AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / X86 / X86OptimizeLEAs.cpp
blob280eaf04f23c5ae9a574c80d776eab92db14f538
1 //===- X86OptimizeLEAs.cpp - optimize usage of LEA instructions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass that performs some optimizations with LEA
10 // instructions in order to improve performance and code size.
11 // Currently, it does two things:
12 // 1) If there are two LEA instructions calculating addresses which only differ
13 // by displacement inside a basic block, one of them is removed.
14 // 2) Address calculations in load and store instructions are replaced by
15 // existing LEA def registers where possible.
17 //===----------------------------------------------------------------------===//
19 #include "MCTargetDesc/X86BaseInfo.h"
20 #include "X86.h"
21 #include "X86InstrInfo.h"
22 #include "X86Subtarget.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/DenseMapInfo.h"
25 #include "llvm/ADT/Hashing.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/ProfileSummaryInfo.h"
29 #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/MachineSizeOpts.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/IR/DebugInfoMetadata.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/MC/MCInstrDesc.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <cassert>
50 #include <cstdint>
51 #include <iterator>
53 using namespace llvm;
55 #define DEBUG_TYPE "x86-optimize-LEAs"
57 static cl::opt<bool>
58 DisableX86LEAOpt("disable-x86-lea-opt", cl::Hidden,
59 cl::desc("X86: Disable LEA optimizations."),
60 cl::init(false));
62 STATISTIC(NumSubstLEAs, "Number of LEA instruction substitutions");
63 STATISTIC(NumRedundantLEAs, "Number of redundant LEA instructions removed");
65 /// Returns true if two machine operands are identical and they are not
66 /// physical registers.
67 static inline bool isIdenticalOp(const MachineOperand &MO1,
68 const MachineOperand &MO2);
70 /// Returns true if two address displacement operands are of the same
71 /// type and use the same symbol/index/address regardless of the offset.
72 static bool isSimilarDispOp(const MachineOperand &MO1,
73 const MachineOperand &MO2);
75 /// Returns true if the instruction is LEA.
76 static inline bool isLEA(const MachineInstr &MI);
78 namespace {
80 /// A key based on instruction's memory operands.
81 class MemOpKey {
82 public:
83 MemOpKey(const MachineOperand *Base, const MachineOperand *Scale,
84 const MachineOperand *Index, const MachineOperand *Segment,
85 const MachineOperand *Disp)
86 : Disp(Disp) {
87 Operands[0] = Base;
88 Operands[1] = Scale;
89 Operands[2] = Index;
90 Operands[3] = Segment;
93 bool operator==(const MemOpKey &Other) const {
94 // Addresses' bases, scales, indices and segments must be identical.
95 for (int i = 0; i < 4; ++i)
96 if (!isIdenticalOp(*Operands[i], *Other.Operands[i]))
97 return false;
99 // Addresses' displacements don't have to be exactly the same. It only
100 // matters that they use the same symbol/index/address. Immediates' or
101 // offsets' differences will be taken care of during instruction
102 // substitution.
103 return isSimilarDispOp(*Disp, *Other.Disp);
106 // Address' base, scale, index and segment operands.
107 const MachineOperand *Operands[4];
109 // Address' displacement operand.
110 const MachineOperand *Disp;
113 } // end anonymous namespace
115 namespace llvm {
117 /// Provide DenseMapInfo for MemOpKey.
118 template <> struct DenseMapInfo<MemOpKey> {
119 using PtrInfo = DenseMapInfo<const MachineOperand *>;
121 static inline MemOpKey getEmptyKey() {
122 return MemOpKey(PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
123 PtrInfo::getEmptyKey(), PtrInfo::getEmptyKey(),
124 PtrInfo::getEmptyKey());
127 static inline MemOpKey getTombstoneKey() {
128 return MemOpKey(PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
129 PtrInfo::getTombstoneKey(), PtrInfo::getTombstoneKey(),
130 PtrInfo::getTombstoneKey());
133 static unsigned getHashValue(const MemOpKey &Val) {
134 // Checking any field of MemOpKey is enough to determine if the key is
135 // empty or tombstone.
136 assert(Val.Disp != PtrInfo::getEmptyKey() && "Cannot hash the empty key");
137 assert(Val.Disp != PtrInfo::getTombstoneKey() &&
138 "Cannot hash the tombstone key");
140 hash_code Hash = hash_combine(*Val.Operands[0], *Val.Operands[1],
141 *Val.Operands[2], *Val.Operands[3]);
143 // If the address displacement is an immediate, it should not affect the
144 // hash so that memory operands which differ only be immediate displacement
145 // would have the same hash. If the address displacement is something else,
146 // we should reflect symbol/index/address in the hash.
147 switch (Val.Disp->getType()) {
148 case MachineOperand::MO_Immediate:
149 break;
150 case MachineOperand::MO_ConstantPoolIndex:
151 case MachineOperand::MO_JumpTableIndex:
152 Hash = hash_combine(Hash, Val.Disp->getIndex());
153 break;
154 case MachineOperand::MO_ExternalSymbol:
155 Hash = hash_combine(Hash, Val.Disp->getSymbolName());
156 break;
157 case MachineOperand::MO_GlobalAddress:
158 Hash = hash_combine(Hash, Val.Disp->getGlobal());
159 break;
160 case MachineOperand::MO_BlockAddress:
161 Hash = hash_combine(Hash, Val.Disp->getBlockAddress());
162 break;
163 case MachineOperand::MO_MCSymbol:
164 Hash = hash_combine(Hash, Val.Disp->getMCSymbol());
165 break;
166 case MachineOperand::MO_MachineBasicBlock:
167 Hash = hash_combine(Hash, Val.Disp->getMBB());
168 break;
169 default:
170 llvm_unreachable("Invalid address displacement operand");
173 return (unsigned)Hash;
176 static bool isEqual(const MemOpKey &LHS, const MemOpKey &RHS) {
177 // Checking any field of MemOpKey is enough to determine if the key is
178 // empty or tombstone.
179 if (RHS.Disp == PtrInfo::getEmptyKey())
180 return LHS.Disp == PtrInfo::getEmptyKey();
181 if (RHS.Disp == PtrInfo::getTombstoneKey())
182 return LHS.Disp == PtrInfo::getTombstoneKey();
183 return LHS == RHS;
187 } // end namespace llvm
189 /// Returns a hash table key based on memory operands of \p MI. The
190 /// number of the first memory operand of \p MI is specified through \p N.
191 static inline MemOpKey getMemOpKey(const MachineInstr &MI, unsigned N) {
192 assert((isLEA(MI) || MI.mayLoadOrStore()) &&
193 "The instruction must be a LEA, a load or a store");
194 return MemOpKey(&MI.getOperand(N + X86::AddrBaseReg),
195 &MI.getOperand(N + X86::AddrScaleAmt),
196 &MI.getOperand(N + X86::AddrIndexReg),
197 &MI.getOperand(N + X86::AddrSegmentReg),
198 &MI.getOperand(N + X86::AddrDisp));
201 static inline bool isIdenticalOp(const MachineOperand &MO1,
202 const MachineOperand &MO2) {
203 return MO1.isIdenticalTo(MO2) && (!MO1.isReg() || !MO1.getReg().isPhysical());
206 #ifndef NDEBUG
207 static bool isValidDispOp(const MachineOperand &MO) {
208 return MO.isImm() || MO.isCPI() || MO.isJTI() || MO.isSymbol() ||
209 MO.isGlobal() || MO.isBlockAddress() || MO.isMCSymbol() || MO.isMBB();
211 #endif
213 static bool isSimilarDispOp(const MachineOperand &MO1,
214 const MachineOperand &MO2) {
215 assert(isValidDispOp(MO1) && isValidDispOp(MO2) &&
216 "Address displacement operand is not valid");
217 return (MO1.isImm() && MO2.isImm()) ||
218 (MO1.isCPI() && MO2.isCPI() && MO1.getIndex() == MO2.getIndex()) ||
219 (MO1.isJTI() && MO2.isJTI() && MO1.getIndex() == MO2.getIndex()) ||
220 (MO1.isSymbol() && MO2.isSymbol() &&
221 MO1.getSymbolName() == MO2.getSymbolName()) ||
222 (MO1.isGlobal() && MO2.isGlobal() &&
223 MO1.getGlobal() == MO2.getGlobal()) ||
224 (MO1.isBlockAddress() && MO2.isBlockAddress() &&
225 MO1.getBlockAddress() == MO2.getBlockAddress()) ||
226 (MO1.isMCSymbol() && MO2.isMCSymbol() &&
227 MO1.getMCSymbol() == MO2.getMCSymbol()) ||
228 (MO1.isMBB() && MO2.isMBB() && MO1.getMBB() == MO2.getMBB());
231 static inline bool isLEA(const MachineInstr &MI) {
232 unsigned Opcode = MI.getOpcode();
233 return Opcode == X86::LEA16r || Opcode == X86::LEA32r ||
234 Opcode == X86::LEA64r || Opcode == X86::LEA64_32r;
237 namespace {
239 class X86OptimizeLEAPass : public MachineFunctionPass {
240 public:
241 X86OptimizeLEAPass() : MachineFunctionPass(ID) {}
243 StringRef getPassName() const override { return "X86 LEA Optimize"; }
245 /// Loop over all of the basic blocks, replacing address
246 /// calculations in load and store instructions, if it's already
247 /// been calculated by LEA. Also, remove redundant LEAs.
248 bool runOnMachineFunction(MachineFunction &MF) override;
250 static char ID;
252 void getAnalysisUsage(AnalysisUsage &AU) const override {
253 AU.addRequired<ProfileSummaryInfoWrapperPass>();
254 AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
255 MachineFunctionPass::getAnalysisUsage(AU);
258 private:
259 using MemOpMap = DenseMap<MemOpKey, SmallVector<MachineInstr *, 16>>;
261 /// Returns a distance between two instructions inside one basic block.
262 /// Negative result means, that instructions occur in reverse order.
263 int calcInstrDist(const MachineInstr &First, const MachineInstr &Last);
265 /// Choose the best \p LEA instruction from the \p List to replace
266 /// address calculation in \p MI instruction. Return the address displacement
267 /// and the distance between \p MI and the chosen \p BestLEA in
268 /// \p AddrDispShift and \p Dist.
269 bool chooseBestLEA(const SmallVectorImpl<MachineInstr *> &List,
270 const MachineInstr &MI, MachineInstr *&BestLEA,
271 int64_t &AddrDispShift, int &Dist);
273 /// Returns the difference between addresses' displacements of \p MI1
274 /// and \p MI2. The numbers of the first memory operands for the instructions
275 /// are specified through \p N1 and \p N2.
276 int64_t getAddrDispShift(const MachineInstr &MI1, unsigned N1,
277 const MachineInstr &MI2, unsigned N2) const;
279 /// Returns true if the \p Last LEA instruction can be replaced by the
280 /// \p First. The difference between displacements of the addresses calculated
281 /// by these LEAs is returned in \p AddrDispShift. It'll be used for proper
282 /// replacement of the \p Last LEA's uses with the \p First's def register.
283 bool isReplaceable(const MachineInstr &First, const MachineInstr &Last,
284 int64_t &AddrDispShift) const;
286 /// Find all LEA instructions in the basic block. Also, assign position
287 /// numbers to all instructions in the basic block to speed up calculation of
288 /// distance between them.
289 void findLEAs(const MachineBasicBlock &MBB, MemOpMap &LEAs);
291 /// Removes redundant address calculations.
292 bool removeRedundantAddrCalc(MemOpMap &LEAs);
294 /// Replace debug value MI with a new debug value instruction using register
295 /// VReg with an appropriate offset and DIExpression to incorporate the
296 /// address displacement AddrDispShift. Return new debug value instruction.
297 MachineInstr *replaceDebugValue(MachineInstr &MI, unsigned OldReg,
298 unsigned NewReg, int64_t AddrDispShift);
300 /// Removes LEAs which calculate similar addresses.
301 bool removeRedundantLEAs(MemOpMap &LEAs);
303 DenseMap<const MachineInstr *, unsigned> InstrPos;
305 MachineRegisterInfo *MRI = nullptr;
306 const X86InstrInfo *TII = nullptr;
307 const X86RegisterInfo *TRI = nullptr;
310 } // end anonymous namespace
312 char X86OptimizeLEAPass::ID = 0;
314 FunctionPass *llvm::createX86OptimizeLEAs() { return new X86OptimizeLEAPass(); }
315 INITIALIZE_PASS(X86OptimizeLEAPass, DEBUG_TYPE, "X86 optimize LEA pass", false,
316 false)
318 int X86OptimizeLEAPass::calcInstrDist(const MachineInstr &First,
319 const MachineInstr &Last) {
320 // Both instructions must be in the same basic block and they must be
321 // presented in InstrPos.
322 assert(Last.getParent() == First.getParent() &&
323 "Instructions are in different basic blocks");
324 assert(InstrPos.contains(&First) && InstrPos.contains(&Last) &&
325 "Instructions' positions are undefined");
327 return InstrPos[&Last] - InstrPos[&First];
330 // Find the best LEA instruction in the List to replace address recalculation in
331 // MI. Such LEA must meet these requirements:
332 // 1) The address calculated by the LEA differs only by the displacement from
333 // the address used in MI.
334 // 2) The register class of the definition of the LEA is compatible with the
335 // register class of the address base register of MI.
336 // 3) Displacement of the new memory operand should fit in 1 byte if possible.
337 // 4) The LEA should be as close to MI as possible, and prior to it if
338 // possible.
339 bool X86OptimizeLEAPass::chooseBestLEA(
340 const SmallVectorImpl<MachineInstr *> &List, const MachineInstr &MI,
341 MachineInstr *&BestLEA, int64_t &AddrDispShift, int &Dist) {
342 const MachineFunction *MF = MI.getParent()->getParent();
343 const MCInstrDesc &Desc = MI.getDesc();
344 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags) +
345 X86II::getOperandBias(Desc);
347 BestLEA = nullptr;
349 // Loop over all LEA instructions.
350 for (auto *DefMI : List) {
351 // Get new address displacement.
352 int64_t AddrDispShiftTemp = getAddrDispShift(MI, MemOpNo, *DefMI, 1);
354 // Make sure address displacement fits 4 bytes.
355 if (!isInt<32>(AddrDispShiftTemp))
356 continue;
358 // Check that LEA def register can be used as MI address base. Some
359 // instructions can use a limited set of registers as address base, for
360 // example MOV8mr_NOREX. We could constrain the register class of the LEA
361 // def to suit MI, however since this case is very rare and hard to
362 // reproduce in a test it's just more reliable to skip the LEA.
363 if (TII->getRegClass(Desc, MemOpNo + X86::AddrBaseReg, TRI, *MF) !=
364 MRI->getRegClass(DefMI->getOperand(0).getReg()))
365 continue;
367 // Choose the closest LEA instruction from the list, prior to MI if
368 // possible. Note that we took into account resulting address displacement
369 // as well. Also note that the list is sorted by the order in which the LEAs
370 // occur, so the break condition is pretty simple.
371 int DistTemp = calcInstrDist(*DefMI, MI);
372 assert(DistTemp != 0 &&
373 "The distance between two different instructions cannot be zero");
374 if (DistTemp > 0 || BestLEA == nullptr) {
375 // Do not update return LEA, if the current one provides a displacement
376 // which fits in 1 byte, while the new candidate does not.
377 if (BestLEA != nullptr && !isInt<8>(AddrDispShiftTemp) &&
378 isInt<8>(AddrDispShift))
379 continue;
381 BestLEA = DefMI;
382 AddrDispShift = AddrDispShiftTemp;
383 Dist = DistTemp;
386 // FIXME: Maybe we should not always stop at the first LEA after MI.
387 if (DistTemp < 0)
388 break;
391 return BestLEA != nullptr;
394 // Get the difference between the addresses' displacements of the two
395 // instructions \p MI1 and \p MI2. The numbers of the first memory operands are
396 // passed through \p N1 and \p N2.
397 int64_t X86OptimizeLEAPass::getAddrDispShift(const MachineInstr &MI1,
398 unsigned N1,
399 const MachineInstr &MI2,
400 unsigned N2) const {
401 const MachineOperand &Op1 = MI1.getOperand(N1 + X86::AddrDisp);
402 const MachineOperand &Op2 = MI2.getOperand(N2 + X86::AddrDisp);
404 assert(isSimilarDispOp(Op1, Op2) &&
405 "Address displacement operands are not compatible");
407 // After the assert above we can be sure that both operands are of the same
408 // valid type and use the same symbol/index/address, thus displacement shift
409 // calculation is rather simple.
410 if (Op1.isJTI())
411 return 0;
412 return Op1.isImm() ? Op1.getImm() - Op2.getImm()
413 : Op1.getOffset() - Op2.getOffset();
416 // Check that the Last LEA can be replaced by the First LEA. To be so,
417 // these requirements must be met:
418 // 1) Addresses calculated by LEAs differ only by displacement.
419 // 2) Def registers of LEAs belong to the same class.
420 // 3) All uses of the Last LEA def register are replaceable, thus the
421 // register is used only as address base.
422 bool X86OptimizeLEAPass::isReplaceable(const MachineInstr &First,
423 const MachineInstr &Last,
424 int64_t &AddrDispShift) const {
425 assert(isLEA(First) && isLEA(Last) &&
426 "The function works only with LEA instructions");
428 // Make sure that LEA def registers belong to the same class. There may be
429 // instructions (like MOV8mr_NOREX) which allow a limited set of registers to
430 // be used as their operands, so we must be sure that replacing one LEA
431 // with another won't lead to putting a wrong register in the instruction.
432 if (MRI->getRegClass(First.getOperand(0).getReg()) !=
433 MRI->getRegClass(Last.getOperand(0).getReg()))
434 return false;
436 // Get new address displacement.
437 AddrDispShift = getAddrDispShift(Last, 1, First, 1);
439 // Loop over all uses of the Last LEA to check that its def register is
440 // used only as address base for memory accesses. If so, it can be
441 // replaced, otherwise - no.
442 for (auto &MO : MRI->use_nodbg_operands(Last.getOperand(0).getReg())) {
443 MachineInstr &MI = *MO.getParent();
445 // Get the number of the first memory operand.
446 const MCInstrDesc &Desc = MI.getDesc();
447 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
449 // If the use instruction has no memory operand - the LEA is not
450 // replaceable.
451 if (MemOpNo < 0)
452 return false;
454 MemOpNo += X86II::getOperandBias(Desc);
456 // If the address base of the use instruction is not the LEA def register -
457 // the LEA is not replaceable.
458 if (!isIdenticalOp(MI.getOperand(MemOpNo + X86::AddrBaseReg), MO))
459 return false;
461 // If the LEA def register is used as any other operand of the use
462 // instruction - the LEA is not replaceable.
463 for (unsigned i = 0; i < MI.getNumOperands(); i++)
464 if (i != (unsigned)(MemOpNo + X86::AddrBaseReg) &&
465 isIdenticalOp(MI.getOperand(i), MO))
466 return false;
468 // Check that the new address displacement will fit 4 bytes.
469 if (MI.getOperand(MemOpNo + X86::AddrDisp).isImm() &&
470 !isInt<32>(MI.getOperand(MemOpNo + X86::AddrDisp).getImm() +
471 AddrDispShift))
472 return false;
475 return true;
478 void X86OptimizeLEAPass::findLEAs(const MachineBasicBlock &MBB,
479 MemOpMap &LEAs) {
480 unsigned Pos = 0;
481 for (auto &MI : MBB) {
482 // Assign the position number to the instruction. Note that we are going to
483 // move some instructions during the optimization however there will never
484 // be a need to move two instructions before any selected instruction. So to
485 // avoid multiple positions' updates during moves we just increase position
486 // counter by two leaving a free space for instructions which will be moved.
487 InstrPos[&MI] = Pos += 2;
489 if (isLEA(MI))
490 LEAs[getMemOpKey(MI, 1)].push_back(const_cast<MachineInstr *>(&MI));
494 // Try to find load and store instructions which recalculate addresses already
495 // calculated by some LEA and replace their memory operands with its def
496 // register.
497 bool X86OptimizeLEAPass::removeRedundantAddrCalc(MemOpMap &LEAs) {
498 bool Changed = false;
500 assert(!LEAs.empty());
501 MachineBasicBlock *MBB = (*LEAs.begin()->second.begin())->getParent();
503 // Process all instructions in basic block.
504 for (MachineInstr &MI : llvm::make_early_inc_range(*MBB)) {
505 // Instruction must be load or store.
506 if (!MI.mayLoadOrStore())
507 continue;
509 // Get the number of the first memory operand.
510 const MCInstrDesc &Desc = MI.getDesc();
511 int MemOpNo = X86II::getMemoryOperandNo(Desc.TSFlags);
513 // If instruction has no memory operand - skip it.
514 if (MemOpNo < 0)
515 continue;
517 MemOpNo += X86II::getOperandBias(Desc);
519 // Do not call chooseBestLEA if there was no matching LEA
520 auto Insns = LEAs.find(getMemOpKey(MI, MemOpNo));
521 if (Insns == LEAs.end())
522 continue;
524 // Get the best LEA instruction to replace address calculation.
525 MachineInstr *DefMI;
526 int64_t AddrDispShift;
527 int Dist;
528 if (!chooseBestLEA(Insns->second, MI, DefMI, AddrDispShift, Dist))
529 continue;
531 // If LEA occurs before current instruction, we can freely replace
532 // the instruction. If LEA occurs after, we can lift LEA above the
533 // instruction and this way to be able to replace it. Since LEA and the
534 // instruction have similar memory operands (thus, the same def
535 // instructions for these operands), we can always do that, without
536 // worries of using registers before their defs.
537 if (Dist < 0) {
538 DefMI->removeFromParent();
539 MBB->insert(MachineBasicBlock::iterator(&MI), DefMI);
540 InstrPos[DefMI] = InstrPos[&MI] - 1;
542 // Make sure the instructions' position numbers are sane.
543 assert(((InstrPos[DefMI] == 1 &&
544 MachineBasicBlock::iterator(DefMI) == MBB->begin()) ||
545 InstrPos[DefMI] >
546 InstrPos[&*std::prev(MachineBasicBlock::iterator(DefMI))]) &&
547 "Instruction positioning is broken");
550 // Since we can possibly extend register lifetime, clear kill flags.
551 MRI->clearKillFlags(DefMI->getOperand(0).getReg());
553 ++NumSubstLEAs;
554 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Candidate to replace: "; MI.dump(););
556 // Change instruction operands.
557 MI.getOperand(MemOpNo + X86::AddrBaseReg)
558 .ChangeToRegister(DefMI->getOperand(0).getReg(), false);
559 MI.getOperand(MemOpNo + X86::AddrScaleAmt).ChangeToImmediate(1);
560 MI.getOperand(MemOpNo + X86::AddrIndexReg)
561 .ChangeToRegister(X86::NoRegister, false);
562 MI.getOperand(MemOpNo + X86::AddrDisp).ChangeToImmediate(AddrDispShift);
563 MI.getOperand(MemOpNo + X86::AddrSegmentReg)
564 .ChangeToRegister(X86::NoRegister, false);
566 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Replaced by: "; MI.dump(););
568 Changed = true;
571 return Changed;
574 MachineInstr *X86OptimizeLEAPass::replaceDebugValue(MachineInstr &MI,
575 unsigned OldReg,
576 unsigned NewReg,
577 int64_t AddrDispShift) {
578 const DIExpression *Expr = MI.getDebugExpression();
579 if (AddrDispShift != 0) {
580 if (MI.isNonListDebugValue()) {
581 Expr =
582 DIExpression::prepend(Expr, DIExpression::StackValue, AddrDispShift);
583 } else {
584 // Update the Expression, appending an offset of `AddrDispShift` to the
585 // Op corresponding to `OldReg`.
586 SmallVector<uint64_t, 3> Ops;
587 DIExpression::appendOffset(Ops, AddrDispShift);
588 for (MachineOperand &Op : MI.getDebugOperandsForReg(OldReg)) {
589 unsigned OpIdx = MI.getDebugOperandIndex(&Op);
590 Expr = DIExpression::appendOpsToArg(Expr, Ops, OpIdx);
595 // Replace DBG_VALUE instruction with modified version.
596 MachineBasicBlock *MBB = MI.getParent();
597 DebugLoc DL = MI.getDebugLoc();
598 bool IsIndirect = MI.isIndirectDebugValue();
599 const MDNode *Var = MI.getDebugVariable();
600 unsigned Opcode = MI.isNonListDebugValue() ? TargetOpcode::DBG_VALUE
601 : TargetOpcode::DBG_VALUE_LIST;
602 if (IsIndirect)
603 assert(MI.getDebugOffset().getImm() == 0 &&
604 "DBG_VALUE with nonzero offset");
605 SmallVector<MachineOperand, 4> NewOps;
606 // If we encounter an operand using the old register, replace it with an
607 // operand that uses the new register; otherwise keep the old operand.
608 auto replaceOldReg = [OldReg, NewReg](const MachineOperand &Op) {
609 if (Op.isReg() && Op.getReg() == OldReg)
610 return MachineOperand::CreateReg(NewReg, false, false, false, false,
611 false, false, false, false, false,
612 /*IsRenamable*/ true);
613 return Op;
615 for (const MachineOperand &Op : MI.debug_operands())
616 NewOps.push_back(replaceOldReg(Op));
617 return BuildMI(*MBB, MBB->erase(&MI), DL, TII->get(Opcode), IsIndirect,
618 NewOps, Var, Expr);
621 // Try to find similar LEAs in the list and replace one with another.
622 bool X86OptimizeLEAPass::removeRedundantLEAs(MemOpMap &LEAs) {
623 bool Changed = false;
625 // Loop over all entries in the table.
626 for (auto &E : LEAs) {
627 auto &List = E.second;
629 // Loop over all LEA pairs.
630 auto I1 = List.begin();
631 while (I1 != List.end()) {
632 MachineInstr &First = **I1;
633 auto I2 = std::next(I1);
634 while (I2 != List.end()) {
635 MachineInstr &Last = **I2;
636 int64_t AddrDispShift;
638 // LEAs should be in occurrence order in the list, so we can freely
639 // replace later LEAs with earlier ones.
640 assert(calcInstrDist(First, Last) > 0 &&
641 "LEAs must be in occurrence order in the list");
643 // Check that the Last LEA instruction can be replaced by the First.
644 if (!isReplaceable(First, Last, AddrDispShift)) {
645 ++I2;
646 continue;
649 // Loop over all uses of the Last LEA and update their operands. Note
650 // that the correctness of this has already been checked in the
651 // isReplaceable function.
652 Register FirstVReg = First.getOperand(0).getReg();
653 Register LastVReg = Last.getOperand(0).getReg();
654 // We use MRI->use_empty here instead of the combination of
655 // llvm::make_early_inc_range and MRI->use_operands because we could
656 // replace two or more uses in a debug instruction in one iteration, and
657 // that would deeply confuse llvm::make_early_inc_range.
658 while (!MRI->use_empty(LastVReg)) {
659 MachineOperand &MO = *MRI->use_begin(LastVReg);
660 MachineInstr &MI = *MO.getParent();
662 if (MI.isDebugValue()) {
663 // Replace DBG_VALUE instruction with modified version using the
664 // register from the replacing LEA and the address displacement
665 // between the LEA instructions.
666 replaceDebugValue(MI, LastVReg, FirstVReg, AddrDispShift);
667 continue;
670 // Get the number of the first memory operand.
671 const MCInstrDesc &Desc = MI.getDesc();
672 int MemOpNo =
673 X86II::getMemoryOperandNo(Desc.TSFlags) +
674 X86II::getOperandBias(Desc);
676 // Update address base.
677 MO.setReg(FirstVReg);
679 // Update address disp.
680 MachineOperand &Op = MI.getOperand(MemOpNo + X86::AddrDisp);
681 if (Op.isImm())
682 Op.setImm(Op.getImm() + AddrDispShift);
683 else if (!Op.isJTI())
684 Op.setOffset(Op.getOffset() + AddrDispShift);
687 // Since we can possibly extend register lifetime, clear kill flags.
688 MRI->clearKillFlags(FirstVReg);
690 ++NumRedundantLEAs;
691 LLVM_DEBUG(dbgs() << "OptimizeLEAs: Remove redundant LEA: ";
692 Last.dump(););
694 // By this moment, all of the Last LEA's uses must be replaced. So we
695 // can freely remove it.
696 assert(MRI->use_empty(LastVReg) &&
697 "The LEA's def register must have no uses");
698 Last.eraseFromParent();
700 // Erase removed LEA from the list.
701 I2 = List.erase(I2);
703 Changed = true;
705 ++I1;
709 return Changed;
712 bool X86OptimizeLEAPass::runOnMachineFunction(MachineFunction &MF) {
713 bool Changed = false;
715 if (DisableX86LEAOpt || skipFunction(MF.getFunction()))
716 return false;
718 MRI = &MF.getRegInfo();
719 TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
720 TRI = MF.getSubtarget<X86Subtarget>().getRegisterInfo();
721 auto *PSI =
722 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
723 auto *MBFI = (PSI && PSI->hasProfileSummary()) ?
724 &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() :
725 nullptr;
727 // Process all basic blocks.
728 for (auto &MBB : MF) {
729 MemOpMap LEAs;
730 InstrPos.clear();
732 // Find all LEA instructions in basic block.
733 findLEAs(MBB, LEAs);
735 // If current basic block has no LEAs, move on to the next one.
736 if (LEAs.empty())
737 continue;
739 // Remove redundant LEA instructions.
740 Changed |= removeRedundantLEAs(LEAs);
742 // Remove redundant address calculations. Do it only for -Os/-Oz since only
743 // a code size gain is expected from this part of the pass.
744 if (llvm::shouldOptimizeForSize(&MBB, PSI, MBFI))
745 Changed |= removeRedundantAddrCalc(LEAs);
748 return Changed;