1 //===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the pass which converts floating point instructions from
10 // pseudo registers into register stack instructions. This pass uses live
11 // variable information to indicate where the FPn registers are used and their
14 // The x87 hardware tracks liveness of the stack registers, so it is necessary
15 // to implement exact liveness tracking between basic blocks. The CFG edges are
16 // partitioned into bundles where the same FP registers must be live in
17 // identical stack positions. Instructions are inserted at the end of each basic
18 // block to rearrange the live registers to match the outgoing bundle.
20 // This approach avoids splitting critical edges at the potential cost of more
21 // live register shuffling instructions when critical edges are present.
23 //===----------------------------------------------------------------------===//
26 #include "X86InstrInfo.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/CodeGen/EdgeBundles.h"
33 #include "llvm/CodeGen/LiveRegUnits.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/Passes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/Config/llvm-config.h"
41 #include "llvm/IR/InlineAsm.h"
42 #include "llvm/InitializePasses.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
51 #define DEBUG_TYPE "x86-codegen"
53 STATISTIC(NumFXCH
, "Number of fxch instructions inserted");
54 STATISTIC(NumFP
, "Number of floating point instructions");
57 const unsigned ScratchFPReg
= 7;
59 struct FPS
: public MachineFunctionPass
{
61 FPS() : MachineFunctionPass(ID
) {
62 // This is really only to keep valgrind quiet.
63 // The logic in isLive() is too much for it.
64 memset(Stack
, 0, sizeof(Stack
));
65 memset(RegMap
, 0, sizeof(RegMap
));
68 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
70 AU
.addRequired
<EdgeBundlesWrapperLegacy
>();
71 AU
.addPreservedID(MachineLoopInfoID
);
72 AU
.addPreservedID(MachineDominatorsID
);
73 MachineFunctionPass::getAnalysisUsage(AU
);
76 bool runOnMachineFunction(MachineFunction
&MF
) override
;
78 MachineFunctionProperties
getRequiredProperties() const override
{
79 return MachineFunctionProperties().set(
80 MachineFunctionProperties::Property::NoVRegs
);
83 StringRef
getPassName() const override
{ return "X86 FP Stackifier"; }
86 const TargetInstrInfo
*TII
= nullptr; // Machine instruction info.
88 // Two CFG edges are related if they leave the same block, or enter the same
89 // block. The transitive closure of an edge under this relation is a
90 // LiveBundle. It represents a set of CFG edges where the live FP stack
91 // registers must be allocated identically in the x87 stack.
93 // A LiveBundle is usually all the edges leaving a block, or all the edges
94 // entering a block, but it can contain more edges if critical edges are
97 // The set of live FP registers in a LiveBundle is calculated by bundleCFG,
98 // but the exact mapping of FP registers to stack slots is fixed later.
100 // Bit mask of live FP registers. Bit 0 = FP0, bit 1 = FP1, &c.
103 // Number of pre-assigned live registers in FixStack. This is 0 when the
104 // stack order has not yet been fixed.
105 unsigned FixCount
= 0;
107 // Assigned stack order for live-in registers.
108 // FixStack[i] == getStackEntry(i) for all i < FixCount.
109 unsigned char FixStack
[8];
111 LiveBundle() = default;
113 // Have the live registers been assigned a stack order yet?
114 bool isFixed() const { return !Mask
|| FixCount
; }
117 // Numbered LiveBundle structs. LiveBundles[0] is used for all CFG edges
118 // with no live FP registers.
119 SmallVector
<LiveBundle
, 8> LiveBundles
;
121 // The edge bundle analysis provides indices into the LiveBundles vector.
122 EdgeBundles
*Bundles
= nullptr;
124 // Return a bitmask of FP registers in block's live-in list.
125 static unsigned calcLiveInMask(MachineBasicBlock
*MBB
, bool RemoveFPs
) {
127 for (MachineBasicBlock::livein_iterator I
= MBB
->livein_begin();
128 I
!= MBB
->livein_end(); ) {
129 MCPhysReg Reg
= I
->PhysReg
;
130 static_assert(X86::FP6
- X86::FP0
== 6, "sequential regnums");
131 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
) {
132 Mask
|= 1 << (Reg
- X86::FP0
);
134 I
= MBB
->removeLiveIn(I
);
143 // Partition all the CFG edges into LiveBundles.
144 void bundleCFGRecomputeKillFlags(MachineFunction
&MF
);
146 MachineBasicBlock
*MBB
= nullptr; // Current basic block
148 // The hardware keeps track of how many FP registers are live, so we have
149 // to model that exactly. Usually, each live register corresponds to an
150 // FP<n> register, but when dealing with calls, returns, and inline
151 // assembly, it is sometimes necessary to have live scratch registers.
152 unsigned Stack
[8]; // FP<n> Registers in each stack slot...
153 unsigned StackTop
= 0; // The current top of the FP stack.
156 NumFPRegs
= 8 // Including scratch pseudo-registers.
159 // For each live FP<n> register, point to its Stack[] entry.
160 // The first entries correspond to FP0-FP6, the rest are scratch registers
161 // used when we need slightly different live registers than what the
162 // register allocator thinks.
163 unsigned RegMap
[NumFPRegs
];
165 // Set up our stack model to match the incoming registers to MBB.
166 void setupBlockStack();
168 // Shuffle live registers to match the expectations of successor blocks.
169 void finishBlockStack();
171 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
172 void dumpStack() const {
173 dbgs() << "Stack contents:";
174 for (unsigned i
= 0; i
!= StackTop
; ++i
) {
175 dbgs() << " FP" << Stack
[i
];
176 assert(RegMap
[Stack
[i
]] == i
&& "Stack[] doesn't match RegMap[]!");
181 /// getSlot - Return the stack slot number a particular register number is
183 unsigned getSlot(unsigned RegNo
) const {
184 assert(RegNo
< NumFPRegs
&& "Regno out of range!");
185 return RegMap
[RegNo
];
188 /// isLive - Is RegNo currently live in the stack?
189 bool isLive(unsigned RegNo
) const {
190 unsigned Slot
= getSlot(RegNo
);
191 return Slot
< StackTop
&& Stack
[Slot
] == RegNo
;
194 /// getStackEntry - Return the X86::FP<n> register in register ST(i).
195 unsigned getStackEntry(unsigned STi
) const {
197 report_fatal_error("Access past stack top!");
198 return Stack
[StackTop
-1-STi
];
201 /// getSTReg - Return the X86::ST(i) register which contains the specified
202 /// FP<RegNo> register.
203 unsigned getSTReg(unsigned RegNo
) const {
204 return StackTop
- 1 - getSlot(RegNo
) + X86::ST0
;
207 // pushReg - Push the specified FP<n> register onto the stack.
208 void pushReg(unsigned Reg
) {
209 assert(Reg
< NumFPRegs
&& "Register number out of range!");
211 report_fatal_error("Stack overflow!");
212 Stack
[StackTop
] = Reg
;
213 RegMap
[Reg
] = StackTop
++;
216 // popReg - Pop a register from the stack.
219 report_fatal_error("Cannot pop empty stack!");
220 RegMap
[Stack
[--StackTop
]] = ~0; // Update state
223 bool isAtTop(unsigned RegNo
) const { return getSlot(RegNo
) == StackTop
-1; }
224 void moveToTop(unsigned RegNo
, MachineBasicBlock::iterator I
) {
225 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
226 if (isAtTop(RegNo
)) return;
228 unsigned STReg
= getSTReg(RegNo
);
229 unsigned RegOnTop
= getStackEntry(0);
231 // Swap the slots the regs are in.
232 std::swap(RegMap
[RegNo
], RegMap
[RegOnTop
]);
234 // Swap stack slot contents.
235 if (RegMap
[RegOnTop
] >= StackTop
)
236 report_fatal_error("Access past stack top!");
237 std::swap(Stack
[RegMap
[RegOnTop
]], Stack
[StackTop
-1]);
239 // Emit an fxch to update the runtime processors version of the state.
240 BuildMI(*MBB
, I
, dl
, TII
->get(X86::XCH_F
)).addReg(STReg
);
244 void duplicateToTop(unsigned RegNo
, unsigned AsReg
,
245 MachineBasicBlock::iterator I
) {
246 DebugLoc dl
= I
== MBB
->end() ? DebugLoc() : I
->getDebugLoc();
247 unsigned STReg
= getSTReg(RegNo
);
248 pushReg(AsReg
); // New register on top of stack
250 BuildMI(*MBB
, I
, dl
, TII
->get(X86::LD_Frr
)).addReg(STReg
);
253 /// popStackAfter - Pop the current value off of the top of the FP stack
254 /// after the specified instruction.
255 void popStackAfter(MachineBasicBlock::iterator
&I
);
257 /// freeStackSlotAfter - Free the specified register from the register
258 /// stack, so that it is no longer in a register. If the register is
259 /// currently at the top of the stack, we just pop the current instruction,
260 /// otherwise we store the current top-of-stack into the specified slot,
261 /// then pop the top of stack.
262 void freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned Reg
);
264 /// freeStackSlotBefore - Just the pop, no folding. Return the inserted
266 MachineBasicBlock::iterator
267 freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
);
269 /// Adjust the live registers to be the set in Mask.
270 void adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
);
272 /// Shuffle the top FixCount stack entries such that FP reg FixStack[0] is
273 /// st(0), FP reg FixStack[1] is st(1) etc.
274 void shuffleStackTop(const unsigned char *FixStack
, unsigned FixCount
,
275 MachineBasicBlock::iterator I
);
277 bool processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
279 void handleCall(MachineBasicBlock::iterator
&I
);
280 void handleReturn(MachineBasicBlock::iterator
&I
);
281 void handleZeroArgFP(MachineBasicBlock::iterator
&I
);
282 void handleOneArgFP(MachineBasicBlock::iterator
&I
);
283 void handleOneArgFPRW(MachineBasicBlock::iterator
&I
);
284 void handleTwoArgFP(MachineBasicBlock::iterator
&I
);
285 void handleCompareFP(MachineBasicBlock::iterator
&I
);
286 void handleCondMovFP(MachineBasicBlock::iterator
&I
);
287 void handleSpecialFP(MachineBasicBlock::iterator
&I
);
289 // Check if a COPY instruction is using FP registers.
290 static bool isFPCopy(MachineInstr
&MI
) {
291 Register DstReg
= MI
.getOperand(0).getReg();
292 Register SrcReg
= MI
.getOperand(1).getReg();
294 return X86::RFP80RegClass
.contains(DstReg
) ||
295 X86::RFP80RegClass
.contains(SrcReg
);
298 void setKillFlags(MachineBasicBlock
&MBB
) const;
304 INITIALIZE_PASS_BEGIN(FPS
, DEBUG_TYPE
, "X86 FP Stackifier",
306 INITIALIZE_PASS_DEPENDENCY(EdgeBundlesWrapperLegacy
)
307 INITIALIZE_PASS_END(FPS
, DEBUG_TYPE
, "X86 FP Stackifier",
310 FunctionPass
*llvm::createX86FloatingPointStackifierPass() { return new FPS(); }
312 /// getFPReg - Return the X86::FPx register number for the specified operand.
313 /// For example, this returns 3 for X86::FP3.
314 static unsigned getFPReg(const MachineOperand
&MO
) {
315 assert(MO
.isReg() && "Expected an FP register!");
316 Register Reg
= MO
.getReg();
317 assert(Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& "Expected FP register!");
318 return Reg
- X86::FP0
;
321 /// runOnMachineFunction - Loop over all of the basic blocks, transforming FP
322 /// register references into FP stack references.
324 bool FPS::runOnMachineFunction(MachineFunction
&MF
) {
325 // We only need to run this pass if there are any FP registers used in this
326 // function. If it is all integer, there is nothing for us to do!
327 bool FPIsUsed
= false;
329 static_assert(X86::FP6
== X86::FP0
+6, "Register enums aren't sorted right!");
330 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
331 for (unsigned i
= 0; i
<= 6; ++i
)
332 if (!MRI
.reg_nodbg_empty(X86::FP0
+ i
)) {
338 if (!FPIsUsed
) return false;
340 Bundles
= &getAnalysis
<EdgeBundlesWrapperLegacy
>().getEdgeBundles();
341 TII
= MF
.getSubtarget().getInstrInfo();
343 // Prepare cross-MBB liveness.
344 bundleCFGRecomputeKillFlags(MF
);
348 // Process the function in depth first order so that we process at least one
349 // of the predecessors for every reachable block in the function.
350 df_iterator_default_set
<MachineBasicBlock
*> Processed
;
351 MachineBasicBlock
*Entry
= &MF
.front();
354 LiveBundles
[Bundles
->getBundle(Entry
->getNumber(), false)];
356 // In regcall convention, some FP registers may not be passed through
357 // the stack, so they will need to be assigned to the stack first
358 if ((Entry
->getParent()->getFunction().getCallingConv() ==
359 CallingConv::X86_RegCall
) && (Bundle
.Mask
&& !Bundle
.FixCount
)) {
360 // In the register calling convention, up to one FP argument could be
361 // saved in the first FP register.
362 // If bundle.mask is non-zero and Bundle.FixCount is zero, it means
363 // that the FP registers contain arguments.
364 // The actual value is passed in FP0.
365 // Here we fix the stack and mark FP0 as pre-assigned register.
366 assert((Bundle
.Mask
& 0xFE) == 0 &&
367 "Only FP0 could be passed as an argument");
369 Bundle
.FixStack
[0] = 0;
372 bool Changed
= false;
373 for (MachineBasicBlock
*BB
: depth_first_ext(Entry
, Processed
))
374 Changed
|= processBasicBlock(MF
, *BB
);
376 // Process any unreachable blocks in arbitrary order now.
377 if (MF
.size() != Processed
.size())
378 for (MachineBasicBlock
&BB
: MF
)
379 if (Processed
.insert(&BB
).second
)
380 Changed
|= processBasicBlock(MF
, BB
);
387 /// bundleCFG - Scan all the basic blocks to determine consistent live-in and
388 /// live-out sets for the FP registers. Consistent means that the set of
389 /// registers live-out from a block is identical to the live-in set of all
390 /// successors. This is not enforced by the normal live-in lists since
391 /// registers may be implicitly defined, or not used by all successors.
392 void FPS::bundleCFGRecomputeKillFlags(MachineFunction
&MF
) {
393 assert(LiveBundles
.empty() && "Stale data in LiveBundles");
394 LiveBundles
.resize(Bundles
->getNumBundles());
396 // Gather the actual live-in masks for all MBBs.
397 for (MachineBasicBlock
&MBB
: MF
) {
400 const unsigned Mask
= calcLiveInMask(&MBB
, false);
403 // Update MBB ingoing bundle mask.
404 LiveBundles
[Bundles
->getBundle(MBB
.getNumber(), false)].Mask
|= Mask
;
408 /// processBasicBlock - Loop over all of the instructions in the basic block,
409 /// transforming FP instructions into their stack form.
411 bool FPS::processBasicBlock(MachineFunction
&MF
, MachineBasicBlock
&BB
) {
412 bool Changed
= false;
417 for (MachineBasicBlock::iterator I
= BB
.begin(); I
!= BB
.end(); ++I
) {
418 MachineInstr
&MI
= *I
;
419 uint64_t Flags
= MI
.getDesc().TSFlags
;
421 unsigned FPInstClass
= Flags
& X86II::FPTypeMask
;
422 if (MI
.isInlineAsm())
423 FPInstClass
= X86II::SpecialFP
;
425 if (MI
.isCopy() && isFPCopy(MI
))
426 FPInstClass
= X86II::SpecialFP
;
428 if (MI
.isImplicitDef() &&
429 X86::RFP80RegClass
.contains(MI
.getOperand(0).getReg()))
430 FPInstClass
= X86II::SpecialFP
;
433 FPInstClass
= X86II::SpecialFP
;
435 // A fake_use with a floating point pseudo register argument that is
436 // killed must behave like any other floating point operation and pop
437 // the floating point stack (this is done in handleSpecialFP()).
438 // Fake_use is, however, unusual, in that sometimes its operand is not
439 // killed because a later instruction (probably a return) will use it.
440 // It is this instruction that will pop the stack.
441 // In this scenario we can safely remove the fake_use's operand
442 // (it is live anyway).
443 if (MI
.isFakeUse()) {
444 const MachineOperand
&MO
= MI
.getOperand(0);
445 if (MO
.isReg() && X86::RFP80RegClass
.contains(MO
.getReg())) {
447 FPInstClass
= X86II::SpecialFP
;
453 if (FPInstClass
== X86II::NotFP
)
454 continue; // Efficiently ignore non-fp insts!
456 MachineInstr
*PrevMI
= nullptr;
458 PrevMI
= &*std::prev(I
);
460 ++NumFP
; // Keep track of # of pseudo instrs
461 LLVM_DEBUG(dbgs() << "\nFPInst:\t" << MI
);
463 // Get dead variables list now because the MI pointer may be deleted as part
465 SmallVector
<unsigned, 8> DeadRegs
;
466 for (const MachineOperand
&MO
: MI
.operands())
467 if (MO
.isReg() && MO
.isDead())
468 DeadRegs
.push_back(MO
.getReg());
470 switch (FPInstClass
) {
471 case X86II::ZeroArgFP
: handleZeroArgFP(I
); break;
472 case X86II::OneArgFP
: handleOneArgFP(I
); break; // fstp ST(0)
473 case X86II::OneArgFPRW
: handleOneArgFPRW(I
); break; // ST(0) = fsqrt(ST(0))
474 case X86II::TwoArgFP
: handleTwoArgFP(I
); break;
475 case X86II::CompareFP
: handleCompareFP(I
); break;
476 case X86II::CondMovFP
: handleCondMovFP(I
); break;
477 case X86II::SpecialFP
: handleSpecialFP(I
); break;
478 default: llvm_unreachable("Unknown FP Type!");
481 // Check to see if any of the values defined by this instruction are dead
482 // after definition. If so, pop them.
483 for (unsigned Reg
: DeadRegs
) {
484 // Check if Reg is live on the stack. An inline-asm register operand that
485 // is in the clobber list and marked dead might not be live on the stack.
486 static_assert(X86::FP7
- X86::FP0
== 7, "sequential FP regnumbers");
487 if (Reg
>= X86::FP0
&& Reg
<= X86::FP6
&& isLive(Reg
-X86::FP0
)) {
488 LLVM_DEBUG(dbgs() << "Register FP#" << Reg
- X86::FP0
<< " is dead!\n");
489 freeStackSlotAfter(I
, Reg
-X86::FP0
);
493 // Print out all of the instructions expanded to if -debug
495 MachineBasicBlock::iterator PrevI
= PrevMI
;
497 dbgs() << "Just deleted pseudo instruction\n";
499 MachineBasicBlock::iterator Start
= I
;
500 // Rewind to first instruction newly inserted.
501 while (Start
!= BB
.begin() && std::prev(Start
) != PrevI
)
503 dbgs() << "Inserted instructions:\n\t";
504 Start
->print(dbgs());
505 while (++Start
!= std::next(I
)) {
520 /// setupBlockStack - Use the live bundles to set up our model of the stack
521 /// to match predecessors' live out stack.
522 void FPS::setupBlockStack() {
523 LLVM_DEBUG(dbgs() << "\nSetting up live-ins for " << printMBBReference(*MBB
)
524 << " derived from " << MBB
->getName() << ".\n");
526 // Get the live-in bundle for MBB.
527 const LiveBundle
&Bundle
=
528 LiveBundles
[Bundles
->getBundle(MBB
->getNumber(), false)];
531 LLVM_DEBUG(dbgs() << "Block has no FP live-ins.\n");
535 // Depth-first iteration should ensure that we always have an assigned stack.
536 assert(Bundle
.isFixed() && "Reached block before any predecessors");
538 // Push the fixed live-in registers.
539 for (unsigned i
= Bundle
.FixCount
; i
> 0; --i
) {
540 LLVM_DEBUG(dbgs() << "Live-in st(" << (i
- 1) << "): %fp"
541 << unsigned(Bundle
.FixStack
[i
- 1]) << '\n');
542 pushReg(Bundle
.FixStack
[i
-1]);
545 // Kill off unwanted live-ins. This can happen with a critical edge.
546 // FIXME: We could keep these live registers around as zombies. They may need
547 // to be revived at the end of a short block. It might save a few instrs.
548 unsigned Mask
= calcLiveInMask(MBB
, /*RemoveFPs=*/true);
549 adjustLiveRegs(Mask
, MBB
->begin());
550 LLVM_DEBUG(MBB
->dump());
553 /// finishBlockStack - Revive live-outs that are implicitly defined out of
554 /// MBB. Shuffle live registers to match the expected fixed stack of any
555 /// predecessors, and ensure that all predecessors are expecting the same
557 void FPS::finishBlockStack() {
558 // The RET handling below takes care of return blocks for us.
559 if (MBB
->succ_empty())
562 LLVM_DEBUG(dbgs() << "Setting up live-outs for " << printMBBReference(*MBB
)
563 << " derived from " << MBB
->getName() << ".\n");
565 // Get MBB's live-out bundle.
566 unsigned BundleIdx
= Bundles
->getBundle(MBB
->getNumber(), true);
567 LiveBundle
&Bundle
= LiveBundles
[BundleIdx
];
569 // We may need to kill and define some registers to match successors.
570 // FIXME: This can probably be combined with the shuffle below.
571 MachineBasicBlock::iterator Term
= MBB
->getFirstTerminator();
572 adjustLiveRegs(Bundle
.Mask
, Term
);
575 LLVM_DEBUG(dbgs() << "No live-outs.\n");
579 // Has the stack order been fixed yet?
580 LLVM_DEBUG(dbgs() << "LB#" << BundleIdx
<< ": ");
581 if (Bundle
.isFixed()) {
582 LLVM_DEBUG(dbgs() << "Shuffling stack to match.\n");
583 shuffleStackTop(Bundle
.FixStack
, Bundle
.FixCount
, Term
);
585 // Not fixed yet, we get to choose.
586 LLVM_DEBUG(dbgs() << "Fixing stack order now.\n");
587 Bundle
.FixCount
= StackTop
;
588 for (unsigned i
= 0; i
< StackTop
; ++i
)
589 Bundle
.FixStack
[i
] = getStackEntry(i
);
594 //===----------------------------------------------------------------------===//
595 // Efficient Lookup Table Support
596 //===----------------------------------------------------------------------===//
602 bool operator<(const TableEntry
&TE
) const { return from
< TE
.from
; }
603 friend bool operator<(const TableEntry
&TE
, unsigned V
) {
606 friend bool LLVM_ATTRIBUTE_UNUSED
operator<(unsigned V
,
607 const TableEntry
&TE
) {
613 static int Lookup(ArrayRef
<TableEntry
> Table
, unsigned Opcode
) {
614 const TableEntry
*I
= llvm::lower_bound(Table
, Opcode
);
615 if (I
!= Table
.end() && I
->from
== Opcode
)
621 #define ASSERT_SORTED(TABLE)
623 #define ASSERT_SORTED(TABLE) \
625 static std::atomic<bool> TABLE##Checked(false); \
626 if (!TABLE##Checked.load(std::memory_order_relaxed)) { \
627 assert(is_sorted(TABLE) && \
628 "All lookup tables must be sorted for efficient access!"); \
629 TABLE##Checked.store(true, std::memory_order_relaxed); \
634 //===----------------------------------------------------------------------===//
635 // Register File -> Register Stack Mapping Methods
636 //===----------------------------------------------------------------------===//
638 // OpcodeTable - Sorted map of register instructions to their stack version.
639 // The first element is an register file pseudo instruction, the second is the
640 // concrete X86 instruction which uses the register stack.
642 static const TableEntry OpcodeTable
[] = {
643 { X86::ABS_Fp32
, X86::ABS_F
},
644 { X86::ABS_Fp64
, X86::ABS_F
},
645 { X86::ABS_Fp80
, X86::ABS_F
},
646 { X86::ADD_Fp32m
, X86::ADD_F32m
},
647 { X86::ADD_Fp64m
, X86::ADD_F64m
},
648 { X86::ADD_Fp64m32
, X86::ADD_F32m
},
649 { X86::ADD_Fp80m32
, X86::ADD_F32m
},
650 { X86::ADD_Fp80m64
, X86::ADD_F64m
},
651 { X86::ADD_FpI16m32
, X86::ADD_FI16m
},
652 { X86::ADD_FpI16m64
, X86::ADD_FI16m
},
653 { X86::ADD_FpI16m80
, X86::ADD_FI16m
},
654 { X86::ADD_FpI32m32
, X86::ADD_FI32m
},
655 { X86::ADD_FpI32m64
, X86::ADD_FI32m
},
656 { X86::ADD_FpI32m80
, X86::ADD_FI32m
},
657 { X86::CHS_Fp32
, X86::CHS_F
},
658 { X86::CHS_Fp64
, X86::CHS_F
},
659 { X86::CHS_Fp80
, X86::CHS_F
},
660 { X86::CMOVBE_Fp32
, X86::CMOVBE_F
},
661 { X86::CMOVBE_Fp64
, X86::CMOVBE_F
},
662 { X86::CMOVBE_Fp80
, X86::CMOVBE_F
},
663 { X86::CMOVB_Fp32
, X86::CMOVB_F
},
664 { X86::CMOVB_Fp64
, X86::CMOVB_F
},
665 { X86::CMOVB_Fp80
, X86::CMOVB_F
},
666 { X86::CMOVE_Fp32
, X86::CMOVE_F
},
667 { X86::CMOVE_Fp64
, X86::CMOVE_F
},
668 { X86::CMOVE_Fp80
, X86::CMOVE_F
},
669 { X86::CMOVNBE_Fp32
, X86::CMOVNBE_F
},
670 { X86::CMOVNBE_Fp64
, X86::CMOVNBE_F
},
671 { X86::CMOVNBE_Fp80
, X86::CMOVNBE_F
},
672 { X86::CMOVNB_Fp32
, X86::CMOVNB_F
},
673 { X86::CMOVNB_Fp64
, X86::CMOVNB_F
},
674 { X86::CMOVNB_Fp80
, X86::CMOVNB_F
},
675 { X86::CMOVNE_Fp32
, X86::CMOVNE_F
},
676 { X86::CMOVNE_Fp64
, X86::CMOVNE_F
},
677 { X86::CMOVNE_Fp80
, X86::CMOVNE_F
},
678 { X86::CMOVNP_Fp32
, X86::CMOVNP_F
},
679 { X86::CMOVNP_Fp64
, X86::CMOVNP_F
},
680 { X86::CMOVNP_Fp80
, X86::CMOVNP_F
},
681 { X86::CMOVP_Fp32
, X86::CMOVP_F
},
682 { X86::CMOVP_Fp64
, X86::CMOVP_F
},
683 { X86::CMOVP_Fp80
, X86::CMOVP_F
},
684 { X86::COM_FpIr32
, X86::COM_FIr
},
685 { X86::COM_FpIr64
, X86::COM_FIr
},
686 { X86::COM_FpIr80
, X86::COM_FIr
},
687 { X86::COM_Fpr32
, X86::COM_FST0r
},
688 { X86::COM_Fpr64
, X86::COM_FST0r
},
689 { X86::COM_Fpr80
, X86::COM_FST0r
},
690 { X86::DIVR_Fp32m
, X86::DIVR_F32m
},
691 { X86::DIVR_Fp64m
, X86::DIVR_F64m
},
692 { X86::DIVR_Fp64m32
, X86::DIVR_F32m
},
693 { X86::DIVR_Fp80m32
, X86::DIVR_F32m
},
694 { X86::DIVR_Fp80m64
, X86::DIVR_F64m
},
695 { X86::DIVR_FpI16m32
, X86::DIVR_FI16m
},
696 { X86::DIVR_FpI16m64
, X86::DIVR_FI16m
},
697 { X86::DIVR_FpI16m80
, X86::DIVR_FI16m
},
698 { X86::DIVR_FpI32m32
, X86::DIVR_FI32m
},
699 { X86::DIVR_FpI32m64
, X86::DIVR_FI32m
},
700 { X86::DIVR_FpI32m80
, X86::DIVR_FI32m
},
701 { X86::DIV_Fp32m
, X86::DIV_F32m
},
702 { X86::DIV_Fp64m
, X86::DIV_F64m
},
703 { X86::DIV_Fp64m32
, X86::DIV_F32m
},
704 { X86::DIV_Fp80m32
, X86::DIV_F32m
},
705 { X86::DIV_Fp80m64
, X86::DIV_F64m
},
706 { X86::DIV_FpI16m32
, X86::DIV_FI16m
},
707 { X86::DIV_FpI16m64
, X86::DIV_FI16m
},
708 { X86::DIV_FpI16m80
, X86::DIV_FI16m
},
709 { X86::DIV_FpI32m32
, X86::DIV_FI32m
},
710 { X86::DIV_FpI32m64
, X86::DIV_FI32m
},
711 { X86::DIV_FpI32m80
, X86::DIV_FI32m
},
712 { X86::ILD_Fp16m32
, X86::ILD_F16m
},
713 { X86::ILD_Fp16m64
, X86::ILD_F16m
},
714 { X86::ILD_Fp16m80
, X86::ILD_F16m
},
715 { X86::ILD_Fp32m32
, X86::ILD_F32m
},
716 { X86::ILD_Fp32m64
, X86::ILD_F32m
},
717 { X86::ILD_Fp32m80
, X86::ILD_F32m
},
718 { X86::ILD_Fp64m32
, X86::ILD_F64m
},
719 { X86::ILD_Fp64m64
, X86::ILD_F64m
},
720 { X86::ILD_Fp64m80
, X86::ILD_F64m
},
721 { X86::ISTT_Fp16m32
, X86::ISTT_FP16m
},
722 { X86::ISTT_Fp16m64
, X86::ISTT_FP16m
},
723 { X86::ISTT_Fp16m80
, X86::ISTT_FP16m
},
724 { X86::ISTT_Fp32m32
, X86::ISTT_FP32m
},
725 { X86::ISTT_Fp32m64
, X86::ISTT_FP32m
},
726 { X86::ISTT_Fp32m80
, X86::ISTT_FP32m
},
727 { X86::ISTT_Fp64m32
, X86::ISTT_FP64m
},
728 { X86::ISTT_Fp64m64
, X86::ISTT_FP64m
},
729 { X86::ISTT_Fp64m80
, X86::ISTT_FP64m
},
730 { X86::IST_Fp16m32
, X86::IST_F16m
},
731 { X86::IST_Fp16m64
, X86::IST_F16m
},
732 { X86::IST_Fp16m80
, X86::IST_F16m
},
733 { X86::IST_Fp32m32
, X86::IST_F32m
},
734 { X86::IST_Fp32m64
, X86::IST_F32m
},
735 { X86::IST_Fp32m80
, X86::IST_F32m
},
736 { X86::IST_Fp64m32
, X86::IST_FP64m
},
737 { X86::IST_Fp64m64
, X86::IST_FP64m
},
738 { X86::IST_Fp64m80
, X86::IST_FP64m
},
739 { X86::LD_Fp032
, X86::LD_F0
},
740 { X86::LD_Fp064
, X86::LD_F0
},
741 { X86::LD_Fp080
, X86::LD_F0
},
742 { X86::LD_Fp132
, X86::LD_F1
},
743 { X86::LD_Fp164
, X86::LD_F1
},
744 { X86::LD_Fp180
, X86::LD_F1
},
745 { X86::LD_Fp32m
, X86::LD_F32m
},
746 { X86::LD_Fp32m64
, X86::LD_F32m
},
747 { X86::LD_Fp32m80
, X86::LD_F32m
},
748 { X86::LD_Fp64m
, X86::LD_F64m
},
749 { X86::LD_Fp64m80
, X86::LD_F64m
},
750 { X86::LD_Fp80m
, X86::LD_F80m
},
751 { X86::MUL_Fp32m
, X86::MUL_F32m
},
752 { X86::MUL_Fp64m
, X86::MUL_F64m
},
753 { X86::MUL_Fp64m32
, X86::MUL_F32m
},
754 { X86::MUL_Fp80m32
, X86::MUL_F32m
},
755 { X86::MUL_Fp80m64
, X86::MUL_F64m
},
756 { X86::MUL_FpI16m32
, X86::MUL_FI16m
},
757 { X86::MUL_FpI16m64
, X86::MUL_FI16m
},
758 { X86::MUL_FpI16m80
, X86::MUL_FI16m
},
759 { X86::MUL_FpI32m32
, X86::MUL_FI32m
},
760 { X86::MUL_FpI32m64
, X86::MUL_FI32m
},
761 { X86::MUL_FpI32m80
, X86::MUL_FI32m
},
762 { X86::SQRT_Fp32
, X86::SQRT_F
},
763 { X86::SQRT_Fp64
, X86::SQRT_F
},
764 { X86::SQRT_Fp80
, X86::SQRT_F
},
765 { X86::ST_Fp32m
, X86::ST_F32m
},
766 { X86::ST_Fp64m
, X86::ST_F64m
},
767 { X86::ST_Fp64m32
, X86::ST_F32m
},
768 { X86::ST_Fp80m32
, X86::ST_F32m
},
769 { X86::ST_Fp80m64
, X86::ST_F64m
},
770 { X86::ST_FpP80m
, X86::ST_FP80m
},
771 { X86::SUBR_Fp32m
, X86::SUBR_F32m
},
772 { X86::SUBR_Fp64m
, X86::SUBR_F64m
},
773 { X86::SUBR_Fp64m32
, X86::SUBR_F32m
},
774 { X86::SUBR_Fp80m32
, X86::SUBR_F32m
},
775 { X86::SUBR_Fp80m64
, X86::SUBR_F64m
},
776 { X86::SUBR_FpI16m32
, X86::SUBR_FI16m
},
777 { X86::SUBR_FpI16m64
, X86::SUBR_FI16m
},
778 { X86::SUBR_FpI16m80
, X86::SUBR_FI16m
},
779 { X86::SUBR_FpI32m32
, X86::SUBR_FI32m
},
780 { X86::SUBR_FpI32m64
, X86::SUBR_FI32m
},
781 { X86::SUBR_FpI32m80
, X86::SUBR_FI32m
},
782 { X86::SUB_Fp32m
, X86::SUB_F32m
},
783 { X86::SUB_Fp64m
, X86::SUB_F64m
},
784 { X86::SUB_Fp64m32
, X86::SUB_F32m
},
785 { X86::SUB_Fp80m32
, X86::SUB_F32m
},
786 { X86::SUB_Fp80m64
, X86::SUB_F64m
},
787 { X86::SUB_FpI16m32
, X86::SUB_FI16m
},
788 { X86::SUB_FpI16m64
, X86::SUB_FI16m
},
789 { X86::SUB_FpI16m80
, X86::SUB_FI16m
},
790 { X86::SUB_FpI32m32
, X86::SUB_FI32m
},
791 { X86::SUB_FpI32m64
, X86::SUB_FI32m
},
792 { X86::SUB_FpI32m80
, X86::SUB_FI32m
},
793 { X86::TST_Fp32
, X86::TST_F
},
794 { X86::TST_Fp64
, X86::TST_F
},
795 { X86::TST_Fp80
, X86::TST_F
},
796 { X86::UCOM_FpIr32
, X86::UCOM_FIr
},
797 { X86::UCOM_FpIr64
, X86::UCOM_FIr
},
798 { X86::UCOM_FpIr80
, X86::UCOM_FIr
},
799 { X86::UCOM_Fpr32
, X86::UCOM_Fr
},
800 { X86::UCOM_Fpr64
, X86::UCOM_Fr
},
801 { X86::UCOM_Fpr80
, X86::UCOM_Fr
},
802 { X86::XAM_Fp32
, X86::XAM_F
},
803 { X86::XAM_Fp64
, X86::XAM_F
},
804 { X86::XAM_Fp80
, X86::XAM_F
},
807 static unsigned getConcreteOpcode(unsigned Opcode
) {
808 ASSERT_SORTED(OpcodeTable
);
809 int Opc
= Lookup(OpcodeTable
, Opcode
);
810 assert(Opc
!= -1 && "FP Stack instruction not in OpcodeTable!");
814 //===----------------------------------------------------------------------===//
816 //===----------------------------------------------------------------------===//
818 // PopTable - Sorted map of instructions to their popping version. The first
819 // element is an instruction, the second is the version which pops.
821 static const TableEntry PopTable
[] = {
822 { X86::ADD_FrST0
, X86::ADD_FPrST0
},
824 { X86::COMP_FST0r
, X86::FCOMPP
},
825 { X86::COM_FIr
, X86::COM_FIPr
},
826 { X86::COM_FST0r
, X86::COMP_FST0r
},
828 { X86::DIVR_FrST0
, X86::DIVR_FPrST0
},
829 { X86::DIV_FrST0
, X86::DIV_FPrST0
},
831 { X86::IST_F16m
, X86::IST_FP16m
},
832 { X86::IST_F32m
, X86::IST_FP32m
},
834 { X86::MUL_FrST0
, X86::MUL_FPrST0
},
836 { X86::ST_F32m
, X86::ST_FP32m
},
837 { X86::ST_F64m
, X86::ST_FP64m
},
838 { X86::ST_Frr
, X86::ST_FPrr
},
840 { X86::SUBR_FrST0
, X86::SUBR_FPrST0
},
841 { X86::SUB_FrST0
, X86::SUB_FPrST0
},
843 { X86::UCOM_FIr
, X86::UCOM_FIPr
},
845 { X86::UCOM_FPr
, X86::UCOM_FPPr
},
846 { X86::UCOM_Fr
, X86::UCOM_FPr
},
849 static bool doesInstructionSetFPSW(MachineInstr
&MI
) {
850 if (const MachineOperand
*MO
=
851 MI
.findRegisterDefOperand(X86::FPSW
, /*TRI=*/nullptr))
857 static MachineBasicBlock::iterator
858 getNextFPInstruction(MachineBasicBlock::iterator I
) {
859 MachineBasicBlock
&MBB
= *I
->getParent();
860 while (++I
!= MBB
.end()) {
861 MachineInstr
&MI
= *I
;
862 if (X86::isX87Instruction(MI
))
868 /// popStackAfter - Pop the current value off of the top of the FP stack after
869 /// the specified instruction. This attempts to be sneaky and combine the pop
870 /// into the instruction itself if possible. The iterator is left pointing to
871 /// the last instruction, be it a new pop instruction inserted, or the old
872 /// instruction if it was modified in place.
874 void FPS::popStackAfter(MachineBasicBlock::iterator
&I
) {
875 MachineInstr
&MI
= *I
;
876 const DebugLoc
&dl
= MI
.getDebugLoc();
877 ASSERT_SORTED(PopTable
);
881 // Check to see if there is a popping version of this instruction...
882 int Opcode
= Lookup(PopTable
, I
->getOpcode());
884 I
->setDesc(TII
->get(Opcode
));
885 if (Opcode
== X86::FCOMPP
|| Opcode
== X86::UCOM_FPPr
)
887 MI
.dropDebugNumber();
888 } else { // Insert an explicit pop
889 // If this instruction sets FPSW, which is read in following instruction,
890 // insert pop after that reader.
891 if (doesInstructionSetFPSW(MI
)) {
892 MachineBasicBlock
&MBB
= *MI
.getParent();
893 MachineBasicBlock::iterator Next
= getNextFPInstruction(I
);
894 if (Next
!= MBB
.end() && Next
->readsRegister(X86::FPSW
, /*TRI=*/nullptr))
897 I
= BuildMI(*MBB
, ++I
, dl
, TII
->get(X86::ST_FPrr
)).addReg(X86::ST0
);
901 /// freeStackSlotAfter - Free the specified register from the register stack, so
902 /// that it is no longer in a register. If the register is currently at the top
903 /// of the stack, we just pop the current instruction, otherwise we store the
904 /// current top-of-stack into the specified slot, then pop the top of stack.
905 void FPS::freeStackSlotAfter(MachineBasicBlock::iterator
&I
, unsigned FPRegNo
) {
906 if (getStackEntry(0) == FPRegNo
) { // already at the top of stack? easy.
911 // Otherwise, store the top of stack into the dead slot, killing the operand
912 // without having to add in an explicit xchg then pop.
914 I
= freeStackSlotBefore(++I
, FPRegNo
);
917 /// freeStackSlotBefore - Free the specified register without trying any
919 MachineBasicBlock::iterator
920 FPS::freeStackSlotBefore(MachineBasicBlock::iterator I
, unsigned FPRegNo
) {
921 unsigned STReg
= getSTReg(FPRegNo
);
922 unsigned OldSlot
= getSlot(FPRegNo
);
923 unsigned TopReg
= Stack
[StackTop
-1];
924 Stack
[OldSlot
] = TopReg
;
925 RegMap
[TopReg
] = OldSlot
;
926 RegMap
[FPRegNo
] = ~0;
927 Stack
[--StackTop
] = ~0;
928 return BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::ST_FPrr
))
933 /// adjustLiveRegs - Kill and revive registers such that exactly the FP
934 /// registers with a bit in Mask are live.
935 void FPS::adjustLiveRegs(unsigned Mask
, MachineBasicBlock::iterator I
) {
936 unsigned Defs
= Mask
;
938 for (unsigned i
= 0; i
< StackTop
; ++i
) {
939 unsigned RegNo
= Stack
[i
];
940 if (!(Defs
& (1 << RegNo
)))
941 // This register is live, but we don't want it.
942 Kills
|= (1 << RegNo
);
944 // We don't need to imp-def this live register.
945 Defs
&= ~(1 << RegNo
);
947 assert((Kills
& Defs
) == 0 && "Register needs killing and def'ing?");
949 // Produce implicit-defs for free by using killed registers.
950 while (Kills
&& Defs
) {
951 unsigned KReg
= llvm::countr_zero(Kills
);
952 unsigned DReg
= llvm::countr_zero(Defs
);
953 LLVM_DEBUG(dbgs() << "Renaming %fp" << KReg
<< " as imp %fp" << DReg
955 std::swap(Stack
[getSlot(KReg
)], Stack
[getSlot(DReg
)]);
956 std::swap(RegMap
[KReg
], RegMap
[DReg
]);
957 Kills
&= ~(1 << KReg
);
958 Defs
&= ~(1 << DReg
);
961 // Kill registers by popping.
962 if (Kills
&& I
!= MBB
->begin()) {
963 MachineBasicBlock::iterator I2
= std::prev(I
);
965 unsigned KReg
= getStackEntry(0);
966 if (!(Kills
& (1 << KReg
)))
968 LLVM_DEBUG(dbgs() << "Popping %fp" << KReg
<< "\n");
970 Kills
&= ~(1 << KReg
);
974 // Manually kill the rest.
976 unsigned KReg
= llvm::countr_zero(Kills
);
977 LLVM_DEBUG(dbgs() << "Killing %fp" << KReg
<< "\n");
978 freeStackSlotBefore(I
, KReg
);
979 Kills
&= ~(1 << KReg
);
982 // Load zeros for all the imp-defs.
984 unsigned DReg
= llvm::countr_zero(Defs
);
985 LLVM_DEBUG(dbgs() << "Defining %fp" << DReg
<< " as 0\n");
986 BuildMI(*MBB
, I
, DebugLoc(), TII
->get(X86::LD_F0
));
988 Defs
&= ~(1 << DReg
);
991 // Now we should have the correct registers live.
992 LLVM_DEBUG(dumpStack());
993 assert(StackTop
== (unsigned)llvm::popcount(Mask
) && "Live count mismatch");
996 /// shuffleStackTop - emit fxch instructions before I to shuffle the top
997 /// FixCount entries into the order given by FixStack.
998 /// FIXME: Is there a better algorithm than insertion sort?
999 void FPS::shuffleStackTop(const unsigned char *FixStack
,
1001 MachineBasicBlock::iterator I
) {
1002 // Move items into place, starting from the desired stack bottom.
1003 while (FixCount
--) {
1004 // Old register at position FixCount.
1005 unsigned OldReg
= getStackEntry(FixCount
);
1006 // Desired register at position FixCount.
1007 unsigned Reg
= FixStack
[FixCount
];
1010 // (Reg st0) (OldReg st0) = (Reg OldReg st0)
1013 moveToTop(OldReg
, I
);
1015 LLVM_DEBUG(dumpStack());
1019 //===----------------------------------------------------------------------===//
1020 // Instruction transformation implementation
1021 //===----------------------------------------------------------------------===//
1023 void FPS::handleCall(MachineBasicBlock::iterator
&I
) {
1024 MachineInstr
&MI
= *I
;
1025 unsigned STReturns
= 0;
1027 bool ClobbersFPStack
= false;
1028 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1029 MachineOperand
&Op
= MI
.getOperand(i
);
1030 // Check if this call clobbers the FP stack.
1032 if (Op
.isRegMask()) {
1033 bool ClobbersFP0
= Op
.clobbersPhysReg(X86::FP0
);
1035 static_assert(X86::FP7
- X86::FP0
== 7, "sequential FP regnumbers");
1036 for (unsigned i
= 1; i
!= 8; ++i
)
1037 assert(Op
.clobbersPhysReg(X86::FP0
+ i
) == ClobbersFP0
&&
1038 "Inconsistent FP register clobber");
1042 ClobbersFPStack
= true;
1045 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1048 assert(Op
.isImplicit() && "Expected implicit def/use");
1051 STReturns
|= 1 << getFPReg(Op
);
1053 // Remove the operand so that later passes don't see it.
1054 MI
.removeOperand(i
);
1059 // Most calls should have a regmask that clobbers the FP registers. If it
1060 // isn't present then the register allocator didn't spill the FP registers
1061 // so they are still on the stack.
1062 assert((ClobbersFPStack
|| STReturns
== 0) &&
1063 "ST returns without FP stack clobber");
1064 if (!ClobbersFPStack
)
1067 unsigned N
= llvm::countr_one(STReturns
);
1069 // FP registers used for function return must be consecutive starting at
1071 assert(STReturns
== 0 || (isMask_32(STReturns
) && N
<= 2));
1073 // Reset the FP Stack - It is required because of possible leftovers from
1074 // passed arguments. The caller should assume that the FP stack is
1075 // returned empty (unless the callee returns values on FP stack).
1076 while (StackTop
> 0)
1079 for (unsigned I
= 0; I
< N
; ++I
)
1082 // If this call has been modified, drop all variable values defined by it.
1083 // We can't track them once they've been stackified.
1085 I
->dropDebugNumber();
1088 /// If RET has an FP register use operand, pass the first one in ST(0) and
1089 /// the second one in ST(1).
1090 void FPS::handleReturn(MachineBasicBlock::iterator
&I
) {
1091 MachineInstr
&MI
= *I
;
1093 // Find the register operands.
1094 unsigned FirstFPRegOp
= ~0U, SecondFPRegOp
= ~0U;
1095 unsigned LiveMask
= 0;
1097 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1098 MachineOperand
&Op
= MI
.getOperand(i
);
1099 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1101 // FP Register uses must be kills unless there are two uses of the same
1102 // register, in which case only one will be a kill.
1103 assert(Op
.isUse() &&
1104 (Op
.isKill() || // Marked kill.
1105 getFPReg(Op
) == FirstFPRegOp
|| // Second instance.
1106 MI
.killsRegister(Op
.getReg(),
1107 /*TRI=*/nullptr)) && // Later use is marked kill.
1108 "Ret only defs operands, and values aren't live beyond it");
1110 if (FirstFPRegOp
== ~0U)
1111 FirstFPRegOp
= getFPReg(Op
);
1113 assert(SecondFPRegOp
== ~0U && "More than two fp operands!");
1114 SecondFPRegOp
= getFPReg(Op
);
1116 LiveMask
|= (1 << getFPReg(Op
));
1118 // Remove the operand so that later passes don't see it.
1119 MI
.removeOperand(i
);
1124 // We may have been carrying spurious live-ins, so make sure only the
1125 // returned registers are left live.
1126 adjustLiveRegs(LiveMask
, MI
);
1127 if (!LiveMask
) return; // Quick check to see if any are possible.
1129 // There are only four possibilities here:
1130 // 1) we are returning a single FP value. In this case, it has to be in
1131 // ST(0) already, so just declare success by removing the value from the
1133 if (SecondFPRegOp
== ~0U) {
1134 // Assert that the top of stack contains the right FP register.
1135 assert(StackTop
== 1 && FirstFPRegOp
== getStackEntry(0) &&
1136 "Top of stack not the right register for RET!");
1138 // Ok, everything is good, mark the value as not being on the stack
1139 // anymore so that our assertion about the stack being empty at end of
1140 // block doesn't fire.
1145 // Otherwise, we are returning two values:
1146 // 2) If returning the same value for both, we only have one thing in the FP
1147 // stack. Consider: RET FP1, FP1
1148 if (StackTop
== 1) {
1149 assert(FirstFPRegOp
== SecondFPRegOp
&& FirstFPRegOp
== getStackEntry(0)&&
1150 "Stack misconfiguration for RET!");
1152 // Duplicate the TOS so that we return it twice. Just pick some other FPx
1153 // register to hold it.
1154 unsigned NewReg
= ScratchFPReg
;
1155 duplicateToTop(FirstFPRegOp
, NewReg
, MI
);
1156 FirstFPRegOp
= NewReg
;
1159 /// Okay we know we have two different FPx operands now:
1160 assert(StackTop
== 2 && "Must have two values live!");
1162 /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently
1163 /// in ST(1). In this case, emit an fxch.
1164 if (getStackEntry(0) == SecondFPRegOp
) {
1165 assert(getStackEntry(1) == FirstFPRegOp
&& "Unknown regs live");
1166 moveToTop(FirstFPRegOp
, MI
);
1169 /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in
1170 /// ST(1). Just remove both from our understanding of the stack and return.
1171 assert(getStackEntry(0) == FirstFPRegOp
&& "Unknown regs live");
1172 assert(getStackEntry(1) == SecondFPRegOp
&& "Unknown regs live");
1176 /// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem>
1178 void FPS::handleZeroArgFP(MachineBasicBlock::iterator
&I
) {
1179 MachineInstr
&MI
= *I
;
1180 unsigned DestReg
= getFPReg(MI
.getOperand(0));
1182 // Change from the pseudo instruction to the concrete instruction.
1183 MI
.removeOperand(0); // Remove the explicit ST(0) operand
1184 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1186 MachineOperand::CreateReg(X86::ST0
, /*isDef*/ true, /*isImp*/ true));
1188 // Result gets pushed on the stack.
1191 MI
.dropDebugNumber();
1194 /// handleOneArgFP - fst <mem>, ST(0)
1196 void FPS::handleOneArgFP(MachineBasicBlock::iterator
&I
) {
1197 MachineInstr
&MI
= *I
;
1198 unsigned NumOps
= MI
.getDesc().getNumOperands();
1199 assert((NumOps
== X86::AddrNumOperands
+ 1 || NumOps
== 1) &&
1200 "Can only handle fst* & ftst instructions!");
1202 // Is this the last use of the source register?
1203 unsigned Reg
= getFPReg(MI
.getOperand(NumOps
- 1));
1204 bool KillsSrc
= MI
.killsRegister(X86::FP0
+ Reg
, /*TRI=*/nullptr);
1206 // FISTP64m is strange because there isn't a non-popping versions.
1207 // If we have one _and_ we don't want to pop the operand, duplicate the value
1208 // on the stack instead of moving it. This ensure that popping the value is
1210 // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m.
1212 if (!KillsSrc
&& (MI
.getOpcode() == X86::IST_Fp64m32
||
1213 MI
.getOpcode() == X86::ISTT_Fp16m32
||
1214 MI
.getOpcode() == X86::ISTT_Fp32m32
||
1215 MI
.getOpcode() == X86::ISTT_Fp64m32
||
1216 MI
.getOpcode() == X86::IST_Fp64m64
||
1217 MI
.getOpcode() == X86::ISTT_Fp16m64
||
1218 MI
.getOpcode() == X86::ISTT_Fp32m64
||
1219 MI
.getOpcode() == X86::ISTT_Fp64m64
||
1220 MI
.getOpcode() == X86::IST_Fp64m80
||
1221 MI
.getOpcode() == X86::ISTT_Fp16m80
||
1222 MI
.getOpcode() == X86::ISTT_Fp32m80
||
1223 MI
.getOpcode() == X86::ISTT_Fp64m80
||
1224 MI
.getOpcode() == X86::ST_FpP80m
)) {
1225 duplicateToTop(Reg
, ScratchFPReg
, I
);
1227 moveToTop(Reg
, I
); // Move to the top of the stack...
1230 // Convert from the pseudo instruction to the concrete instruction.
1231 MI
.removeOperand(NumOps
- 1); // Remove explicit ST(0) operand
1232 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1234 MachineOperand::CreateReg(X86::ST0
, /*isDef*/ false, /*isImp*/ true));
1236 if (MI
.getOpcode() == X86::IST_FP64m
|| MI
.getOpcode() == X86::ISTT_FP16m
||
1237 MI
.getOpcode() == X86::ISTT_FP32m
|| MI
.getOpcode() == X86::ISTT_FP64m
||
1238 MI
.getOpcode() == X86::ST_FP80m
) {
1240 report_fatal_error("Stack empty??");
1242 } else if (KillsSrc
) { // Last use of operand?
1246 MI
.dropDebugNumber();
1250 /// handleOneArgFPRW: Handle instructions that read from the top of stack and
1251 /// replace the value with a newly computed value. These instructions may have
1252 /// non-fp operands after their FP operands.
1256 /// R1 = fadd R2, [mem]
1258 void FPS::handleOneArgFPRW(MachineBasicBlock::iterator
&I
) {
1259 MachineInstr
&MI
= *I
;
1261 unsigned NumOps
= MI
.getDesc().getNumOperands();
1262 assert(NumOps
>= 2 && "FPRW instructions must have 2 ops!!");
1265 // Is this the last use of the source register?
1266 unsigned Reg
= getFPReg(MI
.getOperand(1));
1267 bool KillsSrc
= MI
.killsRegister(X86::FP0
+ Reg
, /*TRI=*/nullptr);
1270 // If this is the last use of the source register, just make sure it's on
1271 // the top of the stack.
1274 report_fatal_error("Stack cannot be empty!");
1276 pushReg(getFPReg(MI
.getOperand(0)));
1278 // If this is not the last use of the source register, _copy_ it to the top
1280 duplicateToTop(Reg
, getFPReg(MI
.getOperand(0)), I
);
1283 // Change from the pseudo instruction to the concrete instruction.
1284 MI
.removeOperand(1); // Drop the source operand.
1285 MI
.removeOperand(0); // Drop the destination operand.
1286 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1287 MI
.dropDebugNumber();
1291 //===----------------------------------------------------------------------===//
1292 // Define tables of various ways to map pseudo instructions
1295 // ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i)
1296 static const TableEntry ForwardST0Table
[] = {
1297 { X86::ADD_Fp32
, X86::ADD_FST0r
},
1298 { X86::ADD_Fp64
, X86::ADD_FST0r
},
1299 { X86::ADD_Fp80
, X86::ADD_FST0r
},
1300 { X86::DIV_Fp32
, X86::DIV_FST0r
},
1301 { X86::DIV_Fp64
, X86::DIV_FST0r
},
1302 { X86::DIV_Fp80
, X86::DIV_FST0r
},
1303 { X86::MUL_Fp32
, X86::MUL_FST0r
},
1304 { X86::MUL_Fp64
, X86::MUL_FST0r
},
1305 { X86::MUL_Fp80
, X86::MUL_FST0r
},
1306 { X86::SUB_Fp32
, X86::SUB_FST0r
},
1307 { X86::SUB_Fp64
, X86::SUB_FST0r
},
1308 { X86::SUB_Fp80
, X86::SUB_FST0r
},
1311 // ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0)
1312 static const TableEntry ReverseST0Table
[] = {
1313 { X86::ADD_Fp32
, X86::ADD_FST0r
}, // commutative
1314 { X86::ADD_Fp64
, X86::ADD_FST0r
}, // commutative
1315 { X86::ADD_Fp80
, X86::ADD_FST0r
}, // commutative
1316 { X86::DIV_Fp32
, X86::DIVR_FST0r
},
1317 { X86::DIV_Fp64
, X86::DIVR_FST0r
},
1318 { X86::DIV_Fp80
, X86::DIVR_FST0r
},
1319 { X86::MUL_Fp32
, X86::MUL_FST0r
}, // commutative
1320 { X86::MUL_Fp64
, X86::MUL_FST0r
}, // commutative
1321 { X86::MUL_Fp80
, X86::MUL_FST0r
}, // commutative
1322 { X86::SUB_Fp32
, X86::SUBR_FST0r
},
1323 { X86::SUB_Fp64
, X86::SUBR_FST0r
},
1324 { X86::SUB_Fp80
, X86::SUBR_FST0r
},
1327 // ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i)
1328 static const TableEntry ForwardSTiTable
[] = {
1329 { X86::ADD_Fp32
, X86::ADD_FrST0
}, // commutative
1330 { X86::ADD_Fp64
, X86::ADD_FrST0
}, // commutative
1331 { X86::ADD_Fp80
, X86::ADD_FrST0
}, // commutative
1332 { X86::DIV_Fp32
, X86::DIVR_FrST0
},
1333 { X86::DIV_Fp64
, X86::DIVR_FrST0
},
1334 { X86::DIV_Fp80
, X86::DIVR_FrST0
},
1335 { X86::MUL_Fp32
, X86::MUL_FrST0
}, // commutative
1336 { X86::MUL_Fp64
, X86::MUL_FrST0
}, // commutative
1337 { X86::MUL_Fp80
, X86::MUL_FrST0
}, // commutative
1338 { X86::SUB_Fp32
, X86::SUBR_FrST0
},
1339 { X86::SUB_Fp64
, X86::SUBR_FrST0
},
1340 { X86::SUB_Fp80
, X86::SUBR_FrST0
},
1343 // ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0)
1344 static const TableEntry ReverseSTiTable
[] = {
1345 { X86::ADD_Fp32
, X86::ADD_FrST0
},
1346 { X86::ADD_Fp64
, X86::ADD_FrST0
},
1347 { X86::ADD_Fp80
, X86::ADD_FrST0
},
1348 { X86::DIV_Fp32
, X86::DIV_FrST0
},
1349 { X86::DIV_Fp64
, X86::DIV_FrST0
},
1350 { X86::DIV_Fp80
, X86::DIV_FrST0
},
1351 { X86::MUL_Fp32
, X86::MUL_FrST0
},
1352 { X86::MUL_Fp64
, X86::MUL_FrST0
},
1353 { X86::MUL_Fp80
, X86::MUL_FrST0
},
1354 { X86::SUB_Fp32
, X86::SUB_FrST0
},
1355 { X86::SUB_Fp64
, X86::SUB_FrST0
},
1356 { X86::SUB_Fp80
, X86::SUB_FrST0
},
1360 /// handleTwoArgFP - Handle instructions like FADD and friends which are virtual
1361 /// instructions which need to be simplified and possibly transformed.
1363 /// Result: ST(0) = fsub ST(0), ST(i)
1364 /// ST(i) = fsub ST(0), ST(i)
1365 /// ST(0) = fsubr ST(0), ST(i)
1366 /// ST(i) = fsubr ST(0), ST(i)
1368 void FPS::handleTwoArgFP(MachineBasicBlock::iterator
&I
) {
1369 ASSERT_SORTED(ForwardST0Table
); ASSERT_SORTED(ReverseST0Table
);
1370 ASSERT_SORTED(ForwardSTiTable
); ASSERT_SORTED(ReverseSTiTable
);
1371 MachineInstr
&MI
= *I
;
1373 unsigned NumOperands
= MI
.getDesc().getNumOperands();
1374 assert(NumOperands
== 3 && "Illegal TwoArgFP instruction!");
1375 unsigned Dest
= getFPReg(MI
.getOperand(0));
1376 unsigned Op0
= getFPReg(MI
.getOperand(NumOperands
- 2));
1377 unsigned Op1
= getFPReg(MI
.getOperand(NumOperands
- 1));
1378 bool KillsOp0
= MI
.killsRegister(X86::FP0
+ Op0
, /*TRI=*/nullptr);
1379 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
, /*TRI=*/nullptr);
1380 const DebugLoc
&dl
= MI
.getDebugLoc();
1382 unsigned TOS
= getStackEntry(0);
1384 // One of our operands must be on the top of the stack. If neither is yet, we
1385 // need to move one.
1386 if (Op0
!= TOS
&& Op1
!= TOS
) { // No operand at TOS?
1387 // We can choose to move either operand to the top of the stack. If one of
1388 // the operands is killed by this instruction, we want that one so that we
1389 // can update right on top of the old version.
1391 moveToTop(Op0
, I
); // Move dead operand to TOS.
1393 } else if (KillsOp1
) {
1397 // All of the operands are live after this instruction executes, so we
1398 // cannot update on top of any operand. Because of this, we must
1399 // duplicate one of the stack elements to the top. It doesn't matter
1400 // which one we pick.
1402 duplicateToTop(Op0
, Dest
, I
);
1406 } else if (!KillsOp0
&& !KillsOp1
) {
1407 // If we DO have one of our operands at the top of the stack, but we don't
1408 // have a dead operand, we must duplicate one of the operands to a new slot
1410 duplicateToTop(Op0
, Dest
, I
);
1415 // Now we know that one of our operands is on the top of the stack, and at
1416 // least one of our operands is killed by this instruction.
1417 assert((TOS
== Op0
|| TOS
== Op1
) && (KillsOp0
|| KillsOp1
) &&
1418 "Stack conditions not set up right!");
1420 // We decide which form to use based on what is on the top of the stack, and
1421 // which operand is killed by this instruction.
1422 ArrayRef
<TableEntry
> InstTable
;
1423 bool isForward
= TOS
== Op0
;
1424 bool updateST0
= (TOS
== Op0
&& !KillsOp1
) || (TOS
== Op1
&& !KillsOp0
);
1427 InstTable
= ForwardST0Table
;
1429 InstTable
= ReverseST0Table
;
1432 InstTable
= ForwardSTiTable
;
1434 InstTable
= ReverseSTiTable
;
1437 int Opcode
= Lookup(InstTable
, MI
.getOpcode());
1438 assert(Opcode
!= -1 && "Unknown TwoArgFP pseudo instruction!");
1440 // NotTOS - The register which is not on the top of stack...
1441 unsigned NotTOS
= (TOS
== Op0
) ? Op1
: Op0
;
1443 // Replace the old instruction with a new instruction
1445 I
= BuildMI(*MBB
, I
, dl
, TII
->get(Opcode
)).addReg(getSTReg(NotTOS
));
1447 if (!MI
.mayRaiseFPException())
1448 I
->setFlag(MachineInstr::MIFlag::NoFPExcept
);
1450 // If both operands are killed, pop one off of the stack in addition to
1451 // overwriting the other one.
1452 if (KillsOp0
&& KillsOp1
&& Op0
!= Op1
) {
1453 assert(!updateST0
&& "Should have updated other operand!");
1454 popStackAfter(I
); // Pop the top of stack
1457 // Update stack information so that we know the destination register is now on
1459 unsigned UpdatedSlot
= getSlot(updateST0
? TOS
: NotTOS
);
1460 assert(UpdatedSlot
< StackTop
&& Dest
< 7);
1461 Stack
[UpdatedSlot
] = Dest
;
1462 RegMap
[Dest
] = UpdatedSlot
;
1463 MBB
->getParent()->deleteMachineInstr(&MI
); // Remove the old instruction
1466 /// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP
1467 /// register arguments and no explicit destinations.
1469 void FPS::handleCompareFP(MachineBasicBlock::iterator
&I
) {
1470 MachineInstr
&MI
= *I
;
1472 unsigned NumOperands
= MI
.getDesc().getNumOperands();
1473 assert(NumOperands
== 2 && "Illegal FUCOM* instruction!");
1474 unsigned Op0
= getFPReg(MI
.getOperand(NumOperands
- 2));
1475 unsigned Op1
= getFPReg(MI
.getOperand(NumOperands
- 1));
1476 bool KillsOp0
= MI
.killsRegister(X86::FP0
+ Op0
, /*TRI=*/nullptr);
1477 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
, /*TRI=*/nullptr);
1479 // Make sure the first operand is on the top of stack, the other one can be
1483 // Change from the pseudo instruction to the concrete instruction.
1484 MI
.getOperand(0).setReg(getSTReg(Op1
));
1485 MI
.removeOperand(1);
1486 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1487 MI
.dropDebugNumber();
1489 // If any of the operands are killed by this instruction, free them.
1490 if (KillsOp0
) freeStackSlotAfter(I
, Op0
);
1491 if (KillsOp1
&& Op0
!= Op1
) freeStackSlotAfter(I
, Op1
);
1494 /// handleCondMovFP - Handle two address conditional move instructions. These
1495 /// instructions move a st(i) register to st(0) iff a condition is true. These
1496 /// instructions require that the first operand is at the top of the stack, but
1497 /// otherwise don't modify the stack at all.
1498 void FPS::handleCondMovFP(MachineBasicBlock::iterator
&I
) {
1499 MachineInstr
&MI
= *I
;
1501 unsigned Op0
= getFPReg(MI
.getOperand(0));
1502 unsigned Op1
= getFPReg(MI
.getOperand(2));
1503 bool KillsOp1
= MI
.killsRegister(X86::FP0
+ Op1
, /*TRI=*/nullptr);
1505 // The first operand *must* be on the top of the stack.
1508 // Change the second operand to the stack register that the operand is in.
1509 // Change from the pseudo instruction to the concrete instruction.
1510 MI
.removeOperand(0);
1511 MI
.removeOperand(1);
1512 MI
.getOperand(0).setReg(getSTReg(Op1
));
1513 MI
.setDesc(TII
->get(getConcreteOpcode(MI
.getOpcode())));
1514 MI
.dropDebugNumber();
1516 // If we kill the second operand, make sure to pop it from the stack.
1517 if (Op0
!= Op1
&& KillsOp1
) {
1518 // Get this value off of the register stack.
1519 freeStackSlotAfter(I
, Op1
);
1524 /// handleSpecialFP - Handle special instructions which behave unlike other
1525 /// floating point instructions. This is primarily intended for use by pseudo
1528 void FPS::handleSpecialFP(MachineBasicBlock::iterator
&Inst
) {
1529 MachineInstr
&MI
= *Inst
;
1536 if (MI
.isReturn()) {
1541 switch (MI
.getOpcode()) {
1542 default: llvm_unreachable("Unknown SpecialFP instruction!");
1543 case TargetOpcode::COPY
: {
1544 // We handle three kinds of copies: FP <- FP, FP <- ST, and ST <- FP.
1545 const MachineOperand
&MO1
= MI
.getOperand(1);
1546 const MachineOperand
&MO0
= MI
.getOperand(0);
1547 bool KillsSrc
= MI
.killsRegister(MO1
.getReg(), /*TRI=*/nullptr);
1550 unsigned DstFP
= getFPReg(MO0
);
1551 unsigned SrcFP
= getFPReg(MO1
);
1552 assert(isLive(SrcFP
) && "Cannot copy dead register");
1554 // If the input operand is killed, we can just change the owner of the
1555 // incoming stack slot into the result.
1556 unsigned Slot
= getSlot(SrcFP
);
1557 Stack
[Slot
] = DstFP
;
1558 RegMap
[DstFP
] = Slot
;
1560 // For COPY we just duplicate the specified value to a new stack slot.
1561 // This could be made better, but would require substantial changes.
1562 duplicateToTop(SrcFP
, DstFP
, Inst
);
1567 case TargetOpcode::IMPLICIT_DEF
: {
1568 // All FP registers must be explicitly defined, so load a 0 instead.
1569 unsigned Reg
= MI
.getOperand(0).getReg() - X86::FP0
;
1570 LLVM_DEBUG(dbgs() << "Emitting LD_F0 for implicit FP" << Reg
<< '\n');
1571 BuildMI(*MBB
, Inst
, MI
.getDebugLoc(), TII
->get(X86::LD_F0
));
1576 case TargetOpcode::INLINEASM
:
1577 case TargetOpcode::INLINEASM_BR
: {
1578 // The inline asm MachineInstr currently only *uses* FP registers for the
1579 // 'f' constraint. These should be turned into the current ST(x) register
1580 // in the machine instr.
1582 // There are special rules for x87 inline assembly. The compiler must know
1583 // exactly how many registers are popped and pushed implicitly by the asm.
1584 // Otherwise it is not possible to restore the stack state after the inline
1587 // There are 3 kinds of input operands:
1589 // 1. Popped inputs. These must appear at the stack top in ST0-STn. A
1590 // popped input operand must be in a fixed stack slot, and it is either
1591 // tied to an output operand, or in the clobber list. The MI has ST use
1592 // and def operands for these inputs.
1594 // 2. Fixed inputs. These inputs appear in fixed stack slots, but are
1595 // preserved by the inline asm. The fixed stack slots must be STn-STm
1596 // following the popped inputs. A fixed input operand cannot be tied to
1597 // an output or appear in the clobber list. The MI has ST use operands
1598 // and no defs for these inputs.
1600 // 3. Preserved inputs. These inputs use the "f" constraint which is
1601 // represented as an FP register. The inline asm won't change these
1604 // Outputs must be in ST registers, FP outputs are not allowed. Clobbered
1605 // registers do not count as output operands. The inline asm changes the
1606 // stack as if it popped all the popped inputs and then pushed all the
1609 // Scan the assembly for ST registers used, defined and clobbered. We can
1610 // only tell clobbers from defs by looking at the asm descriptor.
1611 unsigned STUses
= 0, STDefs
= 0, STClobbers
= 0;
1612 unsigned NumOps
= 0;
1613 SmallSet
<unsigned, 1> FRegIdx
;
1616 for (unsigned i
= InlineAsm::MIOp_FirstOperand
, e
= MI
.getNumOperands();
1617 i
!= e
&& MI
.getOperand(i
).isImm(); i
+= 1 + NumOps
) {
1618 unsigned Flags
= MI
.getOperand(i
).getImm();
1619 const InlineAsm::Flag
F(Flags
);
1621 NumOps
= F
.getNumOperandRegisters();
1624 const MachineOperand
&MO
= MI
.getOperand(i
+ 1);
1627 unsigned STReg
= MO
.getReg() - X86::FP0
;
1631 // If the flag has a register class constraint, this must be an operand
1632 // with constraint "f". Record its index and continue.
1633 if (F
.hasRegClassConstraint(RCID
)) {
1634 FRegIdx
.insert(i
+ 1);
1638 switch (F
.getKind()) {
1639 case InlineAsm::Kind::RegUse
:
1640 STUses
|= (1u << STReg
);
1642 case InlineAsm::Kind::RegDef
:
1643 case InlineAsm::Kind::RegDefEarlyClobber
:
1644 STDefs
|= (1u << STReg
);
1646 case InlineAsm::Kind::Clobber
:
1647 STClobbers
|= (1u << STReg
);
1654 if (STUses
&& !isMask_32(STUses
))
1655 MI
.emitGenericError("fixed input regs must be last on the x87 stack");
1656 unsigned NumSTUses
= llvm::countr_one(STUses
);
1658 // Defs must be contiguous from the stack top. ST0-STn.
1659 if (STDefs
&& !isMask_32(STDefs
)) {
1660 MI
.emitGenericError("output regs must be last on the x87 stack");
1661 STDefs
= NextPowerOf2(STDefs
) - 1;
1663 unsigned NumSTDefs
= llvm::countr_one(STDefs
);
1665 // So must the clobbered stack slots. ST0-STm, m >= n.
1666 if (STClobbers
&& !isMask_32(STDefs
| STClobbers
))
1667 MI
.emitGenericError("clobbers must be last on the x87 stack");
1669 // Popped inputs are the ones that are also clobbered or defined.
1670 unsigned STPopped
= STUses
& (STDefs
| STClobbers
);
1671 if (STPopped
&& !isMask_32(STPopped
))
1672 MI
.emitGenericError(
1673 "implicitly popped regs must be last on the x87 stack");
1674 unsigned NumSTPopped
= llvm::countr_one(STPopped
);
1676 LLVM_DEBUG(dbgs() << "Asm uses " << NumSTUses
<< " fixed regs, pops "
1677 << NumSTPopped
<< ", and defines " << NumSTDefs
1681 // If any input operand uses constraint "f", all output register
1682 // constraints must be early-clobber defs.
1683 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
)
1684 if (FRegIdx
.count(I
)) {
1685 assert((1 << getFPReg(MI
.getOperand(I
)) & STDefs
) == 0 &&
1686 "Operands with constraint \"f\" cannot overlap with defs");
1690 // Collect all FP registers (register operands with constraints "t", "u",
1691 // and "f") to kill afer the instruction.
1692 unsigned FPKills
= ((1u << NumFPRegs
) - 1) & ~0xff;
1693 for (const MachineOperand
&Op
: MI
.operands()) {
1694 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1696 unsigned FPReg
= getFPReg(Op
);
1698 // If we kill this operand, make sure to pop it from the stack after the
1699 // asm. We just remember it for now, and pop them all off at the end in
1701 if (Op
.isUse() && Op
.isKill())
1702 FPKills
|= 1U << FPReg
;
1705 // Do not include registers that are implicitly popped by defs/clobbers.
1706 FPKills
&= ~(STDefs
| STClobbers
);
1708 // Now we can rearrange the live registers to match what was requested.
1709 unsigned char STUsesArray
[8];
1711 for (unsigned I
= 0; I
< NumSTUses
; ++I
)
1714 shuffleStackTop(STUsesArray
, NumSTUses
, Inst
);
1716 dbgs() << "Before asm: ";
1720 // With the stack layout fixed, rewrite the FP registers.
1721 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1722 MachineOperand
&Op
= MI
.getOperand(i
);
1723 if (!Op
.isReg() || Op
.getReg() < X86::FP0
|| Op
.getReg() > X86::FP6
)
1726 unsigned FPReg
= getFPReg(Op
);
1728 if (FRegIdx
.count(i
))
1729 // Operand with constraint "f".
1730 Op
.setReg(getSTReg(FPReg
));
1732 // Operand with a single register class constraint ("t" or "u").
1733 Op
.setReg(X86::ST0
+ FPReg
);
1736 // Simulate the inline asm popping its inputs and pushing its outputs.
1737 StackTop
-= NumSTPopped
;
1739 for (unsigned i
= 0; i
< NumSTDefs
; ++i
)
1740 pushReg(NumSTDefs
- i
- 1);
1742 // If this asm kills any FP registers (is the last use of them) we must
1743 // explicitly emit pop instructions for them. Do this now after the asm has
1744 // executed so that the ST(x) numbers are not off (which would happen if we
1745 // did this inline with operand rewriting).
1747 // Note: this might be a non-optimal pop sequence. We might be able to do
1748 // better by trying to pop in stack order or something.
1750 unsigned FPReg
= llvm::countr_zero(FPKills
);
1752 freeStackSlotAfter(Inst
, FPReg
);
1753 FPKills
&= ~(1U << FPReg
);
1756 // Don't delete the inline asm!
1760 // FAKE_USE must pop its register operand off the stack if it is killed,
1761 // because this constitutes the register's last use. If the operand
1762 // is not killed, it will have its last use later, so we leave it alone.
1763 // In either case we remove the operand so later passes don't see it.
1764 case TargetOpcode::FAKE_USE
: {
1765 assert(MI
.getNumExplicitOperands() == 1 &&
1766 "FAKE_USE must have exactly one operand");
1767 if (MI
.getOperand(0).isKill()) {
1768 freeStackSlotBefore(Inst
, getFPReg(MI
.getOperand(0)));
1770 MI
.removeOperand(0);
1775 Inst
= MBB
->erase(Inst
); // Remove the pseudo instruction
1777 // We want to leave I pointing to the previous instruction, but what if we
1778 // just erased the first instruction?
1779 if (Inst
== MBB
->begin()) {
1780 LLVM_DEBUG(dbgs() << "Inserting dummy KILL\n");
1781 Inst
= BuildMI(*MBB
, Inst
, DebugLoc(), TII
->get(TargetOpcode::KILL
));
1786 void FPS::setKillFlags(MachineBasicBlock
&MBB
) const {
1787 const TargetRegisterInfo
&TRI
=
1788 *MBB
.getParent()->getSubtarget().getRegisterInfo();
1789 LiveRegUnits
LPR(TRI
);
1791 LPR
.addLiveOuts(MBB
);
1793 for (MachineInstr
&MI
: llvm::reverse(MBB
)) {
1794 if (MI
.isDebugInstr())
1797 std::bitset
<8> Defs
;
1798 SmallVector
<MachineOperand
*, 2> Uses
;
1800 for (auto &MO
: MI
.operands()) {
1804 unsigned Reg
= MO
.getReg() - X86::FP0
;
1811 if (LPR
.available(MO
.getReg()))
1814 Uses
.push_back(&MO
);
1817 for (auto *MO
: Uses
)
1818 if (Defs
.test(getFPReg(*MO
)) || LPR
.available(MO
->getReg()))
1821 LPR
.stepBackward(MI
);