_load bdxaddr20only:$src2))),
1505 (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1506 def : Pat<(z_sdivrem GR64:$src1, GR64:$src2),
1507 (DSGR (AEXT128 GR64:$src1), GR64:$src2)>;
1508 def : Pat<(z_sdivrem GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1509 (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1511 def : Pat<(z_udivrem GR32:$src1, GR32:$src2),
1512 (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1513 subreg_l32)), GR32:$src2)>;
1514 def : Pat<(z_udivrem GR32:$src1, (i32 (z_load bdxaddr20only:$src2))),
1515 (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1,
1516 subreg_l32)), bdxaddr20only:$src2)>;
1517 def : Pat<(z_udivrem GR64:$src1, GR64:$src2),
1518 (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>;
1519 def : Pat<(z_udivrem GR64:$src1, (i64 (z_load bdxaddr20only:$src2))),
1520 (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>;
1522 //===----------------------------------------------------------------------===//
1524 //===----------------------------------------------------------------------===//
1526 // Logical shift left.
1527 defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>;
1528 def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>;
1529 def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>;
1531 // Arithmetic shift left.
1532 let Defs = [CC] in {
1533 defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>;
1534 def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>;
1535 def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>;
1538 // Logical shift right.
1539 defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>;
1540 def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>;
1541 def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>;
1543 // Arithmetic shift right.
1544 let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in {
1545 defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>;
1546 def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>;
1547 def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>;
1551 def RLL : BinaryRSY<"rll", 0xEB1D, shiftop<rotl>, GR32>;
1552 def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>;
1554 // Rotate second operand left and inserted selected bits into first operand.
1555 // These can act like 32-bit operands provided that the constant start and
1556 // end bits (operands 2 and 3) are in the range [32, 64).
1557 let Defs = [CC] in {
1558 let isCodeGenOnly = 1 in
1559 def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>;
1560 let CCValues = 0xE, CompareZeroCCMask = 0xE in {
1561 def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>;
1562 def RISBGZ : RotateSelectRIEf<"risbgz", 0xEC55, GR64, GR64, 0, 128>;
1566 // On zEC12 we have a variant of RISBG that does not set CC.
1567 let Predicates = [FeatureMiscellaneousExtensions] in {
1568 def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>;
1569 def RISBGNZ : RotateSelectRIEf<"risbgnz", 0xEC59, GR64, GR64, 0, 128>;
1572 // Forms of RISBG that only affect one word of the destination register.
1573 // They do not set CC.
1574 let Predicates = [FeatureHighWord] in {
1575 def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>;
1576 def RISBLL : RotateSelectAliasRIEf<GR32, GR32>;
1577 def RISBLH : RotateSelectAliasRIEf<GR32, GRH32>;
1578 def RISBHL : RotateSelectAliasRIEf<GRH32, GR32>;
1579 def RISBHH : RotateSelectAliasRIEf<GRH32, GRH32>;
1580 def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>;
1581 def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>;
1584 // Rotate second operand left and perform a logical operation with selected
1585 // bits of the first operand. The CC result only describes the selected bits,
1586 // so isn't useful for a full comparison against zero.
1587 let Defs = [CC] in {
1588 def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>;
1589 def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>;
1590 def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>;
1593 //===----------------------------------------------------------------------===//
1595 //===----------------------------------------------------------------------===//
1597 // Signed comparisons. We put these before the unsigned comparisons because
1598 // some of the signed forms have COMPARE AND BRANCH equivalents whereas none
1599 // of the unsigned forms do.
1600 let Defs = [CC], CCValues = 0xE in {
1601 // Comparison with a register.
1602 def CR : CompareRR <"cr", 0x19, z_scmp, GR32, GR32>;
1603 def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>;
1604 def CGR : CompareRRE<"cgr", 0xB920, z_scmp, GR64, GR64>;
1606 // Comparison with a high register.
1607 def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>,
1608 Requires<[FeatureHighWord]>;
1609 def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>,
1610 Requires<[FeatureHighWord]>;
1612 // Comparison with a signed 16-bit immediate. CHIMux expands to CHI or CIH,
1613 // depending on the choice of register.
1614 def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>,
1615 Requires<[FeatureHighWord]>;
1616 def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>;
1617 def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>;
1619 // Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH,
1620 // depending on the choice of register.
1621 def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>,
1622 Requires<[FeatureHighWord]>;
1623 def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>;
1624 def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>,
1625 Requires<[FeatureHighWord]>;
1626 def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>;
1628 // Comparison with memory.
1629 defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, z_asextloadi16, 2>;
1630 def CMux : CompareRXYPseudo<z_scmp, GRX32, z_load, 4>,
1631 Requires<[FeatureHighWord]>;
1632 defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, z_load, 4>;
1633 def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, z_load, 4>,
1634 Requires<[FeatureHighWord]>;
1635 def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, z_asextloadi16, 2>;
1636 def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, z_asextloadi32, 4>;
1637 def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, z_load, 8>;
1638 def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_z_asextloadi16>;
1639 def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_z_load>;
1640 def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_z_asextloadi16>;
1641 def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_z_asextloadi32>;
1642 def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_z_load>;
1644 // Comparison between memory and a signed 16-bit immediate.
1645 def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, z_asextloadi16, imm32sx16>;
1646 def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, z_load, imm32sx16>;
1647 def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, z_load, imm64sx16>;
1649 defm : SXB<z_scmp, GR64, CGFR>;
1651 // Unsigned comparisons.
1652 let Defs = [CC], CCValues = 0xE, IsLogical = 1 in {
1653 // Comparison with a register.
1654 def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>;
1655 def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>;
1656 def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>;
1658 // Comparison with a high register.
1659 def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>,
1660 Requires<[FeatureHighWord]>;
1661 def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>,
1662 Requires<[FeatureHighWord]>;
1664 // Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI
1665 // or CLIH, depending on the choice of register.
1666 def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>,
1667 Requires<[FeatureHighWord]>;
1668 def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>;
1669 def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GRH32, uimm32>,
1670 Requires<[FeatureHighWord]>;
1671 def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>;
1673 // Comparison with memory.
1674 def CLMux : CompareRXYPseudo<z_ucmp, GRX32, z_load, 4>,
1675 Requires<[FeatureHighWord]>;
1676 defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, z_load, 4>;
1677 def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, z_load, 4>,
1678 Requires<[FeatureHighWord]>;
1679 def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, z_azextloadi32, 4>;
1680 def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, z_load, 8>;
1681 def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32,
1682 aligned_z_azextloadi16>;
1683 def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32,
1685 def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64,
1686 aligned_z_azextloadi16>;
1687 def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64,
1688 aligned_z_azextloadi32>;
1689 def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64,
1692 // Comparison between memory and an unsigned 8-bit immediate.
1693 defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, z_azextloadi8, imm32zx8>;
1695 // Comparison between memory and an unsigned 16-bit immediate.
1696 def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, z_azextloadi16, imm32zx16>;
1697 def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, z_load, imm32zx16>;
1698 def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, z_load, imm64zx16>;
1700 defm : ZXB<z_ucmp, GR64, CLGFR>;
1702 // Memory-to-memory comparison.
1703 let mayLoad = 1, Defs = [CC] in {
1704 defm CLC : CompareMemorySS<"clc", 0xD5, z_clc>;
1705 def CLCL : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>;
1706 def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>;
1707 def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>;
1710 // String comparison.
1711 let mayLoad = 1, Defs = [CC] in
1712 defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>;
1715 let Defs = [CC] in {
1716 // TMxMux expands to TM[LH]x, depending on the choice of register.
1717 def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>,
1718 Requires<[FeatureHighWord]>;
1719 def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>,
1720 Requires<[FeatureHighWord]>;
1721 def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>;
1722 def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>;
1723 def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>;
1724 def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>;
1726 def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>;
1727 def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>;
1728 def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>;
1729 def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>;
1731 defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, z_anyextloadi8, imm32zx8>;
1734 def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>;
1735 def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>;
1737 // Compare logical characters under mask -- not (yet) used for codegen.
1738 let Defs = [CC] in {
1739 defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>;
1740 def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>;
1743 //===----------------------------------------------------------------------===//
1744 // Prefetch and execution hint
1745 //===----------------------------------------------------------------------===//
1747 let mayLoad = 1, mayStore = 1 in {
1748 def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>;
1749 def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>;
1752 let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in {
1753 // Branch Prediction Preload
1754 def BPP : BranchPreloadSMI<"bpp", 0xC7>;
1755 def BPRP : BranchPreloadMII<"bprp", 0xC5>;
1757 // Next Instruction Access Intent
1758 def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>;
1761 //===----------------------------------------------------------------------===//
1762 // Atomic operations
1763 //===----------------------------------------------------------------------===//
1765 // A serialization instruction that acts as a barrier for all memory
1766 // accesses, which expands to "bcr 14, 0".
1767 let hasSideEffects = 1 in
1768 def Serialize : Alias<2, (outs), (ins), []>;
1770 let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1771 def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_i32, GR32>;
1772 def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_i64, GR64>;
1773 def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>;
1774 def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>;
1775 def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_i32, GR32>;
1776 def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_i64, GR64>;
1777 def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_i32, GR32>;
1778 def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_i64, GR64>;
1779 def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_i32, GR32>;
1780 def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_i64, GR64>;
1783 def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>;
1785 def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>;
1786 def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>;
1788 def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>;
1790 def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>;
1791 def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>;
1793 def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>;
1794 def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>;
1796 def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>;
1797 def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>;
1799 def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>;
1800 def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand,
1803 def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>;
1804 def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>;
1805 def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>;
1806 def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>;
1808 def ATOMIC_CMP_SWAPW
1809 : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1810 ADDR32:$bitshift, ADDR32:$negbitshift,
1813 (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap,
1814 ADDR32:$bitshift, ADDR32:$negbitshift,
1815 uimm32:$bitsize))]> {
1819 let usesCustomInserter = 1;
1820 let hasNoSchedulingInfo = 1;
1824 let mayLoad = 1, Defs = [CC] in
1825 def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>;
1827 // Compare and swap.
1828 let Defs = [CC] in {
1829 defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>;
1830 def CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>;
1833 // Compare double and swap.
1834 let Defs = [CC] in {
1835 defm CDS : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>;
1836 def CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>;
1839 // Compare and swap and store.
1840 let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in
1841 def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>;
1843 // Perform locked operation.
1844 let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in
1845 def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>;
1847 // Load/store pair from/to quadword.
1848 def LPQ : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>;
1849 def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>;
1851 // Load pair disjoint.
1852 let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in {
1853 def LPD : BinarySSF<"lpd", 0xC84, GR128>;
1854 def LPDG : BinarySSF<"lpdg", 0xC85, GR128>;
1857 // Compare and load.
1858 let Predicates = [FeatureConcurrentFunctions], Defs = [CC] in {
1859 def CAL : BinarySSF<"cal", 0xC86, GR32>;
1860 def CALGF : BinarySSF<"calgf", 0xC8F, GR64>;
1861 def CALG : BinarySSF<"calg", 0xC87, GR64>;
1864 // Perform function with concurrent results.
1865 let Predicates = [FeatureConcurrentFunctions], Uses = [R0D], Defs = [CC],
1866 mayLoad = 1, mayStore = 1, hasSideEffects = 1 in {
1867 def PFCR : BinaryRSY<"pfcr", 0xEB16, null_frag, GR64>;
1870 //===----------------------------------------------------------------------===//
1871 // Translate and convert
1872 //===----------------------------------------------------------------------===//
1874 let mayLoad = 1, mayStore = 1 in
1875 def TR : SideEffectBinarySSa<"tr", 0xDC>;
1877 let mayLoad = 1, Defs = [CC, R0L, R1D] in {
1878 def TRT : SideEffectBinarySSa<"trt", 0xDD>;
1879 def TRTR : SideEffectBinarySSa<"trtr", 0xD0>;
1882 let mayLoad = 1, mayStore = 1, Uses = [R0L] in
1883 def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>;
1885 let mayLoad = 1, Uses = [R1D], Defs = [CC] in {
1886 defm TRTE : BinaryMemRRFcOpt<"trte", 0xB9BF, GR128, GR64>;
1887 defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>;
1890 let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1891 defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>;
1892 defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>;
1893 defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>;
1894 defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>;
1897 let mayLoad = 1, mayStore = 1, Defs = [CC] in {
1898 defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>;
1899 defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>;
1900 defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>;
1901 defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>;
1902 def CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>;
1903 def CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>;
1905 let isAsmParserOnly = 1 in {
1906 defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>;
1907 defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>;
1911 //--------------------------------------------------------------------------
1913 //--------------------------------------------------------------------------
1914 let isBarrier = 1, hasNoSchedulingInfo = 1 in {
1915 let hasSideEffects = 1, usesCustomInserter = 1 in {
1916 def EH_SjLj_SetJmp : Pseudo<(outs GR32:$dst), (ins ADDR64:$R2),
1917 [(set GR32:$dst, (z_eh_sjlj_setjmp ADDR64:$R2))]>;
1918 let isTerminator = 1 in {
1919 def EH_SjLj_LongJmp : Pseudo<(outs), (ins ADDR64:$R2),
1920 [(z_eh_sjlj_longjmp ADDR64:$R2)]>;
1923 let isTerminator = 1, isCodeGenOnly = 1, Size = 0 in {
1924 def EH_SjLj_Setup : Pseudo<(outs), (ins brtarget32:$dst), []>;
1928 //===----------------------------------------------------------------------===//
1929 // Message-security assist
1930 //===----------------------------------------------------------------------===//
1932 let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in {
1933 def KM : SideEffectBinaryMemMemRRE<"km", 0xB92E, GR128, GR128>;
1934 def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>;
1936 def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>;
1937 def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>;
1938 def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>;
1940 let Predicates = [FeatureMessageSecurityAssist4] in {
1941 def KMF : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>;
1942 def KMO : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>;
1943 def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D,
1944 GR128, GR128, GR128>;
1945 def PCC : SideEffectInherentRRE<"pcc", 0xB92C>;
1948 let Predicates = [FeatureMessageSecurityAssist5] in
1949 def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>;
1950 let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in
1951 def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>;
1953 let Predicates = [FeatureMessageSecurityAssist8] in
1954 def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929,
1955 GR128, GR128, GR128>;
1957 let Predicates = [FeatureMessageSecurityAssist9] in
1958 def KDSA : SideEffectBinaryMemRRE<"kdsa", 0xB93A, GR64, GR128>;
1960 let Predicates = [FeatureMessageSecurityAssist12] in {
1961 def KIMDOpt : SideEffectTernaryMemMemRRFc<"kimd", 0xB93E, GR64, GR128, imm32zx4>;
1962 def KLMDOpt : SideEffectTernaryMemMemRRFc<"klmd", 0xB93F, GR64, GR128, imm32zx4>;
1966 //===----------------------------------------------------------------------===//
1968 //===----------------------------------------------------------------------===//
1970 // These instructions use and/or modify the guarded storage control
1971 // registers, which we do not otherwise model, so they should have
1973 let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in {
1974 def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>;
1975 def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>;
1978 def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>;
1980 def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>;
1983 //===----------------------------------------------------------------------===//
1984 // Decimal arithmetic
1985 //===----------------------------------------------------------------------===//
1987 defm CVB : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, z_load, 4>;
1988 def CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, z_load, 8>;
1990 defm CVD : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>;
1991 def CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>;
1993 let mayLoad = 1, mayStore = 1 in {
1994 def MVN : SideEffectBinarySSa<"mvn", 0xD1>;
1995 def MVZ : SideEffectBinarySSa<"mvz", 0xD3>;
1996 def MVO : SideEffectBinarySSb<"mvo", 0xF1>;
1998 def PACK : SideEffectBinarySSb<"pack", 0xF2>;
1999 def PKA : SideEffectBinarySSf<"pka", 0xE9>;
2000 def PKU : SideEffectBinarySSf<"pku", 0xE1>;
2001 def UNPK : SideEffectBinarySSb<"unpk", 0xF3>;
2002 let Defs = [CC] in {
2003 def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>;
2004 def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>;
2008 let mayLoad = 1, mayStore = 1 in {
2009 let Defs = [CC] in {
2010 def AP : SideEffectBinarySSb<"ap", 0xFA>;
2011 def SP : SideEffectBinarySSb<"sp", 0xFB>;
2012 def ZAP : SideEffectBinarySSb<"zap", 0xF8>;
2013 def SRP : SideEffectTernarySSc<"srp", 0xF0>;
2015 def MP : SideEffectBinarySSb<"mp", 0xFC>;
2016 def DP : SideEffectBinarySSb<"dp", 0xFD>;
2017 let Defs = [CC] in {
2018 def ED : SideEffectBinarySSa<"ed", 0xDE>;
2019 def EDMK : SideEffectBinarySSa<"edmk", 0xDF>;
2023 let Defs = [CC] in {
2024 def CP : CompareSSb<"cp", 0xF9>;
2025 def TP : TestRSL<"tp", 0xEBC0>;
2028 //===----------------------------------------------------------------------===//
2030 //===----------------------------------------------------------------------===//
2032 // Read a 32-bit access register into a GR32. As with all GR32 operations,
2033 // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful
2034 // when a 64-bit address is stored in a pair of access registers.
2035 def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>;
2037 // Set access register.
2038 def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>;
2040 // Copy access register.
2041 def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>;
2043 // Load address extended.
2044 defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>;
2046 // Load access multiple.
2047 defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>;
2049 // Store access multiple.
2050 defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>;
2052 //===----------------------------------------------------------------------===//
2053 // Program mask and addressing mode
2054 //===----------------------------------------------------------------------===//
2056 // Extract CC and program mask into a register. CC ends up in bits 29 and 28.
2058 def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>;
2060 // Set CC and program mask from a register.
2061 let hasSideEffects = 1, Defs = [CC] in
2062 def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>;
2064 // Branch and link - like BAS, but also extracts CC and program mask.
2065 let isCall = 1, Uses = [CC], Defs = [CC] in {
2066 def BAL : CallRX<"bal", 0x45>;
2067 def BALR : CallRR<"balr", 0x05>;
2070 // Test addressing mode.
2072 def TAM : SideEffectInherentE<"tam", 0x010B>;
2074 // Set addressing mode.
2075 let hasSideEffects = 1 in {
2076 def SAM24 : SideEffectInherentE<"sam24", 0x010C>;
2077 def SAM31 : SideEffectInherentE<"sam31", 0x010D>;
2078 def SAM64 : SideEffectInherentE<"sam64", 0x010E>;
2081 // Branch and set mode. Not really a call, but also sets an output register.
2082 let isBranch = 1, isTerminator = 1, isBarrier = 1 in
2083 def BSM : CallRR<"bsm", 0x0B>;
2085 // Branch and save and set mode.
2086 let isCall = 1, Defs = [CC] in
2087 def BASSM : CallRR<"bassm", 0x0C>;
2089 //===----------------------------------------------------------------------===//
2090 // Transactional execution
2091 //===----------------------------------------------------------------------===//
2093 let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in {
2094 // Transaction Begin
2095 let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in {
2096 def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>;
2097 let hasNoSchedulingInfo = 1 in
2098 def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>;
2099 def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561,
2100 int_s390_tbeginc, imm32zx16>;
2105 def TEND : TestInherentS<"tend", 0xB2F8, z_tend>;
2107 // Transaction Abort
2108 let isTerminator = 1, isBarrier = 1, mayStore = 1,
2109 hasSideEffects = 1 in
2110 def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>;
2112 // Nontransactional Store
2113 def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>;
2115 // Extract Transaction Nesting Depth
2116 def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>;
2119 //===----------------------------------------------------------------------===//
2121 //===----------------------------------------------------------------------===//
2123 let Predicates = [FeatureProcessorAssist] in {
2124 let hasSideEffects = 1 in
2125 def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>;
2126 def : Pat<(int_s390_ppa_txassist GR32:$src),
2127 (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
2131 //===----------------------------------------------------------------------===//
2132 // Miscellaneous Instructions.
2133 //===----------------------------------------------------------------------===//
2135 // Count leading/trailing zeros.
2136 let Predicates = [FeatureMiscellaneousExtensions4] in {
2137 def CLZG : UnaryRRE<"clzg", 0xB968, ctlz, GR64, GR64>;
2138 def CTZG : UnaryRRE<"ctzg", 0xB969, cttz, GR64, GR64>;
2141 // Find leftmost one, AKA count leading zeros. The instruction actually
2142 // returns a pair of GR64s, the first giving the number of leading zeros
2143 // and the second giving a copy of the source with the leftmost one bit
2144 // cleared. We only use the first result here.
2146 def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>;
2147 def : Pat<(i64 (ctlz GR64:$src)),
2148 (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>;
2150 // Population count. Counts bits set per byte or doubleword.
2151 let Predicates = [FeatureMiscellaneousExtensions3] in {
2153 def POPCNTOpt : BinaryRRFc<"popcnt", 0xB9E1, GR64, GR64>;
2154 def : Pat<(ctpop GR64:$src), (POPCNTOpt GR64:$src, 8)>;
2156 let Predicates = [FeaturePopulationCount], Defs = [CC] in
2157 def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>;
2159 // Bit deposit and bit extract.
2160 let Predicates = [FeatureMiscellaneousExtensions4] in {
2161 def BDEPG : BinaryRRFa<"bdepg", 0xB96D, int_s390_bdepg, GR64, GR64, GR64>;
2162 def BEXTG : BinaryRRFa<"bextg", 0xB96C, int_s390_bextg, GR64, GR64, GR64>;
2165 // Search a block of memory for a character.
2166 let mayLoad = 1, Defs = [CC] in
2167 defm SRST : StringRRE<"srst", 0xB25E, z_search_string>;
2168 let mayLoad = 1, Defs = [CC], Uses = [R0L] in
2169 def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>;
2171 // Compare until substring equal.
2172 let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in
2173 def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>;
2175 // Compare and form codeword.
2176 let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in
2177 def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>;
2180 let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D],
2181 Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in
2182 def UPT : SideEffectInherentE<"upt", 0x0102>;
2185 let mayLoad = 1, Defs = [CC] in
2186 def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>;
2188 // Compression call.
2189 let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in
2190 def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>;
2193 let Predicates = [FeatureEnhancedSort],
2194 mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2195 def SORTL : SideEffectBinaryMemMemRRE<"sortl", 0xB938, GR128, GR128>;
2197 // Deflate conversion call.
2198 let Predicates = [FeatureDeflateConversion],
2199 mayLoad = 1, mayStore = 1, Defs = [CC], Uses = [R0L, R1D] in
2200 def DFLTCC : SideEffectTernaryMemMemRRFa<"dfltcc", 0xB939,
2201 GR128, GR128, GR64>;
2204 let Predicates = [FeatureNNPAssist],
2205 mayLoad = 1, mayStore = 1, Defs = [R0D, CC], Uses = [R0D, R1D] in
2206 def NNPA : SideEffectInherentRRE<"nnpa", 0xB93B>;
2209 let hasSideEffects = 1 in {
2210 def EX : SideEffectBinaryRX<"ex", 0x44, ADDR64>;
2211 def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, ADDR64>;
2212 let hasNoSchedulingInfo = 1 in
2213 def EXRL_Pseudo : Alias<6, (outs), (ins i64imm:$TargetOpc, ADDR64:$lenMinus1,
2214 bdaddr12only:$bdl1, bdaddr12only:$bd2),
2218 //===----------------------------------------------------------------------===//
2219 // .insn directive instructions
2220 //===----------------------------------------------------------------------===//
2222 let isCodeGenOnly = 1, hasSideEffects = 1 in {
2223 def InsnE : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>;
2224 def InsnRI : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2226 ".insn ri,$enc,$R1,$I2", []>;
2227 def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2228 AnyReg:$R3, brtarget16:$I2),
2229 ".insn rie,$enc,$R1,$R3,$I2", []>;
2230 def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2232 ".insn ril,$enc,$R1,$I2", []>;
2233 def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2235 ".insn rilu,$enc,$R1,$I2", []>;
2236 def InsnRIS : DirectiveInsnRIS<(outs),
2237 (ins imm64zx48:$enc, AnyReg:$R1,
2238 imm32sx8:$I2, imm32zx4:$M3,
2239 (bdaddr12only $B4, $D4):$BD4),
2240 ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>;
2241 def InsnRR : DirectiveInsnRR<(outs),
2242 (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2),
2243 ".insn rr,$enc,$R1,$R2", []>;
2244 def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc,
2245 AnyReg:$R1, AnyReg:$R2),
2246 ".insn rre,$enc,$R1,$R2", []>;
2247 def InsnRRF : DirectiveInsnRRF<(outs),
2248 (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2,
2249 AnyReg:$R3, imm32zx4:$M4),
2250 ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>;
2251 def InsnRRS : DirectiveInsnRRS<(outs),
2252 (ins imm64zx48:$enc, AnyReg:$R1,
2253 AnyReg:$R2, imm32zx4:$M3,
2254 (bdaddr12only $B4, $D4):$BD4),
2255 ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>;
2256 def InsnRS : DirectiveInsnRS<(outs),
2257 (ins imm64zx32:$enc, AnyReg:$R1,
2258 AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2259 ".insn rs,$enc,$R1,$R3,$BD2", []>;
2260 def InsnRSE : DirectiveInsnRSE<(outs),
2261 (ins imm64zx48:$enc, AnyReg:$R1,
2262 AnyReg:$R3, (bdaddr12only $B2, $D2):$BD2),
2263 ".insn rse,$enc,$R1,$R3,$BD2", []>;
2264 def InsnRSI : DirectiveInsnRSI<(outs),
2265 (ins imm64zx48:$enc, AnyReg:$R1,
2266 AnyReg:$R3, brtarget16:$RI2),
2267 ".insn rsi,$enc,$R1,$R3,$RI2", []>;
2268 def InsnRSY : DirectiveInsnRSY<(outs),
2269 (ins imm64zx48:$enc, AnyReg:$R1,
2270 AnyReg:$R3, (bdaddr20only $B2, $D2):$BD2),
2271 ".insn rsy,$enc,$R1,$R3,$BD2", []>;
2272 def InsnRX : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1,
2273 (bdxaddr12only $B2, $D2, $X2):$XBD2),
2274 ".insn rx,$enc,$R1,$XBD2", []>;
2275 def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2276 (bdxaddr12only $B2, $D2, $X2):$XBD2),
2277 ".insn rxe,$enc,$R1,$XBD2", []>;
2278 def InsnRXF : DirectiveInsnRXF<(outs),
2279 (ins imm64zx48:$enc, AnyReg:$R1,
2280 AnyReg:$R3, (bdxaddr12only $B2, $D2, $X2):$XBD2),
2281 ".insn rxf,$enc,$R1,$R3,$XBD2", []>;
2282 def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1,
2283 (bdxaddr20only $B2, $D2, $X2):$XBD2),
2284 ".insn rxy,$enc,$R1,$XBD2", []>;
2285 def InsnS : DirectiveInsnS<(outs),
2286 (ins imm64zx32:$enc, (bdaddr12only $B2, $D2):$BD2),
2287 ".insn s,$enc,$BD2", []>;
2288 def InsnSI : DirectiveInsnSI<(outs),
2289 (ins imm64zx32:$enc, (bdaddr12only $B1, $D1):$BD1,
2291 ".insn si,$enc,$BD1,$I2", []>;
2292 def InsnSIY : DirectiveInsnSIY<(outs),
2293 (ins imm64zx48:$enc,
2294 (bdaddr20only $B1, $D1):$BD1, imm32zx8:$I2),
2295 ".insn siy,$enc,$BD1,$I2", []>;
2296 def InsnSIL : DirectiveInsnSIL<(outs),
2297 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2299 ".insn sil,$enc,$BD1,$I2", []>;
2300 def InsnSS : DirectiveInsnSS<(outs),
2301 (ins imm64zx48:$enc, (bdraddr12only $B1, $D1, $R1):$RBD1,
2302 (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2303 ".insn ss,$enc,$RBD1,$BD2,$R3", []>;
2304 def InsnSSE : DirectiveInsnSSE<(outs),
2305 (ins imm64zx48:$enc,
2306 (bdaddr12only $B1, $D1):$BD1,(bdaddr12only $B2, $D2):$BD2),
2307 ".insn sse,$enc,$BD1,$BD2", []>;
2308 def InsnSSF : DirectiveInsnSSF<(outs),
2309 (ins imm64zx48:$enc, (bdaddr12only $B1, $D1):$BD1,
2310 (bdaddr12only $B2, $D2):$BD2, AnyReg:$R3),
2311 ".insn ssf,$enc,$BD1,$BD2,$R3", []>;
2312 def InsnVRI : DirectiveInsnVRI<(outs),
2313 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2314 imm32zx12:$I3, imm32zx4:$M4, imm32zx4:$M5),
2315 ".insn vri,$enc,$V1,$V2,$I3,$M4,$M5", []>;
2316 def InsnVRR : DirectiveInsnVRR<(outs),
2317 (ins imm64zx48:$enc, VR128:$V1, VR128:$V2,
2318 VR128:$V3, imm32zx4:$M4, imm32zx4:$M5,
2320 ".insn vrr,$enc,$V1,$V2,$V3,$M4,$M5,$M6", []>;
2321 def InsnVRS : DirectiveInsnVRS<(outs),
2322 (ins imm64zx48:$enc, AnyReg:$R1, VR128:$V3,
2323 (bdaddr12only $B2, $D2):$BD2, imm32zx4:$M4),
2324 ".insn vrs,$enc,$BD2,$M4", []>;
2325 def InsnVRV : DirectiveInsnVRV<(outs),
2326 (ins imm64zx48:$enc, VR128:$V1,
2327 (bdvaddr12only $B2, $D2, $V2):$VBD2, imm32zx4:$M3),
2328 ".insn vrv,$enc,$V1,$VBD2,$M3", []>;
2329 def InsnVRX : DirectiveInsnVRX<(outs),
2330 (ins imm64zx48:$enc, VR128:$V1,
2331 (bdxaddr12only $B2, $D2, $X2):$XBD2, imm32zx4:$M3),
2332 ".insn vrx,$enc,$V1,$XBD2,$M3", []>;
2333 def InsnVSI : DirectiveInsnVSI<(outs),
2334 (ins imm64zx48:$enc, VR128:$V1,
2335 (bdaddr12only $B2, $D2):$BD2, imm32zx8:$I3),
2336 ".insn vsi,$enc,$V1,$BD2,$I3", []>;
2339 //===----------------------------------------------------------------------===//
2341 //===----------------------------------------------------------------------===//
2343 // Avoid generating 2 XOR instructions. (xor (and x, y), y) is
2344 // equivalent to (and (xor x, -1), y)
2345 def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y),
2346 (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>;
2348 // Use LCGR/AGHI for i64 xor with -1.
2349 def : Pat<(xor GR64:$x, (i64 -1)),
2350 (AGHI (LCGR GR64:$x), (i64 -1))>;
2352 // Shift/rotate instructions only use the last 6 bits of the second operand
2353 // register, so we can safely use NILL (16 fewer bits than NILF) to only AND the
2355 // Complexity is added so that we match this before we match NILF on the AND
2357 let AddedComplexity = 4 in {
2358 def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2359 (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2361 def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2362 (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2364 def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2365 (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2367 def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2368 (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2370 def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2371 (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2373 def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2374 (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2376 def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2377 (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2379 def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)),
2380 (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>;
2383 // Substitute (x*64-s) with (-s), since shift/rotate instructions only
2384 // use the last 6 bits of the second operand register (making it modulo 64).
2385 let AddedComplexity = 4 in {
2386 def : Pat<(shl GR64:$val, (sub imm32mod64, GR32:$shift)),
2387 (SLLG GR64:$val, (LCR GR32:$shift), 0)>;
2389 def : Pat<(sra GR64:$val, (sub imm32mod64, GR32:$shift)),
2390 (SRAG GR64:$val, (LCR GR32:$shift), 0)>;
2392 def : Pat<(srl GR64:$val, (sub imm32mod64, GR32:$shift)),
2393 (SRLG GR64:$val, (LCR GR32:$shift), 0)>;
2395 def : Pat<(rotl GR64:$val, (sub imm32mod64, GR32:$shift)),
2396 (RLLG GR64:$val, (LCR GR32:$shift), 0)>;
2399 // Peepholes for turning scalar operations into block operations. The length
2400 // is given as one less for these pseudos.
2401 defm : BlockLoadStore<anyextloadi8, i32, MVCImm, NCImm, OCImm, XCImm, 0>;
2402 defm : BlockLoadStore<anyextloadi16, i32, MVCImm, NCImm, OCImm, XCImm, 1>;
2403 defm : BlockLoadStore<load, i32, MVCImm, NCImm, OCImm, XCImm, 3>;
2404 defm : BlockLoadStore<anyextloadi8, i64, MVCImm, NCImm, OCImm, XCImm, 0>;
2405 defm : BlockLoadStore<anyextloadi16, i64, MVCImm, NCImm, OCImm, XCImm, 1>;
2406 defm : BlockLoadStore<anyextloadi32, i64, MVCImm, NCImm, OCImm, XCImm, 3>;
2407 defm : BlockLoadStore<load, i64, MVCImm, NCImm, OCImm, XCImm, 7>;
2409 //===----------------------------------------------------------------------===//
2411 //===----------------------------------------------------------------------===//
2413 def JCT : MnemonicAlias<"jct", "brct">;
2414 def JCTG : MnemonicAlias<"jctg", "brctg">;
2415 def JC : MnemonicAlias<"jc", "brc">;
2416 def JCTH : MnemonicAlias<"jcth", "brcth">;
2417 def JAS : MnemonicAlias<"jas", "bras">;
2418 def JASL : MnemonicAlias<"jasl", "brasl">;
2419 def JXH : MnemonicAlias<"jxh", "brxh">;
2420 def JXLE : MnemonicAlias<"jxle", "brxle">;
2421 def JXHG : MnemonicAlias<"jxhg", "brxhg">;
2422 def JXLEG : MnemonicAlias<"jxleg", "brxlg">;
2424 def BRU : MnemonicAlias<"bru", "j">;
2425 def BRUL : MnemonicAlias<"brul", "jg", "gnu">;
2426 def BRUL_HLASM : MnemonicAlias<"brul", "jlu", "hlasm">;
2428 foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE",
2429 "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in {
2430 defm BRUAsm#V : MnemonicCondBranchAlias <CV<V>, "br#", "j#">;
2431 defm BRULAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jg#", "gnu">;
2432 defm BRUL_HLASMAsm#V : MnemonicCondBranchAlias <CV<V>, "br#l", "jl#", "hlasm">;