AMDGPU: Mark test as XFAIL in expensive_checks builds
[llvm-project.git] / llvm / lib / Target / X86 / X86TargetTransformInfo.cpp
blob7a7554cdb9908897fc70a1f306b805cf2a2f8231
1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements a TargetTransformInfo analysis pass specific to the
10 /// X86 target machine. It uses the target's detailed information to provide
11 /// more precise answers to certain TTI queries, while letting the target
12 /// independent and default TTI implementations handle the rest.
13 ///
14 //===----------------------------------------------------------------------===//
15 /// About Cost Model numbers used below it's necessary to say the following:
16 /// the numbers correspond to some "generic" X86 CPU instead of usage of a
17 /// specific CPU model. Usually the numbers correspond to the CPU where the
18 /// feature first appeared. For example, if we do Subtarget.hasSSE42() in
19 /// the lookups below the cost is based on Nehalem as that was the first CPU
20 /// to support that feature level and thus has most likely the worst case cost,
21 /// although we may discard an outlying worst cost from one CPU (e.g. Atom).
22 ///
23 /// Some examples of other technologies/CPUs:
24 /// SSE 3 - Pentium4 / Athlon64
25 /// SSE 4.1 - Penryn
26 /// SSE 4.2 - Nehalem / Silvermont
27 /// AVX - Sandy Bridge / Jaguar / Bulldozer
28 /// AVX2 - Haswell / Ryzen
29 /// AVX-512 - Xeon Phi / Skylake
30 ///
31 /// And some examples of instruction target dependent costs (latency)
32 /// divss sqrtss rsqrtss
33 /// AMD K7 11-16 19 3
34 /// Piledriver 9-24 13-15 5
35 /// Jaguar 14 16 2
36 /// Pentium II,III 18 30 2
37 /// Nehalem 7-14 7-18 3
38 /// Haswell 10-13 11 5
39 ///
40 /// Interpreting the 4 TargetCostKind types:
41 /// TCK_RecipThroughput and TCK_Latency should try to match the worst case
42 /// values reported by the CPU scheduler models (and llvm-mca).
43 /// TCK_CodeSize should match the instruction count (e.g. divss = 1), NOT the
44 /// actual encoding size of the instruction.
45 /// TCK_SizeAndLatency should match the worst case micro-op counts reported by
46 /// by the CPU scheduler models (and llvm-mca), to ensure that they are
47 /// compatible with the MicroOpBufferSize and LoopMicroOpBufferSize values which are
48 /// often used as the cost thresholds where TCK_SizeAndLatency is requested.
49 //===----------------------------------------------------------------------===//
51 #include "X86TargetTransformInfo.h"
52 #include "llvm/Analysis/TargetTransformInfo.h"
53 #include "llvm/CodeGen/BasicTTIImpl.h"
54 #include "llvm/CodeGen/CostTable.h"
55 #include "llvm/CodeGen/TargetLowering.h"
56 #include "llvm/IR/InstIterator.h"
57 #include "llvm/IR/IntrinsicInst.h"
58 #include <optional>
60 using namespace llvm;
62 #define DEBUG_TYPE "x86tti"
64 //===----------------------------------------------------------------------===//
66 // X86 cost model.
68 //===----------------------------------------------------------------------===//
70 // Helper struct to store/access costs for each cost kind.
71 // TODO: Move this to allow other targets to use it?
72 struct CostKindCosts {
73 unsigned RecipThroughputCost = ~0U;
74 unsigned LatencyCost = ~0U;
75 unsigned CodeSizeCost = ~0U;
76 unsigned SizeAndLatencyCost = ~0U;
78 std::optional<unsigned>
79 operator[](TargetTransformInfo::TargetCostKind Kind) const {
80 unsigned Cost = ~0U;
81 switch (Kind) {
82 case TargetTransformInfo::TCK_RecipThroughput:
83 Cost = RecipThroughputCost;
84 break;
85 case TargetTransformInfo::TCK_Latency:
86 Cost = LatencyCost;
87 break;
88 case TargetTransformInfo::TCK_CodeSize:
89 Cost = CodeSizeCost;
90 break;
91 case TargetTransformInfo::TCK_SizeAndLatency:
92 Cost = SizeAndLatencyCost;
93 break;
95 if (Cost == ~0U)
96 return std::nullopt;
97 return Cost;
100 using CostKindTblEntry = CostTblEntryT<CostKindCosts>;
101 using TypeConversionCostKindTblEntry = TypeConversionCostTblEntryT<CostKindCosts>;
103 TargetTransformInfo::PopcntSupportKind
104 X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
105 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
106 // TODO: Currently the __builtin_popcount() implementation using SSE3
107 // instructions is inefficient. Once the problem is fixed, we should
108 // call ST->hasSSE3() instead of ST->hasPOPCNT().
109 return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
112 std::optional<unsigned> X86TTIImpl::getCacheSize(
113 TargetTransformInfo::CacheLevel Level) const {
114 switch (Level) {
115 case TargetTransformInfo::CacheLevel::L1D:
116 // - Penryn
117 // - Nehalem
118 // - Westmere
119 // - Sandy Bridge
120 // - Ivy Bridge
121 // - Haswell
122 // - Broadwell
123 // - Skylake
124 // - Kabylake
125 return 32 * 1024; // 32 KByte
126 case TargetTransformInfo::CacheLevel::L2D:
127 // - Penryn
128 // - Nehalem
129 // - Westmere
130 // - Sandy Bridge
131 // - Ivy Bridge
132 // - Haswell
133 // - Broadwell
134 // - Skylake
135 // - Kabylake
136 return 256 * 1024; // 256 KByte
139 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
142 std::optional<unsigned> X86TTIImpl::getCacheAssociativity(
143 TargetTransformInfo::CacheLevel Level) const {
144 // - Penryn
145 // - Nehalem
146 // - Westmere
147 // - Sandy Bridge
148 // - Ivy Bridge
149 // - Haswell
150 // - Broadwell
151 // - Skylake
152 // - Kabylake
153 switch (Level) {
154 case TargetTransformInfo::CacheLevel::L1D:
155 [[fallthrough]];
156 case TargetTransformInfo::CacheLevel::L2D:
157 return 8;
160 llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
163 unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
164 bool Vector = (ClassID == 1);
165 if (Vector && !ST->hasSSE1())
166 return 0;
168 if (ST->is64Bit()) {
169 if (Vector && ST->hasAVX512())
170 return 32;
171 if (!Vector && ST->hasEGPR())
172 return 32;
173 return 16;
175 return 8;
178 bool X86TTIImpl::hasConditionalLoadStoreForType(Type *Ty) const {
179 if (!ST->hasCF())
180 return false;
181 if (!Ty)
182 return true;
183 // Conditional faulting is supported by CFCMOV, which only accepts
184 // 16/32/64-bit operands.
185 // TODO: Support f32/f64 with VMOVSS/VMOVSD with zero mask when it's
186 // profitable.
187 auto *VTy = dyn_cast<FixedVectorType>(Ty);
188 if (!Ty->isIntegerTy() && (!VTy || VTy->getNumElements() != 1))
189 return false;
190 auto *ScalarTy = Ty->getScalarType();
191 switch (cast<IntegerType>(ScalarTy)->getBitWidth()) {
192 default:
193 return false;
194 case 16:
195 case 32:
196 case 64:
197 return true;
201 TypeSize
202 X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
203 unsigned PreferVectorWidth = ST->getPreferVectorWidth();
204 switch (K) {
205 case TargetTransformInfo::RGK_Scalar:
206 return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
207 case TargetTransformInfo::RGK_FixedWidthVector:
208 if (ST->hasAVX512() && ST->hasEVEX512() && PreferVectorWidth >= 512)
209 return TypeSize::getFixed(512);
210 if (ST->hasAVX() && PreferVectorWidth >= 256)
211 return TypeSize::getFixed(256);
212 if (ST->hasSSE1() && PreferVectorWidth >= 128)
213 return TypeSize::getFixed(128);
214 return TypeSize::getFixed(0);
215 case TargetTransformInfo::RGK_ScalableVector:
216 return TypeSize::getScalable(0);
219 llvm_unreachable("Unsupported register kind");
222 unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
223 return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
224 .getFixedValue();
227 unsigned X86TTIImpl::getMaxInterleaveFactor(ElementCount VF) {
228 // If the loop will not be vectorized, don't interleave the loop.
229 // Let regular unroll to unroll the loop, which saves the overflow
230 // check and memory check cost.
231 if (VF.isScalar())
232 return 1;
234 if (ST->isAtom())
235 return 1;
237 // Sandybridge and Haswell have multiple execution ports and pipelined
238 // vector units.
239 if (ST->hasAVX())
240 return 4;
242 return 2;
245 InstructionCost X86TTIImpl::getArithmeticInstrCost(
246 unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
247 TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
248 ArrayRef<const Value *> Args,
249 const Instruction *CxtI) {
251 // vXi8 multiplications are always promoted to vXi16.
252 // Sub-128-bit types can be extended/packed more efficiently.
253 if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
254 Ty->getPrimitiveSizeInBits() <= 64 && Ty->getScalarSizeInBits() == 8) {
255 Type *WideVecTy =
256 VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
257 return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
258 TargetTransformInfo::CastContextHint::None,
259 CostKind) +
260 getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
261 TargetTransformInfo::CastContextHint::None,
262 CostKind) +
263 getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info);
266 // Legalize the type.
267 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
269 int ISD = TLI->InstructionOpcodeToISD(Opcode);
270 assert(ISD && "Invalid opcode");
272 if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
273 (LT.second.getScalarType() == MVT::i32 ||
274 LT.second.getScalarType() == MVT::i64)) {
275 // Check if the operands can be represented as a smaller datatype.
276 bool Op1Signed = false, Op2Signed = false;
277 unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
278 unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
279 unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
280 bool SignedMode = Op1Signed || Op2Signed;
282 // If both vXi32 are representable as i15 and at least one is constant,
283 // zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
284 // can treat this as PMADDWD which has the same costs as a vXi16 multiply.
285 if (OpMinSize <= 15 && !ST->isPMADDWDSlow() &&
286 LT.second.getScalarType() == MVT::i32) {
287 bool Op1Constant =
288 isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]);
289 bool Op2Constant =
290 isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]);
291 bool Op1Sext = isa<SExtInst>(Args[0]) &&
292 (Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
293 bool Op2Sext = isa<SExtInst>(Args[1]) &&
294 (Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
296 bool IsZeroExtended = !Op1Signed || !Op2Signed;
297 bool IsConstant = Op1Constant || Op2Constant;
298 bool IsSext = Op1Sext || Op2Sext;
299 if (IsConstant || IsZeroExtended || IsSext)
300 LT.second =
301 MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
304 // Check if the vXi32 operands can be shrunk into a smaller datatype.
305 // This should match the codegen from reduceVMULWidth.
306 // TODO: Make this generic (!ST->SSE41 || ST->isPMULLDSlow()).
307 if (ST->useSLMArithCosts() && LT.second == MVT::v4i32) {
308 if (OpMinSize <= 7)
309 return LT.first * 3; // pmullw/sext
310 if (!SignedMode && OpMinSize <= 8)
311 return LT.first * 3; // pmullw/zext
312 if (OpMinSize <= 15)
313 return LT.first * 5; // pmullw/pmulhw/pshuf
314 if (!SignedMode && OpMinSize <= 16)
315 return LT.first * 5; // pmullw/pmulhw/pshuf
318 // If both vXi64 are representable as (unsigned) i32, then we can perform
319 // the multiple with a single PMULUDQ instruction.
320 // TODO: Add (SSE41+) PMULDQ handling for signed extensions.
321 if (!SignedMode && OpMinSize <= 32 && LT.second.getScalarType() == MVT::i64)
322 ISD = X86ISD::PMULUDQ;
325 // Vector multiply by pow2 will be simplified to shifts.
326 // Vector multiply by -pow2 will be simplified to shifts/negates.
327 if (ISD == ISD::MUL && Op2Info.isConstant() &&
328 (Op2Info.isPowerOf2() || Op2Info.isNegatedPowerOf2())) {
329 InstructionCost Cost =
330 getArithmeticInstrCost(Instruction::Shl, Ty, CostKind,
331 Op1Info.getNoProps(), Op2Info.getNoProps());
332 if (Op2Info.isNegatedPowerOf2())
333 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
334 return Cost;
337 // On X86, vector signed division by constants power-of-two are
338 // normally expanded to the sequence SRA + SRL + ADD + SRA.
339 // The OperandValue properties may not be the same as that of the previous
340 // operation; conservatively assume OP_None.
341 if ((ISD == ISD::SDIV || ISD == ISD::SREM) &&
342 Op2Info.isConstant() && Op2Info.isPowerOf2()) {
343 InstructionCost Cost =
344 2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
345 Op1Info.getNoProps(), Op2Info.getNoProps());
346 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
347 Op1Info.getNoProps(), Op2Info.getNoProps());
348 Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
349 Op1Info.getNoProps(), Op2Info.getNoProps());
351 if (ISD == ISD::SREM) {
352 // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
353 Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(),
354 Op2Info.getNoProps());
355 Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info.getNoProps(),
356 Op2Info.getNoProps());
359 return Cost;
362 // Vector unsigned division/remainder will be simplified to shifts/masks.
363 if ((ISD == ISD::UDIV || ISD == ISD::UREM) &&
364 Op2Info.isConstant() && Op2Info.isPowerOf2()) {
365 if (ISD == ISD::UDIV)
366 return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
367 Op1Info.getNoProps(), Op2Info.getNoProps());
368 // UREM
369 return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
370 Op1Info.getNoProps(), Op2Info.getNoProps());
373 static const CostKindTblEntry GFNIUniformConstCostTable[] = {
374 { ISD::SHL, MVT::v16i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
375 { ISD::SRL, MVT::v16i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
376 { ISD::SRA, MVT::v16i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
377 { ISD::SHL, MVT::v32i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
378 { ISD::SRL, MVT::v32i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
379 { ISD::SRA, MVT::v32i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
380 { ISD::SHL, MVT::v64i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
381 { ISD::SRL, MVT::v64i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
382 { ISD::SRA, MVT::v64i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
385 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasGFNI())
386 if (const auto *Entry =
387 CostTableLookup(GFNIUniformConstCostTable, ISD, LT.second))
388 if (auto KindCost = Entry->Cost[CostKind])
389 return LT.first * *KindCost;
391 static const CostKindTblEntry AVX512BWUniformConstCostTable[] = {
392 { ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
393 { ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
394 { ISD::SRA, MVT::v16i8, { 1, 8, 4, 5 } }, // psrlw, pand, pxor, psubb.
395 { ISD::SHL, MVT::v32i8, { 1, 8, 2, 3 } }, // psllw + pand.
396 { ISD::SRL, MVT::v32i8, { 1, 8, 2, 3 } }, // psrlw + pand.
397 { ISD::SRA, MVT::v32i8, { 1, 9, 4, 5 } }, // psrlw, pand, pxor, psubb.
398 { ISD::SHL, MVT::v64i8, { 1, 8, 2, 3 } }, // psllw + pand.
399 { ISD::SRL, MVT::v64i8, { 1, 8, 2, 3 } }, // psrlw + pand.
400 { ISD::SRA, MVT::v64i8, { 1, 9, 4, 6 } }, // psrlw, pand, pxor, psubb.
402 { ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // psllw
403 { ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
404 { ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
405 { ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // psllw
406 { ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
407 { ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
410 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasBWI())
411 if (const auto *Entry =
412 CostTableLookup(AVX512BWUniformConstCostTable, ISD, LT.second))
413 if (auto KindCost = Entry->Cost[CostKind])
414 return LT.first * *KindCost;
416 static const CostKindTblEntry AVX512UniformConstCostTable[] = {
417 { ISD::SHL, MVT::v64i8, { 2, 12, 5, 6 } }, // psllw + pand.
418 { ISD::SRL, MVT::v64i8, { 2, 12, 5, 6 } }, // psrlw + pand.
419 { ISD::SRA, MVT::v64i8, { 3, 10, 12, 12 } }, // psrlw, pand, pxor, psubb.
421 { ISD::SHL, MVT::v16i16, { 2, 7, 4, 4 } }, // psllw + split.
422 { ISD::SRL, MVT::v16i16, { 2, 7, 4, 4 } }, // psrlw + split.
423 { ISD::SRA, MVT::v16i16, { 2, 7, 4, 4 } }, // psraw + split.
425 { ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } }, // pslld
426 { ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } }, // psrld
427 { ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } }, // psrad
428 { ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } }, // pslld
429 { ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } }, // psrld
430 { ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } }, // psrad
432 { ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } }, // psraq
433 { ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } }, // psllq
434 { ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } }, // psrlq
435 { ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } }, // psraq
436 { ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } }, // psllq
437 { ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } }, // psrlq
438 { ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } }, // psraq
440 { ISD::SDIV, MVT::v16i32, { 6 } }, // pmuludq sequence
441 { ISD::SREM, MVT::v16i32, { 8 } }, // pmuludq+mul+sub sequence
442 { ISD::UDIV, MVT::v16i32, { 5 } }, // pmuludq sequence
443 { ISD::UREM, MVT::v16i32, { 7 } }, // pmuludq+mul+sub sequence
446 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX512())
447 if (const auto *Entry =
448 CostTableLookup(AVX512UniformConstCostTable, ISD, LT.second))
449 if (auto KindCost = Entry->Cost[CostKind])
450 return LT.first * *KindCost;
452 static const CostKindTblEntry AVX2UniformConstCostTable[] = {
453 { ISD::SHL, MVT::v16i8, { 1, 8, 2, 3 } }, // psllw + pand.
454 { ISD::SRL, MVT::v16i8, { 1, 8, 2, 3 } }, // psrlw + pand.
455 { ISD::SRA, MVT::v16i8, { 2, 10, 5, 6 } }, // psrlw, pand, pxor, psubb.
456 { ISD::SHL, MVT::v32i8, { 2, 8, 2, 4 } }, // psllw + pand.
457 { ISD::SRL, MVT::v32i8, { 2, 8, 2, 4 } }, // psrlw + pand.
458 { ISD::SRA, MVT::v32i8, { 3, 10, 5, 9 } }, // psrlw, pand, pxor, psubb.
460 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw
461 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw
462 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw
463 { ISD::SHL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psllw
464 { ISD::SRL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psrlw
465 { ISD::SRA, MVT::v16i16,{ 2, 2, 1, 2 } }, // psraw
467 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
468 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld
469 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad
470 { ISD::SHL, MVT::v8i32, { 2, 2, 1, 2 } }, // pslld
471 { ISD::SRL, MVT::v8i32, { 2, 2, 1, 2 } }, // psrld
472 { ISD::SRA, MVT::v8i32, { 2, 2, 1, 2 } }, // psrad
474 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq
475 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq
476 { ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
477 { ISD::SHL, MVT::v4i64, { 2, 2, 1, 2 } }, // psllq
478 { ISD::SRL, MVT::v4i64, { 2, 2, 1, 2 } }, // psrlq
479 { ISD::SRA, MVT::v4i64, { 4, 4, 3, 6 } }, // psrad + shuffle + split.
481 { ISD::SDIV, MVT::v8i32, { 6 } }, // pmuludq sequence
482 { ISD::SREM, MVT::v8i32, { 8 } }, // pmuludq+mul+sub sequence
483 { ISD::UDIV, MVT::v8i32, { 5 } }, // pmuludq sequence
484 { ISD::UREM, MVT::v8i32, { 7 } }, // pmuludq+mul+sub sequence
487 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX2())
488 if (const auto *Entry =
489 CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second))
490 if (auto KindCost = Entry->Cost[CostKind])
491 return LT.first * *KindCost;
493 static const CostKindTblEntry AVXUniformConstCostTable[] = {
494 { ISD::SHL, MVT::v16i8, { 2, 7, 2, 3 } }, // psllw + pand.
495 { ISD::SRL, MVT::v16i8, { 2, 7, 2, 3 } }, // psrlw + pand.
496 { ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
497 { ISD::SHL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psllw + pand) + split.
498 { ISD::SRL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psrlw + pand) + split.
499 { ISD::SRA, MVT::v32i8, { 7, 7, 12, 13 } }, // 2*(psrlw, pand, pxor, psubb) + split.
501 { ISD::SHL, MVT::v8i16, { 1, 2, 1, 1 } }, // psllw.
502 { ISD::SRL, MVT::v8i16, { 1, 2, 1, 1 } }, // psrlw.
503 { ISD::SRA, MVT::v8i16, { 1, 2, 1, 1 } }, // psraw.
504 { ISD::SHL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psllw + split.
505 { ISD::SRL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psrlw + split.
506 { ISD::SRA, MVT::v16i16,{ 3, 6, 4, 5 } }, // psraw + split.
508 { ISD::SHL, MVT::v4i32, { 1, 2, 1, 1 } }, // pslld.
509 { ISD::SRL, MVT::v4i32, { 1, 2, 1, 1 } }, // psrld.
510 { ISD::SRA, MVT::v4i32, { 1, 2, 1, 1 } }, // psrad.
511 { ISD::SHL, MVT::v8i32, { 3, 6, 4, 5 } }, // pslld + split.
512 { ISD::SRL, MVT::v8i32, { 3, 6, 4, 5 } }, // psrld + split.
513 { ISD::SRA, MVT::v8i32, { 3, 6, 4, 5 } }, // psrad + split.
515 { ISD::SHL, MVT::v2i64, { 1, 2, 1, 1 } }, // psllq.
516 { ISD::SRL, MVT::v2i64, { 1, 2, 1, 1 } }, // psrlq.
517 { ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
518 { ISD::SHL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
519 { ISD::SRL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
520 { ISD::SRA, MVT::v4i64, { 5, 7, 8, 9 } }, // 2 x psrad + shuffle + split.
522 { ISD::SDIV, MVT::v8i32, { 14 } }, // 2*pmuludq sequence + split.
523 { ISD::SREM, MVT::v8i32, { 18 } }, // 2*pmuludq+mul+sub sequence + split.
524 { ISD::UDIV, MVT::v8i32, { 12 } }, // 2*pmuludq sequence + split.
525 { ISD::UREM, MVT::v8i32, { 16 } }, // 2*pmuludq+mul+sub sequence + split.
528 // XOP has faster vXi8 shifts.
529 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX() &&
530 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
531 if (const auto *Entry =
532 CostTableLookup(AVXUniformConstCostTable, ISD, LT.second))
533 if (auto KindCost = Entry->Cost[CostKind])
534 return LT.first * *KindCost;
536 static const CostKindTblEntry SSE2UniformConstCostTable[] = {
537 { ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
538 { ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
539 { ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
541 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw.
542 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw.
543 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw.
545 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
546 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld.
547 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad.
549 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq.
550 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq.
551 { ISD::SRA, MVT::v2i64, { 3, 5, 6, 6 } }, // 2 x psrad + shuffle.
553 { ISD::SDIV, MVT::v4i32, { 6 } }, // pmuludq sequence
554 { ISD::SREM, MVT::v4i32, { 8 } }, // pmuludq+mul+sub sequence
555 { ISD::UDIV, MVT::v4i32, { 5 } }, // pmuludq sequence
556 { ISD::UREM, MVT::v4i32, { 7 } }, // pmuludq+mul+sub sequence
559 // XOP has faster vXi8 shifts.
560 if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasSSE2() &&
561 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
562 if (const auto *Entry =
563 CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
564 if (auto KindCost = Entry->Cost[CostKind])
565 return LT.first * *KindCost;
567 static const CostKindTblEntry AVX512BWConstCostTable[] = {
568 { ISD::SDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
569 { ISD::SREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
570 { ISD::UDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
571 { ISD::UREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
573 { ISD::SDIV, MVT::v32i16, { 6 } }, // vpmulhw sequence
574 { ISD::SREM, MVT::v32i16, { 8 } }, // vpmulhw+mul+sub sequence
575 { ISD::UDIV, MVT::v32i16, { 6 } }, // vpmulhuw sequence
576 { ISD::UREM, MVT::v32i16, { 8 } }, // vpmulhuw+mul+sub sequence
579 if (Op2Info.isConstant() && ST->hasBWI())
580 if (const auto *Entry =
581 CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
582 if (auto KindCost = Entry->Cost[CostKind])
583 return LT.first * *KindCost;
585 static const CostKindTblEntry AVX512ConstCostTable[] = {
586 { ISD::SDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
587 { ISD::SREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
588 { ISD::UDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
589 { ISD::UREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
591 { ISD::SDIV, MVT::v32i16, { 12 } }, // 2*vpmulhw sequence
592 { ISD::SREM, MVT::v32i16, { 16 } }, // 2*vpmulhw+mul+sub sequence
593 { ISD::UDIV, MVT::v32i16, { 12 } }, // 2*vpmulhuw sequence
594 { ISD::UREM, MVT::v32i16, { 16 } }, // 2*vpmulhuw+mul+sub sequence
596 { ISD::SDIV, MVT::v16i32, { 15 } }, // vpmuldq sequence
597 { ISD::SREM, MVT::v16i32, { 17 } }, // vpmuldq+mul+sub sequence
598 { ISD::UDIV, MVT::v16i32, { 15 } }, // vpmuludq sequence
599 { ISD::UREM, MVT::v16i32, { 17 } }, // vpmuludq+mul+sub sequence
602 if (Op2Info.isConstant() && ST->hasAVX512())
603 if (const auto *Entry =
604 CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
605 if (auto KindCost = Entry->Cost[CostKind])
606 return LT.first * *KindCost;
608 static const CostKindTblEntry AVX2ConstCostTable[] = {
609 { ISD::SDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
610 { ISD::SREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
611 { ISD::UDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
612 { ISD::UREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
614 { ISD::SDIV, MVT::v16i16, { 6 } }, // vpmulhw sequence
615 { ISD::SREM, MVT::v16i16, { 8 } }, // vpmulhw+mul+sub sequence
616 { ISD::UDIV, MVT::v16i16, { 6 } }, // vpmulhuw sequence
617 { ISD::UREM, MVT::v16i16, { 8 } }, // vpmulhuw+mul+sub sequence
619 { ISD::SDIV, MVT::v8i32, { 15 } }, // vpmuldq sequence
620 { ISD::SREM, MVT::v8i32, { 19 } }, // vpmuldq+mul+sub sequence
621 { ISD::UDIV, MVT::v8i32, { 15 } }, // vpmuludq sequence
622 { ISD::UREM, MVT::v8i32, { 19 } }, // vpmuludq+mul+sub sequence
625 if (Op2Info.isConstant() && ST->hasAVX2())
626 if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
627 if (auto KindCost = Entry->Cost[CostKind])
628 return LT.first * *KindCost;
630 static const CostKindTblEntry AVXConstCostTable[] = {
631 { ISD::SDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
632 { ISD::SREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
633 { ISD::UDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
634 { ISD::UREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
636 { ISD::SDIV, MVT::v16i16, { 14 } }, // 2*pmulhw sequence + split.
637 { ISD::SREM, MVT::v16i16, { 18 } }, // 2*pmulhw+mul+sub sequence + split.
638 { ISD::UDIV, MVT::v16i16, { 14 } }, // 2*pmulhuw sequence + split.
639 { ISD::UREM, MVT::v16i16, { 18 } }, // 2*pmulhuw+mul+sub sequence + split.
641 { ISD::SDIV, MVT::v8i32, { 32 } }, // vpmuludq sequence
642 { ISD::SREM, MVT::v8i32, { 38 } }, // vpmuludq+mul+sub sequence
643 { ISD::UDIV, MVT::v8i32, { 32 } }, // 2*pmuludq sequence + split.
644 { ISD::UREM, MVT::v8i32, { 42 } }, // 2*pmuludq+mul+sub sequence + split.
647 if (Op2Info.isConstant() && ST->hasAVX())
648 if (const auto *Entry = CostTableLookup(AVXConstCostTable, ISD, LT.second))
649 if (auto KindCost = Entry->Cost[CostKind])
650 return LT.first * *KindCost;
652 static const CostKindTblEntry SSE41ConstCostTable[] = {
653 { ISD::SDIV, MVT::v4i32, { 15 } }, // vpmuludq sequence
654 { ISD::SREM, MVT::v4i32, { 20 } }, // vpmuludq+mul+sub sequence
657 if (Op2Info.isConstant() && ST->hasSSE41())
658 if (const auto *Entry =
659 CostTableLookup(SSE41ConstCostTable, ISD, LT.second))
660 if (auto KindCost = Entry->Cost[CostKind])
661 return LT.first * *KindCost;
663 static const CostKindTblEntry SSE2ConstCostTable[] = {
664 { ISD::SDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
665 { ISD::SREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
666 { ISD::UDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
667 { ISD::UREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
669 { ISD::SDIV, MVT::v8i16, { 6 } }, // pmulhw sequence
670 { ISD::SREM, MVT::v8i16, { 8 } }, // pmulhw+mul+sub sequence
671 { ISD::UDIV, MVT::v8i16, { 6 } }, // pmulhuw sequence
672 { ISD::UREM, MVT::v8i16, { 8 } }, // pmulhuw+mul+sub sequence
674 { ISD::SDIV, MVT::v4i32, { 19 } }, // pmuludq sequence
675 { ISD::SREM, MVT::v4i32, { 24 } }, // pmuludq+mul+sub sequence
676 { ISD::UDIV, MVT::v4i32, { 15 } }, // pmuludq sequence
677 { ISD::UREM, MVT::v4i32, { 20 } }, // pmuludq+mul+sub sequence
680 if (Op2Info.isConstant() && ST->hasSSE2())
681 if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
682 if (auto KindCost = Entry->Cost[CostKind])
683 return LT.first * *KindCost;
685 static const CostKindTblEntry AVX512BWUniformCostTable[] = {
686 { ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
687 { ISD::SRL, MVT::v16i8, { 3,10, 5, 8 } }, // psrlw + pand.
688 { ISD::SRA, MVT::v16i8, { 4,12, 8,12 } }, // psrlw, pand, pxor, psubb.
689 { ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
690 { ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
691 { ISD::SRA, MVT::v32i8, { 5,10,10,13 } }, // psrlw, pand, pxor, psubb.
692 { ISD::SHL, MVT::v64i8, { 4, 7, 6, 8 } }, // psllw + pand.
693 { ISD::SRL, MVT::v64i8, { 4, 8, 7,10 } }, // psrlw + pand.
694 { ISD::SRA, MVT::v64i8, { 5,10,10,15 } }, // psrlw, pand, pxor, psubb.
696 { ISD::SHL, MVT::v32i16, { 2, 4, 2, 3 } }, // psllw
697 { ISD::SRL, MVT::v32i16, { 2, 4, 2, 3 } }, // psrlw
698 { ISD::SRA, MVT::v32i16, { 2, 4, 2, 3 } }, // psrqw
701 if (ST->hasBWI() && Op2Info.isUniform())
702 if (const auto *Entry =
703 CostTableLookup(AVX512BWUniformCostTable, ISD, LT.second))
704 if (auto KindCost = Entry->Cost[CostKind])
705 return LT.first * *KindCost;
707 static const CostKindTblEntry AVX512UniformCostTable[] = {
708 { ISD::SHL, MVT::v32i16, { 5,10, 5, 7 } }, // psllw + split.
709 { ISD::SRL, MVT::v32i16, { 5,10, 5, 7 } }, // psrlw + split.
710 { ISD::SRA, MVT::v32i16, { 5,10, 5, 7 } }, // psraw + split.
712 { ISD::SHL, MVT::v16i32, { 2, 4, 2, 3 } }, // pslld
713 { ISD::SRL, MVT::v16i32, { 2, 4, 2, 3 } }, // psrld
714 { ISD::SRA, MVT::v16i32, { 2, 4, 2, 3 } }, // psrad
716 { ISD::SRA, MVT::v2i64, { 1, 2, 1, 2 } }, // psraq
717 { ISD::SHL, MVT::v4i64, { 1, 4, 1, 2 } }, // psllq
718 { ISD::SRL, MVT::v4i64, { 1, 4, 1, 2 } }, // psrlq
719 { ISD::SRA, MVT::v4i64, { 1, 4, 1, 2 } }, // psraq
720 { ISD::SHL, MVT::v8i64, { 1, 4, 1, 2 } }, // psllq
721 { ISD::SRL, MVT::v8i64, { 1, 4, 1, 2 } }, // psrlq
722 { ISD::SRA, MVT::v8i64, { 1, 4, 1, 2 } }, // psraq
725 if (ST->hasAVX512() && Op2Info.isUniform())
726 if (const auto *Entry =
727 CostTableLookup(AVX512UniformCostTable, ISD, LT.second))
728 if (auto KindCost = Entry->Cost[CostKind])
729 return LT.first * *KindCost;
731 static const CostKindTblEntry AVX2UniformCostTable[] = {
732 // Uniform splats are cheaper for the following instructions.
733 { ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
734 { ISD::SRL, MVT::v16i8, { 3, 9, 5, 8 } }, // psrlw + pand.
735 { ISD::SRA, MVT::v16i8, { 4, 5, 9,13 } }, // psrlw, pand, pxor, psubb.
736 { ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
737 { ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
738 { ISD::SRA, MVT::v32i8, { 6, 9,11,16 } }, // psrlw, pand, pxor, psubb.
740 { ISD::SHL, MVT::v8i16, { 1, 2, 1, 2 } }, // psllw.
741 { ISD::SRL, MVT::v8i16, { 1, 2, 1, 2 } }, // psrlw.
742 { ISD::SRA, MVT::v8i16, { 1, 2, 1, 2 } }, // psraw.
743 { ISD::SHL, MVT::v16i16, { 2, 4, 2, 3 } }, // psllw.
744 { ISD::SRL, MVT::v16i16, { 2, 4, 2, 3 } }, // psrlw.
745 { ISD::SRA, MVT::v16i16, { 2, 4, 2, 3 } }, // psraw.
747 { ISD::SHL, MVT::v4i32, { 1, 2, 1, 2 } }, // pslld
748 { ISD::SRL, MVT::v4i32, { 1, 2, 1, 2 } }, // psrld
749 { ISD::SRA, MVT::v4i32, { 1, 2, 1, 2 } }, // psrad
750 { ISD::SHL, MVT::v8i32, { 2, 4, 2, 3 } }, // pslld
751 { ISD::SRL, MVT::v8i32, { 2, 4, 2, 3 } }, // psrld
752 { ISD::SRA, MVT::v8i32, { 2, 4, 2, 3 } }, // psrad
754 { ISD::SHL, MVT::v2i64, { 1, 2, 1, 2 } }, // psllq
755 { ISD::SRL, MVT::v2i64, { 1, 2, 1, 2 } }, // psrlq
756 { ISD::SRA, MVT::v2i64, { 2, 4, 5, 7 } }, // 2 x psrad + shuffle.
757 { ISD::SHL, MVT::v4i64, { 2, 4, 1, 2 } }, // psllq
758 { ISD::SRL, MVT::v4i64, { 2, 4, 1, 2 } }, // psrlq
759 { ISD::SRA, MVT::v4i64, { 4, 6, 5, 9 } }, // 2 x psrad + shuffle.
762 if (ST->hasAVX2() && Op2Info.isUniform())
763 if (const auto *Entry =
764 CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
765 if (auto KindCost = Entry->Cost[CostKind])
766 return LT.first * *KindCost;
768 static const CostKindTblEntry AVXUniformCostTable[] = {
769 { ISD::SHL, MVT::v16i8, { 4, 4, 6, 8 } }, // psllw + pand.
770 { ISD::SRL, MVT::v16i8, { 4, 8, 5, 8 } }, // psrlw + pand.
771 { ISD::SRA, MVT::v16i8, { 6, 6, 9,13 } }, // psrlw, pand, pxor, psubb.
772 { ISD::SHL, MVT::v32i8, { 7, 8,11,14 } }, // psllw + pand + split.
773 { ISD::SRL, MVT::v32i8, { 7, 9,10,14 } }, // psrlw + pand + split.
774 { ISD::SRA, MVT::v32i8, { 10,11,16,21 } }, // psrlw, pand, pxor, psubb + split.
776 { ISD::SHL, MVT::v8i16, { 1, 3, 1, 2 } }, // psllw.
777 { ISD::SRL, MVT::v8i16, { 1, 3, 1, 2 } }, // psrlw.
778 { ISD::SRA, MVT::v8i16, { 1, 3, 1, 2 } }, // psraw.
779 { ISD::SHL, MVT::v16i16, { 3, 7, 5, 7 } }, // psllw + split.
780 { ISD::SRL, MVT::v16i16, { 3, 7, 5, 7 } }, // psrlw + split.
781 { ISD::SRA, MVT::v16i16, { 3, 7, 5, 7 } }, // psraw + split.
783 { ISD::SHL, MVT::v4i32, { 1, 3, 1, 2 } }, // pslld.
784 { ISD::SRL, MVT::v4i32, { 1, 3, 1, 2 } }, // psrld.
785 { ISD::SRA, MVT::v4i32, { 1, 3, 1, 2 } }, // psrad.
786 { ISD::SHL, MVT::v8i32, { 3, 7, 5, 7 } }, // pslld + split.
787 { ISD::SRL, MVT::v8i32, { 3, 7, 5, 7 } }, // psrld + split.
788 { ISD::SRA, MVT::v8i32, { 3, 7, 5, 7 } }, // psrad + split.
790 { ISD::SHL, MVT::v2i64, { 1, 3, 1, 2 } }, // psllq.
791 { ISD::SRL, MVT::v2i64, { 1, 3, 1, 2 } }, // psrlq.
792 { ISD::SRA, MVT::v2i64, { 3, 4, 5, 7 } }, // 2 x psrad + shuffle.
793 { ISD::SHL, MVT::v4i64, { 3, 7, 4, 6 } }, // psllq + split.
794 { ISD::SRL, MVT::v4i64, { 3, 7, 4, 6 } }, // psrlq + split.
795 { ISD::SRA, MVT::v4i64, { 6, 7,10,13 } }, // 2 x (2 x psrad + shuffle) + split.
798 // XOP has faster vXi8 shifts.
799 if (ST->hasAVX() && Op2Info.isUniform() &&
800 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
801 if (const auto *Entry =
802 CostTableLookup(AVXUniformCostTable, ISD, LT.second))
803 if (auto KindCost = Entry->Cost[CostKind])
804 return LT.first * *KindCost;
806 static const CostKindTblEntry SSE2UniformCostTable[] = {
807 // Uniform splats are cheaper for the following instructions.
808 { ISD::SHL, MVT::v16i8, { 9, 10, 6, 9 } }, // psllw + pand.
809 { ISD::SRL, MVT::v16i8, { 9, 13, 5, 9 } }, // psrlw + pand.
810 { ISD::SRA, MVT::v16i8, { 11, 15, 9,13 } }, // pcmpgtb sequence.
812 { ISD::SHL, MVT::v8i16, { 2, 2, 1, 2 } }, // psllw.
813 { ISD::SRL, MVT::v8i16, { 2, 2, 1, 2 } }, // psrlw.
814 { ISD::SRA, MVT::v8i16, { 2, 2, 1, 2 } }, // psraw.
816 { ISD::SHL, MVT::v4i32, { 2, 2, 1, 2 } }, // pslld
817 { ISD::SRL, MVT::v4i32, { 2, 2, 1, 2 } }, // psrld.
818 { ISD::SRA, MVT::v4i32, { 2, 2, 1, 2 } }, // psrad.
820 { ISD::SHL, MVT::v2i64, { 2, 2, 1, 2 } }, // psllq.
821 { ISD::SRL, MVT::v2i64, { 2, 2, 1, 2 } }, // psrlq.
822 { ISD::SRA, MVT::v2i64, { 5, 9, 5, 7 } }, // 2*psrlq + xor + sub.
825 if (ST->hasSSE2() && Op2Info.isUniform() &&
826 (!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
827 if (const auto *Entry =
828 CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
829 if (auto KindCost = Entry->Cost[CostKind])
830 return LT.first * *KindCost;
832 static const CostKindTblEntry AVX512DQCostTable[] = {
833 { ISD::MUL, MVT::v2i64, { 2, 15, 1, 3 } }, // pmullq
834 { ISD::MUL, MVT::v4i64, { 2, 15, 1, 3 } }, // pmullq
835 { ISD::MUL, MVT::v8i64, { 3, 15, 1, 3 } } // pmullq
838 // Look for AVX512DQ lowering tricks for custom cases.
839 if (ST->hasDQI())
840 if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
841 if (auto KindCost = Entry->Cost[CostKind])
842 return LT.first * *KindCost;
844 static const CostKindTblEntry AVX512BWCostTable[] = {
845 { ISD::SHL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsllvw/pack sequence.
846 { ISD::SRL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsrlvw/pack sequence.
847 { ISD::SRA, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsravw/pack sequence.
848 { ISD::SHL, MVT::v32i8, { 4, 23,11,16 } }, // extend/vpsllvw/pack sequence.
849 { ISD::SRL, MVT::v32i8, { 4, 30,12,18 } }, // extend/vpsrlvw/pack sequence.
850 { ISD::SRA, MVT::v32i8, { 6, 13,24,30 } }, // extend/vpsravw/pack sequence.
851 { ISD::SHL, MVT::v64i8, { 6, 19,13,15 } }, // extend/vpsllvw/pack sequence.
852 { ISD::SRL, MVT::v64i8, { 7, 27,15,18 } }, // extend/vpsrlvw/pack sequence.
853 { ISD::SRA, MVT::v64i8, { 15, 15,30,30 } }, // extend/vpsravw/pack sequence.
855 { ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsllvw
856 { ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsrlvw
857 { ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsravw
858 { ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsllvw
859 { ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsrlvw
860 { ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsravw
861 { ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsllvw
862 { ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsrlvw
863 { ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsravw
865 { ISD::ADD, MVT::v64i8, { 1, 1, 1, 1 } }, // paddb
866 { ISD::ADD, MVT::v32i16, { 1, 1, 1, 1 } }, // paddw
868 { ISD::ADD, MVT::v32i8, { 1, 1, 1, 1 } }, // paddb
869 { ISD::ADD, MVT::v16i16, { 1, 1, 1, 1 } }, // paddw
870 { ISD::ADD, MVT::v8i32, { 1, 1, 1, 1 } }, // paddd
871 { ISD::ADD, MVT::v4i64, { 1, 1, 1, 1 } }, // paddq
873 { ISD::SUB, MVT::v64i8, { 1, 1, 1, 1 } }, // psubb
874 { ISD::SUB, MVT::v32i16, { 1, 1, 1, 1 } }, // psubw
876 { ISD::MUL, MVT::v16i8, { 4, 12, 4, 5 } }, // extend/pmullw/trunc
877 { ISD::MUL, MVT::v32i8, { 3, 10, 7,10 } }, // pmaddubsw
878 { ISD::MUL, MVT::v64i8, { 3, 11, 7,10 } }, // pmaddubsw
879 { ISD::MUL, MVT::v32i16, { 1, 5, 1, 1 } }, // pmullw
881 { ISD::SUB, MVT::v32i8, { 1, 1, 1, 1 } }, // psubb
882 { ISD::SUB, MVT::v16i16, { 1, 1, 1, 1 } }, // psubw
883 { ISD::SUB, MVT::v8i32, { 1, 1, 1, 1 } }, // psubd
884 { ISD::SUB, MVT::v4i64, { 1, 1, 1, 1 } }, // psubq
887 // Look for AVX512BW lowering tricks for custom cases.
888 if (ST->hasBWI())
889 if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
890 if (auto KindCost = Entry->Cost[CostKind])
891 return LT.first * *KindCost;
893 static const CostKindTblEntry AVX512CostTable[] = {
894 { ISD::SHL, MVT::v64i8, { 15, 19,27,33 } }, // vpblendv+split sequence.
895 { ISD::SRL, MVT::v64i8, { 15, 19,30,36 } }, // vpblendv+split sequence.
896 { ISD::SRA, MVT::v64i8, { 37, 37,51,63 } }, // vpblendv+split sequence.
898 { ISD::SHL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
899 { ISD::SRL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
900 { ISD::SRA, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsravd/pack sequence.
902 { ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } },
903 { ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } },
904 { ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } },
905 { ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } },
906 { ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } },
907 { ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } },
908 { ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } },
909 { ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } },
910 { ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } },
912 { ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } },
913 { ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } },
914 { ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } },
915 { ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } },
916 { ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } },
917 { ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } },
918 { ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } },
919 { ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } },
920 { ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } },
922 { ISD::ADD, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*paddb + split
923 { ISD::ADD, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*paddw + split
925 { ISD::SUB, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*psubb + split
926 { ISD::SUB, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*psubw + split
928 { ISD::AND, MVT::v32i8, { 1, 1, 1, 1 } },
929 { ISD::AND, MVT::v16i16, { 1, 1, 1, 1 } },
930 { ISD::AND, MVT::v8i32, { 1, 1, 1, 1 } },
931 { ISD::AND, MVT::v4i64, { 1, 1, 1, 1 } },
933 { ISD::OR, MVT::v32i8, { 1, 1, 1, 1 } },
934 { ISD::OR, MVT::v16i16, { 1, 1, 1, 1 } },
935 { ISD::OR, MVT::v8i32, { 1, 1, 1, 1 } },
936 { ISD::OR, MVT::v4i64, { 1, 1, 1, 1 } },
938 { ISD::XOR, MVT::v32i8, { 1, 1, 1, 1 } },
939 { ISD::XOR, MVT::v16i16, { 1, 1, 1, 1 } },
940 { ISD::XOR, MVT::v8i32, { 1, 1, 1, 1 } },
941 { ISD::XOR, MVT::v4i64, { 1, 1, 1, 1 } },
943 { ISD::MUL, MVT::v16i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
944 { ISD::MUL, MVT::v8i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
945 { ISD::MUL, MVT::v4i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
946 { ISD::MUL, MVT::v8i64, { 6, 9, 8, 8 } }, // 3*pmuludq/3*shift/2*add
947 { ISD::MUL, MVT::i64, { 1 } }, // Skylake from http://www.agner.org/
949 { X86ISD::PMULUDQ, MVT::v8i64, { 1, 5, 1, 1 } },
951 { ISD::FNEG, MVT::v8f64, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
952 { ISD::FADD, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
953 { ISD::FADD, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
954 { ISD::FSUB, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
955 { ISD::FSUB, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
956 { ISD::FMUL, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
957 { ISD::FMUL, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
958 { ISD::FMUL, MVT::v2f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
959 { ISD::FMUL, MVT::f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
961 { ISD::FDIV, MVT::f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
962 { ISD::FDIV, MVT::v2f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
963 { ISD::FDIV, MVT::v4f64, { 8, 14, 1, 1 } }, // Skylake from http://www.agner.org/
964 { ISD::FDIV, MVT::v8f64, { 16, 23, 1, 3 } }, // Skylake from http://www.agner.org/
966 { ISD::FNEG, MVT::v16f32, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
967 { ISD::FADD, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
968 { ISD::FADD, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
969 { ISD::FSUB, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
970 { ISD::FSUB, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
971 { ISD::FMUL, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
972 { ISD::FMUL, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
973 { ISD::FMUL, MVT::v4f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
974 { ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
976 { ISD::FDIV, MVT::f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
977 { ISD::FDIV, MVT::v4f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
978 { ISD::FDIV, MVT::v8f32, { 5, 11, 1, 1 } }, // Skylake from http://www.agner.org/
979 { ISD::FDIV, MVT::v16f32, { 10, 18, 1, 3 } }, // Skylake from http://www.agner.org/
982 if (ST->hasAVX512())
983 if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
984 if (auto KindCost = Entry->Cost[CostKind])
985 return LT.first * *KindCost;
987 static const CostKindTblEntry AVX2ShiftCostTable[] = {
988 // Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
989 // customize them to detect the cases where shift amount is a scalar one.
990 { ISD::SHL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsllvd (Haswell from agner.org)
991 { ISD::SRL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
992 { ISD::SRA, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsravd (Haswell from agner.org)
993 { ISD::SHL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsllvd (Haswell from agner.org)
994 { ISD::SRL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
995 { ISD::SRA, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsravd (Haswell from agner.org)
996 { ISD::SHL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsllvq (Haswell from agner.org)
997 { ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsrlvq (Haswell from agner.org)
998 { ISD::SHL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsllvq (Haswell from agner.org)
999 { ISD::SRL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsrlvq (Haswell from agner.org)
1002 if (ST->hasAVX512()) {
1003 if (ISD == ISD::SHL && LT.second == MVT::v32i16 && Op2Info.isConstant())
1004 // On AVX512, a packed v32i16 shift left by a constant build_vector
1005 // is lowered into a vector multiply (vpmullw).
1006 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
1007 Op1Info.getNoProps(), Op2Info.getNoProps());
1010 // Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
1011 if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
1012 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
1013 Op2Info.isConstant())
1014 // On AVX2, a packed v16i16 shift left by a constant build_vector
1015 // is lowered into a vector multiply (vpmullw).
1016 return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
1017 Op1Info.getNoProps(), Op2Info.getNoProps());
1019 if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
1020 if (auto KindCost = Entry->Cost[CostKind])
1021 return LT.first * *KindCost;
1024 static const CostKindTblEntry XOPShiftCostTable[] = {
1025 // 128bit shifts take 1cy, but right shifts require negation beforehand.
1026 { ISD::SHL, MVT::v16i8, { 1, 3, 1, 1 } },
1027 { ISD::SRL, MVT::v16i8, { 2, 3, 1, 1 } },
1028 { ISD::SRA, MVT::v16i8, { 2, 3, 1, 1 } },
1029 { ISD::SHL, MVT::v8i16, { 1, 3, 1, 1 } },
1030 { ISD::SRL, MVT::v8i16, { 2, 3, 1, 1 } },
1031 { ISD::SRA, MVT::v8i16, { 2, 3, 1, 1 } },
1032 { ISD::SHL, MVT::v4i32, { 1, 3, 1, 1 } },
1033 { ISD::SRL, MVT::v4i32, { 2, 3, 1, 1 } },
1034 { ISD::SRA, MVT::v4i32, { 2, 3, 1, 1 } },
1035 { ISD::SHL, MVT::v2i64, { 1, 3, 1, 1 } },
1036 { ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } },
1037 { ISD::SRA, MVT::v2i64, { 2, 3, 1, 1 } },
1038 // 256bit shifts require splitting if AVX2 didn't catch them above.
1039 { ISD::SHL, MVT::v32i8, { 4, 7, 5, 6 } },
1040 { ISD::SRL, MVT::v32i8, { 6, 7, 5, 6 } },
1041 { ISD::SRA, MVT::v32i8, { 6, 7, 5, 6 } },
1042 { ISD::SHL, MVT::v16i16, { 4, 7, 5, 6 } },
1043 { ISD::SRL, MVT::v16i16, { 6, 7, 5, 6 } },
1044 { ISD::SRA, MVT::v16i16, { 6, 7, 5, 6 } },
1045 { ISD::SHL, MVT::v8i32, { 4, 7, 5, 6 } },
1046 { ISD::SRL, MVT::v8i32, { 6, 7, 5, 6 } },
1047 { ISD::SRA, MVT::v8i32, { 6, 7, 5, 6 } },
1048 { ISD::SHL, MVT::v4i64, { 4, 7, 5, 6 } },
1049 { ISD::SRL, MVT::v4i64, { 6, 7, 5, 6 } },
1050 { ISD::SRA, MVT::v4i64, { 6, 7, 5, 6 } },
1053 // Look for XOP lowering tricks.
1054 if (ST->hasXOP()) {
1055 // If the right shift is constant then we'll fold the negation so
1056 // it's as cheap as a left shift.
1057 int ShiftISD = ISD;
1058 if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && Op2Info.isConstant())
1059 ShiftISD = ISD::SHL;
1060 if (const auto *Entry =
1061 CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
1062 if (auto KindCost = Entry->Cost[CostKind])
1063 return LT.first * *KindCost;
1066 if (ISD == ISD::SHL && !Op2Info.isUniform() && Op2Info.isConstant()) {
1067 MVT VT = LT.second;
1068 // Vector shift left by non uniform constant can be lowered
1069 // into vector multiply.
1070 if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
1071 ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
1072 ISD = ISD::MUL;
1075 static const CostKindTblEntry GLMCostTable[] = {
1076 { ISD::FDIV, MVT::f32, { 18, 19, 1, 1 } }, // divss
1077 { ISD::FDIV, MVT::v4f32, { 35, 36, 1, 1 } }, // divps
1078 { ISD::FDIV, MVT::f64, { 33, 34, 1, 1 } }, // divsd
1079 { ISD::FDIV, MVT::v2f64, { 65, 66, 1, 1 } }, // divpd
1082 if (ST->useGLMDivSqrtCosts())
1083 if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, LT.second))
1084 if (auto KindCost = Entry->Cost[CostKind])
1085 return LT.first * *KindCost;
1087 static const CostKindTblEntry SLMCostTable[] = {
1088 { ISD::MUL, MVT::v4i32, { 11, 11, 1, 7 } }, // pmulld
1089 { ISD::MUL, MVT::v8i16, { 2, 5, 1, 1 } }, // pmullw
1090 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // mulsd
1091 { ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // mulss
1092 { ISD::FMUL, MVT::v2f64, { 4, 7, 1, 1 } }, // mulpd
1093 { ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // mulps
1094 { ISD::FDIV, MVT::f32, { 17, 19, 1, 1 } }, // divss
1095 { ISD::FDIV, MVT::v4f32, { 39, 39, 1, 6 } }, // divps
1096 { ISD::FDIV, MVT::f64, { 32, 34, 1, 1 } }, // divsd
1097 { ISD::FDIV, MVT::v2f64, { 69, 69, 1, 6 } }, // divpd
1098 { ISD::FADD, MVT::v2f64, { 2, 4, 1, 1 } }, // addpd
1099 { ISD::FSUB, MVT::v2f64, { 2, 4, 1, 1 } }, // subpd
1100 // v2i64/v4i64 mul is custom lowered as a series of long:
1101 // multiplies(3), shifts(3) and adds(2)
1102 // slm muldq version throughput is 2 and addq throughput 4
1103 // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
1104 // 3X4 (addq throughput) = 17
1105 { ISD::MUL, MVT::v2i64, { 17, 22, 9, 9 } },
1106 // slm addq\subq throughput is 4
1107 { ISD::ADD, MVT::v2i64, { 4, 2, 1, 2 } },
1108 { ISD::SUB, MVT::v2i64, { 4, 2, 1, 2 } },
1111 if (ST->useSLMArithCosts())
1112 if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, LT.second))
1113 if (auto KindCost = Entry->Cost[CostKind])
1114 return LT.first * *KindCost;
1116 static const CostKindTblEntry AVX2CostTable[] = {
1117 { ISD::SHL, MVT::v16i8, { 6, 21,11,16 } }, // vpblendvb sequence.
1118 { ISD::SHL, MVT::v32i8, { 6, 23,11,22 } }, // vpblendvb sequence.
1119 { ISD::SHL, MVT::v8i16, { 5, 18, 5,10 } }, // extend/vpsrlvd/pack sequence.
1120 { ISD::SHL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
1122 { ISD::SRL, MVT::v16i8, { 6, 27,12,18 } }, // vpblendvb sequence.
1123 { ISD::SRL, MVT::v32i8, { 8, 30,12,24 } }, // vpblendvb sequence.
1124 { ISD::SRL, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsrlvd/pack sequence.
1125 { ISD::SRL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
1127 { ISD::SRA, MVT::v16i8, { 17, 17,24,30 } }, // vpblendvb sequence.
1128 { ISD::SRA, MVT::v32i8, { 18, 20,24,43 } }, // vpblendvb sequence.
1129 { ISD::SRA, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsravd/pack sequence.
1130 { ISD::SRA, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsravd/pack sequence.
1131 { ISD::SRA, MVT::v2i64, { 4, 5, 5, 5 } }, // srl/xor/sub sequence.
1132 { ISD::SRA, MVT::v4i64, { 8, 8, 5, 9 } }, // srl/xor/sub sequence.
1134 { ISD::SUB, MVT::v32i8, { 1, 1, 1, 2 } }, // psubb
1135 { ISD::ADD, MVT::v32i8, { 1, 1, 1, 2 } }, // paddb
1136 { ISD::SUB, MVT::v16i16, { 1, 1, 1, 2 } }, // psubw
1137 { ISD::ADD, MVT::v16i16, { 1, 1, 1, 2 } }, // paddw
1138 { ISD::SUB, MVT::v8i32, { 1, 1, 1, 2 } }, // psubd
1139 { ISD::ADD, MVT::v8i32, { 1, 1, 1, 2 } }, // paddd
1140 { ISD::SUB, MVT::v4i64, { 1, 1, 1, 2 } }, // psubq
1141 { ISD::ADD, MVT::v4i64, { 1, 1, 1, 2 } }, // paddq
1143 { ISD::MUL, MVT::v16i8, { 5, 18, 6,12 } }, // extend/pmullw/pack
1144 { ISD::MUL, MVT::v32i8, { 4, 8, 8,16 } }, // pmaddubsw
1145 { ISD::MUL, MVT::v16i16, { 2, 5, 1, 2 } }, // pmullw
1146 { ISD::MUL, MVT::v8i32, { 4, 10, 1, 2 } }, // pmulld
1147 { ISD::MUL, MVT::v4i32, { 2, 10, 1, 2 } }, // pmulld
1148 { ISD::MUL, MVT::v4i64, { 6, 10, 8,13 } }, // 3*pmuludq/3*shift/2*add
1149 { ISD::MUL, MVT::v2i64, { 6, 10, 8, 8 } }, // 3*pmuludq/3*shift/2*add
1151 { X86ISD::PMULUDQ, MVT::v4i64, { 1, 5, 1, 1 } },
1153 { ISD::FNEG, MVT::v4f64, { 1, 1, 1, 2 } }, // vxorpd
1154 { ISD::FNEG, MVT::v8f32, { 1, 1, 1, 2 } }, // vxorps
1156 { ISD::FADD, MVT::f64, { 1, 4, 1, 1 } }, // vaddsd
1157 { ISD::FADD, MVT::f32, { 1, 4, 1, 1 } }, // vaddss
1158 { ISD::FADD, MVT::v2f64, { 1, 4, 1, 1 } }, // vaddpd
1159 { ISD::FADD, MVT::v4f32, { 1, 4, 1, 1 } }, // vaddps
1160 { ISD::FADD, MVT::v4f64, { 1, 4, 1, 2 } }, // vaddpd
1161 { ISD::FADD, MVT::v8f32, { 1, 4, 1, 2 } }, // vaddps
1163 { ISD::FSUB, MVT::f64, { 1, 4, 1, 1 } }, // vsubsd
1164 { ISD::FSUB, MVT::f32, { 1, 4, 1, 1 } }, // vsubss
1165 { ISD::FSUB, MVT::v2f64, { 1, 4, 1, 1 } }, // vsubpd
1166 { ISD::FSUB, MVT::v4f32, { 1, 4, 1, 1 } }, // vsubps
1167 { ISD::FSUB, MVT::v4f64, { 1, 4, 1, 2 } }, // vsubpd
1168 { ISD::FSUB, MVT::v8f32, { 1, 4, 1, 2 } }, // vsubps
1170 { ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // vmulsd
1171 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // vmulss
1172 { ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // vmulpd
1173 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // vmulps
1174 { ISD::FMUL, MVT::v4f64, { 1, 5, 1, 2 } }, // vmulpd
1175 { ISD::FMUL, MVT::v8f32, { 1, 5, 1, 2 } }, // vmulps
1177 { ISD::FDIV, MVT::f32, { 7, 13, 1, 1 } }, // vdivss
1178 { ISD::FDIV, MVT::v4f32, { 7, 13, 1, 1 } }, // vdivps
1179 { ISD::FDIV, MVT::v8f32, { 14, 21, 1, 3 } }, // vdivps
1180 { ISD::FDIV, MVT::f64, { 14, 20, 1, 1 } }, // vdivsd
1181 { ISD::FDIV, MVT::v2f64, { 14, 20, 1, 1 } }, // vdivpd
1182 { ISD::FDIV, MVT::v4f64, { 28, 35, 1, 3 } }, // vdivpd
1185 // Look for AVX2 lowering tricks for custom cases.
1186 if (ST->hasAVX2())
1187 if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
1188 if (auto KindCost = Entry->Cost[CostKind])
1189 return LT.first * *KindCost;
1191 static const CostKindTblEntry AVX1CostTable[] = {
1192 // We don't have to scalarize unsupported ops. We can issue two half-sized
1193 // operations and we only need to extract the upper YMM half.
1194 // Two ops + 1 extract + 1 insert = 4.
1195 { ISD::MUL, MVT::v32i8, { 10, 11, 18, 19 } }, // pmaddubsw + split
1196 { ISD::MUL, MVT::v16i8, { 5, 6, 8, 12 } }, // 2*pmaddubsw/3*and/psllw/or
1197 { ISD::MUL, MVT::v16i16, { 4, 8, 5, 6 } }, // pmullw + split
1198 { ISD::MUL, MVT::v8i32, { 5, 8, 5, 10 } }, // pmulld + split
1199 { ISD::MUL, MVT::v4i32, { 2, 5, 1, 3 } }, // pmulld
1200 { ISD::MUL, MVT::v4i64, { 12, 15, 19, 20 } },
1202 { ISD::AND, MVT::v32i8, { 1, 1, 1, 2 } }, // vandps
1203 { ISD::AND, MVT::v16i16, { 1, 1, 1, 2 } }, // vandps
1204 { ISD::AND, MVT::v8i32, { 1, 1, 1, 2 } }, // vandps
1205 { ISD::AND, MVT::v4i64, { 1, 1, 1, 2 } }, // vandps
1207 { ISD::OR, MVT::v32i8, { 1, 1, 1, 2 } }, // vorps
1208 { ISD::OR, MVT::v16i16, { 1, 1, 1, 2 } }, // vorps
1209 { ISD::OR, MVT::v8i32, { 1, 1, 1, 2 } }, // vorps
1210 { ISD::OR, MVT::v4i64, { 1, 1, 1, 2 } }, // vorps
1212 { ISD::XOR, MVT::v32i8, { 1, 1, 1, 2 } }, // vxorps
1213 { ISD::XOR, MVT::v16i16, { 1, 1, 1, 2 } }, // vxorps
1214 { ISD::XOR, MVT::v8i32, { 1, 1, 1, 2 } }, // vxorps
1215 { ISD::XOR, MVT::v4i64, { 1, 1, 1, 2 } }, // vxorps
1217 { ISD::SUB, MVT::v32i8, { 4, 2, 5, 6 } }, // psubb + split
1218 { ISD::ADD, MVT::v32i8, { 4, 2, 5, 6 } }, // paddb + split
1219 { ISD::SUB, MVT::v16i16, { 4, 2, 5, 6 } }, // psubw + split
1220 { ISD::ADD, MVT::v16i16, { 4, 2, 5, 6 } }, // paddw + split
1221 { ISD::SUB, MVT::v8i32, { 4, 2, 5, 6 } }, // psubd + split
1222 { ISD::ADD, MVT::v8i32, { 4, 2, 5, 6 } }, // paddd + split
1223 { ISD::SUB, MVT::v4i64, { 4, 2, 5, 6 } }, // psubq + split
1224 { ISD::ADD, MVT::v4i64, { 4, 2, 5, 6 } }, // paddq + split
1225 { ISD::SUB, MVT::v2i64, { 1, 1, 1, 1 } }, // psubq
1226 { ISD::ADD, MVT::v2i64, { 1, 1, 1, 1 } }, // paddq
1228 { ISD::SHL, MVT::v16i8, { 10, 21,11,17 } }, // pblendvb sequence.
1229 { ISD::SHL, MVT::v32i8, { 22, 22,27,40 } }, // pblendvb sequence + split.
1230 { ISD::SHL, MVT::v8i16, { 6, 9,11,11 } }, // pblendvb sequence.
1231 { ISD::SHL, MVT::v16i16, { 13, 16,24,25 } }, // pblendvb sequence + split.
1232 { ISD::SHL, MVT::v4i32, { 3, 11, 4, 6 } }, // pslld/paddd/cvttps2dq/pmulld
1233 { ISD::SHL, MVT::v8i32, { 9, 11,12,17 } }, // pslld/paddd/cvttps2dq/pmulld + split
1234 { ISD::SHL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
1235 { ISD::SHL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
1237 { ISD::SRL, MVT::v16i8, { 11, 27,12,18 } }, // pblendvb sequence.
1238 { ISD::SRL, MVT::v32i8, { 23, 23,30,43 } }, // pblendvb sequence + split.
1239 { ISD::SRL, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
1240 { ISD::SRL, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
1241 { ISD::SRL, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
1242 { ISD::SRL, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
1243 { ISD::SRL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
1244 { ISD::SRL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
1246 { ISD::SRA, MVT::v16i8, { 21, 22,24,36 } }, // pblendvb sequence.
1247 { ISD::SRA, MVT::v32i8, { 44, 45,51,76 } }, // pblendvb sequence + split.
1248 { ISD::SRA, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
1249 { ISD::SRA, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
1250 { ISD::SRA, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
1251 { ISD::SRA, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
1252 { ISD::SRA, MVT::v2i64, { 5, 6,10,14 } }, // Shift each lane + blend.
1253 { ISD::SRA, MVT::v4i64, { 12, 12,22,30 } }, // Shift each lane + blend + split.
1255 { ISD::FNEG, MVT::v4f64, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
1256 { ISD::FNEG, MVT::v8f32, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
1258 { ISD::FADD, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1259 { ISD::FADD, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1260 { ISD::FADD, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1261 { ISD::FADD, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1262 { ISD::FADD, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1263 { ISD::FADD, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1265 { ISD::FSUB, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1266 { ISD::FSUB, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1267 { ISD::FSUB, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1268 { ISD::FSUB, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
1269 { ISD::FSUB, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1270 { ISD::FSUB, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
1272 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1273 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1274 { ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1275 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
1276 { ISD::FMUL, MVT::v4f64, { 4, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
1277 { ISD::FMUL, MVT::v8f32, { 2, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
1279 { ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
1280 { ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
1281 { ISD::FDIV, MVT::v8f32, { 28, 29, 1, 3 } }, // SNB from http://www.agner.org/
1282 { ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
1283 { ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
1284 { ISD::FDIV, MVT::v4f64, { 44, 45, 1, 3 } }, // SNB from http://www.agner.org/
1287 if (ST->hasAVX())
1288 if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
1289 if (auto KindCost = Entry->Cost[CostKind])
1290 return LT.first * *KindCost;
1292 static const CostKindTblEntry SSE42CostTable[] = {
1293 { ISD::FADD, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1294 { ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1295 { ISD::FADD, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1296 { ISD::FADD, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1298 { ISD::FSUB, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1299 { ISD::FSUB, MVT::f32 , { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1300 { ISD::FSUB, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1301 { ISD::FSUB, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
1303 { ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1304 { ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1305 { ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1306 { ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
1308 { ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
1309 { ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
1310 { ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
1311 { ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
1313 { ISD::MUL, MVT::v2i64, { 6, 10,10,10 } } // 3*pmuludq/3*shift/2*add
1316 if (ST->hasSSE42())
1317 if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
1318 if (auto KindCost = Entry->Cost[CostKind])
1319 return LT.first * *KindCost;
1321 static const CostKindTblEntry SSE41CostTable[] = {
1322 { ISD::SHL, MVT::v16i8, { 15, 24,17,22 } }, // pblendvb sequence.
1323 { ISD::SHL, MVT::v8i16, { 11, 14,11,11 } }, // pblendvb sequence.
1324 { ISD::SHL, MVT::v4i32, { 14, 20, 4,10 } }, // pslld/paddd/cvttps2dq/pmulld
1326 { ISD::SRL, MVT::v16i8, { 16, 27,18,24 } }, // pblendvb sequence.
1327 { ISD::SRL, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
1328 { ISD::SRL, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
1329 { ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1331 { ISD::SRA, MVT::v16i8, { 38, 41,30,36 } }, // pblendvb sequence.
1332 { ISD::SRA, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
1333 { ISD::SRA, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
1334 { ISD::SRA, MVT::v2i64, { 8, 17, 5, 7 } }, // splat+shuffle sequence.
1336 { ISD::MUL, MVT::v4i32, { 2, 11, 1, 1 } } // pmulld (Nehalem from agner.org)
1339 if (ST->hasSSE41())
1340 if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
1341 if (auto KindCost = Entry->Cost[CostKind])
1342 return LT.first * *KindCost;
1344 static const CostKindTblEntry SSSE3CostTable[] = {
1345 { ISD::MUL, MVT::v16i8, { 5, 18,10,12 } }, // 2*pmaddubsw/3*and/psllw/or
1348 if (ST->hasSSSE3())
1349 if (const auto *Entry = CostTableLookup(SSSE3CostTable, ISD, LT.second))
1350 if (auto KindCost = Entry->Cost[CostKind])
1351 return LT.first * *KindCost;
1353 static const CostKindTblEntry SSE2CostTable[] = {
1354 // We don't correctly identify costs of casts because they are marked as
1355 // custom.
1356 { ISD::SHL, MVT::v16i8, { 13, 21,26,28 } }, // cmpgtb sequence.
1357 { ISD::SHL, MVT::v8i16, { 24, 27,16,20 } }, // cmpgtw sequence.
1358 { ISD::SHL, MVT::v4i32, { 17, 19,10,12 } }, // pslld/paddd/cvttps2dq/pmuludq.
1359 { ISD::SHL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1361 { ISD::SRL, MVT::v16i8, { 14, 28,27,30 } }, // cmpgtb sequence.
1362 { ISD::SRL, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
1363 { ISD::SRL, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
1364 { ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
1366 { ISD::SRA, MVT::v16i8, { 27, 30,54,54 } }, // unpacked cmpgtb sequence.
1367 { ISD::SRA, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
1368 { ISD::SRA, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
1369 { ISD::SRA, MVT::v2i64, { 8, 11,12,16 } }, // srl/xor/sub splat+shuffle sequence.
1371 { ISD::AND, MVT::v16i8, { 1, 1, 1, 1 } }, // pand
1372 { ISD::AND, MVT::v8i16, { 1, 1, 1, 1 } }, // pand
1373 { ISD::AND, MVT::v4i32, { 1, 1, 1, 1 } }, // pand
1374 { ISD::AND, MVT::v2i64, { 1, 1, 1, 1 } }, // pand
1376 { ISD::OR, MVT::v16i8, { 1, 1, 1, 1 } }, // por
1377 { ISD::OR, MVT::v8i16, { 1, 1, 1, 1 } }, // por
1378 { ISD::OR, MVT::v4i32, { 1, 1, 1, 1 } }, // por
1379 { ISD::OR, MVT::v2i64, { 1, 1, 1, 1 } }, // por
1381 { ISD::XOR, MVT::v16i8, { 1, 1, 1, 1 } }, // pxor
1382 { ISD::XOR, MVT::v8i16, { 1, 1, 1, 1 } }, // pxor
1383 { ISD::XOR, MVT::v4i32, { 1, 1, 1, 1 } }, // pxor
1384 { ISD::XOR, MVT::v2i64, { 1, 1, 1, 1 } }, // pxor
1386 { ISD::ADD, MVT::v2i64, { 1, 2, 1, 2 } }, // paddq
1387 { ISD::SUB, MVT::v2i64, { 1, 2, 1, 2 } }, // psubq
1389 { ISD::MUL, MVT::v16i8, { 6, 18,12,12 } }, // 2*unpack/2*pmullw/2*and/pack
1390 { ISD::MUL, MVT::v8i16, { 1, 5, 1, 1 } }, // pmullw
1391 { ISD::MUL, MVT::v4i32, { 6, 8, 7, 7 } }, // 3*pmuludq/4*shuffle
1392 { ISD::MUL, MVT::v2i64, { 7, 10,10,10 } }, // 3*pmuludq/3*shift/2*add
1394 { X86ISD::PMULUDQ, MVT::v2i64, { 1, 5, 1, 1 } },
1396 { ISD::FDIV, MVT::f32, { 23, 23, 1, 1 } }, // Pentium IV from http://www.agner.org/
1397 { ISD::FDIV, MVT::v4f32, { 39, 39, 1, 1 } }, // Pentium IV from http://www.agner.org/
1398 { ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // Pentium IV from http://www.agner.org/
1399 { ISD::FDIV, MVT::v2f64, { 69, 69, 1, 1 } }, // Pentium IV from http://www.agner.org/
1401 { ISD::FNEG, MVT::f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1402 { ISD::FNEG, MVT::f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1403 { ISD::FNEG, MVT::v4f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1404 { ISD::FNEG, MVT::v2f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
1406 { ISD::FADD, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1407 { ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1408 { ISD::FADD, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1410 { ISD::FSUB, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1411 { ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1412 { ISD::FSUB, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
1414 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
1415 { ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
1418 if (ST->hasSSE2())
1419 if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
1420 if (auto KindCost = Entry->Cost[CostKind])
1421 return LT.first * *KindCost;
1423 static const CostKindTblEntry SSE1CostTable[] = {
1424 { ISD::FDIV, MVT::f32, { 17, 18, 1, 1 } }, // Pentium III from http://www.agner.org/
1425 { ISD::FDIV, MVT::v4f32, { 34, 48, 1, 1 } }, // Pentium III from http://www.agner.org/
1427 { ISD::FNEG, MVT::f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
1428 { ISD::FNEG, MVT::v4f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
1430 { ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1431 { ISD::FADD, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1433 { ISD::FSUB, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1434 { ISD::FSUB, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
1436 { ISD::FMUL, MVT::f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
1437 { ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
1440 if (ST->hasSSE1())
1441 if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
1442 if (auto KindCost = Entry->Cost[CostKind])
1443 return LT.first * *KindCost;
1445 static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
1446 { ISD::ADD, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
1447 { ISD::SUB, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
1448 { ISD::MUL, MVT::i64, { 2, 6, 1, 2 } },
1451 if (ST->is64Bit())
1452 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
1453 if (auto KindCost = Entry->Cost[CostKind])
1454 return LT.first * *KindCost;
1456 static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
1457 { ISD::ADD, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
1458 { ISD::ADD, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
1459 { ISD::ADD, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
1461 { ISD::SUB, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
1462 { ISD::SUB, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
1463 { ISD::SUB, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
1465 { ISD::MUL, MVT::i8, { 3, 4, 1, 1 } },
1466 { ISD::MUL, MVT::i16, { 2, 4, 1, 1 } },
1467 { ISD::MUL, MVT::i32, { 1, 4, 1, 1 } },
1469 { ISD::FNEG, MVT::f64, { 2, 2, 1, 3 } }, // (x87)
1470 { ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
1471 { ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
1472 { ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // (x87)
1473 { ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // (x87)
1476 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
1477 if (auto KindCost = Entry->Cost[CostKind])
1478 return LT.first * *KindCost;
1480 // It is not a good idea to vectorize division. We have to scalarize it and
1481 // in the process we will often end up having to spilling regular
1482 // registers. The overhead of division is going to dominate most kernels
1483 // anyways so try hard to prevent vectorization of division - it is
1484 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
1485 // to hide "20 cycles" for each lane.
1486 if (CostKind == TTI::TCK_RecipThroughput && LT.second.isVector() &&
1487 (ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
1488 ISD == ISD::UREM)) {
1489 InstructionCost ScalarCost =
1490 getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind,
1491 Op1Info.getNoProps(), Op2Info.getNoProps());
1492 return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
1495 // Handle some basic single instruction code size cases.
1496 if (CostKind == TTI::TCK_CodeSize) {
1497 switch (ISD) {
1498 case ISD::FADD:
1499 case ISD::FSUB:
1500 case ISD::FMUL:
1501 case ISD::FDIV:
1502 case ISD::FNEG:
1503 case ISD::AND:
1504 case ISD::OR:
1505 case ISD::XOR:
1506 return LT.first;
1507 break;
1511 // Fallback to the default implementation.
1512 return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
1513 Args, CxtI);
1516 InstructionCost
1517 X86TTIImpl::getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
1518 unsigned Opcode1, const SmallBitVector &OpcodeMask,
1519 TTI::TargetCostKind CostKind) const {
1520 if (isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask))
1521 return TTI::TCC_Basic;
1522 return InstructionCost::getInvalid();
1525 InstructionCost X86TTIImpl::getShuffleCost(
1526 TTI::ShuffleKind Kind, VectorType *BaseTp, ArrayRef<int> Mask,
1527 TTI::TargetCostKind CostKind, int Index, VectorType *SubTp,
1528 ArrayRef<const Value *> Args, const Instruction *CxtI) {
1529 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
1530 // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
1531 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(BaseTp);
1533 Kind = improveShuffleKindFromMask(Kind, Mask, BaseTp, Index, SubTp);
1535 // If all args are constant than this will be constant folded away.
1536 if (!Args.empty() &&
1537 all_of(Args, [](const Value *Arg) { return isa<Constant>(Arg); }))
1538 return TTI::TCC_Free;
1540 // Recognize a basic concat_vector shuffle.
1541 if (Kind == TTI::SK_PermuteTwoSrc &&
1542 Mask.size() == (2 * BaseTp->getElementCount().getKnownMinValue()) &&
1543 ShuffleVectorInst::isIdentityMask(Mask, Mask.size()))
1544 return getShuffleCost(TTI::SK_InsertSubvector,
1545 VectorType::getDoubleElementsVectorType(BaseTp), Mask,
1546 CostKind, Mask.size() / 2, BaseTp);
1548 // Treat Transpose as 2-op shuffles - there's no difference in lowering.
1549 if (Kind == TTI::SK_Transpose)
1550 Kind = TTI::SK_PermuteTwoSrc;
1552 if (Kind == TTI::SK_Broadcast) {
1553 // For Broadcasts we are splatting the first element from the first input
1554 // register, so only need to reference that input and all the output
1555 // registers are the same.
1556 LT.first = 1;
1558 // If we're broadcasting a load then AVX/AVX2 can do this for free.
1559 using namespace PatternMatch;
1560 if (!Args.empty() && match(Args[0], m_OneUse(m_Load(m_Value()))) &&
1561 (ST->hasAVX2() ||
1562 (ST->hasAVX() && LT.second.getScalarSizeInBits() >= 32)))
1563 return TTI::TCC_Free;
1566 // Attempt to detect a cheaper inlane shuffle, avoiding 128-bit subvector
1567 // permutation.
1568 bool IsInLaneShuffle = false;
1569 if (BaseTp->getPrimitiveSizeInBits() > 0 &&
1570 (BaseTp->getPrimitiveSizeInBits() % 128) == 0 &&
1571 BaseTp->getScalarSizeInBits() == LT.second.getScalarSizeInBits() &&
1572 Mask.size() == BaseTp->getElementCount().getKnownMinValue()) {
1573 unsigned NumLanes = BaseTp->getPrimitiveSizeInBits() / 128;
1574 unsigned NumEltsPerLane = Mask.size() / NumLanes;
1575 if ((Mask.size() % NumLanes) == 0)
1576 IsInLaneShuffle = all_of(enumerate(Mask), [&](const auto &P) {
1577 return P.value() == PoisonMaskElem ||
1578 ((P.value() % Mask.size()) / NumEltsPerLane) ==
1579 (P.index() / NumEltsPerLane);
1583 // Treat <X x bfloat> shuffles as <X x half>.
1584 if (LT.second.isVector() && LT.second.getScalarType() == MVT::bf16)
1585 LT.second = LT.second.changeVectorElementType(MVT::f16);
1587 // Subvector extractions are free if they start at the beginning of a
1588 // vector and cheap if the subvectors are aligned.
1589 if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
1590 int NumElts = LT.second.getVectorNumElements();
1591 if ((Index % NumElts) == 0)
1592 return TTI::TCC_Free;
1593 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
1594 if (SubLT.second.isVector()) {
1595 int NumSubElts = SubLT.second.getVectorNumElements();
1596 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1597 return SubLT.first;
1598 // Handle some cases for widening legalization. For now we only handle
1599 // cases where the original subvector was naturally aligned and evenly
1600 // fit in its legalized subvector type.
1601 // FIXME: Remove some of the alignment restrictions.
1602 // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
1603 // vectors.
1604 int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
1605 if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
1606 (NumSubElts % OrigSubElts) == 0 &&
1607 LT.second.getVectorElementType() ==
1608 SubLT.second.getVectorElementType() &&
1609 LT.second.getVectorElementType().getSizeInBits() ==
1610 BaseTp->getElementType()->getPrimitiveSizeInBits()) {
1611 assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
1612 "Unexpected number of elements!");
1613 auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
1614 LT.second.getVectorNumElements());
1615 auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
1616 SubLT.second.getVectorNumElements());
1617 int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
1618 InstructionCost ExtractCost = getShuffleCost(
1619 TTI::SK_ExtractSubvector, VecTy, {}, CostKind, ExtractIndex, SubTy);
1621 // If the original size is 32-bits or more, we can use pshufd. Otherwise
1622 // if we have SSSE3 we can use pshufb.
1623 if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
1624 return ExtractCost + 1; // pshufd or pshufb
1626 assert(SubTp->getPrimitiveSizeInBits() == 16 &&
1627 "Unexpected vector size");
1629 return ExtractCost + 2; // worst case pshufhw + pshufd
1632 // If the extract subvector is not optimal, treat it as single op shuffle.
1633 Kind = TTI::SK_PermuteSingleSrc;
1636 // Subvector insertions are cheap if the subvectors are aligned.
1637 // Note that in general, the insertion starting at the beginning of a vector
1638 // isn't free, because we need to preserve the rest of the wide vector,
1639 // but if the destination vector legalizes to the same width as the subvector
1640 // then the insertion will simplify to a (free) register copy.
1641 if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
1642 int NumElts = LT.second.getVectorNumElements();
1643 std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
1644 if (SubLT.second.isVector()) {
1645 int NumSubElts = SubLT.second.getVectorNumElements();
1646 bool MatchingTypes =
1647 NumElts == NumSubElts &&
1648 (SubTp->getElementCount().getKnownMinValue() % NumSubElts) == 0;
1649 if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
1650 return MatchingTypes ? TTI::TCC_Free : SubLT.first;
1653 // If the insertion isn't aligned, treat it like a 2-op shuffle.
1654 Kind = TTI::SK_PermuteTwoSrc;
1657 // Handle some common (illegal) sub-vector types as they are often very cheap
1658 // to shuffle even on targets without PSHUFB.
1659 EVT VT = TLI->getValueType(DL, BaseTp);
1660 if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
1661 !ST->hasSSSE3()) {
1662 static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
1663 {TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw
1664 {TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw
1665 {TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw
1666 {TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw
1667 {TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck
1669 {TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw
1670 {TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw
1671 {TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus
1672 {TTI::SK_Reverse, MVT::v2i8, 1}, // punpck
1674 {TTI::SK_Splice, MVT::v4i16, 2}, // punpck+psrldq
1675 {TTI::SK_Splice, MVT::v2i16, 2}, // punpck+psrldq
1676 {TTI::SK_Splice, MVT::v4i8, 2}, // punpck+psrldq
1677 {TTI::SK_Splice, MVT::v2i8, 2}, // punpck+psrldq
1679 {TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw
1680 {TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw
1681 {TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw
1682 {TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw
1683 {TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck
1685 {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
1686 {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
1687 {TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw
1688 {TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw
1689 {TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck
1692 if (ST->hasSSE2())
1693 if (const auto *Entry =
1694 CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
1695 return Entry->Cost;
1698 // We are going to permute multiple sources and the result will be in multiple
1699 // destinations. Providing an accurate cost only for splits where the element
1700 // type remains the same.
1701 if (LT.first != 1) {
1702 MVT LegalVT = LT.second;
1703 if (LegalVT.isVector() &&
1704 LegalVT.getVectorElementType().getSizeInBits() ==
1705 BaseTp->getElementType()->getPrimitiveSizeInBits() &&
1706 LegalVT.getVectorNumElements() <
1707 cast<FixedVectorType>(BaseTp)->getNumElements()) {
1708 unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
1709 unsigned LegalVTSize = LegalVT.getStoreSize();
1710 // Number of source vectors after legalization:
1711 unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
1712 // Number of destination vectors after legalization:
1713 InstructionCost NumOfDests = LT.first;
1715 auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
1716 LegalVT.getVectorNumElements());
1718 if (!Mask.empty() && NumOfDests.isValid()) {
1719 // Try to perform better estimation of the permutation.
1720 // 1. Split the source/destination vectors into real registers.
1721 // 2. Do the mask analysis to identify which real registers are
1722 // permuted. If more than 1 source registers are used for the
1723 // destination register building, the cost for this destination register
1724 // is (Number_of_source_register - 1) * Cost_PermuteTwoSrc. If only one
1725 // source register is used, build mask and calculate the cost as a cost
1726 // of PermuteSingleSrc.
1727 // Also, for the single register permute we try to identify if the
1728 // destination register is just a copy of the source register or the
1729 // copy of the previous destination register (the cost is
1730 // TTI::TCC_Basic). If the source register is just reused, the cost for
1731 // this operation is TTI::TCC_Free.
1732 NumOfDests =
1733 getTypeLegalizationCost(
1734 FixedVectorType::get(BaseTp->getElementType(), Mask.size()))
1735 .first;
1736 unsigned E = *NumOfDests.getValue();
1737 unsigned NormalizedVF =
1738 LegalVT.getVectorNumElements() * std::max(NumOfSrcs, E);
1739 unsigned NumOfSrcRegs = NormalizedVF / LegalVT.getVectorNumElements();
1740 unsigned NumOfDestRegs = NormalizedVF / LegalVT.getVectorNumElements();
1741 SmallVector<int> NormalizedMask(NormalizedVF, PoisonMaskElem);
1742 copy(Mask, NormalizedMask.begin());
1743 unsigned PrevSrcReg = 0;
1744 ArrayRef<int> PrevRegMask;
1745 InstructionCost Cost = 0;
1746 processShuffleMasks(
1747 NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
1748 [this, SingleOpTy, CostKind, &PrevSrcReg, &PrevRegMask,
1749 &Cost](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) {
1750 if (!ShuffleVectorInst::isIdentityMask(RegMask, RegMask.size())) {
1751 // Check if the previous register can be just copied to the next
1752 // one.
1753 if (PrevRegMask.empty() || PrevSrcReg != SrcReg ||
1754 PrevRegMask != RegMask)
1755 Cost += getShuffleCost(TTI::SK_PermuteSingleSrc, SingleOpTy,
1756 RegMask, CostKind, 0, nullptr);
1757 else
1758 // Just a copy of previous destination register.
1759 Cost += TTI::TCC_Basic;
1760 return;
1762 if (SrcReg != DestReg &&
1763 any_of(RegMask, [](int I) { return I != PoisonMaskElem; })) {
1764 // Just a copy of the source register.
1765 Cost += TTI::TCC_Free;
1767 PrevSrcReg = SrcReg;
1768 PrevRegMask = RegMask;
1770 [this, SingleOpTy, CostKind, &Cost](ArrayRef<int> RegMask,
1771 unsigned /*Unused*/,
1772 unsigned /*Unused*/) {
1773 Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, RegMask,
1774 CostKind, 0, nullptr);
1776 return Cost;
1779 InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
1780 return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
1781 {}, CostKind, 0, nullptr);
1784 return BaseT::getShuffleCost(Kind, BaseTp, Mask, CostKind, Index, SubTp);
1787 static const CostTblEntry AVX512VBMIShuffleTbl[] = {
1788 {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
1789 {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
1791 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
1792 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
1794 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
1795 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
1796 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b
1799 if (ST->hasVBMI())
1800 if (const auto *Entry =
1801 CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
1802 return LT.first * Entry->Cost;
1804 static const CostTblEntry AVX512BWShuffleTbl[] = {
1805 {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
1806 {TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
1807 {TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
1809 {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
1810 {TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
1811 {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
1812 {TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
1814 {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
1815 {TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
1816 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
1817 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
1818 {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
1820 {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
1821 {TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
1822 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
1823 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w
1824 {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
1826 {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
1827 {TTI::SK_Select, MVT::v64i8, 1}, // vblendmb
1829 {TTI::SK_Splice, MVT::v32i16, 2}, // vshufi64x2 + palignr
1830 {TTI::SK_Splice, MVT::v32f16, 2}, // vshufi64x2 + palignr
1831 {TTI::SK_Splice, MVT::v64i8, 2}, // vshufi64x2 + palignr
1834 if (ST->hasBWI())
1835 if (const auto *Entry =
1836 CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
1837 return LT.first * Entry->Cost;
1839 static const CostKindTblEntry AVX512ShuffleTbl[] = {
1840 {TTI::SK_Broadcast, MVT::v8f64, { 1, 1, 1, 1 } }, // vbroadcastsd
1841 {TTI::SK_Broadcast, MVT::v16f32, { 1, 1, 1, 1 } }, // vbroadcastss
1842 {TTI::SK_Broadcast, MVT::v8i64, { 1, 1, 1, 1 } }, // vpbroadcastq
1843 {TTI::SK_Broadcast, MVT::v16i32, { 1, 1, 1, 1 } }, // vpbroadcastd
1844 {TTI::SK_Broadcast, MVT::v32i16, { 1, 1, 1, 1 } }, // vpbroadcastw
1845 {TTI::SK_Broadcast, MVT::v32f16, { 1, 1, 1, 1 } }, // vpbroadcastw
1846 {TTI::SK_Broadcast, MVT::v64i8, { 1, 1, 1, 1 } }, // vpbroadcastb
1848 {TTI::SK_Reverse, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
1849 {TTI::SK_Reverse, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
1850 {TTI::SK_Reverse, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
1851 {TTI::SK_Reverse, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
1852 {TTI::SK_Reverse, MVT::v32i16, { 7, 7, 7, 7 } }, // per mca
1853 {TTI::SK_Reverse, MVT::v32f16, { 7, 7, 7, 7 } }, // per mca
1854 {TTI::SK_Reverse, MVT::v64i8, { 7, 7, 7, 7 } }, // per mca
1856 {TTI::SK_Splice, MVT::v8f64, { 1, 1, 1, 1 } }, // vpalignd
1857 {TTI::SK_Splice, MVT::v4f64, { 1, 1, 1, 1 } }, // vpalignd
1858 {TTI::SK_Splice, MVT::v16f32, { 1, 1, 1, 1 } }, // vpalignd
1859 {TTI::SK_Splice, MVT::v8f32, { 1, 1, 1, 1 } }, // vpalignd
1860 {TTI::SK_Splice, MVT::v8i64, { 1, 1, 1, 1 } }, // vpalignd
1861 {TTI::SK_Splice, MVT::v4i64, { 1, 1, 1, 1 } }, // vpalignd
1862 {TTI::SK_Splice, MVT::v16i32, { 1, 1, 1, 1 } }, // vpalignd
1863 {TTI::SK_Splice, MVT::v8i32, { 1, 1, 1, 1 } }, // vpalignd
1864 {TTI::SK_Splice, MVT::v32i16, { 4, 4, 4, 4 } }, // split + palignr
1865 {TTI::SK_Splice, MVT::v32f16, { 4, 4, 4, 4 } }, // split + palignr
1866 {TTI::SK_Splice, MVT::v64i8, { 4, 4, 4, 4 } }, // split + palignr
1868 {TTI::SK_PermuteSingleSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
1869 {TTI::SK_PermuteSingleSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermpd
1870 {TTI::SK_PermuteSingleSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermpd
1871 {TTI::SK_PermuteSingleSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
1872 {TTI::SK_PermuteSingleSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermps
1873 {TTI::SK_PermuteSingleSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermps
1874 {TTI::SK_PermuteSingleSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
1875 {TTI::SK_PermuteSingleSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermq
1876 {TTI::SK_PermuteSingleSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermq
1877 {TTI::SK_PermuteSingleSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
1878 {TTI::SK_PermuteSingleSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermd
1879 {TTI::SK_PermuteSingleSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermd
1880 {TTI::SK_PermuteSingleSrc, MVT::v16i8, { 1, 3, 1, 1 } }, // pshufb
1882 {TTI::SK_PermuteTwoSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermt2pd
1883 {TTI::SK_PermuteTwoSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermt2ps
1884 {TTI::SK_PermuteTwoSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermt2q
1885 {TTI::SK_PermuteTwoSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermt2d
1886 {TTI::SK_PermuteTwoSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermt2pd
1887 {TTI::SK_PermuteTwoSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermt2ps
1888 {TTI::SK_PermuteTwoSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermt2q
1889 {TTI::SK_PermuteTwoSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermt2d
1890 {TTI::SK_PermuteTwoSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermt2pd
1891 {TTI::SK_PermuteTwoSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermt2ps
1892 {TTI::SK_PermuteTwoSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermt2q
1893 {TTI::SK_PermuteTwoSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermt2d
1895 // FIXME: This just applies the type legalization cost rules above
1896 // assuming these completely split.
1897 {TTI::SK_PermuteSingleSrc, MVT::v32i16, { 14, 14, 14, 14 } },
1898 {TTI::SK_PermuteSingleSrc, MVT::v32f16, { 14, 14, 14, 14 } },
1899 {TTI::SK_PermuteSingleSrc, MVT::v64i8, { 14, 14, 14, 14 } },
1900 {TTI::SK_PermuteTwoSrc, MVT::v32i16, { 42, 42, 42, 42 } },
1901 {TTI::SK_PermuteTwoSrc, MVT::v32f16, { 42, 42, 42, 42 } },
1902 {TTI::SK_PermuteTwoSrc, MVT::v64i8, { 42, 42, 42, 42 } },
1904 {TTI::SK_Select, MVT::v32i16, { 1, 1, 1, 1 } }, // vpternlogq
1905 {TTI::SK_Select, MVT::v32f16, { 1, 1, 1, 1 } }, // vpternlogq
1906 {TTI::SK_Select, MVT::v64i8, { 1, 1, 1, 1 } }, // vpternlogq
1907 {TTI::SK_Select, MVT::v8f64, { 1, 1, 1, 1 } }, // vblendmpd
1908 {TTI::SK_Select, MVT::v16f32, { 1, 1, 1, 1 } }, // vblendmps
1909 {TTI::SK_Select, MVT::v8i64, { 1, 1, 1, 1 } }, // vblendmq
1910 {TTI::SK_Select, MVT::v16i32, { 1, 1, 1, 1 } }, // vblendmd
1913 if (ST->hasAVX512())
1914 if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
1915 if (auto KindCost = Entry->Cost[CostKind])
1916 return LT.first * *KindCost;
1918 static const CostTblEntry AVX2InLaneShuffleTbl[] = {
1919 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 1}, // vpshufb
1920 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 1}, // vpshufb
1921 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpshufb
1923 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 2}, // 2*vshufpd + vblendpd
1924 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 2}, // 2*vshufps + vblendps
1925 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 2}, // 2*vpshufd + vpblendd
1926 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 2}, // 2*vpshufd + vpblendd
1927 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // 2*vpshufb + vpor
1928 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 2}, // 2*vpshufb + vpor
1929 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // 2*vpshufb + vpor
1932 if (IsInLaneShuffle && ST->hasAVX2())
1933 if (const auto *Entry =
1934 CostTableLookup(AVX2InLaneShuffleTbl, Kind, LT.second))
1935 return LT.first * Entry->Cost;
1937 static const CostTblEntry AVX2ShuffleTbl[] = {
1938 {TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
1939 {TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
1940 {TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
1941 {TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
1942 {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
1943 {TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
1944 {TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
1946 {TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
1947 {TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
1948 {TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
1949 {TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
1950 {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
1951 {TTI::SK_Reverse, MVT::v16f16, 2}, // vperm2i128 + pshufb
1952 {TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
1954 {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
1955 {TTI::SK_Select, MVT::v16f16, 1}, // vpblendvb
1956 {TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
1958 {TTI::SK_Splice, MVT::v8i32, 2}, // vperm2i128 + vpalignr
1959 {TTI::SK_Splice, MVT::v8f32, 2}, // vperm2i128 + vpalignr
1960 {TTI::SK_Splice, MVT::v16i16, 2}, // vperm2i128 + vpalignr
1961 {TTI::SK_Splice, MVT::v16f16, 2}, // vperm2i128 + vpalignr
1962 {TTI::SK_Splice, MVT::v32i8, 2}, // vperm2i128 + vpalignr
1964 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
1965 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
1966 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
1967 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
1968 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
1969 // + vpblendvb
1970 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 4}, // vperm2i128 + 2*vpshufb
1971 // + vpblendvb
1972 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
1973 // + vpblendvb
1975 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
1976 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
1977 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
1978 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
1979 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
1980 // + vpblendvb
1981 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 7}, // 2*vperm2i128 + 4*vpshufb
1982 // + vpblendvb
1983 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
1984 // + vpblendvb
1987 if (ST->hasAVX2())
1988 if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
1989 return LT.first * Entry->Cost;
1991 static const CostTblEntry XOPShuffleTbl[] = {
1992 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
1993 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
1994 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
1995 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
1996 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
1997 // + vinsertf128
1998 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
1999 // + vinsertf128
2001 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
2002 // + vinsertf128
2003 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
2004 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
2005 // + vinsertf128
2006 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
2009 if (ST->hasXOP())
2010 if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
2011 return LT.first * Entry->Cost;
2013 static const CostTblEntry AVX1InLaneShuffleTbl[] = {
2014 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermilpd
2015 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermilpd
2016 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermilps
2017 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermilps
2019 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
2020 // + vpor + vinsertf128
2021 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 4}, // vextractf128 + 2*pshufb
2022 // + vpor + vinsertf128
2023 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
2024 // + vpor + vinsertf128
2026 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 2}, // 2*vshufpd + vblendpd
2027 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 2}, // 2*vshufps + vblendps
2028 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 2}, // 2*vpermilpd + vblendpd
2029 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 2}, // 2*vpermilps + vblendps
2030 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 4*pshufb
2031 // + 2*vpor + vinsertf128
2032 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 9}, // 2*vextractf128 + 4*pshufb
2033 // + 2*vpor + vinsertf128
2034 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 4*pshufb
2035 // + 2*vpor + vinsertf128
2038 if (IsInLaneShuffle && ST->hasAVX())
2039 if (const auto *Entry =
2040 CostTableLookup(AVX1InLaneShuffleTbl, Kind, LT.second))
2041 return LT.first * Entry->Cost;
2043 static const CostTblEntry AVX1ShuffleTbl[] = {
2044 {TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
2045 {TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
2046 {TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
2047 {TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
2048 {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
2049 {TTI::SK_Broadcast, MVT::v16f16, 3}, // vpshuflw + vpshufd + vinsertf128
2050 {TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
2052 {TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
2053 {TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
2054 {TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
2055 {TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
2056 {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
2057 // + vinsertf128
2058 {TTI::SK_Reverse, MVT::v16f16, 4}, // vextractf128 + 2*pshufb
2059 // + vinsertf128
2060 {TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
2061 // + vinsertf128
2063 {TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
2064 {TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
2065 {TTI::SK_Select, MVT::v8i32, 1}, // vblendps
2066 {TTI::SK_Select, MVT::v8f32, 1}, // vblendps
2067 {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
2068 {TTI::SK_Select, MVT::v16f16, 3}, // vpand + vpandn + vpor
2069 {TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
2071 {TTI::SK_Splice, MVT::v4i64, 2}, // vperm2f128 + shufpd
2072 {TTI::SK_Splice, MVT::v4f64, 2}, // vperm2f128 + shufpd
2073 {TTI::SK_Splice, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
2074 {TTI::SK_Splice, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
2075 {TTI::SK_Splice, MVT::v16i16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
2076 {TTI::SK_Splice, MVT::v16f16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
2077 {TTI::SK_Splice, MVT::v32i8, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
2079 {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
2080 {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
2081 {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
2082 {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
2083 {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
2084 // + 2*por + vinsertf128
2085 {TTI::SK_PermuteSingleSrc, MVT::v16f16, 8}, // vextractf128 + 4*pshufb
2086 // + 2*por + vinsertf128
2087 {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
2088 // + 2*por + vinsertf128
2090 {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
2091 {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
2092 {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
2093 {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
2094 {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
2095 // + 4*por + vinsertf128
2096 {TTI::SK_PermuteTwoSrc, MVT::v16f16, 15}, // 2*vextractf128 + 8*pshufb
2097 // + 4*por + vinsertf128
2098 {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
2099 // + 4*por + vinsertf128
2102 if (ST->hasAVX())
2103 if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
2104 return LT.first * Entry->Cost;
2106 static const CostTblEntry SSE41ShuffleTbl[] = {
2107 {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
2108 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
2109 {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
2110 {TTI::SK_Select, MVT::v4f32, 1}, // blendps
2111 {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
2112 {TTI::SK_Select, MVT::v8f16, 1}, // pblendw
2113 {TTI::SK_Select, MVT::v16i8, 1} // pblendvb
2116 if (ST->hasSSE41())
2117 if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
2118 return LT.first * Entry->Cost;
2120 static const CostTblEntry SSSE3ShuffleTbl[] = {
2121 {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
2122 {TTI::SK_Broadcast, MVT::v8f16, 1}, // pshufb
2123 {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
2125 {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
2126 {TTI::SK_Reverse, MVT::v8f16, 1}, // pshufb
2127 {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
2129 {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
2130 {TTI::SK_Select, MVT::v8f16, 3}, // 2*pshufb + por
2131 {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
2133 {TTI::SK_Splice, MVT::v4i32, 1}, // palignr
2134 {TTI::SK_Splice, MVT::v4f32, 1}, // palignr
2135 {TTI::SK_Splice, MVT::v8i16, 1}, // palignr
2136 {TTI::SK_Splice, MVT::v8f16, 1}, // palignr
2137 {TTI::SK_Splice, MVT::v16i8, 1}, // palignr
2139 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
2140 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 1}, // pshufb
2141 {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
2143 {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
2144 {TTI::SK_PermuteTwoSrc, MVT::v8f16, 3}, // 2*pshufb + por
2145 {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
2148 if (ST->hasSSSE3())
2149 if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
2150 return LT.first * Entry->Cost;
2152 static const CostTblEntry SSE2ShuffleTbl[] = {
2153 {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
2154 {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
2155 {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
2156 {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
2157 {TTI::SK_Broadcast, MVT::v8f16, 2}, // pshuflw + pshufd
2158 {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
2160 {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
2161 {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
2162 {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
2163 {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
2164 {TTI::SK_Reverse, MVT::v8f16, 3}, // pshuflw + pshufhw + pshufd
2165 {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
2166 // + 2*pshufd + 2*unpck + packus
2168 {TTI::SK_Select, MVT::v2i64, 1}, // movsd
2169 {TTI::SK_Select, MVT::v2f64, 1}, // movsd
2170 {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
2171 {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
2172 {TTI::SK_Select, MVT::v8f16, 3}, // pand + pandn + por
2173 {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
2175 {TTI::SK_Splice, MVT::v2i64, 1}, // shufpd
2176 {TTI::SK_Splice, MVT::v2f64, 1}, // shufpd
2177 {TTI::SK_Splice, MVT::v4i32, 2}, // 2*{unpck,movsd,pshufd}
2178 {TTI::SK_Splice, MVT::v8i16, 3}, // psrldq + psrlldq + por
2179 {TTI::SK_Splice, MVT::v8f16, 3}, // psrldq + psrlldq + por
2180 {TTI::SK_Splice, MVT::v16i8, 3}, // psrldq + psrlldq + por
2182 {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
2183 {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
2184 {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
2185 {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
2186 // + pshufd/unpck
2187 {TTI::SK_PermuteSingleSrc, MVT::v8f16, 5}, // 2*pshuflw + 2*pshufhw
2188 // + pshufd/unpck
2189 { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
2190 // + 2*pshufd + 2*unpck + 2*packus
2192 { TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
2193 { TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
2194 { TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
2195 { TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
2196 { TTI::SK_PermuteTwoSrc, MVT::v8f16, 8 }, // blend+permute
2197 { TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
2200 static const CostTblEntry SSE3BroadcastLoadTbl[] = {
2201 {TTI::SK_Broadcast, MVT::v2f64, 0}, // broadcast handled by movddup
2204 if (ST->hasSSE2()) {
2205 bool IsLoad =
2206 llvm::any_of(Args, [](const auto &V) { return isa<LoadInst>(V); });
2207 if (ST->hasSSE3() && IsLoad)
2208 if (const auto *Entry =
2209 CostTableLookup(SSE3BroadcastLoadTbl, Kind, LT.second)) {
2210 assert(isLegalBroadcastLoad(BaseTp->getElementType(),
2211 LT.second.getVectorElementCount()) &&
2212 "Table entry missing from isLegalBroadcastLoad()");
2213 return LT.first * Entry->Cost;
2216 if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
2217 return LT.first * Entry->Cost;
2220 static const CostTblEntry SSE1ShuffleTbl[] = {
2221 { TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
2222 { TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
2223 { TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
2224 { TTI::SK_Splice, MVT::v4f32, 2 }, // 2*shufps
2225 { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
2226 { TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
2229 if (ST->hasSSE1()) {
2230 if (LT.first == 1 && LT.second == MVT::v4f32 && Mask.size() == 4) {
2231 // SHUFPS: both pairs must come from the same source register.
2232 auto MatchSHUFPS = [](int X, int Y) {
2233 return X < 0 || Y < 0 || ((X & 4) == (Y & 4));
2235 if (MatchSHUFPS(Mask[0], Mask[1]) && MatchSHUFPS(Mask[2], Mask[3]))
2236 return 1;
2238 if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
2239 return LT.first * Entry->Cost;
2242 return BaseT::getShuffleCost(Kind, BaseTp, Mask, CostKind, Index, SubTp);
2245 InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
2246 Type *Src,
2247 TTI::CastContextHint CCH,
2248 TTI::TargetCostKind CostKind,
2249 const Instruction *I) {
2250 int ISD = TLI->InstructionOpcodeToISD(Opcode);
2251 assert(ISD && "Invalid opcode");
2253 // The cost tables include both specific, custom (non-legal) src/dst type
2254 // conversions and generic, legalized types. We test for customs first, before
2255 // falling back to legalization.
2256 // FIXME: Need a better design of the cost table to handle non-simple types of
2257 // potential massive combinations (elem_num x src_type x dst_type).
2258 static const TypeConversionCostKindTblEntry AVX512BWConversionTbl[]{
2259 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, { 1, 1, 1, 1 } },
2260 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, { 1, 1, 1, 1 } },
2262 // Mask sign extend has an instruction.
2263 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, { 1, 1, 1, 1 } },
2264 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, { 1, 1, 1, 1 } },
2265 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, { 1, 1, 1, 1 } },
2266 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, { 1, 1, 1, 1 } },
2267 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, { 1, 1, 1, 1 } },
2268 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, { 1, 1, 1, 1 } },
2269 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, { 1, 1, 1, 1 } },
2270 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, { 1, 1, 1, 1 } },
2271 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, { 1, 1, 1, 1 } },
2272 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, { 1, 1, 1, 1 } },
2273 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, { 1, 1, 1, 1 } },
2274 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, { 1, 1, 1, 1 } },
2275 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, { 1, 1, 1, 1 } },
2276 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, { 1, 1, 1, 1 } },
2277 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, { 1, 1, 1, 1 } },
2278 { ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, { 1, 1, 1, 1 } },
2279 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1, { 1, 1, 1, 1 } },
2281 // Mask zero extend is a sext + shift.
2282 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, { 2, 1, 1, 1 } },
2283 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, { 2, 1, 1, 1 } },
2284 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, { 2, 1, 1, 1 } },
2285 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, { 2, 1, 1, 1 } },
2286 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, { 2, 1, 1, 1 } },
2287 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, { 2, 1, 1, 1 } },
2288 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, { 2, 1, 1, 1 } },
2289 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, { 2, 1, 1, 1 } },
2290 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, { 2, 1, 1, 1 } },
2291 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, { 2, 1, 1, 1 } },
2292 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, { 2, 1, 1, 1 } },
2293 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, { 2, 1, 1, 1 } },
2294 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, { 2, 1, 1, 1 } },
2295 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, { 2, 1, 1, 1 } },
2296 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, { 2, 1, 1, 1 } },
2297 { ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, { 2, 1, 1, 1 } },
2298 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1, { 2, 1, 1, 1 } },
2300 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, { 2, 1, 1, 1 } },
2301 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, { 2, 1, 1, 1 } },
2302 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, { 2, 1, 1, 1 } },
2303 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, { 2, 1, 1, 1 } },
2304 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, { 2, 1, 1, 1 } },
2305 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, { 2, 1, 1, 1 } },
2306 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, { 2, 1, 1, 1 } },
2307 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, { 2, 1, 1, 1 } },
2308 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, { 2, 1, 1, 1 } },
2309 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, { 2, 1, 1, 1 } },
2310 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, { 2, 1, 1, 1 } },
2311 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, { 2, 1, 1, 1 } },
2312 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, { 2, 1, 1, 1 } },
2313 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, { 2, 1, 1, 1 } },
2314 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, { 2, 1, 1, 1 } },
2315 { ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, { 2, 1, 1, 1 } },
2316 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i16, { 2, 1, 1, 1 } },
2318 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, { 2, 1, 1, 1 } },
2319 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, { 2, 1, 1, 1 } }, // widen to zmm
2320 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, { 2, 1, 1, 1 } }, // vpmovwb
2321 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, { 2, 1, 1, 1 } }, // vpmovwb
2322 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, { 2, 1, 1, 1 } }, // vpmovwb
2325 static const TypeConversionCostKindTblEntry AVX512DQConversionTbl[] = {
2326 // Mask sign extend has an instruction.
2327 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, { 1, 1, 1, 1 } },
2328 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, { 1, 1, 1, 1 } },
2329 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, { 1, 1, 1, 1 } },
2330 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, { 1, 1, 1, 1 } },
2331 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, { 1, 1, 1, 1 } },
2332 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i1, { 1, 1, 1, 1 } },
2333 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, { 1, 1, 1, 1 } },
2334 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, { 1, 1, 1, 1 } },
2336 // Mask zero extend is a sext + shift.
2337 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, { 2, 1, 1, 1, } },
2338 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, { 2, 1, 1, 1, } },
2339 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, { 2, 1, 1, 1, } },
2340 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, { 2, 1, 1, 1, } },
2341 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, { 2, 1, 1, 1, } },
2342 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i1, { 2, 1, 1, 1, } },
2343 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, { 2, 1, 1, 1, } },
2344 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, { 2, 1, 1, 1, } },
2346 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, { 2, 1, 1, 1 } },
2347 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, { 2, 1, 1, 1 } },
2348 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, { 2, 1, 1, 1 } },
2349 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, { 2, 1, 1, 1 } },
2350 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, { 2, 1, 1, 1 } },
2351 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, { 2, 1, 1, 1 } },
2352 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, { 2, 1, 1, 1 } },
2353 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i64, { 2, 1, 1, 1 } },
2355 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, { 1, 1, 1, 1 } },
2356 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, { 1, 1, 1, 1 } },
2358 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, { 1, 1, 1, 1 } },
2359 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, { 1, 1, 1, 1 } },
2361 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, { 1, 1, 1, 1 } },
2362 { ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, { 1, 1, 1, 1 } },
2364 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, { 1, 1, 1, 1 } },
2365 { ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, { 1, 1, 1, 1 } },
2368 // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
2369 // 256-bit wide vectors.
2371 static const TypeConversionCostKindTblEntry AVX512FConversionTbl[] = {
2372 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, { 1, 1, 1, 1 } },
2373 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, { 3, 1, 1, 1 } },
2374 { ISD::FP_EXTEND, MVT::v16f64, MVT::v16f32, { 4, 1, 1, 1 } }, // 2*vcvtps2pd+vextractf64x4
2375 { ISD::FP_EXTEND, MVT::v16f32, MVT::v16f16, { 1, 1, 1, 1 } }, // vcvtph2ps
2376 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f16, { 2, 1, 1, 1 } }, // vcvtph2ps+vcvtps2pd
2377 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, { 1, 1, 1, 1 } },
2378 { ISD::FP_ROUND, MVT::v16f16, MVT::v16f32, { 1, 1, 1, 1 } }, // vcvtps2ph
2380 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2381 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2382 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2383 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2384 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, { 3, 1, 1, 1 } }, // sext+vpsllq+vptestmq
2385 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, { 3, 1, 1, 1 } }, // sext+vpsllq+vptestmq
2386 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, { 3, 1, 1, 1 } }, // sext+vpsllq+vptestmq
2387 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2388 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, { 2, 1, 1, 1 } }, // zmm vpslld+vptestmd
2389 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, { 2, 1, 1, 1 } }, // zmm vpslld+vptestmd
2390 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, { 2, 1, 1, 1 } }, // zmm vpslld+vptestmd
2391 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, { 2, 1, 1, 1 } }, // vpslld+vptestmd
2392 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, { 2, 1, 1, 1 } }, // zmm vpsllq+vptestmq
2393 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, { 2, 1, 1, 1 } }, // zmm vpsllq+vptestmq
2394 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, { 2, 1, 1, 1 } }, // vpsllq+vptestmq
2395 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, { 2, 1, 1, 1 } }, // vpmovdb
2396 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, { 2, 1, 1, 1 } }, // vpmovdb
2397 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, { 2, 1, 1, 1 } }, // vpmovdb
2398 { ISD::TRUNCATE, MVT::v32i8, MVT::v16i32, { 2, 1, 1, 1 } }, // vpmovdb
2399 { ISD::TRUNCATE, MVT::v64i8, MVT::v16i32, { 2, 1, 1, 1 } }, // vpmovdb
2400 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, { 2, 1, 1, 1 } }, // vpmovdw
2401 { ISD::TRUNCATE, MVT::v32i16, MVT::v16i32, { 2, 1, 1, 1 } }, // vpmovdw
2402 { ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, { 2, 1, 1, 1 } }, // vpmovqb
2403 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, { 1, 1, 1, 1 } }, // vpshufb
2404 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, { 2, 1, 1, 1 } }, // vpmovqb
2405 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i64, { 2, 1, 1, 1 } }, // vpmovqb
2406 { ISD::TRUNCATE, MVT::v32i8, MVT::v8i64, { 2, 1, 1, 1 } }, // vpmovqb
2407 { ISD::TRUNCATE, MVT::v64i8, MVT::v8i64, { 2, 1, 1, 1 } }, // vpmovqb
2408 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, { 2, 1, 1, 1 } }, // vpmovqw
2409 { ISD::TRUNCATE, MVT::v16i16, MVT::v8i64, { 2, 1, 1, 1 } }, // vpmovqw
2410 { ISD::TRUNCATE, MVT::v32i16, MVT::v8i64, { 2, 1, 1, 1 } }, // vpmovqw
2411 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, { 1, 1, 1, 1 } }, // vpmovqd
2412 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, { 1, 1, 1, 1 } }, // zmm vpmovqd
2413 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, { 5, 1, 1, 1 } },// 2*vpmovqd+concat+vpmovdb
2415 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, { 3, 1, 1, 1 } }, // extend to v16i32
2416 { ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, { 8, 1, 1, 1 } },
2417 { ISD::TRUNCATE, MVT::v64i8, MVT::v32i16, { 8, 1, 1, 1 } },
2419 // Sign extend is zmm vpternlogd+vptruncdb.
2420 // Zero extend is zmm broadcast load+vptruncdw.
2421 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, { 3, 1, 1, 1 } },
2422 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, { 4, 1, 1, 1 } },
2423 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, { 3, 1, 1, 1 } },
2424 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, { 4, 1, 1, 1 } },
2425 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, { 3, 1, 1, 1 } },
2426 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, { 4, 1, 1, 1 } },
2427 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, { 3, 1, 1, 1 } },
2428 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, { 4, 1, 1, 1 } },
2430 // Sign extend is zmm vpternlogd+vptruncdw.
2431 // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
2432 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, { 3, 1, 1, 1 } },
2433 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, { 4, 1, 1, 1 } },
2434 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, { 3, 1, 1, 1 } },
2435 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, { 4, 1, 1, 1 } },
2436 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, { 3, 1, 1, 1 } },
2437 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, { 4, 1, 1, 1 } },
2438 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, { 3, 1, 1, 1 } },
2439 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, { 4, 1, 1, 1 } },
2441 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, { 1, 1, 1, 1 } }, // zmm vpternlogd
2442 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, { 2, 1, 1, 1 } }, // zmm vpternlogd+psrld
2443 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, { 1, 1, 1, 1 } }, // zmm vpternlogd
2444 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, { 2, 1, 1, 1 } }, // zmm vpternlogd+psrld
2445 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, { 1, 1, 1, 1 } }, // zmm vpternlogd
2446 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, { 2, 1, 1, 1 } }, // zmm vpternlogd+psrld
2447 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, { 1, 1, 1, 1 } }, // zmm vpternlogq
2448 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, { 2, 1, 1, 1 } }, // zmm vpternlogq+psrlq
2449 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, { 1, 1, 1, 1 } }, // zmm vpternlogq
2450 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, { 2, 1, 1, 1 } }, // zmm vpternlogq+psrlq
2452 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, { 1, 1, 1, 1 } }, // vpternlogd
2453 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, { 2, 1, 1, 1 } }, // vpternlogd+psrld
2454 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, { 1, 1, 1, 1 } }, // vpternlogq
2455 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, { 2, 1, 1, 1 } }, // vpternlogq+psrlq
2457 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, { 1, 1, 1, 1 } },
2458 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, { 1, 1, 1, 1 } },
2459 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, { 1, 1, 1, 1 } },
2460 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, { 1, 1, 1, 1 } },
2461 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, { 1, 1, 1, 1 } },
2462 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, { 1, 1, 1, 1 } },
2463 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, { 1, 1, 1, 1 } },
2464 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, { 1, 1, 1, 1 } },
2465 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, { 1, 1, 1, 1 } },
2466 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, { 1, 1, 1, 1 } },
2468 { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, { 3, 1, 1, 1 } }, // FIXME: May not be right
2469 { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, { 3, 1, 1, 1 } }, // FIXME: May not be right
2471 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, { 4, 1, 1, 1 } },
2472 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, { 3, 1, 1, 1 } },
2473 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v16i8, { 2, 1, 1, 1 } },
2474 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, { 1, 1, 1, 1 } },
2475 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, { 2, 1, 1, 1 } },
2476 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, { 1, 1, 1, 1 } },
2477 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, { 1, 1, 1, 1 } },
2478 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, { 1, 1, 1, 1 } },
2480 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, { 4, 1, 1, 1 } },
2481 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, { 3, 1, 1, 1 } },
2482 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v16i8, { 2, 1, 1, 1 } },
2483 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, { 1, 1, 1, 1 } },
2484 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, { 2, 1, 1, 1 } },
2485 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, { 1, 1, 1, 1 } },
2486 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, { 1, 1, 1, 1 } },
2487 { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, { 1, 1, 1, 1 } },
2488 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, {26, 1, 1, 1 } },
2489 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, { 5, 1, 1, 1 } },
2491 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, { 2, 1, 1, 1 } },
2492 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f64, { 7, 1, 1, 1 } },
2493 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f64, {15, 1, 1, 1 } },
2494 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f32, {11, 1, 1, 1 } },
2495 { ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f64, {31, 1, 1, 1 } },
2496 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, { 3, 1, 1, 1 } },
2497 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f64, { 7, 1, 1, 1 } },
2498 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f32, { 5, 1, 1, 1 } },
2499 { ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f64, {15, 1, 1, 1 } },
2500 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, { 1, 1, 1, 1 } },
2501 { ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f64, { 3, 1, 1, 1 } },
2503 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, { 1, 1, 1, 1 } },
2504 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, { 3, 1, 1, 1 } },
2505 { ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, { 3, 1, 1, 1 } },
2506 { ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, { 1, 1, 1, 1 } },
2507 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, { 3, 1, 1, 1 } },
2508 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, { 3, 1, 1, 1 } },
2511 static const TypeConversionCostKindTblEntry AVX512BWVLConversionTbl[] {
2512 // Mask sign extend has an instruction.
2513 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, { 1, 1, 1, 1 } },
2514 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, { 1, 1, 1, 1 } },
2515 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, { 1, 1, 1, 1 } },
2516 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, { 1, 1, 1, 1 } },
2517 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, { 1, 1, 1, 1 } },
2518 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, { 1, 1, 1, 1 } },
2519 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, { 1, 1, 1, 1 } },
2520 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, { 1, 1, 1, 1 } },
2521 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, { 1, 1, 1, 1 } },
2522 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, { 1, 1, 1, 1 } },
2523 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, { 1, 1, 1, 1 } },
2524 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, { 1, 1, 1, 1 } },
2525 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, { 1, 1, 1, 1 } },
2526 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, { 1, 1, 1, 1 } },
2527 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1, { 1, 1, 1, 1 } },
2528 { ISD::SIGN_EXTEND, MVT::v32i8, MVT::v64i1, { 1, 1, 1, 1 } },
2529 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1, { 1, 1, 1, 1 } },
2531 // Mask zero extend is a sext + shift.
2532 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, { 2, 1, 1, 1 } },
2533 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, { 2, 1, 1, 1 } },
2534 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, { 2, 1, 1, 1 } },
2535 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, { 2, 1, 1, 1 } },
2536 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, { 2, 1, 1, 1 } },
2537 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, { 2, 1, 1, 1 } },
2538 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, { 2, 1, 1, 1 } },
2539 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, { 2, 1, 1, 1 } },
2540 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, { 2, 1, 1, 1 } },
2541 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, { 2, 1, 1, 1 } },
2542 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, { 2, 1, 1, 1 } },
2543 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, { 2, 1, 1, 1 } },
2544 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, { 2, 1, 1, 1 } },
2545 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, { 2, 1, 1, 1 } },
2546 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1, { 2, 1, 1, 1 } },
2547 { ISD::ZERO_EXTEND, MVT::v32i8, MVT::v64i1, { 2, 1, 1, 1 } },
2548 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1, { 2, 1, 1, 1 } },
2550 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, { 2, 1, 1, 1 } },
2551 { ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, { 2, 1, 1, 1 } },
2552 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, { 2, 1, 1, 1 } },
2553 { ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, { 2, 1, 1, 1 } },
2554 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, { 2, 1, 1, 1 } },
2555 { ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, { 2, 1, 1, 1 } },
2556 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, { 2, 1, 1, 1 } },
2557 { ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, { 2, 1, 1, 1 } },
2558 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, { 2, 1, 1, 1 } },
2559 { ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, { 2, 1, 1, 1 } },
2560 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, { 2, 1, 1, 1 } },
2561 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, { 2, 1, 1, 1 } },
2562 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, { 2, 1, 1, 1 } },
2563 { ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, { 2, 1, 1, 1 } },
2564 { ISD::TRUNCATE, MVT::v32i1, MVT::v16i16, { 2, 1, 1, 1 } },
2565 { ISD::TRUNCATE, MVT::v64i1, MVT::v32i8, { 2, 1, 1, 1 } },
2566 { ISD::TRUNCATE, MVT::v64i1, MVT::v16i16, { 2, 1, 1, 1 } },
2568 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, { 2, 1, 1, 1 } },
2571 static const TypeConversionCostKindTblEntry AVX512DQVLConversionTbl[] = {
2572 // Mask sign extend has an instruction.
2573 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, { 1, 1, 1, 1 } },
2574 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, { 1, 1, 1, 1 } },
2575 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, { 1, 1, 1, 1 } },
2576 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i1, { 1, 1, 1, 1 } },
2577 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, { 1, 1, 1, 1 } },
2578 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i1, { 1, 1, 1, 1 } },
2579 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, { 1, 1, 1, 1 } },
2580 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, { 1, 1, 1, 1 } },
2582 // Mask zero extend is a sext + shift.
2583 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, { 2, 1, 1, 1 } },
2584 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, { 2, 1, 1, 1 } },
2585 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, { 2, 1, 1, 1 } },
2586 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i1, { 2, 1, 1, 1 } },
2587 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, { 2, 1, 1, 1 } },
2588 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i1, { 2, 1, 1, 1 } },
2589 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, { 2, 1, 1, 1 } },
2590 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, { 2, 1, 1, 1 } },
2592 { ISD::TRUNCATE, MVT::v16i1, MVT::v4i64, { 2, 1, 1, 1 } },
2593 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, { 2, 1, 1, 1 } },
2594 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, { 2, 1, 1, 1 } },
2595 { ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, { 2, 1, 1, 1 } },
2596 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, { 2, 1, 1, 1 } },
2597 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, { 2, 1, 1, 1 } },
2598 { ISD::TRUNCATE, MVT::v8i1, MVT::v4i64, { 2, 1, 1, 1 } },
2599 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, { 2, 1, 1, 1 } },
2601 { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, { 1, 1, 1, 1 } },
2602 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, { 1, 1, 1, 1 } },
2603 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, { 1, 1, 1, 1 } },
2604 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, { 1, 1, 1, 1 } },
2606 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, { 1, 1, 1, 1 } },
2607 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, { 1, 1, 1, 1 } },
2608 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, { 1, 1, 1, 1 } },
2609 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, { 1, 1, 1, 1 } },
2611 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v4f32, { 1, 1, 1, 1 } },
2612 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, { 1, 1, 1, 1 } },
2613 { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, { 1, 1, 1, 1 } },
2614 { ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, { 1, 1, 1, 1 } },
2616 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v4f32, { 1, 1, 1, 1 } },
2617 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, { 1, 1, 1, 1 } },
2618 { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, { 1, 1, 1, 1 } },
2619 { ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, { 1, 1, 1, 1 } },
2622 static const TypeConversionCostKindTblEntry AVX512VLConversionTbl[] = {
2623 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2624 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2625 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, { 3, 1, 1, 1 } }, // sext+vpslld+vptestmd
2626 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, { 8, 1, 1, 1 } }, // split+2*v8i8
2627 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, { 3, 1, 1, 1 } }, // sext+vpsllq+vptestmq
2628 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, { 3, 1, 1, 1 } }, // sext+vpsllq+vptestmq
2629 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, { 3, 1, 1, 1 } }, // sext+vpsllq+vptestmq
2630 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, { 8, 1, 1, 1 } }, // split+2*v8i16
2631 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, { 2, 1, 1, 1 } }, // vpslld+vptestmd
2632 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, { 2, 1, 1, 1 } }, // vpslld+vptestmd
2633 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, { 2, 1, 1, 1 } }, // vpslld+vptestmd
2634 { ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, { 2, 1, 1, 1 } }, // vpslld+vptestmd
2635 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, { 2, 1, 1, 1 } }, // vpsllq+vptestmq
2636 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, { 2, 1, 1, 1 } }, // vpsllq+vptestmq
2637 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, { 1, 1, 1, 1 } }, // vpmovqd
2638 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, { 2, 1, 1, 1 } }, // vpmovqb
2639 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, { 2, 1, 1, 1 } }, // vpmovqw
2640 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, { 2, 1, 1, 1 } }, // vpmovwb
2642 // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
2643 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
2644 { ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, { 5, 1, 1, 1 } },
2645 { ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, { 6, 1, 1, 1 } },
2646 { ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, { 5, 1, 1, 1 } },
2647 { ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, { 6, 1, 1, 1 } },
2648 { ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, { 5, 1, 1, 1 } },
2649 { ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, { 6, 1, 1, 1 } },
2650 { ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, {10, 1, 1, 1 } },
2651 { ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, {12, 1, 1, 1 } },
2653 // sign extend is vpcmpeq+maskedmove+vpmovdw
2654 // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
2655 { ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, { 4, 1, 1, 1 } },
2656 { ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, { 5, 1, 1, 1 } },
2657 { ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, { 4, 1, 1, 1 } },
2658 { ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, { 5, 1, 1, 1 } },
2659 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, { 4, 1, 1, 1 } },
2660 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, { 5, 1, 1, 1 } },
2661 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, {10, 1, 1, 1 } },
2662 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, {12, 1, 1, 1 } },
2664 { ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, { 1, 1, 1, 1 } }, // vpternlogd
2665 { ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, { 2, 1, 1, 1 } }, // vpternlogd+psrld
2666 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, { 1, 1, 1, 1 } }, // vpternlogd
2667 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, { 2, 1, 1, 1 } }, // vpternlogd+psrld
2668 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, { 1, 1, 1, 1 } }, // vpternlogd
2669 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, { 2, 1, 1, 1 } }, // vpternlogd+psrld
2670 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, { 1, 1, 1, 1 } }, // vpternlogd
2671 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, { 2, 1, 1, 1 } }, // vpternlogd+psrld
2673 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, { 1, 1, 1, 1 } }, // vpternlogq
2674 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, { 2, 1, 1, 1 } }, // vpternlogq+psrlq
2675 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, { 1, 1, 1, 1 } }, // vpternlogq
2676 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, { 2, 1, 1, 1 } }, // vpternlogq+psrlq
2678 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, { 1, 1, 1, 1 } },
2679 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, { 1, 1, 1, 1 } },
2680 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, { 1, 1, 1, 1 } },
2681 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, { 1, 1, 1, 1 } },
2682 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, { 1, 1, 1, 1 } },
2683 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, { 1, 1, 1, 1 } },
2684 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, { 1, 1, 1, 1 } },
2685 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, { 1, 1, 1, 1 } },
2686 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, { 1, 1, 1, 1 } },
2687 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, { 1, 1, 1, 1 } },
2688 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, { 1, 1, 1, 1 } },
2689 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, { 1, 1, 1, 1 } },
2691 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, { 1, 1, 1, 1 } },
2692 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, { 1, 1, 1, 1 } },
2693 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, { 1, 1, 1, 1 } },
2694 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, { 1, 1, 1, 1 } },
2696 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, { 1, 1, 1, 1 } },
2697 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, { 1, 1, 1, 1 } },
2698 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, { 1, 1, 1, 1 } },
2699 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, { 1, 1, 1, 1 } },
2700 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, { 1, 1, 1, 1 } },
2701 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, { 1, 1, 1, 1 } },
2702 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, { 1, 1, 1, 1 } },
2703 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, { 1, 1, 1, 1 } },
2704 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, { 1, 1, 1, 1 } },
2705 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, { 1, 1, 1, 1 } },
2706 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, { 5, 1, 1, 1 } },
2707 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, { 5, 1, 1, 1 } },
2708 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, { 5, 1, 1, 1 } },
2710 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, { 2, 1, 1, 1 } },
2711 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, { 2, 1, 1, 1 } },
2712 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f32, { 5, 1, 1, 1 } },
2714 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, { 1, 1, 1, 1 } },
2715 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, { 1, 1, 1, 1 } },
2716 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, { 1, 1, 1, 1 } },
2717 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, { 1, 1, 1, 1 } },
2718 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, { 1, 1, 1, 1 } },
2719 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, { 1, 1, 1, 1 } },
2720 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, { 1, 1, 1, 1 } },
2723 static const TypeConversionCostKindTblEntry AVX2ConversionTbl[] = {
2724 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, { 3, 1, 1, 1 } },
2725 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, { 3, 1, 1, 1 } },
2726 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, { 3, 1, 1, 1 } },
2727 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, { 3, 1, 1, 1 } },
2728 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, { 1, 1, 1, 1 } },
2729 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, { 1, 1, 1, 1 } },
2731 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, { 2, 1, 1, 1 } },
2732 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, { 2, 1, 1, 1 } },
2733 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, { 2, 1, 1, 1 } },
2734 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, { 2, 1, 1, 1 } },
2735 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, { 2, 1, 1, 1 } },
2736 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, { 2, 1, 1, 1 } },
2737 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, { 2, 1, 1, 1 } },
2738 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, { 2, 1, 1, 1 } },
2739 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, { 2, 1, 1, 1 } },
2740 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, { 2, 1, 1, 1 } },
2741 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, { 3, 1, 1, 1 } },
2742 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, { 3, 1, 1, 1 } },
2743 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, { 2, 1, 1, 1 } },
2744 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, { 2, 1, 1, 1 } },
2746 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, { 2, 1, 1, 1 } },
2748 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, { 4, 1, 1, 1 } },
2749 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, { 4, 1, 1, 1 } },
2750 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, { 1, 1, 1, 1 } },
2751 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, { 1, 1, 1, 1 } },
2752 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, { 1, 1, 1, 1 } },
2753 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, { 4, 1, 1, 1 } },
2754 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, { 4, 1, 1, 1 } },
2755 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, { 1, 1, 1, 1 } },
2756 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, { 1, 1, 1, 1 } },
2757 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, { 5, 1, 1, 1 } },
2758 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, { 1, 1, 1, 1 } },
2759 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, { 2, 1, 1, 1 } },
2761 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, { 3, 1, 1, 1 } },
2762 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, { 3, 1, 1, 1 } },
2764 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, { 1, 1, 1, 1 } },
2765 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, { 1, 1, 1, 1 } },
2766 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, { 1, 1, 1, 1 } },
2767 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, { 3, 1, 1, 1 } },
2769 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, { 3, 1, 1, 1 } },
2770 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, { 3, 1, 1, 1 } },
2771 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, { 1, 1, 1, 1 } },
2772 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, { 3, 1, 1, 1 } },
2773 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, { 4, 1, 1, 1 } },
2774 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, { 4, 1, 1, 1 } },
2775 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, { 3, 1, 1, 1 } },
2776 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, { 4, 1, 1, 1 } },
2778 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, { 2, 1, 1, 1 } },
2779 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, { 2, 1, 1, 1 } },
2780 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, { 2, 1, 1, 1 } },
2781 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, { 2, 1, 1, 1 } },
2782 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, { 1, 1, 1, 1 } },
2783 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, { 1, 1, 1, 1 } },
2784 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, { 3, 1, 1, 1 } },
2786 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, { 2, 1, 1, 1 } },
2787 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, { 2, 1, 1, 1 } },
2788 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, { 2, 1, 1, 1 } },
2789 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, { 2, 1, 1, 1 } },
2790 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, { 2, 1, 1, 1 } },
2791 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, { 1, 1, 1, 1 } },
2792 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, { 2, 1, 1, 1 } },
2793 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, { 2, 1, 1, 1 } },
2794 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, { 2, 1, 1, 1 } },
2795 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, { 4, 1, 1, 1 } },
2798 static const TypeConversionCostKindTblEntry AVXConversionTbl[] = {
2799 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, { 4, 1, 1, 1 } },
2800 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, { 4, 1, 1, 1 } },
2801 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, { 4, 1, 1, 1 } },
2802 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, { 4, 1, 1, 1 } },
2803 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, { 4, 1, 1, 1 } },
2804 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, { 4, 1, 1, 1 } },
2806 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, { 3, 1, 1, 1 } },
2807 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, { 3, 1, 1, 1 } },
2808 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, { 3, 1, 1, 1 } },
2809 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, { 3, 1, 1, 1 } },
2810 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, { 3, 1, 1, 1 } },
2811 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, { 3, 1, 1, 1 } },
2812 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, { 3, 1, 1, 1 } },
2813 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, { 3, 1, 1, 1 } },
2814 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, { 3, 1, 1, 1 } },
2815 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, { 3, 1, 1, 1 } },
2816 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, { 3, 1, 1, 1 } },
2817 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, { 3, 1, 1, 1 } },
2819 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, { 4, 1, 1, 1 } },
2820 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, { 5, 1, 1, 1 } },
2821 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, { 4, 1, 1, 1 } },
2822 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, { 9, 1, 1, 1 } },
2823 { ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, {11, 1, 1, 1 } },
2825 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, { 6, 1, 1, 1 } },
2826 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, { 6, 1, 1, 1 } },
2827 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, { 2, 1, 1, 1 } }, // and+extract+packuswb
2828 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, { 5, 1, 1, 1 } },
2829 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, { 5, 1, 1, 1 } },
2830 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, { 5, 1, 1, 1 } },
2831 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, { 3, 1, 1, 1 } }, // and+extract+2*packusdw
2832 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, { 2, 1, 1, 1 } },
2834 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, { 3, 1, 1, 1 } },
2835 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, { 3, 1, 1, 1 } },
2836 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, { 8, 1, 1, 1 } },
2837 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, { 4, 1, 1, 1 } },
2838 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v16i8, { 2, 1, 1, 1 } },
2839 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, { 4, 1, 1, 1 } },
2840 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v8i16, { 2, 1, 1, 1 } },
2841 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, { 2, 1, 1, 1 } },
2842 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, { 2, 1, 1, 1 } },
2843 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, { 4, 1, 1, 1 } },
2844 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, { 5, 1, 1, 1 } },
2845 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, { 8, 1, 1, 1 } },
2847 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, { 7, 1, 1, 1 } },
2848 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, { 7, 1, 1, 1 } },
2849 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, { 6, 1, 1, 1 } },
2850 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, { 4, 1, 1, 1 } },
2851 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v16i8, { 2, 1, 1, 1 } },
2852 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, { 4, 1, 1, 1 } },
2853 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v8i16, { 2, 1, 1, 1 } },
2854 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, { 4, 1, 1, 1 } },
2855 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, { 4, 1, 1, 1 } },
2856 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, { 5, 1, 1, 1 } },
2857 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, { 6, 1, 1, 1 } },
2858 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, { 8, 1, 1, 1 } },
2859 { ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, {10, 1, 1, 1 } },
2860 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, {10, 1, 1, 1 } },
2861 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, {18, 1, 1, 1 } },
2862 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, { 5, 1, 1, 1 } },
2863 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, {10, 1, 1, 1 } },
2865 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, { 2, 1, 1, 1 } },
2866 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f64, { 2, 1, 1, 1 } },
2867 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v8f32, { 2, 1, 1, 1 } },
2868 { ISD::FP_TO_SINT, MVT::v32i8, MVT::v4f64, { 2, 1, 1, 1 } },
2869 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, { 2, 1, 1, 1 } },
2870 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f64, { 2, 1, 1, 1 } },
2871 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, { 2, 1, 1, 1 } },
2872 { ISD::FP_TO_SINT, MVT::v16i16, MVT::v4f64, { 2, 1, 1, 1 } },
2873 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, { 2, 1, 1, 1 } },
2874 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, { 2, 1, 1, 1 } },
2875 { ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, { 5, 1, 1, 1 } },
2877 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v8f32, { 2, 1, 1, 1 } },
2878 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f64, { 2, 1, 1, 1 } },
2879 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v8f32, { 2, 1, 1, 1 } },
2880 { ISD::FP_TO_UINT, MVT::v32i8, MVT::v4f64, { 2, 1, 1, 1 } },
2881 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, { 2, 1, 1, 1 } },
2882 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f64, { 2, 1, 1, 1 } },
2883 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, { 2, 1, 1, 1 } },
2884 { ISD::FP_TO_UINT, MVT::v16i16, MVT::v4f64, { 2, 1, 1, 1 } },
2885 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, { 3, 1, 1, 1 } },
2886 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, { 4, 1, 1, 1 } },
2887 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, { 6, 1, 1, 1 } },
2888 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, { 7, 1, 1, 1 } },
2889 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, { 7, 1, 1, 1 } },
2891 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, { 1, 1, 1, 1 } },
2892 { ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, { 1, 1, 1, 1 } },
2895 static const TypeConversionCostKindTblEntry SSE41ConversionTbl[] = {
2896 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, { 1, 1, 1, 1 } },
2897 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, { 1, 1, 1, 1 } },
2898 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, { 1, 1, 1, 1 } },
2899 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, { 1, 1, 1, 1 } },
2900 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, { 1, 1, 1, 1 } },
2901 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, { 1, 1, 1, 1 } },
2902 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, { 1, 1, 1, 1 } },
2903 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, { 1, 1, 1, 1 } },
2904 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, { 1, 1, 1, 1 } },
2905 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, { 1, 1, 1, 1 } },
2906 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, { 1, 1, 1, 1 } },
2907 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, { 1, 1, 1, 1 } },
2909 // These truncates end up widening elements.
2910 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, { 1, 1, 1, 1 } }, // PMOVXZBQ
2911 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, { 1, 1, 1, 1 } }, // PMOVXZWQ
2912 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, { 1, 1, 1, 1 } }, // PMOVXZBD
2914 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, { 2, 1, 1, 1 } },
2915 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, { 2, 1, 1, 1 } },
2916 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, { 2, 1, 1, 1 } },
2918 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, { 1, 1, 1, 1 } },
2919 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, { 1, 1, 1, 1 } },
2920 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, { 1, 1, 1, 1 } },
2921 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, { 1, 1, 1, 1 } },
2922 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, { 1, 1, 1, 1 } },
2923 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, { 1, 1, 1, 1 } },
2924 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, { 1, 1, 1, 1 } },
2925 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, { 1, 1, 1, 1 } },
2926 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, { 1, 1, 1, 1 } },
2927 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, { 1, 1, 1, 1 } },
2928 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, { 2, 1, 1, 1 } },
2930 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, { 1, 1, 1, 1 } },
2931 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, { 1, 1, 1, 1 } },
2932 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, { 4, 1, 1, 1 } },
2933 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, { 4, 1, 1, 1 } },
2934 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, { 1, 1, 1, 1 } },
2935 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, { 1, 1, 1, 1 } },
2936 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, { 1, 1, 1, 1 } },
2937 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, { 1, 1, 1, 1 } },
2938 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, { 3, 1, 1, 1 } },
2939 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, { 3, 1, 1, 1 } },
2940 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, { 2, 1, 1, 1 } },
2941 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, {12, 1, 1, 1 } },
2942 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, {22, 1, 1, 1 } },
2943 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, { 4, 1, 1, 1 } },
2945 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, { 1, 1, 1, 1 } },
2946 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, { 1, 1, 1, 1 } },
2947 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, { 1, 1, 1, 1 } },
2948 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, { 1, 1, 1, 1 } },
2949 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, { 2, 1, 1, 1 } },
2950 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, { 2, 1, 1, 1 } },
2951 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, { 1, 1, 1, 1 } },
2952 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, { 1, 1, 1, 1 } },
2953 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, { 1, 1, 1, 1 } },
2954 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, { 1, 1, 1, 1 } },
2956 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, { 1, 1, 1, 1 } },
2957 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, { 4, 1, 1, 1 } },
2958 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, { 1, 1, 1, 1 } },
2959 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, { 4, 1, 1, 1 } },
2960 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, { 2, 1, 1, 1 } },
2961 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, { 2, 1, 1, 1 } },
2962 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, { 1, 1, 1, 1 } },
2963 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, { 1, 1, 1, 1 } },
2964 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, { 4, 1, 1, 1 } },
2965 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, { 4, 1, 1, 1 } },
2968 static const TypeConversionCostKindTblEntry SSE2ConversionTbl[] = {
2969 // These are somewhat magic numbers justified by comparing the
2970 // output of llvm-mca for our various supported scheduler models
2971 // and basing it off the worst case scenario.
2972 { ISD::SINT_TO_FP, MVT::f32, MVT::i32, { 3, 1, 1, 1 } },
2973 { ISD::SINT_TO_FP, MVT::f64, MVT::i32, { 3, 1, 1, 1 } },
2974 { ISD::SINT_TO_FP, MVT::f32, MVT::i64, { 3, 1, 1, 1 } },
2975 { ISD::SINT_TO_FP, MVT::f64, MVT::i64, { 3, 1, 1, 1 } },
2976 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, { 3, 1, 1, 1 } },
2977 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, { 4, 1, 1, 1 } },
2978 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, { 3, 1, 1, 1 } },
2979 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, { 4, 1, 1, 1 } },
2980 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, { 3, 1, 1, 1 } },
2981 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, { 4, 1, 1, 1 } },
2982 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, { 8, 1, 1, 1 } },
2983 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, { 8, 1, 1, 1 } },
2985 { ISD::UINT_TO_FP, MVT::f32, MVT::i32, { 3, 1, 1, 1 } },
2986 { ISD::UINT_TO_FP, MVT::f64, MVT::i32, { 3, 1, 1, 1 } },
2987 { ISD::UINT_TO_FP, MVT::f32, MVT::i64, { 8, 1, 1, 1 } },
2988 { ISD::UINT_TO_FP, MVT::f64, MVT::i64, { 9, 1, 1, 1 } },
2989 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, { 4, 1, 1, 1 } },
2990 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, { 4, 1, 1, 1 } },
2991 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, { 4, 1, 1, 1 } },
2992 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, { 4, 1, 1, 1 } },
2993 { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, { 7, 1, 1, 1 } },
2994 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, { 7, 1, 1, 1 } },
2995 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, { 5, 1, 1, 1 } },
2996 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, {15, 1, 1, 1 } },
2997 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, {18, 1, 1, 1 } },
2999 { ISD::FP_TO_SINT, MVT::i32, MVT::f32, { 4, 1, 1, 1 } },
3000 { ISD::FP_TO_SINT, MVT::i64, MVT::f32, { 4, 1, 1, 1 } },
3001 { ISD::FP_TO_SINT, MVT::i32, MVT::f64, { 4, 1, 1, 1 } },
3002 { ISD::FP_TO_SINT, MVT::i64, MVT::f64, { 4, 1, 1, 1 } },
3003 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, { 6, 1, 1, 1 } },
3004 { ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, { 6, 1, 1, 1 } },
3005 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, { 5, 1, 1, 1 } },
3006 { ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, { 5, 1, 1, 1 } },
3007 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, { 4, 1, 1, 1 } },
3008 { ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, { 4, 1, 1, 1 } },
3010 { ISD::FP_TO_UINT, MVT::i32, MVT::f32, { 4, 1, 1, 1 } },
3011 { ISD::FP_TO_UINT, MVT::i64, MVT::f32, { 4, 1, 1, 1 } },
3012 { ISD::FP_TO_UINT, MVT::i32, MVT::f64, { 4, 1, 1, 1 } },
3013 { ISD::FP_TO_UINT, MVT::i64, MVT::f64, {15, 1, 1, 1 } },
3014 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, { 6, 1, 1, 1 } },
3015 { ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, { 6, 1, 1, 1 } },
3016 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, { 5, 1, 1, 1 } },
3017 { ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, { 5, 1, 1, 1 } },
3018 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, { 8, 1, 1, 1 } },
3019 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, { 8, 1, 1, 1 } },
3021 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, { 4, 1, 1, 1 } },
3022 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, { 4, 1, 1, 1 } },
3023 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, { 2, 1, 1, 1 } },
3024 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, { 3, 1, 1, 1 } },
3025 { ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, { 1, 1, 1, 1 } },
3026 { ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, { 2, 1, 1, 1 } },
3027 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, { 2, 1, 1, 1 } },
3028 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, { 3, 1, 1, 1 } },
3029 { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, { 1, 1, 1, 1 } },
3030 { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, { 2, 1, 1, 1 } },
3031 { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, { 1, 1, 1, 1 } },
3032 { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, { 2, 1, 1, 1 } },
3034 // These truncates are really widening elements.
3035 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, { 1, 1, 1, 1 } }, // PSHUFD
3036 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, { 2, 1, 1, 1 } }, // PUNPCKLWD+DQ
3037 { ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, { 3, 1, 1, 1 } }, // PUNPCKLBW+WD+PSHUFD
3038 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, { 1, 1, 1, 1 } }, // PUNPCKLWD
3039 { ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, { 2, 1, 1, 1 } }, // PUNPCKLBW+WD
3040 { ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, { 1, 1, 1, 1 } }, // PUNPCKLBW
3042 { ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, { 2, 1, 1, 1 } }, // PAND+PACKUSWB
3043 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, { 3, 1, 1, 1 } },
3044 { ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, { 3, 1, 1, 1 } }, // PAND+2*PACKUSWB
3045 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, { 7, 1, 1, 1 } },
3046 { ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, { 1, 1, 1, 1 } },
3047 { ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, { 3, 1, 1, 1 } },
3048 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, { 5, 1, 1, 1 } },
3049 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, {10, 1, 1, 1 } },
3050 { ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, { 4, 1, 1, 1 } }, // PAND+3*PACKUSWB
3051 { ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, { 2, 1, 1, 1 } }, // PSHUFD+PSHUFLW
3052 { ISD::TRUNCATE, MVT::v4i32, MVT::v2i64, { 1, 1, 1, 1 } }, // PSHUFD
3055 static const TypeConversionCostKindTblEntry F16ConversionTbl[] = {
3056 { ISD::FP_ROUND, MVT::f16, MVT::f32, { 1, 1, 1, 1 } },
3057 { ISD::FP_ROUND, MVT::v8f16, MVT::v8f32, { 1, 1, 1, 1 } },
3058 { ISD::FP_ROUND, MVT::v4f16, MVT::v4f32, { 1, 1, 1, 1 } },
3059 { ISD::FP_EXTEND, MVT::f32, MVT::f16, { 1, 1, 1, 1 } },
3060 { ISD::FP_EXTEND, MVT::f64, MVT::f16, { 2, 1, 1, 1 } }, // vcvtph2ps+vcvtps2pd
3061 { ISD::FP_EXTEND, MVT::v8f32, MVT::v8f16, { 1, 1, 1, 1 } },
3062 { ISD::FP_EXTEND, MVT::v4f32, MVT::v4f16, { 1, 1, 1, 1 } },
3063 { ISD::FP_EXTEND, MVT::v4f64, MVT::v4f16, { 2, 1, 1, 1 } }, // vcvtph2ps+vcvtps2pd
3066 // Attempt to map directly to (simple) MVT types to let us match custom entries.
3067 EVT SrcTy = TLI->getValueType(DL, Src);
3068 EVT DstTy = TLI->getValueType(DL, Dst);
3070 // The function getSimpleVT only handles simple value types.
3071 if (SrcTy.isSimple() && DstTy.isSimple()) {
3072 MVT SimpleSrcTy = SrcTy.getSimpleVT();
3073 MVT SimpleDstTy = DstTy.getSimpleVT();
3075 if (ST->useAVX512Regs()) {
3076 if (ST->hasBWI())
3077 if (const auto *Entry = ConvertCostTableLookup(
3078 AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
3079 if (auto KindCost = Entry->Cost[CostKind])
3080 return *KindCost;
3082 if (ST->hasDQI())
3083 if (const auto *Entry = ConvertCostTableLookup(
3084 AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
3085 if (auto KindCost = Entry->Cost[CostKind])
3086 return *KindCost;
3088 if (ST->hasAVX512())
3089 if (const auto *Entry = ConvertCostTableLookup(
3090 AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
3091 if (auto KindCost = Entry->Cost[CostKind])
3092 return *KindCost;
3095 if (ST->hasBWI())
3096 if (const auto *Entry = ConvertCostTableLookup(
3097 AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
3098 if (auto KindCost = Entry->Cost[CostKind])
3099 return *KindCost;
3101 if (ST->hasDQI())
3102 if (const auto *Entry = ConvertCostTableLookup(
3103 AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
3104 if (auto KindCost = Entry->Cost[CostKind])
3105 return *KindCost;
3107 if (ST->hasAVX512())
3108 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
3109 SimpleDstTy, SimpleSrcTy))
3110 if (auto KindCost = Entry->Cost[CostKind])
3111 return *KindCost;
3113 if (ST->hasAVX2()) {
3114 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
3115 SimpleDstTy, SimpleSrcTy))
3116 if (auto KindCost = Entry->Cost[CostKind])
3117 return *KindCost;
3120 if (ST->hasAVX()) {
3121 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
3122 SimpleDstTy, SimpleSrcTy))
3123 if (auto KindCost = Entry->Cost[CostKind])
3124 return *KindCost;
3127 if (ST->hasF16C()) {
3128 if (const auto *Entry = ConvertCostTableLookup(F16ConversionTbl, ISD,
3129 SimpleDstTy, SimpleSrcTy))
3130 if (auto KindCost = Entry->Cost[CostKind])
3131 return *KindCost;
3134 if (ST->hasSSE41()) {
3135 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
3136 SimpleDstTy, SimpleSrcTy))
3137 if (auto KindCost = Entry->Cost[CostKind])
3138 return *KindCost;
3141 if (ST->hasSSE2()) {
3142 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
3143 SimpleDstTy, SimpleSrcTy))
3144 if (auto KindCost = Entry->Cost[CostKind])
3145 return *KindCost;
3148 if ((ISD == ISD::FP_ROUND && SimpleDstTy == MVT::f16) ||
3149 (ISD == ISD::FP_EXTEND && SimpleSrcTy == MVT::f16)) {
3150 // fp16 conversions not covered by any table entries require a libcall.
3151 // Return a large (arbitrary) number to model this.
3152 return InstructionCost(64);
3156 // Fall back to legalized types.
3157 std::pair<InstructionCost, MVT> LTSrc = getTypeLegalizationCost(Src);
3158 std::pair<InstructionCost, MVT> LTDest = getTypeLegalizationCost(Dst);
3160 // If we're truncating to the same legalized type - just assume its free.
3161 if (ISD == ISD::TRUNCATE && LTSrc.second == LTDest.second)
3162 return TTI::TCC_Free;
3164 if (ST->useAVX512Regs()) {
3165 if (ST->hasBWI())
3166 if (const auto *Entry = ConvertCostTableLookup(
3167 AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
3168 if (auto KindCost = Entry->Cost[CostKind])
3169 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3171 if (ST->hasDQI())
3172 if (const auto *Entry = ConvertCostTableLookup(
3173 AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
3174 if (auto KindCost = Entry->Cost[CostKind])
3175 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3177 if (ST->hasAVX512())
3178 if (const auto *Entry = ConvertCostTableLookup(
3179 AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
3180 if (auto KindCost = Entry->Cost[CostKind])
3181 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3184 if (ST->hasBWI())
3185 if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
3186 LTDest.second, LTSrc.second))
3187 if (auto KindCost = Entry->Cost[CostKind])
3188 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3190 if (ST->hasDQI())
3191 if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
3192 LTDest.second, LTSrc.second))
3193 if (auto KindCost = Entry->Cost[CostKind])
3194 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3196 if (ST->hasAVX512())
3197 if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
3198 LTDest.second, LTSrc.second))
3199 if (auto KindCost = Entry->Cost[CostKind])
3200 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3202 if (ST->hasAVX2())
3203 if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
3204 LTDest.second, LTSrc.second))
3205 if (auto KindCost = Entry->Cost[CostKind])
3206 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3208 if (ST->hasAVX())
3209 if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
3210 LTDest.second, LTSrc.second))
3211 if (auto KindCost = Entry->Cost[CostKind])
3212 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3214 if (ST->hasF16C()) {
3215 if (const auto *Entry = ConvertCostTableLookup(F16ConversionTbl, ISD,
3216 LTDest.second, LTSrc.second))
3217 if (auto KindCost = Entry->Cost[CostKind])
3218 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3221 if (ST->hasSSE41())
3222 if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
3223 LTDest.second, LTSrc.second))
3224 if (auto KindCost = Entry->Cost[CostKind])
3225 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3227 if (ST->hasSSE2())
3228 if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
3229 LTDest.second, LTSrc.second))
3230 if (auto KindCost = Entry->Cost[CostKind])
3231 return std::max(LTSrc.first, LTDest.first) * *KindCost;
3233 // Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
3234 // sitofp.
3235 if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
3236 1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
3237 Type *ExtSrc = Src->getWithNewBitWidth(32);
3238 unsigned ExtOpc =
3239 (ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
3241 // For scalar loads the extend would be free.
3242 InstructionCost ExtCost = 0;
3243 if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
3244 ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
3246 return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
3247 TTI::CastContextHint::None, CostKind);
3250 // Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
3251 // i32.
3252 if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
3253 1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
3254 Type *TruncDst = Dst->getWithNewBitWidth(32);
3255 return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
3256 getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
3257 TTI::CastContextHint::None, CostKind);
3260 // TODO: Allow non-throughput costs that aren't binary.
3261 auto AdjustCost = [&CostKind](InstructionCost Cost,
3262 InstructionCost N = 1) -> InstructionCost {
3263 if (CostKind != TTI::TCK_RecipThroughput)
3264 return Cost == 0 ? 0 : N;
3265 return Cost * N;
3267 return AdjustCost(
3268 BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
3271 InstructionCost X86TTIImpl::getCmpSelInstrCost(
3272 unsigned Opcode, Type *ValTy, Type *CondTy, CmpInst::Predicate VecPred,
3273 TTI::TargetCostKind CostKind, TTI::OperandValueInfo Op1Info,
3274 TTI::OperandValueInfo Op2Info, const Instruction *I) {
3275 // Early out if this type isn't scalar/vector integer/float.
3276 if (!(ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy()))
3277 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
3278 Op1Info, Op2Info, I);
3280 // Legalize the type.
3281 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
3283 MVT MTy = LT.second;
3285 int ISD = TLI->InstructionOpcodeToISD(Opcode);
3286 assert(ISD && "Invalid opcode");
3288 InstructionCost ExtraCost = 0;
3289 if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
3290 // Some vector comparison predicates cost extra instructions.
3291 // TODO: Adjust ExtraCost based on CostKind?
3292 // TODO: Should we invert this and assume worst case cmp costs
3293 // and reduce for particular predicates?
3294 if (MTy.isVector() &&
3295 !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
3296 (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
3297 ST->hasBWI())) {
3298 // Fallback to I if a specific predicate wasn't specified.
3299 CmpInst::Predicate Pred = VecPred;
3300 if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
3301 Pred == CmpInst::BAD_FCMP_PREDICATE))
3302 Pred = cast<CmpInst>(I)->getPredicate();
3304 bool CmpWithConstant = false;
3305 if (auto *CmpInstr = dyn_cast_or_null<CmpInst>(I))
3306 CmpWithConstant = isa<Constant>(CmpInstr->getOperand(1));
3308 switch (Pred) {
3309 case CmpInst::Predicate::ICMP_NE:
3310 // xor(cmpeq(x,y),-1)
3311 ExtraCost = CmpWithConstant ? 0 : 1;
3312 break;
3313 case CmpInst::Predicate::ICMP_SGE:
3314 case CmpInst::Predicate::ICMP_SLE:
3315 // xor(cmpgt(x,y),-1)
3316 ExtraCost = CmpWithConstant ? 0 : 1;
3317 break;
3318 case CmpInst::Predicate::ICMP_ULT:
3319 case CmpInst::Predicate::ICMP_UGT:
3320 // cmpgt(xor(x,signbit),xor(y,signbit))
3321 // xor(cmpeq(pmaxu(x,y),x),-1)
3322 ExtraCost = CmpWithConstant ? 1 : 2;
3323 break;
3324 case CmpInst::Predicate::ICMP_ULE:
3325 case CmpInst::Predicate::ICMP_UGE:
3326 if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
3327 (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
3328 // cmpeq(psubus(x,y),0)
3329 // cmpeq(pminu(x,y),x)
3330 ExtraCost = 1;
3331 } else {
3332 // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
3333 ExtraCost = CmpWithConstant ? 2 : 3;
3335 break;
3336 case CmpInst::Predicate::FCMP_ONE:
3337 case CmpInst::Predicate::FCMP_UEQ:
3338 // Without AVX we need to expand FCMP_ONE/FCMP_UEQ cases.
3339 // Use FCMP_UEQ expansion - FCMP_ONE should be the same.
3340 if (CondTy && !ST->hasAVX())
3341 return getCmpSelInstrCost(Opcode, ValTy, CondTy,
3342 CmpInst::Predicate::FCMP_UNO, CostKind,
3343 Op1Info, Op2Info) +
3344 getCmpSelInstrCost(Opcode, ValTy, CondTy,
3345 CmpInst::Predicate::FCMP_OEQ, CostKind,
3346 Op1Info, Op2Info) +
3347 getArithmeticInstrCost(Instruction::Or, CondTy, CostKind);
3349 break;
3350 case CmpInst::Predicate::BAD_ICMP_PREDICATE:
3351 case CmpInst::Predicate::BAD_FCMP_PREDICATE:
3352 // Assume worst case scenario and add the maximum extra cost.
3353 ExtraCost = 3;
3354 break;
3355 default:
3356 break;
3361 static const CostKindTblEntry SLMCostTbl[] = {
3362 // slm pcmpeq/pcmpgt throughput is 2
3363 { ISD::SETCC, MVT::v2i64, { 2, 5, 1, 2 } },
3364 // slm pblendvb/blendvpd/blendvps throughput is 4
3365 { ISD::SELECT, MVT::v2f64, { 4, 4, 1, 3 } }, // vblendvpd
3366 { ISD::SELECT, MVT::v4f32, { 4, 4, 1, 3 } }, // vblendvps
3367 { ISD::SELECT, MVT::v2i64, { 4, 4, 1, 3 } }, // pblendvb
3368 { ISD::SELECT, MVT::v8i32, { 4, 4, 1, 3 } }, // pblendvb
3369 { ISD::SELECT, MVT::v8i16, { 4, 4, 1, 3 } }, // pblendvb
3370 { ISD::SELECT, MVT::v16i8, { 4, 4, 1, 3 } }, // pblendvb
3373 static const CostKindTblEntry AVX512BWCostTbl[] = {
3374 { ISD::SETCC, MVT::v32i16, { 1, 1, 1, 1 } },
3375 { ISD::SETCC, MVT::v16i16, { 1, 1, 1, 1 } },
3376 { ISD::SETCC, MVT::v64i8, { 1, 1, 1, 1 } },
3377 { ISD::SETCC, MVT::v32i8, { 1, 1, 1, 1 } },
3379 { ISD::SELECT, MVT::v32i16, { 1, 1, 1, 1 } },
3380 { ISD::SELECT, MVT::v64i8, { 1, 1, 1, 1 } },
3383 static const CostKindTblEntry AVX512CostTbl[] = {
3384 { ISD::SETCC, MVT::v8f64, { 1, 4, 1, 1 } },
3385 { ISD::SETCC, MVT::v4f64, { 1, 4, 1, 1 } },
3386 { ISD::SETCC, MVT::v16f32, { 1, 4, 1, 1 } },
3387 { ISD::SETCC, MVT::v8f32, { 1, 4, 1, 1 } },
3389 { ISD::SETCC, MVT::v8i64, { 1, 1, 1, 1 } },
3390 { ISD::SETCC, MVT::v4i64, { 1, 1, 1, 1 } },
3391 { ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
3392 { ISD::SETCC, MVT::v16i32, { 1, 1, 1, 1 } },
3393 { ISD::SETCC, MVT::v8i32, { 1, 1, 1, 1 } },
3394 { ISD::SETCC, MVT::v32i16, { 3, 7, 5, 5 } },
3395 { ISD::SETCC, MVT::v64i8, { 3, 7, 5, 5 } },
3397 { ISD::SELECT, MVT::v8i64, { 1, 1, 1, 1 } },
3398 { ISD::SELECT, MVT::v4i64, { 1, 1, 1, 1 } },
3399 { ISD::SELECT, MVT::v2i64, { 1, 1, 1, 1 } },
3400 { ISD::SELECT, MVT::v16i32, { 1, 1, 1, 1 } },
3401 { ISD::SELECT, MVT::v8i32, { 1, 1, 1, 1 } },
3402 { ISD::SELECT, MVT::v4i32, { 1, 1, 1, 1 } },
3403 { ISD::SELECT, MVT::v8f64, { 1, 1, 1, 1 } },
3404 { ISD::SELECT, MVT::v4f64, { 1, 1, 1, 1 } },
3405 { ISD::SELECT, MVT::v2f64, { 1, 1, 1, 1 } },
3406 { ISD::SELECT, MVT::f64, { 1, 1, 1, 1 } },
3407 { ISD::SELECT, MVT::v16f32, { 1, 1, 1, 1 } },
3408 { ISD::SELECT, MVT::v8f32 , { 1, 1, 1, 1 } },
3409 { ISD::SELECT, MVT::v4f32, { 1, 1, 1, 1 } },
3410 { ISD::SELECT, MVT::f32 , { 1, 1, 1, 1 } },
3412 { ISD::SELECT, MVT::v32i16, { 2, 2, 4, 4 } },
3413 { ISD::SELECT, MVT::v16i16, { 1, 1, 1, 1 } },
3414 { ISD::SELECT, MVT::v8i16, { 1, 1, 1, 1 } },
3415 { ISD::SELECT, MVT::v64i8, { 2, 2, 4, 4 } },
3416 { ISD::SELECT, MVT::v32i8, { 1, 1, 1, 1 } },
3417 { ISD::SELECT, MVT::v16i8, { 1, 1, 1, 1 } },
3420 static const CostKindTblEntry AVX2CostTbl[] = {
3421 { ISD::SETCC, MVT::v4f64, { 1, 4, 1, 2 } },
3422 { ISD::SETCC, MVT::v2f64, { 1, 4, 1, 1 } },
3423 { ISD::SETCC, MVT::f64, { 1, 4, 1, 1 } },
3424 { ISD::SETCC, MVT::v8f32, { 1, 4, 1, 2 } },
3425 { ISD::SETCC, MVT::v4f32, { 1, 4, 1, 1 } },
3426 { ISD::SETCC, MVT::f32, { 1, 4, 1, 1 } },
3428 { ISD::SETCC, MVT::v4i64, { 1, 1, 1, 2 } },
3429 { ISD::SETCC, MVT::v8i32, { 1, 1, 1, 2 } },
3430 { ISD::SETCC, MVT::v16i16, { 1, 1, 1, 2 } },
3431 { ISD::SETCC, MVT::v32i8, { 1, 1, 1, 2 } },
3433 { ISD::SELECT, MVT::v4f64, { 2, 2, 1, 2 } }, // vblendvpd
3434 { ISD::SELECT, MVT::v8f32, { 2, 2, 1, 2 } }, // vblendvps
3435 { ISD::SELECT, MVT::v4i64, { 2, 2, 1, 2 } }, // pblendvb
3436 { ISD::SELECT, MVT::v8i32, { 2, 2, 1, 2 } }, // pblendvb
3437 { ISD::SELECT, MVT::v16i16, { 2, 2, 1, 2 } }, // pblendvb
3438 { ISD::SELECT, MVT::v32i8, { 2, 2, 1, 2 } }, // pblendvb
3441 static const CostKindTblEntry XOPCostTbl[] = {
3442 { ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
3443 { ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
3446 static const CostKindTblEntry AVX1CostTbl[] = {
3447 { ISD::SETCC, MVT::v4f64, { 2, 3, 1, 2 } },
3448 { ISD::SETCC, MVT::v2f64, { 1, 3, 1, 1 } },
3449 { ISD::SETCC, MVT::f64, { 1, 3, 1, 1 } },
3450 { ISD::SETCC, MVT::v8f32, { 2, 3, 1, 2 } },
3451 { ISD::SETCC, MVT::v4f32, { 1, 3, 1, 1 } },
3452 { ISD::SETCC, MVT::f32, { 1, 3, 1, 1 } },
3454 // AVX1 does not support 8-wide integer compare.
3455 { ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
3456 { ISD::SETCC, MVT::v8i32, { 4, 2, 5, 6 } },
3457 { ISD::SETCC, MVT::v16i16, { 4, 2, 5, 6 } },
3458 { ISD::SETCC, MVT::v32i8, { 4, 2, 5, 6 } },
3460 { ISD::SELECT, MVT::v4f64, { 3, 3, 1, 2 } }, // vblendvpd
3461 { ISD::SELECT, MVT::v8f32, { 3, 3, 1, 2 } }, // vblendvps
3462 { ISD::SELECT, MVT::v4i64, { 3, 3, 1, 2 } }, // vblendvpd
3463 { ISD::SELECT, MVT::v8i32, { 3, 3, 1, 2 } }, // vblendvps
3464 { ISD::SELECT, MVT::v16i16, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
3465 { ISD::SELECT, MVT::v32i8, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
3468 static const CostKindTblEntry SSE42CostTbl[] = {
3469 { ISD::SETCC, MVT::v2i64, { 1, 2, 1, 2 } },
3472 static const CostKindTblEntry SSE41CostTbl[] = {
3473 { ISD::SETCC, MVT::v2f64, { 1, 5, 1, 1 } },
3474 { ISD::SETCC, MVT::v4f32, { 1, 5, 1, 1 } },
3476 { ISD::SELECT, MVT::v2f64, { 2, 2, 1, 2 } }, // blendvpd
3477 { ISD::SELECT, MVT::f64, { 2, 2, 1, 2 } }, // blendvpd
3478 { ISD::SELECT, MVT::v4f32, { 2, 2, 1, 2 } }, // blendvps
3479 { ISD::SELECT, MVT::f32 , { 2, 2, 1, 2 } }, // blendvps
3480 { ISD::SELECT, MVT::v2i64, { 2, 2, 1, 2 } }, // pblendvb
3481 { ISD::SELECT, MVT::v4i32, { 2, 2, 1, 2 } }, // pblendvb
3482 { ISD::SELECT, MVT::v8i16, { 2, 2, 1, 2 } }, // pblendvb
3483 { ISD::SELECT, MVT::v16i8, { 2, 2, 1, 2 } }, // pblendvb
3486 static const CostKindTblEntry SSE2CostTbl[] = {
3487 { ISD::SETCC, MVT::v2f64, { 2, 5, 1, 1 } },
3488 { ISD::SETCC, MVT::f64, { 1, 5, 1, 1 } },
3490 { ISD::SETCC, MVT::v2i64, { 5, 4, 5, 5 } }, // pcmpeqd/pcmpgtd expansion
3491 { ISD::SETCC, MVT::v4i32, { 1, 1, 1, 1 } },
3492 { ISD::SETCC, MVT::v8i16, { 1, 1, 1, 1 } },
3493 { ISD::SETCC, MVT::v16i8, { 1, 1, 1, 1 } },
3495 { ISD::SELECT, MVT::v2f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
3496 { ISD::SELECT, MVT::f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
3497 { ISD::SELECT, MVT::v2i64, { 2, 2, 3, 3 } }, // pand + pandn + por
3498 { ISD::SELECT, MVT::v4i32, { 2, 2, 3, 3 } }, // pand + pandn + por
3499 { ISD::SELECT, MVT::v8i16, { 2, 2, 3, 3 } }, // pand + pandn + por
3500 { ISD::SELECT, MVT::v16i8, { 2, 2, 3, 3 } }, // pand + pandn + por
3503 static const CostKindTblEntry SSE1CostTbl[] = {
3504 { ISD::SETCC, MVT::v4f32, { 2, 5, 1, 1 } },
3505 { ISD::SETCC, MVT::f32, { 1, 5, 1, 1 } },
3507 { ISD::SELECT, MVT::v4f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
3508 { ISD::SELECT, MVT::f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
3511 if (ST->useSLMArithCosts())
3512 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
3513 if (auto KindCost = Entry->Cost[CostKind])
3514 return LT.first * (ExtraCost + *KindCost);
3516 if (ST->hasBWI())
3517 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
3518 if (auto KindCost = Entry->Cost[CostKind])
3519 return LT.first * (ExtraCost + *KindCost);
3521 if (ST->hasAVX512())
3522 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
3523 if (auto KindCost = Entry->Cost[CostKind])
3524 return LT.first * (ExtraCost + *KindCost);
3526 if (ST->hasAVX2())
3527 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
3528 if (auto KindCost = Entry->Cost[CostKind])
3529 return LT.first * (ExtraCost + *KindCost);
3531 if (ST->hasXOP())
3532 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
3533 if (auto KindCost = Entry->Cost[CostKind])
3534 return LT.first * (ExtraCost + *KindCost);
3536 if (ST->hasAVX())
3537 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
3538 if (auto KindCost = Entry->Cost[CostKind])
3539 return LT.first * (ExtraCost + *KindCost);
3541 if (ST->hasSSE42())
3542 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
3543 if (auto KindCost = Entry->Cost[CostKind])
3544 return LT.first * (ExtraCost + *KindCost);
3546 if (ST->hasSSE41())
3547 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
3548 if (auto KindCost = Entry->Cost[CostKind])
3549 return LT.first * (ExtraCost + *KindCost);
3551 if (ST->hasSSE2())
3552 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
3553 if (auto KindCost = Entry->Cost[CostKind])
3554 return LT.first * (ExtraCost + *KindCost);
3556 if (ST->hasSSE1())
3557 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
3558 if (auto KindCost = Entry->Cost[CostKind])
3559 return LT.first * (ExtraCost + *KindCost);
3561 // Assume a 3cy latency for fp select ops.
3562 if (CostKind == TTI::TCK_Latency && Opcode == Instruction::Select)
3563 if (ValTy->getScalarType()->isFloatingPointTy())
3564 return 3;
3566 return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
3567 Op1Info, Op2Info, I);
3570 unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
3572 InstructionCost
3573 X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
3574 TTI::TargetCostKind CostKind) {
3575 // Costs should match the codegen from:
3576 // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
3577 // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
3578 // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
3579 // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
3580 // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
3582 // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
3583 // specialized in these tables yet.
3584 static const CostKindTblEntry AVX512VBMI2CostTbl[] = {
3585 { ISD::FSHL, MVT::v8i64, { 1, 1, 1, 1 } },
3586 { ISD::FSHL, MVT::v4i64, { 1, 1, 1, 1 } },
3587 { ISD::FSHL, MVT::v2i64, { 1, 1, 1, 1 } },
3588 { ISD::FSHL, MVT::v16i32, { 1, 1, 1, 1 } },
3589 { ISD::FSHL, MVT::v8i32, { 1, 1, 1, 1 } },
3590 { ISD::FSHL, MVT::v4i32, { 1, 1, 1, 1 } },
3591 { ISD::FSHL, MVT::v32i16, { 1, 1, 1, 1 } },
3592 { ISD::FSHL, MVT::v16i16, { 1, 1, 1, 1 } },
3593 { ISD::FSHL, MVT::v8i16, { 1, 1, 1, 1 } },
3594 { ISD::ROTL, MVT::v32i16, { 1, 1, 1, 1 } },
3595 { ISD::ROTL, MVT::v16i16, { 1, 1, 1, 1 } },
3596 { ISD::ROTL, MVT::v8i16, { 1, 1, 1, 1 } },
3597 { ISD::ROTR, MVT::v32i16, { 1, 1, 1, 1 } },
3598 { ISD::ROTR, MVT::v16i16, { 1, 1, 1, 1 } },
3599 { ISD::ROTR, MVT::v8i16, { 1, 1, 1, 1 } },
3600 { X86ISD::VROTLI, MVT::v32i16, { 1, 1, 1, 1 } },
3601 { X86ISD::VROTLI, MVT::v16i16, { 1, 1, 1, 1 } },
3602 { X86ISD::VROTLI, MVT::v8i16, { 1, 1, 1, 1 } },
3604 static const CostKindTblEntry AVX512BITALGCostTbl[] = {
3605 { ISD::CTPOP, MVT::v32i16, { 1, 1, 1, 1 } },
3606 { ISD::CTPOP, MVT::v64i8, { 1, 1, 1, 1 } },
3607 { ISD::CTPOP, MVT::v16i16, { 1, 1, 1, 1 } },
3608 { ISD::CTPOP, MVT::v32i8, { 1, 1, 1, 1 } },
3609 { ISD::CTPOP, MVT::v8i16, { 1, 1, 1, 1 } },
3610 { ISD::CTPOP, MVT::v16i8, { 1, 1, 1, 1 } },
3612 static const CostKindTblEntry AVX512VPOPCNTDQCostTbl[] = {
3613 { ISD::CTPOP, MVT::v8i64, { 1, 1, 1, 1 } },
3614 { ISD::CTPOP, MVT::v16i32, { 1, 1, 1, 1 } },
3615 { ISD::CTPOP, MVT::v4i64, { 1, 1, 1, 1 } },
3616 { ISD::CTPOP, MVT::v8i32, { 1, 1, 1, 1 } },
3617 { ISD::CTPOP, MVT::v2i64, { 1, 1, 1, 1 } },
3618 { ISD::CTPOP, MVT::v4i32, { 1, 1, 1, 1 } },
3620 static const CostKindTblEntry AVX512CDCostTbl[] = {
3621 { ISD::CTLZ, MVT::v8i64, { 1, 5, 1, 1 } },
3622 { ISD::CTLZ, MVT::v16i32, { 1, 5, 1, 1 } },
3623 { ISD::CTLZ, MVT::v32i16, { 18, 27, 23, 27 } },
3624 { ISD::CTLZ, MVT::v64i8, { 3, 16, 9, 11 } },
3625 { ISD::CTLZ, MVT::v4i64, { 1, 5, 1, 1 } },
3626 { ISD::CTLZ, MVT::v8i32, { 1, 5, 1, 1 } },
3627 { ISD::CTLZ, MVT::v16i16, { 8, 19, 11, 13 } },
3628 { ISD::CTLZ, MVT::v32i8, { 2, 11, 9, 10 } },
3629 { ISD::CTLZ, MVT::v2i64, { 1, 5, 1, 1 } },
3630 { ISD::CTLZ, MVT::v4i32, { 1, 5, 1, 1 } },
3631 { ISD::CTLZ, MVT::v8i16, { 3, 15, 4, 6 } },
3632 { ISD::CTLZ, MVT::v16i8, { 2, 10, 9, 10 } },
3634 { ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
3635 { ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
3636 { ISD::CTTZ, MVT::v4i64, { 1, 8, 6, 6 } },
3637 { ISD::CTTZ, MVT::v8i32, { 1, 8, 6, 6 } },
3638 { ISD::CTTZ, MVT::v2i64, { 1, 8, 6, 6 } },
3639 { ISD::CTTZ, MVT::v4i32, { 1, 8, 6, 6 } },
3641 static const CostKindTblEntry AVX512BWCostTbl[] = {
3642 { ISD::ABS, MVT::v32i16, { 1, 1, 1, 1 } },
3643 { ISD::ABS, MVT::v64i8, { 1, 1, 1, 1 } },
3644 { ISD::BITREVERSE, MVT::v2i64, { 3, 10, 10, 11 } },
3645 { ISD::BITREVERSE, MVT::v4i64, { 3, 11, 10, 11 } },
3646 { ISD::BITREVERSE, MVT::v8i64, { 3, 12, 10, 14 } },
3647 { ISD::BITREVERSE, MVT::v4i32, { 3, 10, 10, 11 } },
3648 { ISD::BITREVERSE, MVT::v8i32, { 3, 11, 10, 11 } },
3649 { ISD::BITREVERSE, MVT::v16i32, { 3, 12, 10, 14 } },
3650 { ISD::BITREVERSE, MVT::v8i16, { 3, 10, 10, 11 } },
3651 { ISD::BITREVERSE, MVT::v16i16, { 3, 11, 10, 11 } },
3652 { ISD::BITREVERSE, MVT::v32i16, { 3, 12, 10, 14 } },
3653 { ISD::BITREVERSE, MVT::v16i8, { 2, 5, 9, 9 } },
3654 { ISD::BITREVERSE, MVT::v32i8, { 2, 5, 9, 9 } },
3655 { ISD::BITREVERSE, MVT::v64i8, { 2, 5, 9, 12 } },
3656 { ISD::BSWAP, MVT::v2i64, { 1, 1, 1, 2 } },
3657 { ISD::BSWAP, MVT::v4i64, { 1, 1, 1, 2 } },
3658 { ISD::BSWAP, MVT::v8i64, { 1, 1, 1, 2 } },
3659 { ISD::BSWAP, MVT::v4i32, { 1, 1, 1, 2 } },
3660 { ISD::BSWAP, MVT::v8i32, { 1, 1, 1, 2 } },
3661 { ISD::BSWAP, MVT::v16i32, { 1, 1, 1, 2 } },
3662 { ISD::BSWAP, MVT::v8i16, { 1, 1, 1, 2 } },
3663 { ISD::BSWAP, MVT::v16i16, { 1, 1, 1, 2 } },
3664 { ISD::BSWAP, MVT::v32i16, { 1, 1, 1, 2 } },
3665 { ISD::CTLZ, MVT::v8i64, { 8, 22, 23, 23 } },
3666 { ISD::CTLZ, MVT::v16i32, { 8, 23, 25, 25 } },
3667 { ISD::CTLZ, MVT::v32i16, { 4, 15, 15, 16 } },
3668 { ISD::CTLZ, MVT::v64i8, { 3, 12, 10, 9 } },
3669 { ISD::CTPOP, MVT::v2i64, { 3, 7, 10, 10 } },
3670 { ISD::CTPOP, MVT::v4i64, { 3, 7, 10, 10 } },
3671 { ISD::CTPOP, MVT::v8i64, { 3, 8, 10, 12 } },
3672 { ISD::CTPOP, MVT::v4i32, { 7, 11, 14, 14 } },
3673 { ISD::CTPOP, MVT::v8i32, { 7, 11, 14, 14 } },
3674 { ISD::CTPOP, MVT::v16i32, { 7, 12, 14, 16 } },
3675 { ISD::CTPOP, MVT::v8i16, { 2, 7, 11, 11 } },
3676 { ISD::CTPOP, MVT::v16i16, { 2, 7, 11, 11 } },
3677 { ISD::CTPOP, MVT::v32i16, { 3, 7, 11, 13 } },
3678 { ISD::CTPOP, MVT::v16i8, { 2, 4, 8, 8 } },
3679 { ISD::CTPOP, MVT::v32i8, { 2, 4, 8, 8 } },
3680 { ISD::CTPOP, MVT::v64i8, { 2, 5, 8, 10 } },
3681 { ISD::CTTZ, MVT::v8i16, { 3, 9, 14, 14 } },
3682 { ISD::CTTZ, MVT::v16i16, { 3, 9, 14, 14 } },
3683 { ISD::CTTZ, MVT::v32i16, { 3, 10, 14, 16 } },
3684 { ISD::CTTZ, MVT::v16i8, { 2, 6, 11, 11 } },
3685 { ISD::CTTZ, MVT::v32i8, { 2, 6, 11, 11 } },
3686 { ISD::CTTZ, MVT::v64i8, { 3, 7, 11, 13 } },
3687 { ISD::ROTL, MVT::v32i16, { 2, 8, 6, 8 } },
3688 { ISD::ROTL, MVT::v16i16, { 2, 8, 6, 7 } },
3689 { ISD::ROTL, MVT::v8i16, { 2, 7, 6, 7 } },
3690 { ISD::ROTL, MVT::v64i8, { 5, 6, 11, 12 } },
3691 { ISD::ROTL, MVT::v32i8, { 5, 15, 7, 10 } },
3692 { ISD::ROTL, MVT::v16i8, { 5, 15, 7, 10 } },
3693 { ISD::ROTR, MVT::v32i16, { 2, 8, 6, 8 } },
3694 { ISD::ROTR, MVT::v16i16, { 2, 8, 6, 7 } },
3695 { ISD::ROTR, MVT::v8i16, { 2, 7, 6, 7 } },
3696 { ISD::ROTR, MVT::v64i8, { 5, 6, 12, 14 } },
3697 { ISD::ROTR, MVT::v32i8, { 5, 14, 6, 9 } },
3698 { ISD::ROTR, MVT::v16i8, { 5, 14, 6, 9 } },
3699 { X86ISD::VROTLI, MVT::v32i16, { 2, 5, 3, 3 } },
3700 { X86ISD::VROTLI, MVT::v16i16, { 1, 5, 3, 3 } },
3701 { X86ISD::VROTLI, MVT::v8i16, { 1, 5, 3, 3 } },
3702 { X86ISD::VROTLI, MVT::v64i8, { 2, 9, 3, 4 } },
3703 { X86ISD::VROTLI, MVT::v32i8, { 1, 9, 3, 4 } },
3704 { X86ISD::VROTLI, MVT::v16i8, { 1, 8, 3, 4 } },
3705 { ISD::SADDSAT, MVT::v32i16, { 1, 1, 1, 1 } },
3706 { ISD::SADDSAT, MVT::v64i8, { 1, 1, 1, 1 } },
3707 { ISD::SMAX, MVT::v32i16, { 1, 1, 1, 1 } },
3708 { ISD::SMAX, MVT::v64i8, { 1, 1, 1, 1 } },
3709 { ISD::SMIN, MVT::v32i16, { 1, 1, 1, 1 } },
3710 { ISD::SMIN, MVT::v64i8, { 1, 1, 1, 1 } },
3711 { ISD::SMULO, MVT::v32i16, { 3, 6, 4, 4 } },
3712 { ISD::SMULO, MVT::v64i8, { 8, 21, 17, 18 } },
3713 { ISD::UMULO, MVT::v32i16, { 2, 5, 3, 3 } },
3714 { ISD::UMULO, MVT::v64i8, { 8, 15, 15, 16 } },
3715 { ISD::SSUBSAT, MVT::v32i16, { 1, 1, 1, 1 } },
3716 { ISD::SSUBSAT, MVT::v64i8, { 1, 1, 1, 1 } },
3717 { ISD::UADDSAT, MVT::v32i16, { 1, 1, 1, 1 } },
3718 { ISD::UADDSAT, MVT::v64i8, { 1, 1, 1, 1 } },
3719 { ISD::UMAX, MVT::v32i16, { 1, 1, 1, 1 } },
3720 { ISD::UMAX, MVT::v64i8, { 1, 1, 1, 1 } },
3721 { ISD::UMIN, MVT::v32i16, { 1, 1, 1, 1 } },
3722 { ISD::UMIN, MVT::v64i8, { 1, 1, 1, 1 } },
3723 { ISD::USUBSAT, MVT::v32i16, { 1, 1, 1, 1 } },
3724 { ISD::USUBSAT, MVT::v64i8, { 1, 1, 1, 1 } },
3726 static const CostKindTblEntry AVX512CostTbl[] = {
3727 { ISD::ABS, MVT::v8i64, { 1, 1, 1, 1 } },
3728 { ISD::ABS, MVT::v4i64, { 1, 1, 1, 1 } },
3729 { ISD::ABS, MVT::v2i64, { 1, 1, 1, 1 } },
3730 { ISD::ABS, MVT::v16i32, { 1, 1, 1, 1 } },
3731 { ISD::ABS, MVT::v8i32, { 1, 1, 1, 1 } },
3732 { ISD::ABS, MVT::v32i16, { 2, 7, 4, 4 } },
3733 { ISD::ABS, MVT::v16i16, { 1, 1, 1, 1 } },
3734 { ISD::ABS, MVT::v64i8, { 2, 7, 4, 4 } },
3735 { ISD::ABS, MVT::v32i8, { 1, 1, 1, 1 } },
3736 { ISD::BITREVERSE, MVT::v8i64, { 9, 13, 20, 20 } },
3737 { ISD::BITREVERSE, MVT::v16i32, { 9, 13, 20, 20 } },
3738 { ISD::BITREVERSE, MVT::v32i16, { 9, 13, 20, 20 } },
3739 { ISD::BITREVERSE, MVT::v64i8, { 6, 11, 17, 17 } },
3740 { ISD::BSWAP, MVT::v8i64, { 4, 7, 5, 5 } },
3741 { ISD::BSWAP, MVT::v16i32, { 4, 7, 5, 5 } },
3742 { ISD::BSWAP, MVT::v32i16, { 4, 7, 5, 5 } },
3743 { ISD::CTLZ, MVT::v8i64, { 10, 28, 32, 32 } },
3744 { ISD::CTLZ, MVT::v16i32, { 12, 30, 38, 38 } },
3745 { ISD::CTLZ, MVT::v32i16, { 8, 15, 29, 29 } },
3746 { ISD::CTLZ, MVT::v64i8, { 6, 11, 19, 19 } },
3747 { ISD::CTPOP, MVT::v8i64, { 16, 16, 19, 19 } },
3748 { ISD::CTPOP, MVT::v16i32, { 24, 19, 27, 27 } },
3749 { ISD::CTPOP, MVT::v32i16, { 18, 15, 22, 22 } },
3750 { ISD::CTPOP, MVT::v64i8, { 12, 11, 16, 16 } },
3751 { ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
3752 { ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
3753 { ISD::CTTZ, MVT::v32i16, { 7, 17, 27, 27 } },
3754 { ISD::CTTZ, MVT::v64i8, { 6, 13, 21, 21 } },
3755 { ISD::ROTL, MVT::v8i64, { 1, 1, 1, 1 } },
3756 { ISD::ROTL, MVT::v4i64, { 1, 1, 1, 1 } },
3757 { ISD::ROTL, MVT::v2i64, { 1, 1, 1, 1 } },
3758 { ISD::ROTL, MVT::v16i32, { 1, 1, 1, 1 } },
3759 { ISD::ROTL, MVT::v8i32, { 1, 1, 1, 1 } },
3760 { ISD::ROTL, MVT::v4i32, { 1, 1, 1, 1 } },
3761 { ISD::ROTR, MVT::v8i64, { 1, 1, 1, 1 } },
3762 { ISD::ROTR, MVT::v4i64, { 1, 1, 1, 1 } },
3763 { ISD::ROTR, MVT::v2i64, { 1, 1, 1, 1 } },
3764 { ISD::ROTR, MVT::v16i32, { 1, 1, 1, 1 } },
3765 { ISD::ROTR, MVT::v8i32, { 1, 1, 1, 1 } },
3766 { ISD::ROTR, MVT::v4i32, { 1, 1, 1, 1 } },
3767 { X86ISD::VROTLI, MVT::v8i64, { 1, 1, 1, 1 } },
3768 { X86ISD::VROTLI, MVT::v4i64, { 1, 1, 1, 1 } },
3769 { X86ISD::VROTLI, MVT::v2i64, { 1, 1, 1, 1 } },
3770 { X86ISD::VROTLI, MVT::v16i32, { 1, 1, 1, 1 } },
3771 { X86ISD::VROTLI, MVT::v8i32, { 1, 1, 1, 1 } },
3772 { X86ISD::VROTLI, MVT::v4i32, { 1, 1, 1, 1 } },
3773 { ISD::SADDSAT, MVT::v2i64, { 3, 3, 8, 9 } },
3774 { ISD::SADDSAT, MVT::v4i64, { 2, 2, 6, 7 } },
3775 { ISD::SADDSAT, MVT::v8i64, { 3, 3, 6, 7 } },
3776 { ISD::SADDSAT, MVT::v4i32, { 2, 2, 6, 7 } },
3777 { ISD::SADDSAT, MVT::v8i32, { 2, 2, 6, 7 } },
3778 { ISD::SADDSAT, MVT::v16i32, { 3, 3, 6, 7 } },
3779 { ISD::SADDSAT, MVT::v32i16, { 2, 2, 2, 2 } },
3780 { ISD::SADDSAT, MVT::v64i8, { 2, 2, 2, 2 } },
3781 { ISD::SMAX, MVT::v8i64, { 1, 3, 1, 1 } },
3782 { ISD::SMAX, MVT::v16i32, { 1, 1, 1, 1 } },
3783 { ISD::SMAX, MVT::v32i16, { 3, 7, 5, 5 } },
3784 { ISD::SMAX, MVT::v64i8, { 3, 7, 5, 5 } },
3785 { ISD::SMAX, MVT::v4i64, { 1, 3, 1, 1 } },
3786 { ISD::SMAX, MVT::v2i64, { 1, 3, 1, 1 } },
3787 { ISD::SMIN, MVT::v8i64, { 1, 3, 1, 1 } },
3788 { ISD::SMIN, MVT::v16i32, { 1, 1, 1, 1 } },
3789 { ISD::SMIN, MVT::v32i16, { 3, 7, 5, 5 } },
3790 { ISD::SMIN, MVT::v64i8, { 3, 7, 5, 5 } },
3791 { ISD::SMIN, MVT::v4i64, { 1, 3, 1, 1 } },
3792 { ISD::SMIN, MVT::v2i64, { 1, 3, 1, 1 } },
3793 { ISD::SMULO, MVT::v8i64, { 44, 44, 81, 93 } },
3794 { ISD::SMULO, MVT::v16i32, { 5, 12, 9, 11 } },
3795 { ISD::SMULO, MVT::v32i16, { 6, 12, 17, 17 } },
3796 { ISD::SMULO, MVT::v64i8, { 22, 28, 42, 42 } },
3797 { ISD::SSUBSAT, MVT::v2i64, { 2, 13, 9, 10 } },
3798 { ISD::SSUBSAT, MVT::v4i64, { 2, 15, 7, 8 } },
3799 { ISD::SSUBSAT, MVT::v8i64, { 2, 14, 7, 8 } },
3800 { ISD::SSUBSAT, MVT::v4i32, { 2, 14, 7, 8 } },
3801 { ISD::SSUBSAT, MVT::v8i32, { 2, 15, 7, 8 } },
3802 { ISD::SSUBSAT, MVT::v16i32, { 2, 14, 7, 8 } },
3803 { ISD::SSUBSAT, MVT::v32i16, { 2, 2, 2, 2 } },
3804 { ISD::SSUBSAT, MVT::v64i8, { 2, 2, 2, 2 } },
3805 { ISD::UMAX, MVT::v8i64, { 1, 3, 1, 1 } },
3806 { ISD::UMAX, MVT::v16i32, { 1, 1, 1, 1 } },
3807 { ISD::UMAX, MVT::v32i16, { 3, 7, 5, 5 } },
3808 { ISD::UMAX, MVT::v64i8, { 3, 7, 5, 5 } },
3809 { ISD::UMAX, MVT::v4i64, { 1, 3, 1, 1 } },
3810 { ISD::UMAX, MVT::v2i64, { 1, 3, 1, 1 } },
3811 { ISD::UMIN, MVT::v8i64, { 1, 3, 1, 1 } },
3812 { ISD::UMIN, MVT::v16i32, { 1, 1, 1, 1 } },
3813 { ISD::UMIN, MVT::v32i16, { 3, 7, 5, 5 } },
3814 { ISD::UMIN, MVT::v64i8, { 3, 7, 5, 5 } },
3815 { ISD::UMIN, MVT::v4i64, { 1, 3, 1, 1 } },
3816 { ISD::UMIN, MVT::v2i64, { 1, 3, 1, 1 } },
3817 { ISD::UMULO, MVT::v8i64, { 52, 52, 95, 104} },
3818 { ISD::UMULO, MVT::v16i32, { 5, 12, 8, 10 } },
3819 { ISD::UMULO, MVT::v32i16, { 5, 13, 16, 16 } },
3820 { ISD::UMULO, MVT::v64i8, { 18, 24, 30, 30 } },
3821 { ISD::UADDSAT, MVT::v2i64, { 1, 4, 4, 4 } },
3822 { ISD::UADDSAT, MVT::v4i64, { 1, 4, 4, 4 } },
3823 { ISD::UADDSAT, MVT::v8i64, { 1, 4, 4, 4 } },
3824 { ISD::UADDSAT, MVT::v4i32, { 1, 2, 4, 4 } },
3825 { ISD::UADDSAT, MVT::v8i32, { 1, 2, 4, 4 } },
3826 { ISD::UADDSAT, MVT::v16i32, { 2, 2, 4, 4 } },
3827 { ISD::UADDSAT, MVT::v32i16, { 2, 2, 2, 2 } },
3828 { ISD::UADDSAT, MVT::v64i8, { 2, 2, 2, 2 } },
3829 { ISD::USUBSAT, MVT::v2i64, { 1, 4, 2, 2 } },
3830 { ISD::USUBSAT, MVT::v4i64, { 1, 4, 2, 2 } },
3831 { ISD::USUBSAT, MVT::v8i64, { 1, 4, 2, 2 } },
3832 { ISD::USUBSAT, MVT::v8i32, { 1, 2, 2, 2 } },
3833 { ISD::USUBSAT, MVT::v16i32, { 1, 2, 2, 2 } },
3834 { ISD::USUBSAT, MVT::v32i16, { 2, 2, 2, 2 } },
3835 { ISD::USUBSAT, MVT::v64i8, { 2, 2, 2, 2 } },
3836 { ISD::FMAXNUM, MVT::f32, { 2, 2, 3, 3 } },
3837 { ISD::FMAXNUM, MVT::v4f32, { 1, 1, 3, 3 } },
3838 { ISD::FMAXNUM, MVT::v8f32, { 2, 2, 3, 3 } },
3839 { ISD::FMAXNUM, MVT::v16f32, { 4, 4, 3, 3 } },
3840 { ISD::FMAXNUM, MVT::f64, { 2, 2, 3, 3 } },
3841 { ISD::FMAXNUM, MVT::v2f64, { 1, 1, 3, 3 } },
3842 { ISD::FMAXNUM, MVT::v4f64, { 2, 2, 3, 3 } },
3843 { ISD::FMAXNUM, MVT::v8f64, { 3, 3, 3, 3 } },
3844 { ISD::FSQRT, MVT::f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3845 { ISD::FSQRT, MVT::v4f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3846 { ISD::FSQRT, MVT::v8f32, { 6, 12, 1, 1 } }, // Skylake from http://www.agner.org/
3847 { ISD::FSQRT, MVT::v16f32, { 12, 20, 1, 3 } }, // Skylake from http://www.agner.org/
3848 { ISD::FSQRT, MVT::f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3849 { ISD::FSQRT, MVT::v2f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3850 { ISD::FSQRT, MVT::v4f64, { 12, 18, 1, 1 } }, // Skylake from http://www.agner.org/
3851 { ISD::FSQRT, MVT::v8f64, { 24, 32, 1, 3 } }, // Skylake from http://www.agner.org/
3853 static const CostKindTblEntry XOPCostTbl[] = {
3854 { ISD::BITREVERSE, MVT::v4i64, { 3, 6, 5, 6 } },
3855 { ISD::BITREVERSE, MVT::v8i32, { 3, 6, 5, 6 } },
3856 { ISD::BITREVERSE, MVT::v16i16, { 3, 6, 5, 6 } },
3857 { ISD::BITREVERSE, MVT::v32i8, { 3, 6, 5, 6 } },
3858 { ISD::BITREVERSE, MVT::v2i64, { 2, 7, 1, 1 } },
3859 { ISD::BITREVERSE, MVT::v4i32, { 2, 7, 1, 1 } },
3860 { ISD::BITREVERSE, MVT::v8i16, { 2, 7, 1, 1 } },
3861 { ISD::BITREVERSE, MVT::v16i8, { 2, 7, 1, 1 } },
3862 { ISD::BITREVERSE, MVT::i64, { 2, 2, 3, 4 } },
3863 { ISD::BITREVERSE, MVT::i32, { 2, 2, 3, 4 } },
3864 { ISD::BITREVERSE, MVT::i16, { 2, 2, 3, 4 } },
3865 { ISD::BITREVERSE, MVT::i8, { 2, 2, 3, 4 } },
3866 // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
3867 { ISD::ROTL, MVT::v4i64, { 4, 7, 5, 6 } },
3868 { ISD::ROTL, MVT::v8i32, { 4, 7, 5, 6 } },
3869 { ISD::ROTL, MVT::v16i16, { 4, 7, 5, 6 } },
3870 { ISD::ROTL, MVT::v32i8, { 4, 7, 5, 6 } },
3871 { ISD::ROTL, MVT::v2i64, { 1, 3, 1, 1 } },
3872 { ISD::ROTL, MVT::v4i32, { 1, 3, 1, 1 } },
3873 { ISD::ROTL, MVT::v8i16, { 1, 3, 1, 1 } },
3874 { ISD::ROTL, MVT::v16i8, { 1, 3, 1, 1 } },
3875 { ISD::ROTR, MVT::v4i64, { 4, 7, 8, 9 } },
3876 { ISD::ROTR, MVT::v8i32, { 4, 7, 8, 9 } },
3877 { ISD::ROTR, MVT::v16i16, { 4, 7, 8, 9 } },
3878 { ISD::ROTR, MVT::v32i8, { 4, 7, 8, 9 } },
3879 { ISD::ROTR, MVT::v2i64, { 1, 3, 3, 3 } },
3880 { ISD::ROTR, MVT::v4i32, { 1, 3, 3, 3 } },
3881 { ISD::ROTR, MVT::v8i16, { 1, 3, 3, 3 } },
3882 { ISD::ROTR, MVT::v16i8, { 1, 3, 3, 3 } },
3883 { X86ISD::VROTLI, MVT::v4i64, { 4, 7, 5, 6 } },
3884 { X86ISD::VROTLI, MVT::v8i32, { 4, 7, 5, 6 } },
3885 { X86ISD::VROTLI, MVT::v16i16, { 4, 7, 5, 6 } },
3886 { X86ISD::VROTLI, MVT::v32i8, { 4, 7, 5, 6 } },
3887 { X86ISD::VROTLI, MVT::v2i64, { 1, 3, 1, 1 } },
3888 { X86ISD::VROTLI, MVT::v4i32, { 1, 3, 1, 1 } },
3889 { X86ISD::VROTLI, MVT::v8i16, { 1, 3, 1, 1 } },
3890 { X86ISD::VROTLI, MVT::v16i8, { 1, 3, 1, 1 } },
3892 static const CostKindTblEntry AVX2CostTbl[] = {
3893 { ISD::ABS, MVT::v2i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3894 { ISD::ABS, MVT::v4i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
3895 { ISD::ABS, MVT::v4i32, { 1, 1, 1, 1 } },
3896 { ISD::ABS, MVT::v8i32, { 1, 1, 1, 2 } },
3897 { ISD::ABS, MVT::v8i16, { 1, 1, 1, 1 } },
3898 { ISD::ABS, MVT::v16i16, { 1, 1, 1, 2 } },
3899 { ISD::ABS, MVT::v16i8, { 1, 1, 1, 1 } },
3900 { ISD::ABS, MVT::v32i8, { 1, 1, 1, 2 } },
3901 { ISD::BITREVERSE, MVT::v2i64, { 3, 11, 10, 11 } },
3902 { ISD::BITREVERSE, MVT::v4i64, { 5, 11, 10, 17 } },
3903 { ISD::BITREVERSE, MVT::v4i32, { 3, 11, 10, 11 } },
3904 { ISD::BITREVERSE, MVT::v8i32, { 5, 11, 10, 17 } },
3905 { ISD::BITREVERSE, MVT::v8i16, { 3, 11, 10, 11 } },
3906 { ISD::BITREVERSE, MVT::v16i16, { 5, 11, 10, 17 } },
3907 { ISD::BITREVERSE, MVT::v16i8, { 3, 6, 9, 9 } },
3908 { ISD::BITREVERSE, MVT::v32i8, { 4, 5, 9, 15 } },
3909 { ISD::BSWAP, MVT::v2i64, { 1, 2, 1, 2 } },
3910 { ISD::BSWAP, MVT::v4i64, { 1, 3, 1, 2 } },
3911 { ISD::BSWAP, MVT::v4i32, { 1, 2, 1, 2 } },
3912 { ISD::BSWAP, MVT::v8i32, { 1, 3, 1, 2 } },
3913 { ISD::BSWAP, MVT::v8i16, { 1, 2, 1, 2 } },
3914 { ISD::BSWAP, MVT::v16i16, { 1, 3, 1, 2 } },
3915 { ISD::CTLZ, MVT::v2i64, { 7, 18, 24, 25 } },
3916 { ISD::CTLZ, MVT::v4i64, { 14, 18, 24, 44 } },
3917 { ISD::CTLZ, MVT::v4i32, { 5, 16, 19, 20 } },
3918 { ISD::CTLZ, MVT::v8i32, { 10, 16, 19, 34 } },
3919 { ISD::CTLZ, MVT::v8i16, { 4, 13, 14, 15 } },
3920 { ISD::CTLZ, MVT::v16i16, { 6, 14, 14, 24 } },
3921 { ISD::CTLZ, MVT::v16i8, { 3, 12, 9, 10 } },
3922 { ISD::CTLZ, MVT::v32i8, { 4, 12, 9, 14 } },
3923 { ISD::CTPOP, MVT::v2i64, { 3, 9, 10, 10 } },
3924 { ISD::CTPOP, MVT::v4i64, { 4, 9, 10, 14 } },
3925 { ISD::CTPOP, MVT::v4i32, { 7, 12, 14, 14 } },
3926 { ISD::CTPOP, MVT::v8i32, { 7, 12, 14, 18 } },
3927 { ISD::CTPOP, MVT::v8i16, { 3, 7, 11, 11 } },
3928 { ISD::CTPOP, MVT::v16i16, { 6, 8, 11, 18 } },
3929 { ISD::CTPOP, MVT::v16i8, { 2, 5, 8, 8 } },
3930 { ISD::CTPOP, MVT::v32i8, { 3, 5, 8, 12 } },
3931 { ISD::CTTZ, MVT::v2i64, { 4, 11, 13, 13 } },
3932 { ISD::CTTZ, MVT::v4i64, { 5, 11, 13, 20 } },
3933 { ISD::CTTZ, MVT::v4i32, { 7, 14, 17, 17 } },
3934 { ISD::CTTZ, MVT::v8i32, { 7, 15, 17, 24 } },
3935 { ISD::CTTZ, MVT::v8i16, { 4, 9, 14, 14 } },
3936 { ISD::CTTZ, MVT::v16i16, { 6, 9, 14, 24 } },
3937 { ISD::CTTZ, MVT::v16i8, { 3, 7, 11, 11 } },
3938 { ISD::CTTZ, MVT::v32i8, { 5, 7, 11, 18 } },
3939 { ISD::SADDSAT, MVT::v2i64, { 4, 13, 8, 11 } },
3940 { ISD::SADDSAT, MVT::v4i64, { 3, 10, 8, 12 } },
3941 { ISD::SADDSAT, MVT::v4i32, { 2, 6, 7, 9 } },
3942 { ISD::SADDSAT, MVT::v8i32, { 4, 6, 7, 13 } },
3943 { ISD::SADDSAT, MVT::v16i16, { 1, 1, 1, 2 } },
3944 { ISD::SADDSAT, MVT::v32i8, { 1, 1, 1, 2 } },
3945 { ISD::SMAX, MVT::v2i64, { 2, 7, 2, 3 } },
3946 { ISD::SMAX, MVT::v4i64, { 2, 7, 2, 3 } },
3947 { ISD::SMAX, MVT::v8i32, { 1, 1, 1, 2 } },
3948 { ISD::SMAX, MVT::v16i16, { 1, 1, 1, 2 } },
3949 { ISD::SMAX, MVT::v32i8, { 1, 1, 1, 2 } },
3950 { ISD::SMIN, MVT::v2i64, { 2, 7, 2, 3 } },
3951 { ISD::SMIN, MVT::v4i64, { 2, 7, 2, 3 } },
3952 { ISD::SMIN, MVT::v8i32, { 1, 1, 1, 2 } },
3953 { ISD::SMIN, MVT::v16i16, { 1, 1, 1, 2 } },
3954 { ISD::SMIN, MVT::v32i8, { 1, 1, 1, 2 } },
3955 { ISD::SMULO, MVT::v4i64, { 20, 20, 33, 37 } },
3956 { ISD::SMULO, MVT::v2i64, { 8, 8, 13, 15 } },
3957 { ISD::SMULO, MVT::v8i32, { 8, 20, 13, 24 } },
3958 { ISD::SMULO, MVT::v4i32, { 5, 15, 11, 12 } },
3959 { ISD::SMULO, MVT::v16i16, { 4, 14, 8, 14 } },
3960 { ISD::SMULO, MVT::v8i16, { 3, 9, 6, 6 } },
3961 { ISD::SMULO, MVT::v32i8, { 9, 15, 18, 35 } },
3962 { ISD::SMULO, MVT::v16i8, { 6, 22, 14, 21 } },
3963 { ISD::SSUBSAT, MVT::v2i64, { 4, 13, 9, 13 } },
3964 { ISD::SSUBSAT, MVT::v4i64, { 4, 15, 9, 13 } },
3965 { ISD::SSUBSAT, MVT::v4i32, { 3, 14, 9, 11 } },
3966 { ISD::SSUBSAT, MVT::v8i32, { 4, 15, 9, 16 } },
3967 { ISD::SSUBSAT, MVT::v16i16, { 1, 1, 1, 2 } },
3968 { ISD::SSUBSAT, MVT::v32i8, { 1, 1, 1, 2 } },
3969 { ISD::UADDSAT, MVT::v2i64, { 2, 8, 6, 6 } },
3970 { ISD::UADDSAT, MVT::v4i64, { 3, 8, 6, 10 } },
3971 { ISD::UADDSAT, MVT::v8i32, { 2, 2, 4, 8 } },
3972 { ISD::UADDSAT, MVT::v16i16, { 1, 1, 1, 2 } },
3973 { ISD::UADDSAT, MVT::v32i8, { 1, 1, 1, 2 } },
3974 { ISD::UMAX, MVT::v2i64, { 2, 8, 5, 6 } },
3975 { ISD::UMAX, MVT::v4i64, { 2, 8, 5, 8 } },
3976 { ISD::UMAX, MVT::v8i32, { 1, 1, 1, 2 } },
3977 { ISD::UMAX, MVT::v16i16, { 1, 1, 1, 2 } },
3978 { ISD::UMAX, MVT::v32i8, { 1, 1, 1, 2 } },
3979 { ISD::UMIN, MVT::v2i64, { 2, 8, 5, 6 } },
3980 { ISD::UMIN, MVT::v4i64, { 2, 8, 5, 8 } },
3981 { ISD::UMIN, MVT::v8i32, { 1, 1, 1, 2 } },
3982 { ISD::UMIN, MVT::v16i16, { 1, 1, 1, 2 } },
3983 { ISD::UMIN, MVT::v32i8, { 1, 1, 1, 2 } },
3984 { ISD::UMULO, MVT::v4i64, { 24, 24, 39, 43 } },
3985 { ISD::UMULO, MVT::v2i64, { 10, 10, 15, 19 } },
3986 { ISD::UMULO, MVT::v8i32, { 8, 11, 13, 23 } },
3987 { ISD::UMULO, MVT::v4i32, { 5, 12, 11, 12 } },
3988 { ISD::UMULO, MVT::v16i16, { 4, 6, 8, 13 } },
3989 { ISD::UMULO, MVT::v8i16, { 2, 8, 6, 6 } },
3990 { ISD::UMULO, MVT::v32i8, { 9, 13, 17, 33 } },
3991 { ISD::UMULO, MVT::v16i8, { 6, 19, 13, 20 } },
3992 { ISD::USUBSAT, MVT::v2i64, { 2, 7, 6, 6 } },
3993 { ISD::USUBSAT, MVT::v4i64, { 3, 7, 6, 10 } },
3994 { ISD::USUBSAT, MVT::v8i32, { 2, 2, 2, 4 } },
3995 { ISD::USUBSAT, MVT::v16i16, { 1, 1, 1, 2 } },
3996 { ISD::USUBSAT, MVT::v32i8, { 1, 1, 1, 2 } },
3997 { ISD::FMAXNUM, MVT::f32, { 2, 7, 3, 5 } }, // MAXSS + CMPUNORDSS + BLENDVPS
3998 { ISD::FMAXNUM, MVT::v4f32, { 2, 7, 3, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
3999 { ISD::FMAXNUM, MVT::v8f32, { 3, 7, 3, 6 } }, // MAXPS + CMPUNORDPS + BLENDVPS
4000 { ISD::FMAXNUM, MVT::f64, { 2, 7, 3, 5 } }, // MAXSD + CMPUNORDSD + BLENDVPD
4001 { ISD::FMAXNUM, MVT::v2f64, { 2, 7, 3, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
4002 { ISD::FMAXNUM, MVT::v4f64, { 3, 7, 3, 6 } }, // MAXPD + CMPUNORDPD + BLENDVPD
4003 { ISD::FSQRT, MVT::f32, { 7, 15, 1, 1 } }, // vsqrtss
4004 { ISD::FSQRT, MVT::v4f32, { 7, 15, 1, 1 } }, // vsqrtps
4005 { ISD::FSQRT, MVT::v8f32, { 14, 21, 1, 3 } }, // vsqrtps
4006 { ISD::FSQRT, MVT::f64, { 14, 21, 1, 1 } }, // vsqrtsd
4007 { ISD::FSQRT, MVT::v2f64, { 14, 21, 1, 1 } }, // vsqrtpd
4008 { ISD::FSQRT, MVT::v4f64, { 28, 35, 1, 3 } }, // vsqrtpd
4010 static const CostKindTblEntry AVX1CostTbl[] = {
4011 { ISD::ABS, MVT::v4i64, { 6, 8, 6, 12 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
4012 { ISD::ABS, MVT::v8i32, { 3, 6, 4, 5 } },
4013 { ISD::ABS, MVT::v16i16, { 3, 6, 4, 5 } },
4014 { ISD::ABS, MVT::v32i8, { 3, 6, 4, 5 } },
4015 { ISD::BITREVERSE, MVT::v4i64, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
4016 { ISD::BITREVERSE, MVT::v2i64, { 8, 13, 10, 16 } },
4017 { ISD::BITREVERSE, MVT::v8i32, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
4018 { ISD::BITREVERSE, MVT::v4i32, { 8, 13, 10, 16 } },
4019 { ISD::BITREVERSE, MVT::v16i16, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
4020 { ISD::BITREVERSE, MVT::v8i16, { 8, 13, 10, 16 } },
4021 { ISD::BITREVERSE, MVT::v32i8, { 13, 15, 17, 26 } }, // 2 x 128-bit Op + extract/insert
4022 { ISD::BITREVERSE, MVT::v16i8, { 7, 7, 9, 13 } },
4023 { ISD::BSWAP, MVT::v4i64, { 5, 6, 5, 10 } },
4024 { ISD::BSWAP, MVT::v2i64, { 2, 2, 1, 3 } },
4025 { ISD::BSWAP, MVT::v8i32, { 5, 6, 5, 10 } },
4026 { ISD::BSWAP, MVT::v4i32, { 2, 2, 1, 3 } },
4027 { ISD::BSWAP, MVT::v16i16, { 5, 6, 5, 10 } },
4028 { ISD::BSWAP, MVT::v8i16, { 2, 2, 1, 3 } },
4029 { ISD::CTLZ, MVT::v4i64, { 29, 33, 49, 58 } }, // 2 x 128-bit Op + extract/insert
4030 { ISD::CTLZ, MVT::v2i64, { 14, 24, 24, 28 } },
4031 { ISD::CTLZ, MVT::v8i32, { 24, 28, 39, 48 } }, // 2 x 128-bit Op + extract/insert
4032 { ISD::CTLZ, MVT::v4i32, { 12, 20, 19, 23 } },
4033 { ISD::CTLZ, MVT::v16i16, { 19, 22, 29, 38 } }, // 2 x 128-bit Op + extract/insert
4034 { ISD::CTLZ, MVT::v8i16, { 9, 16, 14, 18 } },
4035 { ISD::CTLZ, MVT::v32i8, { 14, 15, 19, 28 } }, // 2 x 128-bit Op + extract/insert
4036 { ISD::CTLZ, MVT::v16i8, { 7, 12, 9, 13 } },
4037 { ISD::CTPOP, MVT::v4i64, { 14, 18, 19, 28 } }, // 2 x 128-bit Op + extract/insert
4038 { ISD::CTPOP, MVT::v2i64, { 7, 14, 10, 14 } },
4039 { ISD::CTPOP, MVT::v8i32, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
4040 { ISD::CTPOP, MVT::v4i32, { 9, 20, 14, 18 } },
4041 { ISD::CTPOP, MVT::v16i16, { 16, 21, 22, 31 } }, // 2 x 128-bit Op + extract/insert
4042 { ISD::CTPOP, MVT::v8i16, { 8, 18, 11, 15 } },
4043 { ISD::CTPOP, MVT::v32i8, { 13, 15, 16, 25 } }, // 2 x 128-bit Op + extract/insert
4044 { ISD::CTPOP, MVT::v16i8, { 6, 12, 8, 12 } },
4045 { ISD::CTTZ, MVT::v4i64, { 17, 22, 24, 33 } }, // 2 x 128-bit Op + extract/insert
4046 { ISD::CTTZ, MVT::v2i64, { 9, 19, 13, 17 } },
4047 { ISD::CTTZ, MVT::v8i32, { 21, 27, 32, 41 } }, // 2 x 128-bit Op + extract/insert
4048 { ISD::CTTZ, MVT::v4i32, { 11, 24, 17, 21 } },
4049 { ISD::CTTZ, MVT::v16i16, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
4050 { ISD::CTTZ, MVT::v8i16, { 9, 21, 14, 18 } },
4051 { ISD::CTTZ, MVT::v32i8, { 15, 18, 21, 30 } }, // 2 x 128-bit Op + extract/insert
4052 { ISD::CTTZ, MVT::v16i8, { 8, 16, 11, 15 } },
4053 { ISD::SADDSAT, MVT::v2i64, { 6, 13, 8, 11 } },
4054 { ISD::SADDSAT, MVT::v4i64, { 13, 20, 15, 25 } }, // 2 x 128-bit Op + extract/insert
4055 { ISD::SADDSAT, MVT::v8i32, { 12, 18, 14, 24 } }, // 2 x 128-bit Op + extract/insert
4056 { ISD::SADDSAT, MVT::v16i16, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4057 { ISD::SADDSAT, MVT::v32i8, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4058 { ISD::SMAX, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
4059 { ISD::SMAX, MVT::v2i64, { 3, 7, 2, 4 } },
4060 { ISD::SMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4061 { ISD::SMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4062 { ISD::SMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4063 { ISD::SMIN, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
4064 { ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
4065 { ISD::SMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4066 { ISD::SMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4067 { ISD::SMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4068 { ISD::SMULO, MVT::v4i64, { 20, 20, 33, 37 } },
4069 { ISD::SMULO, MVT::v2i64, { 9, 9, 13, 17 } },
4070 { ISD::SMULO, MVT::v8i32, { 15, 20, 24, 29 } },
4071 { ISD::SMULO, MVT::v4i32, { 7, 15, 11, 13 } },
4072 { ISD::SMULO, MVT::v16i16, { 8, 14, 14, 15 } },
4073 { ISD::SMULO, MVT::v8i16, { 3, 9, 6, 6 } },
4074 { ISD::SMULO, MVT::v32i8, { 20, 20, 37, 39 } },
4075 { ISD::SMULO, MVT::v16i8, { 9, 22, 18, 21 } },
4076 { ISD::SSUBSAT, MVT::v2i64, { 7, 13, 9, 13 } },
4077 { ISD::SSUBSAT, MVT::v4i64, { 15, 21, 18, 29 } }, // 2 x 128-bit Op + extract/insert
4078 { ISD::SSUBSAT, MVT::v8i32, { 15, 19, 18, 29 } }, // 2 x 128-bit Op + extract/insert
4079 { ISD::SSUBSAT, MVT::v16i16, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4080 { ISD::SSUBSAT, MVT::v32i8, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4081 { ISD::UADDSAT, MVT::v2i64, { 3, 8, 6, 6 } },
4082 { ISD::UADDSAT, MVT::v4i64, { 8, 11, 14, 15 } }, // 2 x 128-bit Op + extract/insert
4083 { ISD::UADDSAT, MVT::v8i32, { 6, 6, 10, 11 } }, // 2 x 128-bit Op + extract/insert
4084 { ISD::UADDSAT, MVT::v16i16, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4085 { ISD::UADDSAT, MVT::v32i8, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4086 { ISD::UMAX, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
4087 { ISD::UMAX, MVT::v2i64, { 4, 8, 5, 7 } },
4088 { ISD::UMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4089 { ISD::UMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4090 { ISD::UMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4091 { ISD::UMIN, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
4092 { ISD::UMIN, MVT::v2i64, { 4, 8, 5, 7 } },
4093 { ISD::UMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4094 { ISD::UMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4095 { ISD::UMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4096 { ISD::UMULO, MVT::v4i64, { 24, 26, 39, 45 } },
4097 { ISD::UMULO, MVT::v2i64, { 10, 12, 15, 20 } },
4098 { ISD::UMULO, MVT::v8i32, { 14, 15, 23, 28 } },
4099 { ISD::UMULO, MVT::v4i32, { 7, 12, 11, 13 } },
4100 { ISD::UMULO, MVT::v16i16, { 7, 11, 13, 14 } },
4101 { ISD::UMULO, MVT::v8i16, { 3, 8, 6, 6 } },
4102 { ISD::UMULO, MVT::v32i8, { 19, 19, 35, 37 } },
4103 { ISD::UMULO, MVT::v16i8, { 9, 19, 17, 20 } },
4104 { ISD::USUBSAT, MVT::v2i64, { 3, 7, 6, 6 } },
4105 { ISD::USUBSAT, MVT::v4i64, { 8, 10, 14, 15 } }, // 2 x 128-bit Op + extract/insert
4106 { ISD::USUBSAT, MVT::v8i32, { 4, 4, 7, 8 } }, // 2 x 128-bit Op + extract/insert
4107 { ISD::USUBSAT, MVT::v8i32, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4108 { ISD::USUBSAT, MVT::v16i16, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4109 { ISD::USUBSAT, MVT::v32i8, { 3, 3, 5, 6 } }, // 2 x 128-bit Op + extract/insert
4110 { ISD::FMAXNUM, MVT::f32, { 3, 6, 3, 5 } }, // MAXSS + CMPUNORDSS + BLENDVPS
4111 { ISD::FMAXNUM, MVT::v4f32, { 3, 6, 3, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
4112 { ISD::FMAXNUM, MVT::v8f32, { 5, 7, 3, 10 } }, // MAXPS + CMPUNORDPS + BLENDVPS
4113 { ISD::FMAXNUM, MVT::f64, { 3, 6, 3, 5 } }, // MAXSD + CMPUNORDSD + BLENDVPD
4114 { ISD::FMAXNUM, MVT::v2f64, { 3, 6, 3, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
4115 { ISD::FMAXNUM, MVT::v4f64, { 5, 7, 3, 10 } }, // MAXPD + CMPUNORDPD + BLENDVPD
4116 { ISD::FSQRT, MVT::f32, { 21, 21, 1, 1 } }, // vsqrtss
4117 { ISD::FSQRT, MVT::v4f32, { 21, 21, 1, 1 } }, // vsqrtps
4118 { ISD::FSQRT, MVT::v8f32, { 42, 42, 1, 3 } }, // vsqrtps
4119 { ISD::FSQRT, MVT::f64, { 27, 27, 1, 1 } }, // vsqrtsd
4120 { ISD::FSQRT, MVT::v2f64, { 27, 27, 1, 1 } }, // vsqrtpd
4121 { ISD::FSQRT, MVT::v4f64, { 54, 54, 1, 3 } }, // vsqrtpd
4123 static const CostKindTblEntry GFNICostTbl[] = {
4124 { ISD::BITREVERSE, MVT::i8, { 3, 3, 3, 4 } }, // gf2p8affineqb
4125 { ISD::BITREVERSE, MVT::i16, { 3, 3, 4, 6 } }, // gf2p8affineqb
4126 { ISD::BITREVERSE, MVT::i32, { 3, 3, 4, 5 } }, // gf2p8affineqb
4127 { ISD::BITREVERSE, MVT::i64, { 3, 3, 4, 6 } }, // gf2p8affineqb
4128 { ISD::BITREVERSE, MVT::v16i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
4129 { ISD::BITREVERSE, MVT::v32i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
4130 { ISD::BITREVERSE, MVT::v64i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
4131 { ISD::BITREVERSE, MVT::v8i16, { 1, 8, 2, 4 } }, // gf2p8affineqb
4132 { ISD::BITREVERSE, MVT::v16i16, { 1, 9, 2, 4 } }, // gf2p8affineqb
4133 { ISD::BITREVERSE, MVT::v32i16, { 1, 9, 2, 4 } }, // gf2p8affineqb
4134 { ISD::BITREVERSE, MVT::v4i32, { 1, 8, 2, 4 } }, // gf2p8affineqb
4135 { ISD::BITREVERSE, MVT::v8i32, { 1, 9, 2, 4 } }, // gf2p8affineqb
4136 { ISD::BITREVERSE, MVT::v16i32, { 1, 9, 2, 4 } }, // gf2p8affineqb
4137 { ISD::BITREVERSE, MVT::v2i64, { 1, 8, 2, 4 } }, // gf2p8affineqb
4138 { ISD::BITREVERSE, MVT::v4i64, { 1, 9, 2, 4 } }, // gf2p8affineqb
4139 { ISD::BITREVERSE, MVT::v8i64, { 1, 9, 2, 4 } }, // gf2p8affineqb
4140 { X86ISD::VROTLI, MVT::v16i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
4141 { X86ISD::VROTLI, MVT::v32i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
4142 { X86ISD::VROTLI, MVT::v64i8, { 1, 6, 1, 2 } }, // gf2p8affineqb
4144 static const CostKindTblEntry GLMCostTbl[] = {
4145 { ISD::FSQRT, MVT::f32, { 19, 20, 1, 1 } }, // sqrtss
4146 { ISD::FSQRT, MVT::v4f32, { 37, 41, 1, 5 } }, // sqrtps
4147 { ISD::FSQRT, MVT::f64, { 34, 35, 1, 1 } }, // sqrtsd
4148 { ISD::FSQRT, MVT::v2f64, { 67, 71, 1, 5 } }, // sqrtpd
4150 static const CostKindTblEntry SLMCostTbl[] = {
4151 { ISD::BSWAP, MVT::v2i64, { 5, 5, 1, 5 } },
4152 { ISD::BSWAP, MVT::v4i32, { 5, 5, 1, 5 } },
4153 { ISD::BSWAP, MVT::v8i16, { 5, 5, 1, 5 } },
4154 { ISD::FSQRT, MVT::f32, { 20, 20, 1, 1 } }, // sqrtss
4155 { ISD::FSQRT, MVT::v4f32, { 40, 41, 1, 5 } }, // sqrtps
4156 { ISD::FSQRT, MVT::f64, { 35, 35, 1, 1 } }, // sqrtsd
4157 { ISD::FSQRT, MVT::v2f64, { 70, 71, 1, 5 } }, // sqrtpd
4159 static const CostKindTblEntry SSE42CostTbl[] = {
4160 { ISD::FMAXNUM, MVT::f32, { 5, 5, 7, 7 } }, // MAXSS + CMPUNORDSS + BLENDVPS
4161 { ISD::FMAXNUM, MVT::v4f32, { 4, 4, 4, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
4162 { ISD::FMAXNUM, MVT::f64, { 5, 5, 7, 7 } }, // MAXSD + CMPUNORDSD + BLENDVPD
4163 { ISD::FMAXNUM, MVT::v2f64, { 4, 4, 4, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
4164 { ISD::FSQRT, MVT::f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
4165 { ISD::FSQRT, MVT::v4f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
4167 static const CostKindTblEntry SSE41CostTbl[] = {
4168 { ISD::ABS, MVT::v2i64, { 3, 4, 3, 5 } }, // BLENDVPD(X,PSUBQ(0,X),X)
4169 { ISD::SADDSAT, MVT::v2i64, { 10, 14, 17, 21 } },
4170 { ISD::SADDSAT, MVT::v4i32, { 5, 11, 8, 10 } },
4171 { ISD::SSUBSAT, MVT::v2i64, { 12, 19, 25, 29 } },
4172 { ISD::SSUBSAT, MVT::v4i32, { 6, 14, 10, 12 } },
4173 { ISD::SMAX, MVT::v2i64, { 3, 7, 2, 3 } },
4174 { ISD::SMAX, MVT::v4i32, { 1, 1, 1, 1 } },
4175 { ISD::SMAX, MVT::v16i8, { 1, 1, 1, 1 } },
4176 { ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
4177 { ISD::SMIN, MVT::v4i32, { 1, 1, 1, 1 } },
4178 { ISD::SMIN, MVT::v16i8, { 1, 1, 1, 1 } },
4179 { ISD::SMULO, MVT::v2i64, { 9, 11, 13, 17 } },
4180 { ISD::SMULO, MVT::v4i32, { 20, 24, 13, 19 } },
4181 { ISD::SMULO, MVT::v8i16, { 5, 9, 8, 8 } },
4182 { ISD::SMULO, MVT::v16i8, { 13, 22, 24, 25 } },
4183 { ISD::UADDSAT, MVT::v2i64, { 6, 13, 14, 14 } },
4184 { ISD::UADDSAT, MVT::v4i32, { 2, 2, 4, 4 } },
4185 { ISD::USUBSAT, MVT::v2i64, { 6, 10, 14, 14 } },
4186 { ISD::USUBSAT, MVT::v4i32, { 1, 2, 2, 2 } },
4187 { ISD::UMAX, MVT::v2i64, { 2, 11, 6, 7 } },
4188 { ISD::UMAX, MVT::v4i32, { 1, 1, 1, 1 } },
4189 { ISD::UMAX, MVT::v8i16, { 1, 1, 1, 1 } },
4190 { ISD::UMIN, MVT::v2i64, { 2, 11, 6, 7 } },
4191 { ISD::UMIN, MVT::v4i32, { 1, 1, 1, 1 } },
4192 { ISD::UMIN, MVT::v8i16, { 1, 1, 1, 1 } },
4193 { ISD::UMULO, MVT::v2i64, { 14, 20, 15, 20 } },
4194 { ISD::UMULO, MVT::v4i32, { 19, 22, 12, 18 } },
4195 { ISD::UMULO, MVT::v8i16, { 4, 9, 7, 7 } },
4196 { ISD::UMULO, MVT::v16i8, { 13, 19, 18, 20 } },
4198 static const CostKindTblEntry SSSE3CostTbl[] = {
4199 { ISD::ABS, MVT::v4i32, { 1, 2, 1, 1 } },
4200 { ISD::ABS, MVT::v8i16, { 1, 2, 1, 1 } },
4201 { ISD::ABS, MVT::v16i8, { 1, 2, 1, 1 } },
4202 { ISD::BITREVERSE, MVT::v2i64, { 16, 20, 11, 21 } },
4203 { ISD::BITREVERSE, MVT::v4i32, { 16, 20, 11, 21 } },
4204 { ISD::BITREVERSE, MVT::v8i16, { 16, 20, 11, 21 } },
4205 { ISD::BITREVERSE, MVT::v16i8, { 11, 12, 10, 16 } },
4206 { ISD::BSWAP, MVT::v2i64, { 2, 3, 1, 5 } },
4207 { ISD::BSWAP, MVT::v4i32, { 2, 3, 1, 5 } },
4208 { ISD::BSWAP, MVT::v8i16, { 2, 3, 1, 5 } },
4209 { ISD::CTLZ, MVT::v2i64, { 18, 28, 28, 35 } },
4210 { ISD::CTLZ, MVT::v4i32, { 15, 20, 22, 28 } },
4211 { ISD::CTLZ, MVT::v8i16, { 13, 17, 16, 22 } },
4212 { ISD::CTLZ, MVT::v16i8, { 11, 15, 10, 16 } },
4213 { ISD::CTPOP, MVT::v2i64, { 13, 19, 12, 18 } },
4214 { ISD::CTPOP, MVT::v4i32, { 18, 24, 16, 22 } },
4215 { ISD::CTPOP, MVT::v8i16, { 13, 18, 14, 20 } },
4216 { ISD::CTPOP, MVT::v16i8, { 11, 12, 10, 16 } },
4217 { ISD::CTTZ, MVT::v2i64, { 13, 25, 15, 22 } },
4218 { ISD::CTTZ, MVT::v4i32, { 18, 26, 19, 25 } },
4219 { ISD::CTTZ, MVT::v8i16, { 13, 20, 17, 23 } },
4220 { ISD::CTTZ, MVT::v16i8, { 11, 16, 13, 19 } }
4222 static const CostKindTblEntry SSE2CostTbl[] = {
4223 { ISD::ABS, MVT::v2i64, { 3, 6, 5, 5 } },
4224 { ISD::ABS, MVT::v4i32, { 1, 4, 4, 4 } },
4225 { ISD::ABS, MVT::v8i16, { 1, 2, 3, 3 } },
4226 { ISD::ABS, MVT::v16i8, { 1, 2, 3, 3 } },
4227 { ISD::BITREVERSE, MVT::v2i64, { 16, 20, 32, 32 } },
4228 { ISD::BITREVERSE, MVT::v4i32, { 16, 20, 30, 30 } },
4229 { ISD::BITREVERSE, MVT::v8i16, { 16, 20, 25, 25 } },
4230 { ISD::BITREVERSE, MVT::v16i8, { 11, 12, 21, 21 } },
4231 { ISD::BSWAP, MVT::v2i64, { 5, 6, 11, 11 } },
4232 { ISD::BSWAP, MVT::v4i32, { 5, 5, 9, 9 } },
4233 { ISD::BSWAP, MVT::v8i16, { 5, 5, 4, 5 } },
4234 { ISD::CTLZ, MVT::v2i64, { 10, 45, 36, 38 } },
4235 { ISD::CTLZ, MVT::v4i32, { 10, 45, 38, 40 } },
4236 { ISD::CTLZ, MVT::v8i16, { 9, 38, 32, 34 } },
4237 { ISD::CTLZ, MVT::v16i8, { 8, 39, 29, 32 } },
4238 { ISD::CTPOP, MVT::v2i64, { 12, 26, 16, 18 } },
4239 { ISD::CTPOP, MVT::v4i32, { 15, 29, 21, 23 } },
4240 { ISD::CTPOP, MVT::v8i16, { 13, 25, 18, 20 } },
4241 { ISD::CTPOP, MVT::v16i8, { 10, 21, 14, 16 } },
4242 { ISD::CTTZ, MVT::v2i64, { 14, 28, 19, 21 } },
4243 { ISD::CTTZ, MVT::v4i32, { 18, 31, 24, 26 } },
4244 { ISD::CTTZ, MVT::v8i16, { 16, 27, 21, 23 } },
4245 { ISD::CTTZ, MVT::v16i8, { 13, 23, 17, 19 } },
4246 { ISD::SADDSAT, MVT::v2i64, { 12, 14, 24, 24 } },
4247 { ISD::SADDSAT, MVT::v4i32, { 6, 11, 11, 12 } },
4248 { ISD::SADDSAT, MVT::v8i16, { 1, 2, 1, 1 } },
4249 { ISD::SADDSAT, MVT::v16i8, { 1, 2, 1, 1 } },
4250 { ISD::SMAX, MVT::v2i64, { 4, 8, 15, 15 } },
4251 { ISD::SMAX, MVT::v4i32, { 2, 4, 5, 5 } },
4252 { ISD::SMAX, MVT::v8i16, { 1, 1, 1, 1 } },
4253 { ISD::SMAX, MVT::v16i8, { 2, 4, 5, 5 } },
4254 { ISD::SMIN, MVT::v2i64, { 4, 8, 15, 15 } },
4255 { ISD::SMIN, MVT::v4i32, { 2, 4, 5, 5 } },
4256 { ISD::SMIN, MVT::v8i16, { 1, 1, 1, 1 } },
4257 { ISD::SMIN, MVT::v16i8, { 2, 4, 5, 5 } },
4258 { ISD::SMULO, MVT::v2i64, { 30, 33, 13, 23 } },
4259 { ISD::SMULO, MVT::v4i32, { 20, 24, 23, 23 } },
4260 { ISD::SMULO, MVT::v8i16, { 5, 10, 8, 8 } },
4261 { ISD::SMULO, MVT::v16i8, { 13, 23, 24, 25 } },
4262 { ISD::SSUBSAT, MVT::v2i64, { 16, 19, 31, 31 } },
4263 { ISD::SSUBSAT, MVT::v4i32, { 6, 14, 12, 13 } },
4264 { ISD::SSUBSAT, MVT::v8i16, { 1, 2, 1, 1 } },
4265 { ISD::SSUBSAT, MVT::v16i8, { 1, 2, 1, 1 } },
4266 { ISD::UADDSAT, MVT::v2i64, { 7, 13, 14, 14 } },
4267 { ISD::UADDSAT, MVT::v4i32, { 4, 5, 7, 7 } },
4268 { ISD::UADDSAT, MVT::v8i16, { 1, 2, 1, 1 } },
4269 { ISD::UADDSAT, MVT::v16i8, { 1, 2, 1, 1 } },
4270 { ISD::UMAX, MVT::v2i64, { 4, 8, 15, 15 } },
4271 { ISD::UMAX, MVT::v4i32, { 2, 5, 8, 8 } },
4272 { ISD::UMAX, MVT::v8i16, { 1, 3, 3, 3 } },
4273 { ISD::UMAX, MVT::v16i8, { 1, 1, 1, 1 } },
4274 { ISD::UMIN, MVT::v2i64, { 4, 8, 15, 15 } },
4275 { ISD::UMIN, MVT::v4i32, { 2, 5, 8, 8 } },
4276 { ISD::UMIN, MVT::v8i16, { 1, 3, 3, 3 } },
4277 { ISD::UMIN, MVT::v16i8, { 1, 1, 1, 1 } },
4278 { ISD::UMULO, MVT::v2i64, { 30, 33, 15, 29 } },
4279 { ISD::UMULO, MVT::v4i32, { 19, 22, 14, 18 } },
4280 { ISD::UMULO, MVT::v8i16, { 4, 9, 7, 7 } },
4281 { ISD::UMULO, MVT::v16i8, { 13, 19, 20, 20 } },
4282 { ISD::USUBSAT, MVT::v2i64, { 7, 10, 14, 14 } },
4283 { ISD::USUBSAT, MVT::v4i32, { 4, 4, 7, 7 } },
4284 { ISD::USUBSAT, MVT::v8i16, { 1, 2, 1, 1 } },
4285 { ISD::USUBSAT, MVT::v16i8, { 1, 2, 1, 1 } },
4286 { ISD::FMAXNUM, MVT::f64, { 5, 5, 7, 7 } },
4287 { ISD::FMAXNUM, MVT::v2f64, { 4, 6, 6, 6 } },
4288 { ISD::FSQRT, MVT::f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
4289 { ISD::FSQRT, MVT::v2f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
4291 static const CostKindTblEntry SSE1CostTbl[] = {
4292 { ISD::FMAXNUM, MVT::f32, { 5, 5, 7, 7 } },
4293 { ISD::FMAXNUM, MVT::v4f32, { 4, 6, 6, 6 } },
4294 { ISD::FSQRT, MVT::f32, { 28, 30, 1, 2 } }, // Pentium III from http://www.agner.org/
4295 { ISD::FSQRT, MVT::v4f32, { 56, 56, 1, 2 } }, // Pentium III from http://www.agner.org/
4297 static const CostKindTblEntry BMI64CostTbl[] = { // 64-bit targets
4298 { ISD::CTTZ, MVT::i64, { 1, 1, 1, 1 } },
4300 static const CostKindTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
4301 { ISD::CTTZ, MVT::i32, { 1, 1, 1, 1 } },
4302 { ISD::CTTZ, MVT::i16, { 2, 1, 1, 1 } },
4303 { ISD::CTTZ, MVT::i8, { 2, 1, 1, 1 } },
4305 static const CostKindTblEntry LZCNT64CostTbl[] = { // 64-bit targets
4306 { ISD::CTLZ, MVT::i64, { 1, 1, 1, 1 } },
4308 static const CostKindTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
4309 { ISD::CTLZ, MVT::i32, { 1, 1, 1, 1 } },
4310 { ISD::CTLZ, MVT::i16, { 2, 1, 1, 1 } },
4311 { ISD::CTLZ, MVT::i8, { 2, 1, 1, 1 } },
4313 static const CostKindTblEntry POPCNT64CostTbl[] = { // 64-bit targets
4314 { ISD::CTPOP, MVT::i64, { 1, 1, 1, 1 } }, // popcnt
4316 static const CostKindTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
4317 { ISD::CTPOP, MVT::i32, { 1, 1, 1, 1 } }, // popcnt
4318 { ISD::CTPOP, MVT::i16, { 1, 1, 2, 2 } }, // popcnt(zext())
4319 { ISD::CTPOP, MVT::i8, { 1, 1, 2, 2 } }, // popcnt(zext())
4321 static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
4322 { ISD::ABS, MVT::i64, { 1, 2, 3, 3 } }, // SUB+CMOV
4323 { ISD::BITREVERSE, MVT::i64, { 10, 12, 20, 22 } },
4324 { ISD::BSWAP, MVT::i64, { 1, 2, 1, 2 } },
4325 { ISD::CTLZ, MVT::i64, { 2, 2, 4, 5 } }, // BSR+XOR or BSR+XOR+CMOV
4326 { ISD::CTLZ_ZERO_UNDEF, MVT::i64,{ 1, 2, 2, 2 } }, // BSR+XOR
4327 { ISD::CTTZ, MVT::i64, { 2, 2, 3, 4 } }, // TEST+BSF+CMOV/BRANCH
4328 { ISD::CTTZ_ZERO_UNDEF, MVT::i64,{ 1, 2, 1, 2 } }, // BSF
4329 { ISD::CTPOP, MVT::i64, { 10, 6, 19, 19 } },
4330 { ISD::ROTL, MVT::i64, { 2, 3, 1, 3 } },
4331 { ISD::ROTR, MVT::i64, { 2, 3, 1, 3 } },
4332 { X86ISD::VROTLI, MVT::i64, { 1, 1, 1, 1 } },
4333 { ISD::FSHL, MVT::i64, { 4, 4, 1, 4 } },
4334 { ISD::SADDSAT, MVT::i64, { 4, 4, 7, 10 } },
4335 { ISD::SSUBSAT, MVT::i64, { 4, 5, 8, 11 } },
4336 { ISD::UADDSAT, MVT::i64, { 2, 3, 4, 7 } },
4337 { ISD::USUBSAT, MVT::i64, { 2, 3, 4, 7 } },
4338 { ISD::SMAX, MVT::i64, { 1, 3, 2, 3 } },
4339 { ISD::SMIN, MVT::i64, { 1, 3, 2, 3 } },
4340 { ISD::UMAX, MVT::i64, { 1, 3, 2, 3 } },
4341 { ISD::UMIN, MVT::i64, { 1, 3, 2, 3 } },
4342 { ISD::SADDO, MVT::i64, { 2, 2, 4, 6 } },
4343 { ISD::UADDO, MVT::i64, { 2, 2, 4, 6 } },
4344 { ISD::SMULO, MVT::i64, { 4, 4, 4, 6 } },
4345 { ISD::UMULO, MVT::i64, { 8, 8, 4, 7 } },
4347 static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
4348 { ISD::ABS, MVT::i32, { 1, 2, 3, 3 } }, // SUB+XOR+SRA or SUB+CMOV
4349 { ISD::ABS, MVT::i16, { 2, 2, 3, 3 } }, // SUB+XOR+SRA or SUB+CMOV
4350 { ISD::ABS, MVT::i8, { 2, 4, 4, 3 } }, // SUB+XOR+SRA
4351 { ISD::BITREVERSE, MVT::i32, { 9, 12, 17, 19 } },
4352 { ISD::BITREVERSE, MVT::i16, { 9, 12, 17, 19 } },
4353 { ISD::BITREVERSE, MVT::i8, { 7, 9, 13, 14 } },
4354 { ISD::BSWAP, MVT::i32, { 1, 1, 1, 1 } },
4355 { ISD::BSWAP, MVT::i16, { 1, 2, 1, 2 } }, // ROL
4356 { ISD::CTLZ, MVT::i32, { 2, 2, 4, 5 } }, // BSR+XOR or BSR+XOR+CMOV
4357 { ISD::CTLZ, MVT::i16, { 2, 2, 4, 5 } }, // BSR+XOR or BSR+XOR+CMOV
4358 { ISD::CTLZ, MVT::i8, { 2, 2, 5, 6 } }, // BSR+XOR or BSR+XOR+CMOV
4359 { ISD::CTLZ_ZERO_UNDEF, MVT::i32,{ 1, 2, 2, 2 } }, // BSR+XOR
4360 { ISD::CTLZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 2, 2 } }, // BSR+XOR
4361 { ISD::CTLZ_ZERO_UNDEF, MVT::i8, { 2, 2, 3, 3 } }, // BSR+XOR
4362 { ISD::CTTZ, MVT::i32, { 2, 2, 3, 3 } }, // TEST+BSF+CMOV/BRANCH
4363 { ISD::CTTZ, MVT::i16, { 2, 2, 2, 3 } }, // TEST+BSF+CMOV/BRANCH
4364 { ISD::CTTZ, MVT::i8, { 2, 2, 2, 3 } }, // TEST+BSF+CMOV/BRANCH
4365 { ISD::CTTZ_ZERO_UNDEF, MVT::i32,{ 1, 2, 1, 2 } }, // BSF
4366 { ISD::CTTZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 1, 2 } }, // BSF
4367 { ISD::CTTZ_ZERO_UNDEF, MVT::i8, { 2, 2, 1, 2 } }, // BSF
4368 { ISD::CTPOP, MVT::i32, { 8, 7, 15, 15 } },
4369 { ISD::CTPOP, MVT::i16, { 9, 8, 17, 17 } },
4370 { ISD::CTPOP, MVT::i8, { 7, 6, 6, 6 } },
4371 { ISD::ROTL, MVT::i32, { 2, 3, 1, 3 } },
4372 { ISD::ROTL, MVT::i16, { 2, 3, 1, 3 } },
4373 { ISD::ROTL, MVT::i8, { 2, 3, 1, 3 } },
4374 { ISD::ROTR, MVT::i32, { 2, 3, 1, 3 } },
4375 { ISD::ROTR, MVT::i16, { 2, 3, 1, 3 } },
4376 { ISD::ROTR, MVT::i8, { 2, 3, 1, 3 } },
4377 { X86ISD::VROTLI, MVT::i32, { 1, 1, 1, 1 } },
4378 { X86ISD::VROTLI, MVT::i16, { 1, 1, 1, 1 } },
4379 { X86ISD::VROTLI, MVT::i8, { 1, 1, 1, 1 } },
4380 { ISD::FSHL, MVT::i32, { 4, 4, 1, 4 } },
4381 { ISD::FSHL, MVT::i16, { 4, 4, 2, 5 } },
4382 { ISD::FSHL, MVT::i8, { 4, 4, 2, 5 } },
4383 { ISD::SADDSAT, MVT::i32, { 3, 4, 6, 9 } },
4384 { ISD::SADDSAT, MVT::i16, { 4, 4, 7, 10 } },
4385 { ISD::SADDSAT, MVT::i8, { 4, 5, 8, 11 } },
4386 { ISD::SSUBSAT, MVT::i32, { 4, 4, 7, 10 } },
4387 { ISD::SSUBSAT, MVT::i16, { 4, 4, 7, 10 } },
4388 { ISD::SSUBSAT, MVT::i8, { 4, 5, 8, 11 } },
4389 { ISD::UADDSAT, MVT::i32, { 2, 3, 4, 7 } },
4390 { ISD::UADDSAT, MVT::i16, { 2, 3, 4, 7 } },
4391 { ISD::UADDSAT, MVT::i8, { 3, 3, 5, 8 } },
4392 { ISD::USUBSAT, MVT::i32, { 2, 3, 4, 7 } },
4393 { ISD::USUBSAT, MVT::i16, { 2, 3, 4, 7 } },
4394 { ISD::USUBSAT, MVT::i8, { 3, 3, 5, 8 } },
4395 { ISD::SMAX, MVT::i32, { 1, 2, 2, 3 } },
4396 { ISD::SMAX, MVT::i16, { 1, 4, 2, 4 } },
4397 { ISD::SMAX, MVT::i8, { 1, 4, 2, 4 } },
4398 { ISD::SMIN, MVT::i32, { 1, 2, 2, 3 } },
4399 { ISD::SMIN, MVT::i16, { 1, 4, 2, 4 } },
4400 { ISD::SMIN, MVT::i8, { 1, 4, 2, 4 } },
4401 { ISD::UMAX, MVT::i32, { 1, 2, 2, 3 } },
4402 { ISD::UMAX, MVT::i16, { 1, 4, 2, 4 } },
4403 { ISD::UMAX, MVT::i8, { 1, 4, 2, 4 } },
4404 { ISD::UMIN, MVT::i32, { 1, 2, 2, 3 } },
4405 { ISD::UMIN, MVT::i16, { 1, 4, 2, 4 } },
4406 { ISD::UMIN, MVT::i8, { 1, 4, 2, 4 } },
4407 { ISD::SADDO, MVT::i32, { 2, 2, 4, 6 } },
4408 { ISD::SADDO, MVT::i16, { 2, 2, 4, 6 } },
4409 { ISD::SADDO, MVT::i8, { 2, 2, 4, 6 } },
4410 { ISD::UADDO, MVT::i32, { 2, 2, 4, 6 } },
4411 { ISD::UADDO, MVT::i16, { 2, 2, 4, 6 } },
4412 { ISD::UADDO, MVT::i8, { 2, 2, 4, 6 } },
4413 { ISD::SMULO, MVT::i32, { 2, 2, 4, 6 } },
4414 { ISD::SMULO, MVT::i16, { 5, 5, 4, 6 } },
4415 { ISD::SMULO, MVT::i8, { 6, 6, 4, 6 } },
4416 { ISD::UMULO, MVT::i32, { 6, 6, 4, 8 } },
4417 { ISD::UMULO, MVT::i16, { 6, 6, 4, 9 } },
4418 { ISD::UMULO, MVT::i8, { 6, 6, 4, 6 } },
4421 Type *RetTy = ICA.getReturnType();
4422 Type *OpTy = RetTy;
4423 Intrinsic::ID IID = ICA.getID();
4424 unsigned ISD = ISD::DELETED_NODE;
4425 switch (IID) {
4426 default:
4427 break;
4428 case Intrinsic::abs:
4429 ISD = ISD::ABS;
4430 break;
4431 case Intrinsic::bitreverse:
4432 ISD = ISD::BITREVERSE;
4433 break;
4434 case Intrinsic::bswap:
4435 ISD = ISD::BSWAP;
4436 break;
4437 case Intrinsic::ctlz:
4438 ISD = ISD::CTLZ;
4439 break;
4440 case Intrinsic::ctpop:
4441 ISD = ISD::CTPOP;
4442 break;
4443 case Intrinsic::cttz:
4444 ISD = ISD::CTTZ;
4445 break;
4446 case Intrinsic::fshl:
4447 ISD = ISD::FSHL;
4448 if (!ICA.isTypeBasedOnly()) {
4449 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
4450 if (Args[0] == Args[1]) {
4451 ISD = ISD::ROTL;
4452 // Handle uniform constant rotation amounts.
4453 // TODO: Handle funnel-shift cases.
4454 const APInt *Amt;
4455 if (Args[2] &&
4456 PatternMatch::match(Args[2], PatternMatch::m_APIntAllowPoison(Amt)))
4457 ISD = X86ISD::VROTLI;
4460 break;
4461 case Intrinsic::fshr:
4462 // FSHR has same costs so don't duplicate.
4463 ISD = ISD::FSHL;
4464 if (!ICA.isTypeBasedOnly()) {
4465 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
4466 if (Args[0] == Args[1]) {
4467 ISD = ISD::ROTR;
4468 // Handle uniform constant rotation amount.
4469 // TODO: Handle funnel-shift cases.
4470 const APInt *Amt;
4471 if (Args[2] &&
4472 PatternMatch::match(Args[2], PatternMatch::m_APIntAllowPoison(Amt)))
4473 ISD = X86ISD::VROTLI;
4476 break;
4477 case Intrinsic::lrint:
4478 case Intrinsic::llrint:
4479 // X86 can use the CVTP2SI instructions to lower lrint/llrint calls, which
4480 // have the same costs as the CVTTP2SI (fptosi) instructions
4481 if (!ICA.isTypeBasedOnly()) {
4482 const SmallVectorImpl<Type *> &ArgTys = ICA.getArgTypes();
4483 return getCastInstrCost(Instruction::FPToSI, RetTy, ArgTys[0],
4484 TTI::CastContextHint::None, CostKind);
4486 break;
4487 case Intrinsic::maxnum:
4488 case Intrinsic::minnum:
4489 // FMINNUM has same costs so don't duplicate.
4490 ISD = ISD::FMAXNUM;
4491 break;
4492 case Intrinsic::sadd_sat:
4493 ISD = ISD::SADDSAT;
4494 break;
4495 case Intrinsic::smax:
4496 ISD = ISD::SMAX;
4497 break;
4498 case Intrinsic::smin:
4499 ISD = ISD::SMIN;
4500 break;
4501 case Intrinsic::ssub_sat:
4502 ISD = ISD::SSUBSAT;
4503 break;
4504 case Intrinsic::uadd_sat:
4505 ISD = ISD::UADDSAT;
4506 break;
4507 case Intrinsic::umax:
4508 ISD = ISD::UMAX;
4509 break;
4510 case Intrinsic::umin:
4511 ISD = ISD::UMIN;
4512 break;
4513 case Intrinsic::usub_sat:
4514 ISD = ISD::USUBSAT;
4515 break;
4516 case Intrinsic::sqrt:
4517 ISD = ISD::FSQRT;
4518 break;
4519 case Intrinsic::sadd_with_overflow:
4520 case Intrinsic::ssub_with_overflow:
4521 // SSUBO has same costs so don't duplicate.
4522 ISD = ISD::SADDO;
4523 OpTy = RetTy->getContainedType(0);
4524 break;
4525 case Intrinsic::uadd_with_overflow:
4526 case Intrinsic::usub_with_overflow:
4527 // USUBO has same costs so don't duplicate.
4528 ISD = ISD::UADDO;
4529 OpTy = RetTy->getContainedType(0);
4530 break;
4531 case Intrinsic::smul_with_overflow:
4532 ISD = ISD::SMULO;
4533 OpTy = RetTy->getContainedType(0);
4534 break;
4535 case Intrinsic::umul_with_overflow:
4536 ISD = ISD::UMULO;
4537 OpTy = RetTy->getContainedType(0);
4538 break;
4541 if (ISD != ISD::DELETED_NODE) {
4542 auto adjustTableCost = [&](int ISD, unsigned Cost,
4543 std::pair<InstructionCost, MVT> LT,
4544 FastMathFlags FMF) -> InstructionCost {
4545 InstructionCost LegalizationCost = LT.first;
4546 MVT MTy = LT.second;
4548 // If there are no NANs to deal with, then these are reduced to a
4549 // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
4550 // assume is used in the non-fast case.
4551 if (ISD == ISD::FMAXNUM || ISD == ISD::FMINNUM) {
4552 if (FMF.noNaNs())
4553 return LegalizationCost * 1;
4556 // For cases where some ops can be folded into a load/store, assume free.
4557 if (MTy.isScalarInteger()) {
4558 if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
4559 if (const Instruction *II = ICA.getInst()) {
4560 if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
4561 return TTI::TCC_Free;
4562 if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
4563 if (LI->hasOneUse())
4564 return TTI::TCC_Free;
4570 return LegalizationCost * (int)Cost;
4573 // Legalize the type.
4574 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(OpTy);
4575 MVT MTy = LT.second;
4577 // Without BMI/LZCNT see if we're only looking for a *_ZERO_UNDEF cost.
4578 if (((ISD == ISD::CTTZ && !ST->hasBMI()) ||
4579 (ISD == ISD::CTLZ && !ST->hasLZCNT())) &&
4580 !MTy.isVector() && !ICA.isTypeBasedOnly()) {
4581 const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
4582 if (auto *Cst = dyn_cast<ConstantInt>(Args[1]))
4583 if (Cst->isAllOnesValue())
4584 ISD = ISD == ISD::CTTZ ? ISD::CTTZ_ZERO_UNDEF : ISD::CTLZ_ZERO_UNDEF;
4587 // FSQRT is a single instruction.
4588 if (ISD == ISD::FSQRT && CostKind == TTI::TCK_CodeSize)
4589 return LT.first;
4591 if (ST->useGLMDivSqrtCosts())
4592 if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
4593 if (auto KindCost = Entry->Cost[CostKind])
4594 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4596 if (ST->useSLMArithCosts())
4597 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
4598 if (auto KindCost = Entry->Cost[CostKind])
4599 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4601 if (ST->hasVBMI2())
4602 if (const auto *Entry = CostTableLookup(AVX512VBMI2CostTbl, ISD, MTy))
4603 if (auto KindCost = Entry->Cost[CostKind])
4604 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4606 if (ST->hasBITALG())
4607 if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
4608 if (auto KindCost = Entry->Cost[CostKind])
4609 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4611 if (ST->hasVPOPCNTDQ())
4612 if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
4613 if (auto KindCost = Entry->Cost[CostKind])
4614 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4616 if (ST->hasGFNI())
4617 if (const auto *Entry = CostTableLookup(GFNICostTbl, ISD, MTy))
4618 if (auto KindCost = Entry->Cost[CostKind])
4619 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4621 if (ST->hasCDI())
4622 if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
4623 if (auto KindCost = Entry->Cost[CostKind])
4624 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4626 if (ST->hasBWI())
4627 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
4628 if (auto KindCost = Entry->Cost[CostKind])
4629 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4631 if (ST->hasAVX512())
4632 if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
4633 if (auto KindCost = Entry->Cost[CostKind])
4634 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4636 if (ST->hasXOP())
4637 if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
4638 if (auto KindCost = Entry->Cost[CostKind])
4639 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4641 if (ST->hasAVX2())
4642 if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
4643 if (auto KindCost = Entry->Cost[CostKind])
4644 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4646 if (ST->hasAVX())
4647 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
4648 if (auto KindCost = Entry->Cost[CostKind])
4649 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4651 if (ST->hasSSE42())
4652 if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
4653 if (auto KindCost = Entry->Cost[CostKind])
4654 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4656 if (ST->hasSSE41())
4657 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
4658 if (auto KindCost = Entry->Cost[CostKind])
4659 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4661 if (ST->hasSSSE3())
4662 if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
4663 if (auto KindCost = Entry->Cost[CostKind])
4664 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4666 if (ST->hasSSE2())
4667 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
4668 if (auto KindCost = Entry->Cost[CostKind])
4669 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4671 if (ST->hasSSE1())
4672 if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
4673 if (auto KindCost = Entry->Cost[CostKind])
4674 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4676 if (ST->hasBMI()) {
4677 if (ST->is64Bit())
4678 if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
4679 if (auto KindCost = Entry->Cost[CostKind])
4680 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4682 if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
4683 if (auto KindCost = Entry->Cost[CostKind])
4684 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4687 if (ST->hasLZCNT()) {
4688 if (ST->is64Bit())
4689 if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
4690 if (auto KindCost = Entry->Cost[CostKind])
4691 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4693 if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
4694 if (auto KindCost = Entry->Cost[CostKind])
4695 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4698 if (ST->hasPOPCNT()) {
4699 if (ST->is64Bit())
4700 if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
4701 if (auto KindCost = Entry->Cost[CostKind])
4702 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4704 if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
4705 if (auto KindCost = Entry->Cost[CostKind])
4706 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4709 if (ST->is64Bit())
4710 if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
4711 if (auto KindCost = Entry->Cost[CostKind])
4712 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4714 if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
4715 if (auto KindCost = Entry->Cost[CostKind])
4716 return adjustTableCost(Entry->ISD, *KindCost, LT, ICA.getFlags());
4719 return BaseT::getIntrinsicInstrCost(ICA, CostKind);
4722 InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
4723 TTI::TargetCostKind CostKind,
4724 unsigned Index, Value *Op0,
4725 Value *Op1) {
4726 static const CostTblEntry SLMCostTbl[] = {
4727 { ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 },
4728 { ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 },
4729 { ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 },
4730 { ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 }
4733 assert(Val->isVectorTy() && "This must be a vector type");
4734 Type *ScalarType = Val->getScalarType();
4735 InstructionCost RegisterFileMoveCost = 0;
4737 // Non-immediate extraction/insertion can be handled as a sequence of
4738 // aliased loads+stores via the stack.
4739 if (Index == -1U && (Opcode == Instruction::ExtractElement ||
4740 Opcode == Instruction::InsertElement)) {
4741 // TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
4742 // inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
4744 // TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
4745 assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
4746 Align VecAlign = DL.getPrefTypeAlign(Val);
4747 Align SclAlign = DL.getPrefTypeAlign(ScalarType);
4749 // Extract - store vector to stack, load scalar.
4750 if (Opcode == Instruction::ExtractElement) {
4751 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
4752 getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
4753 CostKind);
4755 // Insert - store vector to stack, store scalar, load vector.
4756 if (Opcode == Instruction::InsertElement) {
4757 return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
4758 getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
4759 CostKind) +
4760 getMemoryOpCost(Instruction::Load, Val, VecAlign, 0, CostKind);
4764 if (Index != -1U && (Opcode == Instruction::ExtractElement ||
4765 Opcode == Instruction::InsertElement)) {
4766 // Extraction of vXi1 elements are now efficiently handled by MOVMSK.
4767 if (Opcode == Instruction::ExtractElement &&
4768 ScalarType->getScalarSizeInBits() == 1 &&
4769 cast<FixedVectorType>(Val)->getNumElements() > 1)
4770 return 1;
4772 // Legalize the type.
4773 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
4775 // This type is legalized to a scalar type.
4776 if (!LT.second.isVector())
4777 return TTI::TCC_Free;
4779 // The type may be split. Normalize the index to the new type.
4780 unsigned SizeInBits = LT.second.getSizeInBits();
4781 unsigned NumElts = LT.second.getVectorNumElements();
4782 unsigned SubNumElts = NumElts;
4783 Index = Index % NumElts;
4785 // For >128-bit vectors, we need to extract higher 128-bit subvectors.
4786 // For inserts, we also need to insert the subvector back.
4787 if (SizeInBits > 128) {
4788 assert((SizeInBits % 128) == 0 && "Illegal vector");
4789 unsigned NumSubVecs = SizeInBits / 128;
4790 SubNumElts = NumElts / NumSubVecs;
4791 if (SubNumElts <= Index) {
4792 RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
4793 Index %= SubNumElts;
4797 MVT MScalarTy = LT.second.getScalarType();
4798 auto IsCheapPInsrPExtrInsertPS = [&]() {
4799 // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
4800 // Also, assume insertps is relatively cheap on all >= SSE41 targets.
4801 return (MScalarTy == MVT::i16 && ST->hasSSE2()) ||
4802 (MScalarTy.isInteger() && ST->hasSSE41()) ||
4803 (MScalarTy == MVT::f32 && ST->hasSSE41() &&
4804 Opcode == Instruction::InsertElement);
4807 if (Index == 0) {
4808 // Floating point scalars are already located in index #0.
4809 // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
4810 // true for all.
4811 if (ScalarType->isFloatingPointTy() &&
4812 (Opcode != Instruction::InsertElement || !Op0 ||
4813 isa<UndefValue>(Op0)))
4814 return RegisterFileMoveCost;
4816 if (Opcode == Instruction::InsertElement &&
4817 isa_and_nonnull<UndefValue>(Op0)) {
4818 // Consider the gather cost to be cheap.
4819 if (isa_and_nonnull<LoadInst>(Op1))
4820 return RegisterFileMoveCost;
4821 if (!IsCheapPInsrPExtrInsertPS()) {
4822 // mov constant-to-GPR + movd/movq GPR -> XMM.
4823 if (isa_and_nonnull<Constant>(Op1) && Op1->getType()->isIntegerTy())
4824 return 2 + RegisterFileMoveCost;
4825 // Assume movd/movq GPR -> XMM is relatively cheap on all targets.
4826 return 1 + RegisterFileMoveCost;
4830 // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
4831 if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
4832 return 1 + RegisterFileMoveCost;
4835 int ISD = TLI->InstructionOpcodeToISD(Opcode);
4836 assert(ISD && "Unexpected vector opcode");
4837 if (ST->useSLMArithCosts())
4838 if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
4839 return Entry->Cost + RegisterFileMoveCost;
4841 // Consider cheap cases.
4842 if (IsCheapPInsrPExtrInsertPS())
4843 return 1 + RegisterFileMoveCost;
4845 // For extractions we just need to shuffle the element to index 0, which
4846 // should be very cheap (assume cost = 1). For insertions we need to shuffle
4847 // the elements to its destination. In both cases we must handle the
4848 // subvector move(s).
4849 // If the vector type is already less than 128-bits then don't reduce it.
4850 // TODO: Under what circumstances should we shuffle using the full width?
4851 InstructionCost ShuffleCost = 1;
4852 if (Opcode == Instruction::InsertElement) {
4853 auto *SubTy = cast<VectorType>(Val);
4854 EVT VT = TLI->getValueType(DL, Val);
4855 if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
4856 SubTy = FixedVectorType::get(ScalarType, SubNumElts);
4857 ShuffleCost =
4858 getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, {}, CostKind, 0, SubTy);
4860 int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
4861 return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
4864 return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1) +
4865 RegisterFileMoveCost;
4868 InstructionCost X86TTIImpl::getScalarizationOverhead(
4869 VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract,
4870 TTI::TargetCostKind CostKind, ArrayRef<Value *> VL) {
4871 assert(DemandedElts.getBitWidth() ==
4872 cast<FixedVectorType>(Ty)->getNumElements() &&
4873 "Vector size mismatch");
4875 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
4876 MVT MScalarTy = LT.second.getScalarType();
4877 unsigned LegalVectorBitWidth = LT.second.getSizeInBits();
4878 InstructionCost Cost = 0;
4880 constexpr unsigned LaneBitWidth = 128;
4881 assert((LegalVectorBitWidth < LaneBitWidth ||
4882 (LegalVectorBitWidth % LaneBitWidth) == 0) &&
4883 "Illegal vector");
4885 const int NumLegalVectors = *LT.first.getValue();
4886 assert(NumLegalVectors >= 0 && "Negative cost!");
4888 // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
4889 // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
4890 if (Insert) {
4891 if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
4892 (MScalarTy.isInteger() && ST->hasSSE41()) ||
4893 (MScalarTy == MVT::f32 && ST->hasSSE41())) {
4894 // For types we can insert directly, insertion into 128-bit sub vectors is
4895 // cheap, followed by a cheap chain of concatenations.
4896 if (LegalVectorBitWidth <= LaneBitWidth) {
4897 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert,
4898 /*Extract*/ false, CostKind);
4899 } else {
4900 // In each 128-lane, if at least one index is demanded but not all
4901 // indices are demanded and this 128-lane is not the first 128-lane of
4902 // the legalized-vector, then this 128-lane needs a extracti128; If in
4903 // each 128-lane, there is at least one demanded index, this 128-lane
4904 // needs a inserti128.
4906 // The following cases will help you build a better understanding:
4907 // Assume we insert several elements into a v8i32 vector in avx2,
4908 // Case#1: inserting into 1th index needs vpinsrd + inserti128.
4909 // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
4910 // inserti128.
4911 // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
4912 assert((LegalVectorBitWidth % LaneBitWidth) == 0 && "Illegal vector");
4913 unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
4914 unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
4915 unsigned NumLegalElts =
4916 LT.second.getVectorNumElements() * NumLegalVectors;
4917 assert(NumLegalElts >= DemandedElts.getBitWidth() &&
4918 "Vector has been legalized to smaller element count");
4919 assert((NumLegalElts % NumLanesTotal) == 0 &&
4920 "Unexpected elts per lane");
4921 unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
4923 APInt WidenedDemandedElts = DemandedElts.zext(NumLegalElts);
4924 auto *LaneTy =
4925 FixedVectorType::get(Ty->getElementType(), NumEltsPerLane);
4927 for (unsigned I = 0; I != NumLanesTotal; ++I) {
4928 APInt LaneEltMask = WidenedDemandedElts.extractBits(
4929 NumEltsPerLane, NumEltsPerLane * I);
4930 if (LaneEltMask.isZero())
4931 continue;
4932 // FIXME: we don't need to extract if all non-demanded elements
4933 // are legalization-inserted padding.
4934 if (!LaneEltMask.isAllOnes())
4935 Cost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, {}, CostKind,
4936 I * NumEltsPerLane, LaneTy);
4937 Cost += BaseT::getScalarizationOverhead(LaneTy, LaneEltMask, Insert,
4938 /*Extract*/ false, CostKind);
4941 APInt AffectedLanes =
4942 APIntOps::ScaleBitMask(WidenedDemandedElts, NumLanesTotal);
4943 APInt FullyAffectedLegalVectors = APIntOps::ScaleBitMask(
4944 AffectedLanes, NumLegalVectors, /*MatchAllBits=*/true);
4945 for (int LegalVec = 0; LegalVec != NumLegalVectors; ++LegalVec) {
4946 for (unsigned Lane = 0; Lane != NumLegalLanes; ++Lane) {
4947 unsigned I = NumLegalLanes * LegalVec + Lane;
4948 // No need to insert unaffected lane; or lane 0 of each legal vector
4949 // iff ALL lanes of that vector were affected and will be inserted.
4950 if (!AffectedLanes[I] ||
4951 (Lane == 0 && FullyAffectedLegalVectors[LegalVec]))
4952 continue;
4953 Cost += getShuffleCost(TTI::SK_InsertSubvector, Ty, {}, CostKind,
4954 I * NumEltsPerLane, LaneTy);
4958 } else if (LT.second.isVector()) {
4959 // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
4960 // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
4961 // series of UNPCK followed by CONCAT_VECTORS - all of these can be
4962 // considered cheap.
4963 if (Ty->isIntOrIntVectorTy())
4964 Cost += DemandedElts.popcount();
4966 // Get the smaller of the legalized or original pow2-extended number of
4967 // vector elements, which represents the number of unpacks we'll end up
4968 // performing.
4969 unsigned NumElts = LT.second.getVectorNumElements();
4970 unsigned Pow2Elts =
4971 PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
4972 Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
4976 if (Extract) {
4977 // vXi1 can be efficiently extracted with MOVMSK.
4978 // TODO: AVX512 predicate mask handling.
4979 // NOTE: This doesn't work well for roundtrip scalarization.
4980 if (!Insert && Ty->getScalarSizeInBits() == 1 && !ST->hasAVX512()) {
4981 unsigned NumElts = cast<FixedVectorType>(Ty)->getNumElements();
4982 unsigned MaxElts = ST->hasAVX2() ? 32 : 16;
4983 unsigned MOVMSKCost = (NumElts + MaxElts - 1) / MaxElts;
4984 return MOVMSKCost;
4987 if (LT.second.isVector()) {
4988 unsigned NumLegalElts =
4989 LT.second.getVectorNumElements() * NumLegalVectors;
4990 assert(NumLegalElts >= DemandedElts.getBitWidth() &&
4991 "Vector has been legalized to smaller element count");
4993 // If we're extracting elements from a 128-bit subvector lane,
4994 // we only need to extract each lane once, not for every element.
4995 if (LegalVectorBitWidth > LaneBitWidth) {
4996 unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
4997 unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
4998 assert((NumLegalElts % NumLanesTotal) == 0 &&
4999 "Unexpected elts per lane");
5000 unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
5002 // Add cost for each demanded 128-bit subvector extraction.
5003 // Luckily this is a lot easier than for insertion.
5004 APInt WidenedDemandedElts = DemandedElts.zext(NumLegalElts);
5005 auto *LaneTy =
5006 FixedVectorType::get(Ty->getElementType(), NumEltsPerLane);
5008 for (unsigned I = 0; I != NumLanesTotal; ++I) {
5009 APInt LaneEltMask = WidenedDemandedElts.extractBits(
5010 NumEltsPerLane, I * NumEltsPerLane);
5011 if (LaneEltMask.isZero())
5012 continue;
5013 Cost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, {}, CostKind,
5014 I * NumEltsPerLane, LaneTy);
5015 Cost += BaseT::getScalarizationOverhead(
5016 LaneTy, LaneEltMask, /*Insert*/ false, Extract, CostKind);
5019 return Cost;
5023 // Fallback to default extraction.
5024 Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ false,
5025 Extract, CostKind);
5028 return Cost;
5031 InstructionCost
5032 X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
5033 int VF, const APInt &DemandedDstElts,
5034 TTI::TargetCostKind CostKind) {
5035 const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy);
5036 // We don't differentiate element types here, only element bit width.
5037 EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits);
5039 auto bailout = [&]() {
5040 return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
5041 DemandedDstElts, CostKind);
5044 // For now, only deal with AVX512 cases.
5045 if (!ST->hasAVX512())
5046 return bailout();
5048 // Do we have a native shuffle for this element type, or should we promote?
5049 unsigned PromEltTyBits = EltTyBits;
5050 switch (EltTyBits) {
5051 case 32:
5052 case 64:
5053 break; // AVX512F.
5054 case 16:
5055 if (!ST->hasBWI())
5056 PromEltTyBits = 32; // promote to i32, AVX512F.
5057 break; // AVX512BW
5058 case 8:
5059 if (!ST->hasVBMI())
5060 PromEltTyBits = 32; // promote to i32, AVX512F.
5061 break; // AVX512VBMI
5062 case 1:
5063 // There is no support for shuffling i1 elements. We *must* promote.
5064 if (ST->hasBWI()) {
5065 if (ST->hasVBMI())
5066 PromEltTyBits = 8; // promote to i8, AVX512VBMI.
5067 else
5068 PromEltTyBits = 16; // promote to i16, AVX512BW.
5069 break;
5071 PromEltTyBits = 32; // promote to i32, AVX512F.
5072 break;
5073 default:
5074 return bailout();
5076 auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits);
5078 auto *SrcVecTy = FixedVectorType::get(EltTy, VF);
5079 auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF);
5081 int NumDstElements = VF * ReplicationFactor;
5082 auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements);
5083 auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements);
5085 // Legalize the types.
5086 MVT LegalSrcVecTy = getTypeLegalizationCost(SrcVecTy).second;
5087 MVT LegalPromSrcVecTy = getTypeLegalizationCost(PromSrcVecTy).second;
5088 MVT LegalPromDstVecTy = getTypeLegalizationCost(PromDstVecTy).second;
5089 MVT LegalDstVecTy = getTypeLegalizationCost(DstVecTy).second;
5090 // They should have legalized into vector types.
5091 if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
5092 !LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
5093 return bailout();
5095 if (PromEltTyBits != EltTyBits) {
5096 // If we have to perform the shuffle with wider elt type than our data type,
5097 // then we will first need to anyext (we don't care about the new bits)
5098 // the source elements, and then truncate Dst elements.
5099 InstructionCost PromotionCost;
5100 PromotionCost += getCastInstrCost(
5101 Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
5102 TargetTransformInfo::CastContextHint::None, CostKind);
5103 PromotionCost +=
5104 getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy,
5105 /*Src=*/PromDstVecTy,
5106 TargetTransformInfo::CastContextHint::None, CostKind);
5107 return PromotionCost + getReplicationShuffleCost(PromEltTy,
5108 ReplicationFactor, VF,
5109 DemandedDstElts, CostKind);
5112 assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&
5113 LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&
5114 "We expect that the legalization doesn't affect the element width, "
5115 "doesn't coalesce/split elements.");
5117 unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
5118 unsigned NumDstVectors =
5119 divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec);
5121 auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec);
5123 // Not all the produced Dst elements may be demanded. In our case,
5124 // given that a single Dst vector is formed by a single shuffle,
5125 // if all elements that will form a single Dst vector aren't demanded,
5126 // then we won't need to do that shuffle, so adjust the cost accordingly.
5127 APInt DemandedDstVectors = APIntOps::ScaleBitMask(
5128 DemandedDstElts.zext(NumDstVectors * NumEltsPerDstVec), NumDstVectors);
5129 unsigned NumDstVectorsDemanded = DemandedDstVectors.popcount();
5131 InstructionCost SingleShuffleCost = getShuffleCost(
5132 TTI::SK_PermuteSingleSrc, SingleDstVecTy, /*Mask=*/{}, CostKind,
5133 /*Index=*/0, /*SubTp=*/nullptr);
5134 return NumDstVectorsDemanded * SingleShuffleCost;
5137 InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
5138 MaybeAlign Alignment,
5139 unsigned AddressSpace,
5140 TTI::TargetCostKind CostKind,
5141 TTI::OperandValueInfo OpInfo,
5142 const Instruction *I) {
5143 // TODO: Handle other cost kinds.
5144 if (CostKind != TTI::TCK_RecipThroughput) {
5145 if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
5146 // Store instruction with index and scale costs 2 Uops.
5147 // Check the preceding GEP to identify non-const indices.
5148 if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
5149 if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
5150 return TTI::TCC_Basic * 2;
5153 return TTI::TCC_Basic;
5156 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
5157 "Invalid Opcode");
5158 // Type legalization can't handle structs
5159 if (TLI->getValueType(DL, Src, true) == MVT::Other)
5160 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
5161 CostKind, OpInfo, I);
5163 // Legalize the type.
5164 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
5166 auto *VTy = dyn_cast<FixedVectorType>(Src);
5168 InstructionCost Cost = 0;
5170 // Add a cost for constant load to vector.
5171 if (Opcode == Instruction::Store && OpInfo.isConstant())
5172 Cost += getMemoryOpCost(Instruction::Load, Src, DL.getABITypeAlign(Src),
5173 /*AddressSpace=*/0, CostKind, OpInfo);
5175 // Handle the simple case of non-vectors.
5176 // NOTE: this assumes that legalization never creates vector from scalars!
5177 if (!VTy || !LT.second.isVector()) {
5178 // Each load/store unit costs 1.
5179 return (LT.second.isFloatingPoint() ? Cost : 0) + LT.first * 1;
5182 bool IsLoad = Opcode == Instruction::Load;
5184 Type *EltTy = VTy->getElementType();
5186 const int EltTyBits = DL.getTypeSizeInBits(EltTy);
5188 // Source of truth: how many elements were there in the original IR vector?
5189 const unsigned SrcNumElt = VTy->getNumElements();
5191 // How far have we gotten?
5192 int NumEltRemaining = SrcNumElt;
5193 // Note that we intentionally capture by-reference, NumEltRemaining changes.
5194 auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
5196 const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
5198 // Note that even if we can store 64 bits of an XMM, we still operate on XMM.
5199 const unsigned XMMBits = 128;
5200 if (XMMBits % EltTyBits != 0)
5201 // Vector size must be a multiple of the element size. I.e. no padding.
5202 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
5203 CostKind, OpInfo, I);
5204 const int NumEltPerXMM = XMMBits / EltTyBits;
5206 auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
5208 for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
5209 NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
5210 // How many elements would a single op deal with at once?
5211 if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
5212 // Vector size must be a multiple of the element size. I.e. no padding.
5213 return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
5214 CostKind, OpInfo, I);
5215 int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
5217 assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
5218 assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
5219 (CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
5220 "Unless we haven't halved the op size yet, "
5221 "we have less than two op's sized units of work left.");
5223 auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
5224 ? FixedVectorType::get(EltTy, CurrNumEltPerOp)
5225 : XMMVecTy;
5227 assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
5228 "After halving sizes, the vector elt count is no longer a multiple "
5229 "of number of elements per operation?");
5230 auto *CoalescedVecTy =
5231 CurrNumEltPerOp == 1
5232 ? CurrVecTy
5233 : FixedVectorType::get(
5234 IntegerType::get(Src->getContext(),
5235 EltTyBits * CurrNumEltPerOp),
5236 CurrVecTy->getNumElements() / CurrNumEltPerOp);
5237 assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
5238 DL.getTypeSizeInBits(CurrVecTy) &&
5239 "coalesciing elements doesn't change vector width.");
5241 while (NumEltRemaining > 0) {
5242 assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
5244 // Can we use this vector size, as per the remaining element count?
5245 // Iff the vector is naturally aligned, we can do a wide load regardless.
5246 if (NumEltRemaining < CurrNumEltPerOp &&
5247 (!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
5248 CurrOpSizeBytes != 1)
5249 break; // Try smalled vector size.
5251 // This isn't exactly right. We're using slow unaligned 32-byte accesses
5252 // as a proxy for a double-pumped AVX memory interface such as on
5253 // Sandybridge.
5254 // Sub-32-bit loads/stores will be slower either with PINSR*/PEXTR* or
5255 // will be scalarized.
5256 if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
5257 Cost += 2;
5258 else if (CurrOpSizeBytes < 4)
5259 Cost += 2;
5260 else
5261 Cost += 1;
5263 // If we're loading a uniform value, then we don't need to split the load,
5264 // loading just a single (widest) vector can be reused by all splits.
5265 if (IsLoad && OpInfo.isUniform())
5266 return Cost;
5268 bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
5270 // If we have fully processed the previous reg, we need to replenish it.
5271 if (SubVecEltsLeft == 0) {
5272 SubVecEltsLeft += CurrVecTy->getNumElements();
5273 // And that's free only for the 0'th subvector of a legalized vector.
5274 if (!Is0thSubVec)
5275 Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
5276 : TTI::ShuffleKind::SK_ExtractSubvector,
5277 VTy, {}, CostKind, NumEltDone(), CurrVecTy);
5280 // While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
5281 // for smaller widths (32/16/8) we have to insert/extract them separately.
5282 // Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
5283 // but let's pretend that it is also true for 16/8 bit wide ops...)
5284 if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
5285 int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
5286 assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
5287 int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
5288 APInt DemandedElts =
5289 APInt::getBitsSet(CoalescedVecTy->getNumElements(),
5290 CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
5291 assert(DemandedElts.popcount() == 1 && "Inserting single value");
5292 Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
5293 !IsLoad, CostKind);
5296 SubVecEltsLeft -= CurrNumEltPerOp;
5297 NumEltRemaining -= CurrNumEltPerOp;
5298 Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
5302 assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
5304 return Cost;
5307 InstructionCost
5308 X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
5309 unsigned AddressSpace,
5310 TTI::TargetCostKind CostKind) {
5311 bool IsLoad = (Instruction::Load == Opcode);
5312 bool IsStore = (Instruction::Store == Opcode);
5314 auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
5315 if (!SrcVTy)
5316 // To calculate scalar take the regular cost, without mask
5317 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
5319 unsigned NumElem = SrcVTy->getNumElements();
5320 auto *MaskTy =
5321 FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
5322 if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
5323 (IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
5324 // Scalarization
5325 APInt DemandedElts = APInt::getAllOnes(NumElem);
5326 InstructionCost MaskSplitCost = getScalarizationOverhead(
5327 MaskTy, DemandedElts, /*Insert*/ false, /*Extract*/ true, CostKind);
5328 InstructionCost ScalarCompareCost = getCmpSelInstrCost(
5329 Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
5330 CmpInst::BAD_ICMP_PREDICATE, CostKind);
5331 InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
5332 InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
5333 InstructionCost ValueSplitCost = getScalarizationOverhead(
5334 SrcVTy, DemandedElts, IsLoad, IsStore, CostKind);
5335 InstructionCost MemopCost =
5336 NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
5337 Alignment, AddressSpace, CostKind);
5338 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
5341 // Legalize the type.
5342 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
5343 auto VT = TLI->getValueType(DL, SrcVTy);
5344 InstructionCost Cost = 0;
5345 MVT Ty = LT.second;
5346 if (Ty == MVT::i16 || Ty == MVT::i32 || Ty == MVT::i64)
5347 // APX masked load/store for scalar is cheap.
5348 return Cost + LT.first;
5350 if (VT.isSimple() && Ty != VT.getSimpleVT() &&
5351 LT.second.getVectorNumElements() == NumElem)
5352 // Promotion requires extend/truncate for data and a shuffle for mask.
5353 Cost +=
5354 getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, {}, CostKind, 0,
5355 nullptr) +
5356 getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, {}, CostKind, 0, nullptr);
5358 else if (LT.first * Ty.getVectorNumElements() > NumElem) {
5359 auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
5360 Ty.getVectorNumElements());
5361 // Expanding requires fill mask with zeroes
5362 Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, {}, CostKind, 0,
5363 MaskTy);
5366 // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
5367 if (!ST->hasAVX512())
5368 return Cost + LT.first * (IsLoad ? 2 : 8);
5370 // AVX-512 masked load/store is cheaper
5371 return Cost + LT.first;
5374 InstructionCost
5375 X86TTIImpl::getPointersChainCost(ArrayRef<const Value *> Ptrs,
5376 const Value *Base,
5377 const TTI::PointersChainInfo &Info,
5378 Type *AccessTy, TTI::TargetCostKind CostKind) {
5379 if (Info.isSameBase() && Info.isKnownStride()) {
5380 // If all the pointers have known stride all the differences are translated
5381 // into constants. X86 memory addressing allows encoding it into
5382 // displacement. So we just need to take the base GEP cost.
5383 if (const auto *BaseGEP = dyn_cast<GetElementPtrInst>(Base)) {
5384 SmallVector<const Value *> Indices(BaseGEP->indices());
5385 return getGEPCost(BaseGEP->getSourceElementType(),
5386 BaseGEP->getPointerOperand(), Indices, nullptr,
5387 CostKind);
5389 return TTI::TCC_Free;
5391 return BaseT::getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
5394 InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
5395 ScalarEvolution *SE,
5396 const SCEV *Ptr) {
5397 // Address computations in vectorized code with non-consecutive addresses will
5398 // likely result in more instructions compared to scalar code where the
5399 // computation can more often be merged into the index mode. The resulting
5400 // extra micro-ops can significantly decrease throughput.
5401 const unsigned NumVectorInstToHideOverhead = 10;
5403 // Cost modeling of Strided Access Computation is hidden by the indexing
5404 // modes of X86 regardless of the stride value. We dont believe that there
5405 // is a difference between constant strided access in gerenal and constant
5406 // strided value which is less than or equal to 64.
5407 // Even in the case of (loop invariant) stride whose value is not known at
5408 // compile time, the address computation will not incur more than one extra
5409 // ADD instruction.
5410 if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
5411 // TODO: AVX2 is the current cut-off because we don't have correct
5412 // interleaving costs for prior ISA's.
5413 if (!BaseT::isStridedAccess(Ptr))
5414 return NumVectorInstToHideOverhead;
5415 if (!BaseT::getConstantStrideStep(SE, Ptr))
5416 return 1;
5419 return BaseT::getAddressComputationCost(Ty, SE, Ptr);
5422 InstructionCost
5423 X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
5424 std::optional<FastMathFlags> FMF,
5425 TTI::TargetCostKind CostKind) {
5426 if (TTI::requiresOrderedReduction(FMF))
5427 return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
5429 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
5430 // and make it as the cost.
5432 static const CostTblEntry SLMCostTbl[] = {
5433 { ISD::FADD, MVT::v2f64, 3 },
5434 { ISD::ADD, MVT::v2i64, 5 },
5437 static const CostTblEntry SSE2CostTbl[] = {
5438 { ISD::FADD, MVT::v2f64, 2 },
5439 { ISD::FADD, MVT::v2f32, 2 },
5440 { ISD::FADD, MVT::v4f32, 4 },
5441 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
5442 { ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
5443 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
5444 { ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
5445 { ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
5446 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
5447 { ISD::ADD, MVT::v2i8, 2 },
5448 { ISD::ADD, MVT::v4i8, 2 },
5449 { ISD::ADD, MVT::v8i8, 2 },
5450 { ISD::ADD, MVT::v16i8, 3 },
5453 static const CostTblEntry AVX1CostTbl[] = {
5454 { ISD::FADD, MVT::v4f64, 3 },
5455 { ISD::FADD, MVT::v4f32, 3 },
5456 { ISD::FADD, MVT::v8f32, 4 },
5457 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
5458 { ISD::ADD, MVT::v4i64, 3 },
5459 { ISD::ADD, MVT::v8i32, 5 },
5460 { ISD::ADD, MVT::v16i16, 5 },
5461 { ISD::ADD, MVT::v32i8, 4 },
5464 int ISD = TLI->InstructionOpcodeToISD(Opcode);
5465 assert(ISD && "Invalid opcode");
5467 // Before legalizing the type, give a chance to look up illegal narrow types
5468 // in the table.
5469 // FIXME: Is there a better way to do this?
5470 EVT VT = TLI->getValueType(DL, ValTy);
5471 if (VT.isSimple()) {
5472 MVT MTy = VT.getSimpleVT();
5473 if (ST->useSLMArithCosts())
5474 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
5475 return Entry->Cost;
5477 if (ST->hasAVX())
5478 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5479 return Entry->Cost;
5481 if (ST->hasSSE2())
5482 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5483 return Entry->Cost;
5486 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
5488 MVT MTy = LT.second;
5490 auto *ValVTy = cast<FixedVectorType>(ValTy);
5492 // Special case: vXi8 mul reductions are performed as vXi16.
5493 if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
5494 auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
5495 auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
5496 return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
5497 TargetTransformInfo::CastContextHint::None,
5498 CostKind) +
5499 getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
5502 InstructionCost ArithmeticCost = 0;
5503 if (LT.first != 1 && MTy.isVector() &&
5504 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5505 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5506 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
5507 MTy.getVectorNumElements());
5508 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
5509 ArithmeticCost *= LT.first - 1;
5512 if (ST->useSLMArithCosts())
5513 if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
5514 return ArithmeticCost + Entry->Cost;
5516 if (ST->hasAVX())
5517 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5518 return ArithmeticCost + Entry->Cost;
5520 if (ST->hasSSE2())
5521 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5522 return ArithmeticCost + Entry->Cost;
5524 // FIXME: These assume a naive kshift+binop lowering, which is probably
5525 // conservative in most cases.
5526 static const CostTblEntry AVX512BoolReduction[] = {
5527 { ISD::AND, MVT::v2i1, 3 },
5528 { ISD::AND, MVT::v4i1, 5 },
5529 { ISD::AND, MVT::v8i1, 7 },
5530 { ISD::AND, MVT::v16i1, 9 },
5531 { ISD::AND, MVT::v32i1, 11 },
5532 { ISD::AND, MVT::v64i1, 13 },
5533 { ISD::OR, MVT::v2i1, 3 },
5534 { ISD::OR, MVT::v4i1, 5 },
5535 { ISD::OR, MVT::v8i1, 7 },
5536 { ISD::OR, MVT::v16i1, 9 },
5537 { ISD::OR, MVT::v32i1, 11 },
5538 { ISD::OR, MVT::v64i1, 13 },
5541 static const CostTblEntry AVX2BoolReduction[] = {
5542 { ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
5543 { ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
5544 { ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
5545 { ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
5548 static const CostTblEntry AVX1BoolReduction[] = {
5549 { ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
5550 { ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
5551 { ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
5552 { ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
5553 { ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
5554 { ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
5555 { ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
5556 { ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
5559 static const CostTblEntry SSE2BoolReduction[] = {
5560 { ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
5561 { ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
5562 { ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
5563 { ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
5564 { ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
5565 { ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
5566 { ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
5567 { ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
5570 // Handle bool allof/anyof patterns.
5571 if (ValVTy->getElementType()->isIntegerTy(1)) {
5572 InstructionCost ArithmeticCost = 0;
5573 if (LT.first != 1 && MTy.isVector() &&
5574 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5575 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5576 auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
5577 MTy.getVectorNumElements());
5578 ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
5579 ArithmeticCost *= LT.first - 1;
5582 if (ST->hasAVX512())
5583 if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
5584 return ArithmeticCost + Entry->Cost;
5585 if (ST->hasAVX2())
5586 if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
5587 return ArithmeticCost + Entry->Cost;
5588 if (ST->hasAVX())
5589 if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
5590 return ArithmeticCost + Entry->Cost;
5591 if (ST->hasSSE2())
5592 if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
5593 return ArithmeticCost + Entry->Cost;
5595 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
5598 unsigned NumVecElts = ValVTy->getNumElements();
5599 unsigned ScalarSize = ValVTy->getScalarSizeInBits();
5601 // Special case power of 2 reductions where the scalar type isn't changed
5602 // by type legalization.
5603 if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
5604 return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
5606 InstructionCost ReductionCost = 0;
5608 auto *Ty = ValVTy;
5609 if (LT.first != 1 && MTy.isVector() &&
5610 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5611 // Type needs to be split. We need LT.first - 1 arithmetic ops.
5612 Ty = FixedVectorType::get(ValVTy->getElementType(),
5613 MTy.getVectorNumElements());
5614 ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
5615 ReductionCost *= LT.first - 1;
5616 NumVecElts = MTy.getVectorNumElements();
5619 // Now handle reduction with the legal type, taking into account size changes
5620 // at each level.
5621 while (NumVecElts > 1) {
5622 // Determine the size of the remaining vector we need to reduce.
5623 unsigned Size = NumVecElts * ScalarSize;
5624 NumVecElts /= 2;
5625 // If we're reducing from 256/512 bits, use an extract_subvector.
5626 if (Size > 128) {
5627 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
5628 ReductionCost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, {},
5629 CostKind, NumVecElts, SubTy);
5630 Ty = SubTy;
5631 } else if (Size == 128) {
5632 // Reducing from 128 bits is a permute of v2f64/v2i64.
5633 FixedVectorType *ShufTy;
5634 if (ValVTy->isFloatingPointTy())
5635 ShufTy =
5636 FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
5637 else
5638 ShufTy =
5639 FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
5640 ReductionCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, {},
5641 CostKind, 0, nullptr);
5642 } else if (Size == 64) {
5643 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
5644 FixedVectorType *ShufTy;
5645 if (ValVTy->isFloatingPointTy())
5646 ShufTy =
5647 FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
5648 else
5649 ShufTy =
5650 FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
5651 ReductionCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, {},
5652 CostKind, 0, nullptr);
5653 } else {
5654 // Reducing from smaller size is a shift by immediate.
5655 auto *ShiftTy = FixedVectorType::get(
5656 Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
5657 ReductionCost += getArithmeticInstrCost(
5658 Instruction::LShr, ShiftTy, CostKind,
5659 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
5660 {TargetTransformInfo::OK_UniformConstantValue, TargetTransformInfo::OP_None});
5663 // Add the arithmetic op for this level.
5664 ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
5667 // Add the final extract element to the cost.
5668 return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty,
5669 CostKind, 0, nullptr, nullptr);
5672 InstructionCost X86TTIImpl::getMinMaxCost(Intrinsic::ID IID, Type *Ty,
5673 TTI::TargetCostKind CostKind,
5674 FastMathFlags FMF) {
5675 IntrinsicCostAttributes ICA(IID, Ty, {Ty, Ty}, FMF);
5676 return getIntrinsicInstrCost(ICA, CostKind);
5679 InstructionCost
5680 X86TTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *ValTy,
5681 FastMathFlags FMF,
5682 TTI::TargetCostKind CostKind) {
5683 std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
5685 MVT MTy = LT.second;
5687 int ISD;
5688 if (ValTy->isIntOrIntVectorTy()) {
5689 ISD = (IID == Intrinsic::umin || IID == Intrinsic::umax) ? ISD::UMIN
5690 : ISD::SMIN;
5691 } else {
5692 assert(ValTy->isFPOrFPVectorTy() &&
5693 "Expected float point or integer vector type.");
5694 ISD = (IID == Intrinsic::minnum || IID == Intrinsic::maxnum)
5695 ? ISD::FMINNUM
5696 : ISD::FMINIMUM;
5699 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
5700 // and make it as the cost.
5702 static const CostTblEntry SSE2CostTbl[] = {
5703 {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
5704 {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
5705 {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
5708 static const CostTblEntry SSE41CostTbl[] = {
5709 {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
5710 {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
5711 {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
5712 {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
5713 {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
5714 {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
5715 {ISD::SMIN, MVT::v2i8, 3}, // pminsb
5716 {ISD::SMIN, MVT::v4i8, 5}, // pminsb
5717 {ISD::SMIN, MVT::v8i8, 7}, // pminsb
5718 {ISD::SMIN, MVT::v16i8, 6},
5719 {ISD::UMIN, MVT::v2i8, 3}, // same as sse2
5720 {ISD::UMIN, MVT::v4i8, 5}, // same as sse2
5721 {ISD::UMIN, MVT::v8i8, 7}, // same as sse2
5722 {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
5725 static const CostTblEntry AVX1CostTbl[] = {
5726 {ISD::SMIN, MVT::v16i16, 6},
5727 {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
5728 {ISD::SMIN, MVT::v32i8, 8},
5729 {ISD::UMIN, MVT::v32i8, 8},
5732 static const CostTblEntry AVX512BWCostTbl[] = {
5733 {ISD::SMIN, MVT::v32i16, 8},
5734 {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
5735 {ISD::SMIN, MVT::v64i8, 10},
5736 {ISD::UMIN, MVT::v64i8, 10},
5739 // Before legalizing the type, give a chance to look up illegal narrow types
5740 // in the table.
5741 // FIXME: Is there a better way to do this?
5742 EVT VT = TLI->getValueType(DL, ValTy);
5743 if (VT.isSimple()) {
5744 MVT MTy = VT.getSimpleVT();
5745 if (ST->hasBWI())
5746 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
5747 return Entry->Cost;
5749 if (ST->hasAVX())
5750 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5751 return Entry->Cost;
5753 if (ST->hasSSE41())
5754 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
5755 return Entry->Cost;
5757 if (ST->hasSSE2())
5758 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5759 return Entry->Cost;
5762 auto *ValVTy = cast<FixedVectorType>(ValTy);
5763 unsigned NumVecElts = ValVTy->getNumElements();
5765 auto *Ty = ValVTy;
5766 InstructionCost MinMaxCost = 0;
5767 if (LT.first != 1 && MTy.isVector() &&
5768 MTy.getVectorNumElements() < ValVTy->getNumElements()) {
5769 // Type needs to be split. We need LT.first - 1 operations ops.
5770 Ty = FixedVectorType::get(ValVTy->getElementType(),
5771 MTy.getVectorNumElements());
5772 MinMaxCost = getMinMaxCost(IID, Ty, CostKind, FMF);
5773 MinMaxCost *= LT.first - 1;
5774 NumVecElts = MTy.getVectorNumElements();
5777 if (ST->hasBWI())
5778 if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
5779 return MinMaxCost + Entry->Cost;
5781 if (ST->hasAVX())
5782 if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
5783 return MinMaxCost + Entry->Cost;
5785 if (ST->hasSSE41())
5786 if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
5787 return MinMaxCost + Entry->Cost;
5789 if (ST->hasSSE2())
5790 if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
5791 return MinMaxCost + Entry->Cost;
5793 unsigned ScalarSize = ValTy->getScalarSizeInBits();
5795 // Special case power of 2 reductions where the scalar type isn't changed
5796 // by type legalization.
5797 if (!isPowerOf2_32(ValVTy->getNumElements()) ||
5798 ScalarSize != MTy.getScalarSizeInBits())
5799 return BaseT::getMinMaxReductionCost(IID, ValTy, FMF, CostKind);
5801 // Now handle reduction with the legal type, taking into account size changes
5802 // at each level.
5803 while (NumVecElts > 1) {
5804 // Determine the size of the remaining vector we need to reduce.
5805 unsigned Size = NumVecElts * ScalarSize;
5806 NumVecElts /= 2;
5807 // If we're reducing from 256/512 bits, use an extract_subvector.
5808 if (Size > 128) {
5809 auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
5810 MinMaxCost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, {}, CostKind,
5811 NumVecElts, SubTy);
5812 Ty = SubTy;
5813 } else if (Size == 128) {
5814 // Reducing from 128 bits is a permute of v2f64/v2i64.
5815 VectorType *ShufTy;
5816 if (ValTy->isFloatingPointTy())
5817 ShufTy =
5818 FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
5819 else
5820 ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
5821 MinMaxCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, {},
5822 CostKind, 0, nullptr);
5823 } else if (Size == 64) {
5824 // Reducing from 64 bits is a shuffle of v4f32/v4i32.
5825 FixedVectorType *ShufTy;
5826 if (ValTy->isFloatingPointTy())
5827 ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
5828 else
5829 ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
5830 MinMaxCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, {},
5831 CostKind, 0, nullptr);
5832 } else {
5833 // Reducing from smaller size is a shift by immediate.
5834 auto *ShiftTy = FixedVectorType::get(
5835 Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
5836 MinMaxCost += getArithmeticInstrCost(
5837 Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
5838 {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
5839 {TargetTransformInfo::OK_UniformConstantValue, TargetTransformInfo::OP_None});
5842 // Add the arithmetic op for this level.
5843 MinMaxCost += getMinMaxCost(IID, Ty, CostKind, FMF);
5846 // Add the final extract element to the cost.
5847 return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty,
5848 CostKind, 0, nullptr, nullptr);
5851 /// Calculate the cost of materializing a 64-bit value. This helper
5852 /// method might only calculate a fraction of a larger immediate. Therefore it
5853 /// is valid to return a cost of ZERO.
5854 InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
5855 if (Val == 0)
5856 return TTI::TCC_Free;
5858 if (isInt<32>(Val))
5859 return TTI::TCC_Basic;
5861 return 2 * TTI::TCC_Basic;
5864 InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
5865 TTI::TargetCostKind CostKind) {
5866 assert(Ty->isIntegerTy());
5868 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5869 if (BitSize == 0)
5870 return ~0U;
5872 // Never hoist constants larger than 128bit, because this might lead to
5873 // incorrect code generation or assertions in codegen.
5874 // Fixme: Create a cost model for types larger than i128 once the codegen
5875 // issues have been fixed.
5876 if (BitSize > 128)
5877 return TTI::TCC_Free;
5879 if (Imm == 0)
5880 return TTI::TCC_Free;
5882 // Sign-extend all constants to a multiple of 64-bit.
5883 APInt ImmVal = Imm;
5884 if (BitSize % 64 != 0)
5885 ImmVal = Imm.sext(alignTo(BitSize, 64));
5887 // Split the constant into 64-bit chunks and calculate the cost for each
5888 // chunk.
5889 InstructionCost Cost = 0;
5890 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
5891 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
5892 int64_t Val = Tmp.getSExtValue();
5893 Cost += getIntImmCost(Val);
5895 // We need at least one instruction to materialize the constant.
5896 return std::max<InstructionCost>(1, Cost);
5899 InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
5900 const APInt &Imm, Type *Ty,
5901 TTI::TargetCostKind CostKind,
5902 Instruction *Inst) {
5903 assert(Ty->isIntegerTy());
5905 unsigned BitSize = Ty->getPrimitiveSizeInBits();
5906 unsigned ImmBitWidth = Imm.getBitWidth();
5908 // There is no cost model for constants with a bit size of 0. Return TCC_Free
5909 // here, so that constant hoisting will ignore this constant.
5910 if (BitSize == 0)
5911 return TTI::TCC_Free;
5913 unsigned ImmIdx = ~0U;
5914 switch (Opcode) {
5915 default:
5916 return TTI::TCC_Free;
5917 case Instruction::GetElementPtr:
5918 // Always hoist the base address of a GetElementPtr. This prevents the
5919 // creation of new constants for every base constant that gets constant
5920 // folded with the offset.
5921 if (Idx == 0)
5922 return 2 * TTI::TCC_Basic;
5923 return TTI::TCC_Free;
5924 case Instruction::Store:
5925 ImmIdx = 0;
5926 break;
5927 case Instruction::ICmp:
5928 // This is an imperfect hack to prevent constant hoisting of
5929 // compares that might be trying to check if a 64-bit value fits in
5930 // 32-bits. The backend can optimize these cases using a right shift by 32.
5931 // Ideally we would check the compare predicate here. There also other
5932 // similar immediates the backend can use shifts for.
5933 if (Idx == 1 && ImmBitWidth == 64) {
5934 uint64_t ImmVal = Imm.getZExtValue();
5935 if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
5936 return TTI::TCC_Free;
5938 ImmIdx = 1;
5939 break;
5940 case Instruction::And:
5941 // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
5942 // by using a 32-bit operation with implicit zero extension. Detect such
5943 // immediates here as the normal path expects bit 31 to be sign extended.
5944 if (Idx == 1 && ImmBitWidth == 64 && Imm.isIntN(32))
5945 return TTI::TCC_Free;
5946 // If we have BMI then we can use BEXTR/BZHI to mask out upper i64 bits.
5947 if (Idx == 1 && ImmBitWidth == 64 && ST->is64Bit() && ST->hasBMI() &&
5948 Imm.isMask())
5949 return X86TTIImpl::getIntImmCost(ST->hasBMI2() ? 255 : 65535);
5950 ImmIdx = 1;
5951 break;
5952 case Instruction::Add:
5953 case Instruction::Sub:
5954 // For add/sub, we can use the opposite instruction for INT32_MIN.
5955 if (Idx == 1 && ImmBitWidth == 64 && Imm.getZExtValue() == 0x80000000)
5956 return TTI::TCC_Free;
5957 ImmIdx = 1;
5958 break;
5959 case Instruction::UDiv:
5960 case Instruction::SDiv:
5961 case Instruction::URem:
5962 case Instruction::SRem:
5963 // Division by constant is typically expanded later into a different
5964 // instruction sequence. This completely changes the constants.
5965 // Report them as "free" to stop ConstantHoist from marking them as opaque.
5966 return TTI::TCC_Free;
5967 case Instruction::Mul:
5968 case Instruction::Or:
5969 case Instruction::Xor:
5970 ImmIdx = 1;
5971 break;
5972 // Always return TCC_Free for the shift value of a shift instruction.
5973 case Instruction::Shl:
5974 case Instruction::LShr:
5975 case Instruction::AShr:
5976 if (Idx == 1)
5977 return TTI::TCC_Free;
5978 break;
5979 case Instruction::Trunc:
5980 case Instruction::ZExt:
5981 case Instruction::SExt:
5982 case Instruction::IntToPtr:
5983 case Instruction::PtrToInt:
5984 case Instruction::BitCast:
5985 case Instruction::PHI:
5986 case Instruction::Call:
5987 case Instruction::Select:
5988 case Instruction::Ret:
5989 case Instruction::Load:
5990 break;
5993 if (Idx == ImmIdx) {
5994 uint64_t NumConstants = divideCeil(BitSize, 64);
5995 InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
5996 return (Cost <= NumConstants * TTI::TCC_Basic)
5997 ? static_cast<int>(TTI::TCC_Free)
5998 : Cost;
6001 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
6004 InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
6005 const APInt &Imm, Type *Ty,
6006 TTI::TargetCostKind CostKind) {
6007 assert(Ty->isIntegerTy());
6009 unsigned BitSize = Ty->getPrimitiveSizeInBits();
6010 // There is no cost model for constants with a bit size of 0. Return TCC_Free
6011 // here, so that constant hoisting will ignore this constant.
6012 if (BitSize == 0)
6013 return TTI::TCC_Free;
6015 switch (IID) {
6016 default:
6017 return TTI::TCC_Free;
6018 case Intrinsic::sadd_with_overflow:
6019 case Intrinsic::uadd_with_overflow:
6020 case Intrinsic::ssub_with_overflow:
6021 case Intrinsic::usub_with_overflow:
6022 case Intrinsic::smul_with_overflow:
6023 case Intrinsic::umul_with_overflow:
6024 if ((Idx == 1) && Imm.getBitWidth() <= 64 && Imm.isSignedIntN(32))
6025 return TTI::TCC_Free;
6026 break;
6027 case Intrinsic::experimental_stackmap:
6028 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(64)))
6029 return TTI::TCC_Free;
6030 break;
6031 case Intrinsic::experimental_patchpoint_void:
6032 case Intrinsic::experimental_patchpoint:
6033 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(64)))
6034 return TTI::TCC_Free;
6035 break;
6037 return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
6040 InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
6041 TTI::TargetCostKind CostKind,
6042 const Instruction *I) {
6043 if (CostKind != TTI::TCK_RecipThroughput)
6044 return Opcode == Instruction::PHI ? TTI::TCC_Free : TTI::TCC_Basic;
6045 // Branches are assumed to be predicted.
6046 return TTI::TCC_Free;
6049 int X86TTIImpl::getGatherOverhead() const {
6050 // Some CPUs have more overhead for gather. The specified overhead is relative
6051 // to the Load operation. "2" is the number provided by Intel architects. This
6052 // parameter is used for cost estimation of Gather Op and comparison with
6053 // other alternatives.
6054 // TODO: Remove the explicit hasAVX512()?, That would mean we would only
6055 // enable gather with a -march.
6056 if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
6057 return 2;
6059 return 1024;
6062 int X86TTIImpl::getScatterOverhead() const {
6063 if (ST->hasAVX512())
6064 return 2;
6066 return 1024;
6069 // Return an average cost of Gather / Scatter instruction, maybe improved later.
6070 InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode,
6071 TTI::TargetCostKind CostKind,
6072 Type *SrcVTy, const Value *Ptr,
6073 Align Alignment,
6074 unsigned AddressSpace) {
6076 assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
6077 unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
6079 // Try to reduce index size from 64 bit (default for GEP)
6080 // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
6081 // operation will use 16 x 64 indices which do not fit in a zmm and needs
6082 // to split. Also check that the base pointer is the same for all lanes,
6083 // and that there's at most one variable index.
6084 auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
6085 unsigned IndexSize = DL.getPointerSizeInBits();
6086 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
6087 if (IndexSize < 64 || !GEP)
6088 return IndexSize;
6090 unsigned NumOfVarIndices = 0;
6091 const Value *Ptrs = GEP->getPointerOperand();
6092 if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
6093 return IndexSize;
6094 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
6095 if (isa<Constant>(GEP->getOperand(I)))
6096 continue;
6097 Type *IndxTy = GEP->getOperand(I)->getType();
6098 if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
6099 IndxTy = IndexVTy->getElementType();
6100 if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
6101 !isa<SExtInst>(GEP->getOperand(I))) ||
6102 ++NumOfVarIndices > 1)
6103 return IndexSize; // 64
6105 return (unsigned)32;
6108 // Trying to reduce IndexSize to 32 bits for vector 16.
6109 // By default the IndexSize is equal to pointer size.
6110 unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
6111 ? getIndexSizeInBits(Ptr, DL)
6112 : DL.getPointerSizeInBits();
6114 auto *IndexVTy = FixedVectorType::get(
6115 IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
6116 std::pair<InstructionCost, MVT> IdxsLT = getTypeLegalizationCost(IndexVTy);
6117 std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(SrcVTy);
6118 InstructionCost::CostType SplitFactor =
6119 *std::max(IdxsLT.first, SrcLT.first).getValue();
6120 if (SplitFactor > 1) {
6121 // Handle splitting of vector of pointers
6122 auto *SplitSrcTy =
6123 FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
6124 return SplitFactor * getGSVectorCost(Opcode, CostKind, SplitSrcTy, Ptr,
6125 Alignment, AddressSpace);
6128 // If we didn't split, this will be a single gather/scatter instruction.
6129 if (CostKind == TTI::TCK_CodeSize)
6130 return 1;
6132 // The gather / scatter cost is given by Intel architects. It is a rough
6133 // number since we are looking at one instruction in a time.
6134 const int GSOverhead = (Opcode == Instruction::Load) ? getGatherOverhead()
6135 : getScatterOverhead();
6136 return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
6137 MaybeAlign(Alignment), AddressSpace,
6138 CostKind);
6141 /// Calculate the cost of Gather / Scatter operation
6142 InstructionCost X86TTIImpl::getGatherScatterOpCost(
6143 unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
6144 Align Alignment, TTI::TargetCostKind CostKind,
6145 const Instruction *I = nullptr) {
6146 if ((Opcode == Instruction::Load &&
6147 (!isLegalMaskedGather(SrcVTy, Align(Alignment)) ||
6148 forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
6149 Align(Alignment)))) ||
6150 (Opcode == Instruction::Store &&
6151 (!isLegalMaskedScatter(SrcVTy, Align(Alignment)) ||
6152 forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
6153 Align(Alignment)))))
6154 return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
6155 Alignment, CostKind, I);
6157 assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
6158 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
6159 if (!PtrTy && Ptr->getType()->isVectorTy())
6160 PtrTy = dyn_cast<PointerType>(
6161 cast<VectorType>(Ptr->getType())->getElementType());
6162 assert(PtrTy && "Unexpected type for Ptr argument");
6163 unsigned AddressSpace = PtrTy->getAddressSpace();
6164 return getGSVectorCost(Opcode, CostKind, SrcVTy, Ptr, Alignment,
6165 AddressSpace);
6168 bool X86TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
6169 const TargetTransformInfo::LSRCost &C2) {
6170 // X86 specific here are "instruction number 1st priority".
6171 return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
6172 C1.NumIVMuls, C1.NumBaseAdds,
6173 C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
6174 std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
6175 C2.NumIVMuls, C2.NumBaseAdds,
6176 C2.ScaleCost, C2.ImmCost, C2.SetupCost);
6179 bool X86TTIImpl::canMacroFuseCmp() {
6180 return ST->hasMacroFusion() || ST->hasBranchFusion();
6183 bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
6184 Type *ScalarTy = DataTy->getScalarType();
6186 // The backend can't handle a single element vector w/o CFCMOV.
6187 if (isa<VectorType>(DataTy) && cast<FixedVectorType>(DataTy)->getNumElements() == 1)
6188 return ST->hasCF() && hasConditionalLoadStoreForType(ScalarTy);
6190 if (!ST->hasAVX())
6191 return false;
6193 if (ScalarTy->isPointerTy())
6194 return true;
6196 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
6197 return true;
6199 if (ScalarTy->isHalfTy() && ST->hasBWI())
6200 return true;
6202 if (ScalarTy->isBFloatTy() && ST->hasBF16())
6203 return true;
6205 if (!ScalarTy->isIntegerTy())
6206 return false;
6208 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
6209 return IntWidth == 32 || IntWidth == 64 ||
6210 ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
6213 bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
6214 return isLegalMaskedLoad(DataType, Alignment);
6217 bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
6218 unsigned DataSize = DL.getTypeStoreSize(DataType);
6219 // The only supported nontemporal loads are for aligned vectors of 16 or 32
6220 // bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
6221 // (the equivalent stores only require AVX).
6222 if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
6223 return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
6225 return false;
6228 bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
6229 unsigned DataSize = DL.getTypeStoreSize(DataType);
6231 // SSE4A supports nontemporal stores of float and double at arbitrary
6232 // alignment.
6233 if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
6234 return true;
6236 // Besides the SSE4A subtarget exception above, only aligned stores are
6237 // available nontemporaly on any other subtarget. And only stores with a size
6238 // of 4..32 bytes (powers of 2, only) are permitted.
6239 if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
6240 !isPowerOf2_32(DataSize))
6241 return false;
6243 // 32-byte vector nontemporal stores are supported by AVX (the equivalent
6244 // loads require AVX2).
6245 if (DataSize == 32)
6246 return ST->hasAVX();
6247 if (DataSize == 16)
6248 return ST->hasSSE1();
6249 return true;
6252 bool X86TTIImpl::isLegalBroadcastLoad(Type *ElementTy,
6253 ElementCount NumElements) const {
6254 // movddup
6255 return ST->hasSSE3() && !NumElements.isScalable() &&
6256 NumElements.getFixedValue() == 2 &&
6257 ElementTy == Type::getDoubleTy(ElementTy->getContext());
6260 bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy, Align Alignment) {
6261 if (!isa<VectorType>(DataTy))
6262 return false;
6264 if (!ST->hasAVX512())
6265 return false;
6267 // The backend can't handle a single element vector.
6268 if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
6269 return false;
6271 Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
6273 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
6274 return true;
6276 if (!ScalarTy->isIntegerTy())
6277 return false;
6279 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
6280 return IntWidth == 32 || IntWidth == 64 ||
6281 ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
6284 bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy, Align Alignment) {
6285 return isLegalMaskedExpandLoad(DataTy, Alignment);
6288 bool X86TTIImpl::supportsGather() const {
6289 // Some CPUs have better gather performance than others.
6290 // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
6291 // enable gather with a -march.
6292 return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
6295 bool X86TTIImpl::forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
6296 // Gather / Scatter for vector 2 is not profitable on KNL / SKX
6297 // Vector-4 of gather/scatter instruction does not exist on KNL. We can extend
6298 // it to 8 elements, but zeroing upper bits of the mask vector will add more
6299 // instructions. Right now we give the scalar cost of vector-4 for KNL. TODO:
6300 // Check, maybe the gather/scatter instruction is better in the VariableMask
6301 // case.
6302 unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements();
6303 return NumElts == 1 ||
6304 (ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())));
6307 bool X86TTIImpl::isLegalMaskedGatherScatter(Type *DataTy, Align Alignment) {
6308 Type *ScalarTy = DataTy->getScalarType();
6309 if (ScalarTy->isPointerTy())
6310 return true;
6312 if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
6313 return true;
6315 if (!ScalarTy->isIntegerTy())
6316 return false;
6318 unsigned IntWidth = ScalarTy->getIntegerBitWidth();
6319 return IntWidth == 32 || IntWidth == 64;
6322 bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
6323 if (!supportsGather() || !ST->preferGather())
6324 return false;
6325 return isLegalMaskedGatherScatter(DataTy, Alignment);
6328 bool X86TTIImpl::isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
6329 unsigned Opcode1,
6330 const SmallBitVector &OpcodeMask) const {
6331 // ADDSUBPS 4xf32 SSE3
6332 // VADDSUBPS 4xf32 AVX
6333 // VADDSUBPS 8xf32 AVX2
6334 // ADDSUBPD 2xf64 SSE3
6335 // VADDSUBPD 2xf64 AVX
6336 // VADDSUBPD 4xf64 AVX2
6338 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
6339 assert(OpcodeMask.size() == NumElements && "Mask and VecTy are incompatible");
6340 if (!isPowerOf2_32(NumElements))
6341 return false;
6342 // Check the opcode pattern. We apply the mask on the opcode arguments and
6343 // then check if it is what we expect.
6344 for (int Lane : seq<int>(0, NumElements)) {
6345 unsigned Opc = OpcodeMask.test(Lane) ? Opcode1 : Opcode0;
6346 // We expect FSub for even lanes and FAdd for odd lanes.
6347 if (Lane % 2 == 0 && Opc != Instruction::FSub)
6348 return false;
6349 if (Lane % 2 == 1 && Opc != Instruction::FAdd)
6350 return false;
6352 // Now check that the pattern is supported by the target ISA.
6353 Type *ElemTy = cast<VectorType>(VecTy)->getElementType();
6354 if (ElemTy->isFloatTy())
6355 return ST->hasSSE3() && NumElements % 4 == 0;
6356 if (ElemTy->isDoubleTy())
6357 return ST->hasSSE3() && NumElements % 2 == 0;
6358 return false;
6361 bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
6362 // AVX2 doesn't support scatter
6363 if (!ST->hasAVX512() || !ST->preferScatter())
6364 return false;
6365 return isLegalMaskedGatherScatter(DataType, Alignment);
6368 bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
6369 EVT VT = TLI->getValueType(DL, DataType);
6370 return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
6373 bool X86TTIImpl::isExpensiveToSpeculativelyExecute(const Instruction* I) {
6374 // FDIV is always expensive, even if it has a very low uop count.
6375 // TODO: Still necessary for recent CPUs with low latency/throughput fdiv?
6376 if (I->getOpcode() == Instruction::FDiv)
6377 return true;
6379 return BaseT::isExpensiveToSpeculativelyExecute(I);
6382 bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
6383 return false;
6386 bool X86TTIImpl::areInlineCompatible(const Function *Caller,
6387 const Function *Callee) const {
6388 const TargetMachine &TM = getTLI()->getTargetMachine();
6390 // Work this as a subsetting of subtarget features.
6391 const FeatureBitset &CallerBits =
6392 TM.getSubtargetImpl(*Caller)->getFeatureBits();
6393 const FeatureBitset &CalleeBits =
6394 TM.getSubtargetImpl(*Callee)->getFeatureBits();
6396 // Check whether features are the same (apart from the ignore list).
6397 FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
6398 FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
6399 if (RealCallerBits == RealCalleeBits)
6400 return true;
6402 // If the features are a subset, we need to additionally check for calls
6403 // that may become ABI-incompatible as a result of inlining.
6404 if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
6405 return false;
6407 for (const Instruction &I : instructions(Callee)) {
6408 if (const auto *CB = dyn_cast<CallBase>(&I)) {
6409 // Having more target features is fine for inline ASM.
6410 if (CB->isInlineAsm())
6411 continue;
6413 SmallVector<Type *, 8> Types;
6414 for (Value *Arg : CB->args())
6415 Types.push_back(Arg->getType());
6416 if (!CB->getType()->isVoidTy())
6417 Types.push_back(CB->getType());
6419 // Simple types are always ABI compatible.
6420 auto IsSimpleTy = [](Type *Ty) {
6421 return !Ty->isVectorTy() && !Ty->isAggregateType();
6423 if (all_of(Types, IsSimpleTy))
6424 continue;
6426 if (Function *NestedCallee = CB->getCalledFunction()) {
6427 // Assume that intrinsics are always ABI compatible.
6428 if (NestedCallee->isIntrinsic())
6429 continue;
6431 // Do a precise compatibility check.
6432 if (!areTypesABICompatible(Caller, NestedCallee, Types))
6433 return false;
6434 } else {
6435 // We don't know the target features of the callee,
6436 // assume it is incompatible.
6437 return false;
6441 return true;
6444 bool X86TTIImpl::areTypesABICompatible(const Function *Caller,
6445 const Function *Callee,
6446 const ArrayRef<Type *> &Types) const {
6447 if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
6448 return false;
6450 // If we get here, we know the target features match. If one function
6451 // considers 512-bit vectors legal and the other does not, consider them
6452 // incompatible.
6453 const TargetMachine &TM = getTLI()->getTargetMachine();
6455 if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
6456 TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
6457 return true;
6459 // Consider the arguments compatible if they aren't vectors or aggregates.
6460 // FIXME: Look at the size of vectors.
6461 // FIXME: Look at the element types of aggregates to see if there are vectors.
6462 return llvm::none_of(Types,
6463 [](Type *T) { return T->isVectorTy() || T->isAggregateType(); });
6466 X86TTIImpl::TTI::MemCmpExpansionOptions
6467 X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
6468 TTI::MemCmpExpansionOptions Options;
6469 Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
6470 Options.NumLoadsPerBlock = 2;
6471 // All GPR and vector loads can be unaligned.
6472 Options.AllowOverlappingLoads = true;
6473 if (IsZeroCmp) {
6474 // Only enable vector loads for equality comparison. Right now the vector
6475 // version is not as fast for three way compare (see #33329).
6476 const unsigned PreferredWidth = ST->getPreferVectorWidth();
6477 if (PreferredWidth >= 512 && ST->hasAVX512() && ST->hasEVEX512())
6478 Options.LoadSizes.push_back(64);
6479 if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
6480 if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
6482 if (ST->is64Bit()) {
6483 Options.LoadSizes.push_back(8);
6485 Options.LoadSizes.push_back(4);
6486 Options.LoadSizes.push_back(2);
6487 Options.LoadSizes.push_back(1);
6488 return Options;
6491 bool X86TTIImpl::prefersVectorizedAddressing() const {
6492 return supportsGather();
6495 bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
6496 return false;
6499 bool X86TTIImpl::enableInterleavedAccessVectorization() {
6500 // TODO: We expect this to be beneficial regardless of arch,
6501 // but there are currently some unexplained performance artifacts on Atom.
6502 // As a temporary solution, disable on Atom.
6503 return !(ST->isAtom());
6506 // Get estimation for interleaved load/store operations and strided load.
6507 // \p Indices contains indices for strided load.
6508 // \p Factor - the factor of interleaving.
6509 // AVX-512 provides 3-src shuffles that significantly reduces the cost.
6510 InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
6511 unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
6512 ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
6513 TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
6514 // VecTy for interleave memop is <VF*Factor x Elt>.
6515 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
6516 // VecTy = <12 x i32>.
6518 // Calculate the number of memory operations (NumOfMemOps), required
6519 // for load/store the VecTy.
6520 MVT LegalVT = getTypeLegalizationCost(VecTy).second;
6521 unsigned VecTySize = DL.getTypeStoreSize(VecTy);
6522 unsigned LegalVTSize = LegalVT.getStoreSize();
6523 unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
6525 // Get the cost of one memory operation.
6526 auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
6527 LegalVT.getVectorNumElements());
6528 InstructionCost MemOpCost;
6529 bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
6530 if (UseMaskedMemOp)
6531 MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment,
6532 AddressSpace, CostKind);
6533 else
6534 MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment),
6535 AddressSpace, CostKind);
6537 unsigned VF = VecTy->getNumElements() / Factor;
6538 MVT VT =
6539 MVT::getVectorVT(TLI->getSimpleValueType(DL, VecTy->getScalarType()), VF);
6541 InstructionCost MaskCost;
6542 if (UseMaskedMemOp) {
6543 APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements());
6544 for (unsigned Index : Indices) {
6545 assert(Index < Factor && "Invalid index for interleaved memory op");
6546 for (unsigned Elm = 0; Elm < VF; Elm++)
6547 DemandedLoadStoreElts.setBit(Index + Elm * Factor);
6550 Type *I1Type = Type::getInt1Ty(VecTy->getContext());
6552 MaskCost = getReplicationShuffleCost(
6553 I1Type, Factor, VF,
6554 UseMaskForGaps ? DemandedLoadStoreElts
6555 : APInt::getAllOnes(VecTy->getNumElements()),
6556 CostKind);
6558 // The Gaps mask is invariant and created outside the loop, therefore the
6559 // cost of creating it is not accounted for here. However if we have both
6560 // a MaskForGaps and some other mask that guards the execution of the
6561 // memory access, we need to account for the cost of And-ing the two masks
6562 // inside the loop.
6563 if (UseMaskForGaps) {
6564 auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements());
6565 MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind);
6569 if (Opcode == Instruction::Load) {
6570 // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
6571 // contain the cost of the optimized shuffle sequence that the
6572 // X86InterleavedAccess pass will generate.
6573 // The cost of loads and stores are computed separately from the table.
6575 // X86InterleavedAccess support only the following interleaved-access group.
6576 static const CostTblEntry AVX512InterleavedLoadTbl[] = {
6577 {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
6578 {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
6579 {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
6582 if (const auto *Entry =
6583 CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
6584 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
6585 //If an entry does not exist, fallback to the default implementation.
6587 // Kind of shuffle depends on number of loaded values.
6588 // If we load the entire data in one register, we can use a 1-src shuffle.
6589 // Otherwise, we'll merge 2 sources in each operation.
6590 TTI::ShuffleKind ShuffleKind =
6591 (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
6593 InstructionCost ShuffleCost =
6594 getShuffleCost(ShuffleKind, SingleMemOpTy, {}, CostKind, 0, nullptr);
6596 unsigned NumOfLoadsInInterleaveGrp =
6597 Indices.size() ? Indices.size() : Factor;
6598 auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
6599 VecTy->getNumElements() / Factor);
6600 InstructionCost NumOfResults =
6601 getTypeLegalizationCost(ResultTy).first * NumOfLoadsInInterleaveGrp;
6603 // About a half of the loads may be folded in shuffles when we have only
6604 // one result. If we have more than one result, or the loads are masked,
6605 // we do not fold loads at all.
6606 unsigned NumOfUnfoldedLoads =
6607 UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
6609 // Get a number of shuffle operations per result.
6610 unsigned NumOfShufflesPerResult =
6611 std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
6613 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
6614 // When we have more than one destination, we need additional instructions
6615 // to keep sources.
6616 InstructionCost NumOfMoves = 0;
6617 if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
6618 NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
6620 InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
6621 MaskCost + NumOfUnfoldedLoads * MemOpCost +
6622 NumOfMoves;
6624 return Cost;
6627 // Store.
6628 assert(Opcode == Instruction::Store &&
6629 "Expected Store Instruction at this point");
6630 // X86InterleavedAccess support only the following interleaved-access group.
6631 static const CostTblEntry AVX512InterleavedStoreTbl[] = {
6632 {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
6633 {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
6634 {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
6636 {4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
6637 {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
6638 {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
6639 {4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
6642 if (const auto *Entry =
6643 CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
6644 return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
6645 //If an entry does not exist, fallback to the default implementation.
6647 // There is no strided stores meanwhile. And store can't be folded in
6648 // shuffle.
6649 unsigned NumOfSources = Factor; // The number of values to be merged.
6650 InstructionCost ShuffleCost = getShuffleCost(
6651 TTI::SK_PermuteTwoSrc, SingleMemOpTy, {}, CostKind, 0, nullptr);
6652 unsigned NumOfShufflesPerStore = NumOfSources - 1;
6654 // The SK_MergeTwoSrc shuffle clobbers one of src operands.
6655 // We need additional instructions to keep sources.
6656 unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
6657 InstructionCost Cost =
6658 MaskCost +
6659 NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
6660 NumOfMoves;
6661 return Cost;
6664 InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
6665 unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
6666 Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
6667 bool UseMaskForCond, bool UseMaskForGaps) {
6668 auto *VecTy = cast<FixedVectorType>(BaseTy);
6670 auto isSupportedOnAVX512 = [&](Type *VecTy) {
6671 Type *EltTy = cast<VectorType>(VecTy)->getElementType();
6672 if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
6673 EltTy->isIntegerTy(32) || EltTy->isPointerTy())
6674 return true;
6675 if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) || EltTy->isHalfTy())
6676 return ST->hasBWI();
6677 if (EltTy->isBFloatTy())
6678 return ST->hasBF16();
6679 return false;
6681 if (ST->hasAVX512() && isSupportedOnAVX512(VecTy))
6682 return getInterleavedMemoryOpCostAVX512(
6683 Opcode, VecTy, Factor, Indices, Alignment,
6684 AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
6686 if (UseMaskForCond || UseMaskForGaps)
6687 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6688 Alignment, AddressSpace, CostKind,
6689 UseMaskForCond, UseMaskForGaps);
6691 // Get estimation for interleaved load/store operations for SSE-AVX2.
6692 // As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
6693 // computing the cost using a generic formula as a function of generic
6694 // shuffles. We therefore use a lookup table instead, filled according to
6695 // the instruction sequences that codegen currently generates.
6697 // VecTy for interleave memop is <VF*Factor x Elt>.
6698 // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
6699 // VecTy = <12 x i32>.
6700 MVT LegalVT = getTypeLegalizationCost(VecTy).second;
6702 // This function can be called with VecTy=<6xi128>, Factor=3, in which case
6703 // the VF=2, while v2i128 is an unsupported MVT vector type
6704 // (see MachineValueType.h::getVectorVT()).
6705 if (!LegalVT.isVector())
6706 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6707 Alignment, AddressSpace, CostKind);
6709 unsigned VF = VecTy->getNumElements() / Factor;
6710 Type *ScalarTy = VecTy->getElementType();
6711 // Deduplicate entries, model floats/pointers as appropriately-sized integers.
6712 if (!ScalarTy->isIntegerTy())
6713 ScalarTy =
6714 Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
6716 // Get the cost of all the memory operations.
6717 // FIXME: discount dead loads.
6718 InstructionCost MemOpCosts = getMemoryOpCost(
6719 Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
6721 auto *VT = FixedVectorType::get(ScalarTy, VF);
6722 EVT ETy = TLI->getValueType(DL, VT);
6723 if (!ETy.isSimple())
6724 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6725 Alignment, AddressSpace, CostKind);
6727 // TODO: Complete for other data-types and strides.
6728 // Each combination of Stride, element bit width and VF results in a different
6729 // sequence; The cost tables are therefore accessed with:
6730 // Factor (stride) and VectorType=VFxiN.
6731 // The Cost accounts only for the shuffle sequence;
6732 // The cost of the loads/stores is accounted for separately.
6734 static const CostTblEntry AVX2InterleavedLoadTbl[] = {
6735 {2, MVT::v2i8, 2}, // (load 4i8 and) deinterleave into 2 x 2i8
6736 {2, MVT::v4i8, 2}, // (load 8i8 and) deinterleave into 2 x 4i8
6737 {2, MVT::v8i8, 2}, // (load 16i8 and) deinterleave into 2 x 8i8
6738 {2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
6739 {2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
6741 {2, MVT::v8i16, 6}, // (load 16i16 and) deinterleave into 2 x 8i16
6742 {2, MVT::v16i16, 9}, // (load 32i16 and) deinterleave into 2 x 16i16
6743 {2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
6745 {2, MVT::v8i32, 4}, // (load 16i32 and) deinterleave into 2 x 8i32
6746 {2, MVT::v16i32, 8}, // (load 32i32 and) deinterleave into 2 x 16i32
6747 {2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
6749 {2, MVT::v4i64, 4}, // (load 8i64 and) deinterleave into 2 x 4i64
6750 {2, MVT::v8i64, 8}, // (load 16i64 and) deinterleave into 2 x 8i64
6751 {2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
6752 {2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
6754 {3, MVT::v2i8, 3}, // (load 6i8 and) deinterleave into 3 x 2i8
6755 {3, MVT::v4i8, 3}, // (load 12i8 and) deinterleave into 3 x 4i8
6756 {3, MVT::v8i8, 6}, // (load 24i8 and) deinterleave into 3 x 8i8
6757 {3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
6758 {3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
6760 {3, MVT::v2i16, 5}, // (load 6i16 and) deinterleave into 3 x 2i16
6761 {3, MVT::v4i16, 7}, // (load 12i16 and) deinterleave into 3 x 4i16
6762 {3, MVT::v8i16, 9}, // (load 24i16 and) deinterleave into 3 x 8i16
6763 {3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
6764 {3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
6766 {3, MVT::v2i32, 3}, // (load 6i32 and) deinterleave into 3 x 2i32
6767 {3, MVT::v4i32, 3}, // (load 12i32 and) deinterleave into 3 x 4i32
6768 {3, MVT::v8i32, 7}, // (load 24i32 and) deinterleave into 3 x 8i32
6769 {3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
6770 {3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
6772 {3, MVT::v2i64, 1}, // (load 6i64 and) deinterleave into 3 x 2i64
6773 {3, MVT::v4i64, 5}, // (load 12i64 and) deinterleave into 3 x 4i64
6774 {3, MVT::v8i64, 10}, // (load 24i64 and) deinterleave into 3 x 8i64
6775 {3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
6777 {4, MVT::v2i8, 4}, // (load 8i8 and) deinterleave into 4 x 2i8
6778 {4, MVT::v4i8, 4}, // (load 16i8 and) deinterleave into 4 x 4i8
6779 {4, MVT::v8i8, 12}, // (load 32i8 and) deinterleave into 4 x 8i8
6780 {4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
6781 {4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
6783 {4, MVT::v2i16, 6}, // (load 8i16 and) deinterleave into 4 x 2i16
6784 {4, MVT::v4i16, 17}, // (load 16i16 and) deinterleave into 4 x 4i16
6785 {4, MVT::v8i16, 33}, // (load 32i16 and) deinterleave into 4 x 8i16
6786 {4, MVT::v16i16, 75}, // (load 64i16 and) deinterleave into 4 x 16i16
6787 {4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
6789 {4, MVT::v2i32, 4}, // (load 8i32 and) deinterleave into 4 x 2i32
6790 {4, MVT::v4i32, 8}, // (load 16i32 and) deinterleave into 4 x 4i32
6791 {4, MVT::v8i32, 16}, // (load 32i32 and) deinterleave into 4 x 8i32
6792 {4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
6793 {4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
6795 {4, MVT::v2i64, 6}, // (load 8i64 and) deinterleave into 4 x 2i64
6796 {4, MVT::v4i64, 8}, // (load 16i64 and) deinterleave into 4 x 4i64
6797 {4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
6798 {4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
6800 {6, MVT::v2i8, 6}, // (load 12i8 and) deinterleave into 6 x 2i8
6801 {6, MVT::v4i8, 14}, // (load 24i8 and) deinterleave into 6 x 4i8
6802 {6, MVT::v8i8, 18}, // (load 48i8 and) deinterleave into 6 x 8i8
6803 {6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
6804 {6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
6806 {6, MVT::v2i16, 13}, // (load 12i16 and) deinterleave into 6 x 2i16
6807 {6, MVT::v4i16, 9}, // (load 24i16 and) deinterleave into 6 x 4i16
6808 {6, MVT::v8i16, 39}, // (load 48i16 and) deinterleave into 6 x 8i16
6809 {6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
6810 {6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
6812 {6, MVT::v2i32, 6}, // (load 12i32 and) deinterleave into 6 x 2i32
6813 {6, MVT::v4i32, 15}, // (load 24i32 and) deinterleave into 6 x 4i32
6814 {6, MVT::v8i32, 31}, // (load 48i32 and) deinterleave into 6 x 8i32
6815 {6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
6817 {6, MVT::v2i64, 6}, // (load 12i64 and) deinterleave into 6 x 2i64
6818 {6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
6819 {6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
6821 {8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
6824 static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
6825 {2, MVT::v4i16, 2}, // (load 8i16 and) deinterleave into 2 x 4i16
6828 static const CostTblEntry SSE2InterleavedLoadTbl[] = {
6829 {2, MVT::v2i16, 2}, // (load 4i16 and) deinterleave into 2 x 2i16
6830 {2, MVT::v4i16, 7}, // (load 8i16 and) deinterleave into 2 x 4i16
6832 {2, MVT::v2i32, 2}, // (load 4i32 and) deinterleave into 2 x 2i32
6833 {2, MVT::v4i32, 2}, // (load 8i32 and) deinterleave into 2 x 4i32
6835 {2, MVT::v2i64, 2}, // (load 4i64 and) deinterleave into 2 x 2i64
6838 static const CostTblEntry AVX2InterleavedStoreTbl[] = {
6839 {2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
6840 {2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
6842 {2, MVT::v8i16, 3}, // interleave 2 x 8i16 into 16i16 (and store)
6843 {2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
6844 {2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
6846 {2, MVT::v4i32, 2}, // interleave 2 x 4i32 into 8i32 (and store)
6847 {2, MVT::v8i32, 4}, // interleave 2 x 8i32 into 16i32 (and store)
6848 {2, MVT::v16i32, 8}, // interleave 2 x 16i32 into 32i32 (and store)
6849 {2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
6851 {2, MVT::v2i64, 2}, // interleave 2 x 2i64 into 4i64 (and store)
6852 {2, MVT::v4i64, 4}, // interleave 2 x 4i64 into 8i64 (and store)
6853 {2, MVT::v8i64, 8}, // interleave 2 x 8i64 into 16i64 (and store)
6854 {2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
6855 {2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
6857 {3, MVT::v2i8, 4}, // interleave 3 x 2i8 into 6i8 (and store)
6858 {3, MVT::v4i8, 4}, // interleave 3 x 4i8 into 12i8 (and store)
6859 {3, MVT::v8i8, 6}, // interleave 3 x 8i8 into 24i8 (and store)
6860 {3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
6861 {3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
6863 {3, MVT::v2i16, 4}, // interleave 3 x 2i16 into 6i16 (and store)
6864 {3, MVT::v4i16, 6}, // interleave 3 x 4i16 into 12i16 (and store)
6865 {3, MVT::v8i16, 12}, // interleave 3 x 8i16 into 24i16 (and store)
6866 {3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
6867 {3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
6869 {3, MVT::v2i32, 4}, // interleave 3 x 2i32 into 6i32 (and store)
6870 {3, MVT::v4i32, 5}, // interleave 3 x 4i32 into 12i32 (and store)
6871 {3, MVT::v8i32, 11}, // interleave 3 x 8i32 into 24i32 (and store)
6872 {3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
6873 {3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
6875 {3, MVT::v2i64, 4}, // interleave 3 x 2i64 into 6i64 (and store)
6876 {3, MVT::v4i64, 6}, // interleave 3 x 4i64 into 12i64 (and store)
6877 {3, MVT::v8i64, 12}, // interleave 3 x 8i64 into 24i64 (and store)
6878 {3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
6880 {4, MVT::v2i8, 4}, // interleave 4 x 2i8 into 8i8 (and store)
6881 {4, MVT::v4i8, 4}, // interleave 4 x 4i8 into 16i8 (and store)
6882 {4, MVT::v8i8, 4}, // interleave 4 x 8i8 into 32i8 (and store)
6883 {4, MVT::v16i8, 8}, // interleave 4 x 16i8 into 64i8 (and store)
6884 {4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
6886 {4, MVT::v2i16, 2}, // interleave 4 x 2i16 into 8i16 (and store)
6887 {4, MVT::v4i16, 6}, // interleave 4 x 4i16 into 16i16 (and store)
6888 {4, MVT::v8i16, 10}, // interleave 4 x 8i16 into 32i16 (and store)
6889 {4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
6890 {4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
6892 {4, MVT::v2i32, 5}, // interleave 4 x 2i32 into 8i32 (and store)
6893 {4, MVT::v4i32, 6}, // interleave 4 x 4i32 into 16i32 (and store)
6894 {4, MVT::v8i32, 16}, // interleave 4 x 8i32 into 32i32 (and store)
6895 {4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
6896 {4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
6898 {4, MVT::v2i64, 6}, // interleave 4 x 2i64 into 8i64 (and store)
6899 {4, MVT::v4i64, 8}, // interleave 4 x 4i64 into 16i64 (and store)
6900 {4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
6901 {4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
6903 {6, MVT::v2i8, 7}, // interleave 6 x 2i8 into 12i8 (and store)
6904 {6, MVT::v4i8, 9}, // interleave 6 x 4i8 into 24i8 (and store)
6905 {6, MVT::v8i8, 16}, // interleave 6 x 8i8 into 48i8 (and store)
6906 {6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
6907 {6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
6909 {6, MVT::v2i16, 10}, // interleave 6 x 2i16 into 12i16 (and store)
6910 {6, MVT::v4i16, 15}, // interleave 6 x 4i16 into 24i16 (and store)
6911 {6, MVT::v8i16, 21}, // interleave 6 x 8i16 into 48i16 (and store)
6912 {6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
6913 {6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
6915 {6, MVT::v2i32, 9}, // interleave 6 x 2i32 into 12i32 (and store)
6916 {6, MVT::v4i32, 12}, // interleave 6 x 4i32 into 24i32 (and store)
6917 {6, MVT::v8i32, 33}, // interleave 6 x 8i32 into 48i32 (and store)
6918 {6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
6920 {6, MVT::v2i64, 8}, // interleave 6 x 2i64 into 12i64 (and store)
6921 {6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
6922 {6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
6925 static const CostTblEntry SSE2InterleavedStoreTbl[] = {
6926 {2, MVT::v2i8, 1}, // interleave 2 x 2i8 into 4i8 (and store)
6927 {2, MVT::v4i8, 1}, // interleave 2 x 4i8 into 8i8 (and store)
6928 {2, MVT::v8i8, 1}, // interleave 2 x 8i8 into 16i8 (and store)
6930 {2, MVT::v2i16, 1}, // interleave 2 x 2i16 into 4i16 (and store)
6931 {2, MVT::v4i16, 1}, // interleave 2 x 4i16 into 8i16 (and store)
6933 {2, MVT::v2i32, 1}, // interleave 2 x 2i32 into 4i32 (and store)
6936 if (Opcode == Instruction::Load) {
6937 auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
6938 MemOpCosts](const CostTblEntry *Entry) {
6939 // NOTE: this is just an approximation!
6940 // It can over/under -estimate the cost!
6941 return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor);
6944 if (ST->hasAVX2())
6945 if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
6946 ETy.getSimpleVT()))
6947 return GetDiscountedCost(Entry);
6949 if (ST->hasSSSE3())
6950 if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
6951 ETy.getSimpleVT()))
6952 return GetDiscountedCost(Entry);
6954 if (ST->hasSSE2())
6955 if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
6956 ETy.getSimpleVT()))
6957 return GetDiscountedCost(Entry);
6958 } else {
6959 assert(Opcode == Instruction::Store &&
6960 "Expected Store Instruction at this point");
6961 assert((!Indices.size() || Indices.size() == Factor) &&
6962 "Interleaved store only supports fully-interleaved groups.");
6963 if (ST->hasAVX2())
6964 if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
6965 ETy.getSimpleVT()))
6966 return MemOpCosts + Entry->Cost;
6968 if (ST->hasSSE2())
6969 if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
6970 ETy.getSimpleVT()))
6971 return MemOpCosts + Entry->Cost;
6974 return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
6975 Alignment, AddressSpace, CostKind,
6976 UseMaskForCond, UseMaskForGaps);
6979 InstructionCost X86TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
6980 StackOffset BaseOffset,
6981 bool HasBaseReg, int64_t Scale,
6982 unsigned AddrSpace) const {
6983 // Scaling factors are not free at all.
6984 // An indexed folded instruction, i.e., inst (reg1, reg2, scale),
6985 // will take 2 allocations in the out of order engine instead of 1
6986 // for plain addressing mode, i.e. inst (reg1).
6987 // E.g.,
6988 // vaddps (%rsi,%rdx), %ymm0, %ymm1
6989 // Requires two allocations (one for the load, one for the computation)
6990 // whereas:
6991 // vaddps (%rsi), %ymm0, %ymm1
6992 // Requires just 1 allocation, i.e., freeing allocations for other operations
6993 // and having less micro operations to execute.
6995 // For some X86 architectures, this is even worse because for instance for
6996 // stores, the complex addressing mode forces the instruction to use the
6997 // "load" ports instead of the dedicated "store" port.
6998 // E.g., on Haswell:
6999 // vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
7000 // vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
7001 TargetLoweringBase::AddrMode AM;
7002 AM.BaseGV = BaseGV;
7003 AM.BaseOffs = BaseOffset.getFixed();
7004 AM.HasBaseReg = HasBaseReg;
7005 AM.Scale = Scale;
7006 AM.ScalableOffset = BaseOffset.getScalable();
7007 if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
7008 // Scale represents reg2 * scale, thus account for 1
7009 // as soon as we use a second register.
7010 return AM.Scale != 0;
7011 return -1;
7014 InstructionCost X86TTIImpl::getBranchMispredictPenalty() const {
7015 // TODO: Hook MispredictPenalty of SchedMachineModel into this.
7016 return 14;
7019 bool X86TTIImpl::isVectorShiftByScalarCheap(Type *Ty) const {
7020 unsigned Bits = Ty->getScalarSizeInBits();
7022 // XOP has v16i8/v8i16/v4i32/v2i64 variable vector shifts.
7023 // Splitting for v32i8/v16i16 on XOP+AVX2 targets is still preferred.
7024 if (ST->hasXOP() && (Bits == 8 || Bits == 16 || Bits == 32 || Bits == 64))
7025 return false;
7027 // AVX2 has vpsllv[dq] instructions (and other shifts) that make variable
7028 // shifts just as cheap as scalar ones.
7029 if (ST->hasAVX2() && (Bits == 32 || Bits == 64))
7030 return false;
7032 // AVX512BW has shifts such as vpsllvw.
7033 if (ST->hasBWI() && Bits == 16)
7034 return false;
7036 // Otherwise, it's significantly cheaper to shift by a scalar amount than by a
7037 // fully general vector.
7038 return true;
7041 unsigned X86TTIImpl::getStoreMinimumVF(unsigned VF, Type *ScalarMemTy,
7042 Type *ScalarValTy) const {
7043 if (ST->hasF16C() && ScalarMemTy->isHalfTy()) {
7044 return 4;
7046 return BaseT::getStoreMinimumVF(VF, ScalarMemTy, ScalarValTy);
7049 bool X86TTIImpl::isProfitableToSinkOperands(Instruction *I,
7050 SmallVectorImpl<Use *> &Ops) const {
7051 using namespace llvm::PatternMatch;
7053 FixedVectorType *VTy = dyn_cast<FixedVectorType>(I->getType());
7054 if (!VTy)
7055 return false;
7057 if (I->getOpcode() == Instruction::Mul &&
7058 VTy->getElementType()->isIntegerTy(64)) {
7059 for (auto &Op : I->operands()) {
7060 // Make sure we are not already sinking this operand
7061 if (any_of(Ops, [&](Use *U) { return U->get() == Op; }))
7062 continue;
7064 // Look for PMULDQ pattern where the input is a sext_inreg from vXi32 or
7065 // the PMULUDQ pattern where the input is a zext_inreg from vXi32.
7066 if (ST->hasSSE41() &&
7067 match(Op.get(), m_AShr(m_Shl(m_Value(), m_SpecificInt(32)),
7068 m_SpecificInt(32)))) {
7069 Ops.push_back(&cast<Instruction>(Op)->getOperandUse(0));
7070 Ops.push_back(&Op);
7071 } else if (ST->hasSSE2() &&
7072 match(Op.get(),
7073 m_And(m_Value(), m_SpecificInt(UINT64_C(0xffffffff))))) {
7074 Ops.push_back(&Op);
7078 return !Ops.empty();
7081 // A uniform shift amount in a vector shift or funnel shift may be much
7082 // cheaper than a generic variable vector shift, so make that pattern visible
7083 // to SDAG by sinking the shuffle instruction next to the shift.
7084 int ShiftAmountOpNum = -1;
7085 if (I->isShift())
7086 ShiftAmountOpNum = 1;
7087 else if (auto *II = dyn_cast<IntrinsicInst>(I)) {
7088 if (II->getIntrinsicID() == Intrinsic::fshl ||
7089 II->getIntrinsicID() == Intrinsic::fshr)
7090 ShiftAmountOpNum = 2;
7093 if (ShiftAmountOpNum == -1)
7094 return false;
7096 auto *Shuf = dyn_cast<ShuffleVectorInst>(I->getOperand(ShiftAmountOpNum));
7097 if (Shuf && getSplatIndex(Shuf->getShuffleMask()) >= 0 &&
7098 isVectorShiftByScalarCheap(I->getType())) {
7099 Ops.push_back(&I->getOperandUse(ShiftAmountOpNum));
7100 return true;
7103 return false;