1 //===- X86AvoidStoreForwardingBlocks.cpp - Avoid HW Store Forward Block ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // If a load follows a store and reloads data that the store has written to
10 // memory, Intel microarchitectures can in many cases forward the data directly
11 // from the store to the load, This "store forwarding" saves cycles by enabling
12 // the load to directly obtain the data instead of accessing the data from
14 // A "store forward block" occurs in cases that a store cannot be forwarded to
15 // the load. The most typical case of store forward block on Intel Core
16 // microarchitecture that a small store cannot be forwarded to a large load.
17 // The estimated penalty for a store forward block is ~13 cycles.
19 // This pass tries to recognize and handle cases where "store forward block"
20 // is created by the compiler when lowering memcpy calls to a sequence
21 // of a load and a store.
23 // The pass currently only handles cases where memcpy is lowered to
24 // XMM/YMM registers, it tries to break the memcpy into smaller copies.
25 // breaking the memcpy should be possible since there is no atomicity
26 // guarantee for loads and stores to XMM/YMM.
28 // It could be better for performance to solve the problem by loading
29 // to XMM/YMM then inserting the partial store before storing back from XMM/YMM
30 // to memory, but this will result in a more conservative optimization since it
31 // requires we prove that all memory accesses between the blocking store and the
32 // load must alias/don't alias before we can move the store, whereas the
33 // transformation done here is correct regardless to other memory accesses.
34 //===----------------------------------------------------------------------===//
37 #include "X86InstrInfo.h"
38 #include "X86Subtarget.h"
39 #include "llvm/Analysis/AliasAnalysis.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/MachineRegisterInfo.h"
47 #include "llvm/IR/DebugLoc.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/InitializePasses.h"
50 #include "llvm/MC/MCInstrDesc.h"
54 #define DEBUG_TYPE "x86-avoid-SFB"
56 static cl::opt
<bool> DisableX86AvoidStoreForwardBlocks(
57 "x86-disable-avoid-SFB", cl::Hidden
,
58 cl::desc("X86: Disable Store Forwarding Blocks fixup."), cl::init(false));
60 static cl::opt
<unsigned> X86AvoidSFBInspectionLimit(
61 "x86-sfb-inspection-limit",
62 cl::desc("X86: Number of instructions backward to "
63 "inspect for store forwarding blocks."),
64 cl::init(20), cl::Hidden
);
68 using DisplacementSizeMap
= std::map
<int64_t, unsigned>;
70 class X86AvoidSFBPass
: public MachineFunctionPass
{
73 X86AvoidSFBPass() : MachineFunctionPass(ID
) { }
75 StringRef
getPassName() const override
{
76 return "X86 Avoid Store Forwarding Blocks";
79 bool runOnMachineFunction(MachineFunction
&MF
) override
;
81 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
82 MachineFunctionPass::getAnalysisUsage(AU
);
83 AU
.addRequired
<AAResultsWrapperPass
>();
87 MachineRegisterInfo
*MRI
= nullptr;
88 const X86InstrInfo
*TII
= nullptr;
89 const X86RegisterInfo
*TRI
= nullptr;
90 SmallVector
<std::pair
<MachineInstr
*, MachineInstr
*>, 2>
91 BlockedLoadsStoresPairs
;
92 SmallVector
<MachineInstr
*, 2> ForRemoval
;
93 AliasAnalysis
*AA
= nullptr;
95 /// Returns couples of Load then Store to memory which look
97 void findPotentiallylBlockedCopies(MachineFunction
&MF
);
98 /// Break the memcpy's load and store into smaller copies
99 /// such that each memory load that was blocked by a smaller store
100 /// would now be copied separately.
101 void breakBlockedCopies(MachineInstr
*LoadInst
, MachineInstr
*StoreInst
,
102 const DisplacementSizeMap
&BlockingStoresDispSizeMap
);
103 /// Break a copy of size Size to smaller copies.
104 void buildCopies(int Size
, MachineInstr
*LoadInst
, int64_t LdDispImm
,
105 MachineInstr
*StoreInst
, int64_t StDispImm
,
106 int64_t LMMOffset
, int64_t SMMOffset
);
108 void buildCopy(MachineInstr
*LoadInst
, unsigned NLoadOpcode
, int64_t LoadDisp
,
109 MachineInstr
*StoreInst
, unsigned NStoreOpcode
,
110 int64_t StoreDisp
, unsigned Size
, int64_t LMMOffset
,
113 bool alias(const MachineMemOperand
&Op1
, const MachineMemOperand
&Op2
) const;
115 unsigned getRegSizeInBytes(MachineInstr
*Inst
);
118 } // end anonymous namespace
120 char X86AvoidSFBPass::ID
= 0;
122 INITIALIZE_PASS_BEGIN(X86AvoidSFBPass
, DEBUG_TYPE
, "Machine code sinking",
124 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
125 INITIALIZE_PASS_END(X86AvoidSFBPass
, DEBUG_TYPE
, "Machine code sinking", false,
128 FunctionPass
*llvm::createX86AvoidStoreForwardingBlocks() {
129 return new X86AvoidSFBPass();
132 static bool isXMMLoadOpcode(unsigned Opcode
) {
133 return Opcode
== X86::MOVUPSrm
|| Opcode
== X86::MOVAPSrm
||
134 Opcode
== X86::VMOVUPSrm
|| Opcode
== X86::VMOVAPSrm
||
135 Opcode
== X86::VMOVUPDrm
|| Opcode
== X86::VMOVAPDrm
||
136 Opcode
== X86::VMOVDQUrm
|| Opcode
== X86::VMOVDQArm
||
137 Opcode
== X86::VMOVUPSZ128rm
|| Opcode
== X86::VMOVAPSZ128rm
||
138 Opcode
== X86::VMOVUPDZ128rm
|| Opcode
== X86::VMOVAPDZ128rm
||
139 Opcode
== X86::VMOVDQU64Z128rm
|| Opcode
== X86::VMOVDQA64Z128rm
||
140 Opcode
== X86::VMOVDQU32Z128rm
|| Opcode
== X86::VMOVDQA32Z128rm
;
142 static bool isYMMLoadOpcode(unsigned Opcode
) {
143 return Opcode
== X86::VMOVUPSYrm
|| Opcode
== X86::VMOVAPSYrm
||
144 Opcode
== X86::VMOVUPDYrm
|| Opcode
== X86::VMOVAPDYrm
||
145 Opcode
== X86::VMOVDQUYrm
|| Opcode
== X86::VMOVDQAYrm
||
146 Opcode
== X86::VMOVUPSZ256rm
|| Opcode
== X86::VMOVAPSZ256rm
||
147 Opcode
== X86::VMOVUPDZ256rm
|| Opcode
== X86::VMOVAPDZ256rm
||
148 Opcode
== X86::VMOVDQU64Z256rm
|| Opcode
== X86::VMOVDQA64Z256rm
||
149 Opcode
== X86::VMOVDQU32Z256rm
|| Opcode
== X86::VMOVDQA32Z256rm
;
152 static bool isPotentialBlockedMemCpyLd(unsigned Opcode
) {
153 return isXMMLoadOpcode(Opcode
) || isYMMLoadOpcode(Opcode
);
156 static bool isPotentialBlockedMemCpyPair(unsigned LdOpcode
, unsigned StOpcode
) {
160 return StOpcode
== X86::MOVUPSmr
|| StOpcode
== X86::MOVAPSmr
;
163 return StOpcode
== X86::VMOVUPSmr
|| StOpcode
== X86::VMOVAPSmr
;
166 return StOpcode
== X86::VMOVUPDmr
|| StOpcode
== X86::VMOVAPDmr
;
169 return StOpcode
== X86::VMOVDQUmr
|| StOpcode
== X86::VMOVDQAmr
;
170 case X86::VMOVUPSZ128rm
:
171 case X86::VMOVAPSZ128rm
:
172 return StOpcode
== X86::VMOVUPSZ128mr
|| StOpcode
== X86::VMOVAPSZ128mr
;
173 case X86::VMOVUPDZ128rm
:
174 case X86::VMOVAPDZ128rm
:
175 return StOpcode
== X86::VMOVUPDZ128mr
|| StOpcode
== X86::VMOVAPDZ128mr
;
176 case X86::VMOVUPSYrm
:
177 case X86::VMOVAPSYrm
:
178 return StOpcode
== X86::VMOVUPSYmr
|| StOpcode
== X86::VMOVAPSYmr
;
179 case X86::VMOVUPDYrm
:
180 case X86::VMOVAPDYrm
:
181 return StOpcode
== X86::VMOVUPDYmr
|| StOpcode
== X86::VMOVAPDYmr
;
182 case X86::VMOVDQUYrm
:
183 case X86::VMOVDQAYrm
:
184 return StOpcode
== X86::VMOVDQUYmr
|| StOpcode
== X86::VMOVDQAYmr
;
185 case X86::VMOVUPSZ256rm
:
186 case X86::VMOVAPSZ256rm
:
187 return StOpcode
== X86::VMOVUPSZ256mr
|| StOpcode
== X86::VMOVAPSZ256mr
;
188 case X86::VMOVUPDZ256rm
:
189 case X86::VMOVAPDZ256rm
:
190 return StOpcode
== X86::VMOVUPDZ256mr
|| StOpcode
== X86::VMOVAPDZ256mr
;
191 case X86::VMOVDQU64Z128rm
:
192 case X86::VMOVDQA64Z128rm
:
193 return StOpcode
== X86::VMOVDQU64Z128mr
|| StOpcode
== X86::VMOVDQA64Z128mr
;
194 case X86::VMOVDQU32Z128rm
:
195 case X86::VMOVDQA32Z128rm
:
196 return StOpcode
== X86::VMOVDQU32Z128mr
|| StOpcode
== X86::VMOVDQA32Z128mr
;
197 case X86::VMOVDQU64Z256rm
:
198 case X86::VMOVDQA64Z256rm
:
199 return StOpcode
== X86::VMOVDQU64Z256mr
|| StOpcode
== X86::VMOVDQA64Z256mr
;
200 case X86::VMOVDQU32Z256rm
:
201 case X86::VMOVDQA32Z256rm
:
202 return StOpcode
== X86::VMOVDQU32Z256mr
|| StOpcode
== X86::VMOVDQA32Z256mr
;
208 static bool isPotentialBlockingStoreInst(unsigned Opcode
, unsigned LoadOpcode
) {
210 PBlock
|= Opcode
== X86::MOV64mr
|| Opcode
== X86::MOV64mi32
||
211 Opcode
== X86::MOV32mr
|| Opcode
== X86::MOV32mi
||
212 Opcode
== X86::MOV16mr
|| Opcode
== X86::MOV16mi
||
213 Opcode
== X86::MOV8mr
|| Opcode
== X86::MOV8mi
;
214 if (isYMMLoadOpcode(LoadOpcode
))
215 PBlock
|= Opcode
== X86::VMOVUPSmr
|| Opcode
== X86::VMOVAPSmr
||
216 Opcode
== X86::VMOVUPDmr
|| Opcode
== X86::VMOVAPDmr
||
217 Opcode
== X86::VMOVDQUmr
|| Opcode
== X86::VMOVDQAmr
||
218 Opcode
== X86::VMOVUPSZ128mr
|| Opcode
== X86::VMOVAPSZ128mr
||
219 Opcode
== X86::VMOVUPDZ128mr
|| Opcode
== X86::VMOVAPDZ128mr
||
220 Opcode
== X86::VMOVDQU64Z128mr
||
221 Opcode
== X86::VMOVDQA64Z128mr
||
222 Opcode
== X86::VMOVDQU32Z128mr
|| Opcode
== X86::VMOVDQA32Z128mr
;
226 static const int MOV128SZ
= 16;
227 static const int MOV64SZ
= 8;
228 static const int MOV32SZ
= 4;
229 static const int MOV16SZ
= 2;
230 static const int MOV8SZ
= 1;
232 static unsigned getYMMtoXMMLoadOpcode(unsigned LoadOpcode
) {
233 switch (LoadOpcode
) {
234 case X86::VMOVUPSYrm
:
235 case X86::VMOVAPSYrm
:
236 return X86::VMOVUPSrm
;
237 case X86::VMOVUPDYrm
:
238 case X86::VMOVAPDYrm
:
239 return X86::VMOVUPDrm
;
240 case X86::VMOVDQUYrm
:
241 case X86::VMOVDQAYrm
:
242 return X86::VMOVDQUrm
;
243 case X86::VMOVUPSZ256rm
:
244 case X86::VMOVAPSZ256rm
:
245 return X86::VMOVUPSZ128rm
;
246 case X86::VMOVUPDZ256rm
:
247 case X86::VMOVAPDZ256rm
:
248 return X86::VMOVUPDZ128rm
;
249 case X86::VMOVDQU64Z256rm
:
250 case X86::VMOVDQA64Z256rm
:
251 return X86::VMOVDQU64Z128rm
;
252 case X86::VMOVDQU32Z256rm
:
253 case X86::VMOVDQA32Z256rm
:
254 return X86::VMOVDQU32Z128rm
;
256 llvm_unreachable("Unexpected Load Instruction Opcode");
261 static unsigned getYMMtoXMMStoreOpcode(unsigned StoreOpcode
) {
262 switch (StoreOpcode
) {
263 case X86::VMOVUPSYmr
:
264 case X86::VMOVAPSYmr
:
265 return X86::VMOVUPSmr
;
266 case X86::VMOVUPDYmr
:
267 case X86::VMOVAPDYmr
:
268 return X86::VMOVUPDmr
;
269 case X86::VMOVDQUYmr
:
270 case X86::VMOVDQAYmr
:
271 return X86::VMOVDQUmr
;
272 case X86::VMOVUPSZ256mr
:
273 case X86::VMOVAPSZ256mr
:
274 return X86::VMOVUPSZ128mr
;
275 case X86::VMOVUPDZ256mr
:
276 case X86::VMOVAPDZ256mr
:
277 return X86::VMOVUPDZ128mr
;
278 case X86::VMOVDQU64Z256mr
:
279 case X86::VMOVDQA64Z256mr
:
280 return X86::VMOVDQU64Z128mr
;
281 case X86::VMOVDQU32Z256mr
:
282 case X86::VMOVDQA32Z256mr
:
283 return X86::VMOVDQU32Z128mr
;
285 llvm_unreachable("Unexpected Load Instruction Opcode");
290 static int getAddrOffset(const MachineInstr
*MI
) {
291 const MCInstrDesc
&Descl
= MI
->getDesc();
292 int AddrOffset
= X86II::getMemoryOperandNo(Descl
.TSFlags
);
293 assert(AddrOffset
!= -1 && "Expected Memory Operand");
294 AddrOffset
+= X86II::getOperandBias(Descl
);
298 static MachineOperand
&getBaseOperand(MachineInstr
*MI
) {
299 int AddrOffset
= getAddrOffset(MI
);
300 return MI
->getOperand(AddrOffset
+ X86::AddrBaseReg
);
303 static MachineOperand
&getDispOperand(MachineInstr
*MI
) {
304 int AddrOffset
= getAddrOffset(MI
);
305 return MI
->getOperand(AddrOffset
+ X86::AddrDisp
);
308 // Relevant addressing modes contain only base register and immediate
309 // displacement or frameindex and immediate displacement.
310 // TODO: Consider expanding to other addressing modes in the future
311 static bool isRelevantAddressingMode(MachineInstr
*MI
) {
312 int AddrOffset
= getAddrOffset(MI
);
313 const MachineOperand
&Base
= getBaseOperand(MI
);
314 const MachineOperand
&Disp
= getDispOperand(MI
);
315 const MachineOperand
&Scale
= MI
->getOperand(AddrOffset
+ X86::AddrScaleAmt
);
316 const MachineOperand
&Index
= MI
->getOperand(AddrOffset
+ X86::AddrIndexReg
);
317 const MachineOperand
&Segment
= MI
->getOperand(AddrOffset
+ X86::AddrSegmentReg
);
319 if (!((Base
.isReg() && Base
.getReg() != X86::NoRegister
) || Base
.isFI()))
323 if (Scale
.getImm() != 1)
325 if (!(Index
.isReg() && Index
.getReg() == X86::NoRegister
))
327 if (!(Segment
.isReg() && Segment
.getReg() == X86::NoRegister
))
332 // Collect potentially blocking stores.
333 // Limit the number of instructions backwards we want to inspect
334 // since the effect of store block won't be visible if the store
335 // and load instructions have enough instructions in between to
336 // keep the core busy.
337 static SmallVector
<MachineInstr
*, 2>
338 findPotentialBlockers(MachineInstr
*LoadInst
) {
339 SmallVector
<MachineInstr
*, 2> PotentialBlockers
;
340 unsigned BlockCount
= 0;
341 const unsigned InspectionLimit
= X86AvoidSFBInspectionLimit
;
342 for (auto PBInst
= std::next(MachineBasicBlock::reverse_iterator(LoadInst
)),
343 E
= LoadInst
->getParent()->rend();
344 PBInst
!= E
; ++PBInst
) {
345 if (PBInst
->isMetaInstruction())
348 if (BlockCount
>= InspectionLimit
)
350 MachineInstr
&MI
= *PBInst
;
351 if (MI
.getDesc().isCall())
352 return PotentialBlockers
;
353 PotentialBlockers
.push_back(&MI
);
355 // If we didn't get to the instructions limit try predecessing blocks.
356 // Ideally we should traverse the predecessor blocks in depth with some
357 // coloring algorithm, but for now let's just look at the first order
359 if (BlockCount
< InspectionLimit
) {
360 MachineBasicBlock
*MBB
= LoadInst
->getParent();
361 int LimitLeft
= InspectionLimit
- BlockCount
;
362 for (MachineBasicBlock
*PMBB
: MBB
->predecessors()) {
364 for (MachineInstr
&PBInst
: llvm::reverse(*PMBB
)) {
365 if (PBInst
.isMetaInstruction())
368 if (PredCount
>= LimitLeft
)
370 if (PBInst
.getDesc().isCall())
372 PotentialBlockers
.push_back(&PBInst
);
376 return PotentialBlockers
;
379 void X86AvoidSFBPass::buildCopy(MachineInstr
*LoadInst
, unsigned NLoadOpcode
,
380 int64_t LoadDisp
, MachineInstr
*StoreInst
,
381 unsigned NStoreOpcode
, int64_t StoreDisp
,
382 unsigned Size
, int64_t LMMOffset
,
384 MachineOperand
&LoadBase
= getBaseOperand(LoadInst
);
385 MachineOperand
&StoreBase
= getBaseOperand(StoreInst
);
386 MachineBasicBlock
*MBB
= LoadInst
->getParent();
387 MachineMemOperand
*LMMO
= *LoadInst
->memoperands_begin();
388 MachineMemOperand
*SMMO
= *StoreInst
->memoperands_begin();
390 Register Reg1
= MRI
->createVirtualRegister(
391 TII
->getRegClass(TII
->get(NLoadOpcode
), 0, TRI
, *(MBB
->getParent())));
392 MachineInstr
*NewLoad
=
393 BuildMI(*MBB
, LoadInst
, LoadInst
->getDebugLoc(), TII
->get(NLoadOpcode
),
397 .addReg(X86::NoRegister
)
399 .addReg(X86::NoRegister
)
401 MBB
->getParent()->getMachineMemOperand(LMMO
, LMMOffset
, Size
));
402 if (LoadBase
.isReg())
403 getBaseOperand(NewLoad
).setIsKill(false);
404 LLVM_DEBUG(NewLoad
->dump());
405 // If the load and store are consecutive, use the loadInst location to
406 // reduce register pressure.
407 MachineInstr
*StInst
= StoreInst
;
408 auto PrevInstrIt
= prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst
),
410 if (PrevInstrIt
.getNodePtr() == LoadInst
)
412 MachineInstr
*NewStore
=
413 BuildMI(*MBB
, StInst
, StInst
->getDebugLoc(), TII
->get(NStoreOpcode
))
416 .addReg(X86::NoRegister
)
418 .addReg(X86::NoRegister
)
421 MBB
->getParent()->getMachineMemOperand(SMMO
, SMMOffset
, Size
));
422 if (StoreBase
.isReg())
423 getBaseOperand(NewStore
).setIsKill(false);
424 MachineOperand
&StoreSrcVReg
= StoreInst
->getOperand(X86::AddrNumOperands
);
425 assert(StoreSrcVReg
.isReg() && "Expected virtual register");
426 NewStore
->getOperand(X86::AddrNumOperands
).setIsKill(StoreSrcVReg
.isKill());
427 LLVM_DEBUG(NewStore
->dump());
430 void X86AvoidSFBPass::buildCopies(int Size
, MachineInstr
*LoadInst
,
431 int64_t LdDispImm
, MachineInstr
*StoreInst
,
432 int64_t StDispImm
, int64_t LMMOffset
,
434 int LdDisp
= LdDispImm
;
435 int StDisp
= StDispImm
;
437 if ((Size
- MOV128SZ
>= 0) && isYMMLoadOpcode(LoadInst
->getOpcode())) {
438 Size
= Size
- MOV128SZ
;
439 buildCopy(LoadInst
, getYMMtoXMMLoadOpcode(LoadInst
->getOpcode()), LdDisp
,
440 StoreInst
, getYMMtoXMMStoreOpcode(StoreInst
->getOpcode()),
441 StDisp
, MOV128SZ
, LMMOffset
, SMMOffset
);
444 LMMOffset
+= MOV128SZ
;
445 SMMOffset
+= MOV128SZ
;
448 if (Size
- MOV64SZ
>= 0) {
449 Size
= Size
- MOV64SZ
;
450 buildCopy(LoadInst
, X86::MOV64rm
, LdDisp
, StoreInst
, X86::MOV64mr
, StDisp
,
451 MOV64SZ
, LMMOffset
, SMMOffset
);
454 LMMOffset
+= MOV64SZ
;
455 SMMOffset
+= MOV64SZ
;
458 if (Size
- MOV32SZ
>= 0) {
459 Size
= Size
- MOV32SZ
;
460 buildCopy(LoadInst
, X86::MOV32rm
, LdDisp
, StoreInst
, X86::MOV32mr
, StDisp
,
461 MOV32SZ
, LMMOffset
, SMMOffset
);
464 LMMOffset
+= MOV32SZ
;
465 SMMOffset
+= MOV32SZ
;
468 if (Size
- MOV16SZ
>= 0) {
469 Size
= Size
- MOV16SZ
;
470 buildCopy(LoadInst
, X86::MOV16rm
, LdDisp
, StoreInst
, X86::MOV16mr
, StDisp
,
471 MOV16SZ
, LMMOffset
, SMMOffset
);
474 LMMOffset
+= MOV16SZ
;
475 SMMOffset
+= MOV16SZ
;
478 if (Size
- MOV8SZ
>= 0) {
479 Size
= Size
- MOV8SZ
;
480 buildCopy(LoadInst
, X86::MOV8rm
, LdDisp
, StoreInst
, X86::MOV8mr
, StDisp
,
481 MOV8SZ
, LMMOffset
, SMMOffset
);
489 assert(Size
== 0 && "Wrong size division");
492 static void updateKillStatus(MachineInstr
*LoadInst
, MachineInstr
*StoreInst
) {
493 MachineOperand
&LoadBase
= getBaseOperand(LoadInst
);
494 MachineOperand
&StoreBase
= getBaseOperand(StoreInst
);
495 auto *StorePrevNonDbgInstr
=
496 prev_nodbg(MachineBasicBlock::instr_iterator(StoreInst
),
497 LoadInst
->getParent()->instr_begin())
499 if (LoadBase
.isReg()) {
500 MachineInstr
*LastLoad
= LoadInst
->getPrevNode();
501 // If the original load and store to xmm/ymm were consecutive
502 // then the partial copies were also created in
503 // a consecutive order to reduce register pressure,
504 // and the location of the last load is before the last store.
505 if (StorePrevNonDbgInstr
== LoadInst
)
506 LastLoad
= LoadInst
->getPrevNode()->getPrevNode();
507 getBaseOperand(LastLoad
).setIsKill(LoadBase
.isKill());
509 if (StoreBase
.isReg()) {
510 MachineInstr
*StInst
= StoreInst
;
511 if (StorePrevNonDbgInstr
== LoadInst
)
513 getBaseOperand(StInst
->getPrevNode()).setIsKill(StoreBase
.isKill());
517 bool X86AvoidSFBPass::alias(const MachineMemOperand
&Op1
,
518 const MachineMemOperand
&Op2
) const {
519 if (!Op1
.getValue() || !Op2
.getValue())
522 int64_t MinOffset
= std::min(Op1
.getOffset(), Op2
.getOffset());
523 int64_t Overlapa
= Op1
.getSize().getValue() + Op1
.getOffset() - MinOffset
;
524 int64_t Overlapb
= Op2
.getSize().getValue() + Op2
.getOffset() - MinOffset
;
526 return !AA
->isNoAlias(
527 MemoryLocation(Op1
.getValue(), Overlapa
, Op1
.getAAInfo()),
528 MemoryLocation(Op2
.getValue(), Overlapb
, Op2
.getAAInfo()));
531 void X86AvoidSFBPass::findPotentiallylBlockedCopies(MachineFunction
&MF
) {
533 for (auto &MI
: MBB
) {
534 if (!isPotentialBlockedMemCpyLd(MI
.getOpcode()))
536 int DefVR
= MI
.getOperand(0).getReg();
537 if (!MRI
->hasOneNonDBGUse(DefVR
))
539 for (MachineOperand
&StoreMO
:
540 llvm::make_early_inc_range(MRI
->use_nodbg_operands(DefVR
))) {
541 MachineInstr
&StoreMI
= *StoreMO
.getParent();
542 // Skip cases where the memcpy may overlap.
543 if (StoreMI
.getParent() == MI
.getParent() &&
544 isPotentialBlockedMemCpyPair(MI
.getOpcode(), StoreMI
.getOpcode()) &&
545 isRelevantAddressingMode(&MI
) &&
546 isRelevantAddressingMode(&StoreMI
) &&
547 MI
.hasOneMemOperand() && StoreMI
.hasOneMemOperand()) {
548 if (!alias(**MI
.memoperands_begin(), **StoreMI
.memoperands_begin()))
549 BlockedLoadsStoresPairs
.push_back(std::make_pair(&MI
, &StoreMI
));
555 unsigned X86AvoidSFBPass::getRegSizeInBytes(MachineInstr
*LoadInst
) {
556 const auto *TRC
= TII
->getRegClass(TII
->get(LoadInst
->getOpcode()), 0, TRI
,
557 *LoadInst
->getParent()->getParent());
558 return TRI
->getRegSizeInBits(*TRC
) / 8;
561 void X86AvoidSFBPass::breakBlockedCopies(
562 MachineInstr
*LoadInst
, MachineInstr
*StoreInst
,
563 const DisplacementSizeMap
&BlockingStoresDispSizeMap
) {
564 int64_t LdDispImm
= getDispOperand(LoadInst
).getImm();
565 int64_t StDispImm
= getDispOperand(StoreInst
).getImm();
566 int64_t LMMOffset
= 0;
567 int64_t SMMOffset
= 0;
569 int64_t LdDisp1
= LdDispImm
;
571 int64_t StDisp1
= StDispImm
;
575 int64_t LdStDelta
= StDispImm
- LdDispImm
;
577 for (auto DispSizePair
: BlockingStoresDispSizeMap
) {
578 LdDisp2
= DispSizePair
.first
;
579 StDisp2
= DispSizePair
.first
+ LdStDelta
;
580 Size2
= DispSizePair
.second
;
581 // Avoid copying overlapping areas.
582 if (LdDisp2
< LdDisp1
) {
583 int OverlapDelta
= LdDisp1
- LdDisp2
;
584 LdDisp2
+= OverlapDelta
;
585 StDisp2
+= OverlapDelta
;
586 Size2
-= OverlapDelta
;
588 Size1
= LdDisp2
- LdDisp1
;
590 // Build a copy for the point until the current blocking store's
592 buildCopies(Size1
, LoadInst
, LdDisp1
, StoreInst
, StDisp1
, LMMOffset
,
594 // Build a copy for the current blocking store.
595 buildCopies(Size2
, LoadInst
, LdDisp2
, StoreInst
, StDisp2
, LMMOffset
+ Size1
,
597 LdDisp1
= LdDisp2
+ Size2
;
598 StDisp1
= StDisp2
+ Size2
;
599 LMMOffset
+= Size1
+ Size2
;
600 SMMOffset
+= Size1
+ Size2
;
602 unsigned Size3
= (LdDispImm
+ getRegSizeInBytes(LoadInst
)) - LdDisp1
;
603 buildCopies(Size3
, LoadInst
, LdDisp1
, StoreInst
, StDisp1
, LMMOffset
,
607 static bool hasSameBaseOpValue(MachineInstr
*LoadInst
,
608 MachineInstr
*StoreInst
) {
609 const MachineOperand
&LoadBase
= getBaseOperand(LoadInst
);
610 const MachineOperand
&StoreBase
= getBaseOperand(StoreInst
);
611 if (LoadBase
.isReg() != StoreBase
.isReg())
613 if (LoadBase
.isReg())
614 return LoadBase
.getReg() == StoreBase
.getReg();
615 return LoadBase
.getIndex() == StoreBase
.getIndex();
618 static bool isBlockingStore(int64_t LoadDispImm
, unsigned LoadSize
,
619 int64_t StoreDispImm
, unsigned StoreSize
) {
620 return ((StoreDispImm
>= LoadDispImm
) &&
621 (StoreDispImm
<= LoadDispImm
+ (LoadSize
- StoreSize
)));
624 // Keep track of all stores blocking a load
626 updateBlockingStoresDispSizeMap(DisplacementSizeMap
&BlockingStoresDispSizeMap
,
627 int64_t DispImm
, unsigned Size
) {
628 if (BlockingStoresDispSizeMap
.count(DispImm
)) {
629 // Choose the smallest blocking store starting at this displacement.
630 if (BlockingStoresDispSizeMap
[DispImm
] > Size
)
631 BlockingStoresDispSizeMap
[DispImm
] = Size
;
634 BlockingStoresDispSizeMap
[DispImm
] = Size
;
637 // Remove blocking stores contained in each other.
639 removeRedundantBlockingStores(DisplacementSizeMap
&BlockingStoresDispSizeMap
) {
640 if (BlockingStoresDispSizeMap
.size() <= 1)
643 SmallVector
<std::pair
<int64_t, unsigned>, 0> DispSizeStack
;
644 for (auto DispSizePair
: BlockingStoresDispSizeMap
) {
645 int64_t CurrDisp
= DispSizePair
.first
;
646 unsigned CurrSize
= DispSizePair
.second
;
647 while (DispSizeStack
.size()) {
648 int64_t PrevDisp
= DispSizeStack
.back().first
;
649 unsigned PrevSize
= DispSizeStack
.back().second
;
650 if (CurrDisp
+ CurrSize
> PrevDisp
+ PrevSize
)
652 DispSizeStack
.pop_back();
654 DispSizeStack
.push_back(DispSizePair
);
656 BlockingStoresDispSizeMap
.clear();
657 for (auto Disp
: DispSizeStack
)
658 BlockingStoresDispSizeMap
.insert(Disp
);
661 bool X86AvoidSFBPass::runOnMachineFunction(MachineFunction
&MF
) {
662 bool Changed
= false;
664 if (DisableX86AvoidStoreForwardBlocks
|| skipFunction(MF
.getFunction()) ||
665 !MF
.getSubtarget
<X86Subtarget
>().is64Bit())
668 MRI
= &MF
.getRegInfo();
669 assert(MRI
->isSSA() && "Expected MIR to be in SSA form");
670 TII
= MF
.getSubtarget
<X86Subtarget
>().getInstrInfo();
671 TRI
= MF
.getSubtarget
<X86Subtarget
>().getRegisterInfo();
672 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
673 LLVM_DEBUG(dbgs() << "Start X86AvoidStoreForwardBlocks\n";);
674 // Look for a load then a store to XMM/YMM which look like a memcpy
675 findPotentiallylBlockedCopies(MF
);
677 for (auto LoadStoreInstPair
: BlockedLoadsStoresPairs
) {
678 MachineInstr
*LoadInst
= LoadStoreInstPair
.first
;
679 int64_t LdDispImm
= getDispOperand(LoadInst
).getImm();
680 DisplacementSizeMap BlockingStoresDispSizeMap
;
682 SmallVector
<MachineInstr
*, 2> PotentialBlockers
=
683 findPotentialBlockers(LoadInst
);
684 for (auto *PBInst
: PotentialBlockers
) {
685 if (!isPotentialBlockingStoreInst(PBInst
->getOpcode(),
686 LoadInst
->getOpcode()) ||
687 !isRelevantAddressingMode(PBInst
) || !PBInst
->hasOneMemOperand())
689 int64_t PBstDispImm
= getDispOperand(PBInst
).getImm();
690 unsigned PBstSize
= (*PBInst
->memoperands_begin())->getSize().getValue();
691 // This check doesn't cover all cases, but it will suffice for now.
692 // TODO: take branch probability into consideration, if the blocking
693 // store is in an unreached block, breaking the memcopy could lose
695 if (hasSameBaseOpValue(LoadInst
, PBInst
) &&
696 isBlockingStore(LdDispImm
, getRegSizeInBytes(LoadInst
), PBstDispImm
,
698 updateBlockingStoresDispSizeMap(BlockingStoresDispSizeMap
, PBstDispImm
,
702 if (BlockingStoresDispSizeMap
.empty())
705 // We found a store forward block, break the memcpy's load and store
706 // into smaller copies such that each smaller store that was causing
707 // a store block would now be copied separately.
708 MachineInstr
*StoreInst
= LoadStoreInstPair
.second
;
709 LLVM_DEBUG(dbgs() << "Blocked load and store instructions: \n");
710 LLVM_DEBUG(LoadInst
->dump());
711 LLVM_DEBUG(StoreInst
->dump());
712 LLVM_DEBUG(dbgs() << "Replaced with:\n");
713 removeRedundantBlockingStores(BlockingStoresDispSizeMap
);
714 breakBlockedCopies(LoadInst
, StoreInst
, BlockingStoresDispSizeMap
);
715 updateKillStatus(LoadInst
, StoreInst
);
716 ForRemoval
.push_back(LoadInst
);
717 ForRemoval
.push_back(StoreInst
);
719 for (auto *RemovedInst
: ForRemoval
) {
720 RemovedInst
->eraseFromParent();
723 BlockedLoadsStoresPairs
.clear();
724 LLVM_DEBUG(dbgs() << "End X86AvoidStoreForwardBlocks\n";);