AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / X86 / X86FloatingPoint.cpp
blob24129de9b71714a867092f02457535022e027b3c
1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions. This pass uses live
11 // variable information to indicate where the FPn registers are used and their
12 // lifetimes.
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
23 //===----------------------------------------------------------------------===//
25 #include "X86.h"
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/LiveRegUnits.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include <algorithm>
48 #include <bitset>
49 using namespace llvm;
51 #define DEBUG_TYPE "x86-codegen"
53 STATISTIC(NumFXCH, "Number of fxch instructions inserted");
54 STATISTIC(NumFP , "Number of floating point instructions");
56 namespace {
57 const unsigned ScratchFPReg = 7;
59 struct FPS : public MachineFunctionPass {
60 static char ID;
61 FPS() : MachineFunctionPass(ID) {
62 // This is really only to keep valgrind quiet.
63 // The logic in isLive() is too much for it.
64 memset(Stack, 0, sizeof(Stack));
65 memset(RegMap, 0, sizeof(RegMap));
68 void getAnalysisUsage(AnalysisUsage &AU) const override {
69 AU.setPreservesCFG();
70 AU.addRequired<EdgeBundlesWrapperLegacy>();
71 AU.addPreservedID(MachineLoopInfoID);
72 AU.addPreservedID(MachineDominatorsID);
73 MachineFunctionPass::getAnalysisUsage(AU);
76 bool runOnMachineFunction(MachineFunction &MF) override;
78 MachineFunctionProperties getRequiredProperties() const override {
79 return MachineFunctionProperties().set(
80 MachineFunctionProperties::Property::NoVRegs);
83 StringRef getPassName() const override { return "X86 FP Stackifier"; }
85 private:
86 const TargetInstrInfo *TII = nullptr; // Machine instruction info.
88 // Two CFG edges are related if they leave the same block, or enter the same
89 // block. The transitive closure of an edge under this relation is a
90 // LiveBundle. It represents a set of CFG edges where the live FP stack
91 // registers must be allocated identically in the x87 stack.
93 // A LiveBundle is usually all the edges leaving a block, or all the edges
94 // entering a block, but it can contain more edges if critical edges are
95 // present.
97 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
98 // but the exact mapping of FP registers to stack slots is fixed later.
99 struct LiveBundle {
100 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
101 unsigned Mask = 0;
103 // Number of pre-assigned live registers in FixStack. This is 0 when the
104 // stack order has not yet been fixed.
105 unsigned FixCount = 0;
107 // Assigned stack order for live-in registers.
108 // FixStack[i] == getStackEntry(i) for all i < FixCount.
109 unsigned char FixStack[8];
111 LiveBundle() = default;
113 // Have the live registers been assigned a stack order yet?
114 bool isFixed() const { return !Mask || FixCount; }
117 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
118 // with no live FP registers.
119 SmallVector<LiveBundle, 8> LiveBundles;
121 // The edge bundle analysis provides indices into the LiveBundles vector.
122 EdgeBundles *Bundles = nullptr;
124 // Return a bitmask of FP registers in block's live-in list.
125 static unsigned calcLiveInMask(MachineBasicBlock *MBB, bool RemoveFPs) {
126 unsigned Mask = 0;
127 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin();
128 I != MBB->livein_end(); ) {
129 MCPhysReg Reg = I->PhysReg;
130 static_assert(X86::FP6 - X86::FP0 == 6, "sequential regnums");
131 if (Reg >= X86::FP0 && Reg <= X86::FP6) {
132 Mask |= 1 << (Reg - X86::FP0);
133 if (RemoveFPs) {
134 I = MBB->removeLiveIn(I);
135 continue;
138 ++I;
140 return Mask;
143 // Partition all the CFG edges into LiveBundles.
144 void bundleCFGRecomputeKillFlags(MachineFunction &MF);
146 MachineBasicBlock *MBB = nullptr; // Current basic block
148 // The hardware keeps track of how many FP registers are live, so we have
149 // to model that exactly. Usually, each live register corresponds to an
150 // FP<n> register, but when dealing with calls, returns, and inline
151 // assembly, it is sometimes necessary to have live scratch registers.
152 unsigned Stack[8]; // FP<n> Registers in each stack slot...
153 unsigned StackTop = 0; // The current top of the FP stack.
155 enum {
156 NumFPRegs = 8 // Including scratch pseudo-registers.
159 // For each live FP<n> register, point to its Stack[] entry.
160 // The first entries correspond to FP0-FP6, the rest are scratch registers
161 // used when we need slightly different live registers than what the
162 // register allocator thinks.
163 unsigned RegMap[NumFPRegs];
165 // Set up our stack model to match the incoming registers to MBB.
166 void setupBlockStack();
168 // Shuffle live registers to match the expectations of successor blocks.
169 void finishBlockStack();
171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
172 void dumpStack() const {
173 dbgs() << "Stack contents:";
174 for (unsigned i = 0; i != StackTop; ++i) {
175 dbgs() << " FP" << Stack[i];
176 assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!");
179 #endif
181 /// getSlot - Return the stack slot number a particular register number is
182 /// in.
183 unsigned getSlot(unsigned RegNo) const {
184 assert(RegNo < NumFPRegs && "Regno out of range!");
185 return RegMap[RegNo];
188 /// isLive - Is RegNo currently live in the stack?
189 bool isLive(unsigned RegNo) const {
190 unsigned Slot = getSlot(RegNo);
191 return Slot < StackTop && Stack[Slot] == RegNo;
194 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
195 unsigned getStackEntry(unsigned STi) const {
196 if (STi >= StackTop)
197 report_fatal_error("Access past stack top!");
198 return Stack[StackTop-1-STi];
201 /// getSTReg - Return the X86::ST(i) register which contains the specified
202 /// FP<RegNo> register.
203 unsigned getSTReg(unsigned RegNo) const {
204 return StackTop - 1 - getSlot(RegNo) + X86::ST0;
207 // pushReg - Push the specified FP<n> register onto the stack.
208 void pushReg(unsigned Reg) {
209 assert(Reg < NumFPRegs && "Register number out of range!");
210 if (StackTop >= 8)
211 report_fatal_error("Stack overflow!");
212 Stack[StackTop] = Reg;
213 RegMap[Reg] = StackTop++;
216 // popReg - Pop a register from the stack.
217 void popReg() {
218 if (StackTop == 0)
219 report_fatal_error("Cannot pop empty stack!");
220 RegMap[Stack[--StackTop]] = ~0; // Update state
223 bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; }
224 void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) {
225 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
226 if (isAtTop(RegNo)) return;
228 unsigned STReg = getSTReg(RegNo);
229 unsigned RegOnTop = getStackEntry(0);
231 // Swap the slots the regs are in.
232 std::swap(RegMap[RegNo], RegMap[RegOnTop]);
234 // Swap stack slot contents.
235 if (RegMap[RegOnTop] >= StackTop)
236 report_fatal_error("Access past stack top!");
237 std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]);
239 // Emit an fxch to update the runtime processors version of the state.
240 BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg);
241 ++NumFXCH;
244 void duplicateToTop(unsigned RegNo, unsigned AsReg,
245 MachineBasicBlock::iterator I) {
246 DebugLoc dl = I == MBB->end() ? DebugLoc() : I->getDebugLoc();
247 unsigned STReg = getSTReg(RegNo);
248 pushReg(AsReg); // New register on top of stack
250 BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg);
253 /// popStackAfter - Pop the current value off of the top of the FP stack
254 /// after the specified instruction.
255 void popStackAfter(MachineBasicBlock::iterator &I);
257 /// freeStackSlotAfter - Free the specified register from the register
258 /// stack, so that it is no longer in a register. If the register is
259 /// currently at the top of the stack, we just pop the current instruction,
260 /// otherwise we store the current top-of-stack into the specified slot,
261 /// then pop the top of stack.
262 void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg);
264 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
265 /// instruction.
266 MachineBasicBlock::iterator
267 freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo);
269 /// Adjust the live registers to be the set in Mask.
270 void adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I);
272 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
273 /// st(0), FP reg FixStack[1] is st(1) etc.
274 void shuffleStackTop(const unsigned char *FixStack, unsigned FixCount,
275 MachineBasicBlock::iterator I);
277 bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
279 void handleCall(MachineBasicBlock::iterator &I);
280 void handleReturn(MachineBasicBlock::iterator &I);
281 void handleZeroArgFP(MachineBasicBlock::iterator &I);
282 void handleOneArgFP(MachineBasicBlock::iterator &I);
283 void handleOneArgFPRW(MachineBasicBlock::iterator &I);
284 void handleTwoArgFP(MachineBasicBlock::iterator &I);
285 void handleCompareFP(MachineBasicBlock::iterator &I);
286 void handleCondMovFP(MachineBasicBlock::iterator &I);
287 void handleSpecialFP(MachineBasicBlock::iterator &I);
289 // Check if a COPY instruction is using FP registers.
290 static bool isFPCopy(MachineInstr &MI) {
291 Register DstReg = MI.getOperand(0).getReg();
292 Register SrcReg = MI.getOperand(1).getReg();
294 return X86::RFP80RegClass.contains(DstReg) ||
295 X86::RFP80RegClass.contains(SrcReg);
298 void setKillFlags(MachineBasicBlock &MBB) const;
302 char FPS::ID = 0;
304 INITIALIZE_PASS_BEGIN(FPS, DEBUG_TYPE, "X86 FP Stackifier",
305 false, false)
306 INITIALIZE_PASS_DEPENDENCY(EdgeBundlesWrapperLegacy)
307 INITIALIZE_PASS_END(FPS, DEBUG_TYPE, "X86 FP Stackifier",
308 false, false)
310 FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
312 /// getFPReg - Return the X86::FPx register number for the specified operand.
313 /// For example, this returns 3 for X86::FP3.
314 static unsigned getFPReg(const MachineOperand &MO) {
315 assert(MO.isReg() && "Expected an FP register!");
316 Register Reg = MO.getReg();
317 assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!");
318 return Reg - X86::FP0;
321 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
322 /// register references into FP stack references.
324 bool FPS::runOnMachineFunction(MachineFunction &MF) {
325 // We only need to run this pass if there are any FP registers used in this
326 // function. If it is all integer, there is nothing for us to do!
327 bool FPIsUsed = false;
329 static_assert(X86::FP6 == X86::FP0+6, "Register enums aren't sorted right!");
330 const MachineRegisterInfo &MRI = MF.getRegInfo();
331 for (unsigned i = 0; i <= 6; ++i)
332 if (!MRI.reg_nodbg_empty(X86::FP0 + i)) {
333 FPIsUsed = true;
334 break;
337 // Early exit.
338 if (!FPIsUsed) return false;
340 Bundles = &getAnalysis<EdgeBundlesWrapperLegacy>().getEdgeBundles();
341 TII = MF.getSubtarget().getInstrInfo();
343 // Prepare cross-MBB liveness.
344 bundleCFGRecomputeKillFlags(MF);
346 StackTop = 0;
348 // Process the function in depth first order so that we process at least one
349 // of the predecessors for every reachable block in the function.
350 df_iterator_default_set<MachineBasicBlock*> Processed;
351 MachineBasicBlock *Entry = &MF.front();
353 LiveBundle &Bundle =
354 LiveBundles[Bundles->getBundle(Entry->getNumber(), false)];
356 // In regcall convention, some FP registers may not be passed through
357 // the stack, so they will need to be assigned to the stack first
358 if ((Entry->getParent()->getFunction().getCallingConv() ==
359 CallingConv::X86_RegCall) && (Bundle.Mask && !Bundle.FixCount)) {
360 // In the register calling convention, up to one FP argument could be
361 // saved in the first FP register.
362 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
363 // that the FP registers contain arguments.
364 // The actual value is passed in FP0.
365 // Here we fix the stack and mark FP0 as pre-assigned register.
366 assert((Bundle.Mask & 0xFE) == 0 &&
367 "Only FP0 could be passed as an argument");
368 Bundle.FixCount = 1;
369 Bundle.FixStack[0] = 0;
372 bool Changed = false;
373 for (MachineBasicBlock *BB : depth_first_ext(Entry, Processed))
374 Changed |= processBasicBlock(MF, *BB);
376 // Process any unreachable blocks in arbitrary order now.
377 if (MF.size() != Processed.size())
378 for (MachineBasicBlock &BB : MF)
379 if (Processed.insert(&BB).second)
380 Changed |= processBasicBlock(MF, BB);
382 LiveBundles.clear();
384 return Changed;
387 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
388 /// live-out sets for the FP registers. Consistent means that the set of
389 /// registers live-out from a block is identical to the live-in set of all
390 /// successors. This is not enforced by the normal live-in lists since
391 /// registers may be implicitly defined, or not used by all successors.
392 void FPS::bundleCFGRecomputeKillFlags(MachineFunction &MF) {
393 assert(LiveBundles.empty() && "Stale data in LiveBundles");
394 LiveBundles.resize(Bundles->getNumBundles());
396 // Gather the actual live-in masks for all MBBs.
397 for (MachineBasicBlock &MBB : MF) {
398 setKillFlags(MBB);
400 const unsigned Mask = calcLiveInMask(&MBB, false);
401 if (!Mask)
402 continue;
403 // Update MBB ingoing bundle mask.
404 LiveBundles[Bundles->getBundle(MBB.getNumber(), false)].Mask |= Mask;
408 /// processBasicBlock - Loop over all of the instructions in the basic block,
409 /// transforming FP instructions into their stack form.
411 bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) {
412 bool Changed = false;
413 MBB = &BB;
415 setupBlockStack();
417 for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) {
418 MachineInstr &MI = *I;
419 uint64_t Flags = MI.getDesc().TSFlags;
421 unsigned FPInstClass = Flags & X86II::FPTypeMask;
422 if (MI.isInlineAsm())
423 FPInstClass = X86II::SpecialFP;
425 if (MI.isCopy() && isFPCopy(MI))
426 FPInstClass = X86II::SpecialFP;
428 if (MI.isImplicitDef() &&
429 X86::RFP80RegClass.contains(MI.getOperand(0).getReg()))
430 FPInstClass = X86II::SpecialFP;
432 if (MI.isCall())
433 FPInstClass = X86II::SpecialFP;
435 // A fake_use with a floating point pseudo register argument that is
436 // killed must behave like any other floating point operation and pop
437 // the floating point stack (this is done in handleSpecialFP()).
438 // Fake_use is, however, unusual, in that sometimes its operand is not
439 // killed because a later instruction (probably a return) will use it.
440 // It is this instruction that will pop the stack.
441 // In this scenario we can safely remove the fake_use's operand
442 // (it is live anyway).
443 if (MI.isFakeUse()) {
444 const MachineOperand &MO = MI.getOperand(0);
445 if (MO.isReg() && X86::RFP80RegClass.contains(MO.getReg())) {
446 if (MO.isKill())
447 FPInstClass = X86II::SpecialFP;
448 else
449 MI.removeOperand(0);
453 if (FPInstClass == X86II::NotFP)
454 continue; // Efficiently ignore non-fp insts!
456 MachineInstr *PrevMI = nullptr;
457 if (I != BB.begin())
458 PrevMI = &*std::prev(I);
460 ++NumFP; // Keep track of # of pseudo instrs
461 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI);
463 // Get dead variables list now because the MI pointer may be deleted as part
464 // of processing!
465 SmallVector<unsigned, 8> DeadRegs;
466 for (const MachineOperand &MO : MI.operands())
467 if (MO.isReg() && MO.isDead())
468 DeadRegs.push_back(MO.getReg());
470 switch (FPInstClass) {
471 case X86II::ZeroArgFP: handleZeroArgFP(I); break;
472 case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0)
473 case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0))
474 case X86II::TwoArgFP: handleTwoArgFP(I); break;
475 case X86II::CompareFP: handleCompareFP(I); break;
476 case X86II::CondMovFP: handleCondMovFP(I); break;
477 case X86II::SpecialFP: handleSpecialFP(I); break;
478 default: llvm_unreachable("Unknown FP Type!");
481 // Check to see if any of the values defined by this instruction are dead
482 // after definition. If so, pop them.
483 for (unsigned Reg : DeadRegs) {
484 // Check if Reg is live on the stack. An inline-asm register operand that
485 // is in the clobber list and marked dead might not be live on the stack.
486 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
487 if (Reg >= X86::FP0 && Reg <= X86::FP6 && isLive(Reg-X86::FP0)) {
488 LLVM_DEBUG(dbgs() << "Register FP#" << Reg - X86::FP0 << " is dead!\n");
489 freeStackSlotAfter(I, Reg-X86::FP0);
493 // Print out all of the instructions expanded to if -debug
494 LLVM_DEBUG({
495 MachineBasicBlock::iterator PrevI = PrevMI;
496 if (I == PrevI) {
497 dbgs() << "Just deleted pseudo instruction\n";
498 } else {
499 MachineBasicBlock::iterator Start = I;
500 // Rewind to first instruction newly inserted.
501 while (Start != BB.begin() && std::prev(Start) != PrevI)
502 --Start;
503 dbgs() << "Inserted instructions:\n\t";
504 Start->print(dbgs());
505 while (++Start != std::next(I)) {
508 dumpStack();
510 (void)PrevMI;
512 Changed = true;
515 finishBlockStack();
517 return Changed;
520 /// setupBlockStack - Use the live bundles to set up our model of the stack
521 /// to match predecessors' live out stack.
522 void FPS::setupBlockStack() {
523 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB)
524 << " derived from " << MBB->getName() << ".\n");
525 StackTop = 0;
526 // Get the live-in bundle for MBB.
527 const LiveBundle &Bundle =
528 LiveBundles[Bundles->getBundle(MBB->getNumber(), false)];
530 if (!Bundle.Mask) {
531 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
532 return;
535 // Depth-first iteration should ensure that we always have an assigned stack.
536 assert(Bundle.isFixed() && "Reached block before any predecessors");
538 // Push the fixed live-in registers.
539 for (unsigned i = Bundle.FixCount; i > 0; --i) {
540 LLVM_DEBUG(dbgs() << "Live-in st(" << (i - 1) << "): %fp"
541 << unsigned(Bundle.FixStack[i - 1]) << '\n');
542 pushReg(Bundle.FixStack[i-1]);
545 // Kill off unwanted live-ins. This can happen with a critical edge.
546 // FIXME: We could keep these live registers around as zombies. They may need
547 // to be revived at the end of a short block. It might save a few instrs.
548 unsigned Mask = calcLiveInMask(MBB, /*RemoveFPs=*/true);
549 adjustLiveRegs(Mask, MBB->begin());
550 LLVM_DEBUG(MBB->dump());
553 /// finishBlockStack - Revive live-outs that are implicitly defined out of
554 /// MBB. Shuffle live registers to match the expected fixed stack of any
555 /// predecessors, and ensure that all predecessors are expecting the same
556 /// stack.
557 void FPS::finishBlockStack() {
558 // The RET handling below takes care of return blocks for us.
559 if (MBB->succ_empty())
560 return;
562 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB)
563 << " derived from " << MBB->getName() << ".\n");
565 // Get MBB's live-out bundle.
566 unsigned BundleIdx = Bundles->getBundle(MBB->getNumber(), true);
567 LiveBundle &Bundle = LiveBundles[BundleIdx];
569 // We may need to kill and define some registers to match successors.
570 // FIXME: This can probably be combined with the shuffle below.
571 MachineBasicBlock::iterator Term = MBB->getFirstTerminator();
572 adjustLiveRegs(Bundle.Mask, Term);
574 if (!Bundle.Mask) {
575 LLVM_DEBUG(dbgs() << "No live-outs.\n");
576 return;
579 // Has the stack order been fixed yet?
580 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx << ": ");
581 if (Bundle.isFixed()) {
582 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
583 shuffleStackTop(Bundle.FixStack, Bundle.FixCount, Term);
584 } else {
585 // Not fixed yet, we get to choose.
586 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
587 Bundle.FixCount = StackTop;
588 for (unsigned i = 0; i < StackTop; ++i)
589 Bundle.FixStack[i] = getStackEntry(i);
594 //===----------------------------------------------------------------------===//
595 // Efficient Lookup Table Support
596 //===----------------------------------------------------------------------===//
598 namespace {
599 struct TableEntry {
600 uint16_t from;
601 uint16_t to;
602 bool operator<(const TableEntry &TE) const { return from < TE.from; }
603 friend bool operator<(const TableEntry &TE, unsigned V) {
604 return TE.from < V;
606 friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned V,
607 const TableEntry &TE) {
608 return V < TE.from;
613 static int Lookup(ArrayRef<TableEntry> Table, unsigned Opcode) {
614 const TableEntry *I = llvm::lower_bound(Table, Opcode);
615 if (I != Table.end() && I->from == Opcode)
616 return I->to;
617 return -1;
620 #ifdef NDEBUG
621 #define ASSERT_SORTED(TABLE)
622 #else
623 #define ASSERT_SORTED(TABLE) \
625 static std::atomic<bool> TABLE##Checked(false); \
626 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
627 assert(is_sorted(TABLE) && \
628 "All lookup tables must be sorted for efficient access!"); \
629 TABLE##Checked.store(true, std::memory_order_relaxed); \
632 #endif
634 //===----------------------------------------------------------------------===//
635 // Register File -> Register Stack Mapping Methods
636 //===----------------------------------------------------------------------===//
638 // OpcodeTable - Sorted map of register instructions to their stack version.
639 // The first element is an register file pseudo instruction, the second is the
640 // concrete X86 instruction which uses the register stack.
642 static const TableEntry OpcodeTable[] = {
643 { X86::ABS_Fp32 , X86::ABS_F },
644 { X86::ABS_Fp64 , X86::ABS_F },
645 { X86::ABS_Fp80 , X86::ABS_F },
646 { X86::ADD_Fp32m , X86::ADD_F32m },
647 { X86::ADD_Fp64m , X86::ADD_F64m },
648 { X86::ADD_Fp64m32 , X86::ADD_F32m },
649 { X86::ADD_Fp80m32 , X86::ADD_F32m },
650 { X86::ADD_Fp80m64 , X86::ADD_F64m },
651 { X86::ADD_FpI16m32 , X86::ADD_FI16m },
652 { X86::ADD_FpI16m64 , X86::ADD_FI16m },
653 { X86::ADD_FpI16m80 , X86::ADD_FI16m },
654 { X86::ADD_FpI32m32 , X86::ADD_FI32m },
655 { X86::ADD_FpI32m64 , X86::ADD_FI32m },
656 { X86::ADD_FpI32m80 , X86::ADD_FI32m },
657 { X86::CHS_Fp32 , X86::CHS_F },
658 { X86::CHS_Fp64 , X86::CHS_F },
659 { X86::CHS_Fp80 , X86::CHS_F },
660 { X86::CMOVBE_Fp32 , X86::CMOVBE_F },
661 { X86::CMOVBE_Fp64 , X86::CMOVBE_F },
662 { X86::CMOVBE_Fp80 , X86::CMOVBE_F },
663 { X86::CMOVB_Fp32 , X86::CMOVB_F },
664 { X86::CMOVB_Fp64 , X86::CMOVB_F },
665 { X86::CMOVB_Fp80 , X86::CMOVB_F },
666 { X86::CMOVE_Fp32 , X86::CMOVE_F },
667 { X86::CMOVE_Fp64 , X86::CMOVE_F },
668 { X86::CMOVE_Fp80 , X86::CMOVE_F },
669 { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F },
670 { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F },
671 { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F },
672 { X86::CMOVNB_Fp32 , X86::CMOVNB_F },
673 { X86::CMOVNB_Fp64 , X86::CMOVNB_F },
674 { X86::CMOVNB_Fp80 , X86::CMOVNB_F },
675 { X86::CMOVNE_Fp32 , X86::CMOVNE_F },
676 { X86::CMOVNE_Fp64 , X86::CMOVNE_F },
677 { X86::CMOVNE_Fp80 , X86::CMOVNE_F },
678 { X86::CMOVNP_Fp32 , X86::CMOVNP_F },
679 { X86::CMOVNP_Fp64 , X86::CMOVNP_F },
680 { X86::CMOVNP_Fp80 , X86::CMOVNP_F },
681 { X86::CMOVP_Fp32 , X86::CMOVP_F },
682 { X86::CMOVP_Fp64 , X86::CMOVP_F },
683 { X86::CMOVP_Fp80 , X86::CMOVP_F },
684 { X86::COM_FpIr32 , X86::COM_FIr },
685 { X86::COM_FpIr64 , X86::COM_FIr },
686 { X86::COM_FpIr80 , X86::COM_FIr },
687 { X86::COM_Fpr32 , X86::COM_FST0r },
688 { X86::COM_Fpr64 , X86::COM_FST0r },
689 { X86::COM_Fpr80 , X86::COM_FST0r },
690 { X86::DIVR_Fp32m , X86::DIVR_F32m },
691 { X86::DIVR_Fp64m , X86::DIVR_F64m },
692 { X86::DIVR_Fp64m32 , X86::DIVR_F32m },
693 { X86::DIVR_Fp80m32 , X86::DIVR_F32m },
694 { X86::DIVR_Fp80m64 , X86::DIVR_F64m },
695 { X86::DIVR_FpI16m32, X86::DIVR_FI16m},
696 { X86::DIVR_FpI16m64, X86::DIVR_FI16m},
697 { X86::DIVR_FpI16m80, X86::DIVR_FI16m},
698 { X86::DIVR_FpI32m32, X86::DIVR_FI32m},
699 { X86::DIVR_FpI32m64, X86::DIVR_FI32m},
700 { X86::DIVR_FpI32m80, X86::DIVR_FI32m},
701 { X86::DIV_Fp32m , X86::DIV_F32m },
702 { X86::DIV_Fp64m , X86::DIV_F64m },
703 { X86::DIV_Fp64m32 , X86::DIV_F32m },
704 { X86::DIV_Fp80m32 , X86::DIV_F32m },
705 { X86::DIV_Fp80m64 , X86::DIV_F64m },
706 { X86::DIV_FpI16m32 , X86::DIV_FI16m },
707 { X86::DIV_FpI16m64 , X86::DIV_FI16m },
708 { X86::DIV_FpI16m80 , X86::DIV_FI16m },
709 { X86::DIV_FpI32m32 , X86::DIV_FI32m },
710 { X86::DIV_FpI32m64 , X86::DIV_FI32m },
711 { X86::DIV_FpI32m80 , X86::DIV_FI32m },
712 { X86::ILD_Fp16m32 , X86::ILD_F16m },
713 { X86::ILD_Fp16m64 , X86::ILD_F16m },
714 { X86::ILD_Fp16m80 , X86::ILD_F16m },
715 { X86::ILD_Fp32m32 , X86::ILD_F32m },
716 { X86::ILD_Fp32m64 , X86::ILD_F32m },
717 { X86::ILD_Fp32m80 , X86::ILD_F32m },
718 { X86::ILD_Fp64m32 , X86::ILD_F64m },
719 { X86::ILD_Fp64m64 , X86::ILD_F64m },
720 { X86::ILD_Fp64m80 , X86::ILD_F64m },
721 { X86::ISTT_Fp16m32 , X86::ISTT_FP16m},
722 { X86::ISTT_Fp16m64 , X86::ISTT_FP16m},
723 { X86::ISTT_Fp16m80 , X86::ISTT_FP16m},
724 { X86::ISTT_Fp32m32 , X86::ISTT_FP32m},
725 { X86::ISTT_Fp32m64 , X86::ISTT_FP32m},
726 { X86::ISTT_Fp32m80 , X86::ISTT_FP32m},
727 { X86::ISTT_Fp64m32 , X86::ISTT_FP64m},
728 { X86::ISTT_Fp64m64 , X86::ISTT_FP64m},
729 { X86::ISTT_Fp64m80 , X86::ISTT_FP64m},
730 { X86::IST_Fp16m32 , X86::IST_F16m },
731 { X86::IST_Fp16m64 , X86::IST_F16m },
732 { X86::IST_Fp16m80 , X86::IST_F16m },
733 { X86::IST_Fp32m32 , X86::IST_F32m },
734 { X86::IST_Fp32m64 , X86::IST_F32m },
735 { X86::IST_Fp32m80 , X86::IST_F32m },
736 { X86::IST_Fp64m32 , X86::IST_FP64m },
737 { X86::IST_Fp64m64 , X86::IST_FP64m },
738 { X86::IST_Fp64m80 , X86::IST_FP64m },
739 { X86::LD_Fp032 , X86::LD_F0 },
740 { X86::LD_Fp064 , X86::LD_F0 },
741 { X86::LD_Fp080 , X86::LD_F0 },
742 { X86::LD_Fp132 , X86::LD_F1 },
743 { X86::LD_Fp164 , X86::LD_F1 },
744 { X86::LD_Fp180 , X86::LD_F1 },
745 { X86::LD_Fp32m , X86::LD_F32m },
746 { X86::LD_Fp32m64 , X86::LD_F32m },
747 { X86::LD_Fp32m80 , X86::LD_F32m },
748 { X86::LD_Fp64m , X86::LD_F64m },
749 { X86::LD_Fp64m80 , X86::LD_F64m },
750 { X86::LD_Fp80m , X86::LD_F80m },
751 { X86::MUL_Fp32m , X86::MUL_F32m },
752 { X86::MUL_Fp64m , X86::MUL_F64m },
753 { X86::MUL_Fp64m32 , X86::MUL_F32m },
754 { X86::MUL_Fp80m32 , X86::MUL_F32m },
755 { X86::MUL_Fp80m64 , X86::MUL_F64m },
756 { X86::MUL_FpI16m32 , X86::MUL_FI16m },
757 { X86::MUL_FpI16m64 , X86::MUL_FI16m },
758 { X86::MUL_FpI16m80 , X86::MUL_FI16m },
759 { X86::MUL_FpI32m32 , X86::MUL_FI32m },
760 { X86::MUL_FpI32m64 , X86::MUL_FI32m },
761 { X86::MUL_FpI32m80 , X86::MUL_FI32m },
762 { X86::SQRT_Fp32 , X86::SQRT_F },
763 { X86::SQRT_Fp64 , X86::SQRT_F },
764 { X86::SQRT_Fp80 , X86::SQRT_F },
765 { X86::ST_Fp32m , X86::ST_F32m },
766 { X86::ST_Fp64m , X86::ST_F64m },
767 { X86::ST_Fp64m32 , X86::ST_F32m },
768 { X86::ST_Fp80m32 , X86::ST_F32m },
769 { X86::ST_Fp80m64 , X86::ST_F64m },
770 { X86::ST_FpP80m , X86::ST_FP80m },
771 { X86::SUBR_Fp32m , X86::SUBR_F32m },
772 { X86::SUBR_Fp64m , X86::SUBR_F64m },
773 { X86::SUBR_Fp64m32 , X86::SUBR_F32m },
774 { X86::SUBR_Fp80m32 , X86::SUBR_F32m },
775 { X86::SUBR_Fp80m64 , X86::SUBR_F64m },
776 { X86::SUBR_FpI16m32, X86::SUBR_FI16m},
777 { X86::SUBR_FpI16m64, X86::SUBR_FI16m},
778 { X86::SUBR_FpI16m80, X86::SUBR_FI16m},
779 { X86::SUBR_FpI32m32, X86::SUBR_FI32m},
780 { X86::SUBR_FpI32m64, X86::SUBR_FI32m},
781 { X86::SUBR_FpI32m80, X86::SUBR_FI32m},
782 { X86::SUB_Fp32m , X86::SUB_F32m },
783 { X86::SUB_Fp64m , X86::SUB_F64m },
784 { X86::SUB_Fp64m32 , X86::SUB_F32m },
785 { X86::SUB_Fp80m32 , X86::SUB_F32m },
786 { X86::SUB_Fp80m64 , X86::SUB_F64m },
787 { X86::SUB_FpI16m32 , X86::SUB_FI16m },
788 { X86::SUB_FpI16m64 , X86::SUB_FI16m },
789 { X86::SUB_FpI16m80 , X86::SUB_FI16m },
790 { X86::SUB_FpI32m32 , X86::SUB_FI32m },
791 { X86::SUB_FpI32m64 , X86::SUB_FI32m },
792 { X86::SUB_FpI32m80 , X86::SUB_FI32m },
793 { X86::TST_Fp32 , X86::TST_F },
794 { X86::TST_Fp64 , X86::TST_F },
795 { X86::TST_Fp80 , X86::TST_F },
796 { X86::UCOM_FpIr32 , X86::UCOM_FIr },
797 { X86::UCOM_FpIr64 , X86::UCOM_FIr },
798 { X86::UCOM_FpIr80 , X86::UCOM_FIr },
799 { X86::UCOM_Fpr32 , X86::UCOM_Fr },
800 { X86::UCOM_Fpr64 , X86::UCOM_Fr },
801 { X86::UCOM_Fpr80 , X86::UCOM_Fr },
802 { X86::XAM_Fp32 , X86::XAM_F },
803 { X86::XAM_Fp64 , X86::XAM_F },
804 { X86::XAM_Fp80 , X86::XAM_F },
807 static unsigned getConcreteOpcode(unsigned Opcode) {
808 ASSERT_SORTED(OpcodeTable);
809 int Opc = Lookup(OpcodeTable, Opcode);
810 assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!");
811 return Opc;
814 //===----------------------------------------------------------------------===//
815 // Helper Methods
816 //===----------------------------------------------------------------------===//
818 // PopTable - Sorted map of instructions to their popping version. The first
819 // element is an instruction, the second is the version which pops.
821 static const TableEntry PopTable[] = {
822 { X86::ADD_FrST0 , X86::ADD_FPrST0 },
824 { X86::COMP_FST0r, X86::FCOMPP },
825 { X86::COM_FIr , X86::COM_FIPr },
826 { X86::COM_FST0r , X86::COMP_FST0r },
828 { X86::DIVR_FrST0, X86::DIVR_FPrST0 },
829 { X86::DIV_FrST0 , X86::DIV_FPrST0 },
831 { X86::IST_F16m , X86::IST_FP16m },
832 { X86::IST_F32m , X86::IST_FP32m },
834 { X86::MUL_FrST0 , X86::MUL_FPrST0 },
836 { X86::ST_F32m , X86::ST_FP32m },
837 { X86::ST_F64m , X86::ST_FP64m },
838 { X86::ST_Frr , X86::ST_FPrr },
840 { X86::SUBR_FrST0, X86::SUBR_FPrST0 },
841 { X86::SUB_FrST0 , X86::SUB_FPrST0 },
843 { X86::UCOM_FIr , X86::UCOM_FIPr },
845 { X86::UCOM_FPr , X86::UCOM_FPPr },
846 { X86::UCOM_Fr , X86::UCOM_FPr },
849 static bool doesInstructionSetFPSW(MachineInstr &MI) {
850 if (const MachineOperand *MO =
851 MI.findRegisterDefOperand(X86::FPSW, /*TRI=*/nullptr))
852 if (!MO->isDead())
853 return true;
854 return false;
857 static MachineBasicBlock::iterator
858 getNextFPInstruction(MachineBasicBlock::iterator I) {
859 MachineBasicBlock &MBB = *I->getParent();
860 while (++I != MBB.end()) {
861 MachineInstr &MI = *I;
862 if (X86::isX87Instruction(MI))
863 return I;
865 return MBB.end();
868 /// popStackAfter - Pop the current value off of the top of the FP stack after
869 /// the specified instruction. This attempts to be sneaky and combine the pop
870 /// into the instruction itself if possible. The iterator is left pointing to
871 /// the last instruction, be it a new pop instruction inserted, or the old
872 /// instruction if it was modified in place.
874 void FPS::popStackAfter(MachineBasicBlock::iterator &I) {
875 MachineInstr &MI = *I;
876 const DebugLoc &dl = MI.getDebugLoc();
877 ASSERT_SORTED(PopTable);
879 popReg();
881 // Check to see if there is a popping version of this instruction...
882 int Opcode = Lookup(PopTable, I->getOpcode());
883 if (Opcode != -1) {
884 I->setDesc(TII->get(Opcode));
885 if (Opcode == X86::FCOMPP || Opcode == X86::UCOM_FPPr)
886 I->removeOperand(0);
887 MI.dropDebugNumber();
888 } else { // Insert an explicit pop
889 // If this instruction sets FPSW, which is read in following instruction,
890 // insert pop after that reader.
891 if (doesInstructionSetFPSW(MI)) {
892 MachineBasicBlock &MBB = *MI.getParent();
893 MachineBasicBlock::iterator Next = getNextFPInstruction(I);
894 if (Next != MBB.end() && Next->readsRegister(X86::FPSW, /*TRI=*/nullptr))
895 I = Next;
897 I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0);
901 /// freeStackSlotAfter - Free the specified register from the register stack, so
902 /// that it is no longer in a register. If the register is currently at the top
903 /// of the stack, we just pop the current instruction, otherwise we store the
904 /// current top-of-stack into the specified slot, then pop the top of stack.
905 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) {
906 if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy.
907 popStackAfter(I);
908 return;
911 // Otherwise, store the top of stack into the dead slot, killing the operand
912 // without having to add in an explicit xchg then pop.
914 I = freeStackSlotBefore(++I, FPRegNo);
917 /// freeStackSlotBefore - Free the specified register without trying any
918 /// folding.
919 MachineBasicBlock::iterator
920 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I, unsigned FPRegNo) {
921 unsigned STReg = getSTReg(FPRegNo);
922 unsigned OldSlot = getSlot(FPRegNo);
923 unsigned TopReg = Stack[StackTop-1];
924 Stack[OldSlot] = TopReg;
925 RegMap[TopReg] = OldSlot;
926 RegMap[FPRegNo] = ~0;
927 Stack[--StackTop] = ~0;
928 return BuildMI(*MBB, I, DebugLoc(), TII->get(X86::ST_FPrr))
929 .addReg(STReg)
930 .getInstr();
933 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
934 /// registers with a bit in Mask are live.
935 void FPS::adjustLiveRegs(unsigned Mask, MachineBasicBlock::iterator I) {
936 unsigned Defs = Mask;
937 unsigned Kills = 0;
938 for (unsigned i = 0; i < StackTop; ++i) {
939 unsigned RegNo = Stack[i];
940 if (!(Defs & (1 << RegNo)))
941 // This register is live, but we don't want it.
942 Kills |= (1 << RegNo);
943 else
944 // We don't need to imp-def this live register.
945 Defs &= ~(1 << RegNo);
947 assert((Kills & Defs) == 0 && "Register needs killing and def'ing?");
949 // Produce implicit-defs for free by using killed registers.
950 while (Kills && Defs) {
951 unsigned KReg = llvm::countr_zero(Kills);
952 unsigned DReg = llvm::countr_zero(Defs);
953 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg << " as imp %fp" << DReg
954 << "\n");
955 std::swap(Stack[getSlot(KReg)], Stack[getSlot(DReg)]);
956 std::swap(RegMap[KReg], RegMap[DReg]);
957 Kills &= ~(1 << KReg);
958 Defs &= ~(1 << DReg);
961 // Kill registers by popping.
962 if (Kills && I != MBB->begin()) {
963 MachineBasicBlock::iterator I2 = std::prev(I);
964 while (StackTop) {
965 unsigned KReg = getStackEntry(0);
966 if (!(Kills & (1 << KReg)))
967 break;
968 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg << "\n");
969 popStackAfter(I2);
970 Kills &= ~(1 << KReg);
974 // Manually kill the rest.
975 while (Kills) {
976 unsigned KReg = llvm::countr_zero(Kills);
977 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg << "\n");
978 freeStackSlotBefore(I, KReg);
979 Kills &= ~(1 << KReg);
982 // Load zeros for all the imp-defs.
983 while(Defs) {
984 unsigned DReg = llvm::countr_zero(Defs);
985 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg << " as 0\n");
986 BuildMI(*MBB, I, DebugLoc(), TII->get(X86::LD_F0));
987 pushReg(DReg);
988 Defs &= ~(1 << DReg);
991 // Now we should have the correct registers live.
992 LLVM_DEBUG(dumpStack());
993 assert(StackTop == (unsigned)llvm::popcount(Mask) && "Live count mismatch");
996 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
997 /// FixCount entries into the order given by FixStack.
998 /// FIXME: Is there a better algorithm than insertion sort?
999 void FPS::shuffleStackTop(const unsigned char *FixStack,
1000 unsigned FixCount,
1001 MachineBasicBlock::iterator I) {
1002 // Move items into place, starting from the desired stack bottom.
1003 while (FixCount--) {
1004 // Old register at position FixCount.
1005 unsigned OldReg = getStackEntry(FixCount);
1006 // Desired register at position FixCount.
1007 unsigned Reg = FixStack[FixCount];
1008 if (Reg == OldReg)
1009 continue;
1010 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
1011 moveToTop(Reg, I);
1012 if (FixCount > 0)
1013 moveToTop(OldReg, I);
1015 LLVM_DEBUG(dumpStack());
1019 //===----------------------------------------------------------------------===//
1020 // Instruction transformation implementation
1021 //===----------------------------------------------------------------------===//
1023 void FPS::handleCall(MachineBasicBlock::iterator &I) {
1024 MachineInstr &MI = *I;
1025 unsigned STReturns = 0;
1027 bool ClobbersFPStack = false;
1028 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1029 MachineOperand &Op = MI.getOperand(i);
1030 // Check if this call clobbers the FP stack.
1031 // is sufficient.
1032 if (Op.isRegMask()) {
1033 bool ClobbersFP0 = Op.clobbersPhysReg(X86::FP0);
1034 #ifndef NDEBUG
1035 static_assert(X86::FP7 - X86::FP0 == 7, "sequential FP regnumbers");
1036 for (unsigned i = 1; i != 8; ++i)
1037 assert(Op.clobbersPhysReg(X86::FP0 + i) == ClobbersFP0 &&
1038 "Inconsistent FP register clobber");
1039 #endif
1041 if (ClobbersFP0)
1042 ClobbersFPStack = true;
1045 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1046 continue;
1048 assert(Op.isImplicit() && "Expected implicit def/use");
1050 if (Op.isDef())
1051 STReturns |= 1 << getFPReg(Op);
1053 // Remove the operand so that later passes don't see it.
1054 MI.removeOperand(i);
1055 --i;
1056 --e;
1059 // Most calls should have a regmask that clobbers the FP registers. If it
1060 // isn't present then the register allocator didn't spill the FP registers
1061 // so they are still on the stack.
1062 assert((ClobbersFPStack || STReturns == 0) &&
1063 "ST returns without FP stack clobber");
1064 if (!ClobbersFPStack)
1065 return;
1067 unsigned N = llvm::countr_one(STReturns);
1069 // FP registers used for function return must be consecutive starting at
1070 // FP0
1071 assert(STReturns == 0 || (isMask_32(STReturns) && N <= 2));
1073 // Reset the FP Stack - It is required because of possible leftovers from
1074 // passed arguments. The caller should assume that the FP stack is
1075 // returned empty (unless the callee returns values on FP stack).
1076 while (StackTop > 0)
1077 popReg();
1079 for (unsigned I = 0; I < N; ++I)
1080 pushReg(N - I - 1);
1082 // If this call has been modified, drop all variable values defined by it.
1083 // We can't track them once they've been stackified.
1084 if (STReturns)
1085 I->dropDebugNumber();
1088 /// If RET has an FP register use operand, pass the first one in ST(0) and
1089 /// the second one in ST(1).
1090 void FPS::handleReturn(MachineBasicBlock::iterator &I) {
1091 MachineInstr &MI = *I;
1093 // Find the register operands.
1094 unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U;
1095 unsigned LiveMask = 0;
1097 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1098 MachineOperand &Op = MI.getOperand(i);
1099 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1100 continue;
1101 // FP Register uses must be kills unless there are two uses of the same
1102 // register, in which case only one will be a kill.
1103 assert(Op.isUse() &&
1104 (Op.isKill() || // Marked kill.
1105 getFPReg(Op) == FirstFPRegOp || // Second instance.
1106 MI.killsRegister(Op.getReg(),
1107 /*TRI=*/nullptr)) && // Later use is marked kill.
1108 "Ret only defs operands, and values aren't live beyond it");
1110 if (FirstFPRegOp == ~0U)
1111 FirstFPRegOp = getFPReg(Op);
1112 else {
1113 assert(SecondFPRegOp == ~0U && "More than two fp operands!");
1114 SecondFPRegOp = getFPReg(Op);
1116 LiveMask |= (1 << getFPReg(Op));
1118 // Remove the operand so that later passes don't see it.
1119 MI.removeOperand(i);
1120 --i;
1121 --e;
1124 // We may have been carrying spurious live-ins, so make sure only the
1125 // returned registers are left live.
1126 adjustLiveRegs(LiveMask, MI);
1127 if (!LiveMask) return; // Quick check to see if any are possible.
1129 // There are only four possibilities here:
1130 // 1) we are returning a single FP value. In this case, it has to be in
1131 // ST(0) already, so just declare success by removing the value from the
1132 // FP Stack.
1133 if (SecondFPRegOp == ~0U) {
1134 // Assert that the top of stack contains the right FP register.
1135 assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) &&
1136 "Top of stack not the right register for RET!");
1138 // Ok, everything is good, mark the value as not being on the stack
1139 // anymore so that our assertion about the stack being empty at end of
1140 // block doesn't fire.
1141 StackTop = 0;
1142 return;
1145 // Otherwise, we are returning two values:
1146 // 2) If returning the same value for both, we only have one thing in the FP
1147 // stack. Consider: RET FP1, FP1
1148 if (StackTop == 1) {
1149 assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&&
1150 "Stack misconfiguration for RET!");
1152 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1153 // register to hold it.
1154 unsigned NewReg = ScratchFPReg;
1155 duplicateToTop(FirstFPRegOp, NewReg, MI);
1156 FirstFPRegOp = NewReg;
1159 /// Okay we know we have two different FPx operands now:
1160 assert(StackTop == 2 && "Must have two values live!");
1162 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1163 /// in ST(1). In this case, emit an fxch.
1164 if (getStackEntry(0) == SecondFPRegOp) {
1165 assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live");
1166 moveToTop(FirstFPRegOp, MI);
1169 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1170 /// ST(1). Just remove both from our understanding of the stack and return.
1171 assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live");
1172 assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live");
1173 StackTop = 0;
1176 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1178 void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) {
1179 MachineInstr &MI = *I;
1180 unsigned DestReg = getFPReg(MI.getOperand(0));
1182 // Change from the pseudo instruction to the concrete instruction.
1183 MI.removeOperand(0); // Remove the explicit ST(0) operand
1184 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1185 MI.addOperand(
1186 MachineOperand::CreateReg(X86::ST0, /*isDef*/ true, /*isImp*/ true));
1188 // Result gets pushed on the stack.
1189 pushReg(DestReg);
1191 MI.dropDebugNumber();
1194 /// handleOneArgFP - fst <mem>, ST(0)
1196 void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) {
1197 MachineInstr &MI = *I;
1198 unsigned NumOps = MI.getDesc().getNumOperands();
1199 assert((NumOps == X86::AddrNumOperands + 1 || NumOps == 1) &&
1200 "Can only handle fst* & ftst instructions!");
1202 // Is this the last use of the source register?
1203 unsigned Reg = getFPReg(MI.getOperand(NumOps - 1));
1204 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg, /*TRI=*/nullptr);
1206 // FISTP64m is strange because there isn't a non-popping versions.
1207 // If we have one _and_ we don't want to pop the operand, duplicate the value
1208 // on the stack instead of moving it. This ensure that popping the value is
1209 // always ok.
1210 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1212 if (!KillsSrc && (MI.getOpcode() == X86::IST_Fp64m32 ||
1213 MI.getOpcode() == X86::ISTT_Fp16m32 ||
1214 MI.getOpcode() == X86::ISTT_Fp32m32 ||
1215 MI.getOpcode() == X86::ISTT_Fp64m32 ||
1216 MI.getOpcode() == X86::IST_Fp64m64 ||
1217 MI.getOpcode() == X86::ISTT_Fp16m64 ||
1218 MI.getOpcode() == X86::ISTT_Fp32m64 ||
1219 MI.getOpcode() == X86::ISTT_Fp64m64 ||
1220 MI.getOpcode() == X86::IST_Fp64m80 ||
1221 MI.getOpcode() == X86::ISTT_Fp16m80 ||
1222 MI.getOpcode() == X86::ISTT_Fp32m80 ||
1223 MI.getOpcode() == X86::ISTT_Fp64m80 ||
1224 MI.getOpcode() == X86::ST_FpP80m)) {
1225 duplicateToTop(Reg, ScratchFPReg, I);
1226 } else {
1227 moveToTop(Reg, I); // Move to the top of the stack...
1230 // Convert from the pseudo instruction to the concrete instruction.
1231 MI.removeOperand(NumOps - 1); // Remove explicit ST(0) operand
1232 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1233 MI.addOperand(
1234 MachineOperand::CreateReg(X86::ST0, /*isDef*/ false, /*isImp*/ true));
1236 if (MI.getOpcode() == X86::IST_FP64m || MI.getOpcode() == X86::ISTT_FP16m ||
1237 MI.getOpcode() == X86::ISTT_FP32m || MI.getOpcode() == X86::ISTT_FP64m ||
1238 MI.getOpcode() == X86::ST_FP80m) {
1239 if (StackTop == 0)
1240 report_fatal_error("Stack empty??");
1241 --StackTop;
1242 } else if (KillsSrc) { // Last use of operand?
1243 popStackAfter(I);
1246 MI.dropDebugNumber();
1250 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1251 /// replace the value with a newly computed value. These instructions may have
1252 /// non-fp operands after their FP operands.
1254 /// Examples:
1255 /// R1 = fchs R2
1256 /// R1 = fadd R2, [mem]
1258 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) {
1259 MachineInstr &MI = *I;
1260 #ifndef NDEBUG
1261 unsigned NumOps = MI.getDesc().getNumOperands();
1262 assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!");
1263 #endif
1265 // Is this the last use of the source register?
1266 unsigned Reg = getFPReg(MI.getOperand(1));
1267 bool KillsSrc = MI.killsRegister(X86::FP0 + Reg, /*TRI=*/nullptr);
1269 if (KillsSrc) {
1270 // If this is the last use of the source register, just make sure it's on
1271 // the top of the stack.
1272 moveToTop(Reg, I);
1273 if (StackTop == 0)
1274 report_fatal_error("Stack cannot be empty!");
1275 --StackTop;
1276 pushReg(getFPReg(MI.getOperand(0)));
1277 } else {
1278 // If this is not the last use of the source register, _copy_ it to the top
1279 // of the stack.
1280 duplicateToTop(Reg, getFPReg(MI.getOperand(0)), I);
1283 // Change from the pseudo instruction to the concrete instruction.
1284 MI.removeOperand(1); // Drop the source operand.
1285 MI.removeOperand(0); // Drop the destination operand.
1286 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1287 MI.dropDebugNumber();
1291 //===----------------------------------------------------------------------===//
1292 // Define tables of various ways to map pseudo instructions
1295 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1296 static const TableEntry ForwardST0Table[] = {
1297 { X86::ADD_Fp32 , X86::ADD_FST0r },
1298 { X86::ADD_Fp64 , X86::ADD_FST0r },
1299 { X86::ADD_Fp80 , X86::ADD_FST0r },
1300 { X86::DIV_Fp32 , X86::DIV_FST0r },
1301 { X86::DIV_Fp64 , X86::DIV_FST0r },
1302 { X86::DIV_Fp80 , X86::DIV_FST0r },
1303 { X86::MUL_Fp32 , X86::MUL_FST0r },
1304 { X86::MUL_Fp64 , X86::MUL_FST0r },
1305 { X86::MUL_Fp80 , X86::MUL_FST0r },
1306 { X86::SUB_Fp32 , X86::SUB_FST0r },
1307 { X86::SUB_Fp64 , X86::SUB_FST0r },
1308 { X86::SUB_Fp80 , X86::SUB_FST0r },
1311 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1312 static const TableEntry ReverseST0Table[] = {
1313 { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative
1314 { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative
1315 { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative
1316 { X86::DIV_Fp32 , X86::DIVR_FST0r },
1317 { X86::DIV_Fp64 , X86::DIVR_FST0r },
1318 { X86::DIV_Fp80 , X86::DIVR_FST0r },
1319 { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative
1320 { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative
1321 { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative
1322 { X86::SUB_Fp32 , X86::SUBR_FST0r },
1323 { X86::SUB_Fp64 , X86::SUBR_FST0r },
1324 { X86::SUB_Fp80 , X86::SUBR_FST0r },
1327 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1328 static const TableEntry ForwardSTiTable[] = {
1329 { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative
1330 { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative
1331 { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative
1332 { X86::DIV_Fp32 , X86::DIVR_FrST0 },
1333 { X86::DIV_Fp64 , X86::DIVR_FrST0 },
1334 { X86::DIV_Fp80 , X86::DIVR_FrST0 },
1335 { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative
1336 { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative
1337 { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative
1338 { X86::SUB_Fp32 , X86::SUBR_FrST0 },
1339 { X86::SUB_Fp64 , X86::SUBR_FrST0 },
1340 { X86::SUB_Fp80 , X86::SUBR_FrST0 },
1343 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1344 static const TableEntry ReverseSTiTable[] = {
1345 { X86::ADD_Fp32 , X86::ADD_FrST0 },
1346 { X86::ADD_Fp64 , X86::ADD_FrST0 },
1347 { X86::ADD_Fp80 , X86::ADD_FrST0 },
1348 { X86::DIV_Fp32 , X86::DIV_FrST0 },
1349 { X86::DIV_Fp64 , X86::DIV_FrST0 },
1350 { X86::DIV_Fp80 , X86::DIV_FrST0 },
1351 { X86::MUL_Fp32 , X86::MUL_FrST0 },
1352 { X86::MUL_Fp64 , X86::MUL_FrST0 },
1353 { X86::MUL_Fp80 , X86::MUL_FrST0 },
1354 { X86::SUB_Fp32 , X86::SUB_FrST0 },
1355 { X86::SUB_Fp64 , X86::SUB_FrST0 },
1356 { X86::SUB_Fp80 , X86::SUB_FrST0 },
1360 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1361 /// instructions which need to be simplified and possibly transformed.
1363 /// Result: ST(0) = fsub ST(0), ST(i)
1364 /// ST(i) = fsub ST(0), ST(i)
1365 /// ST(0) = fsubr ST(0), ST(i)
1366 /// ST(i) = fsubr ST(0), ST(i)
1368 void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) {
1369 ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table);
1370 ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable);
1371 MachineInstr &MI = *I;
1373 unsigned NumOperands = MI.getDesc().getNumOperands();
1374 assert(NumOperands == 3 && "Illegal TwoArgFP instruction!");
1375 unsigned Dest = getFPReg(MI.getOperand(0));
1376 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1377 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1378 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0, /*TRI=*/nullptr);
1379 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1380 const DebugLoc &dl = MI.getDebugLoc();
1382 unsigned TOS = getStackEntry(0);
1384 // One of our operands must be on the top of the stack. If neither is yet, we
1385 // need to move one.
1386 if (Op0 != TOS && Op1 != TOS) { // No operand at TOS?
1387 // We can choose to move either operand to the top of the stack. If one of
1388 // the operands is killed by this instruction, we want that one so that we
1389 // can update right on top of the old version.
1390 if (KillsOp0) {
1391 moveToTop(Op0, I); // Move dead operand to TOS.
1392 TOS = Op0;
1393 } else if (KillsOp1) {
1394 moveToTop(Op1, I);
1395 TOS = Op1;
1396 } else {
1397 // All of the operands are live after this instruction executes, so we
1398 // cannot update on top of any operand. Because of this, we must
1399 // duplicate one of the stack elements to the top. It doesn't matter
1400 // which one we pick.
1402 duplicateToTop(Op0, Dest, I);
1403 Op0 = TOS = Dest;
1404 KillsOp0 = true;
1406 } else if (!KillsOp0 && !KillsOp1) {
1407 // If we DO have one of our operands at the top of the stack, but we don't
1408 // have a dead operand, we must duplicate one of the operands to a new slot
1409 // on the stack.
1410 duplicateToTop(Op0, Dest, I);
1411 Op0 = TOS = Dest;
1412 KillsOp0 = true;
1415 // Now we know that one of our operands is on the top of the stack, and at
1416 // least one of our operands is killed by this instruction.
1417 assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) &&
1418 "Stack conditions not set up right!");
1420 // We decide which form to use based on what is on the top of the stack, and
1421 // which operand is killed by this instruction.
1422 ArrayRef<TableEntry> InstTable;
1423 bool isForward = TOS == Op0;
1424 bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0);
1425 if (updateST0) {
1426 if (isForward)
1427 InstTable = ForwardST0Table;
1428 else
1429 InstTable = ReverseST0Table;
1430 } else {
1431 if (isForward)
1432 InstTable = ForwardSTiTable;
1433 else
1434 InstTable = ReverseSTiTable;
1437 int Opcode = Lookup(InstTable, MI.getOpcode());
1438 assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!");
1440 // NotTOS - The register which is not on the top of stack...
1441 unsigned NotTOS = (TOS == Op0) ? Op1 : Op0;
1443 // Replace the old instruction with a new instruction
1444 MBB->remove(&*I++);
1445 I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS));
1447 if (!MI.mayRaiseFPException())
1448 I->setFlag(MachineInstr::MIFlag::NoFPExcept);
1450 // If both operands are killed, pop one off of the stack in addition to
1451 // overwriting the other one.
1452 if (KillsOp0 && KillsOp1 && Op0 != Op1) {
1453 assert(!updateST0 && "Should have updated other operand!");
1454 popStackAfter(I); // Pop the top of stack
1457 // Update stack information so that we know the destination register is now on
1458 // the stack.
1459 unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS);
1460 assert(UpdatedSlot < StackTop && Dest < 7);
1461 Stack[UpdatedSlot] = Dest;
1462 RegMap[Dest] = UpdatedSlot;
1463 MBB->getParent()->deleteMachineInstr(&MI); // Remove the old instruction
1466 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1467 /// register arguments and no explicit destinations.
1469 void FPS::handleCompareFP(MachineBasicBlock::iterator &I) {
1470 MachineInstr &MI = *I;
1472 unsigned NumOperands = MI.getDesc().getNumOperands();
1473 assert(NumOperands == 2 && "Illegal FUCOM* instruction!");
1474 unsigned Op0 = getFPReg(MI.getOperand(NumOperands - 2));
1475 unsigned Op1 = getFPReg(MI.getOperand(NumOperands - 1));
1476 bool KillsOp0 = MI.killsRegister(X86::FP0 + Op0, /*TRI=*/nullptr);
1477 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1479 // Make sure the first operand is on the top of stack, the other one can be
1480 // anywhere.
1481 moveToTop(Op0, I);
1483 // Change from the pseudo instruction to the concrete instruction.
1484 MI.getOperand(0).setReg(getSTReg(Op1));
1485 MI.removeOperand(1);
1486 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1487 MI.dropDebugNumber();
1489 // If any of the operands are killed by this instruction, free them.
1490 if (KillsOp0) freeStackSlotAfter(I, Op0);
1491 if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1);
1494 /// handleCondMovFP - Handle two address conditional move instructions. These
1495 /// instructions move a st(i) register to st(0) iff a condition is true. These
1496 /// instructions require that the first operand is at the top of the stack, but
1497 /// otherwise don't modify the stack at all.
1498 void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) {
1499 MachineInstr &MI = *I;
1501 unsigned Op0 = getFPReg(MI.getOperand(0));
1502 unsigned Op1 = getFPReg(MI.getOperand(2));
1503 bool KillsOp1 = MI.killsRegister(X86::FP0 + Op1, /*TRI=*/nullptr);
1505 // The first operand *must* be on the top of the stack.
1506 moveToTop(Op0, I);
1508 // Change the second operand to the stack register that the operand is in.
1509 // Change from the pseudo instruction to the concrete instruction.
1510 MI.removeOperand(0);
1511 MI.removeOperand(1);
1512 MI.getOperand(0).setReg(getSTReg(Op1));
1513 MI.setDesc(TII->get(getConcreteOpcode(MI.getOpcode())));
1514 MI.dropDebugNumber();
1516 // If we kill the second operand, make sure to pop it from the stack.
1517 if (Op0 != Op1 && KillsOp1) {
1518 // Get this value off of the register stack.
1519 freeStackSlotAfter(I, Op1);
1524 /// handleSpecialFP - Handle special instructions which behave unlike other
1525 /// floating point instructions. This is primarily intended for use by pseudo
1526 /// instructions.
1528 void FPS::handleSpecialFP(MachineBasicBlock::iterator &Inst) {
1529 MachineInstr &MI = *Inst;
1531 if (MI.isCall()) {
1532 handleCall(Inst);
1533 return;
1536 if (MI.isReturn()) {
1537 handleReturn(Inst);
1538 return;
1541 switch (MI.getOpcode()) {
1542 default: llvm_unreachable("Unknown SpecialFP instruction!");
1543 case TargetOpcode::COPY: {
1544 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1545 const MachineOperand &MO1 = MI.getOperand(1);
1546 const MachineOperand &MO0 = MI.getOperand(0);
1547 bool KillsSrc = MI.killsRegister(MO1.getReg(), /*TRI=*/nullptr);
1549 // FP <- FP copy.
1550 unsigned DstFP = getFPReg(MO0);
1551 unsigned SrcFP = getFPReg(MO1);
1552 assert(isLive(SrcFP) && "Cannot copy dead register");
1553 if (KillsSrc) {
1554 // If the input operand is killed, we can just change the owner of the
1555 // incoming stack slot into the result.
1556 unsigned Slot = getSlot(SrcFP);
1557 Stack[Slot] = DstFP;
1558 RegMap[DstFP] = Slot;
1559 } else {
1560 // For COPY we just duplicate the specified value to a new stack slot.
1561 // This could be made better, but would require substantial changes.
1562 duplicateToTop(SrcFP, DstFP, Inst);
1564 break;
1567 case TargetOpcode::IMPLICIT_DEF: {
1568 // All FP registers must be explicitly defined, so load a 0 instead.
1569 unsigned Reg = MI.getOperand(0).getReg() - X86::FP0;
1570 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg << '\n');
1571 BuildMI(*MBB, Inst, MI.getDebugLoc(), TII->get(X86::LD_F0));
1572 pushReg(Reg);
1573 break;
1576 case TargetOpcode::INLINEASM:
1577 case TargetOpcode::INLINEASM_BR: {
1578 // The inline asm MachineInstr currently only *uses* FP registers for the
1579 // 'f' constraint. These should be turned into the current ST(x) register
1580 // in the machine instr.
1582 // There are special rules for x87 inline assembly. The compiler must know
1583 // exactly how many registers are popped and pushed implicitly by the asm.
1584 // Otherwise it is not possible to restore the stack state after the inline
1585 // asm.
1587 // There are 3 kinds of input operands:
1589 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1590 // popped input operand must be in a fixed stack slot, and it is either
1591 // tied to an output operand, or in the clobber list. The MI has ST use
1592 // and def operands for these inputs.
1594 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1595 // preserved by the inline asm. The fixed stack slots must be STn-STm
1596 // following the popped inputs. A fixed input operand cannot be tied to
1597 // an output or appear in the clobber list. The MI has ST use operands
1598 // and no defs for these inputs.
1600 // 3. Preserved inputs. These inputs use the "f" constraint which is
1601 // represented as an FP register. The inline asm won't change these
1602 // stack slots.
1604 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1605 // registers do not count as output operands. The inline asm changes the
1606 // stack as if it popped all the popped inputs and then pushed all the
1607 // output operands.
1609 // Scan the assembly for ST registers used, defined and clobbered. We can
1610 // only tell clobbers from defs by looking at the asm descriptor.
1611 unsigned STUses = 0, STDefs = 0, STClobbers = 0;
1612 unsigned NumOps = 0;
1613 SmallSet<unsigned, 1> FRegIdx;
1614 unsigned RCID;
1616 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI.getNumOperands();
1617 i != e && MI.getOperand(i).isImm(); i += 1 + NumOps) {
1618 unsigned Flags = MI.getOperand(i).getImm();
1619 const InlineAsm::Flag F(Flags);
1621 NumOps = F.getNumOperandRegisters();
1622 if (NumOps != 1)
1623 continue;
1624 const MachineOperand &MO = MI.getOperand(i + 1);
1625 if (!MO.isReg())
1626 continue;
1627 unsigned STReg = MO.getReg() - X86::FP0;
1628 if (STReg >= 8)
1629 continue;
1631 // If the flag has a register class constraint, this must be an operand
1632 // with constraint "f". Record its index and continue.
1633 if (F.hasRegClassConstraint(RCID)) {
1634 FRegIdx.insert(i + 1);
1635 continue;
1638 switch (F.getKind()) {
1639 case InlineAsm::Kind::RegUse:
1640 STUses |= (1u << STReg);
1641 break;
1642 case InlineAsm::Kind::RegDef:
1643 case InlineAsm::Kind::RegDefEarlyClobber:
1644 STDefs |= (1u << STReg);
1645 break;
1646 case InlineAsm::Kind::Clobber:
1647 STClobbers |= (1u << STReg);
1648 break;
1649 default:
1650 break;
1654 if (STUses && !isMask_32(STUses))
1655 MI.emitGenericError("fixed input regs must be last on the x87 stack");
1656 unsigned NumSTUses = llvm::countr_one(STUses);
1658 // Defs must be contiguous from the stack top. ST0-STn.
1659 if (STDefs && !isMask_32(STDefs)) {
1660 MI.emitGenericError("output regs must be last on the x87 stack");
1661 STDefs = NextPowerOf2(STDefs) - 1;
1663 unsigned NumSTDefs = llvm::countr_one(STDefs);
1665 // So must the clobbered stack slots. ST0-STm, m >= n.
1666 if (STClobbers && !isMask_32(STDefs | STClobbers))
1667 MI.emitGenericError("clobbers must be last on the x87 stack");
1669 // Popped inputs are the ones that are also clobbered or defined.
1670 unsigned STPopped = STUses & (STDefs | STClobbers);
1671 if (STPopped && !isMask_32(STPopped))
1672 MI.emitGenericError(
1673 "implicitly popped regs must be last on the x87 stack");
1674 unsigned NumSTPopped = llvm::countr_one(STPopped);
1676 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses << " fixed regs, pops "
1677 << NumSTPopped << ", and defines " << NumSTDefs
1678 << " regs.\n");
1680 #ifndef NDEBUG
1681 // If any input operand uses constraint "f", all output register
1682 // constraints must be early-clobber defs.
1683 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I)
1684 if (FRegIdx.count(I)) {
1685 assert((1 << getFPReg(MI.getOperand(I)) & STDefs) == 0 &&
1686 "Operands with constraint \"f\" cannot overlap with defs");
1688 #endif
1690 // Collect all FP registers (register operands with constraints "t", "u",
1691 // and "f") to kill afer the instruction.
1692 unsigned FPKills = ((1u << NumFPRegs) - 1) & ~0xff;
1693 for (const MachineOperand &Op : MI.operands()) {
1694 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1695 continue;
1696 unsigned FPReg = getFPReg(Op);
1698 // If we kill this operand, make sure to pop it from the stack after the
1699 // asm. We just remember it for now, and pop them all off at the end in
1700 // a batch.
1701 if (Op.isUse() && Op.isKill())
1702 FPKills |= 1U << FPReg;
1705 // Do not include registers that are implicitly popped by defs/clobbers.
1706 FPKills &= ~(STDefs | STClobbers);
1708 // Now we can rearrange the live registers to match what was requested.
1709 unsigned char STUsesArray[8];
1711 for (unsigned I = 0; I < NumSTUses; ++I)
1712 STUsesArray[I] = I;
1714 shuffleStackTop(STUsesArray, NumSTUses, Inst);
1715 LLVM_DEBUG({
1716 dbgs() << "Before asm: ";
1717 dumpStack();
1720 // With the stack layout fixed, rewrite the FP registers.
1721 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1722 MachineOperand &Op = MI.getOperand(i);
1723 if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6)
1724 continue;
1726 unsigned FPReg = getFPReg(Op);
1728 if (FRegIdx.count(i))
1729 // Operand with constraint "f".
1730 Op.setReg(getSTReg(FPReg));
1731 else
1732 // Operand with a single register class constraint ("t" or "u").
1733 Op.setReg(X86::ST0 + FPReg);
1736 // Simulate the inline asm popping its inputs and pushing its outputs.
1737 StackTop -= NumSTPopped;
1739 for (unsigned i = 0; i < NumSTDefs; ++i)
1740 pushReg(NumSTDefs - i - 1);
1742 // If this asm kills any FP registers (is the last use of them) we must
1743 // explicitly emit pop instructions for them. Do this now after the asm has
1744 // executed so that the ST(x) numbers are not off (which would happen if we
1745 // did this inline with operand rewriting).
1747 // Note: this might be a non-optimal pop sequence. We might be able to do
1748 // better by trying to pop in stack order or something.
1749 while (FPKills) {
1750 unsigned FPReg = llvm::countr_zero(FPKills);
1751 if (isLive(FPReg))
1752 freeStackSlotAfter(Inst, FPReg);
1753 FPKills &= ~(1U << FPReg);
1756 // Don't delete the inline asm!
1757 return;
1760 // FAKE_USE must pop its register operand off the stack if it is killed,
1761 // because this constitutes the register's last use. If the operand
1762 // is not killed, it will have its last use later, so we leave it alone.
1763 // In either case we remove the operand so later passes don't see it.
1764 case TargetOpcode::FAKE_USE: {
1765 assert(MI.getNumExplicitOperands() == 1 &&
1766 "FAKE_USE must have exactly one operand");
1767 if (MI.getOperand(0).isKill()) {
1768 freeStackSlotBefore(Inst, getFPReg(MI.getOperand(0)));
1770 MI.removeOperand(0);
1771 return;
1775 Inst = MBB->erase(Inst); // Remove the pseudo instruction
1777 // We want to leave I pointing to the previous instruction, but what if we
1778 // just erased the first instruction?
1779 if (Inst == MBB->begin()) {
1780 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1781 Inst = BuildMI(*MBB, Inst, DebugLoc(), TII->get(TargetOpcode::KILL));
1782 } else
1783 --Inst;
1786 void FPS::setKillFlags(MachineBasicBlock &MBB) const {
1787 const TargetRegisterInfo &TRI =
1788 *MBB.getParent()->getSubtarget().getRegisterInfo();
1789 LiveRegUnits LPR(TRI);
1791 LPR.addLiveOuts(MBB);
1793 for (MachineInstr &MI : llvm::reverse(MBB)) {
1794 if (MI.isDebugInstr())
1795 continue;
1797 std::bitset<8> Defs;
1798 SmallVector<MachineOperand *, 2> Uses;
1800 for (auto &MO : MI.operands()) {
1801 if (!MO.isReg())
1802 continue;
1804 unsigned Reg = MO.getReg() - X86::FP0;
1806 if (Reg >= 8)
1807 continue;
1809 if (MO.isDef()) {
1810 Defs.set(Reg);
1811 if (LPR.available(MO.getReg()))
1812 MO.setIsDead();
1813 } else
1814 Uses.push_back(&MO);
1817 for (auto *MO : Uses)
1818 if (Defs.test(getFPReg(*MO)) || LPR.available(MO->getReg()))
1819 MO->setIsKill();
1821 LPR.stepBackward(MI);