[NFC][analyzer][docs] Crosslink MallocChecker's ownership attributes (#121939)
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineAddSub.cpp
blob73876d00e73a7cb96ce39c559617d1627c1fb4d6
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Transforms/InstCombine/InstCombiner.h"
33 #include <cassert>
34 #include <utility>
36 using namespace llvm;
37 using namespace PatternMatch;
39 #define DEBUG_TYPE "instcombine"
41 namespace {
43 /// Class representing coefficient of floating-point addend.
44 /// This class needs to be highly efficient, which is especially true for
45 /// the constructor. As of I write this comment, the cost of the default
46 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
47 /// perform write-merging).
48 ///
49 class FAddendCoef {
50 public:
51 // The constructor has to initialize a APFloat, which is unnecessary for
52 // most addends which have coefficient either 1 or -1. So, the constructor
53 // is expensive. In order to avoid the cost of the constructor, we should
54 // reuse some instances whenever possible. The pre-created instances
55 // FAddCombine::Add[0-5] embodies this idea.
56 FAddendCoef() = default;
57 ~FAddendCoef();
59 // If possible, don't define operator+/operator- etc because these
60 // operators inevitably call FAddendCoef's constructor which is not cheap.
61 void operator=(const FAddendCoef &A);
62 void operator+=(const FAddendCoef &A);
63 void operator*=(const FAddendCoef &S);
65 void set(short C) {
66 assert(!insaneIntVal(C) && "Insane coefficient");
67 IsFp = false; IntVal = C;
70 void set(const APFloat& C);
72 void negate();
74 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
75 Value *getValue(Type *) const;
77 bool isOne() const { return isInt() && IntVal == 1; }
78 bool isTwo() const { return isInt() && IntVal == 2; }
79 bool isMinusOne() const { return isInt() && IntVal == -1; }
80 bool isMinusTwo() const { return isInt() && IntVal == -2; }
82 private:
83 bool insaneIntVal(int V) { return V > 4 || V < -4; }
85 APFloat *getFpValPtr() { return reinterpret_cast<APFloat *>(&FpValBuf); }
87 const APFloat *getFpValPtr() const {
88 return reinterpret_cast<const APFloat *>(&FpValBuf);
91 const APFloat &getFpVal() const {
92 assert(IsFp && BufHasFpVal && "Incorret state");
93 return *getFpValPtr();
96 APFloat &getFpVal() {
97 assert(IsFp && BufHasFpVal && "Incorret state");
98 return *getFpValPtr();
101 bool isInt() const { return !IsFp; }
103 // If the coefficient is represented by an integer, promote it to a
104 // floating point.
105 void convertToFpType(const fltSemantics &Sem);
107 // Construct an APFloat from a signed integer.
108 // TODO: We should get rid of this function when APFloat can be constructed
109 // from an *SIGNED* integer.
110 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
112 bool IsFp = false;
114 // True iff FpValBuf contains an instance of APFloat.
115 bool BufHasFpVal = false;
117 // The integer coefficient of an individual addend is either 1 or -1,
118 // and we try to simplify at most 4 addends from neighboring at most
119 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
120 // is overkill of this end.
121 short IntVal = 0;
123 AlignedCharArrayUnion<APFloat> FpValBuf;
126 /// FAddend is used to represent floating-point addend. An addend is
127 /// represented as <C, V>, where the V is a symbolic value, and C is a
128 /// constant coefficient. A constant addend is represented as <C, 0>.
129 class FAddend {
130 public:
131 FAddend() = default;
133 void operator+=(const FAddend &T) {
134 assert((Val == T.Val) && "Symbolic-values disagree");
135 Coeff += T.Coeff;
138 Value *getSymVal() const { return Val; }
139 const FAddendCoef &getCoef() const { return Coeff; }
141 bool isConstant() const { return Val == nullptr; }
142 bool isZero() const { return Coeff.isZero(); }
144 void set(short Coefficient, Value *V) {
145 Coeff.set(Coefficient);
146 Val = V;
148 void set(const APFloat &Coefficient, Value *V) {
149 Coeff.set(Coefficient);
150 Val = V;
152 void set(const ConstantFP *Coefficient, Value *V) {
153 Coeff.set(Coefficient->getValueAPF());
154 Val = V;
157 void negate() { Coeff.negate(); }
159 /// Drill down the U-D chain one step to find the definition of V, and
160 /// try to break the definition into one or two addends.
161 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
163 /// Similar to FAddend::drillDownOneStep() except that the value being
164 /// splitted is the addend itself.
165 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
167 private:
168 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
170 // This addend has the value of "Coeff * Val".
171 Value *Val = nullptr;
172 FAddendCoef Coeff;
175 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
176 /// with its neighboring at most two instructions.
178 class FAddCombine {
179 public:
180 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
182 Value *simplify(Instruction *FAdd);
184 private:
185 using AddendVect = SmallVector<const FAddend *, 4>;
187 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
189 /// Convert given addend to a Value
190 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
192 /// Return the number of instructions needed to emit the N-ary addition.
193 unsigned calcInstrNumber(const AddendVect& Vect);
195 Value *createFSub(Value *Opnd0, Value *Opnd1);
196 Value *createFAdd(Value *Opnd0, Value *Opnd1);
197 Value *createFMul(Value *Opnd0, Value *Opnd1);
198 Value *createFNeg(Value *V);
199 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
200 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
202 // Debugging stuff are clustered here.
203 #ifndef NDEBUG
204 unsigned CreateInstrNum;
205 void initCreateInstNum() { CreateInstrNum = 0; }
206 void incCreateInstNum() { CreateInstrNum++; }
207 #else
208 void initCreateInstNum() {}
209 void incCreateInstNum() {}
210 #endif
212 InstCombiner::BuilderTy &Builder;
213 Instruction *Instr = nullptr;
216 } // end anonymous namespace
218 //===----------------------------------------------------------------------===//
220 // Implementation of
221 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
223 //===----------------------------------------------------------------------===//
224 FAddendCoef::~FAddendCoef() {
225 if (BufHasFpVal)
226 getFpValPtr()->~APFloat();
229 void FAddendCoef::set(const APFloat& C) {
230 APFloat *P = getFpValPtr();
232 if (isInt()) {
233 // As the buffer is meanless byte stream, we cannot call
234 // APFloat::operator=().
235 new(P) APFloat(C);
236 } else
237 *P = C;
239 IsFp = BufHasFpVal = true;
242 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
243 if (!isInt())
244 return;
246 APFloat *P = getFpValPtr();
247 if (IntVal > 0)
248 new(P) APFloat(Sem, IntVal);
249 else {
250 new(P) APFloat(Sem, 0 - IntVal);
251 P->changeSign();
253 IsFp = BufHasFpVal = true;
256 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
257 if (Val >= 0)
258 return APFloat(Sem, Val);
260 APFloat T(Sem, 0 - Val);
261 T.changeSign();
263 return T;
266 void FAddendCoef::operator=(const FAddendCoef &That) {
267 if (That.isInt())
268 set(That.IntVal);
269 else
270 set(That.getFpVal());
273 void FAddendCoef::operator+=(const FAddendCoef &That) {
274 RoundingMode RndMode = RoundingMode::NearestTiesToEven;
275 if (isInt() == That.isInt()) {
276 if (isInt())
277 IntVal += That.IntVal;
278 else
279 getFpVal().add(That.getFpVal(), RndMode);
280 return;
283 if (isInt()) {
284 const APFloat &T = That.getFpVal();
285 convertToFpType(T.getSemantics());
286 getFpVal().add(T, RndMode);
287 return;
290 APFloat &T = getFpVal();
291 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
294 void FAddendCoef::operator*=(const FAddendCoef &That) {
295 if (That.isOne())
296 return;
298 if (That.isMinusOne()) {
299 negate();
300 return;
303 if (isInt() && That.isInt()) {
304 int Res = IntVal * (int)That.IntVal;
305 assert(!insaneIntVal(Res) && "Insane int value");
306 IntVal = Res;
307 return;
310 const fltSemantics &Semantic =
311 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
313 if (isInt())
314 convertToFpType(Semantic);
315 APFloat &F0 = getFpVal();
317 if (That.isInt())
318 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
319 APFloat::rmNearestTiesToEven);
320 else
321 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
324 void FAddendCoef::negate() {
325 if (isInt())
326 IntVal = 0 - IntVal;
327 else
328 getFpVal().changeSign();
331 Value *FAddendCoef::getValue(Type *Ty) const {
332 return isInt() ?
333 ConstantFP::get(Ty, float(IntVal)) :
334 ConstantFP::get(Ty->getContext(), getFpVal());
337 // The definition of <Val> Addends
338 // =========================================
339 // A + B <1, A>, <1,B>
340 // A - B <1, A>, <1,B>
341 // 0 - B <-1, B>
342 // C * A, <C, A>
343 // A + C <1, A> <C, NULL>
344 // 0 +/- 0 <0, NULL> (corner case)
346 // Legend: A and B are not constant, C is constant
347 unsigned FAddend::drillValueDownOneStep
348 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
349 Instruction *I = nullptr;
350 if (!Val || !(I = dyn_cast<Instruction>(Val)))
351 return 0;
353 unsigned Opcode = I->getOpcode();
355 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
356 ConstantFP *C0, *C1;
357 Value *Opnd0 = I->getOperand(0);
358 Value *Opnd1 = I->getOperand(1);
359 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
360 Opnd0 = nullptr;
362 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
363 Opnd1 = nullptr;
365 if (Opnd0) {
366 if (!C0)
367 Addend0.set(1, Opnd0);
368 else
369 Addend0.set(C0, nullptr);
372 if (Opnd1) {
373 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
374 if (!C1)
375 Addend.set(1, Opnd1);
376 else
377 Addend.set(C1, nullptr);
378 if (Opcode == Instruction::FSub)
379 Addend.negate();
382 if (Opnd0 || Opnd1)
383 return Opnd0 && Opnd1 ? 2 : 1;
385 // Both operands are zero. Weird!
386 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
387 return 1;
390 if (I->getOpcode() == Instruction::FMul) {
391 Value *V0 = I->getOperand(0);
392 Value *V1 = I->getOperand(1);
393 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
394 Addend0.set(C, V1);
395 return 1;
398 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
399 Addend0.set(C, V0);
400 return 1;
404 return 0;
407 // Try to break *this* addend into two addends. e.g. Suppose this addend is
408 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
409 // i.e. <2.3, X> and <2.3, Y>.
410 unsigned FAddend::drillAddendDownOneStep
411 (FAddend &Addend0, FAddend &Addend1) const {
412 if (isConstant())
413 return 0;
415 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
416 if (!BreakNum || Coeff.isOne())
417 return BreakNum;
419 Addend0.Scale(Coeff);
421 if (BreakNum == 2)
422 Addend1.Scale(Coeff);
424 return BreakNum;
427 Value *FAddCombine::simplify(Instruction *I) {
428 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
429 "Expected 'reassoc'+'nsz' instruction");
431 // Currently we are not able to handle vector type.
432 if (I->getType()->isVectorTy())
433 return nullptr;
435 assert((I->getOpcode() == Instruction::FAdd ||
436 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
438 // Save the instruction before calling other member-functions.
439 Instr = I;
441 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
443 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
445 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
446 unsigned Opnd0_ExpNum = 0;
447 unsigned Opnd1_ExpNum = 0;
449 if (!Opnd0.isConstant())
450 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
452 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
453 if (OpndNum == 2 && !Opnd1.isConstant())
454 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
456 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
457 if (Opnd0_ExpNum && Opnd1_ExpNum) {
458 AddendVect AllOpnds;
459 AllOpnds.push_back(&Opnd0_0);
460 AllOpnds.push_back(&Opnd1_0);
461 if (Opnd0_ExpNum == 2)
462 AllOpnds.push_back(&Opnd0_1);
463 if (Opnd1_ExpNum == 2)
464 AllOpnds.push_back(&Opnd1_1);
466 // Compute instruction quota. We should save at least one instruction.
467 unsigned InstQuota = 0;
469 Value *V0 = I->getOperand(0);
470 Value *V1 = I->getOperand(1);
471 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
472 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
474 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
475 return R;
478 if (OpndNum != 2) {
479 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
480 // splitted into two addends, say "V = X - Y", the instruction would have
481 // been optimized into "I = Y - X" in the previous steps.
483 const FAddendCoef &CE = Opnd0.getCoef();
484 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
487 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
488 if (Opnd1_ExpNum) {
489 AddendVect AllOpnds;
490 AllOpnds.push_back(&Opnd0);
491 AllOpnds.push_back(&Opnd1_0);
492 if (Opnd1_ExpNum == 2)
493 AllOpnds.push_back(&Opnd1_1);
495 if (Value *R = simplifyFAdd(AllOpnds, 1))
496 return R;
499 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
500 if (Opnd0_ExpNum) {
501 AddendVect AllOpnds;
502 AllOpnds.push_back(&Opnd1);
503 AllOpnds.push_back(&Opnd0_0);
504 if (Opnd0_ExpNum == 2)
505 AllOpnds.push_back(&Opnd0_1);
507 if (Value *R = simplifyFAdd(AllOpnds, 1))
508 return R;
511 return nullptr;
514 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
515 unsigned AddendNum = Addends.size();
516 assert(AddendNum <= 4 && "Too many addends");
518 // For saving intermediate results;
519 unsigned NextTmpIdx = 0;
520 FAddend TmpResult[3];
522 // Simplified addends are placed <SimpVect>.
523 AddendVect SimpVect;
525 // The outer loop works on one symbolic-value at a time. Suppose the input
526 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
527 // The symbolic-values will be processed in this order: x, y, z.
528 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
530 const FAddend *ThisAddend = Addends[SymIdx];
531 if (!ThisAddend) {
532 // This addend was processed before.
533 continue;
536 Value *Val = ThisAddend->getSymVal();
538 // If the resulting expr has constant-addend, this constant-addend is
539 // desirable to reside at the top of the resulting expression tree. Placing
540 // constant close to super-expr(s) will potentially reveal some
541 // optimization opportunities in super-expr(s). Here we do not implement
542 // this logic intentionally and rely on SimplifyAssociativeOrCommutative
543 // call later.
545 unsigned StartIdx = SimpVect.size();
546 SimpVect.push_back(ThisAddend);
548 // The inner loop collects addends sharing same symbolic-value, and these
549 // addends will be later on folded into a single addend. Following above
550 // example, if the symbolic value "y" is being processed, the inner loop
551 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
552 // be later on folded into "<b1+b2, y>".
553 for (unsigned SameSymIdx = SymIdx + 1;
554 SameSymIdx < AddendNum; SameSymIdx++) {
555 const FAddend *T = Addends[SameSymIdx];
556 if (T && T->getSymVal() == Val) {
557 // Set null such that next iteration of the outer loop will not process
558 // this addend again.
559 Addends[SameSymIdx] = nullptr;
560 SimpVect.push_back(T);
564 // If multiple addends share same symbolic value, fold them together.
565 if (StartIdx + 1 != SimpVect.size()) {
566 FAddend &R = TmpResult[NextTmpIdx ++];
567 R = *SimpVect[StartIdx];
568 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
569 R += *SimpVect[Idx];
571 // Pop all addends being folded and push the resulting folded addend.
572 SimpVect.resize(StartIdx);
573 if (!R.isZero()) {
574 SimpVect.push_back(&R);
579 assert((NextTmpIdx <= std::size(TmpResult) + 1) && "out-of-bound access");
581 Value *Result;
582 if (!SimpVect.empty())
583 Result = createNaryFAdd(SimpVect, InstrQuota);
584 else {
585 // The addition is folded to 0.0.
586 Result = ConstantFP::get(Instr->getType(), 0.0);
589 return Result;
592 Value *FAddCombine::createNaryFAdd
593 (const AddendVect &Opnds, unsigned InstrQuota) {
594 assert(!Opnds.empty() && "Expect at least one addend");
596 // Step 1: Check if the # of instructions needed exceeds the quota.
598 unsigned InstrNeeded = calcInstrNumber(Opnds);
599 if (InstrNeeded > InstrQuota)
600 return nullptr;
602 initCreateInstNum();
604 // step 2: Emit the N-ary addition.
605 // Note that at most three instructions are involved in Fadd-InstCombine: the
606 // addition in question, and at most two neighboring instructions.
607 // The resulting optimized addition should have at least one less instruction
608 // than the original addition expression tree. This implies that the resulting
609 // N-ary addition has at most two instructions, and we don't need to worry
610 // about tree-height when constructing the N-ary addition.
612 Value *LastVal = nullptr;
613 bool LastValNeedNeg = false;
615 // Iterate the addends, creating fadd/fsub using adjacent two addends.
616 for (const FAddend *Opnd : Opnds) {
617 bool NeedNeg;
618 Value *V = createAddendVal(*Opnd, NeedNeg);
619 if (!LastVal) {
620 LastVal = V;
621 LastValNeedNeg = NeedNeg;
622 continue;
625 if (LastValNeedNeg == NeedNeg) {
626 LastVal = createFAdd(LastVal, V);
627 continue;
630 if (LastValNeedNeg)
631 LastVal = createFSub(V, LastVal);
632 else
633 LastVal = createFSub(LastVal, V);
635 LastValNeedNeg = false;
638 if (LastValNeedNeg) {
639 LastVal = createFNeg(LastVal);
642 #ifndef NDEBUG
643 assert(CreateInstrNum == InstrNeeded &&
644 "Inconsistent in instruction numbers");
645 #endif
647 return LastVal;
650 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
651 Value *V = Builder.CreateFSub(Opnd0, Opnd1);
652 if (Instruction *I = dyn_cast<Instruction>(V))
653 createInstPostProc(I);
654 return V;
657 Value *FAddCombine::createFNeg(Value *V) {
658 Value *NewV = Builder.CreateFNeg(V);
659 if (Instruction *I = dyn_cast<Instruction>(NewV))
660 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
661 return NewV;
664 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
665 Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
666 if (Instruction *I = dyn_cast<Instruction>(V))
667 createInstPostProc(I);
668 return V;
671 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
672 Value *V = Builder.CreateFMul(Opnd0, Opnd1);
673 if (Instruction *I = dyn_cast<Instruction>(V))
674 createInstPostProc(I);
675 return V;
678 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
679 NewInstr->setDebugLoc(Instr->getDebugLoc());
681 // Keep track of the number of instruction created.
682 if (!NoNumber)
683 incCreateInstNum();
685 // Propagate fast-math flags
686 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
689 // Return the number of instruction needed to emit the N-ary addition.
690 // NOTE: Keep this function in sync with createAddendVal().
691 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
692 unsigned OpndNum = Opnds.size();
693 unsigned InstrNeeded = OpndNum - 1;
695 // Adjust the number of instructions needed to emit the N-ary add.
696 for (const FAddend *Opnd : Opnds) {
697 if (Opnd->isConstant())
698 continue;
700 // The constant check above is really for a few special constant
701 // coefficients.
702 if (isa<UndefValue>(Opnd->getSymVal()))
703 continue;
705 const FAddendCoef &CE = Opnd->getCoef();
706 // Let the addend be "c * x". If "c == +/-1", the value of the addend
707 // is immediately available; otherwise, it needs exactly one instruction
708 // to evaluate the value.
709 if (!CE.isMinusOne() && !CE.isOne())
710 InstrNeeded++;
712 return InstrNeeded;
715 // Input Addend Value NeedNeg(output)
716 // ================================================================
717 // Constant C C false
718 // <+/-1, V> V coefficient is -1
719 // <2/-2, V> "fadd V, V" coefficient is -2
720 // <C, V> "fmul V, C" false
722 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
723 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
724 const FAddendCoef &Coeff = Opnd.getCoef();
726 if (Opnd.isConstant()) {
727 NeedNeg = false;
728 return Coeff.getValue(Instr->getType());
731 Value *OpndVal = Opnd.getSymVal();
733 if (Coeff.isMinusOne() || Coeff.isOne()) {
734 NeedNeg = Coeff.isMinusOne();
735 return OpndVal;
738 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
739 NeedNeg = Coeff.isMinusTwo();
740 return createFAdd(OpndVal, OpndVal);
743 NeedNeg = false;
744 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
747 // Checks if any operand is negative and we can convert add to sub.
748 // This function checks for following negative patterns
749 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
750 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
751 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
752 static Value *checkForNegativeOperand(BinaryOperator &I,
753 InstCombiner::BuilderTy &Builder) {
754 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
756 // This function creates 2 instructions to replace ADD, we need at least one
757 // of LHS or RHS to have one use to ensure benefit in transform.
758 if (!LHS->hasOneUse() && !RHS->hasOneUse())
759 return nullptr;
761 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
762 const APInt *C1 = nullptr, *C2 = nullptr;
764 // if ONE is on other side, swap
765 if (match(RHS, m_Add(m_Value(X), m_One())))
766 std::swap(LHS, RHS);
768 if (match(LHS, m_Add(m_Value(X), m_One()))) {
769 // if XOR on other side, swap
770 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
771 std::swap(X, RHS);
773 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
774 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
775 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
776 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
777 Value *NewAnd = Builder.CreateAnd(Z, *C1);
778 return Builder.CreateSub(RHS, NewAnd, "sub");
779 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
780 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
781 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
782 Value *NewOr = Builder.CreateOr(Z, ~(*C1));
783 return Builder.CreateSub(RHS, NewOr, "sub");
788 // Restore LHS and RHS
789 LHS = I.getOperand(0);
790 RHS = I.getOperand(1);
792 // if XOR is on other side, swap
793 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
794 std::swap(LHS, RHS);
796 // C2 is ODD
797 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
798 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
799 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
800 if (C1->countr_zero() == 0)
801 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
802 Value *NewOr = Builder.CreateOr(Z, ~(*C2));
803 return Builder.CreateSub(RHS, NewOr, "sub");
805 return nullptr;
808 /// Wrapping flags may allow combining constants separated by an extend.
809 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
810 InstCombiner::BuilderTy &Builder) {
811 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
812 Type *Ty = Add.getType();
813 Constant *Op1C;
814 if (!match(Op1, m_Constant(Op1C)))
815 return nullptr;
817 // Try this match first because it results in an add in the narrow type.
818 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
819 Value *X;
820 const APInt *C1, *C2;
821 if (match(Op1, m_APInt(C1)) &&
822 match(Op0, m_ZExt(m_NUWAddLike(m_Value(X), m_APInt(C2)))) &&
823 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
824 APInt NewC = *C2 + C1->trunc(C2->getBitWidth());
825 // If the smaller add will fold to zero, we don't need to check one use.
826 if (NewC.isZero())
827 return new ZExtInst(X, Ty);
828 // Otherwise only do this if the existing zero extend will be removed.
829 if (Op0->hasOneUse())
830 return new ZExtInst(
831 Builder.CreateNUWAdd(X, ConstantInt::get(X->getType(), NewC)), Ty);
834 // More general combining of constants in the wide type.
835 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
836 // or (zext nneg (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
837 Constant *NarrowC;
838 if (match(Op0, m_OneUse(m_SExtLike(
839 m_NSWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
840 Value *WideC = Builder.CreateSExt(NarrowC, Ty);
841 Value *NewC = Builder.CreateAdd(WideC, Op1C);
842 Value *WideX = Builder.CreateSExt(X, Ty);
843 return BinaryOperator::CreateAdd(WideX, NewC);
845 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
846 if (match(Op0,
847 m_OneUse(m_ZExt(m_NUWAddLike(m_Value(X), m_Constant(NarrowC)))))) {
848 Value *WideC = Builder.CreateZExt(NarrowC, Ty);
849 Value *NewC = Builder.CreateAdd(WideC, Op1C);
850 Value *WideX = Builder.CreateZExt(X, Ty);
851 return BinaryOperator::CreateAdd(WideX, NewC);
853 return nullptr;
856 Instruction *InstCombinerImpl::foldAddWithConstant(BinaryOperator &Add) {
857 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
858 Type *Ty = Add.getType();
859 Constant *Op1C;
860 if (!match(Op1, m_ImmConstant(Op1C)))
861 return nullptr;
863 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
864 return NV;
866 Value *X;
867 Constant *Op00C;
869 // add (sub C1, X), C2 --> sub (add C1, C2), X
870 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
871 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
873 Value *Y;
875 // add (sub X, Y), -1 --> add (not Y), X
876 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
877 match(Op1, m_AllOnes()))
878 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
880 // zext(bool) + C -> bool ? C + 1 : C
881 if (match(Op0, m_ZExt(m_Value(X))) &&
882 X->getType()->getScalarSizeInBits() == 1)
883 return SelectInst::Create(X, InstCombiner::AddOne(Op1C), Op1);
884 // sext(bool) + C -> bool ? C - 1 : C
885 if (match(Op0, m_SExt(m_Value(X))) &&
886 X->getType()->getScalarSizeInBits() == 1)
887 return SelectInst::Create(X, InstCombiner::SubOne(Op1C), Op1);
889 // ~X + C --> (C-1) - X
890 if (match(Op0, m_Not(m_Value(X)))) {
891 // ~X + C has NSW and (C-1) won't oveflow => (C-1)-X can have NSW
892 auto *COne = ConstantInt::get(Op1C->getType(), 1);
893 bool WillNotSOV = willNotOverflowSignedSub(Op1C, COne, Add);
894 BinaryOperator *Res =
895 BinaryOperator::CreateSub(ConstantExpr::getSub(Op1C, COne), X);
896 Res->setHasNoSignedWrap(Add.hasNoSignedWrap() && WillNotSOV);
897 return Res;
900 // (iN X s>> (N - 1)) + 1 --> zext (X > -1)
901 const APInt *C;
902 unsigned BitWidth = Ty->getScalarSizeInBits();
903 if (match(Op0, m_OneUse(m_AShr(m_Value(X),
904 m_SpecificIntAllowPoison(BitWidth - 1)))) &&
905 match(Op1, m_One()))
906 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
908 if (!match(Op1, m_APInt(C)))
909 return nullptr;
911 // (X | Op01C) + Op1C --> X + (Op01C + Op1C) iff the `or` is actually an `add`
912 Constant *Op01C;
913 if (match(Op0, m_DisjointOr(m_Value(X), m_ImmConstant(Op01C)))) {
914 BinaryOperator *NewAdd =
915 BinaryOperator::CreateAdd(X, ConstantExpr::getAdd(Op01C, Op1C));
916 NewAdd->setHasNoSignedWrap(Add.hasNoSignedWrap() &&
917 willNotOverflowSignedAdd(Op01C, Op1C, Add));
918 NewAdd->setHasNoUnsignedWrap(Add.hasNoUnsignedWrap());
919 return NewAdd;
922 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
923 const APInt *C2;
924 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
925 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
927 if (C->isSignMask()) {
928 // If wrapping is not allowed, then the addition must set the sign bit:
929 // X + (signmask) --> X | signmask
930 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
931 return BinaryOperator::CreateOr(Op0, Op1);
933 // If wrapping is allowed, then the addition flips the sign bit of LHS:
934 // X + (signmask) --> X ^ signmask
935 return BinaryOperator::CreateXor(Op0, Op1);
938 // Is this add the last step in a convoluted sext?
939 // add(zext(xor i16 X, -32768), -32768) --> sext X
940 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
941 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
942 return CastInst::Create(Instruction::SExt, X, Ty);
944 if (match(Op0, m_Xor(m_Value(X), m_APInt(C2)))) {
945 // (X ^ signmask) + C --> (X + (signmask ^ C))
946 if (C2->isSignMask())
947 return BinaryOperator::CreateAdd(X, ConstantInt::get(Ty, *C2 ^ *C));
949 // If X has no high-bits set above an xor mask:
950 // add (xor X, LowMaskC), C --> sub (LowMaskC + C), X
951 if (C2->isMask()) {
952 KnownBits LHSKnown = computeKnownBits(X, 0, &Add);
953 if ((*C2 | LHSKnown.Zero).isAllOnes())
954 return BinaryOperator::CreateSub(ConstantInt::get(Ty, *C2 + *C), X);
957 // Look for a math+logic pattern that corresponds to sext-in-register of a
958 // value with cleared high bits. Convert that into a pair of shifts:
959 // add (xor X, 0x80), 0xF..F80 --> (X << ShAmtC) >>s ShAmtC
960 // add (xor X, 0xF..F80), 0x80 --> (X << ShAmtC) >>s ShAmtC
961 if (Op0->hasOneUse() && *C2 == -(*C)) {
962 unsigned BitWidth = Ty->getScalarSizeInBits();
963 unsigned ShAmt = 0;
964 if (C->isPowerOf2())
965 ShAmt = BitWidth - C->logBase2() - 1;
966 else if (C2->isPowerOf2())
967 ShAmt = BitWidth - C2->logBase2() - 1;
968 if (ShAmt && MaskedValueIsZero(X, APInt::getHighBitsSet(BitWidth, ShAmt),
969 0, &Add)) {
970 Constant *ShAmtC = ConstantInt::get(Ty, ShAmt);
971 Value *NewShl = Builder.CreateShl(X, ShAmtC, "sext");
972 return BinaryOperator::CreateAShr(NewShl, ShAmtC);
977 if (C->isOne() && Op0->hasOneUse()) {
978 // add (sext i1 X), 1 --> zext (not X)
979 // TODO: The smallest IR representation is (select X, 0, 1), and that would
980 // not require the one-use check. But we need to remove a transform in
981 // visitSelect and make sure that IR value tracking for select is equal or
982 // better than for these ops.
983 if (match(Op0, m_SExt(m_Value(X))) &&
984 X->getType()->getScalarSizeInBits() == 1)
985 return new ZExtInst(Builder.CreateNot(X), Ty);
987 // Shifts and add used to flip and mask off the low bit:
988 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
989 const APInt *C3;
990 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
991 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
992 Value *NotX = Builder.CreateNot(X);
993 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
997 // umax(X, C) + -C --> usub.sat(X, C)
998 if (match(Op0, m_OneUse(m_UMax(m_Value(X), m_SpecificInt(-*C)))))
999 return replaceInstUsesWith(
1000 Add, Builder.CreateBinaryIntrinsic(
1001 Intrinsic::usub_sat, X, ConstantInt::get(Add.getType(), -*C)));
1003 // Fold (add (zext (add X, -1)), 1) -> (zext X) if X is non-zero.
1004 // TODO: There's a general form for any constant on the outer add.
1005 if (C->isOne()) {
1006 if (match(Op0, m_ZExt(m_Add(m_Value(X), m_AllOnes())))) {
1007 const SimplifyQuery Q = SQ.getWithInstruction(&Add);
1008 if (llvm::isKnownNonZero(X, Q))
1009 return new ZExtInst(X, Ty);
1013 return nullptr;
1016 // match variations of a^2 + 2*a*b + b^2
1018 // to reuse the code between the FP and Int versions, the instruction OpCodes
1019 // and constant types have been turned into template parameters.
1021 // Mul2Rhs: The constant to perform the multiplicative equivalent of X*2 with;
1022 // should be `m_SpecificFP(2.0)` for FP and `m_SpecificInt(1)` for Int
1023 // (we're matching `X<<1` instead of `X*2` for Int)
1024 template <bool FP, typename Mul2Rhs>
1025 static bool matchesSquareSum(BinaryOperator &I, Mul2Rhs M2Rhs, Value *&A,
1026 Value *&B) {
1027 constexpr unsigned MulOp = FP ? Instruction::FMul : Instruction::Mul;
1028 constexpr unsigned AddOp = FP ? Instruction::FAdd : Instruction::Add;
1029 constexpr unsigned Mul2Op = FP ? Instruction::FMul : Instruction::Shl;
1031 // (a * a) + (((a * 2) + b) * b)
1032 if (match(&I, m_c_BinOp(
1033 AddOp, m_OneUse(m_BinOp(MulOp, m_Value(A), m_Deferred(A))),
1034 m_OneUse(m_c_BinOp(
1035 MulOp,
1036 m_c_BinOp(AddOp, m_BinOp(Mul2Op, m_Deferred(A), M2Rhs),
1037 m_Value(B)),
1038 m_Deferred(B))))))
1039 return true;
1041 // ((a * b) * 2) or ((a * 2) * b)
1042 // +
1043 // (a * a + b * b) or (b * b + a * a)
1044 return match(
1045 &I, m_c_BinOp(
1046 AddOp,
1047 m_CombineOr(
1048 m_OneUse(m_BinOp(
1049 Mul2Op, m_BinOp(MulOp, m_Value(A), m_Value(B)), M2Rhs)),
1050 m_OneUse(m_c_BinOp(MulOp, m_BinOp(Mul2Op, m_Value(A), M2Rhs),
1051 m_Value(B)))),
1052 m_OneUse(
1053 m_c_BinOp(AddOp, m_BinOp(MulOp, m_Deferred(A), m_Deferred(A)),
1054 m_BinOp(MulOp, m_Deferred(B), m_Deferred(B))))));
1057 // Fold integer variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1058 Instruction *InstCombinerImpl::foldSquareSumInt(BinaryOperator &I) {
1059 Value *A, *B;
1060 if (matchesSquareSum</*FP*/ false>(I, m_SpecificInt(1), A, B)) {
1061 Value *AB = Builder.CreateAdd(A, B);
1062 return BinaryOperator::CreateMul(AB, AB);
1064 return nullptr;
1067 // Fold floating point variations of a^2 + 2*a*b + b^2 -> (a + b)^2
1068 // Requires `nsz` and `reassoc`.
1069 Instruction *InstCombinerImpl::foldSquareSumFP(BinaryOperator &I) {
1070 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() && "Assumption mismatch");
1071 Value *A, *B;
1072 if (matchesSquareSum</*FP*/ true>(I, m_SpecificFP(2.0), A, B)) {
1073 Value *AB = Builder.CreateFAddFMF(A, B, &I);
1074 return BinaryOperator::CreateFMulFMF(AB, AB, &I);
1076 return nullptr;
1079 // Matches multiplication expression Op * C where C is a constant. Returns the
1080 // constant value in C and the other operand in Op. Returns true if such a
1081 // match is found.
1082 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
1083 const APInt *AI;
1084 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
1085 C = *AI;
1086 return true;
1088 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
1089 C = APInt(AI->getBitWidth(), 1);
1090 C <<= *AI;
1091 return true;
1093 return false;
1096 // Matches remainder expression Op % C where C is a constant. Returns the
1097 // constant value in C and the other operand in Op. Returns the signedness of
1098 // the remainder operation in IsSigned. Returns true if such a match is
1099 // found.
1100 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
1101 const APInt *AI;
1102 IsSigned = false;
1103 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
1104 IsSigned = true;
1105 C = *AI;
1106 return true;
1108 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
1109 C = *AI;
1110 return true;
1112 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
1113 C = *AI + 1;
1114 return true;
1116 return false;
1119 // Matches division expression Op / C with the given signedness as indicated
1120 // by IsSigned, where C is a constant. Returns the constant value in C and the
1121 // other operand in Op. Returns true if such a match is found.
1122 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
1123 const APInt *AI;
1124 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
1125 C = *AI;
1126 return true;
1128 if (!IsSigned) {
1129 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
1130 C = *AI;
1131 return true;
1133 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1134 C = APInt(AI->getBitWidth(), 1);
1135 C <<= *AI;
1136 return true;
1139 return false;
1142 // Returns whether C0 * C1 with the given signedness overflows.
1143 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1144 bool overflow;
1145 if (IsSigned)
1146 (void)C0.smul_ov(C1, overflow);
1147 else
1148 (void)C0.umul_ov(C1, overflow);
1149 return overflow;
1152 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1153 // does not overflow.
1154 // Simplifies (X / C0) * C1 + (X % C0) * C2 to
1155 // (X / C0) * (C1 - C2 * C0) + X * C2
1156 Value *InstCombinerImpl::SimplifyAddWithRemainder(BinaryOperator &I) {
1157 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1158 Value *X, *MulOpV;
1159 APInt C0, MulOpC;
1160 bool IsSigned;
1161 // Match I = X % C0 + MulOpV * C0
1162 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1163 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1164 C0 == MulOpC) {
1165 Value *RemOpV;
1166 APInt C1;
1167 bool Rem2IsSigned;
1168 // Match MulOpC = RemOpV % C1
1169 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1170 IsSigned == Rem2IsSigned) {
1171 Value *DivOpV;
1172 APInt DivOpC;
1173 // Match RemOpV = X / C0
1174 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1175 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1176 Value *NewDivisor = ConstantInt::get(X->getType(), C0 * C1);
1177 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1178 : Builder.CreateURem(X, NewDivisor, "urem");
1183 // Match I = (X / C0) * C1 + (X % C0) * C2
1184 Value *Div, *Rem;
1185 APInt C1, C2;
1186 if (!LHS->hasOneUse() || !MatchMul(LHS, Div, C1))
1187 Div = LHS, C1 = APInt(I.getType()->getScalarSizeInBits(), 1);
1188 if (!RHS->hasOneUse() || !MatchMul(RHS, Rem, C2))
1189 Rem = RHS, C2 = APInt(I.getType()->getScalarSizeInBits(), 1);
1190 if (match(Div, m_IRem(m_Value(), m_Value()))) {
1191 std::swap(Div, Rem);
1192 std::swap(C1, C2);
1194 Value *DivOpV;
1195 APInt DivOpC;
1196 if (MatchRem(Rem, X, C0, IsSigned) &&
1197 MatchDiv(Div, DivOpV, DivOpC, IsSigned) && X == DivOpV && C0 == DivOpC) {
1198 APInt NewC = C1 - C2 * C0;
1199 if (!NewC.isZero() && !Rem->hasOneUse())
1200 return nullptr;
1201 if (!isGuaranteedNotToBeUndef(X, &AC, &I, &DT))
1202 return nullptr;
1203 Value *MulXC2 = Builder.CreateMul(X, ConstantInt::get(X->getType(), C2));
1204 if (NewC.isZero())
1205 return MulXC2;
1206 return Builder.CreateAdd(
1207 Builder.CreateMul(Div, ConstantInt::get(X->getType(), NewC)), MulXC2);
1210 return nullptr;
1213 /// Fold
1214 /// (1 << NBits) - 1
1215 /// Into:
1216 /// ~(-(1 << NBits))
1217 /// Because a 'not' is better for bit-tracking analysis and other transforms
1218 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1219 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1220 InstCombiner::BuilderTy &Builder) {
1221 Value *NBits;
1222 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1223 return nullptr;
1225 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1226 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1227 // Be wary of constant folding.
1228 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1229 // Always NSW. But NUW propagates from `add`.
1230 BOp->setHasNoSignedWrap();
1231 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1234 return BinaryOperator::CreateNot(NotMask, I.getName());
1237 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1238 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1239 Type *Ty = I.getType();
1240 auto getUAddSat = [&]() {
1241 return Intrinsic::getOrInsertDeclaration(I.getModule(), Intrinsic::uadd_sat,
1242 Ty);
1245 // add (umin X, ~Y), Y --> uaddsat X, Y
1246 Value *X, *Y;
1247 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1248 m_Deferred(Y))))
1249 return CallInst::Create(getUAddSat(), { X, Y });
1251 // add (umin X, ~C), C --> uaddsat X, C
1252 const APInt *C, *NotC;
1253 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1254 *C == ~*NotC)
1255 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1257 return nullptr;
1260 // Transform:
1261 // (add A, (shl (neg B), Y))
1262 // -> (sub A, (shl B, Y))
1263 static Instruction *combineAddSubWithShlAddSub(InstCombiner::BuilderTy &Builder,
1264 const BinaryOperator &I) {
1265 Value *A, *B, *Cnt;
1266 if (match(&I,
1267 m_c_Add(m_OneUse(m_Shl(m_OneUse(m_Neg(m_Value(B))), m_Value(Cnt))),
1268 m_Value(A)))) {
1269 Value *NewShl = Builder.CreateShl(B, Cnt);
1270 return BinaryOperator::CreateSub(A, NewShl);
1272 return nullptr;
1275 /// Try to reduce signed division by power-of-2 to an arithmetic shift right.
1276 static Instruction *foldAddToAshr(BinaryOperator &Add) {
1277 // Division must be by power-of-2, but not the minimum signed value.
1278 Value *X;
1279 const APInt *DivC;
1280 if (!match(Add.getOperand(0), m_SDiv(m_Value(X), m_Power2(DivC))) ||
1281 DivC->isNegative())
1282 return nullptr;
1284 // Rounding is done by adding -1 if the dividend (X) is negative and has any
1285 // low bits set. It recognizes two canonical patterns:
1286 // 1. For an 'ugt' cmp with the signed minimum value (SMIN), the
1287 // pattern is: sext (icmp ugt (X & (DivC - 1)), SMIN).
1288 // 2. For an 'eq' cmp, the pattern's: sext (icmp eq X & (SMIN + 1), SMIN + 1).
1289 // Note that, by the time we end up here, if possible, ugt has been
1290 // canonicalized into eq.
1291 const APInt *MaskC, *MaskCCmp;
1292 CmpPredicate Pred;
1293 if (!match(Add.getOperand(1),
1294 m_SExt(m_ICmp(Pred, m_And(m_Specific(X), m_APInt(MaskC)),
1295 m_APInt(MaskCCmp)))))
1296 return nullptr;
1298 if ((Pred != ICmpInst::ICMP_UGT || !MaskCCmp->isSignMask()) &&
1299 (Pred != ICmpInst::ICMP_EQ || *MaskCCmp != *MaskC))
1300 return nullptr;
1302 APInt SMin = APInt::getSignedMinValue(Add.getType()->getScalarSizeInBits());
1303 bool IsMaskValid = Pred == ICmpInst::ICMP_UGT
1304 ? (*MaskC == (SMin | (*DivC - 1)))
1305 : (*DivC == 2 && *MaskC == SMin + 1);
1306 if (!IsMaskValid)
1307 return nullptr;
1309 // (X / DivC) + sext ((X & (SMin | (DivC - 1)) >u SMin) --> X >>s log2(DivC)
1310 return BinaryOperator::CreateAShr(
1311 X, ConstantInt::get(Add.getType(), DivC->exactLogBase2()));
1314 Instruction *InstCombinerImpl::foldAddLikeCommutative(Value *LHS, Value *RHS,
1315 bool NSW, bool NUW) {
1316 Value *A, *B, *C;
1317 if (match(LHS, m_Sub(m_Value(A), m_Value(B))) &&
1318 match(RHS, m_Sub(m_Value(C), m_Specific(A)))) {
1319 Instruction *R = BinaryOperator::CreateSub(C, B);
1320 bool NSWOut = NSW && match(LHS, m_NSWSub(m_Value(), m_Value())) &&
1321 match(RHS, m_NSWSub(m_Value(), m_Value()));
1323 bool NUWOut = match(LHS, m_NUWSub(m_Value(), m_Value())) &&
1324 match(RHS, m_NUWSub(m_Value(), m_Value()));
1325 R->setHasNoSignedWrap(NSWOut);
1326 R->setHasNoUnsignedWrap(NUWOut);
1327 return R;
1330 // ((X s/ C1) << C2) + X => X s% -C1 where -C1 is 1 << C2
1331 const APInt *C1, *C2;
1332 if (match(LHS, m_Shl(m_SDiv(m_Specific(RHS), m_APInt(C1)), m_APInt(C2)))) {
1333 APInt One(C2->getBitWidth(), 1);
1334 APInt MinusC1 = -(*C1);
1335 if (MinusC1 == (One << *C2)) {
1336 Constant *NewRHS = ConstantInt::get(RHS->getType(), MinusC1);
1337 return BinaryOperator::CreateSRem(RHS, NewRHS);
1341 return nullptr;
1344 Instruction *InstCombinerImpl::
1345 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
1346 BinaryOperator &I) {
1347 assert((I.getOpcode() == Instruction::Add ||
1348 I.getOpcode() == Instruction::Or ||
1349 I.getOpcode() == Instruction::Sub) &&
1350 "Expecting add/or/sub instruction");
1352 // We have a subtraction/addition between a (potentially truncated) *logical*
1353 // right-shift of X and a "select".
1354 Value *X, *Select;
1355 Instruction *LowBitsToSkip, *Extract;
1356 if (!match(&I, m_c_BinOp(m_TruncOrSelf(m_CombineAnd(
1357 m_LShr(m_Value(X), m_Instruction(LowBitsToSkip)),
1358 m_Instruction(Extract))),
1359 m_Value(Select))))
1360 return nullptr;
1362 // `add`/`or` is commutative; but for `sub`, "select" *must* be on RHS.
1363 if (I.getOpcode() == Instruction::Sub && I.getOperand(1) != Select)
1364 return nullptr;
1366 Type *XTy = X->getType();
1367 bool HadTrunc = I.getType() != XTy;
1369 // If there was a truncation of extracted value, then we'll need to produce
1370 // one extra instruction, so we need to ensure one instruction will go away.
1371 if (HadTrunc && !match(&I, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1372 return nullptr;
1374 // Extraction should extract high NBits bits, with shift amount calculated as:
1375 // low bits to skip = shift bitwidth - high bits to extract
1376 // The shift amount itself may be extended, and we need to look past zero-ext
1377 // when matching NBits, that will matter for matching later.
1378 Value *NBits;
1379 if (!match(LowBitsToSkip,
1380 m_ZExtOrSelf(m_Sub(m_SpecificInt(XTy->getScalarSizeInBits()),
1381 m_ZExtOrSelf(m_Value(NBits))))))
1382 return nullptr;
1384 // Sign-extending value can be zero-extended if we `sub`tract it,
1385 // or sign-extended otherwise.
1386 auto SkipExtInMagic = [&I](Value *&V) {
1387 if (I.getOpcode() == Instruction::Sub)
1388 match(V, m_ZExtOrSelf(m_Value(V)));
1389 else
1390 match(V, m_SExtOrSelf(m_Value(V)));
1393 // Now, finally validate the sign-extending magic.
1394 // `select` itself may be appropriately extended, look past that.
1395 SkipExtInMagic(Select);
1397 CmpPredicate Pred;
1398 const APInt *Thr;
1399 Value *SignExtendingValue, *Zero;
1400 bool ShouldSignext;
1401 // It must be a select between two values we will later establish to be a
1402 // sign-extending value and a zero constant. The condition guarding the
1403 // sign-extension must be based on a sign bit of the same X we had in `lshr`.
1404 if (!match(Select, m_Select(m_ICmp(Pred, m_Specific(X), m_APInt(Thr)),
1405 m_Value(SignExtendingValue), m_Value(Zero))) ||
1406 !isSignBitCheck(Pred, *Thr, ShouldSignext))
1407 return nullptr;
1409 // icmp-select pair is commutative.
1410 if (!ShouldSignext)
1411 std::swap(SignExtendingValue, Zero);
1413 // If we should not perform sign-extension then we must add/or/subtract zero.
1414 if (!match(Zero, m_Zero()))
1415 return nullptr;
1416 // Otherwise, it should be some constant, left-shifted by the same NBits we
1417 // had in `lshr`. Said left-shift can also be appropriately extended.
1418 // Again, we must look past zero-ext when looking for NBits.
1419 SkipExtInMagic(SignExtendingValue);
1420 Constant *SignExtendingValueBaseConstant;
1421 if (!match(SignExtendingValue,
1422 m_Shl(m_Constant(SignExtendingValueBaseConstant),
1423 m_ZExtOrSelf(m_Specific(NBits)))))
1424 return nullptr;
1425 // If we `sub`, then the constant should be one, else it should be all-ones.
1426 if (I.getOpcode() == Instruction::Sub
1427 ? !match(SignExtendingValueBaseConstant, m_One())
1428 : !match(SignExtendingValueBaseConstant, m_AllOnes()))
1429 return nullptr;
1431 auto *NewAShr = BinaryOperator::CreateAShr(X, LowBitsToSkip,
1432 Extract->getName() + ".sext");
1433 NewAShr->copyIRFlags(Extract); // Preserve `exact`-ness.
1434 if (!HadTrunc)
1435 return NewAShr;
1437 Builder.Insert(NewAShr);
1438 return TruncInst::CreateTruncOrBitCast(NewAShr, I.getType());
1441 /// This is a specialization of a more general transform from
1442 /// foldUsingDistributiveLaws. If that code can be made to work optimally
1443 /// for multi-use cases or propagating nsw/nuw, then we would not need this.
1444 static Instruction *factorizeMathWithShlOps(BinaryOperator &I,
1445 InstCombiner::BuilderTy &Builder) {
1446 // TODO: Also handle mul by doubling the shift amount?
1447 assert((I.getOpcode() == Instruction::Add ||
1448 I.getOpcode() == Instruction::Sub) &&
1449 "Expected add/sub");
1450 auto *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
1451 auto *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
1452 if (!Op0 || !Op1 || !(Op0->hasOneUse() || Op1->hasOneUse()))
1453 return nullptr;
1455 Value *X, *Y, *ShAmt;
1456 if (!match(Op0, m_Shl(m_Value(X), m_Value(ShAmt))) ||
1457 !match(Op1, m_Shl(m_Value(Y), m_Specific(ShAmt))))
1458 return nullptr;
1460 // No-wrap propagates only when all ops have no-wrap.
1461 bool HasNSW = I.hasNoSignedWrap() && Op0->hasNoSignedWrap() &&
1462 Op1->hasNoSignedWrap();
1463 bool HasNUW = I.hasNoUnsignedWrap() && Op0->hasNoUnsignedWrap() &&
1464 Op1->hasNoUnsignedWrap();
1466 // add/sub (X << ShAmt), (Y << ShAmt) --> (add/sub X, Y) << ShAmt
1467 Value *NewMath = Builder.CreateBinOp(I.getOpcode(), X, Y);
1468 if (auto *NewI = dyn_cast<BinaryOperator>(NewMath)) {
1469 NewI->setHasNoSignedWrap(HasNSW);
1470 NewI->setHasNoUnsignedWrap(HasNUW);
1472 auto *NewShl = BinaryOperator::CreateShl(NewMath, ShAmt);
1473 NewShl->setHasNoSignedWrap(HasNSW);
1474 NewShl->setHasNoUnsignedWrap(HasNUW);
1475 return NewShl;
1478 /// Reduce a sequence of masked half-width multiplies to a single multiply.
1479 /// ((XLow * YHigh) + (YLow * XHigh)) << HalfBits) + (XLow * YLow) --> X * Y
1480 static Instruction *foldBoxMultiply(BinaryOperator &I) {
1481 unsigned BitWidth = I.getType()->getScalarSizeInBits();
1482 // Skip the odd bitwidth types.
1483 if ((BitWidth & 0x1))
1484 return nullptr;
1486 unsigned HalfBits = BitWidth >> 1;
1487 APInt HalfMask = APInt::getMaxValue(HalfBits);
1489 // ResLo = (CrossSum << HalfBits) + (YLo * XLo)
1490 Value *XLo, *YLo;
1491 Value *CrossSum;
1492 // Require one-use on the multiply to avoid increasing the number of
1493 // multiplications.
1494 if (!match(&I, m_c_Add(m_Shl(m_Value(CrossSum), m_SpecificInt(HalfBits)),
1495 m_OneUse(m_Mul(m_Value(YLo), m_Value(XLo))))))
1496 return nullptr;
1498 // XLo = X & HalfMask
1499 // YLo = Y & HalfMask
1500 // TODO: Refactor with SimplifyDemandedBits or KnownBits known leading zeros
1501 // to enhance robustness
1502 Value *X, *Y;
1503 if (!match(XLo, m_And(m_Value(X), m_SpecificInt(HalfMask))) ||
1504 !match(YLo, m_And(m_Value(Y), m_SpecificInt(HalfMask))))
1505 return nullptr;
1507 // CrossSum = (X' * (Y >> Halfbits)) + (Y' * (X >> HalfBits))
1508 // X' can be either X or XLo in the pattern (and the same for Y')
1509 if (match(CrossSum,
1510 m_c_Add(m_c_Mul(m_LShr(m_Specific(Y), m_SpecificInt(HalfBits)),
1511 m_CombineOr(m_Specific(X), m_Specific(XLo))),
1512 m_c_Mul(m_LShr(m_Specific(X), m_SpecificInt(HalfBits)),
1513 m_CombineOr(m_Specific(Y), m_Specific(YLo))))))
1514 return BinaryOperator::CreateMul(X, Y);
1516 return nullptr;
1519 Instruction *InstCombinerImpl::visitAdd(BinaryOperator &I) {
1520 if (Value *V = simplifyAddInst(I.getOperand(0), I.getOperand(1),
1521 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1522 SQ.getWithInstruction(&I)))
1523 return replaceInstUsesWith(I, V);
1525 if (SimplifyAssociativeOrCommutative(I))
1526 return &I;
1528 if (Instruction *X = foldVectorBinop(I))
1529 return X;
1531 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1532 return Phi;
1534 // (A*B)+(A*C) -> A*(B+C) etc
1535 if (Value *V = foldUsingDistributiveLaws(I))
1536 return replaceInstUsesWith(I, V);
1538 if (Instruction *R = foldBoxMultiply(I))
1539 return R;
1541 if (Instruction *R = factorizeMathWithShlOps(I, Builder))
1542 return R;
1544 if (Instruction *X = foldAddWithConstant(I))
1545 return X;
1547 if (Instruction *X = foldNoWrapAdd(I, Builder))
1548 return X;
1550 if (Instruction *R = foldBinOpShiftWithShift(I))
1551 return R;
1553 if (Instruction *R = combineAddSubWithShlAddSub(Builder, I))
1554 return R;
1556 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1557 if (Instruction *R = foldAddLikeCommutative(LHS, RHS, I.hasNoSignedWrap(),
1558 I.hasNoUnsignedWrap()))
1559 return R;
1560 if (Instruction *R = foldAddLikeCommutative(RHS, LHS, I.hasNoSignedWrap(),
1561 I.hasNoUnsignedWrap()))
1562 return R;
1563 Type *Ty = I.getType();
1564 if (Ty->isIntOrIntVectorTy(1))
1565 return BinaryOperator::CreateXor(LHS, RHS);
1567 // X + X --> X << 1
1568 if (LHS == RHS) {
1569 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1570 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1571 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1572 return Shl;
1575 Value *A, *B;
1576 if (match(LHS, m_Neg(m_Value(A)))) {
1577 // -A + -B --> -(A + B)
1578 if (match(RHS, m_Neg(m_Value(B))))
1579 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1581 // -A + B --> B - A
1582 auto *Sub = BinaryOperator::CreateSub(RHS, A);
1583 auto *OB0 = cast<OverflowingBinaryOperator>(LHS);
1584 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OB0->hasNoSignedWrap());
1586 return Sub;
1589 // A + -B --> A - B
1590 if (match(RHS, m_Neg(m_Value(B)))) {
1591 auto *Sub = BinaryOperator::CreateSub(LHS, B);
1592 auto *OBO = cast<OverflowingBinaryOperator>(RHS);
1593 Sub->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO->hasNoSignedWrap());
1594 return Sub;
1597 if (Value *V = checkForNegativeOperand(I, Builder))
1598 return replaceInstUsesWith(I, V);
1600 // (A + 1) + ~B --> A - B
1601 // ~B + (A + 1) --> A - B
1602 // (~B + A) + 1 --> A - B
1603 // (A + ~B) + 1 --> A - B
1604 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1605 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1606 return BinaryOperator::CreateSub(A, B);
1608 // (A + RHS) + RHS --> A + (RHS << 1)
1609 if (match(LHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(RHS)))))
1610 return BinaryOperator::CreateAdd(A, Builder.CreateShl(RHS, 1, "reass.add"));
1612 // LHS + (A + LHS) --> A + (LHS << 1)
1613 if (match(RHS, m_OneUse(m_c_Add(m_Value(A), m_Specific(LHS)))))
1614 return BinaryOperator::CreateAdd(A, Builder.CreateShl(LHS, 1, "reass.add"));
1617 // (A + C1) + (C2 - B) --> (A - B) + (C1 + C2)
1618 Constant *C1, *C2;
1619 if (match(&I, m_c_Add(m_Add(m_Value(A), m_ImmConstant(C1)),
1620 m_Sub(m_ImmConstant(C2), m_Value(B)))) &&
1621 (LHS->hasOneUse() || RHS->hasOneUse())) {
1622 Value *Sub = Builder.CreateSub(A, B);
1623 return BinaryOperator::CreateAdd(Sub, ConstantExpr::getAdd(C1, C2));
1626 // Canonicalize a constant sub operand as an add operand for better folding:
1627 // (C1 - A) + B --> (B - A) + C1
1628 if (match(&I, m_c_Add(m_OneUse(m_Sub(m_ImmConstant(C1), m_Value(A))),
1629 m_Value(B)))) {
1630 Value *Sub = Builder.CreateSub(B, A, "reass.sub");
1631 return BinaryOperator::CreateAdd(Sub, C1);
1635 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1636 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1638 const APInt *C1;
1639 // (A & 2^C1) + A => A & (2^C1 - 1) iff bit C1 in A is a sign bit
1640 if (match(&I, m_c_Add(m_And(m_Value(A), m_APInt(C1)), m_Deferred(A))) &&
1641 C1->isPowerOf2() && (ComputeNumSignBits(A) > C1->countl_zero())) {
1642 Constant *NewMask = ConstantInt::get(RHS->getType(), *C1 - 1);
1643 return BinaryOperator::CreateAnd(A, NewMask);
1646 // ZExt (B - A) + ZExt(A) --> ZExt(B)
1647 if ((match(RHS, m_ZExt(m_Value(A))) &&
1648 match(LHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))) ||
1649 (match(LHS, m_ZExt(m_Value(A))) &&
1650 match(RHS, m_ZExt(m_NUWSub(m_Value(B), m_Specific(A))))))
1651 return new ZExtInst(B, LHS->getType());
1653 // zext(A) + sext(A) --> 0 if A is i1
1654 if (match(&I, m_c_BinOp(m_ZExt(m_Value(A)), m_SExt(m_Deferred(A)))) &&
1655 A->getType()->isIntOrIntVectorTy(1))
1656 return replaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1658 // sext(A < B) + zext(A > B) => ucmp/scmp(A, B)
1659 CmpPredicate LTPred, GTPred;
1660 if (match(&I,
1661 m_c_Add(m_SExt(m_c_ICmp(LTPred, m_Value(A), m_Value(B))),
1662 m_ZExt(m_c_ICmp(GTPred, m_Deferred(A), m_Deferred(B))))) &&
1663 A->getType()->isIntOrIntVectorTy()) {
1664 if (ICmpInst::isGT(LTPred)) {
1665 std::swap(LTPred, GTPred);
1666 std::swap(A, B);
1669 if (ICmpInst::isLT(LTPred) && ICmpInst::isGT(GTPred) &&
1670 ICmpInst::isSigned(LTPred) == ICmpInst::isSigned(GTPred))
1671 return replaceInstUsesWith(
1672 I, Builder.CreateIntrinsic(
1674 ICmpInst::isSigned(LTPred) ? Intrinsic::scmp : Intrinsic::ucmp,
1675 {A, B}));
1678 // A+B --> A|B iff A and B have no bits set in common.
1679 WithCache<const Value *> LHSCache(LHS), RHSCache(RHS);
1680 if (haveNoCommonBitsSet(LHSCache, RHSCache, SQ.getWithInstruction(&I)))
1681 return BinaryOperator::CreateDisjointOr(LHS, RHS);
1683 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1684 return Ext;
1686 // (add (xor A, B) (and A, B)) --> (or A, B)
1687 // (add (and A, B) (xor A, B)) --> (or A, B)
1688 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1689 m_c_And(m_Deferred(A), m_Deferred(B)))))
1690 return BinaryOperator::CreateOr(A, B);
1692 // (add (or A, B) (and A, B)) --> (add A, B)
1693 // (add (and A, B) (or A, B)) --> (add A, B)
1694 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1695 m_c_And(m_Deferred(A), m_Deferred(B))))) {
1696 // Replacing operands in-place to preserve nuw/nsw flags.
1697 replaceOperand(I, 0, A);
1698 replaceOperand(I, 1, B);
1699 return &I;
1702 // (add A (or A, -A)) --> (and (add A, -1) A)
1703 // (add A (or -A, A)) --> (and (add A, -1) A)
1704 // (add (or A, -A) A) --> (and (add A, -1) A)
1705 // (add (or -A, A) A) --> (and (add A, -1) A)
1706 if (match(&I, m_c_BinOp(m_Value(A), m_OneUse(m_c_Or(m_Neg(m_Deferred(A)),
1707 m_Deferred(A)))))) {
1708 Value *Add =
1709 Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()), "",
1710 I.hasNoUnsignedWrap(), I.hasNoSignedWrap());
1711 return BinaryOperator::CreateAnd(Add, A);
1714 // Canonicalize ((A & -A) - 1) --> ((A - 1) & ~A)
1715 // Forms all commutable operations, and simplifies ctpop -> cttz folds.
1716 if (match(&I,
1717 m_Add(m_OneUse(m_c_And(m_Value(A), m_OneUse(m_Neg(m_Deferred(A))))),
1718 m_AllOnes()))) {
1719 Constant *AllOnes = ConstantInt::getAllOnesValue(RHS->getType());
1720 Value *Dec = Builder.CreateAdd(A, AllOnes);
1721 Value *Not = Builder.CreateXor(A, AllOnes);
1722 return BinaryOperator::CreateAnd(Dec, Not);
1725 // Disguised reassociation/factorization:
1726 // ~(A * C1) + A
1727 // ((A * -C1) - 1) + A
1728 // ((A * -C1) + A) - 1
1729 // (A * (1 - C1)) - 1
1730 if (match(&I,
1731 m_c_Add(m_OneUse(m_Not(m_OneUse(m_Mul(m_Value(A), m_APInt(C1))))),
1732 m_Deferred(A)))) {
1733 Type *Ty = I.getType();
1734 Constant *NewMulC = ConstantInt::get(Ty, 1 - *C1);
1735 Value *NewMul = Builder.CreateMul(A, NewMulC);
1736 return BinaryOperator::CreateAdd(NewMul, ConstantInt::getAllOnesValue(Ty));
1739 // (A * -2**C) + B --> B - (A << C)
1740 const APInt *NegPow2C;
1741 if (match(&I, m_c_Add(m_OneUse(m_Mul(m_Value(A), m_NegatedPower2(NegPow2C))),
1742 m_Value(B)))) {
1743 Constant *ShiftAmtC = ConstantInt::get(Ty, NegPow2C->countr_zero());
1744 Value *Shl = Builder.CreateShl(A, ShiftAmtC);
1745 return BinaryOperator::CreateSub(B, Shl);
1748 // Canonicalize signum variant that ends in add:
1749 // (A s>> (BW - 1)) + (zext (A s> 0)) --> (A s>> (BW - 1)) | (zext (A != 0))
1750 uint64_t BitWidth = Ty->getScalarSizeInBits();
1751 if (match(LHS, m_AShr(m_Value(A), m_SpecificIntAllowPoison(BitWidth - 1))) &&
1752 match(RHS, m_OneUse(m_ZExt(m_OneUse(m_SpecificICmp(
1753 CmpInst::ICMP_SGT, m_Specific(A), m_ZeroInt())))))) {
1754 Value *NotZero = Builder.CreateIsNotNull(A, "isnotnull");
1755 Value *Zext = Builder.CreateZExt(NotZero, Ty, "isnotnull.zext");
1756 return BinaryOperator::CreateOr(LHS, Zext);
1760 Value *Cond, *Ext;
1761 Constant *C;
1762 // (add X, (sext/zext (icmp eq X, C)))
1763 // -> (select (icmp eq X, C), (add C, (sext/zext 1)), X)
1764 auto CondMatcher = m_CombineAnd(
1765 m_Value(Cond),
1766 m_SpecificICmp(ICmpInst::ICMP_EQ, m_Deferred(A), m_ImmConstant(C)));
1768 if (match(&I,
1769 m_c_Add(m_Value(A),
1770 m_CombineAnd(m_Value(Ext), m_ZExtOrSExt(CondMatcher)))) &&
1771 Ext->hasOneUse()) {
1772 Value *Add = isa<ZExtInst>(Ext) ? InstCombiner::AddOne(C)
1773 : InstCombiner::SubOne(C);
1774 return replaceInstUsesWith(I, Builder.CreateSelect(Cond, Add, A));
1778 if (Instruction *Ashr = foldAddToAshr(I))
1779 return Ashr;
1781 // (~X) + (~Y) --> -2 - (X + Y)
1783 // To ensure we can save instructions we need to ensure that we consume both
1784 // LHS/RHS (i.e they have a `not`).
1785 bool ConsumesLHS, ConsumesRHS;
1786 if (isFreeToInvert(LHS, LHS->hasOneUse(), ConsumesLHS) && ConsumesLHS &&
1787 isFreeToInvert(RHS, RHS->hasOneUse(), ConsumesRHS) && ConsumesRHS) {
1788 Value *NotLHS = getFreelyInverted(LHS, LHS->hasOneUse(), &Builder);
1789 Value *NotRHS = getFreelyInverted(RHS, RHS->hasOneUse(), &Builder);
1790 assert(NotLHS != nullptr && NotRHS != nullptr &&
1791 "isFreeToInvert desynced with getFreelyInverted");
1792 Value *LHSPlusRHS = Builder.CreateAdd(NotLHS, NotRHS);
1793 return BinaryOperator::CreateSub(
1794 ConstantInt::getSigned(RHS->getType(), -2), LHSPlusRHS);
1798 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
1799 return R;
1801 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1802 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1803 // computeKnownBits.
1804 bool Changed = false;
1805 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHSCache, RHSCache, I)) {
1806 Changed = true;
1807 I.setHasNoSignedWrap(true);
1809 if (!I.hasNoUnsignedWrap() &&
1810 willNotOverflowUnsignedAdd(LHSCache, RHSCache, I)) {
1811 Changed = true;
1812 I.setHasNoUnsignedWrap(true);
1815 if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1816 return V;
1818 if (Instruction *V =
1819 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
1820 return V;
1822 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1823 return SatAdd;
1825 // usub.sat(A, B) + B => umax(A, B)
1826 if (match(&I, m_c_BinOp(
1827 m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Value(A), m_Value(B))),
1828 m_Deferred(B)))) {
1829 return replaceInstUsesWith(I,
1830 Builder.CreateIntrinsic(Intrinsic::umax, {I.getType()}, {A, B}));
1833 // ctpop(A) + ctpop(B) => ctpop(A | B) if A and B have no bits set in common.
1834 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(A)))) &&
1835 match(RHS, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(B)))) &&
1836 haveNoCommonBitsSet(A, B, SQ.getWithInstruction(&I)))
1837 return replaceInstUsesWith(
1838 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
1839 {Builder.CreateOr(A, B)}));
1841 // Fold the log2_ceil idiom:
1842 // zext(ctpop(A) >u/!= 1) + (ctlz(A, true) ^ (BW - 1))
1843 // -->
1844 // BW - ctlz(A - 1, false)
1845 const APInt *XorC;
1846 CmpPredicate Pred;
1847 if (match(&I,
1848 m_c_Add(
1849 m_ZExt(m_ICmp(Pred, m_Intrinsic<Intrinsic::ctpop>(m_Value(A)),
1850 m_One())),
1851 m_OneUse(m_ZExtOrSelf(m_OneUse(m_Xor(
1852 m_OneUse(m_TruncOrSelf(m_OneUse(
1853 m_Intrinsic<Intrinsic::ctlz>(m_Deferred(A), m_One())))),
1854 m_APInt(XorC))))))) &&
1855 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_NE) &&
1856 *XorC == A->getType()->getScalarSizeInBits() - 1) {
1857 Value *Sub = Builder.CreateAdd(A, Constant::getAllOnesValue(A->getType()));
1858 Value *Ctlz = Builder.CreateIntrinsic(Intrinsic::ctlz, {A->getType()},
1859 {Sub, Builder.getFalse()});
1860 Value *Ret = Builder.CreateSub(
1861 ConstantInt::get(A->getType(), A->getType()->getScalarSizeInBits()),
1862 Ctlz, "", /*HasNUW*/ true, /*HasNSW*/ true);
1863 return replaceInstUsesWith(I, Builder.CreateZExtOrTrunc(Ret, I.getType()));
1866 if (Instruction *Res = foldSquareSumInt(I))
1867 return Res;
1869 if (Instruction *Res = foldBinOpOfDisplacedShifts(I))
1870 return Res;
1872 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
1873 return Res;
1875 // Re-enqueue users of the induction variable of add recurrence if we infer
1876 // new nuw/nsw flags.
1877 if (Changed) {
1878 PHINode *PHI;
1879 Value *Start, *Step;
1880 if (matchSimpleRecurrence(&I, PHI, Start, Step))
1881 Worklist.pushUsersToWorkList(*PHI);
1884 return Changed ? &I : nullptr;
1887 /// Eliminate an op from a linear interpolation (lerp) pattern.
1888 static Instruction *factorizeLerp(BinaryOperator &I,
1889 InstCombiner::BuilderTy &Builder) {
1890 Value *X, *Y, *Z;
1891 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1892 m_OneUse(m_FSub(m_FPOne(),
1893 m_Value(Z))))),
1894 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1895 return nullptr;
1897 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1898 Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1899 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1900 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1903 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1904 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1905 InstCombiner::BuilderTy &Builder) {
1906 assert((I.getOpcode() == Instruction::FAdd ||
1907 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1908 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1909 "FP factorization requires FMF");
1911 if (Instruction *Lerp = factorizeLerp(I, Builder))
1912 return Lerp;
1914 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1915 if (!Op0->hasOneUse() || !Op1->hasOneUse())
1916 return nullptr;
1918 Value *X, *Y, *Z;
1919 bool IsFMul;
1920 if ((match(Op0, m_FMul(m_Value(X), m_Value(Z))) &&
1921 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))) ||
1922 (match(Op0, m_FMul(m_Value(Z), m_Value(X))) &&
1923 match(Op1, m_c_FMul(m_Value(Y), m_Specific(Z)))))
1924 IsFMul = true;
1925 else if (match(Op0, m_FDiv(m_Value(X), m_Value(Z))) &&
1926 match(Op1, m_FDiv(m_Value(Y), m_Specific(Z))))
1927 IsFMul = false;
1928 else
1929 return nullptr;
1931 // (X * Z) + (Y * Z) --> (X + Y) * Z
1932 // (X * Z) - (Y * Z) --> (X - Y) * Z
1933 // (X / Z) + (Y / Z) --> (X + Y) / Z
1934 // (X / Z) - (Y / Z) --> (X - Y) / Z
1935 bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1936 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1937 : Builder.CreateFSubFMF(X, Y, &I);
1939 // Bail out if we just created a denormal constant.
1940 // TODO: This is copied from a previous implementation. Is it necessary?
1941 const APFloat *C;
1942 if (match(XY, m_APFloat(C)) && !C->isNormal())
1943 return nullptr;
1945 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1946 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1949 Instruction *InstCombinerImpl::visitFAdd(BinaryOperator &I) {
1950 if (Value *V = simplifyFAddInst(I.getOperand(0), I.getOperand(1),
1951 I.getFastMathFlags(),
1952 SQ.getWithInstruction(&I)))
1953 return replaceInstUsesWith(I, V);
1955 if (SimplifyAssociativeOrCommutative(I))
1956 return &I;
1958 if (Instruction *X = foldVectorBinop(I))
1959 return X;
1961 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1962 return Phi;
1964 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1965 return FoldedFAdd;
1967 // (-X) + Y --> Y - X
1968 Value *X, *Y;
1969 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1970 return BinaryOperator::CreateFSubFMF(Y, X, &I);
1972 // Similar to above, but look through fmul/fdiv for the negated term.
1973 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1974 Value *Z;
1975 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1976 m_Value(Z)))) {
1977 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1978 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1980 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1981 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1982 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1983 m_Value(Z))) ||
1984 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1985 m_Value(Z)))) {
1986 Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1987 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1990 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1991 // integer add followed by a promotion.
1992 if (Instruction *R = foldFBinOpOfIntCasts(I))
1993 return R;
1995 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1996 // Handle specials cases for FAdd with selects feeding the operation
1997 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1998 return replaceInstUsesWith(I, V);
2000 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2001 if (Instruction *F = factorizeFAddFSub(I, Builder))
2002 return F;
2004 if (Instruction *F = foldSquareSumFP(I))
2005 return F;
2007 // Try to fold fadd into start value of reduction intrinsic.
2008 if (match(&I, m_c_FAdd(m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
2009 m_AnyZeroFP(), m_Value(X))),
2010 m_Value(Y)))) {
2011 // fadd (rdx 0.0, X), Y --> rdx Y, X
2012 return replaceInstUsesWith(
2013 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2014 {X->getType()}, {Y, X}, &I));
2016 const APFloat *StartC, *C;
2017 if (match(LHS, m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(
2018 m_APFloat(StartC), m_Value(X)))) &&
2019 match(RHS, m_APFloat(C))) {
2020 // fadd (rdx StartC, X), C --> rdx (C + StartC), X
2021 Constant *NewStartC = ConstantFP::get(I.getType(), *C + *StartC);
2022 return replaceInstUsesWith(
2023 I, Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
2024 {X->getType()}, {NewStartC, X}, &I));
2027 // (X * MulC) + X --> X * (MulC + 1.0)
2028 Constant *MulC;
2029 if (match(&I, m_c_FAdd(m_FMul(m_Value(X), m_ImmConstant(MulC)),
2030 m_Deferred(X)))) {
2031 if (Constant *NewMulC = ConstantFoldBinaryOpOperands(
2032 Instruction::FAdd, MulC, ConstantFP::get(I.getType(), 1.0), DL))
2033 return BinaryOperator::CreateFMulFMF(X, NewMulC, &I);
2036 // (-X - Y) + (X + Z) --> Z - Y
2037 if (match(&I, m_c_FAdd(m_FSub(m_FNeg(m_Value(X)), m_Value(Y)),
2038 m_c_FAdd(m_Deferred(X), m_Value(Z)))))
2039 return BinaryOperator::CreateFSubFMF(Z, Y, &I);
2041 if (Value *V = FAddCombine(Builder).simplify(&I))
2042 return replaceInstUsesWith(I, V);
2045 // minumum(X, Y) + maximum(X, Y) => X + Y.
2046 if (match(&I,
2047 m_c_FAdd(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
2048 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
2049 m_Deferred(Y))))) {
2050 BinaryOperator *Result = BinaryOperator::CreateFAddFMF(X, Y, &I);
2051 // We cannot preserve ninf if nnan flag is not set.
2052 // If X is NaN and Y is Inf then in original program we had NaN + NaN,
2053 // while in optimized version NaN + Inf and this is a poison with ninf flag.
2054 if (!Result->hasNoNaNs())
2055 Result->setHasNoInfs(false);
2056 return Result;
2059 return nullptr;
2062 /// Optimize pointer differences into the same array into a size. Consider:
2063 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
2064 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
2065 Value *InstCombinerImpl::OptimizePointerDifference(Value *LHS, Value *RHS,
2066 Type *Ty, bool IsNUW) {
2067 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
2068 // this.
2069 bool Swapped = false;
2070 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
2071 if (!isa<GEPOperator>(LHS) && isa<GEPOperator>(RHS)) {
2072 std::swap(LHS, RHS);
2073 Swapped = true;
2076 // Require at least one GEP with a common base pointer on both sides.
2077 if (auto *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
2078 // (gep X, ...) - X
2079 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2080 RHS->stripPointerCasts()) {
2081 GEP1 = LHSGEP;
2082 } else if (auto *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
2083 // (gep X, ...) - (gep X, ...)
2084 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
2085 RHSGEP->getOperand(0)->stripPointerCasts()) {
2086 GEP1 = LHSGEP;
2087 GEP2 = RHSGEP;
2092 if (!GEP1)
2093 return nullptr;
2095 // To avoid duplicating the offset arithmetic, rewrite the GEP to use the
2096 // computed offset. This may erase the original GEP, so be sure to cache the
2097 // nowrap flags before emitting the offset.
2098 // TODO: We should probably do this even if there is only one GEP.
2099 bool RewriteGEPs = GEP2 != nullptr;
2101 // Emit the offset of the GEP and an intptr_t.
2102 GEPNoWrapFlags GEP1NW = GEP1->getNoWrapFlags();
2103 Value *Result = EmitGEPOffset(GEP1, RewriteGEPs);
2105 // If this is a single inbounds GEP and the original sub was nuw,
2106 // then the final multiplication is also nuw.
2107 if (auto *I = dyn_cast<Instruction>(Result))
2108 if (IsNUW && !GEP2 && !Swapped && GEP1NW.isInBounds() &&
2109 I->getOpcode() == Instruction::Mul)
2110 I->setHasNoUnsignedWrap();
2112 // If we have a 2nd GEP of the same base pointer, subtract the offsets.
2113 // If both GEPs are inbounds, then the subtract does not have signed overflow.
2114 // If both GEPs are nuw and the original sub is nuw, the new sub is also nuw.
2115 if (GEP2) {
2116 GEPNoWrapFlags GEP2NW = GEP2->getNoWrapFlags();
2117 Value *Offset = EmitGEPOffset(GEP2, RewriteGEPs);
2118 Result = Builder.CreateSub(Result, Offset, "gepdiff",
2119 IsNUW && GEP1NW.hasNoUnsignedWrap() &&
2120 GEP2NW.hasNoUnsignedWrap(),
2121 GEP1NW.isInBounds() && GEP2NW.isInBounds());
2124 // If we have p - gep(p, ...) then we have to negate the result.
2125 if (Swapped)
2126 Result = Builder.CreateNeg(Result, "diff.neg");
2128 return Builder.CreateIntCast(Result, Ty, true);
2131 static Instruction *foldSubOfMinMax(BinaryOperator &I,
2132 InstCombiner::BuilderTy &Builder) {
2133 Value *Op0 = I.getOperand(0);
2134 Value *Op1 = I.getOperand(1);
2135 Type *Ty = I.getType();
2136 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op1);
2137 if (!MinMax)
2138 return nullptr;
2140 // sub(add(X,Y), s/umin(X,Y)) --> s/umax(X,Y)
2141 // sub(add(X,Y), s/umax(X,Y)) --> s/umin(X,Y)
2142 Value *X = MinMax->getLHS();
2143 Value *Y = MinMax->getRHS();
2144 if (match(Op0, m_c_Add(m_Specific(X), m_Specific(Y))) &&
2145 (Op0->hasOneUse() || Op1->hasOneUse())) {
2146 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2147 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty);
2148 return CallInst::Create(F, {X, Y});
2151 // sub(add(X,Y),umin(Y,Z)) --> add(X,usub.sat(Y,Z))
2152 // sub(add(X,Z),umin(Y,Z)) --> add(X,usub.sat(Z,Y))
2153 Value *Z;
2154 if (match(Op1, m_OneUse(m_UMin(m_Value(Y), m_Value(Z))))) {
2155 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Y), m_Value(X))))) {
2156 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Y, Z});
2157 return BinaryOperator::CreateAdd(X, USub);
2159 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Z), m_Value(X))))) {
2160 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, Ty, {Z, Y});
2161 return BinaryOperator::CreateAdd(X, USub);
2165 // sub Op0, smin((sub nsw Op0, Z), 0) --> smax Op0, Z
2166 // sub Op0, smax((sub nsw Op0, Z), 0) --> smin Op0, Z
2167 if (MinMax->isSigned() && match(Y, m_ZeroInt()) &&
2168 match(X, m_NSWSub(m_Specific(Op0), m_Value(Z)))) {
2169 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMax->getIntrinsicID());
2170 Function *F = Intrinsic::getOrInsertDeclaration(I.getModule(), InvID, Ty);
2171 return CallInst::Create(F, {Op0, Z});
2174 return nullptr;
2177 Instruction *InstCombinerImpl::visitSub(BinaryOperator &I) {
2178 if (Value *V = simplifySubInst(I.getOperand(0), I.getOperand(1),
2179 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
2180 SQ.getWithInstruction(&I)))
2181 return replaceInstUsesWith(I, V);
2183 if (Instruction *X = foldVectorBinop(I))
2184 return X;
2186 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2187 return Phi;
2189 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2191 // If this is a 'B = x-(-A)', change to B = x+A.
2192 // We deal with this without involving Negator to preserve NSW flag.
2193 if (Value *V = dyn_castNegVal(Op1)) {
2194 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
2196 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
2197 assert(BO->getOpcode() == Instruction::Sub &&
2198 "Expected a subtraction operator!");
2199 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
2200 Res->setHasNoSignedWrap(true);
2201 } else {
2202 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
2203 Res->setHasNoSignedWrap(true);
2206 return Res;
2209 // Try this before Negator to preserve NSW flag.
2210 if (Instruction *R = factorizeMathWithShlOps(I, Builder))
2211 return R;
2213 Constant *C;
2214 if (match(Op0, m_ImmConstant(C))) {
2215 Value *X;
2216 Constant *C2;
2218 // C-(X+C2) --> (C-C2)-X
2219 if (match(Op1, m_Add(m_Value(X), m_ImmConstant(C2)))) {
2220 // C-C2 never overflow, and C-(X+C2), (X+C2) has NSW/NUW
2221 // => (C-C2)-X can have NSW/NUW
2222 bool WillNotSOV = willNotOverflowSignedSub(C, C2, I);
2223 BinaryOperator *Res =
2224 BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
2225 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2226 Res->setHasNoSignedWrap(I.hasNoSignedWrap() && OBO1->hasNoSignedWrap() &&
2227 WillNotSOV);
2228 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
2229 OBO1->hasNoUnsignedWrap());
2230 return Res;
2234 auto TryToNarrowDeduceFlags = [this, &I, &Op0, &Op1]() -> Instruction * {
2235 if (Instruction *Ext = narrowMathIfNoOverflow(I))
2236 return Ext;
2238 bool Changed = false;
2239 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
2240 Changed = true;
2241 I.setHasNoSignedWrap(true);
2243 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
2244 Changed = true;
2245 I.setHasNoUnsignedWrap(true);
2248 return Changed ? &I : nullptr;
2251 // First, let's try to interpret `sub a, b` as `add a, (sub 0, b)`,
2252 // and let's try to sink `(sub 0, b)` into `b` itself. But only if this isn't
2253 // a pure negation used by a select that looks like abs/nabs.
2254 bool IsNegation = match(Op0, m_ZeroInt());
2255 if (!IsNegation || none_of(I.users(), [&I, Op1](const User *U) {
2256 const Instruction *UI = dyn_cast<Instruction>(U);
2257 if (!UI)
2258 return false;
2259 return match(UI, m_c_Select(m_Specific(Op1), m_Specific(&I)));
2260 })) {
2261 if (Value *NegOp1 = Negator::Negate(IsNegation, /* IsNSW */ IsNegation &&
2262 I.hasNoSignedWrap(),
2263 Op1, *this))
2264 return BinaryOperator::CreateAdd(NegOp1, Op0);
2266 if (IsNegation)
2267 return TryToNarrowDeduceFlags(); // Should have been handled in Negator!
2269 // (A*B)-(A*C) -> A*(B-C) etc
2270 if (Value *V = foldUsingDistributiveLaws(I))
2271 return replaceInstUsesWith(I, V);
2273 if (I.getType()->isIntOrIntVectorTy(1))
2274 return BinaryOperator::CreateXor(Op0, Op1);
2276 // Replace (-1 - A) with (~A).
2277 if (match(Op0, m_AllOnes()))
2278 return BinaryOperator::CreateNot(Op1);
2280 // (X + -1) - Y --> ~Y + X
2281 Value *X, *Y;
2282 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
2283 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
2285 // if (C1 & C2) == C2 then (X & C1) - (X & C2) -> X & (C1 ^ C2)
2286 Constant *C1, *C2;
2287 if (match(Op0, m_And(m_Value(X), m_ImmConstant(C1))) &&
2288 match(Op1, m_And(m_Specific(X), m_ImmConstant(C2)))) {
2289 Value *AndC = ConstantFoldBinaryInstruction(Instruction::And, C1, C2);
2290 if (C2->isElementWiseEqual(AndC))
2291 return BinaryOperator::CreateAnd(
2292 X, ConstantFoldBinaryInstruction(Instruction::Xor, C1, C2));
2295 // Reassociate sub/add sequences to create more add instructions and
2296 // reduce dependency chains:
2297 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
2298 Value *Z;
2299 if (match(Op0, m_OneUse(m_c_Add(m_OneUse(m_Sub(m_Value(X), m_Value(Y))),
2300 m_Value(Z))))) {
2301 Value *XZ = Builder.CreateAdd(X, Z);
2302 Value *YW = Builder.CreateAdd(Y, Op1);
2303 return BinaryOperator::CreateSub(XZ, YW);
2306 // ((X - Y) - Op1) --> X - (Y + Op1)
2307 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y))))) {
2308 OverflowingBinaryOperator *LHSSub = cast<OverflowingBinaryOperator>(Op0);
2309 bool HasNUW = I.hasNoUnsignedWrap() && LHSSub->hasNoUnsignedWrap();
2310 bool HasNSW = HasNUW && I.hasNoSignedWrap() && LHSSub->hasNoSignedWrap();
2311 Value *Add = Builder.CreateAdd(Y, Op1, "", /* HasNUW */ HasNUW,
2312 /* HasNSW */ HasNSW);
2313 BinaryOperator *Sub = BinaryOperator::CreateSub(X, Add);
2314 Sub->setHasNoUnsignedWrap(HasNUW);
2315 Sub->setHasNoSignedWrap(HasNSW);
2316 return Sub;
2320 // (X + Z) - (Y + Z) --> (X - Y)
2321 // This is done in other passes, but we want to be able to consume this
2322 // pattern in InstCombine so we can generate it without creating infinite
2323 // loops.
2324 if (match(Op0, m_Add(m_Value(X), m_Value(Z))) &&
2325 match(Op1, m_c_Add(m_Value(Y), m_Specific(Z))))
2326 return BinaryOperator::CreateSub(X, Y);
2328 // (X + C0) - (Y + C1) --> (X - Y) + (C0 - C1)
2329 Constant *CX, *CY;
2330 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(CX)))) &&
2331 match(Op1, m_OneUse(m_Add(m_Value(Y), m_ImmConstant(CY))))) {
2332 Value *OpsSub = Builder.CreateSub(X, Y);
2333 Constant *ConstsSub = ConstantExpr::getSub(CX, CY);
2334 return BinaryOperator::CreateAdd(OpsSub, ConstsSub);
2339 Value *W, *Z;
2340 if (match(Op0, m_AddLike(m_Value(W), m_Value(X))) &&
2341 match(Op1, m_AddLike(m_Value(Y), m_Value(Z)))) {
2342 Instruction *R = nullptr;
2343 if (W == Y)
2344 R = BinaryOperator::CreateSub(X, Z);
2345 else if (W == Z)
2346 R = BinaryOperator::CreateSub(X, Y);
2347 else if (X == Y)
2348 R = BinaryOperator::CreateSub(W, Z);
2349 else if (X == Z)
2350 R = BinaryOperator::CreateSub(W, Y);
2351 if (R) {
2352 bool NSW = I.hasNoSignedWrap() &&
2353 match(Op0, m_NSWAddLike(m_Value(), m_Value())) &&
2354 match(Op1, m_NSWAddLike(m_Value(), m_Value()));
2356 bool NUW = I.hasNoUnsignedWrap() &&
2357 match(Op1, m_NUWAddLike(m_Value(), m_Value()));
2358 R->setHasNoSignedWrap(NSW);
2359 R->setHasNoUnsignedWrap(NUW);
2360 return R;
2365 // (~X) - (~Y) --> Y - X
2367 // Need to ensure we can consume at least one of the `not` instructions,
2368 // otherwise this can inf loop.
2369 bool ConsumesOp0, ConsumesOp1;
2370 if (isFreeToInvert(Op0, Op0->hasOneUse(), ConsumesOp0) &&
2371 isFreeToInvert(Op1, Op1->hasOneUse(), ConsumesOp1) &&
2372 (ConsumesOp0 || ConsumesOp1)) {
2373 Value *NotOp0 = getFreelyInverted(Op0, Op0->hasOneUse(), &Builder);
2374 Value *NotOp1 = getFreelyInverted(Op1, Op1->hasOneUse(), &Builder);
2375 assert(NotOp0 != nullptr && NotOp1 != nullptr &&
2376 "isFreeToInvert desynced with getFreelyInverted");
2377 return BinaryOperator::CreateSub(NotOp1, NotOp0);
2381 auto m_AddRdx = [](Value *&Vec) {
2382 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_add>(m_Value(Vec)));
2384 Value *V0, *V1;
2385 if (match(Op0, m_AddRdx(V0)) && match(Op1, m_AddRdx(V1)) &&
2386 V0->getType() == V1->getType()) {
2387 // Difference of sums is sum of differences:
2388 // add_rdx(V0) - add_rdx(V1) --> add_rdx(V0 - V1)
2389 Value *Sub = Builder.CreateSub(V0, V1);
2390 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_add,
2391 {Sub->getType()}, {Sub});
2392 return replaceInstUsesWith(I, Rdx);
2395 if (Constant *C = dyn_cast<Constant>(Op0)) {
2396 Value *X;
2397 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2398 // C - (zext bool) --> bool ? C - 1 : C
2399 return SelectInst::Create(X, InstCombiner::SubOne(C), C);
2400 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
2401 // C - (sext bool) --> bool ? C + 1 : C
2402 return SelectInst::Create(X, InstCombiner::AddOne(C), C);
2404 // C - ~X == X + (1+C)
2405 if (match(Op1, m_Not(m_Value(X))))
2406 return BinaryOperator::CreateAdd(X, InstCombiner::AddOne(C));
2408 // Try to fold constant sub into select arguments.
2409 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2410 if (Instruction *R = FoldOpIntoSelect(I, SI))
2411 return R;
2413 // Try to fold constant sub into PHI values.
2414 if (PHINode *PN = dyn_cast<PHINode>(Op1))
2415 if (Instruction *R = foldOpIntoPhi(I, PN))
2416 return R;
2418 Constant *C2;
2420 // C-(C2-X) --> X+(C-C2)
2421 if (match(Op1, m_Sub(m_ImmConstant(C2), m_Value(X))))
2422 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
2425 const APInt *Op0C;
2426 if (match(Op0, m_APInt(Op0C))) {
2427 if (Op0C->isMask()) {
2428 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
2429 // zero. We don't use information from dominating conditions so this
2430 // transform is easier to reverse if necessary.
2431 KnownBits RHSKnown = llvm::computeKnownBits(
2432 Op1, 0, SQ.getWithInstruction(&I).getWithoutDomCondCache());
2433 if ((*Op0C | RHSKnown.Zero).isAllOnes())
2434 return BinaryOperator::CreateXor(Op1, Op0);
2437 // C - ((C3 -nuw X) & C2) --> (C - (C2 & C3)) + (X & C2) when:
2438 // (C3 - ((C2 & C3) - 1)) is pow2
2439 // ((C2 + C3) & ((C2 & C3) - 1)) == ((C2 & C3) - 1)
2440 // C2 is negative pow2 || sub nuw
2441 const APInt *C2, *C3;
2442 BinaryOperator *InnerSub;
2443 if (match(Op1, m_OneUse(m_And(m_BinOp(InnerSub), m_APInt(C2)))) &&
2444 match(InnerSub, m_Sub(m_APInt(C3), m_Value(X))) &&
2445 (InnerSub->hasNoUnsignedWrap() || C2->isNegatedPowerOf2())) {
2446 APInt C2AndC3 = *C2 & *C3;
2447 APInt C2AndC3Minus1 = C2AndC3 - 1;
2448 APInt C2AddC3 = *C2 + *C3;
2449 if ((*C3 - C2AndC3Minus1).isPowerOf2() &&
2450 C2AndC3Minus1.isSubsetOf(C2AddC3)) {
2451 Value *And = Builder.CreateAnd(X, ConstantInt::get(I.getType(), *C2));
2452 return BinaryOperator::CreateAdd(
2453 And, ConstantInt::get(I.getType(), *Op0C - C2AndC3));
2459 Value *Y;
2460 // X-(X+Y) == -Y X-(Y+X) == -Y
2461 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
2462 return BinaryOperator::CreateNeg(Y);
2464 // (X-Y)-X == -Y
2465 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
2466 return BinaryOperator::CreateNeg(Y);
2469 // (sub (or A, B) (and A, B)) --> (xor A, B)
2471 Value *A, *B;
2472 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2473 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2474 return BinaryOperator::CreateXor(A, B);
2477 // (sub (add A, B) (or A, B)) --> (and A, B)
2479 Value *A, *B;
2480 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2481 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))))
2482 return BinaryOperator::CreateAnd(A, B);
2485 // (sub (add A, B) (and A, B)) --> (or A, B)
2487 Value *A, *B;
2488 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2489 match(Op1, m_c_And(m_Specific(A), m_Specific(B))))
2490 return BinaryOperator::CreateOr(A, B);
2493 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
2495 Value *A, *B;
2496 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2497 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2498 (Op0->hasOneUse() || Op1->hasOneUse()))
2499 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
2502 // (sub (or A, B), (xor A, B)) --> (and A, B)
2504 Value *A, *B;
2505 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2506 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
2507 return BinaryOperator::CreateAnd(A, B);
2510 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
2512 Value *A, *B;
2513 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2514 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
2515 (Op0->hasOneUse() || Op1->hasOneUse()))
2516 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
2520 Value *Y;
2521 // ((X | Y) - X) --> (~X & Y)
2522 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
2523 return BinaryOperator::CreateAnd(
2524 Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
2528 // (sub (and Op1, (neg X)), Op1) --> neg (and Op1, (add X, -1))
2529 Value *X;
2530 if (match(Op0, m_OneUse(m_c_And(m_Specific(Op1),
2531 m_OneUse(m_Neg(m_Value(X))))))) {
2532 return BinaryOperator::CreateNeg(Builder.CreateAnd(
2533 Op1, Builder.CreateAdd(X, Constant::getAllOnesValue(I.getType()))));
2538 // (sub (and Op1, C), Op1) --> neg (and Op1, ~C)
2539 Constant *C;
2540 if (match(Op0, m_OneUse(m_And(m_Specific(Op1), m_Constant(C))))) {
2541 return BinaryOperator::CreateNeg(
2542 Builder.CreateAnd(Op1, Builder.CreateNot(C)));
2547 // (sub (xor X, (sext C)), (sext C)) => (select C, (neg X), X)
2548 // (sub (sext C), (xor X, (sext C))) => (select C, X, (neg X))
2549 Value *C, *X;
2550 auto m_SubXorCmp = [&C, &X](Value *LHS, Value *RHS) {
2551 return match(LHS, m_OneUse(m_c_Xor(m_Value(X), m_Specific(RHS)))) &&
2552 match(RHS, m_SExt(m_Value(C))) &&
2553 (C->getType()->getScalarSizeInBits() == 1);
2555 if (m_SubXorCmp(Op0, Op1))
2556 return SelectInst::Create(C, Builder.CreateNeg(X), X);
2557 if (m_SubXorCmp(Op1, Op0))
2558 return SelectInst::Create(C, X, Builder.CreateNeg(X));
2561 if (Instruction *R = tryFoldInstWithCtpopWithNot(&I))
2562 return R;
2564 if (Instruction *R = foldSubOfMinMax(I, Builder))
2565 return R;
2568 // If we have a subtraction between some value and a select between
2569 // said value and something else, sink subtraction into select hands, i.e.:
2570 // sub (select %Cond, %TrueVal, %FalseVal), %Op1
2571 // ->
2572 // select %Cond, (sub %TrueVal, %Op1), (sub %FalseVal, %Op1)
2573 // or
2574 // sub %Op0, (select %Cond, %TrueVal, %FalseVal)
2575 // ->
2576 // select %Cond, (sub %Op0, %TrueVal), (sub %Op0, %FalseVal)
2577 // This will result in select between new subtraction and 0.
2578 auto SinkSubIntoSelect =
2579 [Ty = I.getType()](Value *Select, Value *OtherHandOfSub,
2580 auto SubBuilder) -> Instruction * {
2581 Value *Cond, *TrueVal, *FalseVal;
2582 if (!match(Select, m_OneUse(m_Select(m_Value(Cond), m_Value(TrueVal),
2583 m_Value(FalseVal)))))
2584 return nullptr;
2585 if (OtherHandOfSub != TrueVal && OtherHandOfSub != FalseVal)
2586 return nullptr;
2587 // While it is really tempting to just create two subtractions and let
2588 // InstCombine fold one of those to 0, it isn't possible to do so
2589 // because of worklist visitation order. So ugly it is.
2590 bool OtherHandOfSubIsTrueVal = OtherHandOfSub == TrueVal;
2591 Value *NewSub = SubBuilder(OtherHandOfSubIsTrueVal ? FalseVal : TrueVal);
2592 Constant *Zero = Constant::getNullValue(Ty);
2593 SelectInst *NewSel =
2594 SelectInst::Create(Cond, OtherHandOfSubIsTrueVal ? Zero : NewSub,
2595 OtherHandOfSubIsTrueVal ? NewSub : Zero);
2596 // Preserve prof metadata if any.
2597 NewSel->copyMetadata(cast<Instruction>(*Select));
2598 return NewSel;
2600 if (Instruction *NewSel = SinkSubIntoSelect(
2601 /*Select=*/Op0, /*OtherHandOfSub=*/Op1,
2602 [Builder = &Builder, Op1](Value *OtherHandOfSelect) {
2603 return Builder->CreateSub(OtherHandOfSelect,
2604 /*OtherHandOfSub=*/Op1);
2606 return NewSel;
2607 if (Instruction *NewSel = SinkSubIntoSelect(
2608 /*Select=*/Op1, /*OtherHandOfSub=*/Op0,
2609 [Builder = &Builder, Op0](Value *OtherHandOfSelect) {
2610 return Builder->CreateSub(/*OtherHandOfSub=*/Op0,
2611 OtherHandOfSelect);
2613 return NewSel;
2616 // (X - (X & Y)) --> (X & ~Y)
2617 if (match(Op1, m_c_And(m_Specific(Op0), m_Value(Y))) &&
2618 (Op1->hasOneUse() || isa<Constant>(Y)))
2619 return BinaryOperator::CreateAnd(
2620 Op0, Builder.CreateNot(Y, Y->getName() + ".not"));
2622 // ~X - Min/Max(~X, Y) -> ~Min/Max(X, ~Y) - X
2623 // ~X - Min/Max(Y, ~X) -> ~Min/Max(X, ~Y) - X
2624 // Min/Max(~X, Y) - ~X -> X - ~Min/Max(X, ~Y)
2625 // Min/Max(Y, ~X) - ~X -> X - ~Min/Max(X, ~Y)
2626 // As long as Y is freely invertible, this will be neutral or a win.
2627 // Note: We don't generate the inverse max/min, just create the 'not' of
2628 // it and let other folds do the rest.
2629 if (match(Op0, m_Not(m_Value(X))) &&
2630 match(Op1, m_c_MaxOrMin(m_Specific(Op0), m_Value(Y))) &&
2631 !Op0->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2632 Value *Not = Builder.CreateNot(Op1);
2633 return BinaryOperator::CreateSub(Not, X);
2635 if (match(Op1, m_Not(m_Value(X))) &&
2636 match(Op0, m_c_MaxOrMin(m_Specific(Op1), m_Value(Y))) &&
2637 !Op1->hasNUsesOrMore(3) && isFreeToInvert(Y, Y->hasOneUse())) {
2638 Value *Not = Builder.CreateNot(Op0);
2639 return BinaryOperator::CreateSub(X, Not);
2642 // Optimize pointer differences into the same array into a size. Consider:
2643 // &A[10] - &A[0]: we should compile this to "10".
2644 Value *LHSOp, *RHSOp;
2645 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
2646 match(Op1, m_PtrToInt(m_Value(RHSOp))))
2647 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2648 I.hasNoUnsignedWrap()))
2649 return replaceInstUsesWith(I, Res);
2651 // trunc(p)-trunc(q) -> trunc(p-q)
2652 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
2653 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
2654 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType(),
2655 /* IsNUW */ false))
2656 return replaceInstUsesWith(I, Res);
2658 if (match(Op0, m_ZExt(m_PtrToIntSameSize(DL, m_Value(LHSOp)))) &&
2659 match(Op1, m_ZExtOrSelf(m_PtrToInt(m_Value(RHSOp))))) {
2660 if (auto *GEP = dyn_cast<GEPOperator>(LHSOp)) {
2661 if (GEP->getPointerOperand() == RHSOp) {
2662 if (GEP->hasNoUnsignedWrap() || GEP->hasNoUnsignedSignedWrap()) {
2663 Value *Offset = EmitGEPOffset(GEP);
2664 Value *Res = GEP->hasNoUnsignedWrap()
2665 ? Builder.CreateZExt(
2666 Offset, I.getType(), "",
2667 /*IsNonNeg=*/GEP->hasNoUnsignedSignedWrap())
2668 : Builder.CreateSExt(Offset, I.getType());
2669 return replaceInstUsesWith(I, Res);
2675 // Canonicalize a shifty way to code absolute value to the common pattern.
2676 // There are 2 potential commuted variants.
2677 // We're relying on the fact that we only do this transform when the shift has
2678 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
2679 // instructions).
2680 Value *A;
2681 const APInt *ShAmt;
2682 Type *Ty = I.getType();
2683 unsigned BitWidth = Ty->getScalarSizeInBits();
2684 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
2685 Op1->hasNUses(2) && *ShAmt == BitWidth - 1 &&
2686 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
2687 // B = ashr i32 A, 31 ; smear the sign bit
2688 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
2689 // --> (A < 0) ? -A : A
2690 Value *IsNeg = Builder.CreateIsNeg(A);
2691 // Copy the nsw flags from the sub to the negate.
2692 Value *NegA = I.hasNoUnsignedWrap()
2693 ? Constant::getNullValue(A->getType())
2694 : Builder.CreateNeg(A, "", I.hasNoSignedWrap());
2695 return SelectInst::Create(IsNeg, NegA, A);
2698 // If we are subtracting a low-bit masked subset of some value from an add
2699 // of that same value with no low bits changed, that is clearing some low bits
2700 // of the sum:
2701 // sub (X + AddC), (X & AndC) --> and (X + AddC), ~AndC
2702 const APInt *AddC, *AndC;
2703 if (match(Op0, m_Add(m_Value(X), m_APInt(AddC))) &&
2704 match(Op1, m_And(m_Specific(X), m_APInt(AndC)))) {
2705 unsigned Cttz = AddC->countr_zero();
2706 APInt HighMask(APInt::getHighBitsSet(BitWidth, BitWidth - Cttz));
2707 if ((HighMask & *AndC).isZero())
2708 return BinaryOperator::CreateAnd(Op0, ConstantInt::get(Ty, ~(*AndC)));
2711 if (Instruction *V =
2712 canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(I))
2713 return V;
2715 // X - usub.sat(X, Y) => umin(X, Y)
2716 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::usub_sat>(m_Specific(Op0),
2717 m_Value(Y)))))
2718 return replaceInstUsesWith(
2719 I, Builder.CreateIntrinsic(Intrinsic::umin, {I.getType()}, {Op0, Y}));
2721 // umax(X, Op1) - Op1 --> usub.sat(X, Op1)
2722 // TODO: The one-use restriction is not strictly necessary, but it may
2723 // require improving other pattern matching and/or codegen.
2724 if (match(Op0, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op1)))))
2725 return replaceInstUsesWith(
2726 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op1}));
2728 // Op0 - umin(X, Op0) --> usub.sat(Op0, X)
2729 if (match(Op1, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op0)))))
2730 return replaceInstUsesWith(
2731 I, Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op0, X}));
2733 // Op0 - umax(X, Op0) --> 0 - usub.sat(X, Op0)
2734 if (match(Op1, m_OneUse(m_c_UMax(m_Value(X), m_Specific(Op0))))) {
2735 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {X, Op0});
2736 return BinaryOperator::CreateNeg(USub);
2739 // umin(X, Op1) - Op1 --> 0 - usub.sat(Op1, X)
2740 if (match(Op0, m_OneUse(m_c_UMin(m_Value(X), m_Specific(Op1))))) {
2741 Value *USub = Builder.CreateIntrinsic(Intrinsic::usub_sat, {Ty}, {Op1, X});
2742 return BinaryOperator::CreateNeg(USub);
2745 // C - ctpop(X) => ctpop(~X) if C is bitwidth
2746 if (match(Op0, m_SpecificInt(BitWidth)) &&
2747 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(X)))))
2748 return replaceInstUsesWith(
2749 I, Builder.CreateIntrinsic(Intrinsic::ctpop, {I.getType()},
2750 {Builder.CreateNot(X)}));
2752 // Reduce multiplies for difference-of-squares by factoring:
2753 // (X * X) - (Y * Y) --> (X + Y) * (X - Y)
2754 if (match(Op0, m_OneUse(m_Mul(m_Value(X), m_Deferred(X)))) &&
2755 match(Op1, m_OneUse(m_Mul(m_Value(Y), m_Deferred(Y))))) {
2756 auto *OBO0 = cast<OverflowingBinaryOperator>(Op0);
2757 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2758 bool PropagateNSW = I.hasNoSignedWrap() && OBO0->hasNoSignedWrap() &&
2759 OBO1->hasNoSignedWrap() && BitWidth > 2;
2760 bool PropagateNUW = I.hasNoUnsignedWrap() && OBO0->hasNoUnsignedWrap() &&
2761 OBO1->hasNoUnsignedWrap() && BitWidth > 1;
2762 Value *Add = Builder.CreateAdd(X, Y, "add", PropagateNUW, PropagateNSW);
2763 Value *Sub = Builder.CreateSub(X, Y, "sub", PropagateNUW, PropagateNSW);
2764 Value *Mul = Builder.CreateMul(Add, Sub, "", PropagateNUW, PropagateNSW);
2765 return replaceInstUsesWith(I, Mul);
2768 // max(X,Y) nsw/nuw - min(X,Y) --> abs(X nsw - Y)
2769 if (match(Op0, m_OneUse(m_c_SMax(m_Value(X), m_Value(Y)))) &&
2770 match(Op1, m_OneUse(m_c_SMin(m_Specific(X), m_Specific(Y))))) {
2771 if (I.hasNoUnsignedWrap() || I.hasNoSignedWrap()) {
2772 Value *Sub =
2773 Builder.CreateSub(X, Y, "sub", /*HasNUW=*/false, /*HasNSW=*/true);
2774 Value *Call =
2775 Builder.CreateBinaryIntrinsic(Intrinsic::abs, Sub, Builder.getTrue());
2776 return replaceInstUsesWith(I, Call);
2780 if (Instruction *Res = foldBinOpOfSelectAndCastOfSelectCondition(I))
2781 return Res;
2783 return TryToNarrowDeduceFlags();
2786 /// This eliminates floating-point negation in either 'fneg(X)' or
2787 /// 'fsub(-0.0, X)' form by combining into a constant operand.
2788 static Instruction *foldFNegIntoConstant(Instruction &I, const DataLayout &DL) {
2789 // This is limited with one-use because fneg is assumed better for
2790 // reassociation and cheaper in codegen than fmul/fdiv.
2791 // TODO: Should the m_OneUse restriction be removed?
2792 Instruction *FNegOp;
2793 if (!match(&I, m_FNeg(m_OneUse(m_Instruction(FNegOp)))))
2794 return nullptr;
2796 Value *X;
2797 Constant *C;
2799 // Fold negation into constant operand.
2800 // -(X * C) --> X * (-C)
2801 if (match(FNegOp, m_FMul(m_Value(X), m_Constant(C))))
2802 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2803 return BinaryOperator::CreateFMulFMF(X, NegC, &I);
2804 // -(X / C) --> X / (-C)
2805 if (match(FNegOp, m_FDiv(m_Value(X), m_Constant(C))))
2806 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2807 return BinaryOperator::CreateFDivFMF(X, NegC, &I);
2808 // -(C / X) --> (-C) / X
2809 if (match(FNegOp, m_FDiv(m_Constant(C), m_Value(X))))
2810 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL)) {
2811 Instruction *FDiv = BinaryOperator::CreateFDivFMF(NegC, X, &I);
2813 // Intersect 'nsz' and 'ninf' because those special value exceptions may
2814 // not apply to the fdiv. Everything else propagates from the fneg.
2815 // TODO: We could propagate nsz/ninf from fdiv alone?
2816 FastMathFlags FMF = I.getFastMathFlags();
2817 FastMathFlags OpFMF = FNegOp->getFastMathFlags();
2818 FDiv->setHasNoSignedZeros(FMF.noSignedZeros() && OpFMF.noSignedZeros());
2819 FDiv->setHasNoInfs(FMF.noInfs() && OpFMF.noInfs());
2820 return FDiv;
2822 // With NSZ [ counter-example with -0.0: -(-0.0 + 0.0) != 0.0 + -0.0 ]:
2823 // -(X + C) --> -X + -C --> -C - X
2824 if (I.hasNoSignedZeros() && match(FNegOp, m_FAdd(m_Value(X), m_Constant(C))))
2825 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
2826 return BinaryOperator::CreateFSubFMF(NegC, X, &I);
2828 return nullptr;
2831 Instruction *InstCombinerImpl::hoistFNegAboveFMulFDiv(Value *FNegOp,
2832 Instruction &FMFSource) {
2833 Value *X, *Y;
2834 if (match(FNegOp, m_FMul(m_Value(X), m_Value(Y)))) {
2835 // Push into RHS which is more likely to simplify (const or another fneg).
2836 // FIXME: It would be better to invert the transform.
2837 return cast<Instruction>(Builder.CreateFMulFMF(
2838 X, Builder.CreateFNegFMF(Y, &FMFSource), &FMFSource));
2841 if (match(FNegOp, m_FDiv(m_Value(X), m_Value(Y)))) {
2842 return cast<Instruction>(Builder.CreateFDivFMF(
2843 Builder.CreateFNegFMF(X, &FMFSource), Y, &FMFSource));
2846 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(FNegOp)) {
2847 // Make sure to preserve flags and metadata on the call.
2848 if (II->getIntrinsicID() == Intrinsic::ldexp) {
2849 FastMathFlags FMF = FMFSource.getFastMathFlags() | II->getFastMathFlags();
2850 CallInst *New =
2851 Builder.CreateCall(II->getCalledFunction(),
2852 {Builder.CreateFNegFMF(II->getArgOperand(0), FMF),
2853 II->getArgOperand(1)});
2854 New->setFastMathFlags(FMF);
2855 New->copyMetadata(*II);
2856 return New;
2860 return nullptr;
2863 Instruction *InstCombinerImpl::visitFNeg(UnaryOperator &I) {
2864 Value *Op = I.getOperand(0);
2866 if (Value *V = simplifyFNegInst(Op, I.getFastMathFlags(),
2867 getSimplifyQuery().getWithInstruction(&I)))
2868 return replaceInstUsesWith(I, V);
2870 if (Instruction *X = foldFNegIntoConstant(I, DL))
2871 return X;
2873 Value *X, *Y;
2875 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
2876 if (I.hasNoSignedZeros() &&
2877 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
2878 return BinaryOperator::CreateFSubFMF(Y, X, &I);
2880 Value *OneUse;
2881 if (!match(Op, m_OneUse(m_Value(OneUse))))
2882 return nullptr;
2884 if (Instruction *R = hoistFNegAboveFMulFDiv(OneUse, I))
2885 return replaceInstUsesWith(I, R);
2887 // Try to eliminate fneg if at least 1 arm of the select is negated.
2888 Value *Cond;
2889 if (match(OneUse, m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))) {
2890 // Unlike most transforms, this one is not safe to propagate nsz unless
2891 // it is present on the original select. We union the flags from the select
2892 // and fneg and then remove nsz if needed.
2893 auto propagateSelectFMF = [&](SelectInst *S, bool CommonOperand) {
2894 S->copyFastMathFlags(&I);
2895 if (auto *OldSel = dyn_cast<SelectInst>(Op)) {
2896 FastMathFlags FMF = I.getFastMathFlags() | OldSel->getFastMathFlags();
2897 S->setFastMathFlags(FMF);
2898 if (!OldSel->hasNoSignedZeros() && !CommonOperand &&
2899 !isGuaranteedNotToBeUndefOrPoison(OldSel->getCondition()))
2900 S->setHasNoSignedZeros(false);
2903 // -(Cond ? -P : Y) --> Cond ? P : -Y
2904 Value *P;
2905 if (match(X, m_FNeg(m_Value(P)))) {
2906 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2907 SelectInst *NewSel = SelectInst::Create(Cond, P, NegY);
2908 propagateSelectFMF(NewSel, P == Y);
2909 return NewSel;
2911 // -(Cond ? X : -P) --> Cond ? -X : P
2912 if (match(Y, m_FNeg(m_Value(P)))) {
2913 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2914 SelectInst *NewSel = SelectInst::Create(Cond, NegX, P);
2915 propagateSelectFMF(NewSel, P == X);
2916 return NewSel;
2919 // -(Cond ? X : C) --> Cond ? -X : -C
2920 // -(Cond ? C : Y) --> Cond ? -C : -Y
2921 if (match(X, m_ImmConstant()) || match(Y, m_ImmConstant())) {
2922 Value *NegX = Builder.CreateFNegFMF(X, &I, X->getName() + ".neg");
2923 Value *NegY = Builder.CreateFNegFMF(Y, &I, Y->getName() + ".neg");
2924 SelectInst *NewSel = SelectInst::Create(Cond, NegX, NegY);
2925 propagateSelectFMF(NewSel, /*CommonOperand=*/true);
2926 return NewSel;
2930 // fneg (copysign x, y) -> copysign x, (fneg y)
2931 if (match(OneUse, m_CopySign(m_Value(X), m_Value(Y)))) {
2932 // The source copysign has an additional value input, so we can't propagate
2933 // flags the copysign doesn't also have.
2934 FastMathFlags FMF = I.getFastMathFlags();
2935 FMF &= cast<FPMathOperator>(OneUse)->getFastMathFlags();
2936 Value *NegY = Builder.CreateFNegFMF(Y, FMF);
2937 Value *NewCopySign = Builder.CreateCopySign(X, NegY, FMF);
2938 return replaceInstUsesWith(I, NewCopySign);
2941 return nullptr;
2944 Instruction *InstCombinerImpl::visitFSub(BinaryOperator &I) {
2945 if (Value *V = simplifyFSubInst(I.getOperand(0), I.getOperand(1),
2946 I.getFastMathFlags(),
2947 getSimplifyQuery().getWithInstruction(&I)))
2948 return replaceInstUsesWith(I, V);
2950 if (Instruction *X = foldVectorBinop(I))
2951 return X;
2953 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2954 return Phi;
2956 // Subtraction from -0.0 is the canonical form of fneg.
2957 // fsub -0.0, X ==> fneg X
2958 // fsub nsz 0.0, X ==> fneg nsz X
2960 // FIXME This matcher does not respect FTZ or DAZ yet:
2961 // fsub -0.0, Denorm ==> +-0
2962 // fneg Denorm ==> -Denorm
2963 Value *Op;
2964 if (match(&I, m_FNeg(m_Value(Op))))
2965 return UnaryOperator::CreateFNegFMF(Op, &I);
2967 if (Instruction *X = foldFNegIntoConstant(I, DL))
2968 return X;
2970 if (Instruction *R = foldFBinOpOfIntCasts(I))
2971 return R;
2973 Value *X, *Y;
2974 Constant *C;
2976 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2977 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
2978 // Canonicalize to fadd to make analysis easier.
2979 // This can also help codegen because fadd is commutative.
2980 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
2981 // killed later. We still limit that particular transform with 'hasOneUse'
2982 // because an fneg is assumed better/cheaper than a generic fsub.
2983 if (I.hasNoSignedZeros() ||
2984 cannotBeNegativeZero(Op0, 0, getSimplifyQuery().getWithInstruction(&I))) {
2985 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
2986 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
2987 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2991 // (-X) - Op1 --> -(X + Op1)
2992 if (I.hasNoSignedZeros() && !isa<ConstantExpr>(Op0) &&
2993 match(Op0, m_OneUse(m_FNeg(m_Value(X))))) {
2994 Value *FAdd = Builder.CreateFAddFMF(X, Op1, &I);
2995 return UnaryOperator::CreateFNegFMF(FAdd, &I);
2998 if (isa<Constant>(Op0))
2999 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
3000 if (Instruction *NV = FoldOpIntoSelect(I, SI))
3001 return NV;
3003 // X - C --> X + (-C)
3004 // But don't transform constant expressions because there's an inverse fold
3005 // for X + (-Y) --> X - Y.
3006 if (match(Op1, m_ImmConstant(C)))
3007 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
3008 return BinaryOperator::CreateFAddFMF(Op0, NegC, &I);
3010 // X - (-Y) --> X + Y
3011 if (match(Op1, m_FNeg(m_Value(Y))))
3012 return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
3014 // Similar to above, but look through a cast of the negated value:
3015 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
3016 Type *Ty = I.getType();
3017 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
3018 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
3020 // X - (fpext(-Y)) --> X + fpext(Y)
3021 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
3022 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
3024 // Similar to above, but look through fmul/fdiv of the negated value:
3025 // Op0 - (-X * Y) --> Op0 + (X * Y)
3026 // Op0 - (Y * -X) --> Op0 + (X * Y)
3027 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
3028 Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
3029 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
3031 // Op0 - (-X / Y) --> Op0 + (X / Y)
3032 // Op0 - (X / -Y) --> Op0 + (X / Y)
3033 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
3034 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
3035 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
3036 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
3039 // Handle special cases for FSub with selects feeding the operation
3040 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
3041 return replaceInstUsesWith(I, V);
3043 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
3044 // (Y - X) - Y --> -X
3045 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
3046 return UnaryOperator::CreateFNegFMF(X, &I);
3048 // Y - (X + Y) --> -X
3049 // Y - (Y + X) --> -X
3050 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
3051 return UnaryOperator::CreateFNegFMF(X, &I);
3053 // (X * C) - X --> X * (C - 1.0)
3054 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
3055 if (Constant *CSubOne = ConstantFoldBinaryOpOperands(
3056 Instruction::FSub, C, ConstantFP::get(Ty, 1.0), DL))
3057 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
3059 // X - (X * C) --> X * (1.0 - C)
3060 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
3061 if (Constant *OneSubC = ConstantFoldBinaryOpOperands(
3062 Instruction::FSub, ConstantFP::get(Ty, 1.0), C, DL))
3063 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
3066 // Reassociate fsub/fadd sequences to create more fadd instructions and
3067 // reduce dependency chains:
3068 // ((X - Y) + Z) - Op1 --> (X + Z) - (Y + Op1)
3069 Value *Z;
3070 if (match(Op0, m_OneUse(m_c_FAdd(m_OneUse(m_FSub(m_Value(X), m_Value(Y))),
3071 m_Value(Z))))) {
3072 Value *XZ = Builder.CreateFAddFMF(X, Z, &I);
3073 Value *YW = Builder.CreateFAddFMF(Y, Op1, &I);
3074 return BinaryOperator::CreateFSubFMF(XZ, YW, &I);
3077 auto m_FaddRdx = [](Value *&Sum, Value *&Vec) {
3078 return m_OneUse(m_Intrinsic<Intrinsic::vector_reduce_fadd>(m_Value(Sum),
3079 m_Value(Vec)));
3081 Value *A0, *A1, *V0, *V1;
3082 if (match(Op0, m_FaddRdx(A0, V0)) && match(Op1, m_FaddRdx(A1, V1)) &&
3083 V0->getType() == V1->getType()) {
3084 // Difference of sums is sum of differences:
3085 // add_rdx(A0, V0) - add_rdx(A1, V1) --> add_rdx(A0, V0 - V1) - A1
3086 Value *Sub = Builder.CreateFSubFMF(V0, V1, &I);
3087 Value *Rdx = Builder.CreateIntrinsic(Intrinsic::vector_reduce_fadd,
3088 {Sub->getType()}, {A0, Sub}, &I);
3089 return BinaryOperator::CreateFSubFMF(Rdx, A1, &I);
3092 if (Instruction *F = factorizeFAddFSub(I, Builder))
3093 return F;
3095 // TODO: This performs reassociative folds for FP ops. Some fraction of the
3096 // functionality has been subsumed by simple pattern matching here and in
3097 // InstSimplify. We should let a dedicated reassociation pass handle more
3098 // complex pattern matching and remove this from InstCombine.
3099 if (Value *V = FAddCombine(Builder).simplify(&I))
3100 return replaceInstUsesWith(I, V);
3102 // (X - Y) - Op1 --> X - (Y + Op1)
3103 if (match(Op0, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
3104 Value *FAdd = Builder.CreateFAddFMF(Y, Op1, &I);
3105 return BinaryOperator::CreateFSubFMF(X, FAdd, &I);
3109 return nullptr;