1 //===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the X86 implementation of the TargetInstrInfo class.
11 //===----------------------------------------------------------------------===//
13 #include "X86InstrInfo.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrFoldTables.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Sequence.h"
22 #include "llvm/CodeGen/LiveIntervals.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineDominators.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineInstrBuilder.h"
30 #include "llvm/CodeGen/MachineModuleInfo.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/StackMaps.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCInst.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetOptions.h"
51 #define DEBUG_TYPE "x86-instr-info"
53 #define GET_INSTRINFO_CTOR_DTOR
54 #include "X86GenInstrInfo.inc"
57 NoFusing("disable-spill-fusing",
58 cl::desc("Disable fusing of spill code into instructions"),
61 PrintFailedFusing("print-failed-fuse-candidates",
62 cl::desc("Print instructions that the allocator wants to"
63 " fuse, but the X86 backend currently can't"),
66 ReMatPICStubLoad("remat-pic-stub-load",
67 cl::desc("Re-materialize load from stub in PIC mode"),
68 cl::init(false), cl::Hidden
);
69 static cl::opt
<unsigned>
70 PartialRegUpdateClearance("partial-reg-update-clearance",
71 cl::desc("Clearance between two register writes "
72 "for inserting XOR to avoid partial "
74 cl::init(64), cl::Hidden
);
75 static cl::opt
<unsigned> UndefRegClearance(
76 "undef-reg-clearance",
77 cl::desc("How many idle instructions we would like before "
78 "certain undef register reads"),
79 cl::init(128), cl::Hidden
);
81 // Pin the vtable to this file.
82 void X86InstrInfo::anchor() {}
84 X86InstrInfo::X86InstrInfo(X86Subtarget
&STI
)
85 : X86GenInstrInfo((STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64
86 : X86::ADJCALLSTACKDOWN32
),
87 (STI
.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64
88 : X86::ADJCALLSTACKUP32
),
89 X86::CATCHRET
, (STI
.is64Bit() ? X86::RET64
: X86::RET32
)),
90 Subtarget(STI
), RI(STI
.getTargetTriple()) {}
92 const TargetRegisterClass
*
93 X86InstrInfo::getRegClass(const MCInstrDesc
&MCID
, unsigned OpNum
,
94 const TargetRegisterInfo
*TRI
,
95 const MachineFunction
&MF
) const {
96 auto *RC
= TargetInstrInfo::getRegClass(MCID
, OpNum
, TRI
, MF
);
97 // If the target does not have egpr, then r16-r31 will be resereved for all
99 if (!RC
|| !Subtarget
.hasEGPR())
102 if (X86II::canUseApxExtendedReg(MCID
))
105 switch (RC
->getID()) {
108 case X86::GR8RegClassID
:
109 return &X86::GR8_NOREX2RegClass
;
110 case X86::GR16RegClassID
:
111 return &X86::GR16_NOREX2RegClass
;
112 case X86::GR32RegClassID
:
113 return &X86::GR32_NOREX2RegClass
;
114 case X86::GR64RegClassID
:
115 return &X86::GR64_NOREX2RegClass
;
116 case X86::GR32_NOSPRegClassID
:
117 return &X86::GR32_NOREX2_NOSPRegClass
;
118 case X86::GR64_NOSPRegClassID
:
119 return &X86::GR64_NOREX2_NOSPRegClass
;
123 bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr
&MI
,
124 Register
&SrcReg
, Register
&DstReg
,
125 unsigned &SubIdx
) const {
126 switch (MI
.getOpcode()) {
129 case X86::MOVSX16rr8
:
130 case X86::MOVZX16rr8
:
131 case X86::MOVSX32rr8
:
132 case X86::MOVZX32rr8
:
133 case X86::MOVSX64rr8
:
134 if (!Subtarget
.is64Bit())
135 // It's not always legal to reference the low 8-bit of the larger
136 // register in 32-bit mode.
139 case X86::MOVSX32rr16
:
140 case X86::MOVZX32rr16
:
141 case X86::MOVSX64rr16
:
142 case X86::MOVSX64rr32
: {
143 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
146 SrcReg
= MI
.getOperand(1).getReg();
147 DstReg
= MI
.getOperand(0).getReg();
148 switch (MI
.getOpcode()) {
150 llvm_unreachable("Unreachable!");
151 case X86::MOVSX16rr8
:
152 case X86::MOVZX16rr8
:
153 case X86::MOVSX32rr8
:
154 case X86::MOVZX32rr8
:
155 case X86::MOVSX64rr8
:
156 SubIdx
= X86::sub_8bit
;
158 case X86::MOVSX32rr16
:
159 case X86::MOVZX32rr16
:
160 case X86::MOVSX64rr16
:
161 SubIdx
= X86::sub_16bit
;
163 case X86::MOVSX64rr32
:
164 SubIdx
= X86::sub_32bit
;
173 bool X86InstrInfo::isDataInvariant(MachineInstr
&MI
) {
174 if (MI
.mayLoad() || MI
.mayStore())
177 // Some target-independent operations that trivially lower to data-invariant
179 if (MI
.isCopyLike() || MI
.isInsertSubreg())
182 unsigned Opcode
= MI
.getOpcode();
184 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
185 // However, they set flags and are perhaps the most surprisingly constant
186 // time operations so we call them out here separately.
189 // Bit scanning and counting instructions that are somewhat surprisingly
190 // constant time as they scan across bits and do other fairly complex
191 // operations like popcnt, but are believed to be constant time on x86.
192 // However, these set flags.
193 if (isBSF(Opcode
) || isBSR(Opcode
) || isLZCNT(Opcode
) || isPOPCNT(Opcode
) ||
196 // Bit manipulation instructions are effectively combinations of basic
197 // arithmetic ops, and should still execute in constant time. These also
199 if (isBLCFILL(Opcode
) || isBLCI(Opcode
) || isBLCIC(Opcode
) ||
200 isBLCMSK(Opcode
) || isBLCS(Opcode
) || isBLSFILL(Opcode
) ||
201 isBLSI(Opcode
) || isBLSIC(Opcode
) || isBLSMSK(Opcode
) || isBLSR(Opcode
) ||
204 // Bit extracting and clearing instructions should execute in constant time,
206 if (isBEXTR(Opcode
) || isBZHI(Opcode
))
209 if (isROL(Opcode
) || isROR(Opcode
) || isSAR(Opcode
) || isSHL(Opcode
) ||
210 isSHR(Opcode
) || isSHLD(Opcode
) || isSHRD(Opcode
))
212 // Basic arithmetic is constant time on the input but does set flags.
213 if (isADC(Opcode
) || isADD(Opcode
) || isAND(Opcode
) || isOR(Opcode
) ||
214 isSBB(Opcode
) || isSUB(Opcode
) || isXOR(Opcode
))
216 // Arithmetic with just 32-bit and 64-bit variants and no immediates.
219 // Unary arithmetic operations.
220 if (isDEC(Opcode
) || isINC(Opcode
) || isNEG(Opcode
))
222 // Unlike other arithmetic, NOT doesn't set EFLAGS.
225 // Various move instructions used to zero or sign extend things. Note that we
226 // intentionally don't support the _NOREX variants as we can't handle that
227 // register constraint anyways.
228 if (isMOVSX(Opcode
) || isMOVZX(Opcode
) || isMOVSXD(Opcode
) || isMOV(Opcode
))
230 // Arithmetic instructions that are both constant time and don't set flags.
231 if (isRORX(Opcode
) || isSARX(Opcode
) || isSHLX(Opcode
) || isSHRX(Opcode
))
233 // LEA doesn't actually access memory, and its arithmetic is constant time.
236 // By default, assume that the instruction is not data invariant.
240 bool X86InstrInfo::isDataInvariantLoad(MachineInstr
&MI
) {
241 switch (MI
.getOpcode()) {
243 // By default, assume that the load will immediately leak.
246 // On x86 it is believed that imul is constant time w.r.t. the loaded data.
247 // However, they set flags and are perhaps the most surprisingly constant
248 // time operations so we call them out here separately.
254 case X86::IMUL64rmi32
:
256 // Bit scanning and counting instructions that are somewhat surprisingly
257 // constant time as they scan across bits and do other fairly complex
258 // operations like popcnt, but are believed to be constant time on x86.
259 // However, these set flags.
269 case X86::POPCNT16rm
:
270 case X86::POPCNT32rm
:
271 case X86::POPCNT64rm
:
276 // Bit manipulation instructions are effectively combinations of basic
277 // arithmetic ops, and should still execute in constant time. These also
279 case X86::BLCFILL32rm
:
280 case X86::BLCFILL64rm
:
285 case X86::BLCMSK32rm
:
286 case X86::BLCMSK64rm
:
289 case X86::BLSFILL32rm
:
290 case X86::BLSFILL64rm
:
295 case X86::BLSMSK32rm
:
296 case X86::BLSMSK64rm
:
302 // Bit extracting and clearing instructions should execute in constant time,
306 case X86::BEXTRI32mi
:
307 case X86::BEXTRI64mi
:
311 // Basic arithmetic is constant time on the input but does set flags.
343 // Integer multiply w/o affecting flags is still believed to be constant
344 // time on x86. Called out separately as this is among the most surprising
345 // instructions to exhibit that behavior.
349 // Arithmetic instructions that are both constant time and don't set flags.
359 // Conversions are believed to be constant time and don't set flags.
360 case X86::CVTTSD2SI64rm
:
361 case X86::VCVTTSD2SI64rm
:
362 case X86::VCVTTSD2SI64Zrm
:
363 case X86::CVTTSD2SIrm
:
364 case X86::VCVTTSD2SIrm
:
365 case X86::VCVTTSD2SIZrm
:
366 case X86::CVTTSS2SI64rm
:
367 case X86::VCVTTSS2SI64rm
:
368 case X86::VCVTTSS2SI64Zrm
:
369 case X86::CVTTSS2SIrm
:
370 case X86::VCVTTSS2SIrm
:
371 case X86::VCVTTSS2SIZrm
:
372 case X86::CVTSI2SDrm
:
373 case X86::VCVTSI2SDrm
:
374 case X86::VCVTSI2SDZrm
:
375 case X86::CVTSI2SSrm
:
376 case X86::VCVTSI2SSrm
:
377 case X86::VCVTSI2SSZrm
:
378 case X86::CVTSI642SDrm
:
379 case X86::VCVTSI642SDrm
:
380 case X86::VCVTSI642SDZrm
:
381 case X86::CVTSI642SSrm
:
382 case X86::VCVTSI642SSrm
:
383 case X86::VCVTSI642SSZrm
:
384 case X86::CVTSS2SDrm
:
385 case X86::VCVTSS2SDrm
:
386 case X86::VCVTSS2SDZrm
:
387 case X86::CVTSD2SSrm
:
388 case X86::VCVTSD2SSrm
:
389 case X86::VCVTSD2SSZrm
:
390 // AVX512 added unsigned integer conversions.
391 case X86::VCVTTSD2USI64Zrm
:
392 case X86::VCVTTSD2USIZrm
:
393 case X86::VCVTTSS2USI64Zrm
:
394 case X86::VCVTTSS2USIZrm
:
395 case X86::VCVTUSI2SDZrm
:
396 case X86::VCVTUSI642SDZrm
:
397 case X86::VCVTUSI2SSZrm
:
398 case X86::VCVTUSI642SSZrm
:
400 // Loads to register don't set flags.
402 case X86::MOV8rm_NOREX
:
406 case X86::MOVSX16rm8
:
407 case X86::MOVSX32rm16
:
408 case X86::MOVSX32rm8
:
409 case X86::MOVSX32rm8_NOREX
:
410 case X86::MOVSX64rm16
:
411 case X86::MOVSX64rm32
:
412 case X86::MOVSX64rm8
:
413 case X86::MOVZX16rm8
:
414 case X86::MOVZX32rm16
:
415 case X86::MOVZX32rm8
:
416 case X86::MOVZX32rm8_NOREX
:
417 case X86::MOVZX64rm16
:
418 case X86::MOVZX64rm8
:
423 int X86InstrInfo::getSPAdjust(const MachineInstr
&MI
) const {
424 const MachineFunction
*MF
= MI
.getParent()->getParent();
425 const TargetFrameLowering
*TFI
= MF
->getSubtarget().getFrameLowering();
427 if (isFrameInstr(MI
)) {
428 int SPAdj
= alignTo(getFrameSize(MI
), TFI
->getStackAlign());
429 SPAdj
-= getFrameAdjustment(MI
);
430 if (!isFrameSetup(MI
))
435 // To know whether a call adjusts the stack, we need information
436 // that is bound to the following ADJCALLSTACKUP pseudo.
437 // Look for the next ADJCALLSTACKUP that follows the call.
439 const MachineBasicBlock
*MBB
= MI
.getParent();
440 auto I
= ++MachineBasicBlock::const_iterator(MI
);
441 for (auto E
= MBB
->end(); I
!= E
; ++I
) {
442 if (I
->getOpcode() == getCallFrameDestroyOpcode() || I
->isCall())
446 // If we could not find a frame destroy opcode, then it has already
447 // been simplified, so we don't care.
448 if (I
->getOpcode() != getCallFrameDestroyOpcode())
451 return -(I
->getOperand(1).getImm());
454 // Currently handle only PUSHes we can reasonably expect to see
456 switch (MI
.getOpcode()) {
472 /// Return true and the FrameIndex if the specified
473 /// operand and follow operands form a reference to the stack frame.
474 bool X86InstrInfo::isFrameOperand(const MachineInstr
&MI
, unsigned int Op
,
475 int &FrameIndex
) const {
476 if (MI
.getOperand(Op
+ X86::AddrBaseReg
).isFI() &&
477 MI
.getOperand(Op
+ X86::AddrScaleAmt
).isImm() &&
478 MI
.getOperand(Op
+ X86::AddrIndexReg
).isReg() &&
479 MI
.getOperand(Op
+ X86::AddrDisp
).isImm() &&
480 MI
.getOperand(Op
+ X86::AddrScaleAmt
).getImm() == 1 &&
481 MI
.getOperand(Op
+ X86::AddrIndexReg
).getReg() == 0 &&
482 MI
.getOperand(Op
+ X86::AddrDisp
).getImm() == 0) {
483 FrameIndex
= MI
.getOperand(Op
+ X86::AddrBaseReg
).getIndex();
489 static bool isFrameLoadOpcode(int Opcode
, unsigned &MemBytes
) {
495 case X86::KMOVBkm_EVEX
:
500 case X86::KMOVWkm_EVEX
:
502 case X86::VMOVSHZrm_alt
:
507 case X86::MOVSSrm_alt
:
509 case X86::VMOVSSrm_alt
:
511 case X86::VMOVSSZrm_alt
:
513 case X86::KMOVDkm_EVEX
:
519 case X86::MOVSDrm_alt
:
521 case X86::VMOVSDrm_alt
:
523 case X86::VMOVSDZrm_alt
:
524 case X86::MMX_MOVD64rm
:
525 case X86::MMX_MOVQ64rm
:
527 case X86::KMOVQkm_EVEX
:
542 case X86::VMOVAPSZ128rm
:
543 case X86::VMOVUPSZ128rm
:
544 case X86::VMOVAPSZ128rm_NOVLX
:
545 case X86::VMOVUPSZ128rm_NOVLX
:
546 case X86::VMOVAPDZ128rm
:
547 case X86::VMOVUPDZ128rm
:
548 case X86::VMOVDQU8Z128rm
:
549 case X86::VMOVDQU16Z128rm
:
550 case X86::VMOVDQA32Z128rm
:
551 case X86::VMOVDQU32Z128rm
:
552 case X86::VMOVDQA64Z128rm
:
553 case X86::VMOVDQU64Z128rm
:
556 case X86::VMOVAPSYrm
:
557 case X86::VMOVUPSYrm
:
558 case X86::VMOVAPDYrm
:
559 case X86::VMOVUPDYrm
:
560 case X86::VMOVDQAYrm
:
561 case X86::VMOVDQUYrm
:
562 case X86::VMOVAPSZ256rm
:
563 case X86::VMOVUPSZ256rm
:
564 case X86::VMOVAPSZ256rm_NOVLX
:
565 case X86::VMOVUPSZ256rm_NOVLX
:
566 case X86::VMOVAPDZ256rm
:
567 case X86::VMOVUPDZ256rm
:
568 case X86::VMOVDQU8Z256rm
:
569 case X86::VMOVDQU16Z256rm
:
570 case X86::VMOVDQA32Z256rm
:
571 case X86::VMOVDQU32Z256rm
:
572 case X86::VMOVDQA64Z256rm
:
573 case X86::VMOVDQU64Z256rm
:
576 case X86::VMOVAPSZrm
:
577 case X86::VMOVUPSZrm
:
578 case X86::VMOVAPDZrm
:
579 case X86::VMOVUPDZrm
:
580 case X86::VMOVDQU8Zrm
:
581 case X86::VMOVDQU16Zrm
:
582 case X86::VMOVDQA32Zrm
:
583 case X86::VMOVDQU32Zrm
:
584 case X86::VMOVDQA64Zrm
:
585 case X86::VMOVDQU64Zrm
:
591 static bool isFrameStoreOpcode(int Opcode
, unsigned &MemBytes
) {
597 case X86::KMOVBmk_EVEX
:
602 case X86::KMOVWmk_EVEX
:
611 case X86::KMOVDmk_EVEX
:
619 case X86::MMX_MOVD64mr
:
620 case X86::MMX_MOVQ64mr
:
621 case X86::MMX_MOVNTQmr
:
623 case X86::KMOVQmk_EVEX
:
638 case X86::VMOVUPSZ128mr
:
639 case X86::VMOVAPSZ128mr
:
640 case X86::VMOVUPSZ128mr_NOVLX
:
641 case X86::VMOVAPSZ128mr_NOVLX
:
642 case X86::VMOVUPDZ128mr
:
643 case X86::VMOVAPDZ128mr
:
644 case X86::VMOVDQA32Z128mr
:
645 case X86::VMOVDQU32Z128mr
:
646 case X86::VMOVDQA64Z128mr
:
647 case X86::VMOVDQU64Z128mr
:
648 case X86::VMOVDQU8Z128mr
:
649 case X86::VMOVDQU16Z128mr
:
652 case X86::VMOVUPSYmr
:
653 case X86::VMOVAPSYmr
:
654 case X86::VMOVUPDYmr
:
655 case X86::VMOVAPDYmr
:
656 case X86::VMOVDQUYmr
:
657 case X86::VMOVDQAYmr
:
658 case X86::VMOVUPSZ256mr
:
659 case X86::VMOVAPSZ256mr
:
660 case X86::VMOVUPSZ256mr_NOVLX
:
661 case X86::VMOVAPSZ256mr_NOVLX
:
662 case X86::VMOVUPDZ256mr
:
663 case X86::VMOVAPDZ256mr
:
664 case X86::VMOVDQU8Z256mr
:
665 case X86::VMOVDQU16Z256mr
:
666 case X86::VMOVDQA32Z256mr
:
667 case X86::VMOVDQU32Z256mr
:
668 case X86::VMOVDQA64Z256mr
:
669 case X86::VMOVDQU64Z256mr
:
672 case X86::VMOVUPSZmr
:
673 case X86::VMOVAPSZmr
:
674 case X86::VMOVUPDZmr
:
675 case X86::VMOVAPDZmr
:
676 case X86::VMOVDQU8Zmr
:
677 case X86::VMOVDQU16Zmr
:
678 case X86::VMOVDQA32Zmr
:
679 case X86::VMOVDQU32Zmr
:
680 case X86::VMOVDQA64Zmr
:
681 case X86::VMOVDQU64Zmr
:
688 Register
X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
689 int &FrameIndex
) const {
691 return X86InstrInfo::isLoadFromStackSlot(MI
, FrameIndex
, Dummy
);
694 Register
X86InstrInfo::isLoadFromStackSlot(const MachineInstr
&MI
,
696 unsigned &MemBytes
) const {
697 if (isFrameLoadOpcode(MI
.getOpcode(), MemBytes
))
698 if (MI
.getOperand(0).getSubReg() == 0 && isFrameOperand(MI
, 1, FrameIndex
))
699 return MI
.getOperand(0).getReg();
703 Register
X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
704 int &FrameIndex
) const {
706 if (isFrameLoadOpcode(MI
.getOpcode(), Dummy
)) {
708 if ((Reg
= isLoadFromStackSlot(MI
, FrameIndex
)))
710 // Check for post-frame index elimination operations
711 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
712 if (hasLoadFromStackSlot(MI
, Accesses
)) {
714 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
716 return MI
.getOperand(0).getReg();
722 Register
X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
723 int &FrameIndex
) const {
725 return X86InstrInfo::isStoreToStackSlot(MI
, FrameIndex
, Dummy
);
728 Register
X86InstrInfo::isStoreToStackSlot(const MachineInstr
&MI
,
730 unsigned &MemBytes
) const {
731 if (isFrameStoreOpcode(MI
.getOpcode(), MemBytes
))
732 if (MI
.getOperand(X86::AddrNumOperands
).getSubReg() == 0 &&
733 isFrameOperand(MI
, 0, FrameIndex
))
734 return MI
.getOperand(X86::AddrNumOperands
).getReg();
738 Register
X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr
&MI
,
739 int &FrameIndex
) const {
741 if (isFrameStoreOpcode(MI
.getOpcode(), Dummy
)) {
743 if ((Reg
= isStoreToStackSlot(MI
, FrameIndex
)))
745 // Check for post-frame index elimination operations
746 SmallVector
<const MachineMemOperand
*, 1> Accesses
;
747 if (hasStoreToStackSlot(MI
, Accesses
)) {
749 cast
<FixedStackPseudoSourceValue
>(Accesses
.front()->getPseudoValue())
751 return MI
.getOperand(X86::AddrNumOperands
).getReg();
757 /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r.
758 static bool regIsPICBase(Register BaseReg
, const MachineRegisterInfo
&MRI
) {
759 // Don't waste compile time scanning use-def chains of physregs.
760 if (!BaseReg
.isVirtual())
762 bool isPICBase
= false;
763 for (const MachineInstr
&DefMI
: MRI
.def_instructions(BaseReg
)) {
764 if (DefMI
.getOpcode() != X86::MOVPC32r
)
766 assert(!isPICBase
&& "More than one PIC base?");
772 bool X86InstrInfo::isReallyTriviallyReMaterializable(
773 const MachineInstr
&MI
) const {
774 switch (MI
.getOpcode()) {
776 // This function should only be called for opcodes with the ReMaterializable
778 llvm_unreachable("Unknown rematerializable operation!");
780 case X86::IMPLICIT_DEF
:
781 // Defer to generic logic.
783 case X86::LOAD_STACK_GUARD
:
790 case X86::AVX1_SETALLONES
:
791 case X86::AVX2_SETALLONES
:
792 case X86::AVX512_128_SET0
:
793 case X86::AVX512_256_SET0
:
794 case X86::AVX512_512_SET0
:
795 case X86::AVX512_512_SETALLONES
:
796 case X86::AVX512_FsFLD0SD
:
797 case X86::AVX512_FsFLD0SH
:
798 case X86::AVX512_FsFLD0SS
:
799 case X86::AVX512_FsFLD0F128
:
804 case X86::FsFLD0F128
:
812 case X86::MOV32ImmSExti8
:
817 case X86::MOV64ImmSExti8
:
819 case X86::V_SETALLONES
:
825 case X86::PTILEZEROV
:
829 case X86::MOV8rm_NOREX
:
834 case X86::MOVSSrm_alt
:
836 case X86::MOVSDrm_alt
:
844 case X86::VMOVSSrm_alt
:
846 case X86::VMOVSDrm_alt
:
853 case X86::VMOVAPSYrm
:
854 case X86::VMOVUPSYrm
:
855 case X86::VMOVAPDYrm
:
856 case X86::VMOVUPDYrm
:
857 case X86::VMOVDQAYrm
:
858 case X86::VMOVDQUYrm
:
859 case X86::MMX_MOVD64rm
:
860 case X86::MMX_MOVQ64rm
:
861 case X86::VBROADCASTSSrm
:
862 case X86::VBROADCASTSSYrm
:
863 case X86::VBROADCASTSDYrm
:
865 case X86::VPBROADCASTBZ128rm
:
866 case X86::VPBROADCASTBZ256rm
:
867 case X86::VPBROADCASTBZrm
:
868 case X86::VBROADCASTF32X2Z256rm
:
869 case X86::VBROADCASTF32X2Zrm
:
870 case X86::VBROADCASTI32X2Z128rm
:
871 case X86::VBROADCASTI32X2Z256rm
:
872 case X86::VBROADCASTI32X2Zrm
:
873 case X86::VPBROADCASTWZ128rm
:
874 case X86::VPBROADCASTWZ256rm
:
875 case X86::VPBROADCASTWZrm
:
876 case X86::VPBROADCASTDZ128rm
:
877 case X86::VPBROADCASTDZ256rm
:
878 case X86::VPBROADCASTDZrm
:
879 case X86::VBROADCASTSSZ128rm
:
880 case X86::VBROADCASTSSZ256rm
:
881 case X86::VBROADCASTSSZrm
:
882 case X86::VPBROADCASTQZ128rm
:
883 case X86::VPBROADCASTQZ256rm
:
884 case X86::VPBROADCASTQZrm
:
885 case X86::VBROADCASTSDZ256rm
:
886 case X86::VBROADCASTSDZrm
:
888 case X86::VMOVSSZrm_alt
:
890 case X86::VMOVSDZrm_alt
:
892 case X86::VMOVSHZrm_alt
:
893 case X86::VMOVAPDZ128rm
:
894 case X86::VMOVAPDZ256rm
:
895 case X86::VMOVAPDZrm
:
896 case X86::VMOVAPSZ128rm
:
897 case X86::VMOVAPSZ256rm
:
898 case X86::VMOVAPSZ128rm_NOVLX
:
899 case X86::VMOVAPSZ256rm_NOVLX
:
900 case X86::VMOVAPSZrm
:
901 case X86::VMOVDQA32Z128rm
:
902 case X86::VMOVDQA32Z256rm
:
903 case X86::VMOVDQA32Zrm
:
904 case X86::VMOVDQA64Z128rm
:
905 case X86::VMOVDQA64Z256rm
:
906 case X86::VMOVDQA64Zrm
:
907 case X86::VMOVDQU16Z128rm
:
908 case X86::VMOVDQU16Z256rm
:
909 case X86::VMOVDQU16Zrm
:
910 case X86::VMOVDQU32Z128rm
:
911 case X86::VMOVDQU32Z256rm
:
912 case X86::VMOVDQU32Zrm
:
913 case X86::VMOVDQU64Z128rm
:
914 case X86::VMOVDQU64Z256rm
:
915 case X86::VMOVDQU64Zrm
:
916 case X86::VMOVDQU8Z128rm
:
917 case X86::VMOVDQU8Z256rm
:
918 case X86::VMOVDQU8Zrm
:
919 case X86::VMOVUPDZ128rm
:
920 case X86::VMOVUPDZ256rm
:
921 case X86::VMOVUPDZrm
:
922 case X86::VMOVUPSZ128rm
:
923 case X86::VMOVUPSZ256rm
:
924 case X86::VMOVUPSZ128rm_NOVLX
:
925 case X86::VMOVUPSZ256rm_NOVLX
:
926 case X86::VMOVUPSZrm
: {
927 // Loads from constant pools are trivially rematerializable.
928 if (MI
.getOperand(1 + X86::AddrBaseReg
).isReg() &&
929 MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
930 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
931 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
932 MI
.isDereferenceableInvariantLoad()) {
933 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
934 if (BaseReg
== 0 || BaseReg
== X86::RIP
)
936 // Allow re-materialization of PIC load.
937 if (!(!ReMatPICStubLoad
&& MI
.getOperand(1 + X86::AddrDisp
).isGlobal())) {
938 const MachineFunction
&MF
= *MI
.getParent()->getParent();
939 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
940 if (regIsPICBase(BaseReg
, MRI
))
949 if (MI
.getOperand(1 + X86::AddrScaleAmt
).isImm() &&
950 MI
.getOperand(1 + X86::AddrIndexReg
).isReg() &&
951 MI
.getOperand(1 + X86::AddrIndexReg
).getReg() == 0 &&
952 !MI
.getOperand(1 + X86::AddrDisp
).isReg()) {
953 // lea fi#, lea GV, etc. are all rematerializable.
954 if (!MI
.getOperand(1 + X86::AddrBaseReg
).isReg())
956 Register BaseReg
= MI
.getOperand(1 + X86::AddrBaseReg
).getReg();
959 // Allow re-materialization of lea PICBase + x.
960 const MachineFunction
&MF
= *MI
.getParent()->getParent();
961 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
962 if (regIsPICBase(BaseReg
, MRI
))
968 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI
);
971 void X86InstrInfo::reMaterialize(MachineBasicBlock
&MBB
,
972 MachineBasicBlock::iterator I
,
973 Register DestReg
, unsigned SubIdx
,
974 const MachineInstr
&Orig
,
975 const TargetRegisterInfo
&TRI
) const {
976 bool ClobbersEFLAGS
= Orig
.modifiesRegister(X86::EFLAGS
, &TRI
);
977 if (ClobbersEFLAGS
&& MBB
.computeRegisterLiveness(&TRI
, X86::EFLAGS
, I
) !=
978 MachineBasicBlock::LQR_Dead
) {
979 // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side
982 switch (Orig
.getOpcode()) {
993 llvm_unreachable("Unexpected instruction!");
996 const DebugLoc
&DL
= Orig
.getDebugLoc();
997 BuildMI(MBB
, I
, DL
, get(X86::MOV32ri
))
998 .add(Orig
.getOperand(0))
1001 MachineInstr
*MI
= MBB
.getParent()->CloneMachineInstr(&Orig
);
1005 MachineInstr
&NewMI
= *std::prev(I
);
1006 NewMI
.substituteRegister(Orig
.getOperand(0).getReg(), DestReg
, SubIdx
, TRI
);
1009 /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead.
1010 bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr
&MI
) const {
1011 for (const MachineOperand
&MO
: MI
.operands()) {
1012 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == X86::EFLAGS
&&
1020 /// Check whether the shift count for a machine operand is non-zero.
1021 inline static unsigned getTruncatedShiftCount(const MachineInstr
&MI
,
1022 unsigned ShiftAmtOperandIdx
) {
1023 // The shift count is six bits with the REX.W prefix and five bits without.
1024 unsigned ShiftCountMask
= (MI
.getDesc().TSFlags
& X86II::REX_W
) ? 63 : 31;
1025 unsigned Imm
= MI
.getOperand(ShiftAmtOperandIdx
).getImm();
1026 return Imm
& ShiftCountMask
;
1029 /// Check whether the given shift count is appropriate
1030 /// can be represented by a LEA instruction.
1031 inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt
) {
1032 // Left shift instructions can be transformed into load-effective-address
1033 // instructions if we can encode them appropriately.
1034 // A LEA instruction utilizes a SIB byte to encode its scale factor.
1035 // The SIB.scale field is two bits wide which means that we can encode any
1036 // shift amount less than 4.
1037 return ShAmt
< 4 && ShAmt
> 0;
1040 static bool findRedundantFlagInstr(MachineInstr
&CmpInstr
,
1041 MachineInstr
&CmpValDefInstr
,
1042 const MachineRegisterInfo
*MRI
,
1043 MachineInstr
**AndInstr
,
1044 const TargetRegisterInfo
*TRI
,
1045 bool &NoSignFlag
, bool &ClearsOverflowFlag
) {
1046 if (!(CmpValDefInstr
.getOpcode() == X86::SUBREG_TO_REG
&&
1047 CmpInstr
.getOpcode() == X86::TEST64rr
) &&
1048 !(CmpValDefInstr
.getOpcode() == X86::COPY
&&
1049 CmpInstr
.getOpcode() == X86::TEST16rr
))
1052 // CmpInstr is a TEST16rr/TEST64rr instruction, and
1053 // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two
1054 // registers are identical.
1055 assert((CmpInstr
.getOperand(0).getReg() == CmpInstr
.getOperand(1).getReg()) &&
1056 "CmpInstr is an analyzable TEST16rr/TEST64rr, and "
1057 "`X86InstrInfo::analyzeCompare` requires two reg operands are the"
1060 // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that
1061 // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case
1062 // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is
1065 (MRI
->getVRegDef(CmpInstr
.getOperand(0).getReg()) == &CmpValDefInstr
) &&
1066 "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr "
1067 "is a user of COPY sub16bit.");
1068 MachineInstr
*VregDefInstr
= nullptr;
1069 if (CmpInstr
.getOpcode() == X86::TEST16rr
) {
1070 if (!CmpValDefInstr
.getOperand(1).getReg().isVirtual())
1072 VregDefInstr
= MRI
->getVRegDef(CmpValDefInstr
.getOperand(1).getReg());
1075 // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit
1076 // size, others 32/64 bit ops would test higher bits which test16rr don't
1078 if (!((VregDefInstr
->getOpcode() == X86::AND32ri
||
1079 VregDefInstr
->getOpcode() == X86::AND64ri32
) &&
1080 isUInt
<16>(VregDefInstr
->getOperand(2).getImm())))
1084 if (CmpInstr
.getOpcode() == X86::TEST64rr
) {
1085 // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is
1087 if (CmpValDefInstr
.getOperand(1).getImm() != 0)
1090 // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically
1091 // sub_32bit or sub_xmm.
1092 if (CmpValDefInstr
.getOperand(3).getImm() != X86::sub_32bit
)
1095 VregDefInstr
= MRI
->getVRegDef(CmpValDefInstr
.getOperand(2).getReg());
1098 assert(VregDefInstr
&& "Must have a definition (SSA)");
1100 // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB
1101 // to simplify the subsequent analysis.
1103 // FIXME: If `VregDefInstr->getParent()` is the only predecessor of
1104 // `CmpValDefInstr.getParent()`, this could be handled.
1105 if (VregDefInstr
->getParent() != CmpValDefInstr
.getParent())
1108 if (X86::isAND(VregDefInstr
->getOpcode())) {
1109 // Get a sequence of instructions like
1110 // %reg = and* ... // Set EFLAGS
1111 // ... // EFLAGS not changed
1112 // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit
1113 // test64rr %extended_reg, %extended_reg, implicit-def $eflags
1115 // %reg = and32* ...
1116 // ... // EFLAGS not changed.
1117 // %src_reg = copy %reg.sub_16bit:gr32
1118 // test16rr %src_reg, %src_reg, implicit-def $eflags
1120 // If subsequent readers use a subset of bits that don't change
1121 // after `and*` instructions, it's likely that the test64rr could
1122 // be optimized away.
1123 for (const MachineInstr
&Instr
:
1124 make_range(std::next(MachineBasicBlock::iterator(VregDefInstr
)),
1125 MachineBasicBlock::iterator(CmpValDefInstr
))) {
1126 // There are instructions between 'VregDefInstr' and
1127 // 'CmpValDefInstr' that modifies EFLAGS.
1128 if (Instr
.modifiesRegister(X86::EFLAGS
, TRI
))
1132 *AndInstr
= VregDefInstr
;
1134 // AND instruction will essentially update SF and clear OF, so
1135 // NoSignFlag should be false in the sense that SF is modified by `AND`.
1137 // However, the implementation artifically sets `NoSignFlag` to true
1138 // to poison the SF bit; that is to say, if SF is looked at later, the
1139 // optimization (to erase TEST64rr) will be disabled.
1141 // The reason to poison SF bit is that SF bit value could be different
1142 // in the `AND` and `TEST` operation; signed bit is not known for `AND`,
1143 // and is known to be 0 as a result of `TEST64rr`.
1145 // FIXME: As opposed to poisoning the SF bit directly, consider peeking into
1146 // the AND instruction and using the static information to guide peephole
1147 // optimization if possible. For example, it's possible to fold a
1148 // conditional move into a copy if the relevant EFLAG bits could be deduced
1149 // from an immediate operand of and operation.
1152 // ClearsOverflowFlag is true for AND operation (no surprise).
1153 ClearsOverflowFlag
= true;
1159 bool X86InstrInfo::classifyLEAReg(MachineInstr
&MI
, const MachineOperand
&Src
,
1160 unsigned Opc
, bool AllowSP
, Register
&NewSrc
,
1161 bool &isKill
, MachineOperand
&ImplicitOp
,
1162 LiveVariables
*LV
, LiveIntervals
*LIS
) const {
1163 MachineFunction
&MF
= *MI
.getParent()->getParent();
1164 const TargetRegisterClass
*RC
;
1166 RC
= Opc
!= X86::LEA32r
? &X86::GR64RegClass
: &X86::GR32RegClass
;
1168 RC
= Opc
!= X86::LEA32r
? &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
;
1170 Register SrcReg
= Src
.getReg();
1171 isKill
= MI
.killsRegister(SrcReg
, /*TRI=*/nullptr);
1173 // For both LEA64 and LEA32 the register already has essentially the right
1174 // type (32-bit or 64-bit) we may just need to forbid SP.
1175 if (Opc
!= X86::LEA64_32r
) {
1177 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
1179 if (NewSrc
.isVirtual() && !MF
.getRegInfo().constrainRegClass(NewSrc
, RC
))
1185 // This is for an LEA64_32r and incoming registers are 32-bit. One way or
1186 // another we need to add 64-bit registers to the final MI.
1187 if (SrcReg
.isPhysical()) {
1189 ImplicitOp
.setImplicit();
1191 NewSrc
= getX86SubSuperRegister(SrcReg
, 64);
1192 assert(NewSrc
.isValid() && "Invalid Operand");
1193 assert(!Src
.isUndef() && "Undef op doesn't need optimization");
1195 // Virtual register of the wrong class, we have to create a temporary 64-bit
1196 // vreg to feed into the LEA.
1197 NewSrc
= MF
.getRegInfo().createVirtualRegister(RC
);
1198 MachineInstr
*Copy
=
1199 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1200 .addReg(NewSrc
, RegState::Define
| RegState::Undef
, X86::sub_32bit
)
1201 .addReg(SrcReg
, getKillRegState(isKill
));
1203 // Which is obviously going to be dead after we're done with it.
1207 LV
->replaceKillInstruction(SrcReg
, MI
, *Copy
);
1210 SlotIndex CopyIdx
= LIS
->InsertMachineInstrInMaps(*Copy
);
1211 SlotIndex Idx
= LIS
->getInstructionIndex(MI
);
1212 LiveInterval
&LI
= LIS
->getInterval(SrcReg
);
1213 LiveRange::Segment
*S
= LI
.getSegmentContaining(Idx
);
1214 if (S
->end
.getBaseIndex() == Idx
)
1215 S
->end
= CopyIdx
.getRegSlot();
1219 // We've set all the parameters without issue.
1223 MachineInstr
*X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc
,
1227 bool Is8BitOp
) const {
1228 // We handle 8-bit adds and various 16-bit opcodes in the switch below.
1229 MachineBasicBlock
&MBB
= *MI
.getParent();
1230 MachineRegisterInfo
&RegInfo
= MBB
.getParent()->getRegInfo();
1232 RegInfo
.getTargetRegisterInfo()->getRegSizeInBits(
1233 *RegInfo
.getRegClass(MI
.getOperand(0).getReg())) == 16) &&
1234 "Unexpected type for LEA transform");
1236 // TODO: For a 32-bit target, we need to adjust the LEA variables with
1237 // something like this:
1238 // Opcode = X86::LEA32r;
1239 // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
1241 // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass)
1242 // : RegInfo.createVirtualRegister(&X86::GR32RegClass);
1243 if (!Subtarget
.is64Bit())
1246 unsigned Opcode
= X86::LEA64_32r
;
1247 Register InRegLEA
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
1248 Register OutRegLEA
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
1251 // Build and insert into an implicit UNDEF value. This is OK because
1252 // we will be shifting and then extracting the lower 8/16-bits.
1253 // This has the potential to cause partial register stall. e.g.
1254 // movw (%rbp,%rcx,2), %dx
1255 // leal -65(%rdx), %esi
1256 // But testing has shown this *does* help performance in 64-bit mode (at
1257 // least on modern x86 machines).
1258 MachineBasicBlock::iterator MBBI
= MI
.getIterator();
1259 Register Dest
= MI
.getOperand(0).getReg();
1260 Register Src
= MI
.getOperand(1).getReg();
1262 bool IsDead
= MI
.getOperand(0).isDead();
1263 bool IsKill
= MI
.getOperand(1).isKill();
1264 unsigned SubReg
= Is8BitOp
? X86::sub_8bit
: X86::sub_16bit
;
1265 assert(!MI
.getOperand(1).isUndef() && "Undef op doesn't need optimization");
1266 MachineInstr
*ImpDef
=
1267 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
), InRegLEA
);
1268 MachineInstr
*InsMI
=
1269 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1270 .addReg(InRegLEA
, RegState::Define
, SubReg
)
1271 .addReg(Src
, getKillRegState(IsKill
));
1272 MachineInstr
*ImpDef2
= nullptr;
1273 MachineInstr
*InsMI2
= nullptr;
1275 MachineInstrBuilder MIB
=
1276 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(), get(Opcode
), OutRegLEA
);
1279 llvm_unreachable("Unreachable!");
1281 case X86::SHL16ri
: {
1282 unsigned ShAmt
= MI
.getOperand(2).getImm();
1284 .addImm(1LL << ShAmt
)
1285 .addReg(InRegLEA
, RegState::Kill
)
1292 addRegOffset(MIB
, InRegLEA
, true, 1);
1296 addRegOffset(MIB
, InRegLEA
, true, -1);
1299 case X86::ADD8ri_DB
:
1301 case X86::ADD16ri_DB
:
1302 addRegOffset(MIB
, InRegLEA
, true, MI
.getOperand(2).getImm());
1305 case X86::ADD8rr_DB
:
1307 case X86::ADD16rr_DB
: {
1308 Src2
= MI
.getOperand(2).getReg();
1309 bool IsKill2
= MI
.getOperand(2).isKill();
1310 assert(!MI
.getOperand(2).isUndef() && "Undef op doesn't need optimization");
1312 // ADD8rr/ADD16rr killed %reg1028, %reg1028
1313 // just a single insert_subreg.
1314 addRegReg(MIB
, InRegLEA
, true, InRegLEA
, false);
1316 if (Subtarget
.is64Bit())
1317 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
1319 InRegLEA2
= RegInfo
.createVirtualRegister(&X86::GR32_NOSPRegClass
);
1320 // Build and insert into an implicit UNDEF value. This is OK because
1321 // we will be shifting and then extracting the lower 8/16-bits.
1322 ImpDef2
= BuildMI(MBB
, &*MIB
, MI
.getDebugLoc(), get(X86::IMPLICIT_DEF
),
1324 InsMI2
= BuildMI(MBB
, &*MIB
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1325 .addReg(InRegLEA2
, RegState::Define
, SubReg
)
1326 .addReg(Src2
, getKillRegState(IsKill2
));
1327 addRegReg(MIB
, InRegLEA
, true, InRegLEA2
, true);
1329 if (LV
&& IsKill2
&& InsMI2
)
1330 LV
->replaceKillInstruction(Src2
, MI
, *InsMI2
);
1335 MachineInstr
*NewMI
= MIB
;
1336 MachineInstr
*ExtMI
=
1337 BuildMI(MBB
, MBBI
, MI
.getDebugLoc(), get(TargetOpcode::COPY
))
1338 .addReg(Dest
, RegState::Define
| getDeadRegState(IsDead
))
1339 .addReg(OutRegLEA
, RegState::Kill
, SubReg
);
1342 // Update live variables.
1343 LV
->getVarInfo(InRegLEA
).Kills
.push_back(NewMI
);
1345 LV
->getVarInfo(InRegLEA2
).Kills
.push_back(NewMI
);
1346 LV
->getVarInfo(OutRegLEA
).Kills
.push_back(ExtMI
);
1348 LV
->replaceKillInstruction(Src
, MI
, *InsMI
);
1350 LV
->replaceKillInstruction(Dest
, MI
, *ExtMI
);
1354 LIS
->InsertMachineInstrInMaps(*ImpDef
);
1355 SlotIndex InsIdx
= LIS
->InsertMachineInstrInMaps(*InsMI
);
1357 LIS
->InsertMachineInstrInMaps(*ImpDef2
);
1360 Ins2Idx
= LIS
->InsertMachineInstrInMaps(*InsMI2
);
1361 SlotIndex NewIdx
= LIS
->ReplaceMachineInstrInMaps(MI
, *NewMI
);
1362 SlotIndex ExtIdx
= LIS
->InsertMachineInstrInMaps(*ExtMI
);
1363 LIS
->getInterval(InRegLEA
);
1364 LIS
->getInterval(OutRegLEA
);
1366 LIS
->getInterval(InRegLEA2
);
1368 // Move the use of Src up to InsMI.
1369 LiveInterval
&SrcLI
= LIS
->getInterval(Src
);
1370 LiveRange::Segment
*SrcSeg
= SrcLI
.getSegmentContaining(NewIdx
);
1371 if (SrcSeg
->end
== NewIdx
.getRegSlot())
1372 SrcSeg
->end
= InsIdx
.getRegSlot();
1375 // Move the use of Src2 up to InsMI2.
1376 LiveInterval
&Src2LI
= LIS
->getInterval(Src2
);
1377 LiveRange::Segment
*Src2Seg
= Src2LI
.getSegmentContaining(NewIdx
);
1378 if (Src2Seg
->end
== NewIdx
.getRegSlot())
1379 Src2Seg
->end
= Ins2Idx
.getRegSlot();
1382 // Move the definition of Dest down to ExtMI.
1383 LiveInterval
&DestLI
= LIS
->getInterval(Dest
);
1384 LiveRange::Segment
*DestSeg
=
1385 DestLI
.getSegmentContaining(NewIdx
.getRegSlot());
1386 assert(DestSeg
->start
== NewIdx
.getRegSlot() &&
1387 DestSeg
->valno
->def
== NewIdx
.getRegSlot());
1388 DestSeg
->start
= ExtIdx
.getRegSlot();
1389 DestSeg
->valno
->def
= ExtIdx
.getRegSlot();
1395 /// This method must be implemented by targets that
1396 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
1397 /// may be able to convert a two-address instruction into a true
1398 /// three-address instruction on demand. This allows the X86 target (for
1399 /// example) to convert ADD and SHL instructions into LEA instructions if they
1400 /// would require register copies due to two-addressness.
1402 /// This method returns a null pointer if the transformation cannot be
1403 /// performed, otherwise it returns the new instruction.
1405 MachineInstr
*X86InstrInfo::convertToThreeAddress(MachineInstr
&MI
,
1407 LiveIntervals
*LIS
) const {
1408 // The following opcodes also sets the condition code register(s). Only
1409 // convert them to equivalent lea if the condition code register def's
1411 if (hasLiveCondCodeDef(MI
))
1414 MachineFunction
&MF
= *MI
.getParent()->getParent();
1415 // All instructions input are two-addr instructions. Get the known operands.
1416 const MachineOperand
&Dest
= MI
.getOperand(0);
1417 const MachineOperand
&Src
= MI
.getOperand(1);
1419 // Ideally, operations with undef should be folded before we get here, but we
1420 // can't guarantee it. Bail out because optimizing undefs is a waste of time.
1421 // Without this, we have to forward undef state to new register operands to
1422 // avoid machine verifier errors.
1425 if (MI
.getNumOperands() > 2)
1426 if (MI
.getOperand(2).isReg() && MI
.getOperand(2).isUndef())
1429 MachineInstr
*NewMI
= nullptr;
1430 Register SrcReg
, SrcReg2
;
1431 bool Is64Bit
= Subtarget
.is64Bit();
1433 bool Is8BitOp
= false;
1434 unsigned NumRegOperands
= 2;
1435 unsigned MIOpc
= MI
.getOpcode();
1438 llvm_unreachable("Unreachable!");
1439 case X86::SHL64ri
: {
1440 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
1441 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
1442 if (!isTruncatedShiftCountForLEA(ShAmt
))
1445 // LEA can't handle RSP.
1446 if (Src
.getReg().isVirtual() && !MF
.getRegInfo().constrainRegClass(
1447 Src
.getReg(), &X86::GR64_NOSPRegClass
))
1450 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
))
1453 .addImm(1LL << ShAmt
)
1459 case X86::SHL32ri
: {
1460 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
1461 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
1462 if (!isTruncatedShiftCountForLEA(ShAmt
))
1465 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1467 // LEA can't handle ESP.
1469 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1470 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/false, SrcReg
, isKill
,
1471 ImplicitOp
, LV
, LIS
))
1474 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1477 .addImm(1LL << ShAmt
)
1478 .addReg(SrcReg
, getKillRegState(isKill
))
1481 if (ImplicitOp
.getReg() != 0)
1482 MIB
.add(ImplicitOp
);
1485 // Add kills if classifyLEAReg created a new register.
1486 if (LV
&& SrcReg
!= Src
.getReg())
1487 LV
->getVarInfo(SrcReg
).Kills
.push_back(NewMI
);
1493 case X86::SHL16ri
: {
1494 assert(MI
.getNumOperands() >= 3 && "Unknown shift instruction!");
1495 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
1496 if (!isTruncatedShiftCountForLEA(ShAmt
))
1498 return convertToThreeAddressWithLEA(MIOpc
, MI
, LV
, LIS
, Is8BitOp
);
1502 assert(MI
.getNumOperands() >= 2 && "Unknown inc instruction!");
1503 unsigned Opc
= MIOpc
== X86::INC64r
1505 : (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1507 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1508 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/false, SrcReg
, isKill
,
1509 ImplicitOp
, LV
, LIS
))
1512 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1514 .addReg(SrcReg
, getKillRegState(isKill
));
1515 if (ImplicitOp
.getReg() != 0)
1516 MIB
.add(ImplicitOp
);
1518 NewMI
= addOffset(MIB
, 1);
1520 // Add kills if classifyLEAReg created a new register.
1521 if (LV
&& SrcReg
!= Src
.getReg())
1522 LV
->getVarInfo(SrcReg
).Kills
.push_back(NewMI
);
1527 assert(MI
.getNumOperands() >= 2 && "Unknown dec instruction!");
1528 unsigned Opc
= MIOpc
== X86::DEC64r
1530 : (Is64Bit
? X86::LEA64_32r
: X86::LEA32r
);
1533 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1534 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/false, SrcReg
, isKill
,
1535 ImplicitOp
, LV
, LIS
))
1538 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1540 .addReg(SrcReg
, getKillRegState(isKill
));
1541 if (ImplicitOp
.getReg() != 0)
1542 MIB
.add(ImplicitOp
);
1544 NewMI
= addOffset(MIB
, -1);
1546 // Add kills if classifyLEAReg created a new register.
1547 if (LV
&& SrcReg
!= Src
.getReg())
1548 LV
->getVarInfo(SrcReg
).Kills
.push_back(NewMI
);
1557 return convertToThreeAddressWithLEA(MIOpc
, MI
, LV
, LIS
, Is8BitOp
);
1559 case X86::ADD64rr_DB
:
1561 case X86::ADD32rr_DB
: {
1562 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1564 if (MIOpc
== X86::ADD64rr
|| MIOpc
== X86::ADD64rr_DB
)
1567 Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1569 const MachineOperand
&Src2
= MI
.getOperand(2);
1571 MachineOperand ImplicitOp2
= MachineOperand::CreateReg(0, false);
1572 if (!classifyLEAReg(MI
, Src2
, Opc
, /*AllowSP=*/false, SrcReg2
, isKill2
,
1573 ImplicitOp2
, LV
, LIS
))
1577 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1578 if (Src
.getReg() == Src2
.getReg()) {
1579 // Don't call classify LEAReg a second time on the same register, in case
1580 // the first call inserted a COPY from Src2 and marked it as killed.
1584 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/true, SrcReg
, isKill
,
1585 ImplicitOp
, LV
, LIS
))
1589 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
)).add(Dest
);
1590 if (ImplicitOp
.getReg() != 0)
1591 MIB
.add(ImplicitOp
);
1592 if (ImplicitOp2
.getReg() != 0)
1593 MIB
.add(ImplicitOp2
);
1595 NewMI
= addRegReg(MIB
, SrcReg
, isKill
, SrcReg2
, isKill2
);
1597 // Add kills if classifyLEAReg created a new register.
1599 if (SrcReg2
!= Src2
.getReg())
1600 LV
->getVarInfo(SrcReg2
).Kills
.push_back(NewMI
);
1601 if (SrcReg
!= SrcReg2
&& SrcReg
!= Src
.getReg())
1602 LV
->getVarInfo(SrcReg
).Kills
.push_back(NewMI
);
1608 case X86::ADD8rr_DB
:
1612 case X86::ADD16rr_DB
:
1613 return convertToThreeAddressWithLEA(MIOpc
, MI
, LV
, LIS
, Is8BitOp
);
1614 case X86::ADD64ri32
:
1615 case X86::ADD64ri32_DB
:
1616 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1618 BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
)).add(Dest
).add(Src
),
1622 case X86::ADD32ri_DB
: {
1623 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1624 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1627 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1628 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/true, SrcReg
, isKill
,
1629 ImplicitOp
, LV
, LIS
))
1632 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1634 .addReg(SrcReg
, getKillRegState(isKill
));
1635 if (ImplicitOp
.getReg() != 0)
1636 MIB
.add(ImplicitOp
);
1638 NewMI
= addOffset(MIB
, MI
.getOperand(2));
1640 // Add kills if classifyLEAReg created a new register.
1641 if (LV
&& SrcReg
!= Src
.getReg())
1642 LV
->getVarInfo(SrcReg
).Kills
.push_back(NewMI
);
1646 case X86::ADD8ri_DB
:
1650 case X86::ADD16ri_DB
:
1651 return convertToThreeAddressWithLEA(MIOpc
, MI
, LV
, LIS
, Is8BitOp
);
1654 /// FIXME: Support these similar to ADD8ri/ADD16ri*.
1656 case X86::SUB32ri
: {
1657 if (!MI
.getOperand(2).isImm())
1659 int64_t Imm
= MI
.getOperand(2).getImm();
1660 if (!isInt
<32>(-Imm
))
1663 assert(MI
.getNumOperands() >= 3 && "Unknown add instruction!");
1664 unsigned Opc
= Is64Bit
? X86::LEA64_32r
: X86::LEA32r
;
1667 MachineOperand ImplicitOp
= MachineOperand::CreateReg(0, false);
1668 if (!classifyLEAReg(MI
, Src
, Opc
, /*AllowSP=*/true, SrcReg
, isKill
,
1669 ImplicitOp
, LV
, LIS
))
1672 MachineInstrBuilder MIB
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1674 .addReg(SrcReg
, getKillRegState(isKill
));
1675 if (ImplicitOp
.getReg() != 0)
1676 MIB
.add(ImplicitOp
);
1678 NewMI
= addOffset(MIB
, -Imm
);
1680 // Add kills if classifyLEAReg created a new register.
1681 if (LV
&& SrcReg
!= Src
.getReg())
1682 LV
->getVarInfo(SrcReg
).Kills
.push_back(NewMI
);
1686 case X86::SUB64ri32
: {
1687 if (!MI
.getOperand(2).isImm())
1689 int64_t Imm
= MI
.getOperand(2).getImm();
1690 if (!isInt
<32>(-Imm
))
1693 assert(MI
.getNumOperands() >= 3 && "Unknown sub instruction!");
1695 MachineInstrBuilder MIB
=
1696 BuildMI(MF
, MI
.getDebugLoc(), get(X86::LEA64r
)).add(Dest
).add(Src
);
1697 NewMI
= addOffset(MIB
, -Imm
);
1701 case X86::VMOVDQU8Z128rmk
:
1702 case X86::VMOVDQU8Z256rmk
:
1703 case X86::VMOVDQU8Zrmk
:
1704 case X86::VMOVDQU16Z128rmk
:
1705 case X86::VMOVDQU16Z256rmk
:
1706 case X86::VMOVDQU16Zrmk
:
1707 case X86::VMOVDQU32Z128rmk
:
1708 case X86::VMOVDQA32Z128rmk
:
1709 case X86::VMOVDQU32Z256rmk
:
1710 case X86::VMOVDQA32Z256rmk
:
1711 case X86::VMOVDQU32Zrmk
:
1712 case X86::VMOVDQA32Zrmk
:
1713 case X86::VMOVDQU64Z128rmk
:
1714 case X86::VMOVDQA64Z128rmk
:
1715 case X86::VMOVDQU64Z256rmk
:
1716 case X86::VMOVDQA64Z256rmk
:
1717 case X86::VMOVDQU64Zrmk
:
1718 case X86::VMOVDQA64Zrmk
:
1719 case X86::VMOVUPDZ128rmk
:
1720 case X86::VMOVAPDZ128rmk
:
1721 case X86::VMOVUPDZ256rmk
:
1722 case X86::VMOVAPDZ256rmk
:
1723 case X86::VMOVUPDZrmk
:
1724 case X86::VMOVAPDZrmk
:
1725 case X86::VMOVUPSZ128rmk
:
1726 case X86::VMOVAPSZ128rmk
:
1727 case X86::VMOVUPSZ256rmk
:
1728 case X86::VMOVAPSZ256rmk
:
1729 case X86::VMOVUPSZrmk
:
1730 case X86::VMOVAPSZrmk
:
1731 case X86::VBROADCASTSDZ256rmk
:
1732 case X86::VBROADCASTSDZrmk
:
1733 case X86::VBROADCASTSSZ128rmk
:
1734 case X86::VBROADCASTSSZ256rmk
:
1735 case X86::VBROADCASTSSZrmk
:
1736 case X86::VPBROADCASTDZ128rmk
:
1737 case X86::VPBROADCASTDZ256rmk
:
1738 case X86::VPBROADCASTDZrmk
:
1739 case X86::VPBROADCASTQZ128rmk
:
1740 case X86::VPBROADCASTQZ256rmk
:
1741 case X86::VPBROADCASTQZrmk
: {
1745 llvm_unreachable("Unreachable!");
1746 case X86::VMOVDQU8Z128rmk
:
1747 Opc
= X86::VPBLENDMBZ128rmk
;
1749 case X86::VMOVDQU8Z256rmk
:
1750 Opc
= X86::VPBLENDMBZ256rmk
;
1752 case X86::VMOVDQU8Zrmk
:
1753 Opc
= X86::VPBLENDMBZrmk
;
1755 case X86::VMOVDQU16Z128rmk
:
1756 Opc
= X86::VPBLENDMWZ128rmk
;
1758 case X86::VMOVDQU16Z256rmk
:
1759 Opc
= X86::VPBLENDMWZ256rmk
;
1761 case X86::VMOVDQU16Zrmk
:
1762 Opc
= X86::VPBLENDMWZrmk
;
1764 case X86::VMOVDQU32Z128rmk
:
1765 Opc
= X86::VPBLENDMDZ128rmk
;
1767 case X86::VMOVDQU32Z256rmk
:
1768 Opc
= X86::VPBLENDMDZ256rmk
;
1770 case X86::VMOVDQU32Zrmk
:
1771 Opc
= X86::VPBLENDMDZrmk
;
1773 case X86::VMOVDQU64Z128rmk
:
1774 Opc
= X86::VPBLENDMQZ128rmk
;
1776 case X86::VMOVDQU64Z256rmk
:
1777 Opc
= X86::VPBLENDMQZ256rmk
;
1779 case X86::VMOVDQU64Zrmk
:
1780 Opc
= X86::VPBLENDMQZrmk
;
1782 case X86::VMOVUPDZ128rmk
:
1783 Opc
= X86::VBLENDMPDZ128rmk
;
1785 case X86::VMOVUPDZ256rmk
:
1786 Opc
= X86::VBLENDMPDZ256rmk
;
1788 case X86::VMOVUPDZrmk
:
1789 Opc
= X86::VBLENDMPDZrmk
;
1791 case X86::VMOVUPSZ128rmk
:
1792 Opc
= X86::VBLENDMPSZ128rmk
;
1794 case X86::VMOVUPSZ256rmk
:
1795 Opc
= X86::VBLENDMPSZ256rmk
;
1797 case X86::VMOVUPSZrmk
:
1798 Opc
= X86::VBLENDMPSZrmk
;
1800 case X86::VMOVDQA32Z128rmk
:
1801 Opc
= X86::VPBLENDMDZ128rmk
;
1803 case X86::VMOVDQA32Z256rmk
:
1804 Opc
= X86::VPBLENDMDZ256rmk
;
1806 case X86::VMOVDQA32Zrmk
:
1807 Opc
= X86::VPBLENDMDZrmk
;
1809 case X86::VMOVDQA64Z128rmk
:
1810 Opc
= X86::VPBLENDMQZ128rmk
;
1812 case X86::VMOVDQA64Z256rmk
:
1813 Opc
= X86::VPBLENDMQZ256rmk
;
1815 case X86::VMOVDQA64Zrmk
:
1816 Opc
= X86::VPBLENDMQZrmk
;
1818 case X86::VMOVAPDZ128rmk
:
1819 Opc
= X86::VBLENDMPDZ128rmk
;
1821 case X86::VMOVAPDZ256rmk
:
1822 Opc
= X86::VBLENDMPDZ256rmk
;
1824 case X86::VMOVAPDZrmk
:
1825 Opc
= X86::VBLENDMPDZrmk
;
1827 case X86::VMOVAPSZ128rmk
:
1828 Opc
= X86::VBLENDMPSZ128rmk
;
1830 case X86::VMOVAPSZ256rmk
:
1831 Opc
= X86::VBLENDMPSZ256rmk
;
1833 case X86::VMOVAPSZrmk
:
1834 Opc
= X86::VBLENDMPSZrmk
;
1836 case X86::VBROADCASTSDZ256rmk
:
1837 Opc
= X86::VBLENDMPDZ256rmbk
;
1839 case X86::VBROADCASTSDZrmk
:
1840 Opc
= X86::VBLENDMPDZrmbk
;
1842 case X86::VBROADCASTSSZ128rmk
:
1843 Opc
= X86::VBLENDMPSZ128rmbk
;
1845 case X86::VBROADCASTSSZ256rmk
:
1846 Opc
= X86::VBLENDMPSZ256rmbk
;
1848 case X86::VBROADCASTSSZrmk
:
1849 Opc
= X86::VBLENDMPSZrmbk
;
1851 case X86::VPBROADCASTDZ128rmk
:
1852 Opc
= X86::VPBLENDMDZ128rmbk
;
1854 case X86::VPBROADCASTDZ256rmk
:
1855 Opc
= X86::VPBLENDMDZ256rmbk
;
1857 case X86::VPBROADCASTDZrmk
:
1858 Opc
= X86::VPBLENDMDZrmbk
;
1860 case X86::VPBROADCASTQZ128rmk
:
1861 Opc
= X86::VPBLENDMQZ128rmbk
;
1863 case X86::VPBROADCASTQZ256rmk
:
1864 Opc
= X86::VPBLENDMQZ256rmbk
;
1866 case X86::VPBROADCASTQZrmk
:
1867 Opc
= X86::VPBLENDMQZrmbk
;
1871 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
1873 .add(MI
.getOperand(2))
1875 .add(MI
.getOperand(3))
1876 .add(MI
.getOperand(4))
1877 .add(MI
.getOperand(5))
1878 .add(MI
.getOperand(6))
1879 .add(MI
.getOperand(7));
1884 case X86::VMOVDQU8Z128rrk
:
1885 case X86::VMOVDQU8Z256rrk
:
1886 case X86::VMOVDQU8Zrrk
:
1887 case X86::VMOVDQU16Z128rrk
:
1888 case X86::VMOVDQU16Z256rrk
:
1889 case X86::VMOVDQU16Zrrk
:
1890 case X86::VMOVDQU32Z128rrk
:
1891 case X86::VMOVDQA32Z128rrk
:
1892 case X86::VMOVDQU32Z256rrk
:
1893 case X86::VMOVDQA32Z256rrk
:
1894 case X86::VMOVDQU32Zrrk
:
1895 case X86::VMOVDQA32Zrrk
:
1896 case X86::VMOVDQU64Z128rrk
:
1897 case X86::VMOVDQA64Z128rrk
:
1898 case X86::VMOVDQU64Z256rrk
:
1899 case X86::VMOVDQA64Z256rrk
:
1900 case X86::VMOVDQU64Zrrk
:
1901 case X86::VMOVDQA64Zrrk
:
1902 case X86::VMOVUPDZ128rrk
:
1903 case X86::VMOVAPDZ128rrk
:
1904 case X86::VMOVUPDZ256rrk
:
1905 case X86::VMOVAPDZ256rrk
:
1906 case X86::VMOVUPDZrrk
:
1907 case X86::VMOVAPDZrrk
:
1908 case X86::VMOVUPSZ128rrk
:
1909 case X86::VMOVAPSZ128rrk
:
1910 case X86::VMOVUPSZ256rrk
:
1911 case X86::VMOVAPSZ256rrk
:
1912 case X86::VMOVUPSZrrk
:
1913 case X86::VMOVAPSZrrk
: {
1917 llvm_unreachable("Unreachable!");
1918 case X86::VMOVDQU8Z128rrk
:
1919 Opc
= X86::VPBLENDMBZ128rrk
;
1921 case X86::VMOVDQU8Z256rrk
:
1922 Opc
= X86::VPBLENDMBZ256rrk
;
1924 case X86::VMOVDQU8Zrrk
:
1925 Opc
= X86::VPBLENDMBZrrk
;
1927 case X86::VMOVDQU16Z128rrk
:
1928 Opc
= X86::VPBLENDMWZ128rrk
;
1930 case X86::VMOVDQU16Z256rrk
:
1931 Opc
= X86::VPBLENDMWZ256rrk
;
1933 case X86::VMOVDQU16Zrrk
:
1934 Opc
= X86::VPBLENDMWZrrk
;
1936 case X86::VMOVDQU32Z128rrk
:
1937 Opc
= X86::VPBLENDMDZ128rrk
;
1939 case X86::VMOVDQU32Z256rrk
:
1940 Opc
= X86::VPBLENDMDZ256rrk
;
1942 case X86::VMOVDQU32Zrrk
:
1943 Opc
= X86::VPBLENDMDZrrk
;
1945 case X86::VMOVDQU64Z128rrk
:
1946 Opc
= X86::VPBLENDMQZ128rrk
;
1948 case X86::VMOVDQU64Z256rrk
:
1949 Opc
= X86::VPBLENDMQZ256rrk
;
1951 case X86::VMOVDQU64Zrrk
:
1952 Opc
= X86::VPBLENDMQZrrk
;
1954 case X86::VMOVUPDZ128rrk
:
1955 Opc
= X86::VBLENDMPDZ128rrk
;
1957 case X86::VMOVUPDZ256rrk
:
1958 Opc
= X86::VBLENDMPDZ256rrk
;
1960 case X86::VMOVUPDZrrk
:
1961 Opc
= X86::VBLENDMPDZrrk
;
1963 case X86::VMOVUPSZ128rrk
:
1964 Opc
= X86::VBLENDMPSZ128rrk
;
1966 case X86::VMOVUPSZ256rrk
:
1967 Opc
= X86::VBLENDMPSZ256rrk
;
1969 case X86::VMOVUPSZrrk
:
1970 Opc
= X86::VBLENDMPSZrrk
;
1972 case X86::VMOVDQA32Z128rrk
:
1973 Opc
= X86::VPBLENDMDZ128rrk
;
1975 case X86::VMOVDQA32Z256rrk
:
1976 Opc
= X86::VPBLENDMDZ256rrk
;
1978 case X86::VMOVDQA32Zrrk
:
1979 Opc
= X86::VPBLENDMDZrrk
;
1981 case X86::VMOVDQA64Z128rrk
:
1982 Opc
= X86::VPBLENDMQZ128rrk
;
1984 case X86::VMOVDQA64Z256rrk
:
1985 Opc
= X86::VPBLENDMQZ256rrk
;
1987 case X86::VMOVDQA64Zrrk
:
1988 Opc
= X86::VPBLENDMQZrrk
;
1990 case X86::VMOVAPDZ128rrk
:
1991 Opc
= X86::VBLENDMPDZ128rrk
;
1993 case X86::VMOVAPDZ256rrk
:
1994 Opc
= X86::VBLENDMPDZ256rrk
;
1996 case X86::VMOVAPDZrrk
:
1997 Opc
= X86::VBLENDMPDZrrk
;
1999 case X86::VMOVAPSZ128rrk
:
2000 Opc
= X86::VBLENDMPSZ128rrk
;
2002 case X86::VMOVAPSZ256rrk
:
2003 Opc
= X86::VBLENDMPSZ256rrk
;
2005 case X86::VMOVAPSZrrk
:
2006 Opc
= X86::VBLENDMPSZrrk
;
2010 NewMI
= BuildMI(MF
, MI
.getDebugLoc(), get(Opc
))
2012 .add(MI
.getOperand(2))
2014 .add(MI
.getOperand(3));
2023 if (LV
) { // Update live variables
2024 for (unsigned I
= 0; I
< NumRegOperands
; ++I
) {
2025 MachineOperand
&Op
= MI
.getOperand(I
);
2026 if (Op
.isReg() && (Op
.isDead() || Op
.isKill()))
2027 LV
->replaceKillInstruction(Op
.getReg(), MI
, *NewMI
);
2031 MachineBasicBlock
&MBB
= *MI
.getParent();
2032 MBB
.insert(MI
.getIterator(), NewMI
); // Insert the new inst
2035 LIS
->ReplaceMachineInstrInMaps(MI
, *NewMI
);
2037 LIS
->getInterval(SrcReg
);
2039 LIS
->getInterval(SrcReg2
);
2045 /// This determines which of three possible cases of a three source commute
2046 /// the source indexes correspond to taking into account any mask operands.
2047 /// All prevents commuting a passthru operand. Returns -1 if the commute isn't
2049 /// Case 0 - Possible to commute the first and second operands.
2050 /// Case 1 - Possible to commute the first and third operands.
2051 /// Case 2 - Possible to commute the second and third operands.
2052 static unsigned getThreeSrcCommuteCase(uint64_t TSFlags
, unsigned SrcOpIdx1
,
2053 unsigned SrcOpIdx2
) {
2054 // Put the lowest index to SrcOpIdx1 to simplify the checks below.
2055 if (SrcOpIdx1
> SrcOpIdx2
)
2056 std::swap(SrcOpIdx1
, SrcOpIdx2
);
2058 unsigned Op1
= 1, Op2
= 2, Op3
= 3;
2059 if (X86II::isKMasked(TSFlags
)) {
2064 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op2
)
2066 if (SrcOpIdx1
== Op1
&& SrcOpIdx2
== Op3
)
2068 if (SrcOpIdx1
== Op2
&& SrcOpIdx2
== Op3
)
2070 llvm_unreachable("Unknown three src commute case.");
2073 unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands(
2074 const MachineInstr
&MI
, unsigned SrcOpIdx1
, unsigned SrcOpIdx2
,
2075 const X86InstrFMA3Group
&FMA3Group
) const {
2077 unsigned Opc
= MI
.getOpcode();
2079 // TODO: Commuting the 1st operand of FMA*_Int requires some additional
2080 // analysis. The commute optimization is legal only if all users of FMA*_Int
2081 // use only the lowest element of the FMA*_Int instruction. Such analysis are
2082 // not implemented yet. So, just return 0 in that case.
2083 // When such analysis are available this place will be the right place for
2085 assert(!(FMA3Group
.isIntrinsic() && (SrcOpIdx1
== 1 || SrcOpIdx2
== 1)) &&
2086 "Intrinsic instructions can't commute operand 1");
2088 // Determine which case this commute is or if it can't be done.
2090 getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
, SrcOpIdx2
);
2091 assert(Case
< 3 && "Unexpected case number!");
2093 // Define the FMA forms mapping array that helps to map input FMA form
2094 // to output FMA form to preserve the operation semantics after
2095 // commuting the operands.
2096 const unsigned Form132Index
= 0;
2097 const unsigned Form213Index
= 1;
2098 const unsigned Form231Index
= 2;
2099 static const unsigned FormMapping
[][3] = {
2100 // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2;
2101 // FMA132 A, C, b; ==> FMA231 C, A, b;
2102 // FMA213 B, A, c; ==> FMA213 A, B, c;
2103 // FMA231 C, A, b; ==> FMA132 A, C, b;
2104 {Form231Index
, Form213Index
, Form132Index
},
2105 // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3;
2106 // FMA132 A, c, B; ==> FMA132 B, c, A;
2107 // FMA213 B, a, C; ==> FMA231 C, a, B;
2108 // FMA231 C, a, B; ==> FMA213 B, a, C;
2109 {Form132Index
, Form231Index
, Form213Index
},
2110 // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3;
2111 // FMA132 a, C, B; ==> FMA213 a, B, C;
2112 // FMA213 b, A, C; ==> FMA132 b, C, A;
2113 // FMA231 c, A, B; ==> FMA231 c, B, A;
2114 {Form213Index
, Form132Index
, Form231Index
}};
2116 unsigned FMAForms
[3];
2117 FMAForms
[0] = FMA3Group
.get132Opcode();
2118 FMAForms
[1] = FMA3Group
.get213Opcode();
2119 FMAForms
[2] = FMA3Group
.get231Opcode();
2121 // Everything is ready, just adjust the FMA opcode and return it.
2122 for (unsigned FormIndex
= 0; FormIndex
< 3; FormIndex
++)
2123 if (Opc
== FMAForms
[FormIndex
])
2124 return FMAForms
[FormMapping
[Case
][FormIndex
]];
2126 llvm_unreachable("Illegal FMA3 format");
2129 static void commuteVPTERNLOG(MachineInstr
&MI
, unsigned SrcOpIdx1
,
2130 unsigned SrcOpIdx2
) {
2131 // Determine which case this commute is or if it can't be done.
2133 getThreeSrcCommuteCase(MI
.getDesc().TSFlags
, SrcOpIdx1
, SrcOpIdx2
);
2134 assert(Case
< 3 && "Unexpected case value!");
2136 // For each case we need to swap two pairs of bits in the final immediate.
2137 static const uint8_t SwapMasks
[3][4] = {
2138 {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5.
2139 {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6.
2140 {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6.
2143 uint8_t Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
2144 // Clear out the bits we are swapping.
2145 uint8_t NewImm
= Imm
& ~(SwapMasks
[Case
][0] | SwapMasks
[Case
][1] |
2146 SwapMasks
[Case
][2] | SwapMasks
[Case
][3]);
2147 // If the immediate had a bit of the pair set, then set the opposite bit.
2148 if (Imm
& SwapMasks
[Case
][0])
2149 NewImm
|= SwapMasks
[Case
][1];
2150 if (Imm
& SwapMasks
[Case
][1])
2151 NewImm
|= SwapMasks
[Case
][0];
2152 if (Imm
& SwapMasks
[Case
][2])
2153 NewImm
|= SwapMasks
[Case
][3];
2154 if (Imm
& SwapMasks
[Case
][3])
2155 NewImm
|= SwapMasks
[Case
][2];
2156 MI
.getOperand(MI
.getNumOperands() - 1).setImm(NewImm
);
2159 // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be
2161 static bool isCommutableVPERMV3Instruction(unsigned Opcode
) {
2162 #define VPERM_CASES(Suffix) \
2163 case X86::VPERMI2##Suffix##Z128rr: \
2164 case X86::VPERMT2##Suffix##Z128rr: \
2165 case X86::VPERMI2##Suffix##Z256rr: \
2166 case X86::VPERMT2##Suffix##Z256rr: \
2167 case X86::VPERMI2##Suffix##Zrr: \
2168 case X86::VPERMT2##Suffix##Zrr: \
2169 case X86::VPERMI2##Suffix##Z128rm: \
2170 case X86::VPERMT2##Suffix##Z128rm: \
2171 case X86::VPERMI2##Suffix##Z256rm: \
2172 case X86::VPERMT2##Suffix##Z256rm: \
2173 case X86::VPERMI2##Suffix##Zrm: \
2174 case X86::VPERMT2##Suffix##Zrm: \
2175 case X86::VPERMI2##Suffix##Z128rrkz: \
2176 case X86::VPERMT2##Suffix##Z128rrkz: \
2177 case X86::VPERMI2##Suffix##Z256rrkz: \
2178 case X86::VPERMT2##Suffix##Z256rrkz: \
2179 case X86::VPERMI2##Suffix##Zrrkz: \
2180 case X86::VPERMT2##Suffix##Zrrkz: \
2181 case X86::VPERMI2##Suffix##Z128rmkz: \
2182 case X86::VPERMT2##Suffix##Z128rmkz: \
2183 case X86::VPERMI2##Suffix##Z256rmkz: \
2184 case X86::VPERMT2##Suffix##Z256rmkz: \
2185 case X86::VPERMI2##Suffix##Zrmkz: \
2186 case X86::VPERMT2##Suffix##Zrmkz:
2188 #define VPERM_CASES_BROADCAST(Suffix) \
2189 VPERM_CASES(Suffix) \
2190 case X86::VPERMI2##Suffix##Z128rmb: \
2191 case X86::VPERMT2##Suffix##Z128rmb: \
2192 case X86::VPERMI2##Suffix##Z256rmb: \
2193 case X86::VPERMT2##Suffix##Z256rmb: \
2194 case X86::VPERMI2##Suffix##Zrmb: \
2195 case X86::VPERMT2##Suffix##Zrmb: \
2196 case X86::VPERMI2##Suffix##Z128rmbkz: \
2197 case X86::VPERMT2##Suffix##Z128rmbkz: \
2198 case X86::VPERMI2##Suffix##Z256rmbkz: \
2199 case X86::VPERMT2##Suffix##Z256rmbkz: \
2200 case X86::VPERMI2##Suffix##Zrmbkz: \
2201 case X86::VPERMT2##Suffix##Zrmbkz:
2207 VPERM_CASES_BROADCAST(D
)
2208 VPERM_CASES_BROADCAST(PD
)
2209 VPERM_CASES_BROADCAST(PS
)
2210 VPERM_CASES_BROADCAST(Q
)
2214 #undef VPERM_CASES_BROADCAST
2218 // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching
2219 // from the I opcode to the T opcode and vice versa.
2220 static unsigned getCommutedVPERMV3Opcode(unsigned Opcode
) {
2221 #define VPERM_CASES(Orig, New) \
2222 case X86::Orig##Z128rr: \
2223 return X86::New##Z128rr; \
2224 case X86::Orig##Z128rrkz: \
2225 return X86::New##Z128rrkz; \
2226 case X86::Orig##Z128rm: \
2227 return X86::New##Z128rm; \
2228 case X86::Orig##Z128rmkz: \
2229 return X86::New##Z128rmkz; \
2230 case X86::Orig##Z256rr: \
2231 return X86::New##Z256rr; \
2232 case X86::Orig##Z256rrkz: \
2233 return X86::New##Z256rrkz; \
2234 case X86::Orig##Z256rm: \
2235 return X86::New##Z256rm; \
2236 case X86::Orig##Z256rmkz: \
2237 return X86::New##Z256rmkz; \
2238 case X86::Orig##Zrr: \
2239 return X86::New##Zrr; \
2240 case X86::Orig##Zrrkz: \
2241 return X86::New##Zrrkz; \
2242 case X86::Orig##Zrm: \
2243 return X86::New##Zrm; \
2244 case X86::Orig##Zrmkz: \
2245 return X86::New##Zrmkz;
2247 #define VPERM_CASES_BROADCAST(Orig, New) \
2248 VPERM_CASES(Orig, New) \
2249 case X86::Orig##Z128rmb: \
2250 return X86::New##Z128rmb; \
2251 case X86::Orig##Z128rmbkz: \
2252 return X86::New##Z128rmbkz; \
2253 case X86::Orig##Z256rmb: \
2254 return X86::New##Z256rmb; \
2255 case X86::Orig##Z256rmbkz: \
2256 return X86::New##Z256rmbkz; \
2257 case X86::Orig##Zrmb: \
2258 return X86::New##Zrmb; \
2259 case X86::Orig##Zrmbkz: \
2260 return X86::New##Zrmbkz;
2263 VPERM_CASES(VPERMI2B
, VPERMT2B
)
2264 VPERM_CASES_BROADCAST(VPERMI2D
, VPERMT2D
)
2265 VPERM_CASES_BROADCAST(VPERMI2PD
, VPERMT2PD
)
2266 VPERM_CASES_BROADCAST(VPERMI2PS
, VPERMT2PS
)
2267 VPERM_CASES_BROADCAST(VPERMI2Q
, VPERMT2Q
)
2268 VPERM_CASES(VPERMI2W
, VPERMT2W
)
2269 VPERM_CASES(VPERMT2B
, VPERMI2B
)
2270 VPERM_CASES_BROADCAST(VPERMT2D
, VPERMI2D
)
2271 VPERM_CASES_BROADCAST(VPERMT2PD
, VPERMI2PD
)
2272 VPERM_CASES_BROADCAST(VPERMT2PS
, VPERMI2PS
)
2273 VPERM_CASES_BROADCAST(VPERMT2Q
, VPERMI2Q
)
2274 VPERM_CASES(VPERMT2W
, VPERMI2W
)
2277 llvm_unreachable("Unreachable!");
2278 #undef VPERM_CASES_BROADCAST
2282 MachineInstr
*X86InstrInfo::commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
2284 unsigned OpIdx2
) const {
2285 auto CloneIfNew
= [&](MachineInstr
&MI
) {
2286 return std::exchange(NewMI
, false)
2287 ? MI
.getParent()->getParent()->CloneMachineInstr(&MI
)
2290 MachineInstr
*WorkingMI
= nullptr;
2291 unsigned Opc
= MI
.getOpcode();
2293 #define CASE_ND(OP) \
2298 // SHLD B, C, I <-> SHRD C, B, (BitWidth - I)
2304 CASE_ND(SHLD64rri8
) {
2308 llvm_unreachable("Unreachable!");
2309 #define FROM_TO_SIZE(A, B, S) \
2315 Opc = X86::B##_ND; \
2323 Opc = X86::A##_ND; \
2327 FROM_TO_SIZE(SHRD16rri8
, SHLD16rri8
, 16)
2328 FROM_TO_SIZE(SHRD32rri8
, SHLD32rri8
, 32)
2329 FROM_TO_SIZE(SHRD64rri8
, SHLD64rri8
, 64)
2332 WorkingMI
= CloneIfNew(MI
);
2333 WorkingMI
->setDesc(get(Opc
));
2334 WorkingMI
->getOperand(3).setImm(Size
- MI
.getOperand(3).getImm());
2339 // PFSUB x, y: x = x - y
2340 // PFSUBR x, y: x = y - x
2341 WorkingMI
= CloneIfNew(MI
);
2343 get(X86::PFSUBRrr
== Opc
? X86::PFSUBrr
: X86::PFSUBRrr
));
2345 case X86::BLENDPDrri
:
2346 case X86::BLENDPSrri
:
2347 case X86::VBLENDPDrri
:
2348 case X86::VBLENDPSrri
:
2349 // If we're optimizing for size, try to use MOVSD/MOVSS.
2350 if (MI
.getParent()->getParent()->getFunction().hasOptSize()) {
2351 unsigned Mask
= (Opc
== X86::BLENDPDrri
|| Opc
== X86::VBLENDPDrri
) ? 0x03: 0x0F;
2352 if ((MI
.getOperand(3).getImm() ^ Mask
) == 1) {
2353 #define FROM_TO(FROM, TO) \
2359 llvm_unreachable("Unreachable!");
2360 FROM_TO(BLENDPDrri
, MOVSDrr
)
2361 FROM_TO(BLENDPSrri
, MOVSSrr
)
2362 FROM_TO(VBLENDPDrri
, VMOVSDrr
)
2363 FROM_TO(VBLENDPSrri
, VMOVSSrr
)
2365 WorkingMI
= CloneIfNew(MI
);
2366 WorkingMI
->setDesc(get(Opc
));
2367 WorkingMI
->removeOperand(3);
2373 case X86::PBLENDWrri
:
2374 case X86::VBLENDPDYrri
:
2375 case X86::VBLENDPSYrri
:
2376 case X86::VPBLENDDrri
:
2377 case X86::VPBLENDWrri
:
2378 case X86::VPBLENDDYrri
:
2379 case X86::VPBLENDWYrri
: {
2383 llvm_unreachable("Unreachable!");
2384 case X86::BLENDPDrri
:
2385 Mask
= (int8_t)0x03;
2387 case X86::BLENDPSrri
:
2388 Mask
= (int8_t)0x0F;
2390 case X86::PBLENDWrri
:
2391 Mask
= (int8_t)0xFF;
2393 case X86::VBLENDPDrri
:
2394 Mask
= (int8_t)0x03;
2396 case X86::VBLENDPSrri
:
2397 Mask
= (int8_t)0x0F;
2399 case X86::VBLENDPDYrri
:
2400 Mask
= (int8_t)0x0F;
2402 case X86::VBLENDPSYrri
:
2403 Mask
= (int8_t)0xFF;
2405 case X86::VPBLENDDrri
:
2406 Mask
= (int8_t)0x0F;
2408 case X86::VPBLENDWrri
:
2409 Mask
= (int8_t)0xFF;
2411 case X86::VPBLENDDYrri
:
2412 Mask
= (int8_t)0xFF;
2414 case X86::VPBLENDWYrri
:
2415 Mask
= (int8_t)0xFF;
2418 // Only the least significant bits of Imm are used.
2419 // Using int8_t to ensure it will be sign extended to the int64_t that
2420 // setImm takes in order to match isel behavior.
2421 int8_t Imm
= MI
.getOperand(3).getImm() & Mask
;
2422 WorkingMI
= CloneIfNew(MI
);
2423 WorkingMI
->getOperand(3).setImm(Mask
^ Imm
);
2426 case X86::INSERTPSrri
:
2427 case X86::VINSERTPSrri
:
2428 case X86::VINSERTPSZrri
: {
2429 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
2430 unsigned ZMask
= Imm
& 15;
2431 unsigned DstIdx
= (Imm
>> 4) & 3;
2432 unsigned SrcIdx
= (Imm
>> 6) & 3;
2434 // We can commute insertps if we zero 2 of the elements, the insertion is
2435 // "inline" and we don't override the insertion with a zero.
2436 if (DstIdx
== SrcIdx
&& (ZMask
& (1 << DstIdx
)) == 0 &&
2437 llvm::popcount(ZMask
) == 2) {
2438 unsigned AltIdx
= llvm::countr_zero((ZMask
| (1 << DstIdx
)) ^ 15);
2439 assert(AltIdx
< 4 && "Illegal insertion index");
2440 unsigned AltImm
= (AltIdx
<< 6) | (AltIdx
<< 4) | ZMask
;
2441 WorkingMI
= CloneIfNew(MI
);
2442 WorkingMI
->getOperand(MI
.getNumOperands() - 1).setImm(AltImm
);
2450 case X86::VMOVSSrr
: {
2451 // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD.
2452 if (Subtarget
.hasSSE41()) {
2456 llvm_unreachable("Unreachable!");
2458 Opc
= X86::BLENDPDrri
;
2462 Opc
= X86::BLENDPSrri
;
2466 Opc
= X86::VBLENDPDrri
;
2470 Opc
= X86::VBLENDPSrri
;
2475 WorkingMI
= CloneIfNew(MI
);
2476 WorkingMI
->setDesc(get(Opc
));
2477 WorkingMI
->addOperand(MachineOperand::CreateImm(Mask
));
2481 WorkingMI
= CloneIfNew(MI
);
2482 WorkingMI
->setDesc(get(X86::SHUFPDrri
));
2483 WorkingMI
->addOperand(MachineOperand::CreateImm(0x02));
2486 case X86::SHUFPDrri
: {
2487 // Commute to MOVSD.
2488 assert(MI
.getOperand(3).getImm() == 0x02 && "Unexpected immediate!");
2489 WorkingMI
= CloneIfNew(MI
);
2490 WorkingMI
->setDesc(get(X86::MOVSDrr
));
2491 WorkingMI
->removeOperand(3);
2494 case X86::PCLMULQDQrri
:
2495 case X86::VPCLMULQDQrri
:
2496 case X86::VPCLMULQDQYrri
:
2497 case X86::VPCLMULQDQZrri
:
2498 case X86::VPCLMULQDQZ128rri
:
2499 case X86::VPCLMULQDQZ256rri
: {
2500 // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0]
2501 // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0]
2502 unsigned Imm
= MI
.getOperand(3).getImm();
2503 unsigned Src1Hi
= Imm
& 0x01;
2504 unsigned Src2Hi
= Imm
& 0x10;
2505 WorkingMI
= CloneIfNew(MI
);
2506 WorkingMI
->getOperand(3).setImm((Src1Hi
<< 4) | (Src2Hi
>> 4));
2509 case X86::VPCMPBZ128rri
:
2510 case X86::VPCMPUBZ128rri
:
2511 case X86::VPCMPBZ256rri
:
2512 case X86::VPCMPUBZ256rri
:
2513 case X86::VPCMPBZrri
:
2514 case X86::VPCMPUBZrri
:
2515 case X86::VPCMPDZ128rri
:
2516 case X86::VPCMPUDZ128rri
:
2517 case X86::VPCMPDZ256rri
:
2518 case X86::VPCMPUDZ256rri
:
2519 case X86::VPCMPDZrri
:
2520 case X86::VPCMPUDZrri
:
2521 case X86::VPCMPQZ128rri
:
2522 case X86::VPCMPUQZ128rri
:
2523 case X86::VPCMPQZ256rri
:
2524 case X86::VPCMPUQZ256rri
:
2525 case X86::VPCMPQZrri
:
2526 case X86::VPCMPUQZrri
:
2527 case X86::VPCMPWZ128rri
:
2528 case X86::VPCMPUWZ128rri
:
2529 case X86::VPCMPWZ256rri
:
2530 case X86::VPCMPUWZ256rri
:
2531 case X86::VPCMPWZrri
:
2532 case X86::VPCMPUWZrri
:
2533 case X86::VPCMPBZ128rrik
:
2534 case X86::VPCMPUBZ128rrik
:
2535 case X86::VPCMPBZ256rrik
:
2536 case X86::VPCMPUBZ256rrik
:
2537 case X86::VPCMPBZrrik
:
2538 case X86::VPCMPUBZrrik
:
2539 case X86::VPCMPDZ128rrik
:
2540 case X86::VPCMPUDZ128rrik
:
2541 case X86::VPCMPDZ256rrik
:
2542 case X86::VPCMPUDZ256rrik
:
2543 case X86::VPCMPDZrrik
:
2544 case X86::VPCMPUDZrrik
:
2545 case X86::VPCMPQZ128rrik
:
2546 case X86::VPCMPUQZ128rrik
:
2547 case X86::VPCMPQZ256rrik
:
2548 case X86::VPCMPUQZ256rrik
:
2549 case X86::VPCMPQZrrik
:
2550 case X86::VPCMPUQZrrik
:
2551 case X86::VPCMPWZ128rrik
:
2552 case X86::VPCMPUWZ128rrik
:
2553 case X86::VPCMPWZ256rrik
:
2554 case X86::VPCMPUWZ256rrik
:
2555 case X86::VPCMPWZrrik
:
2556 case X86::VPCMPUWZrrik
:
2557 WorkingMI
= CloneIfNew(MI
);
2558 // Flip comparison mode immediate (if necessary).
2559 WorkingMI
->getOperand(MI
.getNumOperands() - 1)
2560 .setImm(X86::getSwappedVPCMPImm(
2561 MI
.getOperand(MI
.getNumOperands() - 1).getImm() & 0x7));
2564 case X86::VPCOMUBri
:
2566 case X86::VPCOMUDri
:
2568 case X86::VPCOMUQri
:
2570 case X86::VPCOMUWri
:
2571 WorkingMI
= CloneIfNew(MI
);
2572 // Flip comparison mode immediate (if necessary).
2573 WorkingMI
->getOperand(3).setImm(
2574 X86::getSwappedVPCOMImm(MI
.getOperand(3).getImm() & 0x7));
2576 case X86::VCMPSDZrri
:
2577 case X86::VCMPSSZrri
:
2578 case X86::VCMPPDZrri
:
2579 case X86::VCMPPSZrri
:
2580 case X86::VCMPSHZrri
:
2581 case X86::VCMPPHZrri
:
2582 case X86::VCMPPHZ128rri
:
2583 case X86::VCMPPHZ256rri
:
2584 case X86::VCMPPDZ128rri
:
2585 case X86::VCMPPSZ128rri
:
2586 case X86::VCMPPDZ256rri
:
2587 case X86::VCMPPSZ256rri
:
2588 case X86::VCMPPDZrrik
:
2589 case X86::VCMPPSZrrik
:
2590 case X86::VCMPPDZ128rrik
:
2591 case X86::VCMPPSZ128rrik
:
2592 case X86::VCMPPDZ256rrik
:
2593 case X86::VCMPPSZ256rrik
:
2594 WorkingMI
= CloneIfNew(MI
);
2595 WorkingMI
->getOperand(MI
.getNumExplicitOperands() - 1)
2596 .setImm(X86::getSwappedVCMPImm(
2597 MI
.getOperand(MI
.getNumExplicitOperands() - 1).getImm() & 0x1f));
2599 case X86::VPERM2F128rri
:
2600 case X86::VPERM2I128rri
:
2601 // Flip permute source immediate.
2602 // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi.
2603 // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi.
2604 WorkingMI
= CloneIfNew(MI
);
2605 WorkingMI
->getOperand(3).setImm((MI
.getOperand(3).getImm() & 0xFF) ^ 0x22);
2607 case X86::MOVHLPSrr
:
2608 case X86::UNPCKHPDrr
:
2609 case X86::VMOVHLPSrr
:
2610 case X86::VUNPCKHPDrr
:
2611 case X86::VMOVHLPSZrr
:
2612 case X86::VUNPCKHPDZ128rr
:
2613 assert(Subtarget
.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!");
2617 llvm_unreachable("Unreachable!");
2618 case X86::MOVHLPSrr
:
2619 Opc
= X86::UNPCKHPDrr
;
2621 case X86::UNPCKHPDrr
:
2622 Opc
= X86::MOVHLPSrr
;
2624 case X86::VMOVHLPSrr
:
2625 Opc
= X86::VUNPCKHPDrr
;
2627 case X86::VUNPCKHPDrr
:
2628 Opc
= X86::VMOVHLPSrr
;
2630 case X86::VMOVHLPSZrr
:
2631 Opc
= X86::VUNPCKHPDZ128rr
;
2633 case X86::VUNPCKHPDZ128rr
:
2634 Opc
= X86::VMOVHLPSZrr
;
2637 WorkingMI
= CloneIfNew(MI
);
2638 WorkingMI
->setDesc(get(Opc
));
2643 WorkingMI
= CloneIfNew(MI
);
2644 unsigned OpNo
= MI
.getDesc().getNumOperands() - 1;
2645 X86::CondCode CC
= static_cast<X86::CondCode
>(MI
.getOperand(OpNo
).getImm());
2646 WorkingMI
->getOperand(OpNo
).setImm(X86::GetOppositeBranchCondition(CC
));
2649 case X86::VPTERNLOGDZrri
:
2650 case X86::VPTERNLOGDZrmi
:
2651 case X86::VPTERNLOGDZ128rri
:
2652 case X86::VPTERNLOGDZ128rmi
:
2653 case X86::VPTERNLOGDZ256rri
:
2654 case X86::VPTERNLOGDZ256rmi
:
2655 case X86::VPTERNLOGQZrri
:
2656 case X86::VPTERNLOGQZrmi
:
2657 case X86::VPTERNLOGQZ128rri
:
2658 case X86::VPTERNLOGQZ128rmi
:
2659 case X86::VPTERNLOGQZ256rri
:
2660 case X86::VPTERNLOGQZ256rmi
:
2661 case X86::VPTERNLOGDZrrik
:
2662 case X86::VPTERNLOGDZ128rrik
:
2663 case X86::VPTERNLOGDZ256rrik
:
2664 case X86::VPTERNLOGQZrrik
:
2665 case X86::VPTERNLOGQZ128rrik
:
2666 case X86::VPTERNLOGQZ256rrik
:
2667 case X86::VPTERNLOGDZrrikz
:
2668 case X86::VPTERNLOGDZrmikz
:
2669 case X86::VPTERNLOGDZ128rrikz
:
2670 case X86::VPTERNLOGDZ128rmikz
:
2671 case X86::VPTERNLOGDZ256rrikz
:
2672 case X86::VPTERNLOGDZ256rmikz
:
2673 case X86::VPTERNLOGQZrrikz
:
2674 case X86::VPTERNLOGQZrmikz
:
2675 case X86::VPTERNLOGQZ128rrikz
:
2676 case X86::VPTERNLOGQZ128rmikz
:
2677 case X86::VPTERNLOGQZ256rrikz
:
2678 case X86::VPTERNLOGQZ256rmikz
:
2679 case X86::VPTERNLOGDZ128rmbi
:
2680 case X86::VPTERNLOGDZ256rmbi
:
2681 case X86::VPTERNLOGDZrmbi
:
2682 case X86::VPTERNLOGQZ128rmbi
:
2683 case X86::VPTERNLOGQZ256rmbi
:
2684 case X86::VPTERNLOGQZrmbi
:
2685 case X86::VPTERNLOGDZ128rmbikz
:
2686 case X86::VPTERNLOGDZ256rmbikz
:
2687 case X86::VPTERNLOGDZrmbikz
:
2688 case X86::VPTERNLOGQZ128rmbikz
:
2689 case X86::VPTERNLOGQZ256rmbikz
:
2690 case X86::VPTERNLOGQZrmbikz
: {
2691 WorkingMI
= CloneIfNew(MI
);
2692 commuteVPTERNLOG(*WorkingMI
, OpIdx1
, OpIdx2
);
2696 if (isCommutableVPERMV3Instruction(Opc
)) {
2697 WorkingMI
= CloneIfNew(MI
);
2698 WorkingMI
->setDesc(get(getCommutedVPERMV3Opcode(Opc
)));
2702 if (auto *FMA3Group
= getFMA3Group(Opc
, MI
.getDesc().TSFlags
)) {
2703 WorkingMI
= CloneIfNew(MI
);
2705 get(getFMA3OpcodeToCommuteOperands(MI
, OpIdx1
, OpIdx2
, *FMA3Group
)));
2709 return TargetInstrInfo::commuteInstructionImpl(MI
, NewMI
, OpIdx1
, OpIdx2
);
2712 bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr
&MI
,
2713 unsigned &SrcOpIdx1
,
2714 unsigned &SrcOpIdx2
,
2715 bool IsIntrinsic
) const {
2716 uint64_t TSFlags
= MI
.getDesc().TSFlags
;
2718 unsigned FirstCommutableVecOp
= 1;
2719 unsigned LastCommutableVecOp
= 3;
2720 unsigned KMaskOp
= -1U;
2721 if (X86II::isKMasked(TSFlags
)) {
2722 // For k-zero-masked operations it is Ok to commute the first vector
2723 // operand. Unless this is an intrinsic instruction.
2724 // For regular k-masked operations a conservative choice is done as the
2725 // elements of the first vector operand, for which the corresponding bit
2726 // in the k-mask operand is set to 0, are copied to the result of the
2728 // TODO/FIXME: The commute still may be legal if it is known that the
2729 // k-mask operand is set to either all ones or all zeroes.
2730 // It is also Ok to commute the 1st operand if all users of MI use only
2731 // the elements enabled by the k-mask operand. For example,
2732 // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i]
2734 // VMOVAPSZmrk <mem_addr>, k, v4; // this is the ONLY user of v4 ->
2735 // // Ok, to commute v1 in FMADD213PSZrk.
2737 // The k-mask operand has index = 2 for masked and zero-masked operations.
2740 // The operand with index = 1 is used as a source for those elements for
2741 // which the corresponding bit in the k-mask is set to 0.
2742 if (X86II::isKMergeMasked(TSFlags
) || IsIntrinsic
)
2743 FirstCommutableVecOp
= 3;
2745 LastCommutableVecOp
++;
2746 } else if (IsIntrinsic
) {
2747 // Commuting the first operand of an intrinsic instruction isn't possible
2748 // unless we can prove that only the lowest element of the result is used.
2749 FirstCommutableVecOp
= 2;
2752 if (isMem(MI
, LastCommutableVecOp
))
2753 LastCommutableVecOp
--;
2755 // Only the first RegOpsNum operands are commutable.
2756 // Also, the value 'CommuteAnyOperandIndex' is valid here as it means
2757 // that the operand is not specified/fixed.
2758 if (SrcOpIdx1
!= CommuteAnyOperandIndex
&&
2759 (SrcOpIdx1
< FirstCommutableVecOp
|| SrcOpIdx1
> LastCommutableVecOp
||
2760 SrcOpIdx1
== KMaskOp
))
2762 if (SrcOpIdx2
!= CommuteAnyOperandIndex
&&
2763 (SrcOpIdx2
< FirstCommutableVecOp
|| SrcOpIdx2
> LastCommutableVecOp
||
2764 SrcOpIdx2
== KMaskOp
))
2767 // Look for two different register operands assumed to be commutable
2768 // regardless of the FMA opcode. The FMA opcode is adjusted later.
2769 if (SrcOpIdx1
== CommuteAnyOperandIndex
||
2770 SrcOpIdx2
== CommuteAnyOperandIndex
) {
2771 unsigned CommutableOpIdx2
= SrcOpIdx2
;
2773 // At least one of operands to be commuted is not specified and
2774 // this method is free to choose appropriate commutable operands.
2775 if (SrcOpIdx1
== SrcOpIdx2
)
2776 // Both of operands are not fixed. By default set one of commutable
2777 // operands to the last register operand of the instruction.
2778 CommutableOpIdx2
= LastCommutableVecOp
;
2779 else if (SrcOpIdx2
== CommuteAnyOperandIndex
)
2780 // Only one of operands is not fixed.
2781 CommutableOpIdx2
= SrcOpIdx1
;
2783 // CommutableOpIdx2 is well defined now. Let's choose another commutable
2784 // operand and assign its index to CommutableOpIdx1.
2785 Register Op2Reg
= MI
.getOperand(CommutableOpIdx2
).getReg();
2787 unsigned CommutableOpIdx1
;
2788 for (CommutableOpIdx1
= LastCommutableVecOp
;
2789 CommutableOpIdx1
>= FirstCommutableVecOp
; CommutableOpIdx1
--) {
2790 // Just ignore and skip the k-mask operand.
2791 if (CommutableOpIdx1
== KMaskOp
)
2794 // The commuted operands must have different registers.
2795 // Otherwise, the commute transformation does not change anything and
2797 if (Op2Reg
!= MI
.getOperand(CommutableOpIdx1
).getReg())
2801 // No appropriate commutable operands were found.
2802 if (CommutableOpIdx1
< FirstCommutableVecOp
)
2805 // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2
2806 // to return those values.
2807 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, CommutableOpIdx1
,
2815 bool X86InstrInfo::findCommutedOpIndices(const MachineInstr
&MI
,
2816 unsigned &SrcOpIdx1
,
2817 unsigned &SrcOpIdx2
) const {
2818 const MCInstrDesc
&Desc
= MI
.getDesc();
2819 if (!Desc
.isCommutable())
2822 switch (MI
.getOpcode()) {
2827 case X86::VCMPSDrri
:
2828 case X86::VCMPSSrri
:
2829 case X86::VCMPPDrri
:
2830 case X86::VCMPPSrri
:
2831 case X86::VCMPPDYrri
:
2832 case X86::VCMPPSYrri
:
2833 case X86::VCMPSDZrri
:
2834 case X86::VCMPSSZrri
:
2835 case X86::VCMPPDZrri
:
2836 case X86::VCMPPSZrri
:
2837 case X86::VCMPSHZrri
:
2838 case X86::VCMPPHZrri
:
2839 case X86::VCMPPHZ128rri
:
2840 case X86::VCMPPHZ256rri
:
2841 case X86::VCMPPDZ128rri
:
2842 case X86::VCMPPSZ128rri
:
2843 case X86::VCMPPDZ256rri
:
2844 case X86::VCMPPSZ256rri
:
2845 case X86::VCMPPDZrrik
:
2846 case X86::VCMPPSZrrik
:
2847 case X86::VCMPPDZ128rrik
:
2848 case X86::VCMPPSZ128rrik
:
2849 case X86::VCMPPDZ256rrik
:
2850 case X86::VCMPPSZ256rrik
: {
2851 unsigned OpOffset
= X86II::isKMasked(Desc
.TSFlags
) ? 1 : 0;
2853 // Float comparison can be safely commuted for
2854 // Ordered/Unordered/Equal/NotEqual tests
2855 unsigned Imm
= MI
.getOperand(3 + OpOffset
).getImm() & 0x7;
2858 // EVEX versions can be commuted.
2859 if ((Desc
.TSFlags
& X86II::EncodingMask
) == X86II::EVEX
)
2863 case 0x03: // UNORDERED
2864 case 0x04: // NOT EQUAL
2865 case 0x07: // ORDERED
2869 // The indices of the commutable operands are 1 and 2 (or 2 and 3
2871 // Assign them to the returned operand indices here.
2872 return fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, 1 + OpOffset
,
2876 // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can
2877 // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since
2878 // AVX implies sse4.1.
2879 if (Subtarget
.hasSSE41())
2880 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2882 case X86::SHUFPDrri
:
2883 // We can commute this to MOVSD.
2884 if (MI
.getOperand(3).getImm() == 0x02)
2885 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2887 case X86::MOVHLPSrr
:
2888 case X86::UNPCKHPDrr
:
2889 case X86::VMOVHLPSrr
:
2890 case X86::VUNPCKHPDrr
:
2891 case X86::VMOVHLPSZrr
:
2892 case X86::VUNPCKHPDZ128rr
:
2893 if (Subtarget
.hasSSE2())
2894 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2896 case X86::VPTERNLOGDZrri
:
2897 case X86::VPTERNLOGDZrmi
:
2898 case X86::VPTERNLOGDZ128rri
:
2899 case X86::VPTERNLOGDZ128rmi
:
2900 case X86::VPTERNLOGDZ256rri
:
2901 case X86::VPTERNLOGDZ256rmi
:
2902 case X86::VPTERNLOGQZrri
:
2903 case X86::VPTERNLOGQZrmi
:
2904 case X86::VPTERNLOGQZ128rri
:
2905 case X86::VPTERNLOGQZ128rmi
:
2906 case X86::VPTERNLOGQZ256rri
:
2907 case X86::VPTERNLOGQZ256rmi
:
2908 case X86::VPTERNLOGDZrrik
:
2909 case X86::VPTERNLOGDZ128rrik
:
2910 case X86::VPTERNLOGDZ256rrik
:
2911 case X86::VPTERNLOGQZrrik
:
2912 case X86::VPTERNLOGQZ128rrik
:
2913 case X86::VPTERNLOGQZ256rrik
:
2914 case X86::VPTERNLOGDZrrikz
:
2915 case X86::VPTERNLOGDZrmikz
:
2916 case X86::VPTERNLOGDZ128rrikz
:
2917 case X86::VPTERNLOGDZ128rmikz
:
2918 case X86::VPTERNLOGDZ256rrikz
:
2919 case X86::VPTERNLOGDZ256rmikz
:
2920 case X86::VPTERNLOGQZrrikz
:
2921 case X86::VPTERNLOGQZrmikz
:
2922 case X86::VPTERNLOGQZ128rrikz
:
2923 case X86::VPTERNLOGQZ128rmikz
:
2924 case X86::VPTERNLOGQZ256rrikz
:
2925 case X86::VPTERNLOGQZ256rmikz
:
2926 case X86::VPTERNLOGDZ128rmbi
:
2927 case X86::VPTERNLOGDZ256rmbi
:
2928 case X86::VPTERNLOGDZrmbi
:
2929 case X86::VPTERNLOGQZ128rmbi
:
2930 case X86::VPTERNLOGQZ256rmbi
:
2931 case X86::VPTERNLOGQZrmbi
:
2932 case X86::VPTERNLOGDZ128rmbikz
:
2933 case X86::VPTERNLOGDZ256rmbikz
:
2934 case X86::VPTERNLOGDZrmbikz
:
2935 case X86::VPTERNLOGQZ128rmbikz
:
2936 case X86::VPTERNLOGQZ256rmbikz
:
2937 case X86::VPTERNLOGQZrmbikz
:
2938 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
2939 case X86::VPDPWSSDYrr
:
2940 case X86::VPDPWSSDrr
:
2941 case X86::VPDPWSSDSYrr
:
2942 case X86::VPDPWSSDSrr
:
2943 case X86::VPDPWUUDrr
:
2944 case X86::VPDPWUUDYrr
:
2945 case X86::VPDPWUUDSrr
:
2946 case X86::VPDPWUUDSYrr
:
2947 case X86::VPDPBSSDSrr
:
2948 case X86::VPDPBSSDSYrr
:
2949 case X86::VPDPBSSDrr
:
2950 case X86::VPDPBSSDYrr
:
2951 case X86::VPDPBUUDSrr
:
2952 case X86::VPDPBUUDSYrr
:
2953 case X86::VPDPBUUDrr
:
2954 case X86::VPDPBUUDYrr
:
2955 case X86::VPDPBSSDSZ128r
:
2956 case X86::VPDPBSSDSZ128rk
:
2957 case X86::VPDPBSSDSZ128rkz
:
2958 case X86::VPDPBSSDSZ256r
:
2959 case X86::VPDPBSSDSZ256rk
:
2960 case X86::VPDPBSSDSZ256rkz
:
2961 case X86::VPDPBSSDSZr
:
2962 case X86::VPDPBSSDSZrk
:
2963 case X86::VPDPBSSDSZrkz
:
2964 case X86::VPDPBSSDZ128r
:
2965 case X86::VPDPBSSDZ128rk
:
2966 case X86::VPDPBSSDZ128rkz
:
2967 case X86::VPDPBSSDZ256r
:
2968 case X86::VPDPBSSDZ256rk
:
2969 case X86::VPDPBSSDZ256rkz
:
2970 case X86::VPDPBSSDZr
:
2971 case X86::VPDPBSSDZrk
:
2972 case X86::VPDPBSSDZrkz
:
2973 case X86::VPDPBUUDSZ128r
:
2974 case X86::VPDPBUUDSZ128rk
:
2975 case X86::VPDPBUUDSZ128rkz
:
2976 case X86::VPDPBUUDSZ256r
:
2977 case X86::VPDPBUUDSZ256rk
:
2978 case X86::VPDPBUUDSZ256rkz
:
2979 case X86::VPDPBUUDSZr
:
2980 case X86::VPDPBUUDSZrk
:
2981 case X86::VPDPBUUDSZrkz
:
2982 case X86::VPDPBUUDZ128r
:
2983 case X86::VPDPBUUDZ128rk
:
2984 case X86::VPDPBUUDZ128rkz
:
2985 case X86::VPDPBUUDZ256r
:
2986 case X86::VPDPBUUDZ256rk
:
2987 case X86::VPDPBUUDZ256rkz
:
2988 case X86::VPDPBUUDZr
:
2989 case X86::VPDPBUUDZrk
:
2990 case X86::VPDPBUUDZrkz
:
2991 case X86::VPDPWSSDZ128r
:
2992 case X86::VPDPWSSDZ128rk
:
2993 case X86::VPDPWSSDZ128rkz
:
2994 case X86::VPDPWSSDZ256r
:
2995 case X86::VPDPWSSDZ256rk
:
2996 case X86::VPDPWSSDZ256rkz
:
2997 case X86::VPDPWSSDZr
:
2998 case X86::VPDPWSSDZrk
:
2999 case X86::VPDPWSSDZrkz
:
3000 case X86::VPDPWSSDSZ128r
:
3001 case X86::VPDPWSSDSZ128rk
:
3002 case X86::VPDPWSSDSZ128rkz
:
3003 case X86::VPDPWSSDSZ256r
:
3004 case X86::VPDPWSSDSZ256rk
:
3005 case X86::VPDPWSSDSZ256rkz
:
3006 case X86::VPDPWSSDSZr
:
3007 case X86::VPDPWSSDSZrk
:
3008 case X86::VPDPWSSDSZrkz
:
3009 case X86::VPDPWUUDZ128r
:
3010 case X86::VPDPWUUDZ128rk
:
3011 case X86::VPDPWUUDZ128rkz
:
3012 case X86::VPDPWUUDZ256r
:
3013 case X86::VPDPWUUDZ256rk
:
3014 case X86::VPDPWUUDZ256rkz
:
3015 case X86::VPDPWUUDZr
:
3016 case X86::VPDPWUUDZrk
:
3017 case X86::VPDPWUUDZrkz
:
3018 case X86::VPDPWUUDSZ128r
:
3019 case X86::VPDPWUUDSZ128rk
:
3020 case X86::VPDPWUUDSZ128rkz
:
3021 case X86::VPDPWUUDSZ256r
:
3022 case X86::VPDPWUUDSZ256rk
:
3023 case X86::VPDPWUUDSZ256rkz
:
3024 case X86::VPDPWUUDSZr
:
3025 case X86::VPDPWUUDSZrk
:
3026 case X86::VPDPWUUDSZrkz
:
3027 case X86::VPMADD52HUQrr
:
3028 case X86::VPMADD52HUQYrr
:
3029 case X86::VPMADD52HUQZ128r
:
3030 case X86::VPMADD52HUQZ128rk
:
3031 case X86::VPMADD52HUQZ128rkz
:
3032 case X86::VPMADD52HUQZ256r
:
3033 case X86::VPMADD52HUQZ256rk
:
3034 case X86::VPMADD52HUQZ256rkz
:
3035 case X86::VPMADD52HUQZr
:
3036 case X86::VPMADD52HUQZrk
:
3037 case X86::VPMADD52HUQZrkz
:
3038 case X86::VPMADD52LUQrr
:
3039 case X86::VPMADD52LUQYrr
:
3040 case X86::VPMADD52LUQZ128r
:
3041 case X86::VPMADD52LUQZ128rk
:
3042 case X86::VPMADD52LUQZ128rkz
:
3043 case X86::VPMADD52LUQZ256r
:
3044 case X86::VPMADD52LUQZ256rk
:
3045 case X86::VPMADD52LUQZ256rkz
:
3046 case X86::VPMADD52LUQZr
:
3047 case X86::VPMADD52LUQZrk
:
3048 case X86::VPMADD52LUQZrkz
:
3049 case X86::VFMADDCPHZr
:
3050 case X86::VFMADDCPHZrk
:
3051 case X86::VFMADDCPHZrkz
:
3052 case X86::VFMADDCPHZ128r
:
3053 case X86::VFMADDCPHZ128rk
:
3054 case X86::VFMADDCPHZ128rkz
:
3055 case X86::VFMADDCPHZ256r
:
3056 case X86::VFMADDCPHZ256rk
:
3057 case X86::VFMADDCPHZ256rkz
:
3058 case X86::VFMADDCSHZr
:
3059 case X86::VFMADDCSHZrk
:
3060 case X86::VFMADDCSHZrkz
: {
3061 unsigned CommutableOpIdx1
= 2;
3062 unsigned CommutableOpIdx2
= 3;
3063 if (X86II::isKMasked(Desc
.TSFlags
)) {
3064 // Skip the mask register.
3068 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, CommutableOpIdx1
,
3071 if (!MI
.getOperand(SrcOpIdx1
).isReg() || !MI
.getOperand(SrcOpIdx2
).isReg())
3078 const X86InstrFMA3Group
*FMA3Group
=
3079 getFMA3Group(MI
.getOpcode(), MI
.getDesc().TSFlags
);
3081 return findThreeSrcCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
,
3082 FMA3Group
->isIntrinsic());
3084 // Handled masked instructions since we need to skip over the mask input
3085 // and the preserved input.
3086 if (X86II::isKMasked(Desc
.TSFlags
)) {
3087 // First assume that the first input is the mask operand and skip past it.
3088 unsigned CommutableOpIdx1
= Desc
.getNumDefs() + 1;
3089 unsigned CommutableOpIdx2
= Desc
.getNumDefs() + 2;
3090 // Check if the first input is tied. If there isn't one then we only
3091 // need to skip the mask operand which we did above.
3092 if ((MI
.getDesc().getOperandConstraint(Desc
.getNumDefs(),
3093 MCOI::TIED_TO
) != -1)) {
3094 // If this is zero masking instruction with a tied operand, we need to
3095 // move the first index back to the first input since this must
3096 // be a 3 input instruction and we want the first two non-mask inputs.
3097 // Otherwise this is a 2 input instruction with a preserved input and
3098 // mask, so we need to move the indices to skip one more input.
3099 if (X86II::isKMergeMasked(Desc
.TSFlags
)) {
3107 if (!fixCommutedOpIndices(SrcOpIdx1
, SrcOpIdx2
, CommutableOpIdx1
,
3111 if (!MI
.getOperand(SrcOpIdx1
).isReg() ||
3112 !MI
.getOperand(SrcOpIdx2
).isReg())
3118 return TargetInstrInfo::findCommutedOpIndices(MI
, SrcOpIdx1
, SrcOpIdx2
);
3123 static bool isConvertibleLEA(MachineInstr
*MI
) {
3124 unsigned Opcode
= MI
->getOpcode();
3125 if (Opcode
!= X86::LEA32r
&& Opcode
!= X86::LEA64r
&&
3126 Opcode
!= X86::LEA64_32r
)
3129 const MachineOperand
&Scale
= MI
->getOperand(1 + X86::AddrScaleAmt
);
3130 const MachineOperand
&Disp
= MI
->getOperand(1 + X86::AddrDisp
);
3131 const MachineOperand
&Segment
= MI
->getOperand(1 + X86::AddrSegmentReg
);
3133 if (Segment
.getReg() != 0 || !Disp
.isImm() || Disp
.getImm() != 0 ||
3140 bool X86InstrInfo::hasCommutePreference(MachineInstr
&MI
, bool &Commute
) const {
3141 // Currently we're interested in following sequence only.
3144 // Both r3 and r4 are killed in add, we hope the add instruction has the
3147 // So later in X86FixupLEAs the lea instruction can be rewritten as add.
3148 unsigned Opcode
= MI
.getOpcode();
3149 if (Opcode
!= X86::ADD32rr
&& Opcode
!= X86::ADD64rr
)
3152 const MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
3153 Register Reg1
= MI
.getOperand(1).getReg();
3154 Register Reg2
= MI
.getOperand(2).getReg();
3156 // Check if Reg1 comes from LEA in the same MBB.
3157 if (MachineInstr
*Inst
= MRI
.getUniqueVRegDef(Reg1
)) {
3158 if (isConvertibleLEA(Inst
) && Inst
->getParent() == MI
.getParent()) {
3164 // Check if Reg2 comes from LEA in the same MBB.
3165 if (MachineInstr
*Inst
= MRI
.getUniqueVRegDef(Reg2
)) {
3166 if (isConvertibleLEA(Inst
) && Inst
->getParent() == MI
.getParent()) {
3175 int X86::getCondSrcNoFromDesc(const MCInstrDesc
&MCID
) {
3176 unsigned Opcode
= MCID
.getOpcode();
3177 if (!(X86::isJCC(Opcode
) || X86::isSETCC(Opcode
) || X86::isSETZUCC(Opcode
) ||
3178 X86::isCMOVCC(Opcode
) || X86::isCFCMOVCC(Opcode
) ||
3179 X86::isCCMPCC(Opcode
) || X86::isCTESTCC(Opcode
)))
3181 // Assume that condition code is always the last use operand.
3182 unsigned NumUses
= MCID
.getNumOperands() - MCID
.getNumDefs();
3186 X86::CondCode
X86::getCondFromMI(const MachineInstr
&MI
) {
3187 const MCInstrDesc
&MCID
= MI
.getDesc();
3188 int CondNo
= getCondSrcNoFromDesc(MCID
);
3190 return X86::COND_INVALID
;
3191 CondNo
+= MCID
.getNumDefs();
3192 return static_cast<X86::CondCode
>(MI
.getOperand(CondNo
).getImm());
3195 X86::CondCode
X86::getCondFromBranch(const MachineInstr
&MI
) {
3196 return X86::isJCC(MI
.getOpcode()) ? X86::getCondFromMI(MI
)
3197 : X86::COND_INVALID
;
3200 X86::CondCode
X86::getCondFromSETCC(const MachineInstr
&MI
) {
3201 return X86::isSETCC(MI
.getOpcode()) || X86::isSETZUCC(MI
.getOpcode())
3202 ? X86::getCondFromMI(MI
)
3203 : X86::COND_INVALID
;
3206 X86::CondCode
X86::getCondFromCMov(const MachineInstr
&MI
) {
3207 return X86::isCMOVCC(MI
.getOpcode()) ? X86::getCondFromMI(MI
)
3208 : X86::COND_INVALID
;
3211 X86::CondCode
X86::getCondFromCFCMov(const MachineInstr
&MI
) {
3212 return X86::isCFCMOVCC(MI
.getOpcode()) ? X86::getCondFromMI(MI
)
3213 : X86::COND_INVALID
;
3216 X86::CondCode
X86::getCondFromCCMP(const MachineInstr
&MI
) {
3217 return X86::isCCMPCC(MI
.getOpcode()) || X86::isCTESTCC(MI
.getOpcode())
3218 ? X86::getCondFromMI(MI
)
3219 : X86::COND_INVALID
;
3222 int X86::getCCMPCondFlagsFromCondCode(X86::CondCode CC
) {
3223 // CCMP/CTEST has two conditional operands:
3224 // - SCC: source conditonal code (same as CMOV)
3225 // - DCF: destination conditional flags, which has 4 valid bits
3227 // +----+----+----+----+
3228 // | OF | SF | ZF | CF |
3229 // +----+----+----+----+
3231 // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates
3232 // the conditional flags by as follows:
3239 // AF = 0 (Auxiliary Carry Flag)
3241 // Otherwise, the CMP or TEST is executed and it updates the
3242 // CSPAZO flags normally.
3245 // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value.
3246 // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value.
3248 enum { CF
= 1, ZF
= 2, SF
= 4, OF
= 8, PF
= CF
};
3252 llvm_unreachable("Illegal condition code!");
3279 #define GET_X86_NF_TRANSFORM_TABLE
3280 #define GET_X86_ND2NONND_TABLE
3281 #include "X86GenInstrMapping.inc"
3283 static unsigned getNewOpcFromTable(ArrayRef
<X86TableEntry
> Table
,
3285 const auto I
= llvm::lower_bound(Table
, Opc
);
3286 return (I
== Table
.end() || I
->OldOpc
!= Opc
) ? 0U : I
->NewOpc
;
3288 unsigned X86::getNFVariant(unsigned Opc
) {
3289 return getNewOpcFromTable(X86NFTransformTable
, Opc
);
3292 unsigned X86::getNonNDVariant(unsigned Opc
) {
3293 return getNewOpcFromTable(X86ND2NonNDTable
, Opc
);
3296 /// Return the inverse of the specified condition,
3297 /// e.g. turning COND_E to COND_NE.
3298 X86::CondCode
X86::GetOppositeBranchCondition(X86::CondCode CC
) {
3301 llvm_unreachable("Illegal condition code!");
3303 return X86::COND_NE
;
3307 return X86::COND_GE
;
3311 return X86::COND_LE
;
3315 return X86::COND_AE
;
3319 return X86::COND_BE
;
3323 return X86::COND_NS
;
3327 return X86::COND_NP
;
3331 return X86::COND_NO
;
3334 case X86::COND_NE_OR_P
:
3335 return X86::COND_E_AND_NP
;
3336 case X86::COND_E_AND_NP
:
3337 return X86::COND_NE_OR_P
;
3341 /// Assuming the flags are set by MI(a,b), return the condition code if we
3342 /// modify the instructions such that flags are set by MI(b,a).
3343 static X86::CondCode
getSwappedCondition(X86::CondCode CC
) {
3346 return X86::COND_INVALID
;
3350 return X86::COND_NE
;
3354 return X86::COND_GE
;
3358 return X86::COND_LE
;
3362 return X86::COND_AE
;
3366 return X86::COND_BE
;
3370 std::pair
<X86::CondCode
, bool>
3371 X86::getX86ConditionCode(CmpInst::Predicate Predicate
) {
3372 X86::CondCode CC
= X86::COND_INVALID
;
3373 bool NeedSwap
= false;
3374 switch (Predicate
) {
3377 // Floating-point Predicates
3378 case CmpInst::FCMP_UEQ
:
3381 case CmpInst::FCMP_OLT
:
3384 case CmpInst::FCMP_OGT
:
3387 case CmpInst::FCMP_OLE
:
3390 case CmpInst::FCMP_OGE
:
3393 case CmpInst::FCMP_UGT
:
3396 case CmpInst::FCMP_ULT
:
3399 case CmpInst::FCMP_UGE
:
3402 case CmpInst::FCMP_ULE
:
3405 case CmpInst::FCMP_ONE
:
3408 case CmpInst::FCMP_UNO
:
3411 case CmpInst::FCMP_ORD
:
3414 case CmpInst::FCMP_OEQ
:
3416 case CmpInst::FCMP_UNE
:
3417 CC
= X86::COND_INVALID
;
3420 // Integer Predicates
3421 case CmpInst::ICMP_EQ
:
3424 case CmpInst::ICMP_NE
:
3427 case CmpInst::ICMP_UGT
:
3430 case CmpInst::ICMP_UGE
:
3433 case CmpInst::ICMP_ULT
:
3436 case CmpInst::ICMP_ULE
:
3439 case CmpInst::ICMP_SGT
:
3442 case CmpInst::ICMP_SGE
:
3445 case CmpInst::ICMP_SLT
:
3448 case CmpInst::ICMP_SLE
:
3453 return std::make_pair(CC
, NeedSwap
);
3456 /// Return a cmov opcode for the given register size in bytes, and operand type.
3457 unsigned X86::getCMovOpcode(unsigned RegBytes
, bool HasMemoryOperand
,
3461 llvm_unreachable("Illegal register size!");
3462 #define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC)
3464 return HasMemoryOperand
? GET_ND_IF_ENABLED(X86::CMOV16rm
)
3465 : GET_ND_IF_ENABLED(X86::CMOV16rr
);
3467 return HasMemoryOperand
? GET_ND_IF_ENABLED(X86::CMOV32rm
)
3468 : GET_ND_IF_ENABLED(X86::CMOV32rr
);
3470 return HasMemoryOperand
? GET_ND_IF_ENABLED(X86::CMOV64rm
)
3471 : GET_ND_IF_ENABLED(X86::CMOV64rr
);
3475 /// Get the VPCMP immediate for the given condition.
3476 unsigned X86::getVPCMPImmForCond(ISD::CondCode CC
) {
3479 llvm_unreachable("Unexpected SETCC condition");
3499 /// Get the VPCMP immediate if the operands are swapped.
3500 unsigned X86::getSwappedVPCMPImm(unsigned Imm
) {
3503 llvm_unreachable("Unreachable!");
3526 /// Get the VPCOM immediate if the operands are swapped.
3527 unsigned X86::getSwappedVPCOMImm(unsigned Imm
) {
3530 llvm_unreachable("Unreachable!");
3553 /// Get the VCMP immediate if the operands are swapped.
3554 unsigned X86::getSwappedVCMPImm(unsigned Imm
) {
3555 // Only need the lower 2 bits to distinquish.
3556 switch (Imm
& 0x3) {
3558 llvm_unreachable("Unreachable!");
3561 // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted.
3565 // Need to toggle bits 3:0. Bit 4 stays the same.
3573 unsigned X86::getVectorRegisterWidth(const MCOperandInfo
&Info
) {
3574 if (Info
.RegClass
== X86::VR128RegClassID
||
3575 Info
.RegClass
== X86::VR128XRegClassID
)
3577 if (Info
.RegClass
== X86::VR256RegClassID
||
3578 Info
.RegClass
== X86::VR256XRegClassID
)
3580 if (Info
.RegClass
== X86::VR512RegClassID
)
3582 llvm_unreachable("Unknown register class!");
3585 /// Return true if the Reg is X87 register.
3586 static bool isX87Reg(unsigned Reg
) {
3587 return (Reg
== X86::FPCW
|| Reg
== X86::FPSW
||
3588 (Reg
>= X86::ST0
&& Reg
<= X86::ST7
));
3591 /// check if the instruction is X87 instruction
3592 bool X86::isX87Instruction(MachineInstr
&MI
) {
3593 // Call and inlineasm defs X87 register, so we special case it here because
3594 // otherwise calls are incorrectly flagged as x87 instructions
3596 if (MI
.isCall() || MI
.isInlineAsm())
3598 for (const MachineOperand
&MO
: MI
.operands()) {
3601 if (isX87Reg(MO
.getReg()))
3607 int X86::getFirstAddrOperandIdx(const MachineInstr
&MI
) {
3608 auto IsMemOp
= [](const MCOperandInfo
&OpInfo
) {
3609 return OpInfo
.OperandType
== MCOI::OPERAND_MEMORY
;
3612 const MCInstrDesc
&Desc
= MI
.getDesc();
3614 // Directly invoke the MC-layer routine for real (i.e., non-pseudo)
3615 // instructions (fast case).
3616 if (!X86II::isPseudo(Desc
.TSFlags
)) {
3617 int MemRefIdx
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
3619 return MemRefIdx
+ X86II::getOperandBias(Desc
);
3620 #ifdef EXPENSIVE_CHECKS
3621 assert(none_of(Desc
.operands(), IsMemOp
) &&
3622 "Got false negative from X86II::getMemoryOperandNo()!");
3627 // Otherwise, handle pseudo instructions by examining the type of their
3628 // operands (slow case). An instruction cannot have a memory reference if it
3629 // has fewer than AddrNumOperands (= 5) explicit operands.
3630 unsigned NumOps
= Desc
.getNumOperands();
3631 if (NumOps
< X86::AddrNumOperands
) {
3632 #ifdef EXPENSIVE_CHECKS
3633 assert(none_of(Desc
.operands(), IsMemOp
) &&
3634 "Expected no operands to have OPERAND_MEMORY type!");
3639 // The first operand with type OPERAND_MEMORY indicates the start of a memory
3640 // reference. We expect the following AddrNumOperand-1 operands to also have
3641 // OPERAND_MEMORY type.
3642 for (unsigned I
= 0, E
= NumOps
- X86::AddrNumOperands
; I
!= E
; ++I
) {
3643 if (IsMemOp(Desc
.operands()[I
])) {
3644 #ifdef EXPENSIVE_CHECKS
3645 assert(std::all_of(Desc
.operands().begin() + I
,
3646 Desc
.operands().begin() + I
+ X86::AddrNumOperands
,
3648 "Expected all five operands in the memory reference to have "
3649 "OPERAND_MEMORY type!");
3658 const Constant
*X86::getConstantFromPool(const MachineInstr
&MI
,
3660 assert(MI
.getNumOperands() >= (OpNo
+ X86::AddrNumOperands
) &&
3661 "Unexpected number of operands!");
3663 const MachineOperand
&Index
= MI
.getOperand(OpNo
+ X86::AddrIndexReg
);
3664 if (!Index
.isReg() || Index
.getReg() != X86::NoRegister
)
3667 const MachineOperand
&Disp
= MI
.getOperand(OpNo
+ X86::AddrDisp
);
3668 if (!Disp
.isCPI() || Disp
.getOffset() != 0)
3671 ArrayRef
<MachineConstantPoolEntry
> Constants
=
3672 MI
.getParent()->getParent()->getConstantPool()->getConstants();
3673 const MachineConstantPoolEntry
&ConstantEntry
= Constants
[Disp
.getIndex()];
3675 // Bail if this is a machine constant pool entry, we won't be able to dig out
3677 if (ConstantEntry
.isMachineConstantPoolEntry())
3680 return ConstantEntry
.Val
.ConstVal
;
3683 bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr
&MI
) const {
3684 switch (MI
.getOpcode()) {
3685 case X86::TCRETURNdi
:
3686 case X86::TCRETURNri
:
3687 case X86::TCRETURNmi
:
3688 case X86::TCRETURNdi64
:
3689 case X86::TCRETURNri64
:
3690 case X86::TCRETURNmi64
:
3697 bool X86InstrInfo::canMakeTailCallConditional(
3698 SmallVectorImpl
<MachineOperand
> &BranchCond
,
3699 const MachineInstr
&TailCall
) const {
3701 const MachineFunction
*MF
= TailCall
.getMF();
3703 if (MF
->getTarget().getCodeModel() == CodeModel::Kernel
) {
3704 // Kernel patches thunk calls in runtime, these should never be conditional.
3705 const MachineOperand
&Target
= TailCall
.getOperand(0);
3706 if (Target
.isSymbol()) {
3707 StringRef
Symbol(Target
.getSymbolName());
3708 // this is currently only relevant to r11/kernel indirect thunk.
3709 if (Symbol
== "__x86_indirect_thunk_r11")
3714 if (TailCall
.getOpcode() != X86::TCRETURNdi
&&
3715 TailCall
.getOpcode() != X86::TCRETURNdi64
) {
3716 // Only direct calls can be done with a conditional branch.
3720 if (Subtarget
.isTargetWin64() && MF
->hasWinCFI()) {
3721 // Conditional tail calls confuse the Win64 unwinder.
3725 assert(BranchCond
.size() == 1);
3726 if (BranchCond
[0].getImm() > X86::LAST_VALID_COND
) {
3727 // Can't make a conditional tail call with this condition.
3731 const X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
3732 if (X86FI
->getTCReturnAddrDelta() != 0 ||
3733 TailCall
.getOperand(1).getImm() != 0) {
3734 // A conditional tail call cannot do any stack adjustment.
3741 void X86InstrInfo::replaceBranchWithTailCall(
3742 MachineBasicBlock
&MBB
, SmallVectorImpl
<MachineOperand
> &BranchCond
,
3743 const MachineInstr
&TailCall
) const {
3744 assert(canMakeTailCallConditional(BranchCond
, TailCall
));
3746 MachineBasicBlock::iterator I
= MBB
.end();
3747 while (I
!= MBB
.begin()) {
3749 if (I
->isDebugInstr())
3752 assert(0 && "Can't find the branch to replace!");
3754 X86::CondCode CC
= X86::getCondFromBranch(*I
);
3755 assert(BranchCond
.size() == 1);
3756 if (CC
!= BranchCond
[0].getImm())
3762 unsigned Opc
= TailCall
.getOpcode() == X86::TCRETURNdi
? X86::TCRETURNdicc
3763 : X86::TCRETURNdi64cc
;
3765 auto MIB
= BuildMI(MBB
, I
, MBB
.findDebugLoc(I
), get(Opc
));
3766 MIB
->addOperand(TailCall
.getOperand(0)); // Destination.
3767 MIB
.addImm(0); // Stack offset (not used).
3768 MIB
->addOperand(BranchCond
[0]); // Condition.
3769 MIB
.copyImplicitOps(TailCall
); // Regmask and (imp-used) parameters.
3771 // Add implicit uses and defs of all live regs potentially clobbered by the
3772 // call. This way they still appear live across the call.
3773 LivePhysRegs
LiveRegs(getRegisterInfo());
3774 LiveRegs
.addLiveOuts(MBB
);
3775 SmallVector
<std::pair
<MCPhysReg
, const MachineOperand
*>, 8> Clobbers
;
3776 LiveRegs
.stepForward(*MIB
, Clobbers
);
3777 for (const auto &C
: Clobbers
) {
3778 MIB
.addReg(C
.first
, RegState::Implicit
);
3779 MIB
.addReg(C
.first
, RegState::Implicit
| RegState::Define
);
3782 I
->eraseFromParent();
3785 // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may
3786 // not be a fallthrough MBB now due to layout changes). Return nullptr if the
3787 // fallthrough MBB cannot be identified.
3788 static MachineBasicBlock
*getFallThroughMBB(MachineBasicBlock
*MBB
,
3789 MachineBasicBlock
*TBB
) {
3790 // Look for non-EHPad successors other than TBB. If we find exactly one, it
3791 // is the fallthrough MBB. If we find zero, then TBB is both the target MBB
3792 // and fallthrough MBB. If we find more than one, we cannot identify the
3793 // fallthrough MBB and should return nullptr.
3794 MachineBasicBlock
*FallthroughBB
= nullptr;
3795 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
3796 if (Succ
->isEHPad() || (Succ
== TBB
&& FallthroughBB
))
3798 // Return a nullptr if we found more than one fallthrough successor.
3799 if (FallthroughBB
&& FallthroughBB
!= TBB
)
3801 FallthroughBB
= Succ
;
3803 return FallthroughBB
;
3806 bool X86InstrInfo::analyzeBranchImpl(
3807 MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
, MachineBasicBlock
*&FBB
,
3808 SmallVectorImpl
<MachineOperand
> &Cond
,
3809 SmallVectorImpl
<MachineInstr
*> &CondBranches
, bool AllowModify
) const {
3811 // Start from the bottom of the block and work up, examining the
3812 // terminator instructions.
3813 MachineBasicBlock::iterator I
= MBB
.end();
3814 MachineBasicBlock::iterator UnCondBrIter
= MBB
.end();
3815 while (I
!= MBB
.begin()) {
3817 if (I
->isDebugInstr())
3820 // Working from the bottom, when we see a non-terminator instruction, we're
3822 if (!isUnpredicatedTerminator(*I
))
3825 // A terminator that isn't a branch can't easily be handled by this
3830 // Handle unconditional branches.
3831 if (I
->getOpcode() == X86::JMP_1
) {
3835 TBB
= I
->getOperand(0).getMBB();
3839 // If the block has any instructions after a JMP, delete them.
3840 MBB
.erase(std::next(I
), MBB
.end());
3845 // Delete the JMP if it's equivalent to a fall-through.
3846 if (MBB
.isLayoutSuccessor(I
->getOperand(0).getMBB())) {
3848 I
->eraseFromParent();
3850 UnCondBrIter
= MBB
.end();
3854 // TBB is used to indicate the unconditional destination.
3855 TBB
= I
->getOperand(0).getMBB();
3859 // Handle conditional branches.
3860 X86::CondCode BranchCode
= X86::getCondFromBranch(*I
);
3861 if (BranchCode
== X86::COND_INVALID
)
3862 return true; // Can't handle indirect branch.
3864 // In practice we should never have an undef eflags operand, if we do
3865 // abort here as we are not prepared to preserve the flag.
3866 if (I
->findRegisterUseOperand(X86::EFLAGS
, /*TRI=*/nullptr)->isUndef())
3869 // Working from the bottom, handle the first conditional branch.
3872 TBB
= I
->getOperand(0).getMBB();
3873 Cond
.push_back(MachineOperand::CreateImm(BranchCode
));
3874 CondBranches
.push_back(&*I
);
3878 // Handle subsequent conditional branches. Only handle the case where all
3879 // conditional branches branch to the same destination and their condition
3880 // opcodes fit one of the special multi-branch idioms.
3881 assert(Cond
.size() == 1);
3884 // If the conditions are the same, we can leave them alone.
3885 X86::CondCode OldBranchCode
= (X86::CondCode
)Cond
[0].getImm();
3886 auto NewTBB
= I
->getOperand(0).getMBB();
3887 if (OldBranchCode
== BranchCode
&& TBB
== NewTBB
)
3890 // If they differ, see if they fit one of the known patterns. Theoretically,
3891 // we could handle more patterns here, but we shouldn't expect to see them
3892 // if instruction selection has done a reasonable job.
3893 if (TBB
== NewTBB
&&
3894 ((OldBranchCode
== X86::COND_P
&& BranchCode
== X86::COND_NE
) ||
3895 (OldBranchCode
== X86::COND_NE
&& BranchCode
== X86::COND_P
))) {
3896 BranchCode
= X86::COND_NE_OR_P
;
3897 } else if ((OldBranchCode
== X86::COND_NP
&& BranchCode
== X86::COND_NE
) ||
3898 (OldBranchCode
== X86::COND_E
&& BranchCode
== X86::COND_P
)) {
3899 if (NewTBB
!= (FBB
? FBB
: getFallThroughMBB(&MBB
, TBB
)))
3902 // X86::COND_E_AND_NP usually has two different branch destinations.
3910 // Here this condition branches to B2 only if NP && E. It has another
3919 // Similarly it branches to B2 only if E && NP. That is why this condition
3920 // is named with COND_E_AND_NP.
3921 BranchCode
= X86::COND_E_AND_NP
;
3925 // Update the MachineOperand.
3926 Cond
[0].setImm(BranchCode
);
3927 CondBranches
.push_back(&*I
);
3933 bool X86InstrInfo::analyzeBranch(MachineBasicBlock
&MBB
,
3934 MachineBasicBlock
*&TBB
,
3935 MachineBasicBlock
*&FBB
,
3936 SmallVectorImpl
<MachineOperand
> &Cond
,
3937 bool AllowModify
) const {
3938 SmallVector
<MachineInstr
*, 4> CondBranches
;
3939 return analyzeBranchImpl(MBB
, TBB
, FBB
, Cond
, CondBranches
, AllowModify
);
3942 static int getJumpTableIndexFromAddr(const MachineInstr
&MI
) {
3943 const MCInstrDesc
&Desc
= MI
.getDesc();
3944 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
3945 assert(MemRefBegin
>= 0 && "instr should have memory operand");
3946 MemRefBegin
+= X86II::getOperandBias(Desc
);
3948 const MachineOperand
&MO
= MI
.getOperand(MemRefBegin
+ X86::AddrDisp
);
3952 return MO
.getIndex();
3955 static int getJumpTableIndexFromReg(const MachineRegisterInfo
&MRI
,
3957 if (!Reg
.isVirtual())
3959 MachineInstr
*MI
= MRI
.getUniqueVRegDef(Reg
);
3962 unsigned Opcode
= MI
->getOpcode();
3963 if (Opcode
!= X86::LEA64r
&& Opcode
!= X86::LEA32r
)
3965 return getJumpTableIndexFromAddr(*MI
);
3968 int X86InstrInfo::getJumpTableIndex(const MachineInstr
&MI
) const {
3969 unsigned Opcode
= MI
.getOpcode();
3970 // Switch-jump pattern for non-PIC code looks like:
3971 // JMP64m $noreg, 8, %X, %jump-table.X, $noreg
3972 if (Opcode
== X86::JMP64m
|| Opcode
== X86::JMP32m
) {
3973 return getJumpTableIndexFromAddr(MI
);
3975 // The pattern for PIC code looks like:
3976 // %0 = LEA64r $rip, 1, $noreg, %jump-table.X
3977 // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg
3978 // %2 = ADD64rr %1, %0
3980 if (Opcode
== X86::JMP64r
|| Opcode
== X86::JMP32r
) {
3981 Register Reg
= MI
.getOperand(0).getReg();
3982 if (!Reg
.isVirtual())
3984 const MachineFunction
&MF
= *MI
.getParent()->getParent();
3985 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
3986 MachineInstr
*Add
= MRI
.getUniqueVRegDef(Reg
);
3989 if (Add
->getOpcode() != X86::ADD64rr
&& Add
->getOpcode() != X86::ADD32rr
)
3991 int JTI1
= getJumpTableIndexFromReg(MRI
, Add
->getOperand(1).getReg());
3994 int JTI2
= getJumpTableIndexFromReg(MRI
, Add
->getOperand(2).getReg());
4001 bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock
&MBB
,
4002 MachineBranchPredicate
&MBP
,
4003 bool AllowModify
) const {
4004 using namespace std::placeholders
;
4006 SmallVector
<MachineOperand
, 4> Cond
;
4007 SmallVector
<MachineInstr
*, 4> CondBranches
;
4008 if (analyzeBranchImpl(MBB
, MBP
.TrueDest
, MBP
.FalseDest
, Cond
, CondBranches
,
4012 if (Cond
.size() != 1)
4015 assert(MBP
.TrueDest
&& "expected!");
4018 MBP
.FalseDest
= MBB
.getNextNode();
4020 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4022 MachineInstr
*ConditionDef
= nullptr;
4023 bool SingleUseCondition
= true;
4025 for (MachineInstr
&MI
: llvm::drop_begin(llvm::reverse(MBB
))) {
4026 if (MI
.modifiesRegister(X86::EFLAGS
, TRI
)) {
4031 if (MI
.readsRegister(X86::EFLAGS
, TRI
))
4032 SingleUseCondition
= false;
4038 if (SingleUseCondition
) {
4039 for (auto *Succ
: MBB
.successors())
4040 if (Succ
->isLiveIn(X86::EFLAGS
))
4041 SingleUseCondition
= false;
4044 MBP
.ConditionDef
= ConditionDef
;
4045 MBP
.SingleUseCondition
= SingleUseCondition
;
4047 // Currently we only recognize the simple pattern:
4052 const unsigned TestOpcode
=
4053 Subtarget
.is64Bit() ? X86::TEST64rr
: X86::TEST32rr
;
4055 if (ConditionDef
->getOpcode() == TestOpcode
&&
4056 ConditionDef
->getNumOperands() == 3 &&
4057 ConditionDef
->getOperand(0).isIdenticalTo(ConditionDef
->getOperand(1)) &&
4058 (Cond
[0].getImm() == X86::COND_NE
|| Cond
[0].getImm() == X86::COND_E
)) {
4059 MBP
.LHS
= ConditionDef
->getOperand(0);
4060 MBP
.RHS
= MachineOperand::CreateImm(0);
4061 MBP
.Predicate
= Cond
[0].getImm() == X86::COND_NE
4062 ? MachineBranchPredicate::PRED_NE
4063 : MachineBranchPredicate::PRED_EQ
;
4070 unsigned X86InstrInfo::removeBranch(MachineBasicBlock
&MBB
,
4071 int *BytesRemoved
) const {
4072 assert(!BytesRemoved
&& "code size not handled");
4074 MachineBasicBlock::iterator I
= MBB
.end();
4077 while (I
!= MBB
.begin()) {
4079 if (I
->isDebugInstr())
4081 if (I
->getOpcode() != X86::JMP_1
&&
4082 X86::getCondFromBranch(*I
) == X86::COND_INVALID
)
4084 // Remove the branch.
4085 I
->eraseFromParent();
4093 unsigned X86InstrInfo::insertBranch(MachineBasicBlock
&MBB
,
4094 MachineBasicBlock
*TBB
,
4095 MachineBasicBlock
*FBB
,
4096 ArrayRef
<MachineOperand
> Cond
,
4097 const DebugLoc
&DL
, int *BytesAdded
) const {
4098 // Shouldn't be a fall through.
4099 assert(TBB
&& "insertBranch must not be told to insert a fallthrough");
4100 assert((Cond
.size() == 1 || Cond
.size() == 0) &&
4101 "X86 branch conditions have one component!");
4102 assert(!BytesAdded
&& "code size not handled");
4105 // Unconditional branch?
4106 assert(!FBB
&& "Unconditional branch with multiple successors!");
4107 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(TBB
);
4111 // If FBB is null, it is implied to be a fall-through block.
4112 bool FallThru
= FBB
== nullptr;
4114 // Conditional branch.
4116 X86::CondCode CC
= (X86::CondCode
)Cond
[0].getImm();
4118 case X86::COND_NE_OR_P
:
4119 // Synthesize NE_OR_P with two branches.
4120 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NE
);
4122 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_P
);
4125 case X86::COND_E_AND_NP
:
4126 // Use the next block of MBB as FBB if it is null.
4127 if (FBB
== nullptr) {
4128 FBB
= getFallThroughMBB(&MBB
, TBB
);
4129 assert(FBB
&& "MBB cannot be the last block in function when the false "
4130 "body is a fall-through.");
4132 // Synthesize COND_E_AND_NP with two branches.
4133 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(FBB
).addImm(X86::COND_NE
);
4135 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(X86::COND_NP
);
4139 BuildMI(&MBB
, DL
, get(X86::JCC_1
)).addMBB(TBB
).addImm(CC
);
4144 // Two-way Conditional branch. Insert the second branch.
4145 BuildMI(&MBB
, DL
, get(X86::JMP_1
)).addMBB(FBB
);
4151 bool X86InstrInfo::canInsertSelect(const MachineBasicBlock
&MBB
,
4152 ArrayRef
<MachineOperand
> Cond
,
4153 Register DstReg
, Register TrueReg
,
4154 Register FalseReg
, int &CondCycles
,
4155 int &TrueCycles
, int &FalseCycles
) const {
4156 // Not all subtargets have cmov instructions.
4157 if (!Subtarget
.canUseCMOV())
4159 if (Cond
.size() != 1)
4161 // We cannot do the composite conditions, at least not in SSA form.
4162 if ((X86::CondCode
)Cond
[0].getImm() > X86::LAST_VALID_COND
)
4165 // Check register classes.
4166 const MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
4167 const TargetRegisterClass
*RC
=
4168 RI
.getCommonSubClass(MRI
.getRegClass(TrueReg
), MRI
.getRegClass(FalseReg
));
4172 // We have cmov instructions for 16, 32, and 64 bit general purpose registers.
4173 if (X86::GR16RegClass
.hasSubClassEq(RC
) ||
4174 X86::GR32RegClass
.hasSubClassEq(RC
) ||
4175 X86::GR64RegClass
.hasSubClassEq(RC
)) {
4176 // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy
4177 // Bridge. Probably Ivy Bridge as well.
4184 // Can't do vectors.
4188 void X86InstrInfo::insertSelect(MachineBasicBlock
&MBB
,
4189 MachineBasicBlock::iterator I
,
4190 const DebugLoc
&DL
, Register DstReg
,
4191 ArrayRef
<MachineOperand
> Cond
, Register TrueReg
,
4192 Register FalseReg
) const {
4193 MachineRegisterInfo
&MRI
= MBB
.getParent()->getRegInfo();
4194 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
4195 const TargetRegisterClass
&RC
= *MRI
.getRegClass(DstReg
);
4196 assert(Cond
.size() == 1 && "Invalid Cond array");
4198 X86::getCMovOpcode(TRI
.getRegSizeInBits(RC
) / 8,
4199 false /*HasMemoryOperand*/, Subtarget
.hasNDD());
4200 BuildMI(MBB
, I
, DL
, get(Opc
), DstReg
)
4203 .addImm(Cond
[0].getImm());
4206 /// Test if the given register is a physical h register.
4207 static bool isHReg(unsigned Reg
) {
4208 return X86::GR8_ABCD_HRegClass
.contains(Reg
);
4211 // Try and copy between VR128/VR64 and GR64 registers.
4212 static unsigned CopyToFromAsymmetricReg(unsigned DestReg
, unsigned SrcReg
,
4213 const X86Subtarget
&Subtarget
) {
4214 bool HasAVX
= Subtarget
.hasAVX();
4215 bool HasAVX512
= Subtarget
.hasAVX512();
4216 bool HasEGPR
= Subtarget
.hasEGPR();
4218 // SrcReg(MaskReg) -> DestReg(GR64)
4219 // SrcReg(MaskReg) -> DestReg(GR32)
4221 // All KMASK RegClasses hold the same k registers, can be tested against
4223 if (X86::VK16RegClass
.contains(SrcReg
)) {
4224 if (X86::GR64RegClass
.contains(DestReg
)) {
4225 assert(Subtarget
.hasBWI());
4226 return HasEGPR
? X86::KMOVQrk_EVEX
: X86::KMOVQrk
;
4228 if (X86::GR32RegClass
.contains(DestReg
))
4229 return Subtarget
.hasBWI() ? (HasEGPR
? X86::KMOVDrk_EVEX
: X86::KMOVDrk
)
4230 : (HasEGPR
? X86::KMOVWrk_EVEX
: X86::KMOVWrk
);
4233 // SrcReg(GR64) -> DestReg(MaskReg)
4234 // SrcReg(GR32) -> DestReg(MaskReg)
4236 // All KMASK RegClasses hold the same k registers, can be tested against
4238 if (X86::VK16RegClass
.contains(DestReg
)) {
4239 if (X86::GR64RegClass
.contains(SrcReg
)) {
4240 assert(Subtarget
.hasBWI());
4241 return HasEGPR
? X86::KMOVQkr_EVEX
: X86::KMOVQkr
;
4243 if (X86::GR32RegClass
.contains(SrcReg
))
4244 return Subtarget
.hasBWI() ? (HasEGPR
? X86::KMOVDkr_EVEX
: X86::KMOVDkr
)
4245 : (HasEGPR
? X86::KMOVWkr_EVEX
: X86::KMOVWkr
);
4248 // SrcReg(VR128) -> DestReg(GR64)
4249 // SrcReg(VR64) -> DestReg(GR64)
4250 // SrcReg(GR64) -> DestReg(VR128)
4251 // SrcReg(GR64) -> DestReg(VR64)
4253 if (X86::GR64RegClass
.contains(DestReg
)) {
4254 if (X86::VR128XRegClass
.contains(SrcReg
))
4255 // Copy from a VR128 register to a GR64 register.
4256 return HasAVX512
? X86::VMOVPQIto64Zrr
4257 : HasAVX
? X86::VMOVPQIto64rr
4258 : X86::MOVPQIto64rr
;
4259 if (X86::VR64RegClass
.contains(SrcReg
))
4260 // Copy from a VR64 register to a GR64 register.
4261 return X86::MMX_MOVD64from64rr
;
4262 } else if (X86::GR64RegClass
.contains(SrcReg
)) {
4263 // Copy from a GR64 register to a VR128 register.
4264 if (X86::VR128XRegClass
.contains(DestReg
))
4265 return HasAVX512
? X86::VMOV64toPQIZrr
4266 : HasAVX
? X86::VMOV64toPQIrr
4267 : X86::MOV64toPQIrr
;
4268 // Copy from a GR64 register to a VR64 register.
4269 if (X86::VR64RegClass
.contains(DestReg
))
4270 return X86::MMX_MOVD64to64rr
;
4273 // SrcReg(VR128) -> DestReg(GR32)
4274 // SrcReg(GR32) -> DestReg(VR128)
4276 if (X86::GR32RegClass
.contains(DestReg
) &&
4277 X86::VR128XRegClass
.contains(SrcReg
))
4278 // Copy from a VR128 register to a GR32 register.
4279 return HasAVX512
? X86::VMOVPDI2DIZrr
4280 : HasAVX
? X86::VMOVPDI2DIrr
4283 if (X86::VR128XRegClass
.contains(DestReg
) &&
4284 X86::GR32RegClass
.contains(SrcReg
))
4285 // Copy from a VR128 register to a VR128 register.
4286 return HasAVX512
? X86::VMOVDI2PDIZrr
4287 : HasAVX
? X86::VMOVDI2PDIrr
4292 void X86InstrInfo::copyPhysReg(MachineBasicBlock
&MBB
,
4293 MachineBasicBlock::iterator MI
,
4294 const DebugLoc
&DL
, MCRegister DestReg
,
4295 MCRegister SrcReg
, bool KillSrc
,
4296 bool RenamableDest
, bool RenamableSrc
) const {
4297 // First deal with the normal symmetric copies.
4298 bool HasAVX
= Subtarget
.hasAVX();
4299 bool HasVLX
= Subtarget
.hasVLX();
4300 bool HasEGPR
= Subtarget
.hasEGPR();
4302 if (X86::GR64RegClass
.contains(DestReg
, SrcReg
))
4304 else if (X86::GR32RegClass
.contains(DestReg
, SrcReg
))
4306 else if (X86::GR16RegClass
.contains(DestReg
, SrcReg
))
4308 else if (X86::GR8RegClass
.contains(DestReg
, SrcReg
)) {
4309 // Copying to or from a physical H register on x86-64 requires a NOREX
4310 // move. Otherwise use a normal move.
4311 if ((isHReg(DestReg
) || isHReg(SrcReg
)) && Subtarget
.is64Bit()) {
4312 Opc
= X86::MOV8rr_NOREX
;
4313 // Both operands must be encodable without an REX prefix.
4314 assert(X86::GR8_NOREXRegClass
.contains(SrcReg
, DestReg
) &&
4315 "8-bit H register can not be copied outside GR8_NOREX");
4318 } else if (X86::VR64RegClass
.contains(DestReg
, SrcReg
))
4319 Opc
= X86::MMX_MOVQ64rr
;
4320 else if (X86::VR128XRegClass
.contains(DestReg
, SrcReg
)) {
4322 Opc
= X86::VMOVAPSZ128rr
;
4323 else if (X86::VR128RegClass
.contains(DestReg
, SrcReg
))
4324 Opc
= HasAVX
? X86::VMOVAPSrr
: X86::MOVAPSrr
;
4326 // If this an extended register and we don't have VLX we need to use a
4328 Opc
= X86::VMOVAPSZrr
;
4329 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4331 TRI
->getMatchingSuperReg(DestReg
, X86::sub_xmm
, &X86::VR512RegClass
);
4333 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
, &X86::VR512RegClass
);
4335 } else if (X86::VR256XRegClass
.contains(DestReg
, SrcReg
)) {
4337 Opc
= X86::VMOVAPSZ256rr
;
4338 else if (X86::VR256RegClass
.contains(DestReg
, SrcReg
))
4339 Opc
= X86::VMOVAPSYrr
;
4341 // If this an extended register and we don't have VLX we need to use a
4343 Opc
= X86::VMOVAPSZrr
;
4344 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
4346 TRI
->getMatchingSuperReg(DestReg
, X86::sub_ymm
, &X86::VR512RegClass
);
4348 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
, &X86::VR512RegClass
);
4350 } else if (X86::VR512RegClass
.contains(DestReg
, SrcReg
))
4351 Opc
= X86::VMOVAPSZrr
;
4352 // All KMASK RegClasses hold the same k registers, can be tested against
4354 else if (X86::VK16RegClass
.contains(DestReg
, SrcReg
))
4355 Opc
= Subtarget
.hasBWI() ? (HasEGPR
? X86::KMOVQkk_EVEX
: X86::KMOVQkk
)
4356 : (HasEGPR
? X86::KMOVQkk_EVEX
: X86::KMOVWkk
);
4358 Opc
= CopyToFromAsymmetricReg(DestReg
, SrcReg
, Subtarget
);
4361 BuildMI(MBB
, MI
, DL
, get(Opc
), DestReg
)
4362 .addReg(SrcReg
, getKillRegState(KillSrc
));
4366 if (SrcReg
== X86::EFLAGS
|| DestReg
== X86::EFLAGS
) {
4367 // FIXME: We use a fatal error here because historically LLVM has tried
4368 // lower some of these physreg copies and we want to ensure we get
4369 // reasonable bug reports if someone encounters a case no other testing
4370 // found. This path should be removed after the LLVM 7 release.
4371 report_fatal_error("Unable to copy EFLAGS physical register!");
4374 LLVM_DEBUG(dbgs() << "Cannot copy " << RI
.getName(SrcReg
) << " to "
4375 << RI
.getName(DestReg
) << '\n');
4376 report_fatal_error("Cannot emit physreg copy instruction");
4379 std::optional
<DestSourcePair
>
4380 X86InstrInfo::isCopyInstrImpl(const MachineInstr
&MI
) const {
4381 if (MI
.isMoveReg()) {
4382 // FIXME: Dirty hack for apparent invariant that doesn't hold when
4383 // subreg_to_reg is coalesced with ordinary copies, such that the bits that
4384 // were asserted as 0 are now undef.
4385 if (MI
.getOperand(0).isUndef() && MI
.getOperand(0).getSubReg())
4386 return std::nullopt
;
4388 return DestSourcePair
{MI
.getOperand(0), MI
.getOperand(1)};
4390 return std::nullopt
;
4393 static unsigned getLoadStoreOpcodeForFP16(bool Load
, const X86Subtarget
&STI
) {
4395 return Load
? X86::VMOVSHZrm_alt
: X86::VMOVSHZmr
;
4397 return STI
.hasAVX512() ? X86::VMOVSSZrm
4398 : STI
.hasAVX() ? X86::VMOVSSrm
4401 return STI
.hasAVX512() ? X86::VMOVSSZmr
4402 : STI
.hasAVX() ? X86::VMOVSSmr
4406 static unsigned getLoadStoreRegOpcode(Register Reg
,
4407 const TargetRegisterClass
*RC
,
4408 bool IsStackAligned
,
4409 const X86Subtarget
&STI
, bool Load
) {
4410 bool HasAVX
= STI
.hasAVX();
4411 bool HasAVX512
= STI
.hasAVX512();
4412 bool HasVLX
= STI
.hasVLX();
4413 bool HasEGPR
= STI
.hasEGPR();
4415 assert(RC
!= nullptr && "Invalid target register class");
4416 switch (STI
.getRegisterInfo()->getSpillSize(*RC
)) {
4418 llvm_unreachable("Unknown spill size");
4420 assert(X86::GR8RegClass
.hasSubClassEq(RC
) && "Unknown 1-byte regclass");
4422 // Copying to or from a physical H register on x86-64 requires a NOREX
4423 // move. Otherwise use a normal move.
4424 if (isHReg(Reg
) || X86::GR8_ABCD_HRegClass
.hasSubClassEq(RC
))
4425 return Load
? X86::MOV8rm_NOREX
: X86::MOV8mr_NOREX
;
4426 return Load
? X86::MOV8rm
: X86::MOV8mr
;
4428 if (X86::VK16RegClass
.hasSubClassEq(RC
))
4429 return Load
? (HasEGPR
? X86::KMOVWkm_EVEX
: X86::KMOVWkm
)
4430 : (HasEGPR
? X86::KMOVWmk_EVEX
: X86::KMOVWmk
);
4431 assert(X86::GR16RegClass
.hasSubClassEq(RC
) && "Unknown 2-byte regclass");
4432 return Load
? X86::MOV16rm
: X86::MOV16mr
;
4434 if (X86::GR32RegClass
.hasSubClassEq(RC
))
4435 return Load
? X86::MOV32rm
: X86::MOV32mr
;
4436 if (X86::FR32XRegClass
.hasSubClassEq(RC
))
4437 return Load
? (HasAVX512
? X86::VMOVSSZrm_alt
4438 : HasAVX
? X86::VMOVSSrm_alt
4440 : (HasAVX512
? X86::VMOVSSZmr
4441 : HasAVX
? X86::VMOVSSmr
4443 if (X86::RFP32RegClass
.hasSubClassEq(RC
))
4444 return Load
? X86::LD_Fp32m
: X86::ST_Fp32m
;
4445 if (X86::VK32RegClass
.hasSubClassEq(RC
)) {
4446 assert(STI
.hasBWI() && "KMOVD requires BWI");
4447 return Load
? (HasEGPR
? X86::KMOVDkm_EVEX
: X86::KMOVDkm
)
4448 : (HasEGPR
? X86::KMOVDmk_EVEX
: X86::KMOVDmk
);
4450 // All of these mask pair classes have the same spill size, the same kind
4451 // of kmov instructions can be used with all of them.
4452 if (X86::VK1PAIRRegClass
.hasSubClassEq(RC
) ||
4453 X86::VK2PAIRRegClass
.hasSubClassEq(RC
) ||
4454 X86::VK4PAIRRegClass
.hasSubClassEq(RC
) ||
4455 X86::VK8PAIRRegClass
.hasSubClassEq(RC
) ||
4456 X86::VK16PAIRRegClass
.hasSubClassEq(RC
))
4457 return Load
? X86::MASKPAIR16LOAD
: X86::MASKPAIR16STORE
;
4458 if (X86::FR16RegClass
.hasSubClassEq(RC
) ||
4459 X86::FR16XRegClass
.hasSubClassEq(RC
))
4460 return getLoadStoreOpcodeForFP16(Load
, STI
);
4461 llvm_unreachable("Unknown 4-byte regclass");
4463 if (X86::GR64RegClass
.hasSubClassEq(RC
))
4464 return Load
? X86::MOV64rm
: X86::MOV64mr
;
4465 if (X86::FR64XRegClass
.hasSubClassEq(RC
))
4466 return Load
? (HasAVX512
? X86::VMOVSDZrm_alt
4467 : HasAVX
? X86::VMOVSDrm_alt
4469 : (HasAVX512
? X86::VMOVSDZmr
4470 : HasAVX
? X86::VMOVSDmr
4472 if (X86::VR64RegClass
.hasSubClassEq(RC
))
4473 return Load
? X86::MMX_MOVQ64rm
: X86::MMX_MOVQ64mr
;
4474 if (X86::RFP64RegClass
.hasSubClassEq(RC
))
4475 return Load
? X86::LD_Fp64m
: X86::ST_Fp64m
;
4476 if (X86::VK64RegClass
.hasSubClassEq(RC
)) {
4477 assert(STI
.hasBWI() && "KMOVQ requires BWI");
4478 return Load
? (HasEGPR
? X86::KMOVQkm_EVEX
: X86::KMOVQkm
)
4479 : (HasEGPR
? X86::KMOVQmk_EVEX
: X86::KMOVQmk
);
4481 llvm_unreachable("Unknown 8-byte regclass");
4483 assert(X86::RFP80RegClass
.hasSubClassEq(RC
) && "Unknown 10-byte regclass");
4484 return Load
? X86::LD_Fp80m
: X86::ST_FpP80m
;
4486 if (X86::VR128XRegClass
.hasSubClassEq(RC
)) {
4487 // If stack is realigned we can use aligned stores.
4489 return Load
? (HasVLX
? X86::VMOVAPSZ128rm
4490 : HasAVX512
? X86::VMOVAPSZ128rm_NOVLX
4491 : HasAVX
? X86::VMOVAPSrm
4493 : (HasVLX
? X86::VMOVAPSZ128mr
4494 : HasAVX512
? X86::VMOVAPSZ128mr_NOVLX
4495 : HasAVX
? X86::VMOVAPSmr
4498 return Load
? (HasVLX
? X86::VMOVUPSZ128rm
4499 : HasAVX512
? X86::VMOVUPSZ128rm_NOVLX
4500 : HasAVX
? X86::VMOVUPSrm
4502 : (HasVLX
? X86::VMOVUPSZ128mr
4503 : HasAVX512
? X86::VMOVUPSZ128mr_NOVLX
4504 : HasAVX
? X86::VMOVUPSmr
4507 llvm_unreachable("Unknown 16-byte regclass");
4510 assert(X86::VR256XRegClass
.hasSubClassEq(RC
) && "Unknown 32-byte regclass");
4511 // If stack is realigned we can use aligned stores.
4513 return Load
? (HasVLX
? X86::VMOVAPSZ256rm
4514 : HasAVX512
? X86::VMOVAPSZ256rm_NOVLX
4516 : (HasVLX
? X86::VMOVAPSZ256mr
4517 : HasAVX512
? X86::VMOVAPSZ256mr_NOVLX
4520 return Load
? (HasVLX
? X86::VMOVUPSZ256rm
4521 : HasAVX512
? X86::VMOVUPSZ256rm_NOVLX
4523 : (HasVLX
? X86::VMOVUPSZ256mr
4524 : HasAVX512
? X86::VMOVUPSZ256mr_NOVLX
4527 assert(X86::VR512RegClass
.hasSubClassEq(RC
) && "Unknown 64-byte regclass");
4528 assert(STI
.hasAVX512() && "Using 512-bit register requires AVX512");
4530 return Load
? X86::VMOVAPSZrm
: X86::VMOVAPSZmr
;
4532 return Load
? X86::VMOVUPSZrm
: X86::VMOVUPSZmr
;
4534 assert(X86::TILERegClass
.hasSubClassEq(RC
) && "Unknown 1024-byte regclass");
4535 assert(STI
.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE");
4536 #define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC)
4537 return Load
? GET_EGPR_IF_ENABLED(X86::TILELOADD
)
4538 : GET_EGPR_IF_ENABLED(X86::TILESTORED
);
4539 #undef GET_EGPR_IF_ENABLED
4541 assert(X86::TILEPAIRRegClass
.hasSubClassEq(RC
) &&
4542 "Unknown 2048-byte regclass");
4543 assert(STI
.hasAMXTILE() && "Using 2048-bit register requires AMX-TILE");
4544 return Load
? X86::PTILEPAIRLOAD
: X86::PTILEPAIRSTORE
;
4548 std::optional
<ExtAddrMode
>
4549 X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr
&MemI
,
4550 const TargetRegisterInfo
*TRI
) const {
4551 const MCInstrDesc
&Desc
= MemI
.getDesc();
4552 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
4553 if (MemRefBegin
< 0)
4554 return std::nullopt
;
4556 MemRefBegin
+= X86II::getOperandBias(Desc
);
4558 auto &BaseOp
= MemI
.getOperand(MemRefBegin
+ X86::AddrBaseReg
);
4559 if (!BaseOp
.isReg()) // Can be an MO_FrameIndex
4560 return std::nullopt
;
4562 const MachineOperand
&DispMO
= MemI
.getOperand(MemRefBegin
+ X86::AddrDisp
);
4563 // Displacement can be symbolic
4564 if (!DispMO
.isImm())
4565 return std::nullopt
;
4568 AM
.BaseReg
= BaseOp
.getReg();
4569 AM
.ScaledReg
= MemI
.getOperand(MemRefBegin
+ X86::AddrIndexReg
).getReg();
4570 AM
.Scale
= MemI
.getOperand(MemRefBegin
+ X86::AddrScaleAmt
).getImm();
4571 AM
.Displacement
= DispMO
.getImm();
4575 bool X86InstrInfo::verifyInstruction(const MachineInstr
&MI
,
4576 StringRef
&ErrInfo
) const {
4577 std::optional
<ExtAddrMode
> AMOrNone
= getAddrModeFromMemoryOp(MI
, nullptr);
4581 ExtAddrMode AM
= *AMOrNone
;
4582 assert(AM
.Form
== ExtAddrMode::Formula::Basic
);
4583 if (AM
.ScaledReg
!= X86::NoRegister
) {
4591 ErrInfo
= "Scale factor in address must be 1, 2, 4 or 8";
4595 if (!isInt
<32>(AM
.Displacement
)) {
4596 ErrInfo
= "Displacement in address must fit into 32-bit signed "
4604 bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr
&MI
,
4606 int64_t &ImmVal
) const {
4607 Register MovReg
= Reg
;
4608 const MachineInstr
*MovMI
= &MI
;
4610 // Follow use-def for SUBREG_TO_REG to find the real move immediate
4611 // instruction. It is quite common for x86-64.
4612 if (MI
.isSubregToReg()) {
4613 // We use following pattern to setup 64b immediate.
4614 // %8:gr32 = MOV32r0 implicit-def dead $eflags
4615 // %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit
4616 if (!MI
.getOperand(1).isImm())
4618 unsigned FillBits
= MI
.getOperand(1).getImm();
4619 unsigned SubIdx
= MI
.getOperand(3).getImm();
4620 MovReg
= MI
.getOperand(2).getReg();
4621 if (SubIdx
!= X86::sub_32bit
|| FillBits
!= 0)
4623 const MachineRegisterInfo
&MRI
= MI
.getParent()->getParent()->getRegInfo();
4624 MovMI
= MRI
.getUniqueVRegDef(MovReg
);
4629 if (MovMI
->getOpcode() == X86::MOV32r0
&&
4630 MovMI
->getOperand(0).getReg() == MovReg
) {
4635 if (MovMI
->getOpcode() != X86::MOV32ri
&&
4636 MovMI
->getOpcode() != X86::MOV64ri
&&
4637 MovMI
->getOpcode() != X86::MOV32ri64
&& MovMI
->getOpcode() != X86::MOV8ri
)
4639 // Mov Src can be a global address.
4640 if (!MovMI
->getOperand(1).isImm() || MovMI
->getOperand(0).getReg() != MovReg
)
4642 ImmVal
= MovMI
->getOperand(1).getImm();
4646 bool X86InstrInfo::preservesZeroValueInReg(
4647 const MachineInstr
*MI
, const Register NullValueReg
,
4648 const TargetRegisterInfo
*TRI
) const {
4649 if (!MI
->modifiesRegister(NullValueReg
, TRI
))
4651 switch (MI
->getOpcode()) {
4652 // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax
4658 assert(MI
->getOperand(0).isDef() && MI
->getOperand(1).isUse() &&
4659 "expected for shift opcode!");
4660 return MI
->getOperand(0).getReg() == NullValueReg
&&
4661 MI
->getOperand(1).getReg() == NullValueReg
;
4662 // Zero extend of a sub-reg of NullValueReg into itself does not change the
4665 return llvm::all_of(MI
->operands(), [&](const MachineOperand
&MO
) {
4666 return TRI
->isSubRegisterEq(NullValueReg
, MO
.getReg());
4671 llvm_unreachable("Should be handled above!");
4674 bool X86InstrInfo::getMemOperandsWithOffsetWidth(
4675 const MachineInstr
&MemOp
, SmallVectorImpl
<const MachineOperand
*> &BaseOps
,
4676 int64_t &Offset
, bool &OffsetIsScalable
, LocationSize
&Width
,
4677 const TargetRegisterInfo
*TRI
) const {
4678 const MCInstrDesc
&Desc
= MemOp
.getDesc();
4679 int MemRefBegin
= X86II::getMemoryOperandNo(Desc
.TSFlags
);
4680 if (MemRefBegin
< 0)
4683 MemRefBegin
+= X86II::getOperandBias(Desc
);
4685 const MachineOperand
*BaseOp
=
4686 &MemOp
.getOperand(MemRefBegin
+ X86::AddrBaseReg
);
4687 if (!BaseOp
->isReg()) // Can be an MO_FrameIndex
4690 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrScaleAmt
).getImm() != 1)
4693 if (MemOp
.getOperand(MemRefBegin
+ X86::AddrIndexReg
).getReg() !=
4697 const MachineOperand
&DispMO
= MemOp
.getOperand(MemRefBegin
+ X86::AddrDisp
);
4699 // Displacement can be symbolic
4700 if (!DispMO
.isImm())
4703 Offset
= DispMO
.getImm();
4705 if (!BaseOp
->isReg())
4708 OffsetIsScalable
= false;
4709 // FIXME: Relying on memoperands() may not be right thing to do here. Check
4710 // with X86 maintainers, and fix it accordingly. For now, it is ok, since
4711 // there is no use of `Width` for X86 back-end at the moment.
4713 !MemOp
.memoperands_empty() ? MemOp
.memoperands().front()->getSize() : 0;
4714 BaseOps
.push_back(BaseOp
);
4718 static unsigned getStoreRegOpcode(Register SrcReg
,
4719 const TargetRegisterClass
*RC
,
4720 bool IsStackAligned
,
4721 const X86Subtarget
&STI
) {
4722 return getLoadStoreRegOpcode(SrcReg
, RC
, IsStackAligned
, STI
, false);
4725 static unsigned getLoadRegOpcode(Register DestReg
,
4726 const TargetRegisterClass
*RC
,
4727 bool IsStackAligned
, const X86Subtarget
&STI
) {
4728 return getLoadStoreRegOpcode(DestReg
, RC
, IsStackAligned
, STI
, true);
4731 static bool isAMXOpcode(unsigned Opc
) {
4735 case X86::TILELOADD
:
4736 case X86::TILESTORED
:
4737 case X86::TILELOADD_EVEX
:
4738 case X86::TILESTORED_EVEX
:
4739 case X86::PTILEPAIRLOAD
:
4740 case X86::PTILEPAIRSTORE
:
4745 void X86InstrInfo::loadStoreTileReg(MachineBasicBlock
&MBB
,
4746 MachineBasicBlock::iterator MI
,
4747 unsigned Opc
, Register Reg
, int FrameIdx
,
4748 bool isKill
) const {
4751 llvm_unreachable("Unexpected special opcode!");
4752 case X86::TILESTORED
:
4753 case X86::TILESTORED_EVEX
:
4754 case X86::PTILEPAIRSTORE
: {
4755 // tilestored %tmm, (%sp, %idx)
4756 MachineRegisterInfo
&RegInfo
= MBB
.getParent()->getRegInfo();
4757 Register VirtReg
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
4758 BuildMI(MBB
, MI
, DebugLoc(), get(X86::MOV64ri
), VirtReg
).addImm(64);
4759 MachineInstr
*NewMI
=
4760 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
)), FrameIdx
)
4761 .addReg(Reg
, getKillRegState(isKill
));
4762 MachineOperand
&MO
= NewMI
->getOperand(X86::AddrIndexReg
);
4767 case X86::TILELOADD
:
4768 case X86::TILELOADD_EVEX
:
4769 case X86::PTILEPAIRLOAD
: {
4770 // tileloadd (%sp, %idx), %tmm
4771 MachineRegisterInfo
&RegInfo
= MBB
.getParent()->getRegInfo();
4772 Register VirtReg
= RegInfo
.createVirtualRegister(&X86::GR64_NOSPRegClass
);
4773 BuildMI(MBB
, MI
, DebugLoc(), get(X86::MOV64ri
), VirtReg
).addImm(64);
4774 MachineInstr
*NewMI
= addFrameReference(
4775 BuildMI(MBB
, MI
, DebugLoc(), get(Opc
), Reg
), FrameIdx
);
4776 MachineOperand
&MO
= NewMI
->getOperand(1 + X86::AddrIndexReg
);
4784 void X86InstrInfo::storeRegToStackSlot(
4785 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
, Register SrcReg
,
4786 bool isKill
, int FrameIdx
, const TargetRegisterClass
*RC
,
4787 const TargetRegisterInfo
*TRI
, Register VReg
) const {
4788 const MachineFunction
&MF
= *MBB
.getParent();
4789 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4790 assert(MFI
.getObjectSize(FrameIdx
) >= TRI
->getSpillSize(*RC
) &&
4791 "Stack slot too small for store");
4793 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
4795 (Subtarget
.getFrameLowering()->getStackAlign() >= Alignment
) ||
4796 (RI
.canRealignStack(MF
) && !MFI
.isFixedObjectIndex(FrameIdx
));
4798 unsigned Opc
= getStoreRegOpcode(SrcReg
, RC
, isAligned
, Subtarget
);
4799 if (isAMXOpcode(Opc
))
4800 loadStoreTileReg(MBB
, MI
, Opc
, SrcReg
, FrameIdx
, isKill
);
4802 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
)), FrameIdx
)
4803 .addReg(SrcReg
, getKillRegState(isKill
));
4806 void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock
&MBB
,
4807 MachineBasicBlock::iterator MI
,
4808 Register DestReg
, int FrameIdx
,
4809 const TargetRegisterClass
*RC
,
4810 const TargetRegisterInfo
*TRI
,
4811 Register VReg
) const {
4812 const MachineFunction
&MF
= *MBB
.getParent();
4813 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4814 assert(MFI
.getObjectSize(FrameIdx
) >= TRI
->getSpillSize(*RC
) &&
4815 "Load size exceeds stack slot");
4816 unsigned Alignment
= std::max
<uint32_t>(TRI
->getSpillSize(*RC
), 16);
4818 (Subtarget
.getFrameLowering()->getStackAlign() >= Alignment
) ||
4819 (RI
.canRealignStack(MF
) && !MFI
.isFixedObjectIndex(FrameIdx
));
4821 unsigned Opc
= getLoadRegOpcode(DestReg
, RC
, isAligned
, Subtarget
);
4822 if (isAMXOpcode(Opc
))
4823 loadStoreTileReg(MBB
, MI
, Opc
, DestReg
, FrameIdx
);
4825 addFrameReference(BuildMI(MBB
, MI
, DebugLoc(), get(Opc
), DestReg
),
4829 bool X86InstrInfo::analyzeCompare(const MachineInstr
&MI
, Register
&SrcReg
,
4830 Register
&SrcReg2
, int64_t &CmpMask
,
4831 int64_t &CmpValue
) const {
4832 switch (MI
.getOpcode()) {
4835 case X86::CMP64ri32
:
4839 SrcReg
= MI
.getOperand(0).getReg();
4841 if (MI
.getOperand(1).isImm()) {
4843 CmpValue
= MI
.getOperand(1).getImm();
4845 CmpMask
= CmpValue
= 0;
4848 // A SUB can be used to perform comparison.
4853 SrcReg
= MI
.getOperand(1).getReg();
4862 SrcReg
= MI
.getOperand(1).getReg();
4863 SrcReg2
= MI
.getOperand(2).getReg();
4871 SrcReg
= MI
.getOperand(1).getReg();
4873 if (MI
.getOperand(2).isImm()) {
4875 CmpValue
= MI
.getOperand(2).getImm();
4877 CmpMask
= CmpValue
= 0;
4884 SrcReg
= MI
.getOperand(0).getReg();
4885 SrcReg2
= MI
.getOperand(1).getReg();
4893 SrcReg
= MI
.getOperand(0).getReg();
4894 if (MI
.getOperand(1).getReg() != SrcReg
)
4896 // Compare against zero.
4905 bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr
&FlagI
,
4906 Register SrcReg
, Register SrcReg2
,
4907 int64_t ImmMask
, int64_t ImmValue
,
4908 const MachineInstr
&OI
, bool *IsSwapped
,
4909 int64_t *ImmDelta
) const {
4910 switch (OI
.getOpcode()) {
4923 if (!analyzeCompare(OI
, OISrcReg
, OISrcReg2
, OIMask
, OIValue
) ||
4924 OIMask
!= ImmMask
|| OIValue
!= ImmValue
)
4926 if (SrcReg
== OISrcReg
&& SrcReg2
== OISrcReg2
) {
4930 if (SrcReg
== OISrcReg2
&& SrcReg2
== OISrcReg
) {
4936 case X86::CMP64ri32
:
4947 case X86::TEST8rr
: {
4953 if (analyzeCompare(OI
, OISrcReg
, OISrcReg2
, OIMask
, OIValue
) &&
4954 SrcReg
== OISrcReg
&& ImmMask
== OIMask
) {
4955 if (OIValue
== ImmValue
) {
4958 } else if (static_cast<uint64_t>(ImmValue
) ==
4959 static_cast<uint64_t>(OIValue
) - 1) {
4962 } else if (static_cast<uint64_t>(ImmValue
) ==
4963 static_cast<uint64_t>(OIValue
) + 1) {
4971 return FlagI
.isIdenticalTo(OI
);
4978 /// Check whether the definition can be converted
4979 /// to remove a comparison against zero.
4980 inline static bool isDefConvertible(const MachineInstr
&MI
, bool &NoSignFlag
,
4981 bool &ClearsOverflowFlag
) {
4983 ClearsOverflowFlag
= false;
4985 // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and
4986 // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during
4987 // Initial Exec to Local Exec relaxation. In these cases, we must not depend
4988 // on the EFLAGS modification of ADD actually happening in the final binary.
4989 if (MI
.getOpcode() == X86::ADD64rm
|| MI
.getOpcode() == X86::ADD32rm
) {
4990 unsigned Flags
= MI
.getOperand(5).getTargetFlags();
4991 if (Flags
== X86II::MO_GOTTPOFF
|| Flags
== X86II::MO_INDNTPOFF
||
4992 Flags
== X86II::MO_GOTNTPOFF
)
4996 switch (MI
.getOpcode()) {
5000 // The shift instructions only modify ZF if their shift count is non-zero.
5001 // N.B.: The processor truncates the shift count depending on the encoding.
5010 return getTruncatedShiftCount(MI
, 2) != 0;
5012 // Some left shift instructions can be turned into LEA instructions but only
5013 // if their flags aren't used. Avoid transforming such instructions.
5018 unsigned ShAmt
= getTruncatedShiftCount(MI
, 2);
5019 if (isTruncatedShiftCountForLEA(ShAmt
))
5030 return getTruncatedShiftCount(MI
, 3) != 0;
5092 case X86::LZCNT16rr
:
5093 case X86::LZCNT16rm
:
5094 case X86::LZCNT32rr
:
5095 case X86::LZCNT32rm
:
5096 case X86::LZCNT64rr
:
5097 case X86::LZCNT64rm
:
5098 case X86::POPCNT16rr
:
5099 case X86::POPCNT16rm
:
5100 case X86::POPCNT32rr
:
5101 case X86::POPCNT32rm
:
5102 case X86::POPCNT64rr
:
5103 case X86::POPCNT64rm
:
5104 case X86::TZCNT16rr
:
5105 case X86::TZCNT16rm
:
5106 case X86::TZCNT32rr
:
5107 case X86::TZCNT32rm
:
5108 case X86::TZCNT64rr
:
5109 case X86::TZCNT64rm
:
5155 case X86::BLSMSK32rr
:
5156 case X86::BLSMSK32rm
:
5157 case X86::BLSMSK64rr
:
5158 case X86::BLSMSK64rm
:
5163 case X86::BLCFILL32rr
:
5164 case X86::BLCFILL32rm
:
5165 case X86::BLCFILL64rr
:
5166 case X86::BLCFILL64rm
:
5171 case X86::BLCIC32rr
:
5172 case X86::BLCIC32rm
:
5173 case X86::BLCIC64rr
:
5174 case X86::BLCIC64rm
:
5175 case X86::BLCMSK32rr
:
5176 case X86::BLCMSK32rm
:
5177 case X86::BLCMSK64rr
:
5178 case X86::BLCMSK64rm
:
5183 case X86::BLSFILL32rr
:
5184 case X86::BLSFILL32rm
:
5185 case X86::BLSFILL64rr
:
5186 case X86::BLSFILL64rm
:
5187 case X86::BLSIC32rr
:
5188 case X86::BLSIC32rm
:
5189 case X86::BLSIC64rr
:
5190 case X86::BLSIC64rm
:
5195 case X86::T1MSKC32rr
:
5196 case X86::T1MSKC32rm
:
5197 case X86::T1MSKC64rr
:
5198 case X86::T1MSKC64rm
:
5199 case X86::TZMSK32rr
:
5200 case X86::TZMSK32rm
:
5201 case X86::TZMSK64rr
:
5202 case X86::TZMSK64rm
:
5203 // These instructions clear the overflow flag just like TEST.
5204 // FIXME: These are not the only instructions in this switch that clear the
5206 ClearsOverflowFlag
= true;
5208 case X86::BEXTR32rr
:
5209 case X86::BEXTR64rr
:
5210 case X86::BEXTR32rm
:
5211 case X86::BEXTR64rm
:
5212 case X86::BEXTRI32ri
:
5213 case X86::BEXTRI32mi
:
5214 case X86::BEXTRI64ri
:
5215 case X86::BEXTRI64mi
:
5216 // BEXTR doesn't update the sign flag so we can't use it. It does clear
5217 // the overflow flag, but that's not useful without the sign flag.
5223 /// Check whether the use can be converted to remove a comparison against zero.
5224 static X86::CondCode
isUseDefConvertible(const MachineInstr
&MI
) {
5225 switch (MI
.getOpcode()) {
5227 return X86::COND_INVALID
;
5232 return X86::COND_AE
;
5233 case X86::LZCNT16rr
:
5234 case X86::LZCNT32rr
:
5235 case X86::LZCNT64rr
:
5237 case X86::POPCNT16rr
:
5238 case X86::POPCNT32rr
:
5239 case X86::POPCNT64rr
:
5241 case X86::TZCNT16rr
:
5242 case X86::TZCNT32rr
:
5243 case X86::TZCNT64rr
:
5254 return X86::COND_AE
;
5257 case X86::BLSMSK32rr
:
5258 case X86::BLSMSK64rr
:
5260 // TODO: TBM instructions.
5264 /// Check if there exists an earlier instruction that
5265 /// operates on the same source operands and sets flags in the same way as
5266 /// Compare; remove Compare if possible.
5267 bool X86InstrInfo::optimizeCompareInstr(MachineInstr
&CmpInstr
, Register SrcReg
,
5268 Register SrcReg2
, int64_t CmpMask
,
5270 const MachineRegisterInfo
*MRI
) const {
5271 // Check whether we can replace SUB with CMP.
5272 switch (CmpInstr
.getOpcode()) {
5287 if (!MRI
->use_nodbg_empty(CmpInstr
.getOperand(0).getReg()))
5289 // There is no use of the destination register, we can replace SUB with CMP.
5290 unsigned NewOpcode
= 0;
5291 #define FROM_TO(A, B) \
5292 CASE_ND(A) NewOpcode = X86::B; \
5294 switch (CmpInstr
.getOpcode()) {
5296 llvm_unreachable("Unreachable!");
5297 FROM_TO(SUB64rm
, CMP64rm
)
5298 FROM_TO(SUB32rm
, CMP32rm
)
5299 FROM_TO(SUB16rm
, CMP16rm
)
5300 FROM_TO(SUB8rm
, CMP8rm
)
5301 FROM_TO(SUB64rr
, CMP64rr
)
5302 FROM_TO(SUB32rr
, CMP32rr
)
5303 FROM_TO(SUB16rr
, CMP16rr
)
5304 FROM_TO(SUB8rr
, CMP8rr
)
5305 FROM_TO(SUB64ri32
, CMP64ri32
)
5306 FROM_TO(SUB32ri
, CMP32ri
)
5307 FROM_TO(SUB16ri
, CMP16ri
)
5308 FROM_TO(SUB8ri
, CMP8ri
)
5311 CmpInstr
.setDesc(get(NewOpcode
));
5312 CmpInstr
.removeOperand(0);
5313 // Mutating this instruction invalidates any debug data associated with it.
5314 CmpInstr
.dropDebugNumber();
5315 // Fall through to optimize Cmp if Cmp is CMPrr or CMPri.
5316 if (NewOpcode
== X86::CMP64rm
|| NewOpcode
== X86::CMP32rm
||
5317 NewOpcode
== X86::CMP16rm
|| NewOpcode
== X86::CMP8rm
)
5322 // The following code tries to remove the comparison by re-using EFLAGS
5323 // from earlier instructions.
5325 bool IsCmpZero
= (CmpMask
!= 0 && CmpValue
== 0);
5327 // Transformation currently requires SSA values.
5328 if (SrcReg2
.isPhysical())
5330 MachineInstr
*SrcRegDef
= MRI
->getVRegDef(SrcReg
);
5331 assert(SrcRegDef
&& "Must have a definition (SSA)");
5333 MachineInstr
*MI
= nullptr;
5334 MachineInstr
*Sub
= nullptr;
5335 MachineInstr
*Movr0Inst
= nullptr;
5336 bool NoSignFlag
= false;
5337 bool ClearsOverflowFlag
= false;
5338 bool ShouldUpdateCC
= false;
5339 bool IsSwapped
= false;
5340 X86::CondCode NewCC
= X86::COND_INVALID
;
5341 int64_t ImmDelta
= 0;
5343 // Search backward from CmpInstr for the next instruction defining EFLAGS.
5344 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
5345 MachineBasicBlock
&CmpMBB
= *CmpInstr
.getParent();
5346 MachineBasicBlock::reverse_iterator From
=
5347 std::next(MachineBasicBlock::reverse_iterator(CmpInstr
));
5348 for (MachineBasicBlock
*MBB
= &CmpMBB
;;) {
5349 for (MachineInstr
&Inst
: make_range(From
, MBB
->rend())) {
5350 // Try to use EFLAGS from the instruction defining %SrcReg. Example:
5352 // ... // EFLAGS not changed
5353 // testl %eax, %eax // <-- can be removed
5354 if (&Inst
== SrcRegDef
) {
5356 isDefConvertible(Inst
, NoSignFlag
, ClearsOverflowFlag
)) {
5361 // Look back for the following pattern, in which case the
5362 // test16rr/test64rr instruction could be erased.
5364 // Example for test16rr:
5365 // %reg = and32ri %in_reg, 5
5366 // ... // EFLAGS not changed.
5367 // %src_reg = copy %reg.sub_16bit:gr32
5368 // test16rr %src_reg, %src_reg, implicit-def $eflags
5369 // Example for test64rr:
5370 // %reg = and32ri %in_reg, 5
5371 // ... // EFLAGS not changed.
5372 // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index
5373 // test64rr %src_reg, %src_reg, implicit-def $eflags
5374 MachineInstr
*AndInstr
= nullptr;
5376 findRedundantFlagInstr(CmpInstr
, Inst
, MRI
, &AndInstr
, TRI
,
5377 NoSignFlag
, ClearsOverflowFlag
)) {
5378 assert(AndInstr
!= nullptr && X86::isAND(AndInstr
->getOpcode()));
5382 // Cannot find other candidates before definition of SrcReg.
5386 if (Inst
.modifiesRegister(X86::EFLAGS
, TRI
)) {
5387 // Try to use EFLAGS produced by an instruction reading %SrcReg.
5392 // ... // EFLAGS not changed
5393 // testl %eax, %eax // <-- can be removed
5395 NewCC
= isUseDefConvertible(Inst
);
5396 if (NewCC
!= X86::COND_INVALID
&& Inst
.getOperand(1).isReg() &&
5397 Inst
.getOperand(1).getReg() == SrcReg
) {
5398 ShouldUpdateCC
= true;
5404 // Try to use EFLAGS from an instruction with similar flag results.
5406 // sub x, y or cmp x, y
5407 // ... // EFLAGS not changed
5408 // cmp x, y // <-- can be removed
5409 if (isRedundantFlagInstr(CmpInstr
, SrcReg
, SrcReg2
, CmpMask
, CmpValue
,
5410 Inst
, &IsSwapped
, &ImmDelta
)) {
5415 // MOV32r0 is implemented with xor which clobbers condition code. It is
5416 // safe to move up, if the definition to EFLAGS is dead and earlier
5417 // instructions do not read or write EFLAGS.
5418 if (!Movr0Inst
&& Inst
.getOpcode() == X86::MOV32r0
&&
5419 Inst
.registerDefIsDead(X86::EFLAGS
, TRI
)) {
5424 // Cannot do anything for any other EFLAG changes.
5432 // Reached begin of basic block. Continue in predecessor if there is
5434 if (MBB
->pred_size() != 1)
5436 MBB
= *MBB
->pred_begin();
5437 From
= MBB
->rbegin();
5440 // Scan forward from the instruction after CmpInstr for uses of EFLAGS.
5441 // It is safe to remove CmpInstr if EFLAGS is redefined or killed.
5442 // If we are done with the basic block, we need to check whether EFLAGS is
5444 bool FlagsMayLiveOut
= true;
5445 SmallVector
<std::pair
<MachineInstr
*, X86::CondCode
>, 4> OpsToUpdate
;
5446 MachineBasicBlock::iterator AfterCmpInstr
=
5447 std::next(MachineBasicBlock::iterator(CmpInstr
));
5448 for (MachineInstr
&Instr
: make_range(AfterCmpInstr
, CmpMBB
.end())) {
5449 bool ModifyEFLAGS
= Instr
.modifiesRegister(X86::EFLAGS
, TRI
);
5450 bool UseEFLAGS
= Instr
.readsRegister(X86::EFLAGS
, TRI
);
5451 // We should check the usage if this instruction uses and updates EFLAGS.
5452 if (!UseEFLAGS
&& ModifyEFLAGS
) {
5453 // It is safe to remove CmpInstr if EFLAGS is updated again.
5454 FlagsMayLiveOut
= false;
5457 if (!UseEFLAGS
&& !ModifyEFLAGS
)
5460 // EFLAGS is used by this instruction.
5461 X86::CondCode OldCC
= X86::getCondFromMI(Instr
);
5462 if ((MI
|| IsSwapped
|| ImmDelta
!= 0) && OldCC
== X86::COND_INVALID
)
5465 X86::CondCode ReplacementCC
= X86::COND_INVALID
;
5474 // CF is used, we can't perform this optimization.
5480 // If SF is used, but the instruction doesn't update the SF, then we
5481 // can't do the optimization.
5487 // If OF is used, the instruction needs to clear it like CmpZero does.
5488 if (!ClearsOverflowFlag
)
5493 // If SF is used, but the instruction doesn't update the SF, then we
5494 // can't do the optimization.
5500 // If we're updating the condition code check if we have to reverse the
5507 ReplacementCC
= NewCC
;
5510 ReplacementCC
= GetOppositeBranchCondition(NewCC
);
5513 } else if (IsSwapped
) {
5514 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs
5515 // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
5516 // We swap the condition code and synthesize the new opcode.
5517 ReplacementCC
= getSwappedCondition(OldCC
);
5518 if (ReplacementCC
== X86::COND_INVALID
)
5520 ShouldUpdateCC
= true;
5521 } else if (ImmDelta
!= 0) {
5522 unsigned BitWidth
= TRI
->getRegSizeInBits(*MRI
->getRegClass(SrcReg
));
5523 // Shift amount for min/max constants to adjust for 8/16/32 instruction
5526 case X86::COND_L
: // x <s (C + 1) --> x <=s C
5527 if (ImmDelta
!= 1 || APInt::getSignedMinValue(BitWidth
) == CmpValue
)
5529 ReplacementCC
= X86::COND_LE
;
5531 case X86::COND_B
: // x <u (C + 1) --> x <=u C
5532 if (ImmDelta
!= 1 || CmpValue
== 0)
5534 ReplacementCC
= X86::COND_BE
;
5536 case X86::COND_GE
: // x >=s (C + 1) --> x >s C
5537 if (ImmDelta
!= 1 || APInt::getSignedMinValue(BitWidth
) == CmpValue
)
5539 ReplacementCC
= X86::COND_G
;
5541 case X86::COND_AE
: // x >=u (C + 1) --> x >u C
5542 if (ImmDelta
!= 1 || CmpValue
== 0)
5544 ReplacementCC
= X86::COND_A
;
5546 case X86::COND_G
: // x >s (C - 1) --> x >=s C
5547 if (ImmDelta
!= -1 || APInt::getSignedMaxValue(BitWidth
) == CmpValue
)
5549 ReplacementCC
= X86::COND_GE
;
5551 case X86::COND_A
: // x >u (C - 1) --> x >=u C
5552 if (ImmDelta
!= -1 || APInt::getMaxValue(BitWidth
) == CmpValue
)
5554 ReplacementCC
= X86::COND_AE
;
5556 case X86::COND_LE
: // x <=s (C - 1) --> x <s C
5557 if (ImmDelta
!= -1 || APInt::getSignedMaxValue(BitWidth
) == CmpValue
)
5559 ReplacementCC
= X86::COND_L
;
5561 case X86::COND_BE
: // x <=u (C - 1) --> x <u C
5562 if (ImmDelta
!= -1 || APInt::getMaxValue(BitWidth
) == CmpValue
)
5564 ReplacementCC
= X86::COND_B
;
5569 ShouldUpdateCC
= true;
5572 if (ShouldUpdateCC
&& ReplacementCC
!= OldCC
) {
5573 // Push the MachineInstr to OpsToUpdate.
5574 // If it is safe to remove CmpInstr, the condition code of these
5575 // instructions will be modified.
5576 OpsToUpdate
.push_back(std::make_pair(&Instr
, ReplacementCC
));
5578 if (ModifyEFLAGS
|| Instr
.killsRegister(X86::EFLAGS
, TRI
)) {
5579 // It is safe to remove CmpInstr if EFLAGS is updated again or killed.
5580 FlagsMayLiveOut
= false;
5585 // If we have to update users but EFLAGS is live-out abort, since we cannot
5586 // easily find all of the users.
5587 if ((MI
!= nullptr || ShouldUpdateCC
) && FlagsMayLiveOut
) {
5588 for (MachineBasicBlock
*Successor
: CmpMBB
.successors())
5589 if (Successor
->isLiveIn(X86::EFLAGS
))
5593 // The instruction to be updated is either Sub or MI.
5594 assert((MI
== nullptr || Sub
== nullptr) && "Should not have Sub and MI set");
5595 Sub
= MI
!= nullptr ? MI
: Sub
;
5596 MachineBasicBlock
*SubBB
= Sub
->getParent();
5597 // Move Movr0Inst to the appropriate place before Sub.
5599 // Only move within the same block so we don't accidentally move to a
5600 // block with higher execution frequency.
5601 if (&CmpMBB
!= SubBB
)
5603 // Look backwards until we find a def that doesn't use the current EFLAGS.
5604 MachineBasicBlock::reverse_iterator InsertI
= Sub
,
5605 InsertE
= Sub
->getParent()->rend();
5606 for (; InsertI
!= InsertE
; ++InsertI
) {
5607 MachineInstr
*Instr
= &*InsertI
;
5608 if (!Instr
->readsRegister(X86::EFLAGS
, TRI
) &&
5609 Instr
->modifiesRegister(X86::EFLAGS
, TRI
)) {
5610 Movr0Inst
->getParent()->remove(Movr0Inst
);
5611 Instr
->getParent()->insert(MachineBasicBlock::iterator(Instr
),
5616 if (InsertI
== InsertE
)
5620 // Make sure Sub instruction defines EFLAGS and mark the def live.
5621 MachineOperand
*FlagDef
=
5622 Sub
->findRegisterDefOperand(X86::EFLAGS
, /*TRI=*/nullptr);
5623 assert(FlagDef
&& "Unable to locate a def EFLAGS operand");
5624 FlagDef
->setIsDead(false);
5626 CmpInstr
.eraseFromParent();
5628 // Modify the condition code of instructions in OpsToUpdate.
5629 for (auto &Op
: OpsToUpdate
) {
5630 Op
.first
->getOperand(Op
.first
->getDesc().getNumOperands() - 1)
5633 // Add EFLAGS to block live-ins between CmpBB and block of flags producer.
5634 for (MachineBasicBlock
*MBB
= &CmpMBB
; MBB
!= SubBB
;
5635 MBB
= *MBB
->pred_begin()) {
5636 assert(MBB
->pred_size() == 1 && "Expected exactly one predecessor");
5637 if (!MBB
->isLiveIn(X86::EFLAGS
))
5638 MBB
->addLiveIn(X86::EFLAGS
);
5643 /// Try to remove the load by folding it to a register
5644 /// operand at the use. We fold the load instructions if load defines a virtual
5645 /// register, the virtual register is used once in the same BB, and the
5646 /// instructions in-between do not load or store, and have no side effects.
5647 MachineInstr
*X86InstrInfo::optimizeLoadInstr(MachineInstr
&MI
,
5648 const MachineRegisterInfo
*MRI
,
5649 Register
&FoldAsLoadDefReg
,
5650 MachineInstr
*&DefMI
) const {
5651 // Check whether we can move DefMI here.
5652 DefMI
= MRI
->getVRegDef(FoldAsLoadDefReg
);
5654 bool SawStore
= false;
5655 if (!DefMI
->isSafeToMove(SawStore
))
5658 // Collect information about virtual register operands of MI.
5659 SmallVector
<unsigned, 1> SrcOperandIds
;
5660 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
5661 MachineOperand
&MO
= MI
.getOperand(i
);
5664 Register Reg
= MO
.getReg();
5665 if (Reg
!= FoldAsLoadDefReg
)
5667 // Do not fold if we have a subreg use or a def.
5668 if (MO
.getSubReg() || MO
.isDef())
5670 SrcOperandIds
.push_back(i
);
5672 if (SrcOperandIds
.empty())
5675 // Check whether we can fold the def into SrcOperandId.
5676 if (MachineInstr
*FoldMI
= foldMemoryOperand(MI
, SrcOperandIds
, *DefMI
)) {
5677 FoldAsLoadDefReg
= 0;
5684 /// \returns true if the instruction can be changed to COPY when imm is 0.
5685 static bool canConvert2Copy(unsigned Opc
) {
5701 /// Convert an ALUrr opcode to corresponding ALUri opcode. Such as
5702 /// ADD32rr ==> ADD32ri
5703 static unsigned convertALUrr2ALUri(unsigned Opc
) {
5707 #define FROM_TO(FROM, TO) \
5710 case X86::FROM##_ND: \
5711 return X86::TO##_ND;
5712 FROM_TO(ADD64rr
, ADD64ri32
)
5713 FROM_TO(ADC64rr
, ADC64ri32
)
5714 FROM_TO(SUB64rr
, SUB64ri32
)
5715 FROM_TO(SBB64rr
, SBB64ri32
)
5716 FROM_TO(AND64rr
, AND64ri32
)
5717 FROM_TO(OR64rr
, OR64ri32
)
5718 FROM_TO(XOR64rr
, XOR64ri32
)
5719 FROM_TO(SHR64rCL
, SHR64ri
)
5720 FROM_TO(SHL64rCL
, SHL64ri
)
5721 FROM_TO(SAR64rCL
, SAR64ri
)
5722 FROM_TO(ROL64rCL
, ROL64ri
)
5723 FROM_TO(ROR64rCL
, ROR64ri
)
5724 FROM_TO(RCL64rCL
, RCL64ri
)
5725 FROM_TO(RCR64rCL
, RCR64ri
)
5726 FROM_TO(ADD32rr
, ADD32ri
)
5727 FROM_TO(ADC32rr
, ADC32ri
)
5728 FROM_TO(SUB32rr
, SUB32ri
)
5729 FROM_TO(SBB32rr
, SBB32ri
)
5730 FROM_TO(AND32rr
, AND32ri
)
5731 FROM_TO(OR32rr
, OR32ri
)
5732 FROM_TO(XOR32rr
, XOR32ri
)
5733 FROM_TO(SHR32rCL
, SHR32ri
)
5734 FROM_TO(SHL32rCL
, SHL32ri
)
5735 FROM_TO(SAR32rCL
, SAR32ri
)
5736 FROM_TO(ROL32rCL
, ROL32ri
)
5737 FROM_TO(ROR32rCL
, ROR32ri
)
5738 FROM_TO(RCL32rCL
, RCL32ri
)
5739 FROM_TO(RCR32rCL
, RCR32ri
)
5741 #define FROM_TO(FROM, TO) \
5744 FROM_TO(TEST64rr
, TEST64ri32
)
5745 FROM_TO(CTEST64rr
, CTEST64ri32
)
5746 FROM_TO(CMP64rr
, CMP64ri32
)
5747 FROM_TO(CCMP64rr
, CCMP64ri32
)
5748 FROM_TO(TEST32rr
, TEST32ri
)
5749 FROM_TO(CTEST32rr
, CTEST32ri
)
5750 FROM_TO(CMP32rr
, CMP32ri
)
5751 FROM_TO(CCMP32rr
, CCMP32ri
)
5756 /// Reg is assigned ImmVal in DefMI, and is used in UseMI.
5757 /// If MakeChange is true, this function tries to replace Reg by ImmVal in
5758 /// UseMI. If MakeChange is false, just check if folding is possible.
5760 /// \returns true if folding is successful or possible.
5761 bool X86InstrInfo::foldImmediateImpl(MachineInstr
&UseMI
, MachineInstr
*DefMI
,
5762 Register Reg
, int64_t ImmVal
,
5763 MachineRegisterInfo
*MRI
,
5764 bool MakeChange
) const {
5765 bool Modified
= false;
5767 // 64 bit operations accept sign extended 32 bit immediates.
5768 // 32 bit operations accept all 32 bit immediates, so we don't need to check
5770 const TargetRegisterClass
*RC
= nullptr;
5771 if (Reg
.isVirtual())
5772 RC
= MRI
->getRegClass(Reg
);
5773 if ((Reg
.isPhysical() && X86::GR64RegClass
.contains(Reg
)) ||
5774 (Reg
.isVirtual() && X86::GR64RegClass
.hasSubClassEq(RC
))) {
5775 if (!isInt
<32>(ImmVal
))
5779 if (UseMI
.findRegisterUseOperand(Reg
, /*TRI=*/nullptr)->getSubReg())
5781 // Immediate has larger code size than register. So avoid folding the
5782 // immediate if it has more than 1 use and we are optimizing for size.
5783 if (UseMI
.getMF()->getFunction().hasOptSize() && Reg
.isVirtual() &&
5784 !MRI
->hasOneNonDBGUse(Reg
))
5787 unsigned Opc
= UseMI
.getOpcode();
5789 if (Opc
== TargetOpcode::COPY
) {
5790 Register ToReg
= UseMI
.getOperand(0).getReg();
5791 const TargetRegisterClass
*RC
= nullptr;
5792 if (ToReg
.isVirtual())
5793 RC
= MRI
->getRegClass(ToReg
);
5794 bool GR32Reg
= (ToReg
.isVirtual() && X86::GR32RegClass
.hasSubClassEq(RC
)) ||
5795 (ToReg
.isPhysical() && X86::GR32RegClass
.contains(ToReg
));
5796 bool GR64Reg
= (ToReg
.isVirtual() && X86::GR64RegClass
.hasSubClassEq(RC
)) ||
5797 (ToReg
.isPhysical() && X86::GR64RegClass
.contains(ToReg
));
5798 bool GR8Reg
= (ToReg
.isVirtual() && X86::GR8RegClass
.hasSubClassEq(RC
)) ||
5799 (ToReg
.isPhysical() && X86::GR8RegClass
.contains(ToReg
));
5802 // We have MOV32r0 only.
5808 if (isUInt
<32>(ImmVal
))
5809 NewOpc
= X86::MOV32ri64
;
5811 NewOpc
= X86::MOV64ri
;
5812 } else if (GR32Reg
) {
5813 NewOpc
= X86::MOV32ri
;
5815 // MOV32r0 clobbers EFLAGS.
5816 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
5817 if (UseMI
.getParent()->computeRegisterLiveness(
5818 TRI
, X86::EFLAGS
, UseMI
) != MachineBasicBlock::LQR_Dead
)
5821 // MOV32r0 is different than other cases because it doesn't encode the
5822 // immediate in the instruction. So we directly modify it here.
5825 UseMI
.setDesc(get(X86::MOV32r0
));
5826 UseMI
.removeOperand(
5827 UseMI
.findRegisterUseOperandIdx(Reg
, /*TRI=*/nullptr));
5828 UseMI
.addOperand(MachineOperand::CreateReg(X86::EFLAGS
, /*isDef=*/true,
5835 NewOpc
= X86::MOV8ri
;
5839 NewOpc
= convertALUrr2ALUri(Opc
);
5844 // For SUB instructions the immediate can only be the second source operand.
5845 if ((NewOpc
== X86::SUB64ri32
|| NewOpc
== X86::SUB32ri
||
5846 NewOpc
== X86::SBB64ri32
|| NewOpc
== X86::SBB32ri
||
5847 NewOpc
== X86::SUB64ri32_ND
|| NewOpc
== X86::SUB32ri_ND
||
5848 NewOpc
== X86::SBB64ri32_ND
|| NewOpc
== X86::SBB32ri_ND
) &&
5849 UseMI
.findRegisterUseOperandIdx(Reg
, /*TRI=*/nullptr) != 2)
5851 // For CMP instructions the immediate can only be at index 1.
5852 if (((NewOpc
== X86::CMP64ri32
|| NewOpc
== X86::CMP32ri
) ||
5853 (NewOpc
== X86::CCMP64ri32
|| NewOpc
== X86::CCMP32ri
)) &&
5854 UseMI
.findRegisterUseOperandIdx(Reg
, /*TRI=*/nullptr) != 1)
5857 using namespace X86
;
5858 if (isSHL(Opc
) || isSHR(Opc
) || isSAR(Opc
) || isROL(Opc
) || isROR(Opc
) ||
5859 isRCL(Opc
) || isRCR(Opc
)) {
5860 unsigned RegIdx
= UseMI
.findRegisterUseOperandIdx(Reg
, /*TRI=*/nullptr);
5863 if (!isInt
<8>(ImmVal
))
5865 assert(Reg
== X86::CL
);
5869 UseMI
.setDesc(get(NewOpc
));
5870 UseMI
.removeOperand(RegIdx
);
5871 UseMI
.addOperand(MachineOperand::CreateImm(ImmVal
));
5872 // Reg is physical register $cl, so we don't know if DefMI is dead through
5873 // MRI. Let the caller handle it, or pass dead-mi-elimination can delete
5874 // the dead physical register define instruction.
5882 // Modify the instruction.
5883 if (ImmVal
== 0 && canConvert2Copy(NewOpc
) &&
5884 UseMI
.registerDefIsDead(X86::EFLAGS
, /*TRI=*/nullptr)) {
5885 // %100 = add %101, 0
5888 UseMI
.setDesc(get(TargetOpcode::COPY
));
5889 UseMI
.removeOperand(
5890 UseMI
.findRegisterUseOperandIdx(Reg
, /*TRI=*/nullptr));
5891 UseMI
.removeOperand(
5892 UseMI
.findRegisterDefOperandIdx(X86::EFLAGS
, /*TRI=*/nullptr));
5893 UseMI
.untieRegOperand(0);
5894 UseMI
.clearFlag(MachineInstr::MIFlag::NoSWrap
);
5895 UseMI
.clearFlag(MachineInstr::MIFlag::NoUWrap
);
5897 unsigned Op1
= 1, Op2
= CommuteAnyOperandIndex
;
5898 unsigned ImmOpNum
= 2;
5899 if (!UseMI
.getOperand(0).isDef()) {
5900 Op1
= 0; // TEST, CMP, CTEST, CCMP
5903 if (Opc
== TargetOpcode::COPY
)
5905 if (findCommutedOpIndices(UseMI
, Op1
, Op2
) &&
5906 UseMI
.getOperand(Op1
).getReg() == Reg
)
5907 commuteInstruction(UseMI
);
5909 assert(UseMI
.getOperand(ImmOpNum
).getReg() == Reg
);
5910 UseMI
.setDesc(get(NewOpc
));
5911 UseMI
.getOperand(ImmOpNum
).ChangeToImmediate(ImmVal
);
5915 if (Reg
.isVirtual() && MRI
->use_nodbg_empty(Reg
))
5916 DefMI
->eraseFromBundle();
5921 /// foldImmediate - 'Reg' is known to be defined by a move immediate
5922 /// instruction, try to fold the immediate into the use instruction.
5923 bool X86InstrInfo::foldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
5924 Register Reg
, MachineRegisterInfo
*MRI
) const {
5926 if (!getConstValDefinedInReg(DefMI
, Reg
, ImmVal
))
5929 return foldImmediateImpl(UseMI
, &DefMI
, Reg
, ImmVal
, MRI
, true);
5932 /// Expand a single-def pseudo instruction to a two-addr
5933 /// instruction with two undef reads of the register being defined.
5934 /// This is used for mapping:
5937 /// %xmm4 = PXORrr undef %xmm4, undef %xmm4
5939 static bool Expand2AddrUndef(MachineInstrBuilder
&MIB
,
5940 const MCInstrDesc
&Desc
) {
5941 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
5942 Register Reg
= MIB
.getReg(0);
5945 // MachineInstr::addOperand() will insert explicit operands before any
5946 // implicit operands.
5947 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
5948 // But we don't trust that.
5949 assert(MIB
.getReg(1) == Reg
&& MIB
.getReg(2) == Reg
&& "Misplaced operand");
5953 /// Expand a single-def pseudo instruction to a two-addr
5954 /// instruction with two %k0 reads.
5955 /// This is used for mapping:
5958 /// %k4 = KXNORrr %k0, %k0
5959 static bool Expand2AddrKreg(MachineInstrBuilder
&MIB
, const MCInstrDesc
&Desc
,
5961 assert(Desc
.getNumOperands() == 3 && "Expected two-addr instruction.");
5963 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
);
5967 static bool expandMOV32r1(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
,
5969 MachineBasicBlock
&MBB
= *MIB
->getParent();
5970 const DebugLoc
&DL
= MIB
->getDebugLoc();
5971 Register Reg
= MIB
.getReg(0);
5974 BuildMI(MBB
, MIB
.getInstr(), DL
, TII
.get(X86::XOR32rr
), Reg
)
5975 .addReg(Reg
, RegState::Undef
)
5976 .addReg(Reg
, RegState::Undef
);
5978 // Turn the pseudo into an INC or DEC.
5979 MIB
->setDesc(TII
.get(MinusOne
? X86::DEC32r
: X86::INC32r
));
5985 static bool ExpandMOVImmSExti8(MachineInstrBuilder
&MIB
,
5986 const TargetInstrInfo
&TII
,
5987 const X86Subtarget
&Subtarget
) {
5988 MachineBasicBlock
&MBB
= *MIB
->getParent();
5989 const DebugLoc
&DL
= MIB
->getDebugLoc();
5990 int64_t Imm
= MIB
->getOperand(1).getImm();
5991 assert(Imm
!= 0 && "Using push/pop for 0 is not efficient.");
5992 MachineBasicBlock::iterator I
= MIB
.getInstr();
5994 int StackAdjustment
;
5996 if (Subtarget
.is64Bit()) {
5997 assert(MIB
->getOpcode() == X86::MOV64ImmSExti8
||
5998 MIB
->getOpcode() == X86::MOV32ImmSExti8
);
6000 // Can't use push/pop lowering if the function might write to the red zone.
6001 X86MachineFunctionInfo
*X86FI
=
6002 MBB
.getParent()->getInfo
<X86MachineFunctionInfo
>();
6003 if (X86FI
->getUsesRedZone()) {
6004 MIB
->setDesc(TII
.get(MIB
->getOpcode() == X86::MOV32ImmSExti8
6010 // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and
6011 // widen the register if necessary.
6012 StackAdjustment
= 8;
6013 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH64i32
)).addImm(Imm
);
6014 MIB
->setDesc(TII
.get(X86::POP64r
));
6015 MIB
->getOperand(0).setReg(getX86SubSuperRegister(MIB
.getReg(0), 64));
6017 assert(MIB
->getOpcode() == X86::MOV32ImmSExti8
);
6018 StackAdjustment
= 4;
6019 BuildMI(MBB
, I
, DL
, TII
.get(X86::PUSH32i
)).addImm(Imm
);
6020 MIB
->setDesc(TII
.get(X86::POP32r
));
6022 MIB
->removeOperand(1);
6023 MIB
->addImplicitDefUseOperands(*MBB
.getParent());
6025 // Build CFI if necessary.
6026 MachineFunction
&MF
= *MBB
.getParent();
6027 const X86FrameLowering
*TFL
= Subtarget
.getFrameLowering();
6028 bool IsWin64Prologue
= MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
6029 bool NeedsDwarfCFI
= !IsWin64Prologue
&& MF
.needsFrameMoves();
6030 bool EmitCFI
= !TFL
->hasFP(MF
) && NeedsDwarfCFI
;
6034 MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment
));
6036 MBB
, std::next(I
), DL
,
6037 MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment
));
6043 // LoadStackGuard has so far only been implemented for 64-bit MachO. Different
6044 // code sequence is needed for other targets.
6045 static void expandLoadStackGuard(MachineInstrBuilder
&MIB
,
6046 const TargetInstrInfo
&TII
) {
6047 MachineBasicBlock
&MBB
= *MIB
->getParent();
6048 const DebugLoc
&DL
= MIB
->getDebugLoc();
6049 Register Reg
= MIB
.getReg(0);
6050 const GlobalValue
*GV
=
6051 cast
<GlobalValue
>((*MIB
->memoperands_begin())->getValue());
6052 auto Flags
= MachineMemOperand::MOLoad
|
6053 MachineMemOperand::MODereferenceable
|
6054 MachineMemOperand::MOInvariant
;
6055 MachineMemOperand
*MMO
= MBB
.getParent()->getMachineMemOperand(
6056 MachinePointerInfo::getGOT(*MBB
.getParent()), Flags
, 8, Align(8));
6057 MachineBasicBlock::iterator I
= MIB
.getInstr();
6059 BuildMI(MBB
, I
, DL
, TII
.get(X86::MOV64rm
), Reg
)
6063 .addGlobalAddress(GV
, 0, X86II::MO_GOTPCREL
)
6065 .addMemOperand(MMO
);
6066 MIB
->setDebugLoc(DL
);
6067 MIB
->setDesc(TII
.get(X86::MOV64rm
));
6068 MIB
.addReg(Reg
, RegState::Kill
).addImm(1).addReg(0).addImm(0).addReg(0);
6071 static bool expandXorFP(MachineInstrBuilder
&MIB
, const TargetInstrInfo
&TII
) {
6072 MachineBasicBlock
&MBB
= *MIB
->getParent();
6073 MachineFunction
&MF
= *MBB
.getParent();
6074 const X86Subtarget
&Subtarget
= MF
.getSubtarget
<X86Subtarget
>();
6075 const X86RegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
6077 MIB
->getOpcode() == X86::XOR64_FP
? X86::XOR64rr
: X86::XOR32rr
;
6078 MIB
->setDesc(TII
.get(XorOp
));
6079 MIB
.addReg(TRI
->getFrameRegister(MF
), RegState::Undef
);
6083 // This is used to handle spills for 128/256-bit registers when we have AVX512,
6084 // but not VLX. If it uses an extended register we need to use an instruction
6085 // that loads the lower 128/256-bit, but is available with only AVX512F.
6086 static bool expandNOVLXLoad(MachineInstrBuilder
&MIB
,
6087 const TargetRegisterInfo
*TRI
,
6088 const MCInstrDesc
&LoadDesc
,
6089 const MCInstrDesc
&BroadcastDesc
, unsigned SubIdx
) {
6090 Register DestReg
= MIB
.getReg(0);
6091 // Check if DestReg is XMM16-31 or YMM16-31.
6092 if (TRI
->getEncodingValue(DestReg
) < 16) {
6093 // We can use a normal VEX encoded load.
6094 MIB
->setDesc(LoadDesc
);
6096 // Use a 128/256-bit VBROADCAST instruction.
6097 MIB
->setDesc(BroadcastDesc
);
6098 // Change the destination to a 512-bit register.
6099 DestReg
= TRI
->getMatchingSuperReg(DestReg
, SubIdx
, &X86::VR512RegClass
);
6100 MIB
->getOperand(0).setReg(DestReg
);
6105 // This is used to handle spills for 128/256-bit registers when we have AVX512,
6106 // but not VLX. If it uses an extended register we need to use an instruction
6107 // that stores the lower 128/256-bit, but is available with only AVX512F.
6108 static bool expandNOVLXStore(MachineInstrBuilder
&MIB
,
6109 const TargetRegisterInfo
*TRI
,
6110 const MCInstrDesc
&StoreDesc
,
6111 const MCInstrDesc
&ExtractDesc
, unsigned SubIdx
) {
6112 Register SrcReg
= MIB
.getReg(X86::AddrNumOperands
);
6113 // Check if DestReg is XMM16-31 or YMM16-31.
6114 if (TRI
->getEncodingValue(SrcReg
) < 16) {
6115 // We can use a normal VEX encoded store.
6116 MIB
->setDesc(StoreDesc
);
6118 // Use a VEXTRACTF instruction.
6119 MIB
->setDesc(ExtractDesc
);
6120 // Change the destination to a 512-bit register.
6121 SrcReg
= TRI
->getMatchingSuperReg(SrcReg
, SubIdx
, &X86::VR512RegClass
);
6122 MIB
->getOperand(X86::AddrNumOperands
).setReg(SrcReg
);
6123 MIB
.addImm(0x0); // Append immediate to extract from the lower bits.
6129 static bool expandSHXDROT(MachineInstrBuilder
&MIB
, const MCInstrDesc
&Desc
) {
6131 int64_t ShiftAmt
= MIB
->getOperand(2).getImm();
6132 // Temporarily remove the immediate so we can add another source register.
6133 MIB
->removeOperand(2);
6134 // Add the register. Don't copy the kill flag if there is one.
6135 MIB
.addReg(MIB
.getReg(1), getUndefRegState(MIB
->getOperand(1).isUndef()));
6136 // Add back the immediate.
6137 MIB
.addImm(ShiftAmt
);
6141 bool X86InstrInfo::expandPostRAPseudo(MachineInstr
&MI
) const {
6142 bool HasAVX
= Subtarget
.hasAVX();
6143 MachineInstrBuilder
MIB(*MI
.getParent()->getParent(), MI
);
6144 switch (MI
.getOpcode()) {
6146 return Expand2AddrUndef(MIB
, get(X86::XOR32rr
));
6148 return expandMOV32r1(MIB
, *this, /*MinusOne=*/false);
6150 return expandMOV32r1(MIB
, *this, /*MinusOne=*/true);
6151 case X86::MOV32ImmSExti8
:
6152 case X86::MOV64ImmSExti8
:
6153 return ExpandMOVImmSExti8(MIB
, *this, Subtarget
);
6154 case X86::SETB_C32r
:
6155 return Expand2AddrUndef(MIB
, get(X86::SBB32rr
));
6156 case X86::SETB_C64r
:
6157 return Expand2AddrUndef(MIB
, get(X86::SBB64rr
));
6159 return Expand2AddrUndef(MIB
, get(X86::MMX_PXORrr
));
6164 case X86::FsFLD0F128
:
6165 return Expand2AddrUndef(MIB
, get(HasAVX
? X86::VXORPSrr
: X86::XORPSrr
));
6166 case X86::AVX_SET0
: {
6167 assert(HasAVX
&& "AVX not supported");
6168 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
6169 Register SrcReg
= MIB
.getReg(0);
6170 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
6171 MIB
->getOperand(0).setReg(XReg
);
6172 Expand2AddrUndef(MIB
, get(X86::VXORPSrr
));
6173 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
6176 case X86::AVX512_128_SET0
:
6177 case X86::AVX512_FsFLD0SH
:
6178 case X86::AVX512_FsFLD0SS
:
6179 case X86::AVX512_FsFLD0SD
:
6180 case X86::AVX512_FsFLD0F128
: {
6181 bool HasVLX
= Subtarget
.hasVLX();
6182 Register SrcReg
= MIB
.getReg(0);
6183 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
6184 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16)
6185 return Expand2AddrUndef(MIB
,
6186 get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
6187 // Extended register without VLX. Use a larger XOR.
6189 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_xmm
, &X86::VR512RegClass
);
6190 MIB
->getOperand(0).setReg(SrcReg
);
6191 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
6193 case X86::AVX512_256_SET0
:
6194 case X86::AVX512_512_SET0
: {
6195 bool HasVLX
= Subtarget
.hasVLX();
6196 Register SrcReg
= MIB
.getReg(0);
6197 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
6198 if (HasVLX
|| TRI
->getEncodingValue(SrcReg
) < 16) {
6199 Register XReg
= TRI
->getSubReg(SrcReg
, X86::sub_xmm
);
6200 MIB
->getOperand(0).setReg(XReg
);
6201 Expand2AddrUndef(MIB
, get(HasVLX
? X86::VPXORDZ128rr
: X86::VXORPSrr
));
6202 MIB
.addReg(SrcReg
, RegState::ImplicitDefine
);
6205 if (MI
.getOpcode() == X86::AVX512_256_SET0
) {
6206 // No VLX so we must reference a zmm.
6208 TRI
->getMatchingSuperReg(SrcReg
, X86::sub_ymm
, &X86::VR512RegClass
);
6209 MIB
->getOperand(0).setReg(ZReg
);
6211 return Expand2AddrUndef(MIB
, get(X86::VPXORDZrr
));
6213 case X86::V_SETALLONES
:
6214 return Expand2AddrUndef(MIB
,
6215 get(HasAVX
? X86::VPCMPEQDrr
: X86::PCMPEQDrr
));
6216 case X86::AVX2_SETALLONES
:
6217 return Expand2AddrUndef(MIB
, get(X86::VPCMPEQDYrr
));
6218 case X86::AVX1_SETALLONES
: {
6219 Register Reg
= MIB
.getReg(0);
6220 // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS.
6221 MIB
->setDesc(get(X86::VCMPPSYrri
));
6222 MIB
.addReg(Reg
, RegState::Undef
).addReg(Reg
, RegState::Undef
).addImm(0xf);
6225 case X86::AVX512_512_SETALLONES
: {
6226 Register Reg
= MIB
.getReg(0);
6227 MIB
->setDesc(get(X86::VPTERNLOGDZrri
));
6228 // VPTERNLOGD needs 3 register inputs and an immediate.
6229 // 0xff will return 1s for any input.
6230 MIB
.addReg(Reg
, RegState::Undef
)
6231 .addReg(Reg
, RegState::Undef
)
6232 .addReg(Reg
, RegState::Undef
)
6236 case X86::AVX512_512_SEXT_MASK_32
:
6237 case X86::AVX512_512_SEXT_MASK_64
: {
6238 Register Reg
= MIB
.getReg(0);
6239 Register MaskReg
= MIB
.getReg(1);
6240 unsigned MaskState
= getRegState(MIB
->getOperand(1));
6241 unsigned Opc
= (MI
.getOpcode() == X86::AVX512_512_SEXT_MASK_64
)
6242 ? X86::VPTERNLOGQZrrikz
6243 : X86::VPTERNLOGDZrrikz
;
6244 MI
.removeOperand(1);
6245 MIB
->setDesc(get(Opc
));
6246 // VPTERNLOG needs 3 register inputs and an immediate.
6247 // 0xff will return 1s for any input.
6248 MIB
.addReg(Reg
, RegState::Undef
)
6249 .addReg(MaskReg
, MaskState
)
6250 .addReg(Reg
, RegState::Undef
)
6251 .addReg(Reg
, RegState::Undef
)
6255 case X86::VMOVAPSZ128rm_NOVLX
:
6256 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSrm
),
6257 get(X86::VBROADCASTF32X4Zrm
), X86::sub_xmm
);
6258 case X86::VMOVUPSZ128rm_NOVLX
:
6259 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSrm
),
6260 get(X86::VBROADCASTF32X4Zrm
), X86::sub_xmm
);
6261 case X86::VMOVAPSZ256rm_NOVLX
:
6262 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYrm
),
6263 get(X86::VBROADCASTF64X4Zrm
), X86::sub_ymm
);
6264 case X86::VMOVUPSZ256rm_NOVLX
:
6265 return expandNOVLXLoad(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYrm
),
6266 get(X86::VBROADCASTF64X4Zrm
), X86::sub_ymm
);
6267 case X86::VMOVAPSZ128mr_NOVLX
:
6268 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSmr
),
6269 get(X86::VEXTRACTF32X4Zmri
), X86::sub_xmm
);
6270 case X86::VMOVUPSZ128mr_NOVLX
:
6271 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSmr
),
6272 get(X86::VEXTRACTF32X4Zmri
), X86::sub_xmm
);
6273 case X86::VMOVAPSZ256mr_NOVLX
:
6274 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVAPSYmr
),
6275 get(X86::VEXTRACTF64X4Zmri
), X86::sub_ymm
);
6276 case X86::VMOVUPSZ256mr_NOVLX
:
6277 return expandNOVLXStore(MIB
, &getRegisterInfo(), get(X86::VMOVUPSYmr
),
6278 get(X86::VEXTRACTF64X4Zmri
), X86::sub_ymm
);
6279 case X86::MOV32ri64
: {
6280 Register Reg
= MIB
.getReg(0);
6281 Register Reg32
= RI
.getSubReg(Reg
, X86::sub_32bit
);
6282 MI
.setDesc(get(X86::MOV32ri
));
6283 MIB
->getOperand(0).setReg(Reg32
);
6284 MIB
.addReg(Reg
, RegState::ImplicitDefine
);
6288 case X86::RDFLAGS32
:
6289 case X86::RDFLAGS64
: {
6290 unsigned Is64Bit
= MI
.getOpcode() == X86::RDFLAGS64
;
6291 MachineBasicBlock
&MBB
= *MIB
->getParent();
6293 MachineInstr
*NewMI
= BuildMI(MBB
, MI
, MIB
->getDebugLoc(),
6294 get(Is64Bit
? X86::PUSHF64
: X86::PUSHF32
))
6297 // Permit reads of the EFLAGS and DF registers without them being defined.
6298 // This intrinsic exists to read external processor state in flags, such as
6299 // the trap flag, interrupt flag, and direction flag, none of which are
6300 // modeled by the backend.
6301 assert(NewMI
->getOperand(2).getReg() == X86::EFLAGS
&&
6302 "Unexpected register in operand! Should be EFLAGS.");
6303 NewMI
->getOperand(2).setIsUndef();
6304 assert(NewMI
->getOperand(3).getReg() == X86::DF
&&
6305 "Unexpected register in operand! Should be DF.");
6306 NewMI
->getOperand(3).setIsUndef();
6308 MIB
->setDesc(get(Is64Bit
? X86::POP64r
: X86::POP32r
));
6312 case X86::WRFLAGS32
:
6313 case X86::WRFLAGS64
: {
6314 unsigned Is64Bit
= MI
.getOpcode() == X86::WRFLAGS64
;
6315 MachineBasicBlock
&MBB
= *MIB
->getParent();
6317 BuildMI(MBB
, MI
, MIB
->getDebugLoc(),
6318 get(Is64Bit
? X86::PUSH64r
: X86::PUSH32r
))
6319 .addReg(MI
.getOperand(0).getReg());
6320 BuildMI(MBB
, MI
, MIB
->getDebugLoc(),
6321 get(Is64Bit
? X86::POPF64
: X86::POPF32
));
6322 MI
.eraseFromParent();
6326 // KNL does not recognize dependency-breaking idioms for mask registers,
6327 // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
6328 // Using %k0 as the undef input register is a performance heuristic based
6329 // on the assumption that %k0 is used less frequently than the other mask
6330 // registers, since it is not usable as a write mask.
6331 // FIXME: A more advanced approach would be to choose the best input mask
6332 // register based on context.
6334 return Expand2AddrKreg(MIB
, get(X86::KXORWkk
), X86::K0
);
6336 return Expand2AddrKreg(MIB
, get(X86::KXORDkk
), X86::K0
);
6338 return Expand2AddrKreg(MIB
, get(X86::KXORQkk
), X86::K0
);
6340 return Expand2AddrKreg(MIB
, get(X86::KXNORWkk
), X86::K0
);
6342 return Expand2AddrKreg(MIB
, get(X86::KXNORDkk
), X86::K0
);
6344 return Expand2AddrKreg(MIB
, get(X86::KXNORQkk
), X86::K0
);
6345 case TargetOpcode::LOAD_STACK_GUARD
:
6346 expandLoadStackGuard(MIB
, *this);
6350 return expandXorFP(MIB
, *this);
6351 case X86::SHLDROT32ri
:
6352 return expandSHXDROT(MIB
, get(X86::SHLD32rri8
));
6353 case X86::SHLDROT64ri
:
6354 return expandSHXDROT(MIB
, get(X86::SHLD64rri8
));
6355 case X86::SHRDROT32ri
:
6356 return expandSHXDROT(MIB
, get(X86::SHRD32rri8
));
6357 case X86::SHRDROT64ri
:
6358 return expandSHXDROT(MIB
, get(X86::SHRD64rri8
));
6359 case X86::ADD8rr_DB
:
6360 MIB
->setDesc(get(X86::OR8rr
));
6362 case X86::ADD16rr_DB
:
6363 MIB
->setDesc(get(X86::OR16rr
));
6365 case X86::ADD32rr_DB
:
6366 MIB
->setDesc(get(X86::OR32rr
));
6368 case X86::ADD64rr_DB
:
6369 MIB
->setDesc(get(X86::OR64rr
));
6371 case X86::ADD8ri_DB
:
6372 MIB
->setDesc(get(X86::OR8ri
));
6374 case X86::ADD16ri_DB
:
6375 MIB
->setDesc(get(X86::OR16ri
));
6377 case X86::ADD32ri_DB
:
6378 MIB
->setDesc(get(X86::OR32ri
));
6380 case X86::ADD64ri32_DB
:
6381 MIB
->setDesc(get(X86::OR64ri32
));
6387 /// Return true for all instructions that only update
6388 /// the first 32 or 64-bits of the destination register and leave the rest
6389 /// unmodified. This can be used to avoid folding loads if the instructions
6390 /// only update part of the destination register, and the non-updated part is
6391 /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
6392 /// instructions breaks the partial register dependency and it can improve
6393 /// performance. e.g.:
6395 /// movss (%rdi), %xmm0
6396 /// cvtss2sd %xmm0, %xmm0
6399 /// cvtss2sd (%rdi), %xmm0
6401 /// FIXME: This should be turned into a TSFlags.
6403 static bool hasPartialRegUpdate(unsigned Opcode
, const X86Subtarget
&Subtarget
,
6404 bool ForLoadFold
= false) {
6406 case X86::CVTSI2SSrr
:
6407 case X86::CVTSI2SSrm
:
6408 case X86::CVTSI642SSrr
:
6409 case X86::CVTSI642SSrm
:
6410 case X86::CVTSI2SDrr
:
6411 case X86::CVTSI2SDrm
:
6412 case X86::CVTSI642SDrr
:
6413 case X86::CVTSI642SDrm
:
6414 // Load folding won't effect the undef register update since the input is
6416 return !ForLoadFold
;
6417 case X86::CVTSD2SSrr
:
6418 case X86::CVTSD2SSrm
:
6419 case X86::CVTSS2SDrr
:
6420 case X86::CVTSS2SDrm
:
6427 case X86::RCPSSr_Int
:
6428 case X86::RCPSSm_Int
:
6429 case X86::ROUNDSDri
:
6430 case X86::ROUNDSDmi
:
6431 case X86::ROUNDSSri
:
6432 case X86::ROUNDSSmi
:
6435 case X86::RSQRTSSr_Int
:
6436 case X86::RSQRTSSm_Int
:
6439 case X86::SQRTSSr_Int
:
6440 case X86::SQRTSSm_Int
:
6443 case X86::SQRTSDr_Int
:
6444 case X86::SQRTSDm_Int
:
6446 case X86::VFCMULCPHZ128rm
:
6447 case X86::VFCMULCPHZ128rmb
:
6448 case X86::VFCMULCPHZ128rmbkz
:
6449 case X86::VFCMULCPHZ128rmkz
:
6450 case X86::VFCMULCPHZ128rr
:
6451 case X86::VFCMULCPHZ128rrkz
:
6452 case X86::VFCMULCPHZ256rm
:
6453 case X86::VFCMULCPHZ256rmb
:
6454 case X86::VFCMULCPHZ256rmbkz
:
6455 case X86::VFCMULCPHZ256rmkz
:
6456 case X86::VFCMULCPHZ256rr
:
6457 case X86::VFCMULCPHZ256rrkz
:
6458 case X86::VFCMULCPHZrm
:
6459 case X86::VFCMULCPHZrmb
:
6460 case X86::VFCMULCPHZrmbkz
:
6461 case X86::VFCMULCPHZrmkz
:
6462 case X86::VFCMULCPHZrr
:
6463 case X86::VFCMULCPHZrrb
:
6464 case X86::VFCMULCPHZrrbkz
:
6465 case X86::VFCMULCPHZrrkz
:
6466 case X86::VFMULCPHZ128rm
:
6467 case X86::VFMULCPHZ128rmb
:
6468 case X86::VFMULCPHZ128rmbkz
:
6469 case X86::VFMULCPHZ128rmkz
:
6470 case X86::VFMULCPHZ128rr
:
6471 case X86::VFMULCPHZ128rrkz
:
6472 case X86::VFMULCPHZ256rm
:
6473 case X86::VFMULCPHZ256rmb
:
6474 case X86::VFMULCPHZ256rmbkz
:
6475 case X86::VFMULCPHZ256rmkz
:
6476 case X86::VFMULCPHZ256rr
:
6477 case X86::VFMULCPHZ256rrkz
:
6478 case X86::VFMULCPHZrm
:
6479 case X86::VFMULCPHZrmb
:
6480 case X86::VFMULCPHZrmbkz
:
6481 case X86::VFMULCPHZrmkz
:
6482 case X86::VFMULCPHZrr
:
6483 case X86::VFMULCPHZrrb
:
6484 case X86::VFMULCPHZrrbkz
:
6485 case X86::VFMULCPHZrrkz
:
6486 case X86::VFCMULCSHZrm
:
6487 case X86::VFCMULCSHZrmkz
:
6488 case X86::VFCMULCSHZrr
:
6489 case X86::VFCMULCSHZrrb
:
6490 case X86::VFCMULCSHZrrbkz
:
6491 case X86::VFCMULCSHZrrkz
:
6492 case X86::VFMULCSHZrm
:
6493 case X86::VFMULCSHZrmkz
:
6494 case X86::VFMULCSHZrr
:
6495 case X86::VFMULCSHZrrb
:
6496 case X86::VFMULCSHZrrbkz
:
6497 case X86::VFMULCSHZrrkz
:
6498 return Subtarget
.hasMULCFalseDeps();
6499 case X86::VPERMDYrm
:
6500 case X86::VPERMDYrr
:
6501 case X86::VPERMQYmi
:
6502 case X86::VPERMQYri
:
6503 case X86::VPERMPSYrm
:
6504 case X86::VPERMPSYrr
:
6505 case X86::VPERMPDYmi
:
6506 case X86::VPERMPDYri
:
6507 case X86::VPERMDZ256rm
:
6508 case X86::VPERMDZ256rmb
:
6509 case X86::VPERMDZ256rmbkz
:
6510 case X86::VPERMDZ256rmkz
:
6511 case X86::VPERMDZ256rr
:
6512 case X86::VPERMDZ256rrkz
:
6513 case X86::VPERMDZrm
:
6514 case X86::VPERMDZrmb
:
6515 case X86::VPERMDZrmbkz
:
6516 case X86::VPERMDZrmkz
:
6517 case X86::VPERMDZrr
:
6518 case X86::VPERMDZrrkz
:
6519 case X86::VPERMQZ256mbi
:
6520 case X86::VPERMQZ256mbikz
:
6521 case X86::VPERMQZ256mi
:
6522 case X86::VPERMQZ256mikz
:
6523 case X86::VPERMQZ256ri
:
6524 case X86::VPERMQZ256rikz
:
6525 case X86::VPERMQZ256rm
:
6526 case X86::VPERMQZ256rmb
:
6527 case X86::VPERMQZ256rmbkz
:
6528 case X86::VPERMQZ256rmkz
:
6529 case X86::VPERMQZ256rr
:
6530 case X86::VPERMQZ256rrkz
:
6531 case X86::VPERMQZmbi
:
6532 case X86::VPERMQZmbikz
:
6533 case X86::VPERMQZmi
:
6534 case X86::VPERMQZmikz
:
6535 case X86::VPERMQZri
:
6536 case X86::VPERMQZrikz
:
6537 case X86::VPERMQZrm
:
6538 case X86::VPERMQZrmb
:
6539 case X86::VPERMQZrmbkz
:
6540 case X86::VPERMQZrmkz
:
6541 case X86::VPERMQZrr
:
6542 case X86::VPERMQZrrkz
:
6543 case X86::VPERMPSZ256rm
:
6544 case X86::VPERMPSZ256rmb
:
6545 case X86::VPERMPSZ256rmbkz
:
6546 case X86::VPERMPSZ256rmkz
:
6547 case X86::VPERMPSZ256rr
:
6548 case X86::VPERMPSZ256rrkz
:
6549 case X86::VPERMPSZrm
:
6550 case X86::VPERMPSZrmb
:
6551 case X86::VPERMPSZrmbkz
:
6552 case X86::VPERMPSZrmkz
:
6553 case X86::VPERMPSZrr
:
6554 case X86::VPERMPSZrrkz
:
6555 case X86::VPERMPDZ256mbi
:
6556 case X86::VPERMPDZ256mbikz
:
6557 case X86::VPERMPDZ256mi
:
6558 case X86::VPERMPDZ256mikz
:
6559 case X86::VPERMPDZ256ri
:
6560 case X86::VPERMPDZ256rikz
:
6561 case X86::VPERMPDZ256rm
:
6562 case X86::VPERMPDZ256rmb
:
6563 case X86::VPERMPDZ256rmbkz
:
6564 case X86::VPERMPDZ256rmkz
:
6565 case X86::VPERMPDZ256rr
:
6566 case X86::VPERMPDZ256rrkz
:
6567 case X86::VPERMPDZmbi
:
6568 case X86::VPERMPDZmbikz
:
6569 case X86::VPERMPDZmi
:
6570 case X86::VPERMPDZmikz
:
6571 case X86::VPERMPDZri
:
6572 case X86::VPERMPDZrikz
:
6573 case X86::VPERMPDZrm
:
6574 case X86::VPERMPDZrmb
:
6575 case X86::VPERMPDZrmbkz
:
6576 case X86::VPERMPDZrmkz
:
6577 case X86::VPERMPDZrr
:
6578 case X86::VPERMPDZrrkz
:
6579 return Subtarget
.hasPERMFalseDeps();
6580 case X86::VRANGEPDZ128rmbi
:
6581 case X86::VRANGEPDZ128rmbikz
:
6582 case X86::VRANGEPDZ128rmi
:
6583 case X86::VRANGEPDZ128rmikz
:
6584 case X86::VRANGEPDZ128rri
:
6585 case X86::VRANGEPDZ128rrikz
:
6586 case X86::VRANGEPDZ256rmbi
:
6587 case X86::VRANGEPDZ256rmbikz
:
6588 case X86::VRANGEPDZ256rmi
:
6589 case X86::VRANGEPDZ256rmikz
:
6590 case X86::VRANGEPDZ256rri
:
6591 case X86::VRANGEPDZ256rrikz
:
6592 case X86::VRANGEPDZrmbi
:
6593 case X86::VRANGEPDZrmbikz
:
6594 case X86::VRANGEPDZrmi
:
6595 case X86::VRANGEPDZrmikz
:
6596 case X86::VRANGEPDZrri
:
6597 case X86::VRANGEPDZrrib
:
6598 case X86::VRANGEPDZrribkz
:
6599 case X86::VRANGEPDZrrikz
:
6600 case X86::VRANGEPSZ128rmbi
:
6601 case X86::VRANGEPSZ128rmbikz
:
6602 case X86::VRANGEPSZ128rmi
:
6603 case X86::VRANGEPSZ128rmikz
:
6604 case X86::VRANGEPSZ128rri
:
6605 case X86::VRANGEPSZ128rrikz
:
6606 case X86::VRANGEPSZ256rmbi
:
6607 case X86::VRANGEPSZ256rmbikz
:
6608 case X86::VRANGEPSZ256rmi
:
6609 case X86::VRANGEPSZ256rmikz
:
6610 case X86::VRANGEPSZ256rri
:
6611 case X86::VRANGEPSZ256rrikz
:
6612 case X86::VRANGEPSZrmbi
:
6613 case X86::VRANGEPSZrmbikz
:
6614 case X86::VRANGEPSZrmi
:
6615 case X86::VRANGEPSZrmikz
:
6616 case X86::VRANGEPSZrri
:
6617 case X86::VRANGEPSZrrib
:
6618 case X86::VRANGEPSZrribkz
:
6619 case X86::VRANGEPSZrrikz
:
6620 case X86::VRANGESDZrmi
:
6621 case X86::VRANGESDZrmikz
:
6622 case X86::VRANGESDZrri
:
6623 case X86::VRANGESDZrrib
:
6624 case X86::VRANGESDZrribkz
:
6625 case X86::VRANGESDZrrikz
:
6626 case X86::VRANGESSZrmi
:
6627 case X86::VRANGESSZrmikz
:
6628 case X86::VRANGESSZrri
:
6629 case X86::VRANGESSZrrib
:
6630 case X86::VRANGESSZrribkz
:
6631 case X86::VRANGESSZrrikz
:
6632 return Subtarget
.hasRANGEFalseDeps();
6633 case X86::VGETMANTSSZrmi
:
6634 case X86::VGETMANTSSZrmikz
:
6635 case X86::VGETMANTSSZrri
:
6636 case X86::VGETMANTSSZrrib
:
6637 case X86::VGETMANTSSZrribkz
:
6638 case X86::VGETMANTSSZrrikz
:
6639 case X86::VGETMANTSDZrmi
:
6640 case X86::VGETMANTSDZrmikz
:
6641 case X86::VGETMANTSDZrri
:
6642 case X86::VGETMANTSDZrrib
:
6643 case X86::VGETMANTSDZrribkz
:
6644 case X86::VGETMANTSDZrrikz
:
6645 case X86::VGETMANTSHZrmi
:
6646 case X86::VGETMANTSHZrmikz
:
6647 case X86::VGETMANTSHZrri
:
6648 case X86::VGETMANTSHZrrib
:
6649 case X86::VGETMANTSHZrribkz
:
6650 case X86::VGETMANTSHZrrikz
:
6651 case X86::VGETMANTPSZ128rmbi
:
6652 case X86::VGETMANTPSZ128rmbikz
:
6653 case X86::VGETMANTPSZ128rmi
:
6654 case X86::VGETMANTPSZ128rmikz
:
6655 case X86::VGETMANTPSZ256rmbi
:
6656 case X86::VGETMANTPSZ256rmbikz
:
6657 case X86::VGETMANTPSZ256rmi
:
6658 case X86::VGETMANTPSZ256rmikz
:
6659 case X86::VGETMANTPSZrmbi
:
6660 case X86::VGETMANTPSZrmbikz
:
6661 case X86::VGETMANTPSZrmi
:
6662 case X86::VGETMANTPSZrmikz
:
6663 case X86::VGETMANTPDZ128rmbi
:
6664 case X86::VGETMANTPDZ128rmbikz
:
6665 case X86::VGETMANTPDZ128rmi
:
6666 case X86::VGETMANTPDZ128rmikz
:
6667 case X86::VGETMANTPDZ256rmbi
:
6668 case X86::VGETMANTPDZ256rmbikz
:
6669 case X86::VGETMANTPDZ256rmi
:
6670 case X86::VGETMANTPDZ256rmikz
:
6671 case X86::VGETMANTPDZrmbi
:
6672 case X86::VGETMANTPDZrmbikz
:
6673 case X86::VGETMANTPDZrmi
:
6674 case X86::VGETMANTPDZrmikz
:
6675 return Subtarget
.hasGETMANTFalseDeps();
6676 case X86::VPMULLQZ128rm
:
6677 case X86::VPMULLQZ128rmb
:
6678 case X86::VPMULLQZ128rmbkz
:
6679 case X86::VPMULLQZ128rmkz
:
6680 case X86::VPMULLQZ128rr
:
6681 case X86::VPMULLQZ128rrkz
:
6682 case X86::VPMULLQZ256rm
:
6683 case X86::VPMULLQZ256rmb
:
6684 case X86::VPMULLQZ256rmbkz
:
6685 case X86::VPMULLQZ256rmkz
:
6686 case X86::VPMULLQZ256rr
:
6687 case X86::VPMULLQZ256rrkz
:
6688 case X86::VPMULLQZrm
:
6689 case X86::VPMULLQZrmb
:
6690 case X86::VPMULLQZrmbkz
:
6691 case X86::VPMULLQZrmkz
:
6692 case X86::VPMULLQZrr
:
6693 case X86::VPMULLQZrrkz
:
6694 return Subtarget
.hasMULLQFalseDeps();
6696 case X86::POPCNT32rm
:
6697 case X86::POPCNT32rr
:
6698 case X86::POPCNT64rm
:
6699 case X86::POPCNT64rr
:
6700 return Subtarget
.hasPOPCNTFalseDeps();
6701 case X86::LZCNT32rm
:
6702 case X86::LZCNT32rr
:
6703 case X86::LZCNT64rm
:
6704 case X86::LZCNT64rr
:
6705 case X86::TZCNT32rm
:
6706 case X86::TZCNT32rr
:
6707 case X86::TZCNT64rm
:
6708 case X86::TZCNT64rr
:
6709 return Subtarget
.hasLZCNTFalseDeps();
6715 /// Inform the BreakFalseDeps pass how many idle
6716 /// instructions we would like before a partial register update.
6717 unsigned X86InstrInfo::getPartialRegUpdateClearance(
6718 const MachineInstr
&MI
, unsigned OpNum
,
6719 const TargetRegisterInfo
*TRI
) const {
6720 if (OpNum
!= 0 || !hasPartialRegUpdate(MI
.getOpcode(), Subtarget
))
6723 // If MI is marked as reading Reg, the partial register update is wanted.
6724 const MachineOperand
&MO
= MI
.getOperand(0);
6725 Register Reg
= MO
.getReg();
6726 if (Reg
.isVirtual()) {
6727 if (MO
.readsReg() || MI
.readsVirtualRegister(Reg
))
6730 if (MI
.readsRegister(Reg
, TRI
))
6734 // If any instructions in the clearance range are reading Reg, insert a
6735 // dependency breaking instruction, which is inexpensive and is likely to
6736 // be hidden in other instruction's cycles.
6737 return PartialRegUpdateClearance
;
6740 // Return true for any instruction the copies the high bits of the first source
6741 // operand into the unused high bits of the destination operand.
6742 // Also returns true for instructions that have two inputs where one may
6743 // be undef and we want it to use the same register as the other input.
6744 static bool hasUndefRegUpdate(unsigned Opcode
, unsigned OpNum
,
6745 bool ForLoadFold
= false) {
6746 // Set the OpNum parameter to the first source operand.
6748 case X86::MMX_PUNPCKHBWrr
:
6749 case X86::MMX_PUNPCKHWDrr
:
6750 case X86::MMX_PUNPCKHDQrr
:
6751 case X86::MMX_PUNPCKLBWrr
:
6752 case X86::MMX_PUNPCKLWDrr
:
6753 case X86::MMX_PUNPCKLDQrr
:
6754 case X86::MOVHLPSrr
:
6755 case X86::PACKSSWBrr
:
6756 case X86::PACKUSWBrr
:
6757 case X86::PACKSSDWrr
:
6758 case X86::PACKUSDWrr
:
6759 case X86::PUNPCKHBWrr
:
6760 case X86::PUNPCKLBWrr
:
6761 case X86::PUNPCKHWDrr
:
6762 case X86::PUNPCKLWDrr
:
6763 case X86::PUNPCKHDQrr
:
6764 case X86::PUNPCKLDQrr
:
6765 case X86::PUNPCKHQDQrr
:
6766 case X86::PUNPCKLQDQrr
:
6767 case X86::SHUFPDrri
:
6768 case X86::SHUFPSrri
:
6769 // These instructions are sometimes used with an undef first or second
6770 // source. Return true here so BreakFalseDeps will assign this source to the
6771 // same register as the first source to avoid a false dependency.
6772 // Operand 1 of these instructions is tied so they're separate from their
6773 // VEX counterparts.
6774 return OpNum
== 2 && !ForLoadFold
;
6776 case X86::VMOVLHPSrr
:
6777 case X86::VMOVLHPSZrr
:
6778 case X86::VPACKSSWBrr
:
6779 case X86::VPACKUSWBrr
:
6780 case X86::VPACKSSDWrr
:
6781 case X86::VPACKUSDWrr
:
6782 case X86::VPACKSSWBZ128rr
:
6783 case X86::VPACKUSWBZ128rr
:
6784 case X86::VPACKSSDWZ128rr
:
6785 case X86::VPACKUSDWZ128rr
:
6786 case X86::VPERM2F128rri
:
6787 case X86::VPERM2I128rri
:
6788 case X86::VSHUFF32X4Z256rri
:
6789 case X86::VSHUFF32X4Zrri
:
6790 case X86::VSHUFF64X2Z256rri
:
6791 case X86::VSHUFF64X2Zrri
:
6792 case X86::VSHUFI32X4Z256rri
:
6793 case X86::VSHUFI32X4Zrri
:
6794 case X86::VSHUFI64X2Z256rri
:
6795 case X86::VSHUFI64X2Zrri
:
6796 case X86::VPUNPCKHBWrr
:
6797 case X86::VPUNPCKLBWrr
:
6798 case X86::VPUNPCKHBWYrr
:
6799 case X86::VPUNPCKLBWYrr
:
6800 case X86::VPUNPCKHBWZ128rr
:
6801 case X86::VPUNPCKLBWZ128rr
:
6802 case X86::VPUNPCKHBWZ256rr
:
6803 case X86::VPUNPCKLBWZ256rr
:
6804 case X86::VPUNPCKHBWZrr
:
6805 case X86::VPUNPCKLBWZrr
:
6806 case X86::VPUNPCKHWDrr
:
6807 case X86::VPUNPCKLWDrr
:
6808 case X86::VPUNPCKHWDYrr
:
6809 case X86::VPUNPCKLWDYrr
:
6810 case X86::VPUNPCKHWDZ128rr
:
6811 case X86::VPUNPCKLWDZ128rr
:
6812 case X86::VPUNPCKHWDZ256rr
:
6813 case X86::VPUNPCKLWDZ256rr
:
6814 case X86::VPUNPCKHWDZrr
:
6815 case X86::VPUNPCKLWDZrr
:
6816 case X86::VPUNPCKHDQrr
:
6817 case X86::VPUNPCKLDQrr
:
6818 case X86::VPUNPCKHDQYrr
:
6819 case X86::VPUNPCKLDQYrr
:
6820 case X86::VPUNPCKHDQZ128rr
:
6821 case X86::VPUNPCKLDQZ128rr
:
6822 case X86::VPUNPCKHDQZ256rr
:
6823 case X86::VPUNPCKLDQZ256rr
:
6824 case X86::VPUNPCKHDQZrr
:
6825 case X86::VPUNPCKLDQZrr
:
6826 case X86::VPUNPCKHQDQrr
:
6827 case X86::VPUNPCKLQDQrr
:
6828 case X86::VPUNPCKHQDQYrr
:
6829 case X86::VPUNPCKLQDQYrr
:
6830 case X86::VPUNPCKHQDQZ128rr
:
6831 case X86::VPUNPCKLQDQZ128rr
:
6832 case X86::VPUNPCKHQDQZ256rr
:
6833 case X86::VPUNPCKLQDQZ256rr
:
6834 case X86::VPUNPCKHQDQZrr
:
6835 case X86::VPUNPCKLQDQZrr
:
6836 // These instructions are sometimes used with an undef first or second
6837 // source. Return true here so BreakFalseDeps will assign this source to the
6838 // same register as the first source to avoid a false dependency.
6839 return (OpNum
== 1 || OpNum
== 2) && !ForLoadFold
;
6841 case X86::VCVTSI2SSrr
:
6842 case X86::VCVTSI2SSrm
:
6843 case X86::VCVTSI2SSrr_Int
:
6844 case X86::VCVTSI2SSrm_Int
:
6845 case X86::VCVTSI642SSrr
:
6846 case X86::VCVTSI642SSrm
:
6847 case X86::VCVTSI642SSrr_Int
:
6848 case X86::VCVTSI642SSrm_Int
:
6849 case X86::VCVTSI2SDrr
:
6850 case X86::VCVTSI2SDrm
:
6851 case X86::VCVTSI2SDrr_Int
:
6852 case X86::VCVTSI2SDrm_Int
:
6853 case X86::VCVTSI642SDrr
:
6854 case X86::VCVTSI642SDrm
:
6855 case X86::VCVTSI642SDrr_Int
:
6856 case X86::VCVTSI642SDrm_Int
:
6858 case X86::VCVTSI2SSZrr
:
6859 case X86::VCVTSI2SSZrm
:
6860 case X86::VCVTSI2SSZrr_Int
:
6861 case X86::VCVTSI2SSZrrb_Int
:
6862 case X86::VCVTSI2SSZrm_Int
:
6863 case X86::VCVTSI642SSZrr
:
6864 case X86::VCVTSI642SSZrm
:
6865 case X86::VCVTSI642SSZrr_Int
:
6866 case X86::VCVTSI642SSZrrb_Int
:
6867 case X86::VCVTSI642SSZrm_Int
:
6868 case X86::VCVTSI2SDZrr
:
6869 case X86::VCVTSI2SDZrm
:
6870 case X86::VCVTSI2SDZrr_Int
:
6871 case X86::VCVTSI2SDZrm_Int
:
6872 case X86::VCVTSI642SDZrr
:
6873 case X86::VCVTSI642SDZrm
:
6874 case X86::VCVTSI642SDZrr_Int
:
6875 case X86::VCVTSI642SDZrrb_Int
:
6876 case X86::VCVTSI642SDZrm_Int
:
6877 case X86::VCVTUSI2SSZrr
:
6878 case X86::VCVTUSI2SSZrm
:
6879 case X86::VCVTUSI2SSZrr_Int
:
6880 case X86::VCVTUSI2SSZrrb_Int
:
6881 case X86::VCVTUSI2SSZrm_Int
:
6882 case X86::VCVTUSI642SSZrr
:
6883 case X86::VCVTUSI642SSZrm
:
6884 case X86::VCVTUSI642SSZrr_Int
:
6885 case X86::VCVTUSI642SSZrrb_Int
:
6886 case X86::VCVTUSI642SSZrm_Int
:
6887 case X86::VCVTUSI2SDZrr
:
6888 case X86::VCVTUSI2SDZrm
:
6889 case X86::VCVTUSI2SDZrr_Int
:
6890 case X86::VCVTUSI2SDZrm_Int
:
6891 case X86::VCVTUSI642SDZrr
:
6892 case X86::VCVTUSI642SDZrm
:
6893 case X86::VCVTUSI642SDZrr_Int
:
6894 case X86::VCVTUSI642SDZrrb_Int
:
6895 case X86::VCVTUSI642SDZrm_Int
:
6896 case X86::VCVTSI2SHZrr
:
6897 case X86::VCVTSI2SHZrm
:
6898 case X86::VCVTSI2SHZrr_Int
:
6899 case X86::VCVTSI2SHZrrb_Int
:
6900 case X86::VCVTSI2SHZrm_Int
:
6901 case X86::VCVTSI642SHZrr
:
6902 case X86::VCVTSI642SHZrm
:
6903 case X86::VCVTSI642SHZrr_Int
:
6904 case X86::VCVTSI642SHZrrb_Int
:
6905 case X86::VCVTSI642SHZrm_Int
:
6906 case X86::VCVTUSI2SHZrr
:
6907 case X86::VCVTUSI2SHZrm
:
6908 case X86::VCVTUSI2SHZrr_Int
:
6909 case X86::VCVTUSI2SHZrrb_Int
:
6910 case X86::VCVTUSI2SHZrm_Int
:
6911 case X86::VCVTUSI642SHZrr
:
6912 case X86::VCVTUSI642SHZrm
:
6913 case X86::VCVTUSI642SHZrr_Int
:
6914 case X86::VCVTUSI642SHZrrb_Int
:
6915 case X86::VCVTUSI642SHZrm_Int
:
6916 // Load folding won't effect the undef register update since the input is
6918 return OpNum
== 1 && !ForLoadFold
;
6919 case X86::VCVTSD2SSrr
:
6920 case X86::VCVTSD2SSrm
:
6921 case X86::VCVTSD2SSrr_Int
:
6922 case X86::VCVTSD2SSrm_Int
:
6923 case X86::VCVTSS2SDrr
:
6924 case X86::VCVTSS2SDrm
:
6925 case X86::VCVTSS2SDrr_Int
:
6926 case X86::VCVTSS2SDrm_Int
:
6928 case X86::VRCPSSr_Int
:
6930 case X86::VRCPSSm_Int
:
6931 case X86::VROUNDSDri
:
6932 case X86::VROUNDSDmi
:
6933 case X86::VROUNDSDri_Int
:
6934 case X86::VROUNDSDmi_Int
:
6935 case X86::VROUNDSSri
:
6936 case X86::VROUNDSSmi
:
6937 case X86::VROUNDSSri_Int
:
6938 case X86::VROUNDSSmi_Int
:
6939 case X86::VRSQRTSSr
:
6940 case X86::VRSQRTSSr_Int
:
6941 case X86::VRSQRTSSm
:
6942 case X86::VRSQRTSSm_Int
:
6944 case X86::VSQRTSSr_Int
:
6946 case X86::VSQRTSSm_Int
:
6948 case X86::VSQRTSDr_Int
:
6950 case X86::VSQRTSDm_Int
:
6952 case X86::VCVTSD2SSZrr
:
6953 case X86::VCVTSD2SSZrr_Int
:
6954 case X86::VCVTSD2SSZrrb_Int
:
6955 case X86::VCVTSD2SSZrm
:
6956 case X86::VCVTSD2SSZrm_Int
:
6957 case X86::VCVTSS2SDZrr
:
6958 case X86::VCVTSS2SDZrr_Int
:
6959 case X86::VCVTSS2SDZrrb_Int
:
6960 case X86::VCVTSS2SDZrm
:
6961 case X86::VCVTSS2SDZrm_Int
:
6962 case X86::VGETEXPSDZr
:
6963 case X86::VGETEXPSDZrb
:
6964 case X86::VGETEXPSDZm
:
6965 case X86::VGETEXPSSZr
:
6966 case X86::VGETEXPSSZrb
:
6967 case X86::VGETEXPSSZm
:
6968 case X86::VGETMANTSDZrri
:
6969 case X86::VGETMANTSDZrrib
:
6970 case X86::VGETMANTSDZrmi
:
6971 case X86::VGETMANTSSZrri
:
6972 case X86::VGETMANTSSZrrib
:
6973 case X86::VGETMANTSSZrmi
:
6974 case X86::VRNDSCALESDZrri
:
6975 case X86::VRNDSCALESDZrri_Int
:
6976 case X86::VRNDSCALESDZrrib_Int
:
6977 case X86::VRNDSCALESDZrmi
:
6978 case X86::VRNDSCALESDZrmi_Int
:
6979 case X86::VRNDSCALESSZrri
:
6980 case X86::VRNDSCALESSZrri_Int
:
6981 case X86::VRNDSCALESSZrrib_Int
:
6982 case X86::VRNDSCALESSZrmi
:
6983 case X86::VRNDSCALESSZrmi_Int
:
6984 case X86::VRCP14SDZrr
:
6985 case X86::VRCP14SDZrm
:
6986 case X86::VRCP14SSZrr
:
6987 case X86::VRCP14SSZrm
:
6988 case X86::VRCPSHZrr
:
6989 case X86::VRCPSHZrm
:
6990 case X86::VRSQRTSHZrr
:
6991 case X86::VRSQRTSHZrm
:
6992 case X86::VREDUCESHZrmi
:
6993 case X86::VREDUCESHZrri
:
6994 case X86::VREDUCESHZrrib
:
6995 case X86::VGETEXPSHZr
:
6996 case X86::VGETEXPSHZrb
:
6997 case X86::VGETEXPSHZm
:
6998 case X86::VGETMANTSHZrri
:
6999 case X86::VGETMANTSHZrrib
:
7000 case X86::VGETMANTSHZrmi
:
7001 case X86::VRNDSCALESHZrri
:
7002 case X86::VRNDSCALESHZrri_Int
:
7003 case X86::VRNDSCALESHZrrib_Int
:
7004 case X86::VRNDSCALESHZrmi
:
7005 case X86::VRNDSCALESHZrmi_Int
:
7006 case X86::VSQRTSHZr
:
7007 case X86::VSQRTSHZr_Int
:
7008 case X86::VSQRTSHZrb_Int
:
7009 case X86::VSQRTSHZm
:
7010 case X86::VSQRTSHZm_Int
:
7011 case X86::VRCP28SDZr
:
7012 case X86::VRCP28SDZrb
:
7013 case X86::VRCP28SDZm
:
7014 case X86::VRCP28SSZr
:
7015 case X86::VRCP28SSZrb
:
7016 case X86::VRCP28SSZm
:
7017 case X86::VREDUCESSZrmi
:
7018 case X86::VREDUCESSZrri
:
7019 case X86::VREDUCESSZrrib
:
7020 case X86::VRSQRT14SDZrr
:
7021 case X86::VRSQRT14SDZrm
:
7022 case X86::VRSQRT14SSZrr
:
7023 case X86::VRSQRT14SSZrm
:
7024 case X86::VRSQRT28SDZr
:
7025 case X86::VRSQRT28SDZrb
:
7026 case X86::VRSQRT28SDZm
:
7027 case X86::VRSQRT28SSZr
:
7028 case X86::VRSQRT28SSZrb
:
7029 case X86::VRSQRT28SSZm
:
7030 case X86::VSQRTSSZr
:
7031 case X86::VSQRTSSZr_Int
:
7032 case X86::VSQRTSSZrb_Int
:
7033 case X86::VSQRTSSZm
:
7034 case X86::VSQRTSSZm_Int
:
7035 case X86::VSQRTSDZr
:
7036 case X86::VSQRTSDZr_Int
:
7037 case X86::VSQRTSDZrb_Int
:
7038 case X86::VSQRTSDZm
:
7039 case X86::VSQRTSDZm_Int
:
7040 case X86::VCVTSD2SHZrr
:
7041 case X86::VCVTSD2SHZrr_Int
:
7042 case X86::VCVTSD2SHZrrb_Int
:
7043 case X86::VCVTSD2SHZrm
:
7044 case X86::VCVTSD2SHZrm_Int
:
7045 case X86::VCVTSS2SHZrr
:
7046 case X86::VCVTSS2SHZrr_Int
:
7047 case X86::VCVTSS2SHZrrb_Int
:
7048 case X86::VCVTSS2SHZrm
:
7049 case X86::VCVTSS2SHZrm_Int
:
7050 case X86::VCVTSH2SDZrr
:
7051 case X86::VCVTSH2SDZrr_Int
:
7052 case X86::VCVTSH2SDZrrb_Int
:
7053 case X86::VCVTSH2SDZrm
:
7054 case X86::VCVTSH2SDZrm_Int
:
7055 case X86::VCVTSH2SSZrr
:
7056 case X86::VCVTSH2SSZrr_Int
:
7057 case X86::VCVTSH2SSZrrb_Int
:
7058 case X86::VCVTSH2SSZrm
:
7059 case X86::VCVTSH2SSZrm_Int
:
7061 case X86::VMOVSSZrrk
:
7062 case X86::VMOVSDZrrk
:
7063 return OpNum
== 3 && !ForLoadFold
;
7064 case X86::VMOVSSZrrkz
:
7065 case X86::VMOVSDZrrkz
:
7066 return OpNum
== 2 && !ForLoadFold
;
7072 /// Inform the BreakFalseDeps pass how many idle instructions we would like
7073 /// before certain undef register reads.
7075 /// This catches the VCVTSI2SD family of instructions:
7077 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
7079 /// We should to be careful *not* to catch VXOR idioms which are presumably
7080 /// handled specially in the pipeline:
7082 /// vxorps undef %xmm1, undef %xmm1, %xmm1
7084 /// Like getPartialRegUpdateClearance, this makes a strong assumption that the
7085 /// high bits that are passed-through are not live.
7087 X86InstrInfo::getUndefRegClearance(const MachineInstr
&MI
, unsigned OpNum
,
7088 const TargetRegisterInfo
*TRI
) const {
7089 const MachineOperand
&MO
= MI
.getOperand(OpNum
);
7090 if (MO
.getReg().isPhysical() && hasUndefRegUpdate(MI
.getOpcode(), OpNum
))
7091 return UndefRegClearance
;
7096 void X86InstrInfo::breakPartialRegDependency(
7097 MachineInstr
&MI
, unsigned OpNum
, const TargetRegisterInfo
*TRI
) const {
7098 Register Reg
= MI
.getOperand(OpNum
).getReg();
7099 // If MI kills this register, the false dependence is already broken.
7100 if (MI
.killsRegister(Reg
, TRI
))
7103 if (X86::VR128RegClass
.contains(Reg
)) {
7104 // These instructions are all floating point domain, so xorps is the best
7106 unsigned Opc
= Subtarget
.hasAVX() ? X86::VXORPSrr
: X86::XORPSrr
;
7107 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(Opc
), Reg
)
7108 .addReg(Reg
, RegState::Undef
)
7109 .addReg(Reg
, RegState::Undef
);
7110 MI
.addRegisterKilled(Reg
, TRI
, true);
7111 } else if (X86::VR256RegClass
.contains(Reg
)) {
7112 // Use vxorps to clear the full ymm register.
7113 // It wants to read and write the xmm sub-register.
7114 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_xmm
);
7115 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::VXORPSrr
), XReg
)
7116 .addReg(XReg
, RegState::Undef
)
7117 .addReg(XReg
, RegState::Undef
)
7118 .addReg(Reg
, RegState::ImplicitDefine
);
7119 MI
.addRegisterKilled(Reg
, TRI
, true);
7120 } else if (X86::VR128XRegClass
.contains(Reg
)) {
7121 // Only handle VLX targets.
7122 if (!Subtarget
.hasVLX())
7124 // Since vxorps requires AVX512DQ, vpxord should be the best choice.
7125 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::VPXORDZ128rr
), Reg
)
7126 .addReg(Reg
, RegState::Undef
)
7127 .addReg(Reg
, RegState::Undef
);
7128 MI
.addRegisterKilled(Reg
, TRI
, true);
7129 } else if (X86::VR256XRegClass
.contains(Reg
) ||
7130 X86::VR512RegClass
.contains(Reg
)) {
7131 // Only handle VLX targets.
7132 if (!Subtarget
.hasVLX())
7134 // Use vpxord to clear the full ymm/zmm register.
7135 // It wants to read and write the xmm sub-register.
7136 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_xmm
);
7137 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::VPXORDZ128rr
), XReg
)
7138 .addReg(XReg
, RegState::Undef
)
7139 .addReg(XReg
, RegState::Undef
)
7140 .addReg(Reg
, RegState::ImplicitDefine
);
7141 MI
.addRegisterKilled(Reg
, TRI
, true);
7142 } else if (X86::GR64RegClass
.contains(Reg
)) {
7143 // Using XOR32rr because it has shorter encoding and zeros up the upper bits
7145 Register XReg
= TRI
->getSubReg(Reg
, X86::sub_32bit
);
7146 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), XReg
)
7147 .addReg(XReg
, RegState::Undef
)
7148 .addReg(XReg
, RegState::Undef
)
7149 .addReg(Reg
, RegState::ImplicitDefine
);
7150 MI
.addRegisterKilled(Reg
, TRI
, true);
7151 } else if (X86::GR32RegClass
.contains(Reg
)) {
7152 BuildMI(*MI
.getParent(), MI
, MI
.getDebugLoc(), get(X86::XOR32rr
), Reg
)
7153 .addReg(Reg
, RegState::Undef
)
7154 .addReg(Reg
, RegState::Undef
);
7155 MI
.addRegisterKilled(Reg
, TRI
, true);
7159 static void addOperands(MachineInstrBuilder
&MIB
, ArrayRef
<MachineOperand
> MOs
,
7160 int PtrOffset
= 0) {
7161 unsigned NumAddrOps
= MOs
.size();
7163 if (NumAddrOps
< 4) {
7164 // FrameIndex only - add an immediate offset (whether its zero or not).
7165 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
)
7167 addOffset(MIB
, PtrOffset
);
7169 // General Memory Addressing - we need to add any offset to an existing
7171 assert(MOs
.size() == 5 && "Unexpected memory operand list length");
7172 for (unsigned i
= 0; i
!= NumAddrOps
; ++i
) {
7173 const MachineOperand
&MO
= MOs
[i
];
7174 if (i
== 3 && PtrOffset
!= 0) {
7175 MIB
.addDisp(MO
, PtrOffset
);
7183 static void updateOperandRegConstraints(MachineFunction
&MF
,
7184 MachineInstr
&NewMI
,
7185 const TargetInstrInfo
&TII
) {
7186 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
7187 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
7189 for (int Idx
: llvm::seq
<int>(0, NewMI
.getNumOperands())) {
7190 MachineOperand
&MO
= NewMI
.getOperand(Idx
);
7191 // We only need to update constraints on virtual register operands.
7194 Register Reg
= MO
.getReg();
7195 if (!Reg
.isVirtual())
7198 auto *NewRC
= MRI
.constrainRegClass(
7199 Reg
, TII
.getRegClass(NewMI
.getDesc(), Idx
, &TRI
, MF
));
7202 dbgs() << "WARNING: Unable to update register constraint for operand "
7203 << Idx
<< " of instruction:\n";
7204 NewMI
.dump(); dbgs() << "\n");
7209 static MachineInstr
*fuseTwoAddrInst(MachineFunction
&MF
, unsigned Opcode
,
7210 ArrayRef
<MachineOperand
> MOs
,
7211 MachineBasicBlock::iterator InsertPt
,
7213 const TargetInstrInfo
&TII
) {
7214 // Create the base instruction with the memory operand as the first part.
7215 // Omit the implicit operands, something BuildMI can't do.
7216 MachineInstr
*NewMI
=
7217 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
7218 MachineInstrBuilder
MIB(MF
, NewMI
);
7219 addOperands(MIB
, MOs
);
7221 // Loop over the rest of the ri operands, converting them over.
7222 unsigned NumOps
= MI
.getDesc().getNumOperands() - 2;
7223 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
7224 MachineOperand
&MO
= MI
.getOperand(i
+ 2);
7227 for (const MachineOperand
&MO
: llvm::drop_begin(MI
.operands(), NumOps
+ 2))
7230 updateOperandRegConstraints(MF
, *NewMI
, TII
);
7232 MachineBasicBlock
*MBB
= InsertPt
->getParent();
7233 MBB
->insert(InsertPt
, NewMI
);
7238 static MachineInstr
*fuseInst(MachineFunction
&MF
, unsigned Opcode
,
7239 unsigned OpNo
, ArrayRef
<MachineOperand
> MOs
,
7240 MachineBasicBlock::iterator InsertPt
,
7241 MachineInstr
&MI
, const TargetInstrInfo
&TII
,
7242 int PtrOffset
= 0) {
7243 // Omit the implicit operands, something BuildMI can't do.
7244 MachineInstr
*NewMI
=
7245 MF
.CreateMachineInstr(TII
.get(Opcode
), MI
.getDebugLoc(), true);
7246 MachineInstrBuilder
MIB(MF
, NewMI
);
7248 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
7249 MachineOperand
&MO
= MI
.getOperand(i
);
7251 assert(MO
.isReg() && "Expected to fold into reg operand!");
7252 addOperands(MIB
, MOs
, PtrOffset
);
7258 updateOperandRegConstraints(MF
, *NewMI
, TII
);
7260 // Copy the NoFPExcept flag from the instruction we're fusing.
7261 if (MI
.getFlag(MachineInstr::MIFlag::NoFPExcept
))
7262 NewMI
->setFlag(MachineInstr::MIFlag::NoFPExcept
);
7264 MachineBasicBlock
*MBB
= InsertPt
->getParent();
7265 MBB
->insert(InsertPt
, NewMI
);
7270 static MachineInstr
*makeM0Inst(const TargetInstrInfo
&TII
, unsigned Opcode
,
7271 ArrayRef
<MachineOperand
> MOs
,
7272 MachineBasicBlock::iterator InsertPt
,
7274 MachineInstrBuilder MIB
= BuildMI(*InsertPt
->getParent(), InsertPt
,
7275 MI
.getDebugLoc(), TII
.get(Opcode
));
7276 addOperands(MIB
, MOs
);
7277 return MIB
.addImm(0);
7280 MachineInstr
*X86InstrInfo::foldMemoryOperandCustom(
7281 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
7282 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
7283 unsigned Size
, Align Alignment
) const {
7284 switch (MI
.getOpcode()) {
7285 case X86::INSERTPSrri
:
7286 case X86::VINSERTPSrri
:
7287 case X86::VINSERTPSZrri
:
7288 // Attempt to convert the load of inserted vector into a fold load
7289 // of a single float.
7291 unsigned Imm
= MI
.getOperand(MI
.getNumOperands() - 1).getImm();
7292 unsigned ZMask
= Imm
& 15;
7293 unsigned DstIdx
= (Imm
>> 4) & 3;
7294 unsigned SrcIdx
= (Imm
>> 6) & 3;
7296 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7297 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
7298 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
7299 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 &&
7300 (MI
.getOpcode() != X86::INSERTPSrri
|| Alignment
>= Align(4))) {
7301 int PtrOffset
= SrcIdx
* 4;
7302 unsigned NewImm
= (DstIdx
<< 4) | ZMask
;
7303 unsigned NewOpCode
=
7304 (MI
.getOpcode() == X86::VINSERTPSZrri
) ? X86::VINSERTPSZrmi
7305 : (MI
.getOpcode() == X86::VINSERTPSrri
) ? X86::VINSERTPSrmi
7307 MachineInstr
*NewMI
=
7308 fuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, PtrOffset
);
7309 NewMI
->getOperand(NewMI
->getNumOperands() - 1).setImm(NewImm
);
7314 case X86::MOVHLPSrr
:
7315 case X86::VMOVHLPSrr
:
7316 case X86::VMOVHLPSZrr
:
7317 // Move the upper 64-bits of the second operand to the lower 64-bits.
7318 // To fold the load, adjust the pointer to the upper and use (V)MOVLPS.
7319 // TODO: In most cases AVX doesn't have a 8-byte alignment requirement.
7321 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7322 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
7323 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
7324 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Alignment
>= Align(8)) {
7325 unsigned NewOpCode
=
7326 (MI
.getOpcode() == X86::VMOVHLPSZrr
) ? X86::VMOVLPSZ128rm
7327 : (MI
.getOpcode() == X86::VMOVHLPSrr
) ? X86::VMOVLPSrm
7329 MachineInstr
*NewMI
=
7330 fuseInst(MF
, NewOpCode
, OpNum
, MOs
, InsertPt
, MI
, *this, 8);
7335 case X86::UNPCKLPDrr
:
7336 // If we won't be able to fold this to the memory form of UNPCKL, use
7337 // MOVHPD instead. Done as custom because we can't have this in the load
7340 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7341 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
7342 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
7343 if ((Size
== 0 || Size
>= 16) && RCSize
>= 16 && Alignment
< Align(16)) {
7344 MachineInstr
*NewMI
=
7345 fuseInst(MF
, X86::MOVHPDrm
, OpNum
, MOs
, InsertPt
, MI
, *this);
7352 makeM0Inst(*this, (Size
== 4) ? X86::MOV32mi
: X86::MOV64mi32
, MOs
,
7361 static bool shouldPreventUndefRegUpdateMemFold(MachineFunction
&MF
,
7363 if (!hasUndefRegUpdate(MI
.getOpcode(), 1, /*ForLoadFold*/ true) ||
7364 !MI
.getOperand(1).isReg())
7367 // The are two cases we need to handle depending on where in the pipeline
7368 // the folding attempt is being made.
7369 // -Register has the undef flag set.
7370 // -Register is produced by the IMPLICIT_DEF instruction.
7372 if (MI
.getOperand(1).isUndef())
7375 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7376 MachineInstr
*VRegDef
= RegInfo
.getUniqueVRegDef(MI
.getOperand(1).getReg());
7377 return VRegDef
&& VRegDef
->isImplicitDef();
7380 unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr
&MI
,
7381 unsigned Idx1
) const {
7382 unsigned Idx2
= CommuteAnyOperandIndex
;
7383 if (!findCommutedOpIndices(MI
, Idx1
, Idx2
))
7386 bool HasDef
= MI
.getDesc().getNumDefs();
7387 Register Reg0
= HasDef
? MI
.getOperand(0).getReg() : Register();
7388 Register Reg1
= MI
.getOperand(Idx1
).getReg();
7389 Register Reg2
= MI
.getOperand(Idx2
).getReg();
7390 bool Tied1
= 0 == MI
.getDesc().getOperandConstraint(Idx1
, MCOI::TIED_TO
);
7391 bool Tied2
= 0 == MI
.getDesc().getOperandConstraint(Idx2
, MCOI::TIED_TO
);
7393 // If either of the commutable operands are tied to the destination
7394 // then we can not commute + fold.
7395 if ((HasDef
&& Reg0
== Reg1
&& Tied1
) || (HasDef
&& Reg0
== Reg2
&& Tied2
))
7398 return commuteInstruction(MI
, false, Idx1
, Idx2
) ? Idx2
: Idx1
;
7401 static void printFailMsgforFold(const MachineInstr
&MI
, unsigned Idx
) {
7402 if (PrintFailedFusing
&& !MI
.isCopy())
7403 dbgs() << "We failed to fuse operand " << Idx
<< " in " << MI
;
7406 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
7407 MachineFunction
&MF
, MachineInstr
&MI
, unsigned OpNum
,
7408 ArrayRef
<MachineOperand
> MOs
, MachineBasicBlock::iterator InsertPt
,
7409 unsigned Size
, Align Alignment
, bool AllowCommute
) const {
7410 bool isSlowTwoMemOps
= Subtarget
.slowTwoMemOps();
7411 unsigned Opc
= MI
.getOpcode();
7413 // For CPUs that favor the register form of a call or push,
7414 // do not fold loads into calls or pushes, unless optimizing for size
7416 if (isSlowTwoMemOps
&& !MF
.getFunction().hasMinSize() &&
7417 (Opc
== X86::CALL32r
|| Opc
== X86::CALL64r
|| Opc
== X86::PUSH16r
||
7418 Opc
== X86::PUSH32r
|| Opc
== X86::PUSH64r
))
7421 // Avoid partial and undef register update stalls unless optimizing for size.
7422 if (!MF
.getFunction().hasOptSize() &&
7423 (hasPartialRegUpdate(Opc
, Subtarget
, /*ForLoadFold*/ true) ||
7424 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
7427 unsigned NumOps
= MI
.getDesc().getNumOperands();
7428 bool IsTwoAddr
= NumOps
> 1 && OpNum
< 2 && MI
.getOperand(0).isReg() &&
7429 MI
.getOperand(1).isReg() &&
7430 MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg();
7432 // FIXME: AsmPrinter doesn't know how to handle
7433 // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
7434 if (Opc
== X86::ADD32ri
&&
7435 MI
.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS
)
7438 // GOTTPOFF relocation loads can only be folded into add instructions.
7439 // FIXME: Need to exclude other relocations that only support specific
7441 if (MOs
.size() == X86::AddrNumOperands
&&
7442 MOs
[X86::AddrDisp
].getTargetFlags() == X86II::MO_GOTTPOFF
&&
7443 Opc
!= X86::ADD64rr
)
7446 // Don't fold loads into indirect calls that need a KCFI check as we'll
7447 // have to unfold these in X86TargetLowering::EmitKCFICheck anyway.
7448 if (MI
.isCall() && MI
.getCFIType())
7451 // Attempt to fold any custom cases we have.
7452 if (auto *CustomMI
= foldMemoryOperandCustom(MF
, MI
, OpNum
, MOs
, InsertPt
,
7456 // Folding a memory location into the two-address part of a two-address
7457 // instruction is different than folding it other places. It requires
7458 // replacing the *two* registers with the memory location.
7460 // Utilize the mapping NonNDD -> RMW for the NDD variant.
7461 unsigned NonNDOpc
= Subtarget
.hasNDD() ? X86::getNonNDVariant(Opc
) : 0U;
7462 const X86FoldTableEntry
*I
=
7463 IsTwoAddr
? lookupTwoAddrFoldTable(NonNDOpc
? NonNDOpc
: Opc
)
7464 : lookupFoldTable(Opc
, OpNum
);
7466 MachineInstr
*NewMI
= nullptr;
7468 unsigned Opcode
= I
->DstOp
;
7470 Align(1ULL << ((I
->Flags
& TB_ALIGN_MASK
) >> TB_ALIGN_SHIFT
)))
7472 bool NarrowToMOV32rm
= false;
7474 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7475 const TargetRegisterClass
*RC
= getRegClass(MI
.getDesc(), OpNum
, &RI
, MF
);
7476 unsigned RCSize
= TRI
.getRegSizeInBits(*RC
) / 8;
7477 // Check if it's safe to fold the load. If the size of the object is
7478 // narrower than the load width, then it's not.
7479 // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int.
7480 if ((I
->Flags
& TB_FOLDED_LOAD
) && Size
< RCSize
) {
7481 // If this is a 64-bit load, but the spill slot is 32, then we can do
7482 // a 32-bit load which is implicitly zero-extended. This likely is
7483 // due to live interval analysis remat'ing a load from stack slot.
7484 if (Opcode
!= X86::MOV64rm
|| RCSize
!= 8 || Size
!= 4)
7486 if (MI
.getOperand(0).getSubReg() || MI
.getOperand(1).getSubReg())
7488 Opcode
= X86::MOV32rm
;
7489 NarrowToMOV32rm
= true;
7491 // For stores, make sure the size of the object is equal to the size of
7492 // the store. If the object is larger, the extra bits would be garbage. If
7493 // the object is smaller we might overwrite another object or fault.
7494 if ((I
->Flags
& TB_FOLDED_STORE
) && Size
!= RCSize
)
7498 NewMI
= IsTwoAddr
? fuseTwoAddrInst(MF
, Opcode
, MOs
, InsertPt
, MI
, *this)
7499 : fuseInst(MF
, Opcode
, OpNum
, MOs
, InsertPt
, MI
, *this);
7501 if (NarrowToMOV32rm
) {
7502 // If this is the special case where we use a MOV32rm to load a 32-bit
7503 // value and zero-extend the top bits. Change the destination register
7505 Register DstReg
= NewMI
->getOperand(0).getReg();
7506 if (DstReg
.isPhysical())
7507 NewMI
->getOperand(0).setReg(RI
.getSubReg(DstReg
, X86::sub_32bit
));
7509 NewMI
->getOperand(0).setSubReg(X86::sub_32bit
);
7515 // If the instruction and target operand are commutable, commute the
7516 // instruction and try again.
7517 unsigned CommuteOpIdx2
= commuteOperandsForFold(MI
, OpNum
);
7518 if (CommuteOpIdx2
== OpNum
) {
7519 printFailMsgforFold(MI
, OpNum
);
7522 // Attempt to fold with the commuted version of the instruction.
7523 NewMI
= foldMemoryOperandImpl(MF
, MI
, CommuteOpIdx2
, MOs
, InsertPt
, Size
,
7524 Alignment
, /*AllowCommute=*/false);
7527 // Folding failed again - undo the commute before returning.
7528 commuteInstruction(MI
, false, OpNum
, CommuteOpIdx2
);
7531 printFailMsgforFold(MI
, OpNum
);
7535 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
7536 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
7537 MachineBasicBlock::iterator InsertPt
, int FrameIndex
, LiveIntervals
*LIS
,
7538 VirtRegMap
*VRM
) const {
7539 // Check switch flag
7543 // Avoid partial and undef register update stalls unless optimizing for size.
7544 if (!MF
.getFunction().hasOptSize() &&
7545 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/ true) ||
7546 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
7549 // Don't fold subreg spills, or reloads that use a high subreg.
7550 for (auto Op
: Ops
) {
7551 MachineOperand
&MO
= MI
.getOperand(Op
);
7552 auto SubReg
= MO
.getSubReg();
7553 // MOV32r0 is special b/c it's used to clear a 64-bit register too.
7554 // (See patterns for MOV32r0 in TD files).
7555 if (MI
.getOpcode() == X86::MOV32r0
&& SubReg
== X86::sub_32bit
)
7557 if (SubReg
&& (MO
.isDef() || SubReg
== X86::sub_8bit_hi
))
7561 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
7562 unsigned Size
= MFI
.getObjectSize(FrameIndex
);
7563 Align Alignment
= MFI
.getObjectAlign(FrameIndex
);
7564 // If the function stack isn't realigned we don't want to fold instructions
7565 // that need increased alignment.
7566 if (!RI
.hasStackRealignment(MF
))
7568 std::min(Alignment
, Subtarget
.getFrameLowering()->getStackAlign());
7571 return foldMemoryOperandImpl(MF
, MI
, Ops
[0],
7572 MachineOperand::CreateFI(FrameIndex
), InsertPt
,
7573 Size
, Alignment
, /*AllowCommute=*/true);
7575 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
7576 unsigned NewOpc
= 0;
7577 unsigned RCSize
= 0;
7578 unsigned Opc
= MI
.getOpcode();
7581 // NDD can be folded into RMW though its Op0 and Op1 are not tied.
7582 return (Subtarget
.hasNDD() ? X86::getNonNDVariant(Opc
) : 0U) ? Impl()
7585 NewOpc
= X86::CMP8ri
;
7589 NewOpc
= X86::CMP16ri
;
7593 NewOpc
= X86::CMP32ri
;
7597 NewOpc
= X86::CMP64ri32
;
7601 // Check if it's safe to fold the load. If the size of the object is
7602 // narrower than the load width, then it's not.
7605 // Change to CMPXXri r, 0 first.
7606 MI
.setDesc(get(NewOpc
));
7607 MI
.getOperand(1).ChangeToImmediate(0);
7608 } else if (Ops
.size() != 1)
7614 /// Check if \p LoadMI is a partial register load that we can't fold into \p MI
7615 /// because the latter uses contents that wouldn't be defined in the folded
7616 /// version. For instance, this transformation isn't legal:
7617 /// movss (%rdi), %xmm0
7618 /// addps %xmm0, %xmm0
7620 /// addps (%rdi), %xmm0
7622 /// But this one is:
7623 /// movss (%rdi), %xmm0
7624 /// addss %xmm0, %xmm0
7626 /// addss (%rdi), %xmm0
7628 static bool isNonFoldablePartialRegisterLoad(const MachineInstr
&LoadMI
,
7629 const MachineInstr
&UserMI
,
7630 const MachineFunction
&MF
) {
7631 unsigned Opc
= LoadMI
.getOpcode();
7632 unsigned UserOpc
= UserMI
.getOpcode();
7633 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7634 const TargetRegisterClass
*RC
=
7635 MF
.getRegInfo().getRegClass(LoadMI
.getOperand(0).getReg());
7636 unsigned RegSize
= TRI
.getRegSizeInBits(*RC
);
7638 if ((Opc
== X86::MOVSSrm
|| Opc
== X86::VMOVSSrm
|| Opc
== X86::VMOVSSZrm
||
7639 Opc
== X86::MOVSSrm_alt
|| Opc
== X86::VMOVSSrm_alt
||
7640 Opc
== X86::VMOVSSZrm_alt
) &&
7642 // These instructions only load 32 bits, we can't fold them if the
7643 // destination register is wider than 32 bits (4 bytes), and its user
7644 // instruction isn't scalar (SS).
7646 case X86::CVTSS2SDrr_Int
:
7647 case X86::VCVTSS2SDrr_Int
:
7648 case X86::VCVTSS2SDZrr_Int
:
7649 case X86::VCVTSS2SDZrrk_Int
:
7650 case X86::VCVTSS2SDZrrkz_Int
:
7651 case X86::CVTSS2SIrr_Int
:
7652 case X86::CVTSS2SI64rr_Int
:
7653 case X86::VCVTSS2SIrr_Int
:
7654 case X86::VCVTSS2SI64rr_Int
:
7655 case X86::VCVTSS2SIZrr_Int
:
7656 case X86::VCVTSS2SI64Zrr_Int
:
7657 case X86::CVTTSS2SIrr_Int
:
7658 case X86::CVTTSS2SI64rr_Int
:
7659 case X86::VCVTTSS2SIrr_Int
:
7660 case X86::VCVTTSS2SI64rr_Int
:
7661 case X86::VCVTTSS2SIZrr_Int
:
7662 case X86::VCVTTSS2SI64Zrr_Int
:
7663 case X86::VCVTSS2USIZrr_Int
:
7664 case X86::VCVTSS2USI64Zrr_Int
:
7665 case X86::VCVTTSS2USIZrr_Int
:
7666 case X86::VCVTTSS2USI64Zrr_Int
:
7667 case X86::RCPSSr_Int
:
7668 case X86::VRCPSSr_Int
:
7669 case X86::RSQRTSSr_Int
:
7670 case X86::VRSQRTSSr_Int
:
7671 case X86::ROUNDSSri_Int
:
7672 case X86::VROUNDSSri_Int
:
7673 case X86::COMISSrr_Int
:
7674 case X86::VCOMISSrr_Int
:
7675 case X86::VCOMISSZrr_Int
:
7676 case X86::UCOMISSrr_Int
:
7677 case X86::VUCOMISSrr_Int
:
7678 case X86::VUCOMISSZrr_Int
:
7679 case X86::ADDSSrr_Int
:
7680 case X86::VADDSSrr_Int
:
7681 case X86::VADDSSZrr_Int
:
7682 case X86::CMPSSrri_Int
:
7683 case X86::VCMPSSrri_Int
:
7684 case X86::VCMPSSZrri_Int
:
7685 case X86::DIVSSrr_Int
:
7686 case X86::VDIVSSrr_Int
:
7687 case X86::VDIVSSZrr_Int
:
7688 case X86::MAXSSrr_Int
:
7689 case X86::VMAXSSrr_Int
:
7690 case X86::VMAXSSZrr_Int
:
7691 case X86::MINSSrr_Int
:
7692 case X86::VMINSSrr_Int
:
7693 case X86::VMINSSZrr_Int
:
7694 case X86::MULSSrr_Int
:
7695 case X86::VMULSSrr_Int
:
7696 case X86::VMULSSZrr_Int
:
7697 case X86::SQRTSSr_Int
:
7698 case X86::VSQRTSSr_Int
:
7699 case X86::VSQRTSSZr_Int
:
7700 case X86::SUBSSrr_Int
:
7701 case X86::VSUBSSrr_Int
:
7702 case X86::VSUBSSZrr_Int
:
7703 case X86::VADDSSZrrk_Int
:
7704 case X86::VADDSSZrrkz_Int
:
7705 case X86::VCMPSSZrrik_Int
:
7706 case X86::VDIVSSZrrk_Int
:
7707 case X86::VDIVSSZrrkz_Int
:
7708 case X86::VMAXSSZrrk_Int
:
7709 case X86::VMAXSSZrrkz_Int
:
7710 case X86::VMINSSZrrk_Int
:
7711 case X86::VMINSSZrrkz_Int
:
7712 case X86::VMULSSZrrk_Int
:
7713 case X86::VMULSSZrrkz_Int
:
7714 case X86::VSQRTSSZrk_Int
:
7715 case X86::VSQRTSSZrkz_Int
:
7716 case X86::VSUBSSZrrk_Int
:
7717 case X86::VSUBSSZrrkz_Int
:
7718 case X86::VFMADDSS4rr_Int
:
7719 case X86::VFNMADDSS4rr_Int
:
7720 case X86::VFMSUBSS4rr_Int
:
7721 case X86::VFNMSUBSS4rr_Int
:
7722 case X86::VFMADD132SSr_Int
:
7723 case X86::VFNMADD132SSr_Int
:
7724 case X86::VFMADD213SSr_Int
:
7725 case X86::VFNMADD213SSr_Int
:
7726 case X86::VFMADD231SSr_Int
:
7727 case X86::VFNMADD231SSr_Int
:
7728 case X86::VFMSUB132SSr_Int
:
7729 case X86::VFNMSUB132SSr_Int
:
7730 case X86::VFMSUB213SSr_Int
:
7731 case X86::VFNMSUB213SSr_Int
:
7732 case X86::VFMSUB231SSr_Int
:
7733 case X86::VFNMSUB231SSr_Int
:
7734 case X86::VFMADD132SSZr_Int
:
7735 case X86::VFNMADD132SSZr_Int
:
7736 case X86::VFMADD213SSZr_Int
:
7737 case X86::VFNMADD213SSZr_Int
:
7738 case X86::VFMADD231SSZr_Int
:
7739 case X86::VFNMADD231SSZr_Int
:
7740 case X86::VFMSUB132SSZr_Int
:
7741 case X86::VFNMSUB132SSZr_Int
:
7742 case X86::VFMSUB213SSZr_Int
:
7743 case X86::VFNMSUB213SSZr_Int
:
7744 case X86::VFMSUB231SSZr_Int
:
7745 case X86::VFNMSUB231SSZr_Int
:
7746 case X86::VFMADD132SSZrk_Int
:
7747 case X86::VFNMADD132SSZrk_Int
:
7748 case X86::VFMADD213SSZrk_Int
:
7749 case X86::VFNMADD213SSZrk_Int
:
7750 case X86::VFMADD231SSZrk_Int
:
7751 case X86::VFNMADD231SSZrk_Int
:
7752 case X86::VFMSUB132SSZrk_Int
:
7753 case X86::VFNMSUB132SSZrk_Int
:
7754 case X86::VFMSUB213SSZrk_Int
:
7755 case X86::VFNMSUB213SSZrk_Int
:
7756 case X86::VFMSUB231SSZrk_Int
:
7757 case X86::VFNMSUB231SSZrk_Int
:
7758 case X86::VFMADD132SSZrkz_Int
:
7759 case X86::VFNMADD132SSZrkz_Int
:
7760 case X86::VFMADD213SSZrkz_Int
:
7761 case X86::VFNMADD213SSZrkz_Int
:
7762 case X86::VFMADD231SSZrkz_Int
:
7763 case X86::VFNMADD231SSZrkz_Int
:
7764 case X86::VFMSUB132SSZrkz_Int
:
7765 case X86::VFNMSUB132SSZrkz_Int
:
7766 case X86::VFMSUB213SSZrkz_Int
:
7767 case X86::VFNMSUB213SSZrkz_Int
:
7768 case X86::VFMSUB231SSZrkz_Int
:
7769 case X86::VFNMSUB231SSZrkz_Int
:
7770 case X86::VFIXUPIMMSSZrri
:
7771 case X86::VFIXUPIMMSSZrrik
:
7772 case X86::VFIXUPIMMSSZrrikz
:
7773 case X86::VFPCLASSSSZri
:
7774 case X86::VFPCLASSSSZrik
:
7775 case X86::VGETEXPSSZr
:
7776 case X86::VGETEXPSSZrk
:
7777 case X86::VGETEXPSSZrkz
:
7778 case X86::VGETMANTSSZrri
:
7779 case X86::VGETMANTSSZrrik
:
7780 case X86::VGETMANTSSZrrikz
:
7781 case X86::VRANGESSZrri
:
7782 case X86::VRANGESSZrrik
:
7783 case X86::VRANGESSZrrikz
:
7784 case X86::VRCP14SSZrr
:
7785 case X86::VRCP14SSZrrk
:
7786 case X86::VRCP14SSZrrkz
:
7787 case X86::VRCP28SSZr
:
7788 case X86::VRCP28SSZrk
:
7789 case X86::VRCP28SSZrkz
:
7790 case X86::VREDUCESSZrri
:
7791 case X86::VREDUCESSZrrik
:
7792 case X86::VREDUCESSZrrikz
:
7793 case X86::VRNDSCALESSZrri_Int
:
7794 case X86::VRNDSCALESSZrrik_Int
:
7795 case X86::VRNDSCALESSZrrikz_Int
:
7796 case X86::VRSQRT14SSZrr
:
7797 case X86::VRSQRT14SSZrrk
:
7798 case X86::VRSQRT14SSZrrkz
:
7799 case X86::VRSQRT28SSZr
:
7800 case X86::VRSQRT28SSZrk
:
7801 case X86::VRSQRT28SSZrkz
:
7802 case X86::VSCALEFSSZrr
:
7803 case X86::VSCALEFSSZrrk
:
7804 case X86::VSCALEFSSZrrkz
:
7811 if ((Opc
== X86::MOVSDrm
|| Opc
== X86::VMOVSDrm
|| Opc
== X86::VMOVSDZrm
||
7812 Opc
== X86::MOVSDrm_alt
|| Opc
== X86::VMOVSDrm_alt
||
7813 Opc
== X86::VMOVSDZrm_alt
) &&
7815 // These instructions only load 64 bits, we can't fold them if the
7816 // destination register is wider than 64 bits (8 bytes), and its user
7817 // instruction isn't scalar (SD).
7819 case X86::CVTSD2SSrr_Int
:
7820 case X86::VCVTSD2SSrr_Int
:
7821 case X86::VCVTSD2SSZrr_Int
:
7822 case X86::VCVTSD2SSZrrk_Int
:
7823 case X86::VCVTSD2SSZrrkz_Int
:
7824 case X86::CVTSD2SIrr_Int
:
7825 case X86::CVTSD2SI64rr_Int
:
7826 case X86::VCVTSD2SIrr_Int
:
7827 case X86::VCVTSD2SI64rr_Int
:
7828 case X86::VCVTSD2SIZrr_Int
:
7829 case X86::VCVTSD2SI64Zrr_Int
:
7830 case X86::CVTTSD2SIrr_Int
:
7831 case X86::CVTTSD2SI64rr_Int
:
7832 case X86::VCVTTSD2SIrr_Int
:
7833 case X86::VCVTTSD2SI64rr_Int
:
7834 case X86::VCVTTSD2SIZrr_Int
:
7835 case X86::VCVTTSD2SI64Zrr_Int
:
7836 case X86::VCVTSD2USIZrr_Int
:
7837 case X86::VCVTSD2USI64Zrr_Int
:
7838 case X86::VCVTTSD2USIZrr_Int
:
7839 case X86::VCVTTSD2USI64Zrr_Int
:
7840 case X86::ROUNDSDri_Int
:
7841 case X86::VROUNDSDri_Int
:
7842 case X86::COMISDrr_Int
:
7843 case X86::VCOMISDrr_Int
:
7844 case X86::VCOMISDZrr_Int
:
7845 case X86::UCOMISDrr_Int
:
7846 case X86::VUCOMISDrr_Int
:
7847 case X86::VUCOMISDZrr_Int
:
7848 case X86::ADDSDrr_Int
:
7849 case X86::VADDSDrr_Int
:
7850 case X86::VADDSDZrr_Int
:
7851 case X86::CMPSDrri_Int
:
7852 case X86::VCMPSDrri_Int
:
7853 case X86::VCMPSDZrri_Int
:
7854 case X86::DIVSDrr_Int
:
7855 case X86::VDIVSDrr_Int
:
7856 case X86::VDIVSDZrr_Int
:
7857 case X86::MAXSDrr_Int
:
7858 case X86::VMAXSDrr_Int
:
7859 case X86::VMAXSDZrr_Int
:
7860 case X86::MINSDrr_Int
:
7861 case X86::VMINSDrr_Int
:
7862 case X86::VMINSDZrr_Int
:
7863 case X86::MULSDrr_Int
:
7864 case X86::VMULSDrr_Int
:
7865 case X86::VMULSDZrr_Int
:
7866 case X86::SQRTSDr_Int
:
7867 case X86::VSQRTSDr_Int
:
7868 case X86::VSQRTSDZr_Int
:
7869 case X86::SUBSDrr_Int
:
7870 case X86::VSUBSDrr_Int
:
7871 case X86::VSUBSDZrr_Int
:
7872 case X86::VADDSDZrrk_Int
:
7873 case X86::VADDSDZrrkz_Int
:
7874 case X86::VCMPSDZrrik_Int
:
7875 case X86::VDIVSDZrrk_Int
:
7876 case X86::VDIVSDZrrkz_Int
:
7877 case X86::VMAXSDZrrk_Int
:
7878 case X86::VMAXSDZrrkz_Int
:
7879 case X86::VMINSDZrrk_Int
:
7880 case X86::VMINSDZrrkz_Int
:
7881 case X86::VMULSDZrrk_Int
:
7882 case X86::VMULSDZrrkz_Int
:
7883 case X86::VSQRTSDZrk_Int
:
7884 case X86::VSQRTSDZrkz_Int
:
7885 case X86::VSUBSDZrrk_Int
:
7886 case X86::VSUBSDZrrkz_Int
:
7887 case X86::VFMADDSD4rr_Int
:
7888 case X86::VFNMADDSD4rr_Int
:
7889 case X86::VFMSUBSD4rr_Int
:
7890 case X86::VFNMSUBSD4rr_Int
:
7891 case X86::VFMADD132SDr_Int
:
7892 case X86::VFNMADD132SDr_Int
:
7893 case X86::VFMADD213SDr_Int
:
7894 case X86::VFNMADD213SDr_Int
:
7895 case X86::VFMADD231SDr_Int
:
7896 case X86::VFNMADD231SDr_Int
:
7897 case X86::VFMSUB132SDr_Int
:
7898 case X86::VFNMSUB132SDr_Int
:
7899 case X86::VFMSUB213SDr_Int
:
7900 case X86::VFNMSUB213SDr_Int
:
7901 case X86::VFMSUB231SDr_Int
:
7902 case X86::VFNMSUB231SDr_Int
:
7903 case X86::VFMADD132SDZr_Int
:
7904 case X86::VFNMADD132SDZr_Int
:
7905 case X86::VFMADD213SDZr_Int
:
7906 case X86::VFNMADD213SDZr_Int
:
7907 case X86::VFMADD231SDZr_Int
:
7908 case X86::VFNMADD231SDZr_Int
:
7909 case X86::VFMSUB132SDZr_Int
:
7910 case X86::VFNMSUB132SDZr_Int
:
7911 case X86::VFMSUB213SDZr_Int
:
7912 case X86::VFNMSUB213SDZr_Int
:
7913 case X86::VFMSUB231SDZr_Int
:
7914 case X86::VFNMSUB231SDZr_Int
:
7915 case X86::VFMADD132SDZrk_Int
:
7916 case X86::VFNMADD132SDZrk_Int
:
7917 case X86::VFMADD213SDZrk_Int
:
7918 case X86::VFNMADD213SDZrk_Int
:
7919 case X86::VFMADD231SDZrk_Int
:
7920 case X86::VFNMADD231SDZrk_Int
:
7921 case X86::VFMSUB132SDZrk_Int
:
7922 case X86::VFNMSUB132SDZrk_Int
:
7923 case X86::VFMSUB213SDZrk_Int
:
7924 case X86::VFNMSUB213SDZrk_Int
:
7925 case X86::VFMSUB231SDZrk_Int
:
7926 case X86::VFNMSUB231SDZrk_Int
:
7927 case X86::VFMADD132SDZrkz_Int
:
7928 case X86::VFNMADD132SDZrkz_Int
:
7929 case X86::VFMADD213SDZrkz_Int
:
7930 case X86::VFNMADD213SDZrkz_Int
:
7931 case X86::VFMADD231SDZrkz_Int
:
7932 case X86::VFNMADD231SDZrkz_Int
:
7933 case X86::VFMSUB132SDZrkz_Int
:
7934 case X86::VFNMSUB132SDZrkz_Int
:
7935 case X86::VFMSUB213SDZrkz_Int
:
7936 case X86::VFNMSUB213SDZrkz_Int
:
7937 case X86::VFMSUB231SDZrkz_Int
:
7938 case X86::VFNMSUB231SDZrkz_Int
:
7939 case X86::VFIXUPIMMSDZrri
:
7940 case X86::VFIXUPIMMSDZrrik
:
7941 case X86::VFIXUPIMMSDZrrikz
:
7942 case X86::VFPCLASSSDZri
:
7943 case X86::VFPCLASSSDZrik
:
7944 case X86::VGETEXPSDZr
:
7945 case X86::VGETEXPSDZrk
:
7946 case X86::VGETEXPSDZrkz
:
7947 case X86::VGETMANTSDZrri
:
7948 case X86::VGETMANTSDZrrik
:
7949 case X86::VGETMANTSDZrrikz
:
7950 case X86::VRANGESDZrri
:
7951 case X86::VRANGESDZrrik
:
7952 case X86::VRANGESDZrrikz
:
7953 case X86::VRCP14SDZrr
:
7954 case X86::VRCP14SDZrrk
:
7955 case X86::VRCP14SDZrrkz
:
7956 case X86::VRCP28SDZr
:
7957 case X86::VRCP28SDZrk
:
7958 case X86::VRCP28SDZrkz
:
7959 case X86::VREDUCESDZrri
:
7960 case X86::VREDUCESDZrrik
:
7961 case X86::VREDUCESDZrrikz
:
7962 case X86::VRNDSCALESDZrri_Int
:
7963 case X86::VRNDSCALESDZrrik_Int
:
7964 case X86::VRNDSCALESDZrrikz_Int
:
7965 case X86::VRSQRT14SDZrr
:
7966 case X86::VRSQRT14SDZrrk
:
7967 case X86::VRSQRT14SDZrrkz
:
7968 case X86::VRSQRT28SDZr
:
7969 case X86::VRSQRT28SDZrk
:
7970 case X86::VRSQRT28SDZrkz
:
7971 case X86::VSCALEFSDZrr
:
7972 case X86::VSCALEFSDZrrk
:
7973 case X86::VSCALEFSDZrrkz
:
7980 if ((Opc
== X86::VMOVSHZrm
|| Opc
== X86::VMOVSHZrm_alt
) && RegSize
> 16) {
7981 // These instructions only load 16 bits, we can't fold them if the
7982 // destination register is wider than 16 bits (2 bytes), and its user
7983 // instruction isn't scalar (SH).
7985 case X86::VADDSHZrr_Int
:
7986 case X86::VCMPSHZrri_Int
:
7987 case X86::VDIVSHZrr_Int
:
7988 case X86::VMAXSHZrr_Int
:
7989 case X86::VMINSHZrr_Int
:
7990 case X86::VMULSHZrr_Int
:
7991 case X86::VSUBSHZrr_Int
:
7992 case X86::VADDSHZrrk_Int
:
7993 case X86::VADDSHZrrkz_Int
:
7994 case X86::VCMPSHZrrik_Int
:
7995 case X86::VDIVSHZrrk_Int
:
7996 case X86::VDIVSHZrrkz_Int
:
7997 case X86::VMAXSHZrrk_Int
:
7998 case X86::VMAXSHZrrkz_Int
:
7999 case X86::VMINSHZrrk_Int
:
8000 case X86::VMINSHZrrkz_Int
:
8001 case X86::VMULSHZrrk_Int
:
8002 case X86::VMULSHZrrkz_Int
:
8003 case X86::VSUBSHZrrk_Int
:
8004 case X86::VSUBSHZrrkz_Int
:
8005 case X86::VFMADD132SHZr_Int
:
8006 case X86::VFNMADD132SHZr_Int
:
8007 case X86::VFMADD213SHZr_Int
:
8008 case X86::VFNMADD213SHZr_Int
:
8009 case X86::VFMADD231SHZr_Int
:
8010 case X86::VFNMADD231SHZr_Int
:
8011 case X86::VFMSUB132SHZr_Int
:
8012 case X86::VFNMSUB132SHZr_Int
:
8013 case X86::VFMSUB213SHZr_Int
:
8014 case X86::VFNMSUB213SHZr_Int
:
8015 case X86::VFMSUB231SHZr_Int
:
8016 case X86::VFNMSUB231SHZr_Int
:
8017 case X86::VFMADD132SHZrk_Int
:
8018 case X86::VFNMADD132SHZrk_Int
:
8019 case X86::VFMADD213SHZrk_Int
:
8020 case X86::VFNMADD213SHZrk_Int
:
8021 case X86::VFMADD231SHZrk_Int
:
8022 case X86::VFNMADD231SHZrk_Int
:
8023 case X86::VFMSUB132SHZrk_Int
:
8024 case X86::VFNMSUB132SHZrk_Int
:
8025 case X86::VFMSUB213SHZrk_Int
:
8026 case X86::VFNMSUB213SHZrk_Int
:
8027 case X86::VFMSUB231SHZrk_Int
:
8028 case X86::VFNMSUB231SHZrk_Int
:
8029 case X86::VFMADD132SHZrkz_Int
:
8030 case X86::VFNMADD132SHZrkz_Int
:
8031 case X86::VFMADD213SHZrkz_Int
:
8032 case X86::VFNMADD213SHZrkz_Int
:
8033 case X86::VFMADD231SHZrkz_Int
:
8034 case X86::VFNMADD231SHZrkz_Int
:
8035 case X86::VFMSUB132SHZrkz_Int
:
8036 case X86::VFNMSUB132SHZrkz_Int
:
8037 case X86::VFMSUB213SHZrkz_Int
:
8038 case X86::VFNMSUB213SHZrkz_Int
:
8039 case X86::VFMSUB231SHZrkz_Int
:
8040 case X86::VFNMSUB231SHZrkz_Int
:
8050 MachineInstr
*X86InstrInfo::foldMemoryOperandImpl(
8051 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
8052 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
8053 LiveIntervals
*LIS
) const {
8055 // TODO: Support the case where LoadMI loads a wide register, but MI
8056 // only uses a subreg.
8057 for (auto Op
: Ops
) {
8058 if (MI
.getOperand(Op
).getSubReg())
8062 // If loading from a FrameIndex, fold directly from the FrameIndex.
8063 unsigned NumOps
= LoadMI
.getDesc().getNumOperands();
8065 if (isLoadFromStackSlot(LoadMI
, FrameIndex
)) {
8066 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
8068 return foldMemoryOperandImpl(MF
, MI
, Ops
, InsertPt
, FrameIndex
, LIS
);
8071 // Check switch flag
8075 // Avoid partial and undef register update stalls unless optimizing for size.
8076 if (!MF
.getFunction().hasOptSize() &&
8077 (hasPartialRegUpdate(MI
.getOpcode(), Subtarget
, /*ForLoadFold*/ true) ||
8078 shouldPreventUndefRegUpdateMemFold(MF
, MI
)))
8081 // Determine the alignment of the load.
8083 unsigned LoadOpc
= LoadMI
.getOpcode();
8084 if (LoadMI
.hasOneMemOperand())
8085 Alignment
= (*LoadMI
.memoperands_begin())->getAlign();
8088 case X86::AVX512_512_SET0
:
8089 case X86::AVX512_512_SETALLONES
:
8090 Alignment
= Align(64);
8092 case X86::AVX2_SETALLONES
:
8093 case X86::AVX1_SETALLONES
:
8095 case X86::AVX512_256_SET0
:
8096 Alignment
= Align(32);
8099 case X86::V_SETALLONES
:
8100 case X86::AVX512_128_SET0
:
8101 case X86::FsFLD0F128
:
8102 case X86::AVX512_FsFLD0F128
:
8103 Alignment
= Align(16);
8107 case X86::AVX512_FsFLD0SD
:
8108 Alignment
= Align(8);
8111 case X86::AVX512_FsFLD0SS
:
8112 Alignment
= Align(4);
8115 case X86::AVX512_FsFLD0SH
:
8116 Alignment
= Align(2);
8121 if (Ops
.size() == 2 && Ops
[0] == 0 && Ops
[1] == 1) {
8122 unsigned NewOpc
= 0;
8123 switch (MI
.getOpcode()) {
8127 NewOpc
= X86::CMP8ri
;
8130 NewOpc
= X86::CMP16ri
;
8133 NewOpc
= X86::CMP32ri
;
8136 NewOpc
= X86::CMP64ri32
;
8139 // Change to CMPXXri r, 0 first.
8140 MI
.setDesc(get(NewOpc
));
8141 MI
.getOperand(1).ChangeToImmediate(0);
8142 } else if (Ops
.size() != 1)
8145 // Make sure the subregisters match.
8146 // Otherwise we risk changing the size of the load.
8147 if (LoadMI
.getOperand(0).getSubReg() != MI
.getOperand(Ops
[0]).getSubReg())
8150 SmallVector
<MachineOperand
, X86::AddrNumOperands
> MOs
;
8154 case X86::V_SETALLONES
:
8155 case X86::AVX2_SETALLONES
:
8156 case X86::AVX1_SETALLONES
:
8158 case X86::AVX512_128_SET0
:
8159 case X86::AVX512_256_SET0
:
8160 case X86::AVX512_512_SET0
:
8161 case X86::AVX512_512_SETALLONES
:
8163 case X86::AVX512_FsFLD0SH
:
8165 case X86::AVX512_FsFLD0SD
:
8167 case X86::AVX512_FsFLD0SS
:
8168 case X86::FsFLD0F128
:
8169 case X86::AVX512_FsFLD0F128
: {
8170 // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
8171 // Create a constant-pool entry and operands to load from it.
8173 // Large code model can't fold loads this way.
8174 if (MF
.getTarget().getCodeModel() == CodeModel::Large
)
8177 // x86-32 PIC requires a PIC base register for constant pools.
8178 unsigned PICBase
= 0;
8179 // Since we're using Small or Kernel code model, we can always use
8180 // RIP-relative addressing for a smaller encoding.
8181 if (Subtarget
.is64Bit()) {
8183 } else if (MF
.getTarget().isPositionIndependent()) {
8184 // FIXME: PICBase = getGlobalBaseReg(&MF);
8185 // This doesn't work for several reasons.
8186 // 1. GlobalBaseReg may have been spilled.
8187 // 2. It may not be live at MI.
8191 // Create a constant-pool entry.
8192 MachineConstantPool
&MCP
= *MF
.getConstantPool();
8194 bool IsAllOnes
= false;
8197 case X86::AVX512_FsFLD0SS
:
8198 Ty
= Type::getFloatTy(MF
.getFunction().getContext());
8201 case X86::AVX512_FsFLD0SD
:
8202 Ty
= Type::getDoubleTy(MF
.getFunction().getContext());
8204 case X86::FsFLD0F128
:
8205 case X86::AVX512_FsFLD0F128
:
8206 Ty
= Type::getFP128Ty(MF
.getFunction().getContext());
8209 case X86::AVX512_FsFLD0SH
:
8210 Ty
= Type::getHalfTy(MF
.getFunction().getContext());
8212 case X86::AVX512_512_SETALLONES
:
8215 case X86::AVX512_512_SET0
:
8216 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
8219 case X86::AVX1_SETALLONES
:
8220 case X86::AVX2_SETALLONES
:
8223 case X86::AVX512_256_SET0
:
8225 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
8230 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
8233 case X86::V_SETALLONES
:
8237 case X86::AVX512_128_SET0
:
8238 Ty
= FixedVectorType::get(Type::getInt32Ty(MF
.getFunction().getContext()),
8244 IsAllOnes
? Constant::getAllOnesValue(Ty
) : Constant::getNullValue(Ty
);
8245 unsigned CPI
= MCP
.getConstantPoolIndex(C
, Alignment
);
8247 // Create operands to load from the constant pool entry.
8248 MOs
.push_back(MachineOperand::CreateReg(PICBase
, false));
8249 MOs
.push_back(MachineOperand::CreateImm(1));
8250 MOs
.push_back(MachineOperand::CreateReg(0, false));
8251 MOs
.push_back(MachineOperand::CreateCPI(CPI
, 0));
8252 MOs
.push_back(MachineOperand::CreateReg(0, false));
8255 case X86::VPBROADCASTBZ128rm
:
8256 case X86::VPBROADCASTBZ256rm
:
8257 case X86::VPBROADCASTBZrm
:
8258 case X86::VBROADCASTF32X2Z256rm
:
8259 case X86::VBROADCASTF32X2Zrm
:
8260 case X86::VBROADCASTI32X2Z128rm
:
8261 case X86::VBROADCASTI32X2Z256rm
:
8262 case X86::VBROADCASTI32X2Zrm
:
8263 // No instructions currently fuse with 8bits or 32bits x 2.
8266 #define FOLD_BROADCAST(SIZE) \
8267 MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \
8268 LoadMI.operands_begin() + NumOps); \
8269 return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE, \
8270 /*AllowCommute=*/true);
8271 case X86::VPBROADCASTWZ128rm
:
8272 case X86::VPBROADCASTWZ256rm
:
8273 case X86::VPBROADCASTWZrm
:
8275 case X86::VPBROADCASTDZ128rm
:
8276 case X86::VPBROADCASTDZ256rm
:
8277 case X86::VPBROADCASTDZrm
:
8278 case X86::VBROADCASTSSZ128rm
:
8279 case X86::VBROADCASTSSZ256rm
:
8280 case X86::VBROADCASTSSZrm
:
8282 case X86::VPBROADCASTQZ128rm
:
8283 case X86::VPBROADCASTQZ256rm
:
8284 case X86::VPBROADCASTQZrm
:
8285 case X86::VBROADCASTSDZ256rm
:
8286 case X86::VBROADCASTSDZrm
:
8289 if (isNonFoldablePartialRegisterLoad(LoadMI
, MI
, MF
))
8292 // Folding a normal load. Just copy the load's address operands.
8293 MOs
.append(LoadMI
.operands_begin() + NumOps
- X86::AddrNumOperands
,
8294 LoadMI
.operands_begin() + NumOps
);
8298 return foldMemoryOperandImpl(MF
, MI
, Ops
[0], MOs
, InsertPt
,
8299 /*Size=*/0, Alignment
, /*AllowCommute=*/true);
8303 X86InstrInfo::foldMemoryBroadcast(MachineFunction
&MF
, MachineInstr
&MI
,
8304 unsigned OpNum
, ArrayRef
<MachineOperand
> MOs
,
8305 MachineBasicBlock::iterator InsertPt
,
8306 unsigned BitsSize
, bool AllowCommute
) const {
8308 if (auto *I
= lookupBroadcastFoldTable(MI
.getOpcode(), OpNum
))
8309 return matchBroadcastSize(*I
, BitsSize
)
8310 ? fuseInst(MF
, I
->DstOp
, OpNum
, MOs
, InsertPt
, MI
, *this)
8314 // If the instruction and target operand are commutable, commute the
8315 // instruction and try again.
8316 unsigned CommuteOpIdx2
= commuteOperandsForFold(MI
, OpNum
);
8317 if (CommuteOpIdx2
== OpNum
) {
8318 printFailMsgforFold(MI
, OpNum
);
8321 MachineInstr
*NewMI
=
8322 foldMemoryBroadcast(MF
, MI
, CommuteOpIdx2
, MOs
, InsertPt
, BitsSize
,
8323 /*AllowCommute=*/false);
8326 // Folding failed again - undo the commute before returning.
8327 commuteInstruction(MI
, false, OpNum
, CommuteOpIdx2
);
8330 printFailMsgforFold(MI
, OpNum
);
8334 static SmallVector
<MachineMemOperand
*, 2>
8335 extractLoadMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
8336 SmallVector
<MachineMemOperand
*, 2> LoadMMOs
;
8338 for (MachineMemOperand
*MMO
: MMOs
) {
8342 if (!MMO
->isStore()) {
8344 LoadMMOs
.push_back(MMO
);
8346 // Clone the MMO and unset the store flag.
8347 LoadMMOs
.push_back(MF
.getMachineMemOperand(
8348 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOStore
));
8355 static SmallVector
<MachineMemOperand
*, 2>
8356 extractStoreMMOs(ArrayRef
<MachineMemOperand
*> MMOs
, MachineFunction
&MF
) {
8357 SmallVector
<MachineMemOperand
*, 2> StoreMMOs
;
8359 for (MachineMemOperand
*MMO
: MMOs
) {
8360 if (!MMO
->isStore())
8363 if (!MMO
->isLoad()) {
8365 StoreMMOs
.push_back(MMO
);
8367 // Clone the MMO and unset the load flag.
8368 StoreMMOs
.push_back(MF
.getMachineMemOperand(
8369 MMO
, MMO
->getFlags() & ~MachineMemOperand::MOLoad
));
8376 static unsigned getBroadcastOpcode(const X86FoldTableEntry
*I
,
8377 const TargetRegisterClass
*RC
,
8378 const X86Subtarget
&STI
) {
8379 assert(STI
.hasAVX512() && "Expected at least AVX512!");
8380 unsigned SpillSize
= STI
.getRegisterInfo()->getSpillSize(*RC
);
8381 assert((SpillSize
== 64 || STI
.hasVLX()) &&
8382 "Can't broadcast less than 64 bytes without AVX512VL!");
8384 #define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \
8386 switch (SpillSize) { \
8388 llvm_unreachable("Unknown spill size"); \
8398 switch (I
->Flags
& TB_BCAST_MASK
) {
8400 llvm_unreachable("Unexpected broadcast type!");
8401 CASE_BCAST_TYPE_OPC(TB_BCAST_W
, VPBROADCASTWZ128rm
, VPBROADCASTWZ256rm
,
8403 CASE_BCAST_TYPE_OPC(TB_BCAST_D
, VPBROADCASTDZ128rm
, VPBROADCASTDZ256rm
,
8405 CASE_BCAST_TYPE_OPC(TB_BCAST_Q
, VPBROADCASTQZ128rm
, VPBROADCASTQZ256rm
,
8407 CASE_BCAST_TYPE_OPC(TB_BCAST_SH
, VPBROADCASTWZ128rm
, VPBROADCASTWZ256rm
,
8409 CASE_BCAST_TYPE_OPC(TB_BCAST_SS
, VBROADCASTSSZ128rm
, VBROADCASTSSZ256rm
,
8411 CASE_BCAST_TYPE_OPC(TB_BCAST_SD
, VMOVDDUPZ128rm
, VBROADCASTSDZ256rm
,
8416 bool X86InstrInfo::unfoldMemoryOperand(
8417 MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
, bool UnfoldLoad
,
8418 bool UnfoldStore
, SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
8419 const X86FoldTableEntry
*I
= lookupUnfoldTable(MI
.getOpcode());
8422 unsigned Opc
= I
->DstOp
;
8423 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
8424 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
8425 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
8426 if (UnfoldLoad
&& !FoldedLoad
)
8428 UnfoldLoad
&= FoldedLoad
;
8429 if (UnfoldStore
&& !FoldedStore
)
8431 UnfoldStore
&= FoldedStore
;
8433 const MCInstrDesc
&MCID
= get(Opc
);
8435 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
8436 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
8437 // TODO: Check if 32-byte or greater accesses are slow too?
8438 if (!MI
.hasOneMemOperand() && RC
== &X86::VR128RegClass
&&
8439 Subtarget
.isUnalignedMem16Slow())
8440 // Without memoperands, loadRegFromAddr and storeRegToStackSlot will
8441 // conservatively assume the address is unaligned. That's bad for
8444 SmallVector
<MachineOperand
, X86::AddrNumOperands
> AddrOps
;
8445 SmallVector
<MachineOperand
, 2> BeforeOps
;
8446 SmallVector
<MachineOperand
, 2> AfterOps
;
8447 SmallVector
<MachineOperand
, 4> ImpOps
;
8448 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
8449 MachineOperand
&Op
= MI
.getOperand(i
);
8450 if (i
>= Index
&& i
< Index
+ X86::AddrNumOperands
)
8451 AddrOps
.push_back(Op
);
8452 else if (Op
.isReg() && Op
.isImplicit())
8453 ImpOps
.push_back(Op
);
8455 BeforeOps
.push_back(Op
);
8457 AfterOps
.push_back(Op
);
8460 // Emit the load or broadcast instruction.
8462 auto MMOs
= extractLoadMMOs(MI
.memoperands(), MF
);
8465 if (I
->Flags
& TB_BCAST_MASK
) {
8466 Opc
= getBroadcastOpcode(I
, RC
, Subtarget
);
8468 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
8469 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
8470 Opc
= getLoadRegOpcode(Reg
, RC
, isAligned
, Subtarget
);
8474 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
), Reg
);
8475 for (const MachineOperand
&AddrOp
: AddrOps
)
8477 MIB
.setMemRefs(MMOs
);
8478 NewMIs
.push_back(MIB
);
8481 // Address operands cannot be marked isKill.
8482 for (unsigned i
= 1; i
!= 1 + X86::AddrNumOperands
; ++i
) {
8483 MachineOperand
&MO
= NewMIs
[0]->getOperand(i
);
8485 MO
.setIsKill(false);
8490 // Emit the data processing instruction.
8491 MachineInstr
*DataMI
= MF
.CreateMachineInstr(MCID
, MI
.getDebugLoc(), true);
8492 MachineInstrBuilder
MIB(MF
, DataMI
);
8495 MIB
.addReg(Reg
, RegState::Define
);
8496 for (MachineOperand
&BeforeOp
: BeforeOps
)
8500 for (MachineOperand
&AfterOp
: AfterOps
)
8502 for (MachineOperand
&ImpOp
: ImpOps
) {
8503 MIB
.addReg(ImpOp
.getReg(), getDefRegState(ImpOp
.isDef()) |
8504 RegState::Implicit
|
8505 getKillRegState(ImpOp
.isKill()) |
8506 getDeadRegState(ImpOp
.isDead()) |
8507 getUndefRegState(ImpOp
.isUndef()));
8509 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8510 switch (DataMI
->getOpcode()) {
8513 case X86::CMP64ri32
:
8517 MachineOperand
&MO0
= DataMI
->getOperand(0);
8518 MachineOperand
&MO1
= DataMI
->getOperand(1);
8519 if (MO1
.isImm() && MO1
.getImm() == 0) {
8521 switch (DataMI
->getOpcode()) {
8523 llvm_unreachable("Unreachable!");
8524 case X86::CMP64ri32
:
8525 NewOpc
= X86::TEST64rr
;
8528 NewOpc
= X86::TEST32rr
;
8531 NewOpc
= X86::TEST16rr
;
8534 NewOpc
= X86::TEST8rr
;
8537 DataMI
->setDesc(get(NewOpc
));
8538 MO1
.ChangeToRegister(MO0
.getReg(), false);
8542 NewMIs
.push_back(DataMI
);
8544 // Emit the store instruction.
8546 const TargetRegisterClass
*DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
8547 auto MMOs
= extractStoreMMOs(MI
.memoperands(), MF
);
8548 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*DstRC
), 16);
8549 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
8550 unsigned Opc
= getStoreRegOpcode(Reg
, DstRC
, isAligned
, Subtarget
);
8552 MachineInstrBuilder MIB
= BuildMI(MF
, DL
, get(Opc
));
8553 for (const MachineOperand
&AddrOp
: AddrOps
)
8555 MIB
.addReg(Reg
, RegState::Kill
);
8556 MIB
.setMemRefs(MMOs
);
8557 NewMIs
.push_back(MIB
);
8563 bool X86InstrInfo::unfoldMemoryOperand(
8564 SelectionDAG
&DAG
, SDNode
*N
, SmallVectorImpl
<SDNode
*> &NewNodes
) const {
8565 if (!N
->isMachineOpcode())
8568 const X86FoldTableEntry
*I
= lookupUnfoldTable(N
->getMachineOpcode());
8571 unsigned Opc
= I
->DstOp
;
8572 unsigned Index
= I
->Flags
& TB_INDEX_MASK
;
8573 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
8574 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
8575 const MCInstrDesc
&MCID
= get(Opc
);
8576 MachineFunction
&MF
= DAG
.getMachineFunction();
8577 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
8578 const TargetRegisterClass
*RC
= getRegClass(MCID
, Index
, &RI
, MF
);
8579 unsigned NumDefs
= MCID
.NumDefs
;
8580 std::vector
<SDValue
> AddrOps
;
8581 std::vector
<SDValue
> BeforeOps
;
8582 std::vector
<SDValue
> AfterOps
;
8584 unsigned NumOps
= N
->getNumOperands();
8585 for (unsigned i
= 0; i
!= NumOps
- 1; ++i
) {
8586 SDValue Op
= N
->getOperand(i
);
8587 if (i
>= Index
- NumDefs
&& i
< Index
- NumDefs
+ X86::AddrNumOperands
)
8588 AddrOps
.push_back(Op
);
8589 else if (i
< Index
- NumDefs
)
8590 BeforeOps
.push_back(Op
);
8591 else if (i
> Index
- NumDefs
)
8592 AfterOps
.push_back(Op
);
8594 SDValue Chain
= N
->getOperand(NumOps
- 1);
8595 AddrOps
.push_back(Chain
);
8597 // Emit the load instruction.
8598 SDNode
*Load
= nullptr;
8600 EVT VT
= *TRI
.legalclasstypes_begin(*RC
);
8601 auto MMOs
= extractLoadMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
8602 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
8603 Subtarget
.isUnalignedMem16Slow())
8604 // Do not introduce a slow unaligned load.
8606 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8607 // memory access is slow above.
8610 if (I
->Flags
& TB_BCAST_MASK
) {
8611 Opc
= getBroadcastOpcode(I
, RC
, Subtarget
);
8613 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
8614 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
8615 Opc
= getLoadRegOpcode(0, RC
, isAligned
, Subtarget
);
8618 Load
= DAG
.getMachineNode(Opc
, dl
, VT
, MVT::Other
, AddrOps
);
8619 NewNodes
.push_back(Load
);
8621 // Preserve memory reference information.
8622 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Load
), MMOs
);
8625 // Emit the data processing instruction.
8626 std::vector
<EVT
> VTs
;
8627 const TargetRegisterClass
*DstRC
= nullptr;
8628 if (MCID
.getNumDefs() > 0) {
8629 DstRC
= getRegClass(MCID
, 0, &RI
, MF
);
8630 VTs
.push_back(*TRI
.legalclasstypes_begin(*DstRC
));
8632 for (unsigned i
= 0, e
= N
->getNumValues(); i
!= e
; ++i
) {
8633 EVT VT
= N
->getValueType(i
);
8634 if (VT
!= MVT::Other
&& i
>= (unsigned)MCID
.getNumDefs())
8638 BeforeOps
.push_back(SDValue(Load
, 0));
8639 llvm::append_range(BeforeOps
, AfterOps
);
8640 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
8644 case X86::CMP64ri32
:
8648 if (isNullConstant(BeforeOps
[1])) {
8651 llvm_unreachable("Unreachable!");
8652 case X86::CMP64ri32
:
8653 Opc
= X86::TEST64rr
;
8656 Opc
= X86::TEST32rr
;
8659 Opc
= X86::TEST16rr
;
8665 BeforeOps
[1] = BeforeOps
[0];
8668 SDNode
*NewNode
= DAG
.getMachineNode(Opc
, dl
, VTs
, BeforeOps
);
8669 NewNodes
.push_back(NewNode
);
8671 // Emit the store instruction.
8674 AddrOps
.push_back(SDValue(NewNode
, 0));
8675 AddrOps
.push_back(Chain
);
8676 auto MMOs
= extractStoreMMOs(cast
<MachineSDNode
>(N
)->memoperands(), MF
);
8677 if (MMOs
.empty() && RC
== &X86::VR128RegClass
&&
8678 Subtarget
.isUnalignedMem16Slow())
8679 // Do not introduce a slow unaligned store.
8681 // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte
8682 // memory access is slow above.
8683 unsigned Alignment
= std::max
<uint32_t>(TRI
.getSpillSize(*RC
), 16);
8684 bool isAligned
= !MMOs
.empty() && MMOs
.front()->getAlign() >= Alignment
;
8686 DAG
.getMachineNode(getStoreRegOpcode(0, DstRC
, isAligned
, Subtarget
),
8687 dl
, MVT::Other
, AddrOps
);
8688 NewNodes
.push_back(Store
);
8690 // Preserve memory reference information.
8691 DAG
.setNodeMemRefs(cast
<MachineSDNode
>(Store
), MMOs
);
8698 X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc
, bool UnfoldLoad
,
8700 unsigned *LoadRegIndex
) const {
8701 const X86FoldTableEntry
*I
= lookupUnfoldTable(Opc
);
8704 bool FoldedLoad
= I
->Flags
& TB_FOLDED_LOAD
;
8705 bool FoldedStore
= I
->Flags
& TB_FOLDED_STORE
;
8706 if (UnfoldLoad
&& !FoldedLoad
)
8708 if (UnfoldStore
&& !FoldedStore
)
8711 *LoadRegIndex
= I
->Flags
& TB_INDEX_MASK
;
8715 bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
8717 int64_t &Offset2
) const {
8718 if (!Load1
->isMachineOpcode() || !Load2
->isMachineOpcode())
8721 auto IsLoadOpcode
= [&](unsigned Opcode
) {
8733 case X86::MOVSSrm_alt
:
8735 case X86::MOVSDrm_alt
:
8736 case X86::MMX_MOVD64rm
:
8737 case X86::MMX_MOVQ64rm
:
8744 // AVX load instructions
8746 case X86::VMOVSSrm_alt
:
8748 case X86::VMOVSDrm_alt
:
8749 case X86::VMOVAPSrm
:
8750 case X86::VMOVUPSrm
:
8751 case X86::VMOVAPDrm
:
8752 case X86::VMOVUPDrm
:
8753 case X86::VMOVDQArm
:
8754 case X86::VMOVDQUrm
:
8755 case X86::VMOVAPSYrm
:
8756 case X86::VMOVUPSYrm
:
8757 case X86::VMOVAPDYrm
:
8758 case X86::VMOVUPDYrm
:
8759 case X86::VMOVDQAYrm
:
8760 case X86::VMOVDQUYrm
:
8761 // AVX512 load instructions
8762 case X86::VMOVSSZrm
:
8763 case X86::VMOVSSZrm_alt
:
8764 case X86::VMOVSDZrm
:
8765 case X86::VMOVSDZrm_alt
:
8766 case X86::VMOVAPSZ128rm
:
8767 case X86::VMOVUPSZ128rm
:
8768 case X86::VMOVAPSZ128rm_NOVLX
:
8769 case X86::VMOVUPSZ128rm_NOVLX
:
8770 case X86::VMOVAPDZ128rm
:
8771 case X86::VMOVUPDZ128rm
:
8772 case X86::VMOVDQU8Z128rm
:
8773 case X86::VMOVDQU16Z128rm
:
8774 case X86::VMOVDQA32Z128rm
:
8775 case X86::VMOVDQU32Z128rm
:
8776 case X86::VMOVDQA64Z128rm
:
8777 case X86::VMOVDQU64Z128rm
:
8778 case X86::VMOVAPSZ256rm
:
8779 case X86::VMOVUPSZ256rm
:
8780 case X86::VMOVAPSZ256rm_NOVLX
:
8781 case X86::VMOVUPSZ256rm_NOVLX
:
8782 case X86::VMOVAPDZ256rm
:
8783 case X86::VMOVUPDZ256rm
:
8784 case X86::VMOVDQU8Z256rm
:
8785 case X86::VMOVDQU16Z256rm
:
8786 case X86::VMOVDQA32Z256rm
:
8787 case X86::VMOVDQU32Z256rm
:
8788 case X86::VMOVDQA64Z256rm
:
8789 case X86::VMOVDQU64Z256rm
:
8790 case X86::VMOVAPSZrm
:
8791 case X86::VMOVUPSZrm
:
8792 case X86::VMOVAPDZrm
:
8793 case X86::VMOVUPDZrm
:
8794 case X86::VMOVDQU8Zrm
:
8795 case X86::VMOVDQU16Zrm
:
8796 case X86::VMOVDQA32Zrm
:
8797 case X86::VMOVDQU32Zrm
:
8798 case X86::VMOVDQA64Zrm
:
8799 case X86::VMOVDQU64Zrm
:
8801 case X86::KMOVBkm_EVEX
:
8803 case X86::KMOVWkm_EVEX
:
8805 case X86::KMOVDkm_EVEX
:
8807 case X86::KMOVQkm_EVEX
:
8812 if (!IsLoadOpcode(Load1
->getMachineOpcode()) ||
8813 !IsLoadOpcode(Load2
->getMachineOpcode()))
8816 // Lambda to check if both the loads have the same value for an operand index.
8817 auto HasSameOp
= [&](int I
) {
8818 return Load1
->getOperand(I
) == Load2
->getOperand(I
);
8821 // All operands except the displacement should match.
8822 if (!HasSameOp(X86::AddrBaseReg
) || !HasSameOp(X86::AddrScaleAmt
) ||
8823 !HasSameOp(X86::AddrIndexReg
) || !HasSameOp(X86::AddrSegmentReg
))
8826 // Chain Operand must be the same.
8830 // Now let's examine if the displacements are constants.
8831 auto Disp1
= dyn_cast
<ConstantSDNode
>(Load1
->getOperand(X86::AddrDisp
));
8832 auto Disp2
= dyn_cast
<ConstantSDNode
>(Load2
->getOperand(X86::AddrDisp
));
8833 if (!Disp1
|| !Disp2
)
8836 Offset1
= Disp1
->getSExtValue();
8837 Offset2
= Disp2
->getSExtValue();
8841 bool X86InstrInfo::shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
8842 int64_t Offset1
, int64_t Offset2
,
8843 unsigned NumLoads
) const {
8844 assert(Offset2
> Offset1
);
8845 if ((Offset2
- Offset1
) / 8 > 64)
8848 unsigned Opc1
= Load1
->getMachineOpcode();
8849 unsigned Opc2
= Load2
->getMachineOpcode();
8851 return false; // FIXME: overly conservative?
8859 case X86::MMX_MOVD64rm
:
8860 case X86::MMX_MOVQ64rm
:
8864 EVT VT
= Load1
->getValueType(0);
8865 switch (VT
.getSimpleVT().SimpleTy
) {
8867 // XMM registers. In 64-bit mode we can be a bit more aggressive since we
8868 // have 16 of them to play with.
8869 if (Subtarget
.is64Bit()) {
8872 } else if (NumLoads
) {
8890 bool X86InstrInfo::isSchedulingBoundary(const MachineInstr
&MI
,
8891 const MachineBasicBlock
*MBB
,
8892 const MachineFunction
&MF
) const {
8894 // ENDBR instructions should not be scheduled around.
8895 unsigned Opcode
= MI
.getOpcode();
8896 if (Opcode
== X86::ENDBR64
|| Opcode
== X86::ENDBR32
||
8897 Opcode
== X86::PLDTILECFGV
)
8900 // Frame setup and destory can't be scheduled around.
8901 if (MI
.getFlag(MachineInstr::FrameSetup
) ||
8902 MI
.getFlag(MachineInstr::FrameDestroy
))
8905 return TargetInstrInfo::isSchedulingBoundary(MI
, MBB
, MF
);
8908 bool X86InstrInfo::reverseBranchCondition(
8909 SmallVectorImpl
<MachineOperand
> &Cond
) const {
8910 assert(Cond
.size() == 1 && "Invalid X86 branch condition!");
8911 X86::CondCode CC
= static_cast<X86::CondCode
>(Cond
[0].getImm());
8912 Cond
[0].setImm(GetOppositeBranchCondition(CC
));
8916 bool X86InstrInfo::isSafeToMoveRegClassDefs(
8917 const TargetRegisterClass
*RC
) const {
8918 // FIXME: Return false for x87 stack register classes for now. We can't
8919 // allow any loads of these registers before FpGet_ST0_80.
8920 return !(RC
== &X86::CCRRegClass
|| RC
== &X86::DFCCRRegClass
||
8921 RC
== &X86::RFP32RegClass
|| RC
== &X86::RFP64RegClass
||
8922 RC
== &X86::RFP80RegClass
);
8925 /// Return a virtual register initialized with the
8926 /// the global base register value. Output instructions required to
8927 /// initialize the register in the function entry block, if necessary.
8929 /// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
8931 unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction
*MF
) const {
8932 X86MachineFunctionInfo
*X86FI
= MF
->getInfo
<X86MachineFunctionInfo
>();
8933 Register GlobalBaseReg
= X86FI
->getGlobalBaseReg();
8934 if (GlobalBaseReg
!= 0)
8935 return GlobalBaseReg
;
8937 // Create the register. The code to initialize it is inserted
8938 // later, by the CGBR pass (below).
8939 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
8940 GlobalBaseReg
= RegInfo
.createVirtualRegister(
8941 Subtarget
.is64Bit() ? &X86::GR64_NOSPRegClass
: &X86::GR32_NOSPRegClass
);
8942 X86FI
->setGlobalBaseReg(GlobalBaseReg
);
8943 return GlobalBaseReg
;
8946 // FIXME: Some shuffle and unpack instructions have equivalents in different
8947 // domains, but they require a bit more work than just switching opcodes.
8949 static const uint16_t *lookup(unsigned opcode
, unsigned domain
,
8950 ArrayRef
<uint16_t[3]> Table
) {
8951 for (const uint16_t(&Row
)[3] : Table
)
8952 if (Row
[domain
- 1] == opcode
)
8957 static const uint16_t *lookupAVX512(unsigned opcode
, unsigned domain
,
8958 ArrayRef
<uint16_t[4]> Table
) {
8959 // If this is the integer domain make sure to check both integer columns.
8960 for (const uint16_t(&Row
)[4] : Table
)
8961 if (Row
[domain
- 1] == opcode
|| (domain
== 3 && Row
[3] == opcode
))
8966 // Helper to attempt to widen/narrow blend masks.
8967 static bool AdjustBlendMask(unsigned OldMask
, unsigned OldWidth
,
8968 unsigned NewWidth
, unsigned *pNewMask
= nullptr) {
8969 assert(((OldWidth
% NewWidth
) == 0 || (NewWidth
% OldWidth
) == 0) &&
8970 "Illegal blend mask scale");
8971 unsigned NewMask
= 0;
8973 if ((OldWidth
% NewWidth
) == 0) {
8974 unsigned Scale
= OldWidth
/ NewWidth
;
8975 unsigned SubMask
= (1u << Scale
) - 1;
8976 for (unsigned i
= 0; i
!= NewWidth
; ++i
) {
8977 unsigned Sub
= (OldMask
>> (i
* Scale
)) & SubMask
;
8979 NewMask
|= (1u << i
);
8980 else if (Sub
!= 0x0)
8984 unsigned Scale
= NewWidth
/ OldWidth
;
8985 unsigned SubMask
= (1u << Scale
) - 1;
8986 for (unsigned i
= 0; i
!= OldWidth
; ++i
) {
8987 if (OldMask
& (1 << i
)) {
8988 NewMask
|= (SubMask
<< (i
* Scale
));
8994 *pNewMask
= NewMask
;
8998 uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr
&MI
) const {
8999 unsigned Opcode
= MI
.getOpcode();
9000 unsigned NumOperands
= MI
.getDesc().getNumOperands();
9002 auto GetBlendDomains
= [&](unsigned ImmWidth
, bool Is256
) {
9003 uint16_t validDomains
= 0;
9004 if (MI
.getOperand(NumOperands
- 1).isImm()) {
9005 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm();
9006 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4))
9007 validDomains
|= 0x2; // PackedSingle
9008 if (AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2))
9009 validDomains
|= 0x4; // PackedDouble
9010 if (!Is256
|| Subtarget
.hasAVX2())
9011 validDomains
|= 0x8; // PackedInt
9013 return validDomains
;
9017 case X86::BLENDPDrmi
:
9018 case X86::BLENDPDrri
:
9019 case X86::VBLENDPDrmi
:
9020 case X86::VBLENDPDrri
:
9021 return GetBlendDomains(2, false);
9022 case X86::VBLENDPDYrmi
:
9023 case X86::VBLENDPDYrri
:
9024 return GetBlendDomains(4, true);
9025 case X86::BLENDPSrmi
:
9026 case X86::BLENDPSrri
:
9027 case X86::VBLENDPSrmi
:
9028 case X86::VBLENDPSrri
:
9029 case X86::VPBLENDDrmi
:
9030 case X86::VPBLENDDrri
:
9031 return GetBlendDomains(4, false);
9032 case X86::VBLENDPSYrmi
:
9033 case X86::VBLENDPSYrri
:
9034 case X86::VPBLENDDYrmi
:
9035 case X86::VPBLENDDYrri
:
9036 return GetBlendDomains(8, true);
9037 case X86::PBLENDWrmi
:
9038 case X86::PBLENDWrri
:
9039 case X86::VPBLENDWrmi
:
9040 case X86::VPBLENDWrri
:
9041 // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks.
9042 case X86::VPBLENDWYrmi
:
9043 case X86::VPBLENDWYrri
:
9044 return GetBlendDomains(8, false);
9045 case X86::VPANDDZ128rr
:
9046 case X86::VPANDDZ128rm
:
9047 case X86::VPANDDZ256rr
:
9048 case X86::VPANDDZ256rm
:
9049 case X86::VPANDQZ128rr
:
9050 case X86::VPANDQZ128rm
:
9051 case X86::VPANDQZ256rr
:
9052 case X86::VPANDQZ256rm
:
9053 case X86::VPANDNDZ128rr
:
9054 case X86::VPANDNDZ128rm
:
9055 case X86::VPANDNDZ256rr
:
9056 case X86::VPANDNDZ256rm
:
9057 case X86::VPANDNQZ128rr
:
9058 case X86::VPANDNQZ128rm
:
9059 case X86::VPANDNQZ256rr
:
9060 case X86::VPANDNQZ256rm
:
9061 case X86::VPORDZ128rr
:
9062 case X86::VPORDZ128rm
:
9063 case X86::VPORDZ256rr
:
9064 case X86::VPORDZ256rm
:
9065 case X86::VPORQZ128rr
:
9066 case X86::VPORQZ128rm
:
9067 case X86::VPORQZ256rr
:
9068 case X86::VPORQZ256rm
:
9069 case X86::VPXORDZ128rr
:
9070 case X86::VPXORDZ128rm
:
9071 case X86::VPXORDZ256rr
:
9072 case X86::VPXORDZ256rm
:
9073 case X86::VPXORQZ128rr
:
9074 case X86::VPXORQZ128rm
:
9075 case X86::VPXORQZ256rr
:
9076 case X86::VPXORQZ256rm
:
9077 // If we don't have DQI see if we can still switch from an EVEX integer
9078 // instruction to a VEX floating point instruction.
9079 if (Subtarget
.hasDQI())
9082 if (RI
.getEncodingValue(MI
.getOperand(0).getReg()) >= 16)
9084 if (RI
.getEncodingValue(MI
.getOperand(1).getReg()) >= 16)
9086 // Register forms will have 3 operands. Memory form will have more.
9087 if (NumOperands
== 3 &&
9088 RI
.getEncodingValue(MI
.getOperand(2).getReg()) >= 16)
9091 // All domains are valid.
9093 case X86::MOVHLPSrr
:
9094 // We can swap domains when both inputs are the same register.
9095 // FIXME: This doesn't catch all the cases we would like. If the input
9096 // register isn't KILLed by the instruction, the two address instruction
9097 // pass puts a COPY on one input. The other input uses the original
9098 // register. This prevents the same physical register from being used by
9100 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
9101 MI
.getOperand(0).getSubReg() == 0 &&
9102 MI
.getOperand(1).getSubReg() == 0 && MI
.getOperand(2).getSubReg() == 0)
9105 case X86::SHUFPDrri
:
9111 #include "X86ReplaceableInstrs.def"
9113 bool X86InstrInfo::setExecutionDomainCustom(MachineInstr
&MI
,
9114 unsigned Domain
) const {
9115 assert(Domain
> 0 && Domain
< 4 && "Invalid execution domain");
9116 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
9117 assert(dom
&& "Not an SSE instruction");
9119 unsigned Opcode
= MI
.getOpcode();
9120 unsigned NumOperands
= MI
.getDesc().getNumOperands();
9122 auto SetBlendDomain
= [&](unsigned ImmWidth
, bool Is256
) {
9123 if (MI
.getOperand(NumOperands
- 1).isImm()) {
9124 unsigned Imm
= MI
.getOperand(NumOperands
- 1).getImm() & 255;
9125 Imm
= (ImmWidth
== 16 ? ((Imm
<< 8) | Imm
) : Imm
);
9126 unsigned NewImm
= Imm
;
9128 const uint16_t *table
= lookup(Opcode
, dom
, ReplaceableBlendInstrs
);
9130 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
9132 if (Domain
== 1) { // PackedSingle
9133 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
9134 } else if (Domain
== 2) { // PackedDouble
9135 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 4 : 2, &NewImm
);
9136 } else if (Domain
== 3) { // PackedInt
9137 if (Subtarget
.hasAVX2()) {
9138 // If we are already VPBLENDW use that, else use VPBLENDD.
9139 if ((ImmWidth
/ (Is256
? 2 : 1)) != 8) {
9140 table
= lookup(Opcode
, dom
, ReplaceableBlendAVX2Instrs
);
9141 AdjustBlendMask(Imm
, ImmWidth
, Is256
? 8 : 4, &NewImm
);
9144 assert(!Is256
&& "128-bit vector expected");
9145 AdjustBlendMask(Imm
, ImmWidth
, 8, &NewImm
);
9149 assert(table
&& table
[Domain
- 1] && "Unknown domain op");
9150 MI
.setDesc(get(table
[Domain
- 1]));
9151 MI
.getOperand(NumOperands
- 1).setImm(NewImm
& 255);
9157 case X86::BLENDPDrmi
:
9158 case X86::BLENDPDrri
:
9159 case X86::VBLENDPDrmi
:
9160 case X86::VBLENDPDrri
:
9161 return SetBlendDomain(2, false);
9162 case X86::VBLENDPDYrmi
:
9163 case X86::VBLENDPDYrri
:
9164 return SetBlendDomain(4, true);
9165 case X86::BLENDPSrmi
:
9166 case X86::BLENDPSrri
:
9167 case X86::VBLENDPSrmi
:
9168 case X86::VBLENDPSrri
:
9169 case X86::VPBLENDDrmi
:
9170 case X86::VPBLENDDrri
:
9171 return SetBlendDomain(4, false);
9172 case X86::VBLENDPSYrmi
:
9173 case X86::VBLENDPSYrri
:
9174 case X86::VPBLENDDYrmi
:
9175 case X86::VPBLENDDYrri
:
9176 return SetBlendDomain(8, true);
9177 case X86::PBLENDWrmi
:
9178 case X86::PBLENDWrri
:
9179 case X86::VPBLENDWrmi
:
9180 case X86::VPBLENDWrri
:
9181 return SetBlendDomain(8, false);
9182 case X86::VPBLENDWYrmi
:
9183 case X86::VPBLENDWYrri
:
9184 return SetBlendDomain(16, true);
9185 case X86::VPANDDZ128rr
:
9186 case X86::VPANDDZ128rm
:
9187 case X86::VPANDDZ256rr
:
9188 case X86::VPANDDZ256rm
:
9189 case X86::VPANDQZ128rr
:
9190 case X86::VPANDQZ128rm
:
9191 case X86::VPANDQZ256rr
:
9192 case X86::VPANDQZ256rm
:
9193 case X86::VPANDNDZ128rr
:
9194 case X86::VPANDNDZ128rm
:
9195 case X86::VPANDNDZ256rr
:
9196 case X86::VPANDNDZ256rm
:
9197 case X86::VPANDNQZ128rr
:
9198 case X86::VPANDNQZ128rm
:
9199 case X86::VPANDNQZ256rr
:
9200 case X86::VPANDNQZ256rm
:
9201 case X86::VPORDZ128rr
:
9202 case X86::VPORDZ128rm
:
9203 case X86::VPORDZ256rr
:
9204 case X86::VPORDZ256rm
:
9205 case X86::VPORQZ128rr
:
9206 case X86::VPORQZ128rm
:
9207 case X86::VPORQZ256rr
:
9208 case X86::VPORQZ256rm
:
9209 case X86::VPXORDZ128rr
:
9210 case X86::VPXORDZ128rm
:
9211 case X86::VPXORDZ256rr
:
9212 case X86::VPXORDZ256rm
:
9213 case X86::VPXORQZ128rr
:
9214 case X86::VPXORQZ128rm
:
9215 case X86::VPXORQZ256rr
:
9216 case X86::VPXORQZ256rm
: {
9217 // Without DQI, convert EVEX instructions to VEX instructions.
9218 if (Subtarget
.hasDQI())
9221 const uint16_t *table
=
9222 lookupAVX512(MI
.getOpcode(), dom
, ReplaceableCustomAVX512LogicInstrs
);
9223 assert(table
&& "Instruction not found in table?");
9224 // Don't change integer Q instructions to D instructions and
9225 // use D intructions if we started with a PS instruction.
9226 if (Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
9228 MI
.setDesc(get(table
[Domain
- 1]));
9231 case X86::UNPCKHPDrr
:
9232 case X86::MOVHLPSrr
:
9233 // We just need to commute the instruction which will switch the domains.
9234 if (Domain
!= dom
&& Domain
!= 3 &&
9235 MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg() &&
9236 MI
.getOperand(0).getSubReg() == 0 &&
9237 MI
.getOperand(1).getSubReg() == 0 &&
9238 MI
.getOperand(2).getSubReg() == 0) {
9239 commuteInstruction(MI
, false);
9242 // We must always return true for MOVHLPSrr.
9243 if (Opcode
== X86::MOVHLPSrr
)
9246 case X86::SHUFPDrri
: {
9248 unsigned Imm
= MI
.getOperand(3).getImm();
9249 unsigned NewImm
= 0x44;
9254 MI
.getOperand(3).setImm(NewImm
);
9255 MI
.setDesc(get(X86::SHUFPSrri
));
9263 std::pair
<uint16_t, uint16_t>
9264 X86InstrInfo::getExecutionDomain(const MachineInstr
&MI
) const {
9265 uint16_t domain
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
9266 unsigned opcode
= MI
.getOpcode();
9267 uint16_t validDomains
= 0;
9269 // Attempt to match for custom instructions.
9270 validDomains
= getExecutionDomainCustom(MI
);
9272 return std::make_pair(domain
, validDomains
);
9274 if (lookup(opcode
, domain
, ReplaceableInstrs
)) {
9276 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2
)) {
9277 validDomains
= Subtarget
.hasAVX2() ? 0xe : 0x6;
9278 } else if (lookup(opcode
, domain
, ReplaceableInstrsFP
)) {
9280 } else if (lookup(opcode
, domain
, ReplaceableInstrsAVX2InsertExtract
)) {
9281 // Insert/extract instructions should only effect domain if AVX2
9283 if (!Subtarget
.hasAVX2())
9284 return std::make_pair(0, 0);
9286 } else if (lookupAVX512(opcode
, domain
, ReplaceableInstrsAVX512
)) {
9288 } else if (Subtarget
.hasDQI() &&
9289 lookupAVX512(opcode
, domain
, ReplaceableInstrsAVX512DQ
)) {
9291 } else if (Subtarget
.hasDQI()) {
9292 if (const uint16_t *table
=
9293 lookupAVX512(opcode
, domain
, ReplaceableInstrsAVX512DQMasked
)) {
9294 if (domain
== 1 || (domain
== 3 && table
[3] == opcode
))
9301 return std::make_pair(domain
, validDomains
);
9304 void X86InstrInfo::setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const {
9305 assert(Domain
> 0 && Domain
< 4 && "Invalid execution domain");
9306 uint16_t dom
= (MI
.getDesc().TSFlags
>> X86II::SSEDomainShift
) & 3;
9307 assert(dom
&& "Not an SSE instruction");
9309 // Attempt to match for custom instructions.
9310 if (setExecutionDomainCustom(MI
, Domain
))
9313 const uint16_t *table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrs
);
9314 if (!table
) { // try the other table
9315 assert((Subtarget
.hasAVX2() || Domain
< 3) &&
9316 "256-bit vector operations only available in AVX2");
9317 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2
);
9319 if (!table
) { // try the FP table
9320 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsFP
);
9321 assert((!table
|| Domain
< 3) &&
9322 "Can only select PackedSingle or PackedDouble");
9324 if (!table
) { // try the other table
9325 assert(Subtarget
.hasAVX2() &&
9326 "256-bit insert/extract only available in AVX2");
9327 table
= lookup(MI
.getOpcode(), dom
, ReplaceableInstrsAVX2InsertExtract
);
9329 if (!table
) { // try the AVX512 table
9330 assert(Subtarget
.hasAVX512() && "Requires AVX-512");
9331 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512
);
9332 // Don't change integer Q instructions to D instructions.
9333 if (table
&& Domain
== 3 && table
[3] == MI
.getOpcode())
9336 if (!table
) { // try the AVX512DQ table
9337 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
9338 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQ
);
9339 // Don't change integer Q instructions to D instructions and
9340 // use D instructions if we started with a PS instruction.
9341 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
9344 if (!table
) { // try the AVX512DQMasked table
9345 assert((Subtarget
.hasDQI() || Domain
>= 3) && "Requires AVX-512DQ");
9346 table
= lookupAVX512(MI
.getOpcode(), dom
, ReplaceableInstrsAVX512DQMasked
);
9347 if (table
&& Domain
== 3 && (dom
== 1 || table
[3] == MI
.getOpcode()))
9350 assert(table
&& "Cannot change domain");
9351 MI
.setDesc(get(table
[Domain
- 1]));
9354 void X86InstrInfo::insertNoop(MachineBasicBlock
&MBB
,
9355 MachineBasicBlock::iterator MI
) const {
9357 BuildMI(MBB
, MI
, DL
, get(X86::NOOP
));
9360 /// Return the noop instruction to use for a noop.
9361 MCInst
X86InstrInfo::getNop() const {
9363 Nop
.setOpcode(X86::NOOP
);
9367 bool X86InstrInfo::isHighLatencyDef(int opc
) const {
9376 case X86::DIVSDrm_Int
:
9378 case X86::DIVSDrr_Int
:
9380 case X86::DIVSSrm_Int
:
9382 case X86::DIVSSrr_Int
:
9388 case X86::SQRTSDm_Int
:
9390 case X86::SQRTSDr_Int
:
9392 case X86::SQRTSSm_Int
:
9394 case X86::SQRTSSr_Int
:
9395 // AVX instructions with high latency
9398 case X86::VDIVPDYrm
:
9399 case X86::VDIVPDYrr
:
9402 case X86::VDIVPSYrm
:
9403 case X86::VDIVPSYrr
:
9405 case X86::VDIVSDrm_Int
:
9407 case X86::VDIVSDrr_Int
:
9409 case X86::VDIVSSrm_Int
:
9411 case X86::VDIVSSrr_Int
:
9414 case X86::VSQRTPDYm
:
9415 case X86::VSQRTPDYr
:
9418 case X86::VSQRTPSYm
:
9419 case X86::VSQRTPSYr
:
9421 case X86::VSQRTSDm_Int
:
9423 case X86::VSQRTSDr_Int
:
9425 case X86::VSQRTSSm_Int
:
9427 case X86::VSQRTSSr_Int
:
9428 // AVX512 instructions with high latency
9429 case X86::VDIVPDZ128rm
:
9430 case X86::VDIVPDZ128rmb
:
9431 case X86::VDIVPDZ128rmbk
:
9432 case X86::VDIVPDZ128rmbkz
:
9433 case X86::VDIVPDZ128rmk
:
9434 case X86::VDIVPDZ128rmkz
:
9435 case X86::VDIVPDZ128rr
:
9436 case X86::VDIVPDZ128rrk
:
9437 case X86::VDIVPDZ128rrkz
:
9438 case X86::VDIVPDZ256rm
:
9439 case X86::VDIVPDZ256rmb
:
9440 case X86::VDIVPDZ256rmbk
:
9441 case X86::VDIVPDZ256rmbkz
:
9442 case X86::VDIVPDZ256rmk
:
9443 case X86::VDIVPDZ256rmkz
:
9444 case X86::VDIVPDZ256rr
:
9445 case X86::VDIVPDZ256rrk
:
9446 case X86::VDIVPDZ256rrkz
:
9447 case X86::VDIVPDZrrb
:
9448 case X86::VDIVPDZrrbk
:
9449 case X86::VDIVPDZrrbkz
:
9450 case X86::VDIVPDZrm
:
9451 case X86::VDIVPDZrmb
:
9452 case X86::VDIVPDZrmbk
:
9453 case X86::VDIVPDZrmbkz
:
9454 case X86::VDIVPDZrmk
:
9455 case X86::VDIVPDZrmkz
:
9456 case X86::VDIVPDZrr
:
9457 case X86::VDIVPDZrrk
:
9458 case X86::VDIVPDZrrkz
:
9459 case X86::VDIVPSZ128rm
:
9460 case X86::VDIVPSZ128rmb
:
9461 case X86::VDIVPSZ128rmbk
:
9462 case X86::VDIVPSZ128rmbkz
:
9463 case X86::VDIVPSZ128rmk
:
9464 case X86::VDIVPSZ128rmkz
:
9465 case X86::VDIVPSZ128rr
:
9466 case X86::VDIVPSZ128rrk
:
9467 case X86::VDIVPSZ128rrkz
:
9468 case X86::VDIVPSZ256rm
:
9469 case X86::VDIVPSZ256rmb
:
9470 case X86::VDIVPSZ256rmbk
:
9471 case X86::VDIVPSZ256rmbkz
:
9472 case X86::VDIVPSZ256rmk
:
9473 case X86::VDIVPSZ256rmkz
:
9474 case X86::VDIVPSZ256rr
:
9475 case X86::VDIVPSZ256rrk
:
9476 case X86::VDIVPSZ256rrkz
:
9477 case X86::VDIVPSZrrb
:
9478 case X86::VDIVPSZrrbk
:
9479 case X86::VDIVPSZrrbkz
:
9480 case X86::VDIVPSZrm
:
9481 case X86::VDIVPSZrmb
:
9482 case X86::VDIVPSZrmbk
:
9483 case X86::VDIVPSZrmbkz
:
9484 case X86::VDIVPSZrmk
:
9485 case X86::VDIVPSZrmkz
:
9486 case X86::VDIVPSZrr
:
9487 case X86::VDIVPSZrrk
:
9488 case X86::VDIVPSZrrkz
:
9489 case X86::VDIVSDZrm
:
9490 case X86::VDIVSDZrr
:
9491 case X86::VDIVSDZrm_Int
:
9492 case X86::VDIVSDZrmk_Int
:
9493 case X86::VDIVSDZrmkz_Int
:
9494 case X86::VDIVSDZrr_Int
:
9495 case X86::VDIVSDZrrk_Int
:
9496 case X86::VDIVSDZrrkz_Int
:
9497 case X86::VDIVSDZrrb_Int
:
9498 case X86::VDIVSDZrrbk_Int
:
9499 case X86::VDIVSDZrrbkz_Int
:
9500 case X86::VDIVSSZrm
:
9501 case X86::VDIVSSZrr
:
9502 case X86::VDIVSSZrm_Int
:
9503 case X86::VDIVSSZrmk_Int
:
9504 case X86::VDIVSSZrmkz_Int
:
9505 case X86::VDIVSSZrr_Int
:
9506 case X86::VDIVSSZrrk_Int
:
9507 case X86::VDIVSSZrrkz_Int
:
9508 case X86::VDIVSSZrrb_Int
:
9509 case X86::VDIVSSZrrbk_Int
:
9510 case X86::VDIVSSZrrbkz_Int
:
9511 case X86::VSQRTPDZ128m
:
9512 case X86::VSQRTPDZ128mb
:
9513 case X86::VSQRTPDZ128mbk
:
9514 case X86::VSQRTPDZ128mbkz
:
9515 case X86::VSQRTPDZ128mk
:
9516 case X86::VSQRTPDZ128mkz
:
9517 case X86::VSQRTPDZ128r
:
9518 case X86::VSQRTPDZ128rk
:
9519 case X86::VSQRTPDZ128rkz
:
9520 case X86::VSQRTPDZ256m
:
9521 case X86::VSQRTPDZ256mb
:
9522 case X86::VSQRTPDZ256mbk
:
9523 case X86::VSQRTPDZ256mbkz
:
9524 case X86::VSQRTPDZ256mk
:
9525 case X86::VSQRTPDZ256mkz
:
9526 case X86::VSQRTPDZ256r
:
9527 case X86::VSQRTPDZ256rk
:
9528 case X86::VSQRTPDZ256rkz
:
9529 case X86::VSQRTPDZm
:
9530 case X86::VSQRTPDZmb
:
9531 case X86::VSQRTPDZmbk
:
9532 case X86::VSQRTPDZmbkz
:
9533 case X86::VSQRTPDZmk
:
9534 case X86::VSQRTPDZmkz
:
9535 case X86::VSQRTPDZr
:
9536 case X86::VSQRTPDZrb
:
9537 case X86::VSQRTPDZrbk
:
9538 case X86::VSQRTPDZrbkz
:
9539 case X86::VSQRTPDZrk
:
9540 case X86::VSQRTPDZrkz
:
9541 case X86::VSQRTPSZ128m
:
9542 case X86::VSQRTPSZ128mb
:
9543 case X86::VSQRTPSZ128mbk
:
9544 case X86::VSQRTPSZ128mbkz
:
9545 case X86::VSQRTPSZ128mk
:
9546 case X86::VSQRTPSZ128mkz
:
9547 case X86::VSQRTPSZ128r
:
9548 case X86::VSQRTPSZ128rk
:
9549 case X86::VSQRTPSZ128rkz
:
9550 case X86::VSQRTPSZ256m
:
9551 case X86::VSQRTPSZ256mb
:
9552 case X86::VSQRTPSZ256mbk
:
9553 case X86::VSQRTPSZ256mbkz
:
9554 case X86::VSQRTPSZ256mk
:
9555 case X86::VSQRTPSZ256mkz
:
9556 case X86::VSQRTPSZ256r
:
9557 case X86::VSQRTPSZ256rk
:
9558 case X86::VSQRTPSZ256rkz
:
9559 case X86::VSQRTPSZm
:
9560 case X86::VSQRTPSZmb
:
9561 case X86::VSQRTPSZmbk
:
9562 case X86::VSQRTPSZmbkz
:
9563 case X86::VSQRTPSZmk
:
9564 case X86::VSQRTPSZmkz
:
9565 case X86::VSQRTPSZr
:
9566 case X86::VSQRTPSZrb
:
9567 case X86::VSQRTPSZrbk
:
9568 case X86::VSQRTPSZrbkz
:
9569 case X86::VSQRTPSZrk
:
9570 case X86::VSQRTPSZrkz
:
9571 case X86::VSQRTSDZm
:
9572 case X86::VSQRTSDZm_Int
:
9573 case X86::VSQRTSDZmk_Int
:
9574 case X86::VSQRTSDZmkz_Int
:
9575 case X86::VSQRTSDZr
:
9576 case X86::VSQRTSDZr_Int
:
9577 case X86::VSQRTSDZrk_Int
:
9578 case X86::VSQRTSDZrkz_Int
:
9579 case X86::VSQRTSDZrb_Int
:
9580 case X86::VSQRTSDZrbk_Int
:
9581 case X86::VSQRTSDZrbkz_Int
:
9582 case X86::VSQRTSSZm
:
9583 case X86::VSQRTSSZm_Int
:
9584 case X86::VSQRTSSZmk_Int
:
9585 case X86::VSQRTSSZmkz_Int
:
9586 case X86::VSQRTSSZr
:
9587 case X86::VSQRTSSZr_Int
:
9588 case X86::VSQRTSSZrk_Int
:
9589 case X86::VSQRTSSZrkz_Int
:
9590 case X86::VSQRTSSZrb_Int
:
9591 case X86::VSQRTSSZrbk_Int
:
9592 case X86::VSQRTSSZrbkz_Int
:
9594 case X86::VGATHERDPDYrm
:
9595 case X86::VGATHERDPDZ128rm
:
9596 case X86::VGATHERDPDZ256rm
:
9597 case X86::VGATHERDPDZrm
:
9598 case X86::VGATHERDPDrm
:
9599 case X86::VGATHERDPSYrm
:
9600 case X86::VGATHERDPSZ128rm
:
9601 case X86::VGATHERDPSZ256rm
:
9602 case X86::VGATHERDPSZrm
:
9603 case X86::VGATHERDPSrm
:
9604 case X86::VGATHERPF0DPDm
:
9605 case X86::VGATHERPF0DPSm
:
9606 case X86::VGATHERPF0QPDm
:
9607 case X86::VGATHERPF0QPSm
:
9608 case X86::VGATHERPF1DPDm
:
9609 case X86::VGATHERPF1DPSm
:
9610 case X86::VGATHERPF1QPDm
:
9611 case X86::VGATHERPF1QPSm
:
9612 case X86::VGATHERQPDYrm
:
9613 case X86::VGATHERQPDZ128rm
:
9614 case X86::VGATHERQPDZ256rm
:
9615 case X86::VGATHERQPDZrm
:
9616 case X86::VGATHERQPDrm
:
9617 case X86::VGATHERQPSYrm
:
9618 case X86::VGATHERQPSZ128rm
:
9619 case X86::VGATHERQPSZ256rm
:
9620 case X86::VGATHERQPSZrm
:
9621 case X86::VGATHERQPSrm
:
9622 case X86::VPGATHERDDYrm
:
9623 case X86::VPGATHERDDZ128rm
:
9624 case X86::VPGATHERDDZ256rm
:
9625 case X86::VPGATHERDDZrm
:
9626 case X86::VPGATHERDDrm
:
9627 case X86::VPGATHERDQYrm
:
9628 case X86::VPGATHERDQZ128rm
:
9629 case X86::VPGATHERDQZ256rm
:
9630 case X86::VPGATHERDQZrm
:
9631 case X86::VPGATHERDQrm
:
9632 case X86::VPGATHERQDYrm
:
9633 case X86::VPGATHERQDZ128rm
:
9634 case X86::VPGATHERQDZ256rm
:
9635 case X86::VPGATHERQDZrm
:
9636 case X86::VPGATHERQDrm
:
9637 case X86::VPGATHERQQYrm
:
9638 case X86::VPGATHERQQZ128rm
:
9639 case X86::VPGATHERQQZ256rm
:
9640 case X86::VPGATHERQQZrm
:
9641 case X86::VPGATHERQQrm
:
9642 case X86::VSCATTERDPDZ128mr
:
9643 case X86::VSCATTERDPDZ256mr
:
9644 case X86::VSCATTERDPDZmr
:
9645 case X86::VSCATTERDPSZ128mr
:
9646 case X86::VSCATTERDPSZ256mr
:
9647 case X86::VSCATTERDPSZmr
:
9648 case X86::VSCATTERPF0DPDm
:
9649 case X86::VSCATTERPF0DPSm
:
9650 case X86::VSCATTERPF0QPDm
:
9651 case X86::VSCATTERPF0QPSm
:
9652 case X86::VSCATTERPF1DPDm
:
9653 case X86::VSCATTERPF1DPSm
:
9654 case X86::VSCATTERPF1QPDm
:
9655 case X86::VSCATTERPF1QPSm
:
9656 case X86::VSCATTERQPDZ128mr
:
9657 case X86::VSCATTERQPDZ256mr
:
9658 case X86::VSCATTERQPDZmr
:
9659 case X86::VSCATTERQPSZ128mr
:
9660 case X86::VSCATTERQPSZ256mr
:
9661 case X86::VSCATTERQPSZmr
:
9662 case X86::VPSCATTERDDZ128mr
:
9663 case X86::VPSCATTERDDZ256mr
:
9664 case X86::VPSCATTERDDZmr
:
9665 case X86::VPSCATTERDQZ128mr
:
9666 case X86::VPSCATTERDQZ256mr
:
9667 case X86::VPSCATTERDQZmr
:
9668 case X86::VPSCATTERQDZ128mr
:
9669 case X86::VPSCATTERQDZ256mr
:
9670 case X86::VPSCATTERQDZmr
:
9671 case X86::VPSCATTERQQZ128mr
:
9672 case X86::VPSCATTERQQZ256mr
:
9673 case X86::VPSCATTERQQZmr
:
9678 bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
9679 const MachineRegisterInfo
*MRI
,
9680 const MachineInstr
&DefMI
,
9682 const MachineInstr
&UseMI
,
9683 unsigned UseIdx
) const {
9684 return isHighLatencyDef(DefMI
.getOpcode());
9687 bool X86InstrInfo::hasReassociableOperands(const MachineInstr
&Inst
,
9688 const MachineBasicBlock
*MBB
) const {
9689 assert(Inst
.getNumExplicitOperands() == 3 && Inst
.getNumExplicitDefs() == 1 &&
9690 Inst
.getNumDefs() <= 2 && "Reassociation needs binary operators");
9692 // Integer binary math/logic instructions have a third source operand:
9693 // the EFLAGS register. That operand must be both defined here and never
9694 // used; ie, it must be dead. If the EFLAGS operand is live, then we can
9695 // not change anything because rearranging the operands could affect other
9696 // instructions that depend on the exact status flags (zero, sign, etc.)
9697 // that are set by using these particular operands with this operation.
9698 const MachineOperand
*FlagDef
=
9699 Inst
.findRegisterDefOperand(X86::EFLAGS
, /*TRI=*/nullptr);
9700 assert((Inst
.getNumDefs() == 1 || FlagDef
) && "Implicit def isn't flags?");
9701 if (FlagDef
&& !FlagDef
->isDead())
9704 return TargetInstrInfo::hasReassociableOperands(Inst
, MBB
);
9707 // TODO: There are many more machine instruction opcodes to match:
9708 // 1. Other data types (integer, vectors)
9709 // 2. Other math / logic operations (xor, or)
9710 // 3. Other forms of the same operation (intrinsics and other variants)
9711 bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr
&Inst
,
9712 bool Invert
) const {
9715 switch (Inst
.getOpcode()) {
9764 case X86::VPANDDZ128rr
:
9765 case X86::VPANDDZ256rr
:
9766 case X86::VPANDDZrr
:
9767 case X86::VPANDQZ128rr
:
9768 case X86::VPANDQZ256rr
:
9769 case X86::VPANDQZrr
:
9772 case X86::VPORDZ128rr
:
9773 case X86::VPORDZ256rr
:
9775 case X86::VPORQZ128rr
:
9776 case X86::VPORQZ256rr
:
9780 case X86::VPXORDZ128rr
:
9781 case X86::VPXORDZ256rr
:
9782 case X86::VPXORDZrr
:
9783 case X86::VPXORQZ128rr
:
9784 case X86::VPXORQZ256rr
:
9785 case X86::VPXORQZrr
:
9788 case X86::VANDPDYrr
:
9789 case X86::VANDPSYrr
:
9790 case X86::VANDPDZ128rr
:
9791 case X86::VANDPSZ128rr
:
9792 case X86::VANDPDZ256rr
:
9793 case X86::VANDPSZ256rr
:
9794 case X86::VANDPDZrr
:
9795 case X86::VANDPSZrr
:
9800 case X86::VORPDZ128rr
:
9801 case X86::VORPSZ128rr
:
9802 case X86::VORPDZ256rr
:
9803 case X86::VORPSZ256rr
:
9808 case X86::VXORPDYrr
:
9809 case X86::VXORPSYrr
:
9810 case X86::VXORPDZ128rr
:
9811 case X86::VXORPSZ128rr
:
9812 case X86::VXORPDZ256rr
:
9813 case X86::VXORPSZ256rr
:
9814 case X86::VXORPDZrr
:
9815 case X86::VXORPSZrr
:
9836 case X86::VPADDBYrr
:
9837 case X86::VPADDWYrr
:
9838 case X86::VPADDDYrr
:
9839 case X86::VPADDQYrr
:
9840 case X86::VPADDBZ128rr
:
9841 case X86::VPADDWZ128rr
:
9842 case X86::VPADDDZ128rr
:
9843 case X86::VPADDQZ128rr
:
9844 case X86::VPADDBZ256rr
:
9845 case X86::VPADDWZ256rr
:
9846 case X86::VPADDDZ256rr
:
9847 case X86::VPADDQZ256rr
:
9848 case X86::VPADDBZrr
:
9849 case X86::VPADDWZrr
:
9850 case X86::VPADDDZrr
:
9851 case X86::VPADDQZrr
:
9852 case X86::VPMULLWrr
:
9853 case X86::VPMULLWYrr
:
9854 case X86::VPMULLWZ128rr
:
9855 case X86::VPMULLWZ256rr
:
9856 case X86::VPMULLWZrr
:
9857 case X86::VPMULLDrr
:
9858 case X86::VPMULLDYrr
:
9859 case X86::VPMULLDZ128rr
:
9860 case X86::VPMULLDZ256rr
:
9861 case X86::VPMULLDZrr
:
9862 case X86::VPMULLQZ128rr
:
9863 case X86::VPMULLQZ256rr
:
9864 case X86::VPMULLQZrr
:
9865 case X86::VPMAXSBrr
:
9866 case X86::VPMAXSBYrr
:
9867 case X86::VPMAXSBZ128rr
:
9868 case X86::VPMAXSBZ256rr
:
9869 case X86::VPMAXSBZrr
:
9870 case X86::VPMAXSDrr
:
9871 case X86::VPMAXSDYrr
:
9872 case X86::VPMAXSDZ128rr
:
9873 case X86::VPMAXSDZ256rr
:
9874 case X86::VPMAXSDZrr
:
9875 case X86::VPMAXSQZ128rr
:
9876 case X86::VPMAXSQZ256rr
:
9877 case X86::VPMAXSQZrr
:
9878 case X86::VPMAXSWrr
:
9879 case X86::VPMAXSWYrr
:
9880 case X86::VPMAXSWZ128rr
:
9881 case X86::VPMAXSWZ256rr
:
9882 case X86::VPMAXSWZrr
:
9883 case X86::VPMAXUBrr
:
9884 case X86::VPMAXUBYrr
:
9885 case X86::VPMAXUBZ128rr
:
9886 case X86::VPMAXUBZ256rr
:
9887 case X86::VPMAXUBZrr
:
9888 case X86::VPMAXUDrr
:
9889 case X86::VPMAXUDYrr
:
9890 case X86::VPMAXUDZ128rr
:
9891 case X86::VPMAXUDZ256rr
:
9892 case X86::VPMAXUDZrr
:
9893 case X86::VPMAXUQZ128rr
:
9894 case X86::VPMAXUQZ256rr
:
9895 case X86::VPMAXUQZrr
:
9896 case X86::VPMAXUWrr
:
9897 case X86::VPMAXUWYrr
:
9898 case X86::VPMAXUWZ128rr
:
9899 case X86::VPMAXUWZ256rr
:
9900 case X86::VPMAXUWZrr
:
9901 case X86::VPMINSBrr
:
9902 case X86::VPMINSBYrr
:
9903 case X86::VPMINSBZ128rr
:
9904 case X86::VPMINSBZ256rr
:
9905 case X86::VPMINSBZrr
:
9906 case X86::VPMINSDrr
:
9907 case X86::VPMINSDYrr
:
9908 case X86::VPMINSDZ128rr
:
9909 case X86::VPMINSDZ256rr
:
9910 case X86::VPMINSDZrr
:
9911 case X86::VPMINSQZ128rr
:
9912 case X86::VPMINSQZ256rr
:
9913 case X86::VPMINSQZrr
:
9914 case X86::VPMINSWrr
:
9915 case X86::VPMINSWYrr
:
9916 case X86::VPMINSWZ128rr
:
9917 case X86::VPMINSWZ256rr
:
9918 case X86::VPMINSWZrr
:
9919 case X86::VPMINUBrr
:
9920 case X86::VPMINUBYrr
:
9921 case X86::VPMINUBZ128rr
:
9922 case X86::VPMINUBZ256rr
:
9923 case X86::VPMINUBZrr
:
9924 case X86::VPMINUDrr
:
9925 case X86::VPMINUDYrr
:
9926 case X86::VPMINUDZ128rr
:
9927 case X86::VPMINUDZ256rr
:
9928 case X86::VPMINUDZrr
:
9929 case X86::VPMINUQZ128rr
:
9930 case X86::VPMINUQZ256rr
:
9931 case X86::VPMINUQZrr
:
9932 case X86::VPMINUWrr
:
9933 case X86::VPMINUWYrr
:
9934 case X86::VPMINUWZ128rr
:
9935 case X86::VPMINUWZ256rr
:
9936 case X86::VPMINUWZrr
:
9937 // Normal min/max instructions are not commutative because of NaN and signed
9938 // zero semantics, but these are. Thus, there's no need to check for global
9939 // relaxed math; the instructions themselves have the properties we need.
9948 case X86::VMAXCPDrr
:
9949 case X86::VMAXCPSrr
:
9950 case X86::VMAXCPDYrr
:
9951 case X86::VMAXCPSYrr
:
9952 case X86::VMAXCPDZ128rr
:
9953 case X86::VMAXCPSZ128rr
:
9954 case X86::VMAXCPDZ256rr
:
9955 case X86::VMAXCPSZ256rr
:
9956 case X86::VMAXCPDZrr
:
9957 case X86::VMAXCPSZrr
:
9958 case X86::VMAXCSDrr
:
9959 case X86::VMAXCSSrr
:
9960 case X86::VMAXCSDZrr
:
9961 case X86::VMAXCSSZrr
:
9962 case X86::VMINCPDrr
:
9963 case X86::VMINCPSrr
:
9964 case X86::VMINCPDYrr
:
9965 case X86::VMINCPSYrr
:
9966 case X86::VMINCPDZ128rr
:
9967 case X86::VMINCPSZ128rr
:
9968 case X86::VMINCPDZ256rr
:
9969 case X86::VMINCPSZ256rr
:
9970 case X86::VMINCPDZrr
:
9971 case X86::VMINCPSZrr
:
9972 case X86::VMINCSDrr
:
9973 case X86::VMINCSSrr
:
9974 case X86::VMINCSDZrr
:
9975 case X86::VMINCSSZrr
:
9976 case X86::VMAXCPHZ128rr
:
9977 case X86::VMAXCPHZ256rr
:
9978 case X86::VMAXCPHZrr
:
9979 case X86::VMAXCSHZrr
:
9980 case X86::VMINCPHZ128rr
:
9981 case X86::VMINCPHZ256rr
:
9982 case X86::VMINCPHZrr
:
9983 case X86::VMINCSHZrr
:
9995 case X86::VADDPDYrr
:
9996 case X86::VADDPSYrr
:
9997 case X86::VADDPDZ128rr
:
9998 case X86::VADDPSZ128rr
:
9999 case X86::VADDPDZ256rr
:
10000 case X86::VADDPSZ256rr
:
10001 case X86::VADDPDZrr
:
10002 case X86::VADDPSZrr
:
10003 case X86::VADDSDrr
:
10004 case X86::VADDSSrr
:
10005 case X86::VADDSDZrr
:
10006 case X86::VADDSSZrr
:
10007 case X86::VMULPDrr
:
10008 case X86::VMULPSrr
:
10009 case X86::VMULPDYrr
:
10010 case X86::VMULPSYrr
:
10011 case X86::VMULPDZ128rr
:
10012 case X86::VMULPSZ128rr
:
10013 case X86::VMULPDZ256rr
:
10014 case X86::VMULPSZ256rr
:
10015 case X86::VMULPDZrr
:
10016 case X86::VMULPSZrr
:
10017 case X86::VMULSDrr
:
10018 case X86::VMULSSrr
:
10019 case X86::VMULSDZrr
:
10020 case X86::VMULSSZrr
:
10021 case X86::VADDPHZ128rr
:
10022 case X86::VADDPHZ256rr
:
10023 case X86::VADDPHZrr
:
10024 case X86::VADDSHZrr
:
10025 case X86::VMULPHZ128rr
:
10026 case X86::VMULPHZ256rr
:
10027 case X86::VMULPHZrr
:
10028 case X86::VMULSHZrr
:
10029 return Inst
.getFlag(MachineInstr::MIFlag::FmReassoc
) &&
10030 Inst
.getFlag(MachineInstr::MIFlag::FmNsz
);
10036 /// If \p DescribedReg overlaps with the MOVrr instruction's destination
10037 /// register then, if possible, describe the value in terms of the source
10039 static std::optional
<ParamLoadedValue
>
10040 describeMOVrrLoadedValue(const MachineInstr
&MI
, Register DescribedReg
,
10041 const TargetRegisterInfo
*TRI
) {
10042 Register DestReg
= MI
.getOperand(0).getReg();
10043 Register SrcReg
= MI
.getOperand(1).getReg();
10045 auto Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), {});
10047 // If the described register is the destination, just return the source.
10048 if (DestReg
== DescribedReg
)
10049 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg
, false), Expr
);
10051 // If the described register is a sub-register of the destination register,
10052 // then pick out the source register's corresponding sub-register.
10053 if (unsigned SubRegIdx
= TRI
->getSubRegIndex(DestReg
, DescribedReg
)) {
10054 Register SrcSubReg
= TRI
->getSubReg(SrcReg
, SubRegIdx
);
10055 return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg
, false), Expr
);
10058 // The remaining case to consider is when the described register is a
10059 // super-register of the destination register. MOV8rr and MOV16rr does not
10060 // write to any of the other bytes in the register, meaning that we'd have to
10061 // describe the value using a combination of the source register and the
10062 // non-overlapping bits in the described register, which is not currently
10064 if (MI
.getOpcode() == X86::MOV8rr
|| MI
.getOpcode() == X86::MOV16rr
||
10065 !TRI
->isSuperRegister(DestReg
, DescribedReg
))
10066 return std::nullopt
;
10068 assert(MI
.getOpcode() == X86::MOV32rr
&& "Unexpected super-register case");
10069 return ParamLoadedValue(MachineOperand::CreateReg(SrcReg
, false), Expr
);
10072 std::optional
<ParamLoadedValue
>
10073 X86InstrInfo::describeLoadedValue(const MachineInstr
&MI
, Register Reg
) const {
10074 const MachineOperand
*Op
= nullptr;
10075 DIExpression
*Expr
= nullptr;
10077 const TargetRegisterInfo
*TRI
= &getRegisterInfo();
10079 switch (MI
.getOpcode()) {
10082 case X86::LEA64_32r
: {
10083 // We may need to describe a 64-bit parameter with a 32-bit LEA.
10084 if (!TRI
->isSuperRegisterEq(MI
.getOperand(0).getReg(), Reg
))
10085 return std::nullopt
;
10087 // Operand 4 could be global address. For now we do not support
10089 if (!MI
.getOperand(4).isImm() || !MI
.getOperand(2).isImm())
10090 return std::nullopt
;
10092 const MachineOperand
&Op1
= MI
.getOperand(1);
10093 const MachineOperand
&Op2
= MI
.getOperand(3);
10094 assert(Op2
.isReg() &&
10095 (Op2
.getReg() == X86::NoRegister
|| Op2
.getReg().isPhysical()));
10097 // Omit situations like:
10098 // %rsi = lea %rsi, 4, ...
10099 if ((Op1
.isReg() && Op1
.getReg() == MI
.getOperand(0).getReg()) ||
10100 Op2
.getReg() == MI
.getOperand(0).getReg())
10101 return std::nullopt
;
10102 else if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
&&
10103 TRI
->regsOverlap(Op1
.getReg(), MI
.getOperand(0).getReg())) ||
10104 (Op2
.getReg() != X86::NoRegister
&&
10105 TRI
->regsOverlap(Op2
.getReg(), MI
.getOperand(0).getReg())))
10106 return std::nullopt
;
10108 int64_t Coef
= MI
.getOperand(2).getImm();
10109 int64_t Offset
= MI
.getOperand(4).getImm();
10110 SmallVector
<uint64_t, 8> Ops
;
10112 if ((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
)) {
10114 } else if (Op1
.isFI())
10117 if (Op
&& Op
->isReg() && Op
->getReg() == Op2
.getReg() && Coef
> 0) {
10118 Ops
.push_back(dwarf::DW_OP_constu
);
10119 Ops
.push_back(Coef
+ 1);
10120 Ops
.push_back(dwarf::DW_OP_mul
);
10122 if (Op
&& Op2
.getReg() != X86::NoRegister
) {
10123 int dwarfReg
= TRI
->getDwarfRegNum(Op2
.getReg(), false);
10125 return std::nullopt
;
10126 else if (dwarfReg
< 32) {
10127 Ops
.push_back(dwarf::DW_OP_breg0
+ dwarfReg
);
10130 Ops
.push_back(dwarf::DW_OP_bregx
);
10131 Ops
.push_back(dwarfReg
);
10135 assert(Op2
.getReg() != X86::NoRegister
);
10140 assert(Op2
.getReg() != X86::NoRegister
);
10141 Ops
.push_back(dwarf::DW_OP_constu
);
10142 Ops
.push_back(Coef
);
10143 Ops
.push_back(dwarf::DW_OP_mul
);
10146 if (((Op1
.isReg() && Op1
.getReg() != X86::NoRegister
) || Op1
.isFI()) &&
10147 Op2
.getReg() != X86::NoRegister
) {
10148 Ops
.push_back(dwarf::DW_OP_plus
);
10152 DIExpression::appendOffset(Ops
, Offset
);
10153 Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), Ops
);
10155 return ParamLoadedValue(*Op
, Expr
);
10159 // TODO: Handle MOV8ri and MOV16ri.
10160 return std::nullopt
;
10163 case X86::MOV64ri32
:
10164 // MOV32ri may be used for producing zero-extended 32-bit immediates in
10165 // 64-bit parameters, so we need to consider super-registers.
10166 if (!TRI
->isSuperRegisterEq(MI
.getOperand(0).getReg(), Reg
))
10167 return std::nullopt
;
10168 return ParamLoadedValue(MI
.getOperand(1), Expr
);
10173 return describeMOVrrLoadedValue(MI
, Reg
, TRI
);
10174 case X86::XOR32rr
: {
10175 // 64-bit parameters are zero-materialized using XOR32rr, so also consider
10176 // super-registers.
10177 if (!TRI
->isSuperRegisterEq(MI
.getOperand(0).getReg(), Reg
))
10178 return std::nullopt
;
10179 if (MI
.getOperand(1).getReg() == MI
.getOperand(2).getReg())
10180 return ParamLoadedValue(MachineOperand::CreateImm(0), Expr
);
10181 return std::nullopt
;
10183 case X86::MOVSX64rr32
: {
10184 // We may need to describe the lower 32 bits of the MOVSX; for example, in
10185 // cases like this:
10188 // $rdi = MOVSX64rr32 $ebx
10189 // $esi = MOV32rr $edi
10190 if (!TRI
->isSubRegisterEq(MI
.getOperand(0).getReg(), Reg
))
10191 return std::nullopt
;
10193 Expr
= DIExpression::get(MI
.getMF()->getFunction().getContext(), {});
10195 // If the described register is the destination register we need to
10196 // sign-extend the source register from 32 bits. The other case we handle
10197 // is when the described register is the 32-bit sub-register of the
10198 // destination register, in case we just need to return the source
10200 if (Reg
== MI
.getOperand(0).getReg())
10201 Expr
= DIExpression::appendExt(Expr
, 32, 64, true);
10203 assert(X86MCRegisterClasses
[X86::GR32RegClassID
].contains(Reg
) &&
10204 "Unhandled sub-register case for MOVSX64rr32");
10206 return ParamLoadedValue(MI
.getOperand(1), Expr
);
10209 assert(!MI
.isMoveImmediate() && "Unexpected MoveImm instruction");
10210 return TargetInstrInfo::describeLoadedValue(MI
, Reg
);
10214 /// This is an architecture-specific helper function of reassociateOps.
10215 /// Set special operand attributes for new instructions after reassociation.
10216 void X86InstrInfo::setSpecialOperandAttr(MachineInstr
&OldMI1
,
10217 MachineInstr
&OldMI2
,
10218 MachineInstr
&NewMI1
,
10219 MachineInstr
&NewMI2
) const {
10220 // Integer instructions may define an implicit EFLAGS dest register operand.
10221 MachineOperand
*OldFlagDef1
=
10222 OldMI1
.findRegisterDefOperand(X86::EFLAGS
, /*TRI=*/nullptr);
10223 MachineOperand
*OldFlagDef2
=
10224 OldMI2
.findRegisterDefOperand(X86::EFLAGS
, /*TRI=*/nullptr);
10226 assert(!OldFlagDef1
== !OldFlagDef2
&&
10227 "Unexpected instruction type for reassociation");
10229 if (!OldFlagDef1
|| !OldFlagDef2
)
10232 assert(OldFlagDef1
->isDead() && OldFlagDef2
->isDead() &&
10233 "Must have dead EFLAGS operand in reassociable instruction");
10235 MachineOperand
*NewFlagDef1
=
10236 NewMI1
.findRegisterDefOperand(X86::EFLAGS
, /*TRI=*/nullptr);
10237 MachineOperand
*NewFlagDef2
=
10238 NewMI2
.findRegisterDefOperand(X86::EFLAGS
, /*TRI=*/nullptr);
10240 assert(NewFlagDef1
&& NewFlagDef2
&&
10241 "Unexpected operand in reassociable instruction");
10243 // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations
10244 // of this pass or other passes. The EFLAGS operands must be dead in these new
10245 // instructions because the EFLAGS operands in the original instructions must
10246 // be dead in order for reassociation to occur.
10247 NewFlagDef1
->setIsDead();
10248 NewFlagDef2
->setIsDead();
10251 std::pair
<unsigned, unsigned>
10252 X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF
) const {
10253 return std::make_pair(TF
, 0u);
10256 ArrayRef
<std::pair
<unsigned, const char *>>
10257 X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
10258 using namespace X86II
;
10259 static const std::pair
<unsigned, const char *> TargetFlags
[] = {
10260 {MO_GOT_ABSOLUTE_ADDRESS
, "x86-got-absolute-address"},
10261 {MO_PIC_BASE_OFFSET
, "x86-pic-base-offset"},
10262 {MO_GOT
, "x86-got"},
10263 {MO_GOTOFF
, "x86-gotoff"},
10264 {MO_GOTPCREL
, "x86-gotpcrel"},
10265 {MO_GOTPCREL_NORELAX
, "x86-gotpcrel-norelax"},
10266 {MO_PLT
, "x86-plt"},
10267 {MO_TLSGD
, "x86-tlsgd"},
10268 {MO_TLSLD
, "x86-tlsld"},
10269 {MO_TLSLDM
, "x86-tlsldm"},
10270 {MO_GOTTPOFF
, "x86-gottpoff"},
10271 {MO_INDNTPOFF
, "x86-indntpoff"},
10272 {MO_TPOFF
, "x86-tpoff"},
10273 {MO_DTPOFF
, "x86-dtpoff"},
10274 {MO_NTPOFF
, "x86-ntpoff"},
10275 {MO_GOTNTPOFF
, "x86-gotntpoff"},
10276 {MO_DLLIMPORT
, "x86-dllimport"},
10277 {MO_DARWIN_NONLAZY
, "x86-darwin-nonlazy"},
10278 {MO_DARWIN_NONLAZY_PIC_BASE
, "x86-darwin-nonlazy-pic-base"},
10279 {MO_TLVP
, "x86-tlvp"},
10280 {MO_TLVP_PIC_BASE
, "x86-tlvp-pic-base"},
10281 {MO_SECREL
, "x86-secrel"},
10282 {MO_COFFSTUB
, "x86-coffstub"}};
10283 return ArrayRef(TargetFlags
);
10287 /// Create Global Base Reg pass. This initializes the PIC
10288 /// global base register for x86-32.
10289 struct CGBR
: public MachineFunctionPass
{
10291 CGBR() : MachineFunctionPass(ID
) {}
10293 bool runOnMachineFunction(MachineFunction
&MF
) override
{
10294 const X86TargetMachine
*TM
=
10295 static_cast<const X86TargetMachine
*>(&MF
.getTarget());
10296 const X86Subtarget
&STI
= MF
.getSubtarget
<X86Subtarget
>();
10298 // Only emit a global base reg in PIC mode.
10299 if (!TM
->isPositionIndependent())
10302 X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
10303 Register GlobalBaseReg
= X86FI
->getGlobalBaseReg();
10305 // If we didn't need a GlobalBaseReg, don't insert code.
10306 if (GlobalBaseReg
== 0)
10309 // Insert the set of GlobalBaseReg into the first MBB of the function
10310 MachineBasicBlock
&FirstMBB
= MF
.front();
10311 MachineBasicBlock::iterator MBBI
= FirstMBB
.begin();
10312 DebugLoc DL
= FirstMBB
.findDebugLoc(MBBI
);
10313 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
10314 const X86InstrInfo
*TII
= STI
.getInstrInfo();
10317 if (STI
.isPICStyleGOT())
10318 PC
= RegInfo
.createVirtualRegister(&X86::GR32RegClass
);
10320 PC
= GlobalBaseReg
;
10322 if (STI
.is64Bit()) {
10323 if (TM
->getCodeModel() == CodeModel::Large
) {
10324 // In the large code model, we are aiming for this code, though the
10325 // register allocation may vary:
10326 // leaq .LN$pb(%rip), %rax
10327 // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx
10329 // RAX now holds address of _GLOBAL_OFFSET_TABLE_.
10330 Register PBReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
10331 Register GOTReg
= RegInfo
.createVirtualRegister(&X86::GR64RegClass
);
10332 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PBReg
)
10336 .addSym(MF
.getPICBaseSymbol())
10338 std::prev(MBBI
)->setPreInstrSymbol(MF
, MF
.getPICBaseSymbol());
10339 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOV64ri
), GOTReg
)
10340 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10341 X86II::MO_PIC_BASE_OFFSET
);
10342 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD64rr
), PC
)
10343 .addReg(PBReg
, RegState::Kill
)
10344 .addReg(GOTReg
, RegState::Kill
);
10346 // In other code models, use a RIP-relative LEA to materialize the
10348 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::LEA64r
), PC
)
10352 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_")
10356 // Operand of MovePCtoStack is completely ignored by asm printer. It's
10357 // only used in JIT code emission as displacement to pc.
10358 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::MOVPC32r
), PC
).addImm(0);
10360 // If we're using vanilla 'GOT' PIC style, we should use relative
10361 // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
10362 if (STI
.isPICStyleGOT()) {
10363 // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel],
10365 BuildMI(FirstMBB
, MBBI
, DL
, TII
->get(X86::ADD32ri
), GlobalBaseReg
)
10367 .addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
10368 X86II::MO_GOT_ABSOLUTE_ADDRESS
);
10375 StringRef
getPassName() const override
{
10376 return "X86 PIC Global Base Reg Initialization";
10379 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
10380 AU
.setPreservesCFG();
10381 MachineFunctionPass::getAnalysisUsage(AU
);
10387 FunctionPass
*llvm::createX86GlobalBaseRegPass() { return new CGBR(); }
10390 struct LDTLSCleanup
: public MachineFunctionPass
{
10392 LDTLSCleanup() : MachineFunctionPass(ID
) {}
10394 bool runOnMachineFunction(MachineFunction
&MF
) override
{
10395 if (skipFunction(MF
.getFunction()))
10398 X86MachineFunctionInfo
*MFI
= MF
.getInfo
<X86MachineFunctionInfo
>();
10399 if (MFI
->getNumLocalDynamicTLSAccesses() < 2) {
10400 // No point folding accesses if there isn't at least two.
10404 MachineDominatorTree
*DT
=
10405 &getAnalysis
<MachineDominatorTreeWrapperPass
>().getDomTree();
10406 return VisitNode(DT
->getRootNode(), 0);
10409 // Visit the dominator subtree rooted at Node in pre-order.
10410 // If TLSBaseAddrReg is non-null, then use that to replace any
10411 // TLS_base_addr instructions. Otherwise, create the register
10412 // when the first such instruction is seen, and then use it
10413 // as we encounter more instructions.
10414 bool VisitNode(MachineDomTreeNode
*Node
, unsigned TLSBaseAddrReg
) {
10415 MachineBasicBlock
*BB
= Node
->getBlock();
10416 bool Changed
= false;
10418 // Traverse the current block.
10419 for (MachineBasicBlock::iterator I
= BB
->begin(), E
= BB
->end(); I
!= E
;
10421 switch (I
->getOpcode()) {
10422 case X86::TLS_base_addr32
:
10423 case X86::TLS_base_addr64
:
10424 if (TLSBaseAddrReg
)
10425 I
= ReplaceTLSBaseAddrCall(*I
, TLSBaseAddrReg
);
10427 I
= SetRegister(*I
, &TLSBaseAddrReg
);
10435 // Visit the children of this block in the dominator tree.
10436 for (auto &I
: *Node
) {
10437 Changed
|= VisitNode(I
, TLSBaseAddrReg
);
10443 // Replace the TLS_base_addr instruction I with a copy from
10444 // TLSBaseAddrReg, returning the new instruction.
10445 MachineInstr
*ReplaceTLSBaseAddrCall(MachineInstr
&I
,
10446 unsigned TLSBaseAddrReg
) {
10447 MachineFunction
*MF
= I
.getParent()->getParent();
10448 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
10449 const bool is64Bit
= STI
.is64Bit();
10450 const X86InstrInfo
*TII
= STI
.getInstrInfo();
10452 // Insert a Copy from TLSBaseAddrReg to RAX/EAX.
10453 MachineInstr
*Copy
=
10454 BuildMI(*I
.getParent(), I
, I
.getDebugLoc(),
10455 TII
->get(TargetOpcode::COPY
), is64Bit
? X86::RAX
: X86::EAX
)
10456 .addReg(TLSBaseAddrReg
);
10458 // Erase the TLS_base_addr instruction.
10459 I
.eraseFromParent();
10464 // Create a virtual register in *TLSBaseAddrReg, and populate it by
10465 // inserting a copy instruction after I. Returns the new instruction.
10466 MachineInstr
*SetRegister(MachineInstr
&I
, unsigned *TLSBaseAddrReg
) {
10467 MachineFunction
*MF
= I
.getParent()->getParent();
10468 const X86Subtarget
&STI
= MF
->getSubtarget
<X86Subtarget
>();
10469 const bool is64Bit
= STI
.is64Bit();
10470 const X86InstrInfo
*TII
= STI
.getInstrInfo();
10472 // Create a virtual register for the TLS base address.
10473 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
10474 *TLSBaseAddrReg
= RegInfo
.createVirtualRegister(
10475 is64Bit
? &X86::GR64RegClass
: &X86::GR32RegClass
);
10477 // Insert a copy from RAX/EAX to TLSBaseAddrReg.
10478 MachineInstr
*Next
= I
.getNextNode();
10479 MachineInstr
*Copy
= BuildMI(*I
.getParent(), Next
, I
.getDebugLoc(),
10480 TII
->get(TargetOpcode::COPY
), *TLSBaseAddrReg
)
10481 .addReg(is64Bit
? X86::RAX
: X86::EAX
);
10486 StringRef
getPassName() const override
{
10487 return "Local Dynamic TLS Access Clean-up";
10490 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
10491 AU
.setPreservesCFG();
10492 AU
.addRequired
<MachineDominatorTreeWrapperPass
>();
10493 MachineFunctionPass::getAnalysisUsage(AU
);
10498 char LDTLSCleanup::ID
= 0;
10499 FunctionPass
*llvm::createCleanupLocalDynamicTLSPass() {
10500 return new LDTLSCleanup();
10503 /// Constants defining how certain sequences should be outlined.
10505 /// \p MachineOutlinerDefault implies that the function is called with a call
10506 /// instruction, and a return must be emitted for the outlined function frame.
10510 /// I1 OUTLINED_FUNCTION:
10511 /// I2 --> call OUTLINED_FUNCTION I1
10516 /// * Call construction overhead: 1 (call instruction)
10517 /// * Frame construction overhead: 1 (return instruction)
10519 /// \p MachineOutlinerTailCall implies that the function is being tail called.
10520 /// A jump is emitted instead of a call, and the return is already present in
10521 /// the outlined sequence. That is,
10523 /// I1 OUTLINED_FUNCTION:
10524 /// I2 --> jmp OUTLINED_FUNCTION I1
10528 /// * Call construction overhead: 1 (jump instruction)
10529 /// * Frame construction overhead: 0 (don't need to return)
10531 enum MachineOutlinerClass
{ MachineOutlinerDefault
, MachineOutlinerTailCall
};
10533 std::optional
<std::unique_ptr
<outliner::OutlinedFunction
>>
10534 X86InstrInfo::getOutliningCandidateInfo(
10535 const MachineModuleInfo
&MMI
,
10536 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
,
10537 unsigned MinRepeats
) const {
10538 unsigned SequenceSize
= 0;
10539 for (auto &MI
: RepeatedSequenceLocs
[0]) {
10540 // FIXME: x86 doesn't implement getInstSizeInBytes, so
10541 // we can't tell the cost. Just assume each instruction
10543 if (MI
.isDebugInstr() || MI
.isKill())
10548 // We check to see if CFI Instructions are present, and if they are
10549 // we find the number of CFI Instructions in the candidates.
10550 unsigned CFICount
= 0;
10551 for (auto &I
: RepeatedSequenceLocs
[0]) {
10552 if (I
.isCFIInstruction())
10556 // We compare the number of found CFI Instructions to the number of CFI
10557 // instructions in the parent function for each candidate. We must check this
10558 // since if we outline one of the CFI instructions in a function, we have to
10559 // outline them all for correctness. If we do not, the address offsets will be
10560 // incorrect between the two sections of the program.
10561 for (outliner::Candidate
&C
: RepeatedSequenceLocs
) {
10562 std::vector
<MCCFIInstruction
> CFIInstructions
=
10563 C
.getMF()->getFrameInstructions();
10565 if (CFICount
> 0 && CFICount
!= CFIInstructions
.size())
10566 return std::nullopt
;
10569 // FIXME: Use real size in bytes for call and ret instructions.
10570 if (RepeatedSequenceLocs
[0].back().isTerminator()) {
10571 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
10572 C
.setCallInfo(MachineOutlinerTailCall
, 1);
10574 return std::make_unique
<outliner::OutlinedFunction
>(
10575 RepeatedSequenceLocs
, SequenceSize
,
10576 0, // Number of bytes to emit frame.
10577 MachineOutlinerTailCall
// Type of frame.
10582 return std::nullopt
;
10584 for (outliner::Candidate
&C
: RepeatedSequenceLocs
)
10585 C
.setCallInfo(MachineOutlinerDefault
, 1);
10587 return std::make_unique
<outliner::OutlinedFunction
>(
10588 RepeatedSequenceLocs
, SequenceSize
, 1, MachineOutlinerDefault
);
10591 bool X86InstrInfo::isFunctionSafeToOutlineFrom(
10592 MachineFunction
&MF
, bool OutlineFromLinkOnceODRs
) const {
10593 const Function
&F
= MF
.getFunction();
10595 // Does the function use a red zone? If it does, then we can't risk messing
10597 if (Subtarget
.getFrameLowering()->has128ByteRedZone(MF
)) {
10598 // It could have a red zone. If it does, then we don't want to touch it.
10599 const X86MachineFunctionInfo
*X86FI
= MF
.getInfo
<X86MachineFunctionInfo
>();
10600 if (!X86FI
|| X86FI
->getUsesRedZone())
10604 // If we *don't* want to outline from things that could potentially be deduped
10605 // then return false.
10606 if (!OutlineFromLinkOnceODRs
&& F
.hasLinkOnceODRLinkage())
10609 // This function is viable for outlining, so return true.
10613 outliner::InstrType
10614 X86InstrInfo::getOutliningTypeImpl(const MachineModuleInfo
&MMI
,
10615 MachineBasicBlock::iterator
&MIT
,
10616 unsigned Flags
) const {
10617 MachineInstr
&MI
= *MIT
;
10619 // Is this a terminator for a basic block?
10620 if (MI
.isTerminator())
10621 // TargetInstrInfo::getOutliningType has already filtered out anything
10622 // that would break this, so we can allow it here.
10623 return outliner::InstrType::Legal
;
10625 // Don't outline anything that modifies or reads from the stack pointer.
10627 // FIXME: There are instructions which are being manually built without
10628 // explicit uses/defs so we also have to check the MCInstrDesc. We should be
10629 // able to remove the extra checks once those are fixed up. For example,
10630 // sometimes we might get something like %rax = POP64r 1. This won't be
10631 // caught by modifiesRegister or readsRegister even though the instruction
10632 // really ought to be formed so that modifiesRegister/readsRegister would
10634 if (MI
.modifiesRegister(X86::RSP
, &RI
) || MI
.readsRegister(X86::RSP
, &RI
) ||
10635 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RSP
) ||
10636 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RSP
))
10637 return outliner::InstrType::Illegal
;
10639 // Outlined calls change the instruction pointer, so don't read from it.
10640 if (MI
.readsRegister(X86::RIP
, &RI
) ||
10641 MI
.getDesc().hasImplicitUseOfPhysReg(X86::RIP
) ||
10642 MI
.getDesc().hasImplicitDefOfPhysReg(X86::RIP
))
10643 return outliner::InstrType::Illegal
;
10645 // Don't outline CFI instructions.
10646 if (MI
.isCFIInstruction())
10647 return outliner::InstrType::Illegal
;
10649 return outliner::InstrType::Legal
;
10652 void X86InstrInfo::buildOutlinedFrame(
10653 MachineBasicBlock
&MBB
, MachineFunction
&MF
,
10654 const outliner::OutlinedFunction
&OF
) const {
10655 // If we're a tail call, we already have a return, so don't do anything.
10656 if (OF
.FrameConstructionID
== MachineOutlinerTailCall
)
10659 // We're a normal call, so our sequence doesn't have a return instruction.
10661 MachineInstr
*retq
= BuildMI(MF
, DebugLoc(), get(X86::RET64
));
10662 MBB
.insert(MBB
.end(), retq
);
10665 MachineBasicBlock::iterator
X86InstrInfo::insertOutlinedCall(
10666 Module
&M
, MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&It
,
10667 MachineFunction
&MF
, outliner::Candidate
&C
) const {
10668 // Is it a tail call?
10669 if (C
.CallConstructionID
== MachineOutlinerTailCall
) {
10670 // Yes, just insert a JMP.
10671 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(X86::TAILJMPd64
))
10672 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
10674 // No, insert a call.
10675 It
= MBB
.insert(It
, BuildMI(MF
, DebugLoc(), get(X86::CALL64pcrel32
))
10676 .addGlobalAddress(M
.getNamedValue(MF
.getName())));
10682 void X86InstrInfo::buildClearRegister(Register Reg
, MachineBasicBlock
&MBB
,
10683 MachineBasicBlock::iterator Iter
,
10685 bool AllowSideEffects
) const {
10686 const MachineFunction
&MF
= *MBB
.getParent();
10687 const X86Subtarget
&ST
= MF
.getSubtarget
<X86Subtarget
>();
10688 const TargetRegisterInfo
&TRI
= getRegisterInfo();
10690 if (ST
.hasMMX() && X86::VR64RegClass
.contains(Reg
))
10691 // FIXME: Should we ignore MMX registers?
10694 if (TRI
.isGeneralPurposeRegister(MF
, Reg
)) {
10695 // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the
10696 // upper bits of a 64-bit register automagically.
10697 Reg
= getX86SubSuperRegister(Reg
, 32);
10699 if (!AllowSideEffects
)
10700 // XOR affects flags, so use a MOV instead.
10701 BuildMI(MBB
, Iter
, DL
, get(X86::MOV32ri
), Reg
).addImm(0);
10703 BuildMI(MBB
, Iter
, DL
, get(X86::XOR32rr
), Reg
)
10704 .addReg(Reg
, RegState::Undef
)
10705 .addReg(Reg
, RegState::Undef
);
10706 } else if (X86::VR128RegClass
.contains(Reg
)) {
10711 // PXOR is safe to use because it doesn't affect flags.
10712 BuildMI(MBB
, Iter
, DL
, get(X86::PXORrr
), Reg
)
10713 .addReg(Reg
, RegState::Undef
)
10714 .addReg(Reg
, RegState::Undef
);
10715 } else if (X86::VR256RegClass
.contains(Reg
)) {
10720 // VPXOR is safe to use because it doesn't affect flags.
10721 BuildMI(MBB
, Iter
, DL
, get(X86::VPXORrr
), Reg
)
10722 .addReg(Reg
, RegState::Undef
)
10723 .addReg(Reg
, RegState::Undef
);
10724 } else if (X86::VR512RegClass
.contains(Reg
)) {
10726 if (!ST
.hasAVX512())
10729 // VPXORY is safe to use because it doesn't affect flags.
10730 BuildMI(MBB
, Iter
, DL
, get(X86::VPXORYrr
), Reg
)
10731 .addReg(Reg
, RegState::Undef
)
10732 .addReg(Reg
, RegState::Undef
);
10733 } else if (X86::VK1RegClass
.contains(Reg
) || X86::VK2RegClass
.contains(Reg
) ||
10734 X86::VK4RegClass
.contains(Reg
) || X86::VK8RegClass
.contains(Reg
) ||
10735 X86::VK16RegClass
.contains(Reg
)) {
10739 // KXOR is safe to use because it doesn't affect flags.
10740 unsigned Op
= ST
.hasBWI() ? X86::KXORQkk
: X86::KXORWkk
;
10741 BuildMI(MBB
, Iter
, DL
, get(Op
), Reg
)
10742 .addReg(Reg
, RegState::Undef
)
10743 .addReg(Reg
, RegState::Undef
);
10747 bool X86InstrInfo::getMachineCombinerPatterns(
10748 MachineInstr
&Root
, SmallVectorImpl
<unsigned> &Patterns
,
10749 bool DoRegPressureReduce
) const {
10750 unsigned Opc
= Root
.getOpcode();
10752 case X86::VPDPWSSDrr
:
10753 case X86::VPDPWSSDrm
:
10754 case X86::VPDPWSSDYrr
:
10755 case X86::VPDPWSSDYrm
: {
10756 if (!Subtarget
.hasFastDPWSSD()) {
10757 Patterns
.push_back(X86MachineCombinerPattern::DPWSSD
);
10762 case X86::VPDPWSSDZ128r
:
10763 case X86::VPDPWSSDZ128m
:
10764 case X86::VPDPWSSDZ256r
:
10765 case X86::VPDPWSSDZ256m
:
10766 case X86::VPDPWSSDZr
:
10767 case X86::VPDPWSSDZm
: {
10768 if (Subtarget
.hasBWI() && !Subtarget
.hasFastDPWSSD()) {
10769 Patterns
.push_back(X86MachineCombinerPattern::DPWSSD
);
10775 return TargetInstrInfo::getMachineCombinerPatterns(Root
,
10776 Patterns
, DoRegPressureReduce
);
10780 genAlternativeDpCodeSequence(MachineInstr
&Root
, const TargetInstrInfo
&TII
,
10781 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
10782 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
10783 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) {
10784 MachineFunction
*MF
= Root
.getMF();
10785 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
10787 unsigned Opc
= Root
.getOpcode();
10788 unsigned AddOpc
= 0;
10789 unsigned MaddOpc
= 0;
10792 assert(false && "It should not reach here");
10794 // vpdpwssd xmm2,xmm3,xmm1
10796 // vpmaddwd xmm3,xmm3,xmm1
10797 // vpaddd xmm2,xmm2,xmm3
10798 case X86::VPDPWSSDrr
:
10799 MaddOpc
= X86::VPMADDWDrr
;
10800 AddOpc
= X86::VPADDDrr
;
10802 case X86::VPDPWSSDrm
:
10803 MaddOpc
= X86::VPMADDWDrm
;
10804 AddOpc
= X86::VPADDDrr
;
10806 case X86::VPDPWSSDZ128r
:
10807 MaddOpc
= X86::VPMADDWDZ128rr
;
10808 AddOpc
= X86::VPADDDZ128rr
;
10810 case X86::VPDPWSSDZ128m
:
10811 MaddOpc
= X86::VPMADDWDZ128rm
;
10812 AddOpc
= X86::VPADDDZ128rr
;
10814 // vpdpwssd ymm2,ymm3,ymm1
10816 // vpmaddwd ymm3,ymm3,ymm1
10817 // vpaddd ymm2,ymm2,ymm3
10818 case X86::VPDPWSSDYrr
:
10819 MaddOpc
= X86::VPMADDWDYrr
;
10820 AddOpc
= X86::VPADDDYrr
;
10822 case X86::VPDPWSSDYrm
:
10823 MaddOpc
= X86::VPMADDWDYrm
;
10824 AddOpc
= X86::VPADDDYrr
;
10826 case X86::VPDPWSSDZ256r
:
10827 MaddOpc
= X86::VPMADDWDZ256rr
;
10828 AddOpc
= X86::VPADDDZ256rr
;
10830 case X86::VPDPWSSDZ256m
:
10831 MaddOpc
= X86::VPMADDWDZ256rm
;
10832 AddOpc
= X86::VPADDDZ256rr
;
10834 // vpdpwssd zmm2,zmm3,zmm1
10836 // vpmaddwd zmm3,zmm3,zmm1
10837 // vpaddd zmm2,zmm2,zmm3
10838 case X86::VPDPWSSDZr
:
10839 MaddOpc
= X86::VPMADDWDZrr
;
10840 AddOpc
= X86::VPADDDZrr
;
10842 case X86::VPDPWSSDZm
:
10843 MaddOpc
= X86::VPMADDWDZrm
;
10844 AddOpc
= X86::VPADDDZrr
;
10847 // Create vpmaddwd.
10848 const TargetRegisterClass
*RC
=
10849 RegInfo
.getRegClass(Root
.getOperand(0).getReg());
10850 Register NewReg
= RegInfo
.createVirtualRegister(RC
);
10851 MachineInstr
*Madd
= Root
.getMF()->CloneMachineInstr(&Root
);
10852 Madd
->setDesc(TII
.get(MaddOpc
));
10853 Madd
->untieRegOperand(1);
10854 Madd
->removeOperand(1);
10855 Madd
->getOperand(0).setReg(NewReg
);
10856 InstrIdxForVirtReg
.insert(std::make_pair(NewReg
, 0));
10858 Register DstReg
= Root
.getOperand(0).getReg();
10859 bool IsKill
= Root
.getOperand(1).isKill();
10860 MachineInstr
*Add
=
10861 BuildMI(*MF
, MIMetadata(Root
), TII
.get(AddOpc
), DstReg
)
10862 .addReg(Root
.getOperand(1).getReg(), getKillRegState(IsKill
))
10863 .addReg(Madd
->getOperand(0).getReg(), getKillRegState(true));
10864 InsInstrs
.push_back(Madd
);
10865 InsInstrs
.push_back(Add
);
10866 DelInstrs
.push_back(&Root
);
10869 void X86InstrInfo::genAlternativeCodeSequence(
10870 MachineInstr
&Root
, unsigned Pattern
,
10871 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
10872 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
10873 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const {
10876 // Reassociate instructions.
10877 TargetInstrInfo::genAlternativeCodeSequence(Root
, Pattern
, InsInstrs
,
10878 DelInstrs
, InstrIdxForVirtReg
);
10880 case X86MachineCombinerPattern::DPWSSD
:
10881 genAlternativeDpCodeSequence(Root
, *this, InsInstrs
, DelInstrs
,
10882 InstrIdxForVirtReg
);
10887 // See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand().
10888 void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl
<MachineOperand
> &Ops
,
10891 M
.BaseType
= X86AddressMode::FrameIndexBase
;
10892 M
.Base
.FrameIndex
= FI
;
10893 M
.getFullAddress(Ops
);
10896 #define GET_INSTRINFO_HELPERS
10897 #include "X86GenInstrInfo.inc"