1 //===-- SystemZTargetMachine.cpp - Define TargetMachine for SystemZ -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "SystemZTargetMachine.h"
10 #include "MCTargetDesc/SystemZMCTargetDesc.h"
12 #include "SystemZMachineFunctionInfo.h"
13 #include "SystemZMachineScheduler.h"
14 #include "SystemZTargetObjectFile.h"
15 #include "SystemZTargetTransformInfo.h"
16 #include "TargetInfo/SystemZTargetInfo.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/Analysis/TargetTransformInfo.h"
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/DataLayout.h"
23 #include "llvm/MC/TargetRegistry.h"
24 #include "llvm/Support/CodeGen.h"
25 #include "llvm/Target/TargetLoweringObjectFile.h"
26 #include "llvm/Transforms/Scalar.h"
33 static cl::opt
<bool> EnableMachineCombinerPass(
34 "systemz-machine-combiner",
35 cl::desc("Enable the machine combiner pass"),
36 cl::init(true), cl::Hidden
);
38 // NOLINTNEXTLINE(readability-identifier-naming)
39 extern "C" LLVM_EXTERNAL_VISIBILITY
void LLVMInitializeSystemZTarget() {
40 // Register the target.
41 RegisterTargetMachine
<SystemZTargetMachine
> X(getTheSystemZTarget());
42 auto &PR
= *PassRegistry::getPassRegistry();
43 initializeSystemZElimComparePass(PR
);
44 initializeSystemZShortenInstPass(PR
);
45 initializeSystemZLongBranchPass(PR
);
46 initializeSystemZLDCleanupPass(PR
);
47 initializeSystemZShortenInstPass(PR
);
48 initializeSystemZPostRewritePass(PR
);
49 initializeSystemZTDCPassPass(PR
);
50 initializeSystemZDAGToDAGISelLegacyPass(PR
);
53 static std::string
computeDataLayout(const Triple
&TT
) {
60 Ret
+= DataLayout::getManglingComponent(TT
);
62 // Special features for z/OS.
64 if (TT
.isArch64Bit()) {
65 // Custom address space for ptr32.
70 // Make sure that global data has at least 16 bits of alignment by
71 // default, so that we can refer to it using LARL. We don't have any
72 // special requirements for stack variables though.
73 Ret
+= "-i1:8:16-i8:8:16";
75 // 64-bit integers are naturally aligned.
78 // 128-bit floats are aligned only to 64 bits.
81 // The DataLayout string always holds a vector alignment of 64 bits, see
82 // comment in clang/lib/Basic/Targets/SystemZ.h.
85 // We prefer 16 bits of aligned for all globals; see above.
88 // Integer registers are 32 or 64 bits.
94 static std::unique_ptr
<TargetLoweringObjectFile
> createTLOF(const Triple
&TT
) {
96 return std::make_unique
<TargetLoweringObjectFileGOFF
>();
98 // Note: Some times run with -triple s390x-unknown.
99 // In this case, default to ELF unless z/OS specifically provided.
100 return std::make_unique
<SystemZELFTargetObjectFile
>();
103 static Reloc::Model
getEffectiveRelocModel(std::optional
<Reloc::Model
> RM
) {
104 // Static code is suitable for use in a dynamic executable; there is no
105 // separate DynamicNoPIC model.
106 if (!RM
|| *RM
== Reloc::DynamicNoPIC
)
107 return Reloc::Static
;
111 // For SystemZ we define the models as follows:
113 // Small: BRASL can call any function and will use a stub if necessary.
114 // Locally-binding symbols will always be in range of LARL.
116 // Medium: BRASL can call any function and will use a stub if necessary.
117 // GOT slots and locally-defined text will always be in range
118 // of LARL, but other symbols might not be.
120 // Large: Equivalent to Medium for now.
122 // Kernel: Equivalent to Medium for now.
124 // This means that any PIC module smaller than 4GB meets the
125 // requirements of Small, so Small seems like the best default there.
127 // All symbols bind locally in a non-PIC module, so the choice is less
128 // obvious. There are two cases:
130 // - When creating an executable, PLTs and copy relocations allow
131 // us to treat external symbols as part of the executable.
132 // Any executable smaller than 4GB meets the requirements of Small,
133 // so that seems like the best default.
135 // - When creating JIT code, stubs will be in range of BRASL if the
136 // image is less than 4GB in size. GOT entries will likewise be
137 // in range of LARL. However, the JIT environment has no equivalent
138 // of copy relocs, so locally-binding data symbols might not be in
139 // the range of LARL. We need the Medium model in that case.
140 static CodeModel::Model
141 getEffectiveSystemZCodeModel(std::optional
<CodeModel::Model
> CM
,
142 Reloc::Model RM
, bool JIT
) {
144 if (*CM
== CodeModel::Tiny
)
145 report_fatal_error("Target does not support the tiny CodeModel", false);
146 if (*CM
== CodeModel::Kernel
)
147 report_fatal_error("Target does not support the kernel CodeModel", false);
151 return RM
== Reloc::PIC_
? CodeModel::Small
: CodeModel::Medium
;
152 return CodeModel::Small
;
155 SystemZTargetMachine::SystemZTargetMachine(const Target
&T
, const Triple
&TT
,
156 StringRef CPU
, StringRef FS
,
157 const TargetOptions
&Options
,
158 std::optional
<Reloc::Model
> RM
,
159 std::optional
<CodeModel::Model
> CM
,
160 CodeGenOptLevel OL
, bool JIT
)
161 : CodeGenTargetMachineImpl(
162 T
, computeDataLayout(TT
), TT
, CPU
, FS
, Options
,
163 getEffectiveRelocModel(RM
),
164 getEffectiveSystemZCodeModel(CM
, getEffectiveRelocModel(RM
), JIT
),
166 TLOF(createTLOF(getTargetTriple())) {
170 SystemZTargetMachine::~SystemZTargetMachine() = default;
172 const SystemZSubtarget
*
173 SystemZTargetMachine::getSubtargetImpl(const Function
&F
) const {
174 Attribute CPUAttr
= F
.getFnAttribute("target-cpu");
175 Attribute TuneAttr
= F
.getFnAttribute("tune-cpu");
176 Attribute FSAttr
= F
.getFnAttribute("target-features");
179 CPUAttr
.isValid() ? CPUAttr
.getValueAsString().str() : TargetCPU
;
180 std::string TuneCPU
=
181 TuneAttr
.isValid() ? TuneAttr
.getValueAsString().str() : CPU
;
183 FSAttr
.isValid() ? FSAttr
.getValueAsString().str() : TargetFS
;
185 // FIXME: This is related to the code below to reset the target options,
186 // we need to know whether the soft float and backchain flags are set on the
187 // function, so we can enable them as subtarget features.
188 bool SoftFloat
= F
.getFnAttribute("use-soft-float").getValueAsBool();
190 FS
+= FS
.empty() ? "+soft-float" : ",+soft-float";
191 bool BackChain
= F
.hasFnAttribute("backchain");
193 FS
+= FS
.empty() ? "+backchain" : ",+backchain";
195 auto &I
= SubtargetMap
[CPU
+ TuneCPU
+ FS
];
197 // This needs to be done before we create a new subtarget since any
198 // creation will depend on the TM and the code generation flags on the
199 // function that reside in TargetOptions.
200 resetTargetOptions(F
);
201 I
= std::make_unique
<SystemZSubtarget
>(TargetTriple
, CPU
, TuneCPU
, FS
,
210 /// SystemZ Code Generator Pass Configuration Options.
211 class SystemZPassConfig
: public TargetPassConfig
{
213 SystemZPassConfig(SystemZTargetMachine
&TM
, PassManagerBase
&PM
)
214 : TargetPassConfig(TM
, PM
) {}
216 SystemZTargetMachine
&getSystemZTargetMachine() const {
217 return getTM
<SystemZTargetMachine
>();
221 createPostMachineScheduler(MachineSchedContext
*C
) const override
{
222 return new ScheduleDAGMI(C
,
223 std::make_unique
<SystemZPostRASchedStrategy
>(C
),
224 /*RemoveKillFlags=*/true);
227 void addIRPasses() override
;
228 bool addInstSelector() override
;
229 bool addILPOpts() override
;
230 void addPreRegAlloc() override
;
231 void addPostRewrite() override
;
232 void addPostRegAlloc() override
;
233 void addPreSched2() override
;
234 void addPreEmitPass() override
;
237 } // end anonymous namespace
239 void SystemZPassConfig::addIRPasses() {
240 if (getOptLevel() != CodeGenOptLevel::None
) {
241 addPass(createSystemZTDCPass());
242 addPass(createLoopDataPrefetchPass());
245 addPass(createAtomicExpandLegacyPass());
247 TargetPassConfig::addIRPasses();
250 bool SystemZPassConfig::addInstSelector() {
251 addPass(createSystemZISelDag(getSystemZTargetMachine(), getOptLevel()));
253 if (getOptLevel() != CodeGenOptLevel::None
)
254 addPass(createSystemZLDCleanupPass(getSystemZTargetMachine()));
259 bool SystemZPassConfig::addILPOpts() {
260 addPass(&EarlyIfConverterLegacyID
);
262 if (EnableMachineCombinerPass
)
263 addPass(&MachineCombinerID
);
268 void SystemZPassConfig::addPreRegAlloc() {
269 addPass(createSystemZCopyPhysRegsPass(getSystemZTargetMachine()));
272 void SystemZPassConfig::addPostRewrite() {
273 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
276 void SystemZPassConfig::addPostRegAlloc() {
277 // PostRewrite needs to be run at -O0 also (in which case addPostRewrite()
279 if (getOptLevel() == CodeGenOptLevel::None
)
280 addPass(createSystemZPostRewritePass(getSystemZTargetMachine()));
283 void SystemZPassConfig::addPreSched2() {
284 if (getOptLevel() != CodeGenOptLevel::None
)
285 addPass(&IfConverterID
);
288 void SystemZPassConfig::addPreEmitPass() {
289 // Do instruction shortening before compare elimination because some
290 // vector instructions will be shortened into opcodes that compare
291 // elimination recognizes.
292 if (getOptLevel() != CodeGenOptLevel::None
)
293 addPass(createSystemZShortenInstPass(getSystemZTargetMachine()));
295 // We eliminate comparisons here rather than earlier because some
296 // transformations can change the set of available CC values and we
297 // generally want those transformations to have priority. This is
298 // especially true in the commonest case where the result of the comparison
299 // is used by a single in-range branch instruction, since we will then
300 // be able to fuse the compare and the branch instead.
302 // For example, two-address NILF can sometimes be converted into
303 // three-address RISBLG. NILF produces a CC value that indicates whether
304 // the low word is zero, but RISBLG does not modify CC at all. On the
305 // other hand, 64-bit ANDs like NILL can sometimes be converted to RISBG.
306 // The CC value produced by NILL isn't useful for our purposes, but the
307 // value produced by RISBG can be used for any comparison with zero
308 // (not just equality). So there are some transformations that lose
309 // CC values (while still being worthwhile) and others that happen to make
310 // the CC result more useful than it was originally.
312 // Another reason is that we only want to use BRANCH ON COUNT in cases
313 // where we know that the count register is not going to be spilled.
315 // Doing it so late makes it more likely that a register will be reused
316 // between the comparison and the branch, but it isn't clear whether
317 // preventing that would be a win or not.
318 if (getOptLevel() != CodeGenOptLevel::None
)
319 addPass(createSystemZElimComparePass(getSystemZTargetMachine()));
320 addPass(createSystemZLongBranchPass(getSystemZTargetMachine()));
322 // Do final scheduling after all other optimizations, to get an
323 // optimal input for the decoder (branch relaxation must happen
324 // after block placement).
325 if (getOptLevel() != CodeGenOptLevel::None
)
326 addPass(&PostMachineSchedulerID
);
329 TargetPassConfig
*SystemZTargetMachine::createPassConfig(PassManagerBase
&PM
) {
330 return new SystemZPassConfig(*this, PM
);
334 SystemZTargetMachine::getTargetTransformInfo(const Function
&F
) const {
335 return TargetTransformInfo(SystemZTTIImpl(this, F
));
338 MachineFunctionInfo
*SystemZTargetMachine::createMachineFunctionInfo(
339 BumpPtrAllocator
&Allocator
, const Function
&F
,
340 const TargetSubtargetInfo
*STI
) const {
341 return SystemZMachineFunctionInfo::create
<SystemZMachineFunctionInfo
>(