1 //===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the pass which inserts x86 AVX vzeroupper instructions
10 // before calls to SSE encoded functions. This avoids transition latency
11 // penalty when transferring control between AVX encoded instructions and old
14 //===----------------------------------------------------------------------===//
17 #include "X86InstrInfo.h"
18 #include "X86Subtarget.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
40 #define DEBUG_TYPE "x86-vzeroupper"
43 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden
,
44 cl::desc("Minimize AVX to SSE transition penalty"),
47 STATISTIC(NumVZU
, "Number of vzeroupper instructions inserted");
51 class VZeroUpperInserter
: public MachineFunctionPass
{
53 VZeroUpperInserter() : MachineFunctionPass(ID
) {}
55 bool runOnMachineFunction(MachineFunction
&MF
) override
;
57 MachineFunctionProperties
getRequiredProperties() const override
{
58 return MachineFunctionProperties().set(
59 MachineFunctionProperties::Property::NoVRegs
);
62 StringRef
getPassName() const override
{ return "X86 vzeroupper inserter"; }
65 void processBasicBlock(MachineBasicBlock
&MBB
);
66 void insertVZeroUpper(MachineBasicBlock::iterator I
,
67 MachineBasicBlock
&MBB
);
68 void addDirtySuccessor(MachineBasicBlock
&MBB
);
70 using BlockExitState
= enum { PASS_THROUGH
, EXITS_CLEAN
, EXITS_DIRTY
};
72 static const char* getBlockExitStateName(BlockExitState ST
);
74 // Core algorithm state:
75 // BlockState - Each block is either:
76 // - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
77 // vzeroupper instructions in this block.
78 // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
79 // block that will ensure that YMM/ZMM is clean on exit.
80 // - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
81 // subsequent vzeroupper in the block clears it.
83 // AddedToDirtySuccessors - This flag is raised when a block is added to the
84 // DirtySuccessors list to ensure that it's not
85 // added multiple times.
87 // FirstUnguardedCall - Records the location of the first unguarded call in
88 // each basic block that may need to be guarded by a
89 // vzeroupper. We won't know whether it actually needs
90 // to be guarded until we discover a predecessor that
93 BlockExitState ExitState
= PASS_THROUGH
;
94 bool AddedToDirtySuccessors
= false;
95 MachineBasicBlock::iterator FirstUnguardedCall
;
97 BlockState() = default;
100 using BlockStateMap
= SmallVector
<BlockState
, 8>;
101 using DirtySuccessorsWorkList
= SmallVector
<MachineBasicBlock
*, 8>;
103 BlockStateMap BlockStates
;
104 DirtySuccessorsWorkList DirtySuccessors
;
107 const TargetInstrInfo
*TII
;
112 } // end anonymous namespace
114 char VZeroUpperInserter::ID
= 0;
116 FunctionPass
*llvm::createX86IssueVZeroUpperPass() {
117 return new VZeroUpperInserter();
121 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST
) {
123 case PASS_THROUGH
: return "Pass-through";
124 case EXITS_DIRTY
: return "Exits-dirty";
125 case EXITS_CLEAN
: return "Exits-clean";
127 llvm_unreachable("Invalid block exit state.");
131 /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
132 /// Thus, there is no need to check for Y/ZMM16 and above.
133 static bool isYmmOrZmmReg(unsigned Reg
) {
134 return (Reg
>= X86::YMM0
&& Reg
<= X86::YMM15
) ||
135 (Reg
>= X86::ZMM0
&& Reg
<= X86::ZMM15
);
138 static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo
&MRI
) {
139 for (std::pair
<MCRegister
, Register
> LI
: MRI
.liveins())
140 if (isYmmOrZmmReg(LI
.first
))
146 static bool clobbersAllYmmAndZmmRegs(const MachineOperand
&MO
) {
147 for (unsigned reg
= X86::YMM0
; reg
<= X86::YMM15
; ++reg
) {
148 if (!MO
.clobbersPhysReg(reg
))
151 for (unsigned reg
= X86::ZMM0
; reg
<= X86::ZMM15
; ++reg
) {
152 if (!MO
.clobbersPhysReg(reg
))
158 static bool hasYmmOrZmmReg(MachineInstr
&MI
) {
159 for (const MachineOperand
&MO
: MI
.operands()) {
160 if (MI
.isCall() && MO
.isRegMask() && !clobbersAllYmmAndZmmRegs(MO
))
166 if (isYmmOrZmmReg(MO
.getReg()))
172 /// Check if given call instruction has a RegMask operand.
173 static bool callHasRegMask(MachineInstr
&MI
) {
174 assert(MI
.isCall() && "Can only be called on call instructions.");
175 for (const MachineOperand
&MO
: MI
.operands()) {
182 /// Insert a vzeroupper instruction before I.
183 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I
,
184 MachineBasicBlock
&MBB
) {
185 BuildMI(MBB
, I
, I
->getDebugLoc(), TII
->get(X86::VZEROUPPER
));
187 EverMadeChange
= true;
190 /// Add MBB to the DirtySuccessors list if it hasn't already been added.
191 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock
&MBB
) {
192 if (!BlockStates
[MBB
.getNumber()].AddedToDirtySuccessors
) {
193 DirtySuccessors
.push_back(&MBB
);
194 BlockStates
[MBB
.getNumber()].AddedToDirtySuccessors
= true;
198 /// Loop over all of the instructions in the basic block, inserting vzeroupper
199 /// instructions before function calls.
200 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock
&MBB
) {
201 // Start by assuming that the block is PASS_THROUGH which implies no unguarded
203 BlockExitState CurState
= PASS_THROUGH
;
204 BlockStates
[MBB
.getNumber()].FirstUnguardedCall
= MBB
.end();
206 for (MachineInstr
&MI
: MBB
) {
207 bool IsCall
= MI
.isCall();
208 bool IsReturn
= MI
.isReturn();
209 bool IsControlFlow
= IsCall
|| IsReturn
;
211 // No need for vzeroupper before iret in interrupt handler function,
212 // epilogue will restore YMM/ZMM registers if needed.
213 if (IsX86INTR
&& IsReturn
)
216 // An existing VZERO* instruction resets the state.
217 if (MI
.getOpcode() == X86::VZEROALL
|| MI
.getOpcode() == X86::VZEROUPPER
) {
218 CurState
= EXITS_CLEAN
;
222 // Shortcut: don't need to check regular instructions in dirty state.
223 if (!IsControlFlow
&& CurState
== EXITS_DIRTY
)
226 if (hasYmmOrZmmReg(MI
)) {
227 // We found a ymm/zmm-using instruction; this could be an AVX/AVX512
228 // instruction, or it could be control flow.
229 CurState
= EXITS_DIRTY
;
233 // Check for control-flow out of the current function (which might
234 // indirectly execute SSE instructions).
238 // If the call has no RegMask, skip it as well. It usually happens on
239 // helper function calls (such as '_chkstk', '_ftol2') where standard
240 // calling convention is not used (RegMask is not used to mark register
241 // clobbered and register usage (def/implicit-def/use) is well-defined and
242 // explicitly specified.
243 if (IsCall
&& !callHasRegMask(MI
))
246 // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
247 // registers. In addition, the processor changes back to Clean state, after
248 // which execution of SSE instructions or AVX instructions has no transition
249 // penalty. Add the VZEROUPPER instruction before any function call/return
250 // that might execute SSE code.
251 // FIXME: In some cases, we may want to move the VZEROUPPER into a
252 // predecessor block.
253 if (CurState
== EXITS_DIRTY
) {
254 // After the inserted VZEROUPPER the state becomes clean again, but
255 // other YMM/ZMM may appear before other subsequent calls or even before
256 // the end of the BB.
257 insertVZeroUpper(MI
, MBB
);
258 CurState
= EXITS_CLEAN
;
259 } else if (CurState
== PASS_THROUGH
) {
260 // If this block is currently in pass-through state and we encounter a
261 // call then whether we need a vzeroupper or not depends on whether this
262 // block has successors that exit dirty. Record the location of the call,
263 // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
264 // It will be inserted later if necessary.
265 BlockStates
[MBB
.getNumber()].FirstUnguardedCall
= MI
;
266 CurState
= EXITS_CLEAN
;
270 LLVM_DEBUG(dbgs() << "MBB #" << MBB
.getNumber() << " exit state: "
271 << getBlockExitStateName(CurState
) << '\n');
273 if (CurState
== EXITS_DIRTY
)
274 for (MachineBasicBlock
*Succ
: MBB
.successors())
275 addDirtySuccessor(*Succ
);
277 BlockStates
[MBB
.getNumber()].ExitState
= CurState
;
280 /// Loop over all of the basic blocks, inserting vzeroupper instructions before
282 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction
&MF
) {
286 const X86Subtarget
&ST
= MF
.getSubtarget
<X86Subtarget
>();
287 if (!ST
.hasAVX() || !ST
.insertVZEROUPPER())
289 TII
= ST
.getInstrInfo();
290 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
291 EverMadeChange
= false;
292 IsX86INTR
= MF
.getFunction().getCallingConv() == CallingConv::X86_INTR
;
294 bool FnHasLiveInYmmOrZmm
= checkFnHasLiveInYmmOrZmm(MRI
);
296 // Fast check: if the function doesn't use any ymm/zmm registers, we don't
297 // need to insert any VZEROUPPER instructions. This is constant-time, so it
298 // is cheap in the common case of no ymm/zmm use.
299 bool YmmOrZmmUsed
= FnHasLiveInYmmOrZmm
;
300 for (const auto *RC
: {&X86::VR256RegClass
, &X86::VR512_0_15RegClass
}) {
302 for (MCPhysReg R
: *RC
) {
303 if (!MRI
.reg_nodbg_empty(R
)) {
313 assert(BlockStates
.empty() && DirtySuccessors
.empty() &&
314 "X86VZeroUpper state should be clear");
315 BlockStates
.resize(MF
.getNumBlockIDs());
317 // Process all blocks. This will compute block exit states, record the first
318 // unguarded call in each block, and add successors of dirty blocks to the
319 // DirtySuccessors list.
320 for (MachineBasicBlock
&MBB
: MF
)
321 processBasicBlock(MBB
);
323 // If any YMM/ZMM regs are live-in to this function, add the entry block to
324 // the DirtySuccessors list
325 if (FnHasLiveInYmmOrZmm
)
326 addDirtySuccessor(MF
.front());
328 // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
329 // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
330 // through PASS_THROUGH blocks.
331 while (!DirtySuccessors
.empty()) {
332 MachineBasicBlock
&MBB
= *DirtySuccessors
.back();
333 DirtySuccessors
.pop_back();
334 BlockState
&BBState
= BlockStates
[MBB
.getNumber()];
336 // MBB is a successor of a dirty block, so its first call needs to be
338 if (BBState
.FirstUnguardedCall
!= MBB
.end())
339 insertVZeroUpper(BBState
.FirstUnguardedCall
, MBB
);
341 // If this successor was a pass-through block, then it is now dirty. Its
342 // successors need to be added to the worklist (if they haven't been
344 if (BBState
.ExitState
== PASS_THROUGH
) {
345 LLVM_DEBUG(dbgs() << "MBB #" << MBB
.getNumber()
346 << " was Pass-through, is now Dirty-out.\n");
347 for (MachineBasicBlock
*Succ
: MBB
.successors())
348 addDirtySuccessor(*Succ
);
353 return EverMadeChange
;