Add gfx950 mfma instructions to ROCDL dialect (#123361)
[llvm-project.git] / llvm / lib / Target / SystemZ / SystemZLongBranch.cpp
blob36d76235398edda628857c90f94bc827313c117c
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass makes sure that all branches are in range. There are several ways
10 // in which this could be done. One aggressive approach is to assume that all
11 // branches are in range and successively replace those that turn out not
12 // to be in range with a longer form (branch relaxation). A simple
13 // implementation is to continually walk through the function relaxing
14 // branches until no more changes are needed and a fixed point is reached.
15 // However, in the pathological worst case, this implementation is
16 // quadratic in the number of blocks; relaxing branch N can make branch N-1
17 // go out of range, which in turn can make branch N-2 go out of range,
18 // and so on.
20 // An alternative approach is to assume that all branches must be
21 // converted to their long forms, then reinstate the short forms of
22 // branches that, even under this pessimistic assumption, turn out to be
23 // in range (branch shortening). This too can be implemented as a function
24 // walk that is repeated until a fixed point is reached. In general,
25 // the result of shortening is not as good as that of relaxation, and
26 // shortening is also quadratic in the worst case; shortening branch N
27 // can bring branch N-1 in range of the short form, which in turn can do
28 // the same for branch N-2, and so on. The main advantage of shortening
29 // is that each walk through the function produces valid code, so it is
30 // possible to stop at any point after the first walk. The quadraticness
31 // could therefore be handled with a maximum pass count, although the
32 // question then becomes: what maximum count should be used?
34 // On SystemZ, long branches are only needed for functions bigger than 64k,
35 // which are relatively rare to begin with, and the long branch sequences
36 // are actually relatively cheap. It therefore doesn't seem worth spending
37 // much compilation time on the problem. Instead, the approach we take is:
39 // (1) Work out the address that each block would have if no branches
40 // need relaxing. Exit the pass early if all branches are in range
41 // according to this assumption.
43 // (2) Work out the address that each block would have if all branches
44 // need relaxing.
46 // (3) Walk through the block calculating the final address of each instruction
47 // and relaxing those that need to be relaxed. For backward branches,
48 // this check uses the final address of the target block, as calculated
49 // earlier in the walk. For forward branches, this check uses the
50 // address of the target block that was calculated in (2). Both checks
51 // give a conservatively-correct range.
53 //===----------------------------------------------------------------------===//
55 #include "SystemZ.h"
56 #include "SystemZInstrInfo.h"
57 #include "SystemZTargetMachine.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/CodeGen/MachineBasicBlock.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineInstr.h"
65 #include "llvm/CodeGen/MachineInstrBuilder.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include <cassert>
69 #include <cstdint>
71 using namespace llvm;
73 #define DEBUG_TYPE "systemz-long-branch"
75 STATISTIC(LongBranches, "Number of long branches.");
77 namespace {
79 // Represents positional information about a basic block.
80 struct MBBInfo {
81 // The address that we currently assume the block has.
82 uint64_t Address = 0;
84 // The size of the block in bytes, excluding terminators.
85 // This value never changes.
86 uint64_t Size = 0;
88 // The minimum alignment of the block.
89 // This value never changes.
90 Align Alignment;
92 // The number of terminators in this block. This value never changes.
93 unsigned NumTerminators = 0;
95 MBBInfo() = default;
98 // Represents the state of a block terminator.
99 struct TerminatorInfo {
100 // If this terminator is a relaxable branch, this points to the branch
101 // instruction, otherwise it is null.
102 MachineInstr *Branch = nullptr;
104 // The address that we currently assume the terminator has.
105 uint64_t Address = 0;
107 // The current size of the terminator in bytes.
108 uint64_t Size = 0;
110 // If Branch is nonnull, this is the number of the target block,
111 // otherwise it is unused.
112 unsigned TargetBlock = 0;
114 // If Branch is nonnull, this is the length of the longest relaxed form,
115 // otherwise it is zero.
116 unsigned ExtraRelaxSize = 0;
118 TerminatorInfo() = default;
121 // Used to keep track of the current position while iterating over the blocks.
122 struct BlockPosition {
123 // The address that we assume this position has.
124 uint64_t Address = 0;
126 // The number of low bits in Address that are known to be the same
127 // as the runtime address.
128 unsigned KnownBits;
130 BlockPosition(unsigned InitialLogAlignment)
131 : KnownBits(InitialLogAlignment) {}
134 class SystemZLongBranch : public MachineFunctionPass {
135 public:
136 static char ID;
138 SystemZLongBranch() : MachineFunctionPass(ID) {
139 initializeSystemZLongBranchPass(*PassRegistry::getPassRegistry());
142 bool runOnMachineFunction(MachineFunction &F) override;
144 MachineFunctionProperties getRequiredProperties() const override {
145 return MachineFunctionProperties().set(
146 MachineFunctionProperties::Property::NoVRegs);
149 private:
150 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
151 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
152 bool AssumeRelaxed);
153 TerminatorInfo describeTerminator(MachineInstr &MI);
154 uint64_t initMBBInfo();
155 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
156 bool mustRelaxABranch();
157 void setWorstCaseAddresses();
158 void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
159 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
160 void relaxBranch(TerminatorInfo &Terminator);
161 void relaxBranches();
163 const SystemZInstrInfo *TII = nullptr;
164 MachineFunction *MF = nullptr;
165 SmallVector<MBBInfo, 16> MBBs;
166 SmallVector<TerminatorInfo, 16> Terminators;
169 char SystemZLongBranch::ID = 0;
171 const uint64_t MaxBackwardRange = 0x10000;
172 const uint64_t MaxForwardRange = 0xfffe;
174 } // end anonymous namespace
176 INITIALIZE_PASS(SystemZLongBranch, DEBUG_TYPE, "SystemZ Long Branch", false,
177 false)
179 // Position describes the state immediately before Block. Update Block
180 // accordingly and move Position to the end of the block's non-terminator
181 // instructions.
182 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
183 MBBInfo &Block) {
184 if (Log2(Block.Alignment) > Position.KnownBits) {
185 // When calculating the address of Block, we need to conservatively
186 // assume that Block had the worst possible misalignment.
187 Position.Address +=
188 (Block.Alignment.value() - (uint64_t(1) << Position.KnownBits));
189 Position.KnownBits = Log2(Block.Alignment);
192 // Align the addresses.
193 Position.Address = alignTo(Position.Address, Block.Alignment);
195 // Record the block's position.
196 Block.Address = Position.Address;
198 // Move past the non-terminators in the block.
199 Position.Address += Block.Size;
202 // Position describes the state immediately before Terminator.
203 // Update Terminator accordingly and move Position past it.
204 // Assume that Terminator will be relaxed if AssumeRelaxed.
205 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
206 TerminatorInfo &Terminator,
207 bool AssumeRelaxed) {
208 Terminator.Address = Position.Address;
209 Position.Address += Terminator.Size;
210 if (AssumeRelaxed)
211 Position.Address += Terminator.ExtraRelaxSize;
214 static unsigned getInstSizeInBytes(const MachineInstr &MI,
215 const SystemZInstrInfo *TII) {
216 unsigned Size = TII->getInstSizeInBytes(MI);
217 assert((Size ||
218 // These do not have a size:
219 MI.isDebugOrPseudoInstr() || MI.isPosition() || MI.isKill() ||
220 MI.isImplicitDef() || MI.getOpcode() == TargetOpcode::MEMBARRIER ||
221 // These have a size that may be zero:
222 MI.isInlineAsm() || MI.getOpcode() == SystemZ::STACKMAP ||
223 MI.getOpcode() == SystemZ::PATCHPOINT ||
224 // EH_SjLj_Setup is a dummy terminator instruction of size 0,
225 // It is used to handle the clobber register for builtin setjmp.
226 MI.getOpcode() == SystemZ::EH_SjLj_Setup) &&
227 "Missing size value for instruction.");
228 return Size;
231 // Return a description of terminator instruction MI.
232 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
233 TerminatorInfo Terminator;
234 Terminator.Size = getInstSizeInBytes(MI, TII);
235 if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
236 switch (MI.getOpcode()) {
237 case SystemZ::J:
238 // Relaxes to JG, which is 2 bytes longer.
239 Terminator.ExtraRelaxSize = 2;
240 break;
241 case SystemZ::BRC:
242 // Relaxes to BRCL, which is 2 bytes longer.
243 Terminator.ExtraRelaxSize = 2;
244 break;
245 case SystemZ::BRCT:
246 case SystemZ::BRCTG:
247 // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
248 Terminator.ExtraRelaxSize = 6;
249 break;
250 case SystemZ::BRCTH:
251 // Never needs to be relaxed.
252 Terminator.ExtraRelaxSize = 0;
253 break;
254 case SystemZ::CRJ:
255 case SystemZ::CLRJ:
256 // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
257 Terminator.ExtraRelaxSize = 2;
258 break;
259 case SystemZ::CGRJ:
260 case SystemZ::CLGRJ:
261 // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
262 Terminator.ExtraRelaxSize = 4;
263 break;
264 case SystemZ::CIJ:
265 case SystemZ::CGIJ:
266 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
267 Terminator.ExtraRelaxSize = 4;
268 break;
269 case SystemZ::CLIJ:
270 case SystemZ::CLGIJ:
271 // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
272 Terminator.ExtraRelaxSize = 6;
273 break;
274 default:
275 llvm_unreachable("Unrecognized branch instruction");
277 Terminator.Branch = &MI;
278 Terminator.TargetBlock =
279 TII->getBranchInfo(MI).getMBBTarget()->getNumber();
281 return Terminator;
284 // Fill MBBs and Terminators, setting the addresses on the assumption
285 // that no branches need relaxation. Return the size of the function under
286 // this assumption.
287 uint64_t SystemZLongBranch::initMBBInfo() {
288 MF->RenumberBlocks();
289 unsigned NumBlocks = MF->size();
291 MBBs.clear();
292 MBBs.resize(NumBlocks);
294 Terminators.clear();
295 Terminators.reserve(NumBlocks);
297 BlockPosition Position(Log2(MF->getAlignment()));
298 for (unsigned I = 0; I < NumBlocks; ++I) {
299 MachineBasicBlock *MBB = MF->getBlockNumbered(I);
300 MBBInfo &Block = MBBs[I];
302 // Record the alignment, for quick access.
303 Block.Alignment = MBB->getAlignment();
305 // Calculate the size of the fixed part of the block.
306 MachineBasicBlock::iterator MI = MBB->begin();
307 MachineBasicBlock::iterator End = MBB->end();
308 while (MI != End && !MI->isTerminator()) {
309 Block.Size += getInstSizeInBytes(*MI, TII);
310 ++MI;
312 skipNonTerminators(Position, Block);
314 // Add the terminators.
315 while (MI != End) {
316 if (!MI->isDebugInstr()) {
317 assert(MI->isTerminator() && "Terminator followed by non-terminator");
318 Terminators.push_back(describeTerminator(*MI));
319 skipTerminator(Position, Terminators.back(), false);
320 ++Block.NumTerminators;
322 ++MI;
326 return Position.Address;
329 // Return true if, under current assumptions, Terminator would need to be
330 // relaxed if it were placed at address Address.
331 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
332 uint64_t Address) {
333 if (!Terminator.Branch || Terminator.ExtraRelaxSize == 0)
334 return false;
336 const MBBInfo &Target = MBBs[Terminator.TargetBlock];
337 if (Address >= Target.Address) {
338 if (Address - Target.Address <= MaxBackwardRange)
339 return false;
340 } else {
341 if (Target.Address - Address <= MaxForwardRange)
342 return false;
345 return true;
348 // Return true if, under current assumptions, any terminator needs
349 // to be relaxed.
350 bool SystemZLongBranch::mustRelaxABranch() {
351 for (auto &Terminator : Terminators)
352 if (mustRelaxBranch(Terminator, Terminator.Address))
353 return true;
354 return false;
357 // Set the address of each block on the assumption that all branches
358 // must be long.
359 void SystemZLongBranch::setWorstCaseAddresses() {
360 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
361 BlockPosition Position(Log2(MF->getAlignment()));
362 for (auto &Block : MBBs) {
363 skipNonTerminators(Position, Block);
364 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
365 skipTerminator(Position, *TI, true);
366 ++TI;
371 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
372 // by a BRCL on the result.
373 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
374 unsigned AddOpcode) {
375 MachineBasicBlock *MBB = MI->getParent();
376 DebugLoc DL = MI->getDebugLoc();
377 BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
378 .add(MI->getOperand(0))
379 .add(MI->getOperand(1))
380 .addImm(-1);
381 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
382 .addImm(SystemZ::CCMASK_ICMP)
383 .addImm(SystemZ::CCMASK_CMP_NE)
384 .add(MI->getOperand(2));
385 // The implicit use of CC is a killing use.
386 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
387 MI->eraseFromParent();
390 // Split MI into the comparison given by CompareOpcode followed
391 // a BRCL on the result.
392 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
393 unsigned CompareOpcode) {
394 MachineBasicBlock *MBB = MI->getParent();
395 DebugLoc DL = MI->getDebugLoc();
396 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
397 .add(MI->getOperand(0))
398 .add(MI->getOperand(1));
399 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
400 .addImm(SystemZ::CCMASK_ICMP)
401 .add(MI->getOperand(2))
402 .add(MI->getOperand(3));
403 // The implicit use of CC is a killing use.
404 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
405 MI->eraseFromParent();
408 // Relax the branch described by Terminator.
409 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
410 MachineInstr *Branch = Terminator.Branch;
411 switch (Branch->getOpcode()) {
412 case SystemZ::J:
413 Branch->setDesc(TII->get(SystemZ::JG));
414 break;
415 case SystemZ::BRC:
416 Branch->setDesc(TII->get(SystemZ::BRCL));
417 break;
418 case SystemZ::BRCT:
419 splitBranchOnCount(Branch, SystemZ::AHI);
420 break;
421 case SystemZ::BRCTG:
422 splitBranchOnCount(Branch, SystemZ::AGHI);
423 break;
424 case SystemZ::CRJ:
425 splitCompareBranch(Branch, SystemZ::CR);
426 break;
427 case SystemZ::CGRJ:
428 splitCompareBranch(Branch, SystemZ::CGR);
429 break;
430 case SystemZ::CIJ:
431 splitCompareBranch(Branch, SystemZ::CHI);
432 break;
433 case SystemZ::CGIJ:
434 splitCompareBranch(Branch, SystemZ::CGHI);
435 break;
436 case SystemZ::CLRJ:
437 splitCompareBranch(Branch, SystemZ::CLR);
438 break;
439 case SystemZ::CLGRJ:
440 splitCompareBranch(Branch, SystemZ::CLGR);
441 break;
442 case SystemZ::CLIJ:
443 splitCompareBranch(Branch, SystemZ::CLFI);
444 break;
445 case SystemZ::CLGIJ:
446 splitCompareBranch(Branch, SystemZ::CLGFI);
447 break;
448 default:
449 llvm_unreachable("Unrecognized branch");
452 Terminator.Size += Terminator.ExtraRelaxSize;
453 Terminator.ExtraRelaxSize = 0;
454 Terminator.Branch = nullptr;
456 ++LongBranches;
459 // Run a shortening pass and relax any branches that need to be relaxed.
460 void SystemZLongBranch::relaxBranches() {
461 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
462 BlockPosition Position(Log2(MF->getAlignment()));
463 for (auto &Block : MBBs) {
464 skipNonTerminators(Position, Block);
465 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
466 assert(Position.Address <= TI->Address &&
467 "Addresses shouldn't go forwards");
468 if (mustRelaxBranch(*TI, Position.Address))
469 relaxBranch(*TI);
470 skipTerminator(Position, *TI, false);
471 ++TI;
476 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
477 TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
478 MF = &F;
479 uint64_t Size = initMBBInfo();
480 if (Size <= MaxForwardRange || !mustRelaxABranch())
481 return false;
483 setWorstCaseAddresses();
484 relaxBranches();
485 return true;
488 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
489 return new SystemZLongBranch();