AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / X86 / X86LoadValueInjectionLoadHardening.cpp
blob31a93f9c2a6ef62115c7e8ce51b313097b8f46fe
1 //==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// Description: This pass finds Load Value Injection (LVI) gadgets consisting
10 /// of a load from memory (i.e., SOURCE), and any operation that may transmit
11 /// the value loaded from memory over a covert channel, or use the value loaded
12 /// from memory to determine a branch/call target (i.e., SINK). After finding
13 /// all such gadgets in a given function, the pass minimally inserts LFENCE
14 /// instructions in such a manner that the following property is satisfied: for
15 /// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
16 /// least one LFENCE instruction. The algorithm that implements this minimal
17 /// insertion is influenced by an academic paper that minimally inserts memory
18 /// fences for high-performance concurrent programs:
19 /// http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
20 /// The algorithm implemented in this pass is as follows:
21 /// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
22 /// following components:
23 /// - SOURCE instructions (also includes function arguments)
24 /// - SINK instructions
25 /// - Basic block entry points
26 /// - Basic block terminators
27 /// - LFENCE instructions
28 /// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
29 /// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
30 /// mitigated, go to step 6.
31 /// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
32 /// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
33 /// 5. Go to step 2.
34 /// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
35 /// to tell LLVM that the function was modified.
36 ///
37 //===----------------------------------------------------------------------===//
39 #include "ImmutableGraph.h"
40 #include "X86.h"
41 #include "X86Subtarget.h"
42 #include "X86TargetMachine.h"
43 #include "llvm/ADT/DenseMap.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SmallSet.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/StringRef.h"
48 #include "llvm/CodeGen/MachineBasicBlock.h"
49 #include "llvm/CodeGen/MachineDominanceFrontier.h"
50 #include "llvm/CodeGen/MachineDominators.h"
51 #include "llvm/CodeGen/MachineFunction.h"
52 #include "llvm/CodeGen/MachineFunctionPass.h"
53 #include "llvm/CodeGen/MachineInstr.h"
54 #include "llvm/CodeGen/MachineInstrBuilder.h"
55 #include "llvm/CodeGen/MachineLoopInfo.h"
56 #include "llvm/CodeGen/RDFGraph.h"
57 #include "llvm/CodeGen/RDFLiveness.h"
58 #include "llvm/InitializePasses.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/DOTGraphTraits.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/DynamicLibrary.h"
63 #include "llvm/Support/GraphWriter.h"
64 #include "llvm/Support/raw_ostream.h"
66 using namespace llvm;
68 #define PASS_KEY "x86-lvi-load"
69 #define DEBUG_TYPE PASS_KEY
71 STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
72 STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
73 STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
74 "were deployed");
75 STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
77 static cl::opt<std::string> OptimizePluginPath(
78 PASS_KEY "-opt-plugin",
79 cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
81 static cl::opt<bool> NoConditionalBranches(
82 PASS_KEY "-no-cbranch",
83 cl::desc("Don't treat conditional branches as disclosure gadgets. This "
84 "may improve performance, at the cost of security."),
85 cl::init(false), cl::Hidden);
87 static cl::opt<bool> EmitDot(
88 PASS_KEY "-dot",
89 cl::desc(
90 "For each function, emit a dot graph depicting potential LVI gadgets"),
91 cl::init(false), cl::Hidden);
93 static cl::opt<bool> EmitDotOnly(
94 PASS_KEY "-dot-only",
95 cl::desc("For each function, emit a dot graph depicting potential LVI "
96 "gadgets, and do not insert any fences"),
97 cl::init(false), cl::Hidden);
99 static cl::opt<bool> EmitDotVerify(
100 PASS_KEY "-dot-verify",
101 cl::desc("For each function, emit a dot graph to stdout depicting "
102 "potential LVI gadgets, used for testing purposes only"),
103 cl::init(false), cl::Hidden);
105 static llvm::sys::DynamicLibrary OptimizeDL;
106 typedef int (*OptimizeCutT)(unsigned int *Nodes, unsigned int NodesSize,
107 unsigned int *Edges, int *EdgeValues,
108 int *CutEdges /* out */, unsigned int EdgesSize);
109 static OptimizeCutT OptimizeCut = nullptr;
111 namespace {
113 struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
114 static constexpr int GadgetEdgeSentinel = -1;
115 static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
117 using GraphT = ImmutableGraph<MachineInstr *, int>;
118 using Node = typename GraphT::Node;
119 using Edge = typename GraphT::Edge;
120 using size_type = typename GraphT::size_type;
121 MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
122 std::unique_ptr<Edge[]> Edges, size_type NodesSize,
123 size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
124 : GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
125 NumFences(NumFences), NumGadgets(NumGadgets) {}
126 static inline bool isCFGEdge(const Edge &E) {
127 return E.getValue() != GadgetEdgeSentinel;
129 static inline bool isGadgetEdge(const Edge &E) {
130 return E.getValue() == GadgetEdgeSentinel;
132 int NumFences;
133 int NumGadgets;
136 class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
137 public:
138 X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
140 StringRef getPassName() const override {
141 return "X86 Load Value Injection (LVI) Load Hardening";
143 void getAnalysisUsage(AnalysisUsage &AU) const override;
144 bool runOnMachineFunction(MachineFunction &MF) override;
146 static char ID;
148 private:
149 using GraphBuilder = ImmutableGraphBuilder<MachineGadgetGraph>;
150 using Edge = MachineGadgetGraph::Edge;
151 using Node = MachineGadgetGraph::Node;
152 using EdgeSet = MachineGadgetGraph::EdgeSet;
153 using NodeSet = MachineGadgetGraph::NodeSet;
155 const X86Subtarget *STI = nullptr;
156 const TargetInstrInfo *TII = nullptr;
157 const TargetRegisterInfo *TRI = nullptr;
159 std::unique_ptr<MachineGadgetGraph>
160 getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
161 const MachineDominatorTree &MDT,
162 const MachineDominanceFrontier &MDF) const;
163 int hardenLoadsWithPlugin(MachineFunction &MF,
164 std::unique_ptr<MachineGadgetGraph> Graph) const;
165 int hardenLoadsWithHeuristic(MachineFunction &MF,
166 std::unique_ptr<MachineGadgetGraph> Graph) const;
167 int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
168 EdgeSet &ElimEdges /* in, out */,
169 NodeSet &ElimNodes /* in, out */) const;
170 std::unique_ptr<MachineGadgetGraph>
171 trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
172 int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
173 EdgeSet &CutEdges /* in, out */) const;
174 bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
175 bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
176 inline bool isFence(const MachineInstr *MI) const {
177 return MI && (MI->getOpcode() == X86::LFENCE ||
178 (STI->useLVIControlFlowIntegrity() && MI->isCall()));
182 } // end anonymous namespace
184 namespace llvm {
186 template <>
187 struct GraphTraits<MachineGadgetGraph *>
188 : GraphTraits<ImmutableGraph<MachineInstr *, int> *> {};
190 template <>
191 struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
192 using GraphType = MachineGadgetGraph;
193 using Traits = llvm::GraphTraits<GraphType *>;
194 using NodeRef = typename Traits::NodeRef;
195 using EdgeRef = typename Traits::EdgeRef;
196 using ChildIteratorType = typename Traits::ChildIteratorType;
197 using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
199 DOTGraphTraits(bool IsSimple = false) : DefaultDOTGraphTraits(IsSimple) {}
201 std::string getNodeLabel(NodeRef Node, GraphType *) {
202 if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
203 return "ARGS";
205 std::string Str;
206 raw_string_ostream OS(Str);
207 OS << *Node->getValue();
208 return OS.str();
211 static std::string getNodeAttributes(NodeRef Node, GraphType *) {
212 MachineInstr *MI = Node->getValue();
213 if (MI == MachineGadgetGraph::ArgNodeSentinel)
214 return "color = blue";
215 if (MI->getOpcode() == X86::LFENCE)
216 return "color = green";
217 return "";
220 static std::string getEdgeAttributes(NodeRef, ChildIteratorType E,
221 GraphType *) {
222 int EdgeVal = (*E.getCurrent()).getValue();
223 return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
224 : "color = red, style = \"dashed\"";
228 } // end namespace llvm
230 constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
231 constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
233 char X86LoadValueInjectionLoadHardeningPass::ID = 0;
235 void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
236 AnalysisUsage &AU) const {
237 MachineFunctionPass::getAnalysisUsage(AU);
238 AU.addRequired<MachineLoopInfoWrapperPass>();
239 AU.addRequired<MachineDominatorTreeWrapperPass>();
240 AU.addRequired<MachineDominanceFrontier>();
241 AU.setPreservesCFG();
244 static void writeGadgetGraph(raw_ostream &OS, MachineFunction &MF,
245 MachineGadgetGraph *G) {
246 WriteGraph(OS, G, /*ShortNames*/ false,
247 "Speculative gadgets for \"" + MF.getName() + "\" function");
250 bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
251 MachineFunction &MF) {
252 LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
253 << " *****\n");
254 STI = &MF.getSubtarget<X86Subtarget>();
255 if (!STI->useLVILoadHardening())
256 return false;
258 // FIXME: support 32-bit
259 if (!STI->is64Bit())
260 report_fatal_error("LVI load hardening is only supported on 64-bit", false);
262 // Don't skip functions with the "optnone" attr but participate in opt-bisect.
263 const Function &F = MF.getFunction();
264 if (!F.hasOptNone() && skipFunction(F))
265 return false;
267 ++NumFunctionsConsidered;
268 TII = STI->getInstrInfo();
269 TRI = STI->getRegisterInfo();
270 LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
271 const auto &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI();
272 const auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
273 const auto &MDF = getAnalysis<MachineDominanceFrontier>();
274 std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
275 LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
276 if (Graph == nullptr)
277 return false; // didn't find any gadgets
279 if (EmitDotVerify) {
280 writeGadgetGraph(outs(), MF, Graph.get());
281 return false;
284 if (EmitDot || EmitDotOnly) {
285 LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
286 std::error_code FileError;
287 std::string FileName = "lvi.";
288 FileName += MF.getName();
289 FileName += ".dot";
290 raw_fd_ostream FileOut(FileName, FileError);
291 if (FileError)
292 errs() << FileError.message();
293 writeGadgetGraph(FileOut, MF, Graph.get());
294 FileOut.close();
295 LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
296 if (EmitDotOnly)
297 return false;
300 int FencesInserted;
301 if (!OptimizePluginPath.empty()) {
302 if (!OptimizeDL.isValid()) {
303 std::string ErrorMsg;
304 OptimizeDL = llvm::sys::DynamicLibrary::getPermanentLibrary(
305 OptimizePluginPath.c_str(), &ErrorMsg);
306 if (!ErrorMsg.empty())
307 report_fatal_error(Twine("Failed to load opt plugin: \"") + ErrorMsg +
308 "\"");
309 OptimizeCut = (OptimizeCutT)OptimizeDL.getAddressOfSymbol("optimize_cut");
310 if (!OptimizeCut)
311 report_fatal_error("Invalid optimization plugin");
313 FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
314 } else { // Use the default greedy heuristic
315 FencesInserted = hardenLoadsWithHeuristic(MF, std::move(Graph));
318 if (FencesInserted > 0)
319 ++NumFunctionsMitigated;
320 NumFences += FencesInserted;
321 return (FencesInserted > 0);
324 std::unique_ptr<MachineGadgetGraph>
325 X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
326 MachineFunction &MF, const MachineLoopInfo &MLI,
327 const MachineDominatorTree &MDT,
328 const MachineDominanceFrontier &MDF) const {
329 using namespace rdf;
331 // Build the Register Dataflow Graph using the RDF framework
332 DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF};
333 DFG.build();
334 Liveness L{MF.getRegInfo(), DFG};
335 L.computePhiInfo();
337 GraphBuilder Builder;
338 using GraphIter = typename GraphBuilder::BuilderNodeRef;
339 DenseMap<MachineInstr *, GraphIter> NodeMap;
340 int FenceCount = 0, GadgetCount = 0;
341 auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
342 auto Ref = NodeMap.find(MI);
343 if (Ref == NodeMap.end()) {
344 auto I = Builder.addVertex(MI);
345 NodeMap[MI] = I;
346 return std::pair<GraphIter, bool>{I, true};
348 return std::pair<GraphIter, bool>{Ref->getSecond(), false};
351 // The `Transmitters` map memoizes transmitters found for each def. If a def
352 // has not yet been analyzed, then it will not appear in the map. If a def
353 // has been analyzed and was determined not to have any transmitters, then
354 // its list of transmitters will be empty.
355 DenseMap<NodeId, std::vector<NodeId>> Transmitters;
357 // Analyze all machine instructions to find gadgets and LFENCEs, adding
358 // each interesting value to `Nodes`
359 auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
360 SmallSet<NodeId, 8> UsesVisited, DefsVisited;
361 std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
362 [&](NodeAddr<DefNode *> Def) {
363 if (Transmitters.contains(Def.Id))
364 return; // Already analyzed `Def`
366 // Use RDF to find all the uses of `Def`
367 rdf::NodeSet Uses;
368 RegisterRef DefReg = Def.Addr->getRegRef(DFG);
369 for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
370 auto Use = DFG.addr<UseNode *>(UseID);
371 if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
372 NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
373 for (const auto& I : L.getRealUses(Phi.Id)) {
374 if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
375 for (const auto &UA : I.second)
376 Uses.emplace(UA.first);
379 } else { // not a phi node
380 Uses.emplace(UseID);
384 // For each use of `Def`, we want to know whether:
385 // (1) The use can leak the Def'ed value,
386 // (2) The use can further propagate the Def'ed value to more defs
387 for (auto UseID : Uses) {
388 if (!UsesVisited.insert(UseID).second)
389 continue; // Already visited this use of `Def`
391 auto Use = DFG.addr<UseNode *>(UseID);
392 assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
393 MachineOperand &UseMO = Use.Addr->getOp();
394 MachineInstr &UseMI = *UseMO.getParent();
395 assert(UseMO.isReg());
397 // We naively assume that an instruction propagates any loaded
398 // uses to all defs unless the instruction is a call, in which
399 // case all arguments will be treated as gadget sources during
400 // analysis of the callee function.
401 if (UseMI.isCall())
402 continue;
404 // Check whether this use can transmit (leak) its value.
405 if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
406 (!NoConditionalBranches &&
407 instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
408 Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
409 if (UseMI.mayLoad())
410 continue; // Found a transmitting load -- no need to continue
411 // traversing its defs (i.e., this load will become
412 // a new gadget source anyways).
415 // Check whether the use propagates to more defs.
416 NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
417 rdf::NodeList AnalyzedChildDefs;
418 for (const auto &ChildDef :
419 Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
420 if (!DefsVisited.insert(ChildDef.Id).second)
421 continue; // Already visited this def
422 if (Def.Addr->getAttrs() & NodeAttrs::Dead)
423 continue;
424 if (Def.Id == ChildDef.Id)
425 continue; // `Def` uses itself (e.g., increment loop counter)
427 AnalyzeDefUseChain(ChildDef);
429 // `Def` inherits all of its child defs' transmitters.
430 for (auto TransmitterId : Transmitters[ChildDef.Id])
431 Transmitters[Def.Id].push_back(TransmitterId);
435 // Note that this statement adds `Def.Id` to the map if no
436 // transmitters were found for `Def`.
437 auto &DefTransmitters = Transmitters[Def.Id];
439 // Remove duplicate transmitters
440 llvm::sort(DefTransmitters);
441 DefTransmitters.erase(llvm::unique(DefTransmitters),
442 DefTransmitters.end());
445 // Find all of the transmitters
446 AnalyzeDefUseChain(SourceDef);
447 auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
448 if (SourceDefTransmitters.empty())
449 return; // No transmitters for `SourceDef`
451 MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
452 ? MachineGadgetGraph::ArgNodeSentinel
453 : SourceDef.Addr->getOp().getParent();
454 auto GadgetSource = MaybeAddNode(Source);
455 // Each transmitter is a sink for `SourceDef`.
456 for (auto TransmitterId : SourceDefTransmitters) {
457 MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
458 auto GadgetSink = MaybeAddNode(Sink);
459 // Add the gadget edge to the graph.
460 Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
461 GadgetSource.first, GadgetSink.first);
462 ++GadgetCount;
466 LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
467 // Analyze function arguments
468 NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
469 for (NodeAddr<PhiNode *> ArgPhi :
470 EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
471 NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
472 llvm::for_each(Defs, AnalyzeDef);
474 // Analyze every instruction in MF
475 for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
476 for (NodeAddr<StmtNode *> SA :
477 BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
478 MachineInstr *MI = SA.Addr->getCode();
479 if (isFence(MI)) {
480 MaybeAddNode(MI);
481 ++FenceCount;
482 } else if (MI->mayLoad()) {
483 NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
484 llvm::for_each(Defs, AnalyzeDef);
488 LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
489 LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
490 if (GadgetCount == 0)
491 return nullptr;
492 NumGadgets += GadgetCount;
494 // Traverse CFG to build the rest of the graph
495 SmallSet<MachineBasicBlock *, 8> BlocksVisited;
496 std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
497 [&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
498 unsigned LoopDepth = MLI.getLoopDepth(MBB);
499 if (!MBB->empty()) {
500 // Always add the first instruction in each block
501 auto NI = MBB->begin();
502 auto BeginBB = MaybeAddNode(&*NI);
503 Builder.addEdge(ParentDepth, GI, BeginBB.first);
504 if (!BlocksVisited.insert(MBB).second)
505 return;
507 // Add any instructions within the block that are gadget components
508 GI = BeginBB.first;
509 while (++NI != MBB->end()) {
510 auto Ref = NodeMap.find(&*NI);
511 if (Ref != NodeMap.end()) {
512 Builder.addEdge(LoopDepth, GI, Ref->getSecond());
513 GI = Ref->getSecond();
517 // Always add the terminator instruction, if one exists
518 auto T = MBB->getFirstTerminator();
519 if (T != MBB->end()) {
520 auto EndBB = MaybeAddNode(&*T);
521 if (EndBB.second)
522 Builder.addEdge(LoopDepth, GI, EndBB.first);
523 GI = EndBB.first;
526 for (MachineBasicBlock *Succ : MBB->successors())
527 TraverseCFG(Succ, GI, LoopDepth);
529 // ArgNodeSentinel is a pseudo-instruction that represents MF args in the
530 // GadgetGraph
531 GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
532 TraverseCFG(&MF.front(), ArgNode, 0);
533 std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
534 LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
535 return G;
538 // Returns the number of remaining gadget edges that could not be eliminated
539 int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
540 MachineGadgetGraph &G, EdgeSet &ElimEdges /* in, out */,
541 NodeSet &ElimNodes /* in, out */) const {
542 if (G.NumFences > 0) {
543 // Eliminate fences and CFG edges that ingress and egress the fence, as
544 // they are trivially mitigated.
545 for (const Edge &E : G.edges()) {
546 const Node *Dest = E.getDest();
547 if (isFence(Dest->getValue())) {
548 ElimNodes.insert(*Dest);
549 ElimEdges.insert(E);
550 for (const Edge &DE : Dest->edges())
551 ElimEdges.insert(DE);
556 // Find and eliminate gadget edges that have been mitigated.
557 int RemainingGadgets = 0;
558 NodeSet ReachableNodes{G};
559 for (const Node &RootN : G.nodes()) {
560 if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
561 continue; // skip this node if it isn't a gadget source
563 // Find all of the nodes that are CFG-reachable from RootN using DFS
564 ReachableNodes.clear();
565 std::function<void(const Node *, bool)> FindReachableNodes =
566 [&](const Node *N, bool FirstNode) {
567 if (!FirstNode)
568 ReachableNodes.insert(*N);
569 for (const Edge &E : N->edges()) {
570 const Node *Dest = E.getDest();
571 if (MachineGadgetGraph::isCFGEdge(E) && !ElimEdges.contains(E) &&
572 !ReachableNodes.contains(*Dest))
573 FindReachableNodes(Dest, false);
576 FindReachableNodes(&RootN, true);
578 // Any gadget whose sink is unreachable has been mitigated
579 for (const Edge &E : RootN.edges()) {
580 if (MachineGadgetGraph::isGadgetEdge(E)) {
581 if (ReachableNodes.contains(*E.getDest())) {
582 // This gadget's sink is reachable
583 ++RemainingGadgets;
584 } else { // This gadget's sink is unreachable, and therefore mitigated
585 ElimEdges.insert(E);
590 return RemainingGadgets;
593 std::unique_ptr<MachineGadgetGraph>
594 X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
595 std::unique_ptr<MachineGadgetGraph> Graph) const {
596 NodeSet ElimNodes{*Graph};
597 EdgeSet ElimEdges{*Graph};
598 int RemainingGadgets =
599 elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
600 if (ElimEdges.empty() && ElimNodes.empty()) {
601 Graph->NumFences = 0;
602 Graph->NumGadgets = RemainingGadgets;
603 } else {
604 Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
605 RemainingGadgets);
607 return Graph;
610 int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
611 MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
612 int FencesInserted = 0;
614 do {
615 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
616 Graph = trimMitigatedEdges(std::move(Graph));
617 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
618 if (Graph->NumGadgets == 0)
619 break;
621 LLVM_DEBUG(dbgs() << "Cutting edges...\n");
622 EdgeSet CutEdges{*Graph};
623 auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
624 1 /* terminator node */);
625 auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
626 auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
627 auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
628 for (const Node &N : Graph->nodes()) {
629 Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
631 Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
632 for (const Edge &E : Graph->edges()) {
633 Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
634 EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
636 OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
637 EdgeCuts.get(), Graph->edges_size());
638 for (int I = 0; I < Graph->edges_size(); ++I)
639 if (EdgeCuts[I])
640 CutEdges.set(I);
641 LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
642 LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
644 LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
645 FencesInserted += insertFences(MF, *Graph, CutEdges);
646 LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
647 LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
649 Graph = GraphBuilder::trim(*Graph, NodeSet{*Graph}, CutEdges);
650 } while (true);
652 return FencesInserted;
655 int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithHeuristic(
656 MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
657 // If `MF` does not have any fences, then no gadgets would have been
658 // mitigated at this point.
659 if (Graph->NumFences > 0) {
660 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
661 Graph = trimMitigatedEdges(std::move(Graph));
662 LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
665 if (Graph->NumGadgets == 0)
666 return 0;
668 LLVM_DEBUG(dbgs() << "Cutting edges...\n");
669 EdgeSet CutEdges{*Graph};
671 // Begin by collecting all ingress CFG edges for each node
672 DenseMap<const Node *, SmallVector<const Edge *, 2>> IngressEdgeMap;
673 for (const Edge &E : Graph->edges())
674 if (MachineGadgetGraph::isCFGEdge(E))
675 IngressEdgeMap[E.getDest()].push_back(&E);
677 // For each gadget edge, make cuts that guarantee the gadget will be
678 // mitigated. A computationally efficient way to achieve this is to either:
679 // (a) cut all egress CFG edges from the gadget source, or
680 // (b) cut all ingress CFG edges to the gadget sink.
682 // Moreover, the algorithm tries not to make a cut into a loop by preferring
683 // to make a (b)-type cut if the gadget source resides at a greater loop depth
684 // than the gadget sink, or an (a)-type cut otherwise.
685 for (const Node &N : Graph->nodes()) {
686 for (const Edge &E : N.edges()) {
687 if (!MachineGadgetGraph::isGadgetEdge(E))
688 continue;
690 SmallVector<const Edge *, 2> EgressEdges;
691 SmallVector<const Edge *, 2> &IngressEdges = IngressEdgeMap[E.getDest()];
692 for (const Edge &EgressEdge : N.edges())
693 if (MachineGadgetGraph::isCFGEdge(EgressEdge))
694 EgressEdges.push_back(&EgressEdge);
696 int EgressCutCost = 0, IngressCutCost = 0;
697 for (const Edge *EgressEdge : EgressEdges)
698 if (!CutEdges.contains(*EgressEdge))
699 EgressCutCost += EgressEdge->getValue();
700 for (const Edge *IngressEdge : IngressEdges)
701 if (!CutEdges.contains(*IngressEdge))
702 IngressCutCost += IngressEdge->getValue();
704 auto &EdgesToCut =
705 IngressCutCost < EgressCutCost ? IngressEdges : EgressEdges;
706 for (const Edge *E : EdgesToCut)
707 CutEdges.insert(*E);
710 LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
711 LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
713 LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
714 int FencesInserted = insertFences(MF, *Graph, CutEdges);
715 LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
716 LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
718 return FencesInserted;
721 int X86LoadValueInjectionLoadHardeningPass::insertFences(
722 MachineFunction &MF, MachineGadgetGraph &G,
723 EdgeSet &CutEdges /* in, out */) const {
724 int FencesInserted = 0;
725 for (const Node &N : G.nodes()) {
726 for (const Edge &E : N.edges()) {
727 if (CutEdges.contains(E)) {
728 MachineInstr *MI = N.getValue(), *Prev;
729 MachineBasicBlock *MBB; // Insert an LFENCE in this MBB
730 MachineBasicBlock::iterator InsertionPt; // ...at this point
731 if (MI == MachineGadgetGraph::ArgNodeSentinel) {
732 // insert LFENCE at beginning of entry block
733 MBB = &MF.front();
734 InsertionPt = MBB->begin();
735 Prev = nullptr;
736 } else if (MI->isBranch()) { // insert the LFENCE before the branch
737 MBB = MI->getParent();
738 InsertionPt = MI;
739 Prev = MI->getPrevNode();
740 // Remove all egress CFG edges from this branch because the inserted
741 // LFENCE prevents gadgets from crossing the branch.
742 for (const Edge &E : N.edges()) {
743 if (MachineGadgetGraph::isCFGEdge(E))
744 CutEdges.insert(E);
746 } else { // insert the LFENCE after the instruction
747 MBB = MI->getParent();
748 InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
749 Prev = InsertionPt == MBB->end()
750 ? (MBB->empty() ? nullptr : &MBB->back())
751 : InsertionPt->getPrevNode();
753 // Ensure this insertion is not redundant (two LFENCEs in sequence).
754 if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
755 (!Prev || !isFence(Prev))) {
756 BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
757 ++FencesInserted;
762 return FencesInserted;
765 bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
766 const MachineInstr &MI, unsigned Reg) const {
767 if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
768 MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
769 return false;
771 const int MemRefBeginIdx = X86::getFirstAddrOperandIdx(MI);
772 if (MemRefBeginIdx < 0) {
773 LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
774 "instruction:\n";
775 MI.print(dbgs()); dbgs() << '\n';);
776 return false;
779 const MachineOperand &BaseMO =
780 MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
781 const MachineOperand &IndexMO =
782 MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
783 return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
784 TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
785 (IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
786 TRI->regsOverlap(IndexMO.getReg(), Reg));
789 bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
790 const MachineInstr &MI, unsigned Reg) const {
791 if (!MI.isConditionalBranch())
792 return false;
793 for (const MachineOperand &Use : MI.uses())
794 if (Use.isReg() && Use.getReg() == Reg)
795 return true;
796 return false;
799 INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
800 "X86 LVI load hardening", false, false)
801 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
802 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
803 INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
804 INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
805 "X86 LVI load hardening", false, false)
807 FunctionPass *llvm::createX86LoadValueInjectionLoadHardeningPass() {
808 return new X86LoadValueInjectionLoadHardeningPass();