[NFC][analyzer][docs] Crosslink MallocChecker's ownership attributes (#121939)
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineShifts.cpp
blobd511e79e3e48aedeab28db797de703a98da570d7
1 //===- InstCombineShifts.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitShl, visitLShr, and visitAShr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/Analysis/InstructionSimplify.h"
15 #include "llvm/IR/IntrinsicInst.h"
16 #include "llvm/IR/PatternMatch.h"
17 #include "llvm/Transforms/InstCombine/InstCombiner.h"
18 using namespace llvm;
19 using namespace PatternMatch;
21 #define DEBUG_TYPE "instcombine"
23 bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
24 Value *ShAmt1) {
25 // We have two shift amounts from two different shifts. The types of those
26 // shift amounts may not match. If that's the case let's bailout now..
27 if (ShAmt0->getType() != ShAmt1->getType())
28 return false;
30 // As input, we have the following pattern:
31 // Sh0 (Sh1 X, Q), K
32 // We want to rewrite that as:
33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
34 // While we know that originally (Q+K) would not overflow
35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
36 // shift amounts. so it may now overflow in smaller bitwidth.
37 // To ensure that does not happen, we need to ensure that the total maximal
38 // shift amount is still representable in that smaller bit width.
39 unsigned MaximalPossibleTotalShiftAmount =
40 (Sh0->getType()->getScalarSizeInBits() - 1) +
41 (Sh1->getType()->getScalarSizeInBits() - 1);
42 APInt MaximalRepresentableShiftAmount =
43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
47 // Given pattern:
48 // (x shiftopcode Q) shiftopcode K
49 // we should rewrite it as
50 // x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
52 // This is valid for any shift, but they must be identical, and we must be
53 // careful in case we have (zext(Q)+zext(K)) and look past extensions,
54 // (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
56 // AnalyzeForSignBitExtraction indicates that we will only analyze whether this
57 // pattern has any 2 right-shifts that sum to 1 less than original bit width.
58 Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
59 BinaryOperator *Sh0, const SimplifyQuery &SQ,
60 bool AnalyzeForSignBitExtraction) {
61 // Look for a shift of some instruction, ignore zext of shift amount if any.
62 Instruction *Sh0Op0;
63 Value *ShAmt0;
64 if (!match(Sh0,
65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
66 return nullptr;
68 // If there is a truncation between the two shifts, we must make note of it
69 // and look through it. The truncation imposes additional constraints on the
70 // transform.
71 Instruction *Sh1;
72 Value *Trunc = nullptr;
73 match(Sh0Op0,
74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
75 m_Instruction(Sh1)));
77 // Inner shift: (x shiftopcode ShAmt1)
78 // Like with other shift, ignore zext of shift amount if any.
79 Value *X, *ShAmt1;
80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
81 return nullptr;
83 // Verify that it would be safe to try to add those two shift amounts.
84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
85 return nullptr;
87 // We are only looking for signbit extraction if we have two right shifts.
88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
89 match(Sh1, m_Shr(m_Value(), m_Value()));
90 // ... and if it's not two right-shifts, we know the answer already.
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
92 return nullptr;
94 // The shift opcodes must be identical, unless we are just checking whether
95 // this pattern can be interpreted as a sign-bit-extraction.
96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
99 return nullptr;
101 // If we saw truncation, we'll need to produce extra instruction,
102 // and for that one of the operands of the shift must be one-use,
103 // unless of course we don't actually plan to produce any instructions here.
104 if (Trunc && !AnalyzeForSignBitExtraction &&
105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
106 return nullptr;
108 // Can we fold (ShAmt0+ShAmt1) ?
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
110 simplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
111 SQ.getWithInstruction(Sh0)));
112 if (!NewShAmt)
113 return nullptr; // Did not simplify.
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
116 // Is the new shift amount smaller than the bit width of inner/new shift?
117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
118 APInt(NewShAmtBitWidth, XBitWidth))))
119 return nullptr; // FIXME: could perform constant-folding.
121 // If there was a truncation, and we have a right-shift, we can only fold if
122 // we are left with the original sign bit. Likewise, if we were just checking
123 // that this is a sighbit extraction, this is the place to check it.
124 // FIXME: zero shift amount is also legal here, but we can't *easily* check
125 // more than one predicate so it's not really worth it.
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
127 // If it's not a sign bit extraction, then we're done.
128 if (!match(NewShAmt,
129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
131 return nullptr;
132 // If it is, and that was the question, return the base value.
133 if (AnalyzeForSignBitExtraction)
134 return X;
137 assert(IdenticalShOpcodes && "Should not get here with different shifts.");
139 if (NewShAmt->getType() != X->getType()) {
140 NewShAmt = ConstantFoldCastOperand(Instruction::ZExt, NewShAmt,
141 X->getType(), SQ.DL);
142 if (!NewShAmt)
143 return nullptr;
146 // All good, we can do this fold.
147 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
149 // The flags can only be propagated if there wasn't a trunc.
150 if (!Trunc) {
151 // If the pattern did not involve trunc, and both of the original shifts
152 // had the same flag set, preserve the flag.
153 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
154 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
155 Sh1->hasNoUnsignedWrap());
156 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
157 Sh1->hasNoSignedWrap());
158 } else {
159 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
163 Instruction *Ret = NewShift;
164 if (Trunc) {
165 Builder.Insert(NewShift);
166 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
169 return Ret;
172 // If we have some pattern that leaves only some low bits set, and then performs
173 // left-shift of those bits, if none of the bits that are left after the final
174 // shift are modified by the mask, we can omit the mask.
176 // There are many variants to this pattern:
177 // a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
178 // b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
179 // c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
180 // d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
181 // e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
182 // f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
183 // All these patterns can be simplified to just:
184 // x << ShiftShAmt
185 // iff:
186 // a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
187 // c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
188 static Instruction *
189 dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
190 const SimplifyQuery &Q,
191 InstCombiner::BuilderTy &Builder) {
192 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
193 "The input must be 'shl'!");
195 Value *Masked, *ShiftShAmt;
196 match(OuterShift,
197 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
199 // *If* there is a truncation between an outer shift and a possibly-mask,
200 // then said truncation *must* be one-use, else we can't perform the fold.
201 Value *Trunc;
202 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
203 !Trunc->hasOneUse())
204 return nullptr;
206 Type *NarrowestTy = OuterShift->getType();
207 Type *WidestTy = Masked->getType();
208 bool HadTrunc = WidestTy != NarrowestTy;
210 // The mask must be computed in a type twice as wide to ensure
211 // that no bits are lost if the sum-of-shifts is wider than the base type.
212 Type *ExtendedTy = WidestTy->getExtendedType();
214 Value *MaskShAmt;
216 // ((1 << MaskShAmt) - 1)
217 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
218 // (~(-1 << maskNbits))
219 auto MaskB = m_Not(m_Shl(m_AllOnes(), m_Value(MaskShAmt)));
220 // (-1 l>> MaskShAmt)
221 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
222 // ((-1 << MaskShAmt) l>> MaskShAmt)
223 auto MaskD =
224 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
226 Value *X;
227 Constant *NewMask;
229 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
230 // Peek through an optional zext of the shift amount.
231 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
233 // Verify that it would be safe to try to add those two shift amounts.
234 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
235 MaskShAmt))
236 return nullptr;
238 // Can we simplify (MaskShAmt+ShiftShAmt) ?
239 auto *SumOfShAmts = dyn_cast_or_null<Constant>(simplifyAddInst(
240 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
241 if (!SumOfShAmts)
242 return nullptr; // Did not simplify.
243 // In this pattern SumOfShAmts correlates with the number of low bits
244 // that shall remain in the root value (OuterShift).
246 // An extend of an undef value becomes zero because the high bits are never
247 // completely unknown. Replace the `undef` shift amounts with final
248 // shift bitwidth to ensure that the value remains undef when creating the
249 // subsequent shift op.
250 SumOfShAmts = Constant::replaceUndefsWith(
251 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
252 ExtendedTy->getScalarSizeInBits()));
253 auto *ExtendedSumOfShAmts = ConstantFoldCastOperand(
254 Instruction::ZExt, SumOfShAmts, ExtendedTy, Q.DL);
255 if (!ExtendedSumOfShAmts)
256 return nullptr;
258 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
259 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
260 Constant *ExtendedInvertedMask = ConstantFoldBinaryOpOperands(
261 Instruction::Shl, ExtendedAllOnes, ExtendedSumOfShAmts, Q.DL);
262 if (!ExtendedInvertedMask)
263 return nullptr;
265 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
266 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
267 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
268 m_Deferred(MaskShAmt)))) {
269 // Peek through an optional zext of the shift amount.
270 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
272 // Verify that it would be safe to try to add those two shift amounts.
273 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
274 MaskShAmt))
275 return nullptr;
277 // Can we simplify (ShiftShAmt-MaskShAmt) ?
278 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(simplifySubInst(
279 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
280 if (!ShAmtsDiff)
281 return nullptr; // Did not simplify.
282 // In this pattern ShAmtsDiff correlates with the number of high bits that
283 // shall be unset in the root value (OuterShift).
285 // An extend of an undef value becomes zero because the high bits are never
286 // completely unknown. Replace the `undef` shift amounts with negated
287 // bitwidth of innermost shift to ensure that the value remains undef when
288 // creating the subsequent shift op.
289 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
290 ShAmtsDiff = Constant::replaceUndefsWith(
291 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
292 -WidestTyBitWidth));
293 auto *ExtendedNumHighBitsToClear = ConstantFoldCastOperand(
294 Instruction::ZExt,
295 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
296 WidestTyBitWidth,
297 /*isSigned=*/false),
298 ShAmtsDiff),
299 ExtendedTy, Q.DL);
300 if (!ExtendedNumHighBitsToClear)
301 return nullptr;
303 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
304 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
305 NewMask = ConstantFoldBinaryOpOperands(Instruction::LShr, ExtendedAllOnes,
306 ExtendedNumHighBitsToClear, Q.DL);
307 if (!NewMask)
308 return nullptr;
309 } else
310 return nullptr; // Don't know anything about this pattern.
312 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
314 // Does this mask has any unset bits? If not then we can just not apply it.
315 bool NeedMask = !match(NewMask, m_AllOnes());
317 // If we need to apply a mask, there are several more restrictions we have.
318 if (NeedMask) {
319 // The old masking instruction must go away.
320 if (!Masked->hasOneUse())
321 return nullptr;
322 // The original "masking" instruction must not have been`ashr`.
323 if (match(Masked, m_AShr(m_Value(), m_Value())))
324 return nullptr;
327 // If we need to apply truncation, let's do it first, since we can.
328 // We have already ensured that the old truncation will go away.
329 if (HadTrunc)
330 X = Builder.CreateTrunc(X, NarrowestTy);
332 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
333 // We didn't change the Type of this outermost shift, so we can just do it.
334 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
335 OuterShift->getOperand(1));
336 if (!NeedMask)
337 return NewShift;
339 Builder.Insert(NewShift);
340 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
343 /// If we have a shift-by-constant of a bin op (bitwise logic op or add/sub w/
344 /// shl) that itself has a shift-by-constant operand with identical opcode, we
345 /// may be able to convert that into 2 independent shifts followed by the logic
346 /// op. This eliminates a use of an intermediate value (reduces dependency
347 /// chain).
348 static Instruction *foldShiftOfShiftedBinOp(BinaryOperator &I,
349 InstCombiner::BuilderTy &Builder) {
350 assert(I.isShift() && "Expected a shift as input");
351 auto *BinInst = dyn_cast<BinaryOperator>(I.getOperand(0));
352 if (!BinInst ||
353 (!BinInst->isBitwiseLogicOp() &&
354 BinInst->getOpcode() != Instruction::Add &&
355 BinInst->getOpcode() != Instruction::Sub) ||
356 !BinInst->hasOneUse())
357 return nullptr;
359 Constant *C0, *C1;
360 if (!match(I.getOperand(1), m_Constant(C1)))
361 return nullptr;
363 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
364 // Transform for add/sub only works with shl.
365 if ((BinInst->getOpcode() == Instruction::Add ||
366 BinInst->getOpcode() == Instruction::Sub) &&
367 ShiftOpcode != Instruction::Shl)
368 return nullptr;
370 Type *Ty = I.getType();
372 // Find a matching shift by constant. The fold is not valid if the sum
373 // of the shift values equals or exceeds bitwidth.
374 Value *X, *Y;
375 auto matchFirstShift = [&](Value *V, Value *W) {
376 unsigned Size = Ty->getScalarSizeInBits();
377 APInt Threshold(Size, Size);
378 return match(V, m_BinOp(ShiftOpcode, m_Value(X), m_Constant(C0))) &&
379 (V->hasOneUse() || match(W, m_ImmConstant())) &&
380 match(ConstantExpr::getAdd(C0, C1),
381 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
384 // Logic ops and Add are commutative, so check each operand for a match. Sub
385 // is not so we cannot reoder if we match operand(1) and need to keep the
386 // operands in their original positions.
387 bool FirstShiftIsOp1 = false;
388 if (matchFirstShift(BinInst->getOperand(0), BinInst->getOperand(1)))
389 Y = BinInst->getOperand(1);
390 else if (matchFirstShift(BinInst->getOperand(1), BinInst->getOperand(0))) {
391 Y = BinInst->getOperand(0);
392 FirstShiftIsOp1 = BinInst->getOpcode() == Instruction::Sub;
393 } else
394 return nullptr;
396 // shift (binop (shift X, C0), Y), C1 -> binop (shift X, C0+C1), (shift Y, C1)
397 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
398 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
399 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, C1);
400 Value *Op1 = FirstShiftIsOp1 ? NewShift2 : NewShift1;
401 Value *Op2 = FirstShiftIsOp1 ? NewShift1 : NewShift2;
402 return BinaryOperator::Create(BinInst->getOpcode(), Op1, Op2);
405 Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
406 if (Instruction *Phi = foldBinopWithPhiOperands(I))
407 return Phi;
409 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
410 assert(Op0->getType() == Op1->getType());
411 Type *Ty = I.getType();
413 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
414 Value *Y;
415 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
416 Value *NewExt = Builder.CreateZExt(Y, Ty, Op1->getName());
417 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
420 // See if we can fold away this shift.
421 if (SimplifyDemandedInstructionBits(I))
422 return &I;
424 // Try to fold constant and into select arguments.
425 if (isa<Constant>(Op0))
426 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
427 if (Instruction *R = FoldOpIntoSelect(I, SI))
428 return R;
430 Constant *CUI;
431 if (match(Op1, m_ImmConstant(CUI)))
432 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
433 return Res;
435 if (auto *NewShift = cast_or_null<Instruction>(
436 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
437 return NewShift;
439 // Pre-shift a constant shifted by a variable amount with constant offset:
440 // C shift (A add nuw C1) --> (C shift C1) shift A
441 Value *A;
442 Constant *C, *C1;
443 if (match(Op0, m_Constant(C)) &&
444 match(Op1, m_NUWAddLike(m_Value(A), m_Constant(C1)))) {
445 Value *NewC = Builder.CreateBinOp(I.getOpcode(), C, C1);
446 BinaryOperator *NewShiftOp = BinaryOperator::Create(I.getOpcode(), NewC, A);
447 if (I.getOpcode() == Instruction::Shl) {
448 NewShiftOp->setHasNoSignedWrap(I.hasNoSignedWrap());
449 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
450 } else {
451 NewShiftOp->setIsExact(I.isExact());
453 return NewShiftOp;
456 unsigned BitWidth = Ty->getScalarSizeInBits();
458 const APInt *AC, *AddC;
459 // Try to pre-shift a constant shifted by a variable amount added with a
460 // negative number:
461 // C << (X - AddC) --> (C >> AddC) << X
462 // and
463 // C >> (X - AddC) --> (C << AddC) >> X
464 if (match(Op0, m_APInt(AC)) && match(Op1, m_Add(m_Value(A), m_APInt(AddC))) &&
465 AddC->isNegative() && (-*AddC).ult(BitWidth)) {
466 assert(!AC->isZero() && "Expected simplify of shifted zero");
467 unsigned PosOffset = (-*AddC).getZExtValue();
469 auto isSuitableForPreShift = [PosOffset, &I, AC]() {
470 switch (I.getOpcode()) {
471 default:
472 return false;
473 case Instruction::Shl:
474 return (I.hasNoSignedWrap() || I.hasNoUnsignedWrap()) &&
475 AC->eq(AC->lshr(PosOffset).shl(PosOffset));
476 case Instruction::LShr:
477 return I.isExact() && AC->eq(AC->shl(PosOffset).lshr(PosOffset));
478 case Instruction::AShr:
479 return I.isExact() && AC->eq(AC->shl(PosOffset).ashr(PosOffset));
482 if (isSuitableForPreShift()) {
483 Constant *NewC = ConstantInt::get(Ty, I.getOpcode() == Instruction::Shl
484 ? AC->lshr(PosOffset)
485 : AC->shl(PosOffset));
486 BinaryOperator *NewShiftOp =
487 BinaryOperator::Create(I.getOpcode(), NewC, A);
488 if (I.getOpcode() == Instruction::Shl) {
489 NewShiftOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
490 } else {
491 NewShiftOp->setIsExact();
493 return NewShiftOp;
497 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
498 // Because shifts by negative values (which could occur if A were negative)
499 // are undefined.
500 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
501 match(C, m_Power2())) {
502 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
503 // demand the sign bit (and many others) here??
504 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(Ty, 1));
505 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
506 return replaceOperand(I, 1, Rem);
509 if (Instruction *Logic = foldShiftOfShiftedBinOp(I, Builder))
510 return Logic;
512 if (match(Op1, m_Or(m_Value(), m_SpecificInt(BitWidth - 1))))
513 return replaceOperand(I, 1, ConstantInt::get(Ty, BitWidth - 1));
515 Instruction *CmpIntr;
516 if ((I.getOpcode() == Instruction::LShr ||
517 I.getOpcode() == Instruction::AShr) &&
518 match(Op0, m_OneUse(m_Instruction(CmpIntr))) &&
519 isa<CmpIntrinsic>(CmpIntr) &&
520 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) {
521 Value *Cmp =
522 Builder.CreateICmp(cast<CmpIntrinsic>(CmpIntr)->getLTPredicate(),
523 CmpIntr->getOperand(0), CmpIntr->getOperand(1));
524 return CastInst::Create(I.getOpcode() == Instruction::LShr
525 ? Instruction::ZExt
526 : Instruction::SExt,
527 Cmp, Ty);
530 return nullptr;
533 /// Return true if we can simplify two logical (either left or right) shifts
534 /// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
535 static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
536 Instruction *InnerShift,
537 InstCombinerImpl &IC, Instruction *CxtI) {
538 assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
540 // We need constant scalar or constant splat shifts.
541 const APInt *InnerShiftConst;
542 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
543 return false;
545 // Two logical shifts in the same direction:
546 // shl (shl X, C1), C2 --> shl X, C1 + C2
547 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
548 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
549 if (IsInnerShl == IsOuterShl)
550 return true;
552 // Equal shift amounts in opposite directions become bitwise 'and':
553 // lshr (shl X, C), C --> and X, C'
554 // shl (lshr X, C), C --> and X, C'
555 if (*InnerShiftConst == OuterShAmt)
556 return true;
558 // If the 2nd shift is bigger than the 1st, we can fold:
559 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
560 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
561 // but it isn't profitable unless we know the and'd out bits are already zero.
562 // Also, check that the inner shift is valid (less than the type width) or
563 // we'll crash trying to produce the bit mask for the 'and'.
564 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
565 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
566 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
567 unsigned MaskShift =
568 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
569 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
570 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
571 return true;
574 return false;
577 /// See if we can compute the specified value, but shifted logically to the left
578 /// or right by some number of bits. This should return true if the expression
579 /// can be computed for the same cost as the current expression tree. This is
580 /// used to eliminate extraneous shifting from things like:
581 /// %C = shl i128 %A, 64
582 /// %D = shl i128 %B, 96
583 /// %E = or i128 %C, %D
584 /// %F = lshr i128 %E, 64
585 /// where the client will ask if E can be computed shifted right by 64-bits. If
586 /// this succeeds, getShiftedValue() will be called to produce the value.
587 static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
588 InstCombinerImpl &IC, Instruction *CxtI) {
589 // We can always evaluate immediate constants.
590 if (match(V, m_ImmConstant()))
591 return true;
593 Instruction *I = dyn_cast<Instruction>(V);
594 if (!I) return false;
596 // We can't mutate something that has multiple uses: doing so would
597 // require duplicating the instruction in general, which isn't profitable.
598 if (!I->hasOneUse()) return false;
600 switch (I->getOpcode()) {
601 default: return false;
602 case Instruction::And:
603 case Instruction::Or:
604 case Instruction::Xor:
605 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
606 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
607 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
609 case Instruction::Shl:
610 case Instruction::LShr:
611 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
613 case Instruction::Select: {
614 SelectInst *SI = cast<SelectInst>(I);
615 Value *TrueVal = SI->getTrueValue();
616 Value *FalseVal = SI->getFalseValue();
617 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
618 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
620 case Instruction::PHI: {
621 // We can change a phi if we can change all operands. Note that we never
622 // get into trouble with cyclic PHIs here because we only consider
623 // instructions with a single use.
624 PHINode *PN = cast<PHINode>(I);
625 for (Value *IncValue : PN->incoming_values())
626 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
627 return false;
628 return true;
630 case Instruction::Mul: {
631 const APInt *MulConst;
632 // We can fold (shr (mul X, -(1 << C)), C) -> (and (neg X), C`)
633 return !IsLeftShift && match(I->getOperand(1), m_APInt(MulConst)) &&
634 MulConst->isNegatedPowerOf2() && MulConst->countr_zero() == NumBits;
639 /// Fold OuterShift (InnerShift X, C1), C2.
640 /// See canEvaluateShiftedShift() for the constraints on these instructions.
641 static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
642 bool IsOuterShl,
643 InstCombiner::BuilderTy &Builder) {
644 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
645 Type *ShType = InnerShift->getType();
646 unsigned TypeWidth = ShType->getScalarSizeInBits();
648 // We only accept shifts-by-a-constant in canEvaluateShifted().
649 const APInt *C1;
650 match(InnerShift->getOperand(1), m_APInt(C1));
651 unsigned InnerShAmt = C1->getZExtValue();
653 // Change the shift amount and clear the appropriate IR flags.
654 auto NewInnerShift = [&](unsigned ShAmt) {
655 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
656 if (IsInnerShl) {
657 InnerShift->setHasNoUnsignedWrap(false);
658 InnerShift->setHasNoSignedWrap(false);
659 } else {
660 InnerShift->setIsExact(false);
662 return InnerShift;
665 // Two logical shifts in the same direction:
666 // shl (shl X, C1), C2 --> shl X, C1 + C2
667 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
668 if (IsInnerShl == IsOuterShl) {
669 // If this is an oversized composite shift, then unsigned shifts get 0.
670 if (InnerShAmt + OuterShAmt >= TypeWidth)
671 return Constant::getNullValue(ShType);
673 return NewInnerShift(InnerShAmt + OuterShAmt);
676 // Equal shift amounts in opposite directions become bitwise 'and':
677 // lshr (shl X, C), C --> and X, C'
678 // shl (lshr X, C), C --> and X, C'
679 if (InnerShAmt == OuterShAmt) {
680 APInt Mask = IsInnerShl
681 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
682 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
683 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
684 ConstantInt::get(ShType, Mask));
685 if (auto *AndI = dyn_cast<Instruction>(And)) {
686 AndI->moveBefore(InnerShift);
687 AndI->takeName(InnerShift);
689 return And;
692 assert(InnerShAmt > OuterShAmt &&
693 "Unexpected opposite direction logical shift pair");
695 // In general, we would need an 'and' for this transform, but
696 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
697 // lshr (shl X, C1), C2 --> shl X, C1 - C2
698 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
699 return NewInnerShift(InnerShAmt - OuterShAmt);
702 /// When canEvaluateShifted() returns true for an expression, this function
703 /// inserts the new computation that produces the shifted value.
704 static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
705 InstCombinerImpl &IC, const DataLayout &DL) {
706 // We can always evaluate constants shifted.
707 if (Constant *C = dyn_cast<Constant>(V)) {
708 if (isLeftShift)
709 return IC.Builder.CreateShl(C, NumBits);
710 else
711 return IC.Builder.CreateLShr(C, NumBits);
714 Instruction *I = cast<Instruction>(V);
715 IC.addToWorklist(I);
717 switch (I->getOpcode()) {
718 default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
719 case Instruction::And:
720 case Instruction::Or:
721 case Instruction::Xor:
722 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
723 I->setOperand(
724 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
725 I->setOperand(
726 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
727 return I;
729 case Instruction::Shl:
730 case Instruction::LShr:
731 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
732 IC.Builder);
734 case Instruction::Select:
735 I->setOperand(
736 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
737 I->setOperand(
738 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
739 return I;
740 case Instruction::PHI: {
741 // We can change a phi if we can change all operands. Note that we never
742 // get into trouble with cyclic PHIs here because we only consider
743 // instructions with a single use.
744 PHINode *PN = cast<PHINode>(I);
745 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
746 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
747 isLeftShift, IC, DL));
748 return PN;
750 case Instruction::Mul: {
751 assert(!isLeftShift && "Unexpected shift direction!");
752 auto *Neg = BinaryOperator::CreateNeg(I->getOperand(0));
753 IC.InsertNewInstWith(Neg, I->getIterator());
754 unsigned TypeWidth = I->getType()->getScalarSizeInBits();
755 APInt Mask = APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits);
756 auto *And = BinaryOperator::CreateAnd(Neg,
757 ConstantInt::get(I->getType(), Mask));
758 And->takeName(I);
759 return IC.InsertNewInstWith(And, I->getIterator());
764 // If this is a bitwise operator or add with a constant RHS we might be able
765 // to pull it through a shift.
766 static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
767 BinaryOperator *BO) {
768 switch (BO->getOpcode()) {
769 default:
770 return false; // Do not perform transform!
771 case Instruction::Add:
772 return Shift.getOpcode() == Instruction::Shl;
773 case Instruction::Or:
774 case Instruction::And:
775 return true;
776 case Instruction::Xor:
777 // Do not change a 'not' of logical shift because that would create a normal
778 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
779 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
783 Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *C1,
784 BinaryOperator &I) {
785 // (C2 << X) << C1 --> (C2 << C1) << X
786 // (C2 >> X) >> C1 --> (C2 >> C1) >> X
787 Constant *C2;
788 Value *X;
789 bool IsLeftShift = I.getOpcode() == Instruction::Shl;
790 if (match(Op0, m_BinOp(I.getOpcode(), m_ImmConstant(C2), m_Value(X)))) {
791 Instruction *R = BinaryOperator::Create(
792 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), C2, C1), X);
793 BinaryOperator *BO0 = cast<BinaryOperator>(Op0);
794 if (IsLeftShift) {
795 R->setHasNoUnsignedWrap(I.hasNoUnsignedWrap() &&
796 BO0->hasNoUnsignedWrap());
797 R->setHasNoSignedWrap(I.hasNoSignedWrap() && BO0->hasNoSignedWrap());
798 } else
799 R->setIsExact(I.isExact() && BO0->isExact());
800 return R;
803 Type *Ty = I.getType();
804 unsigned TypeBits = Ty->getScalarSizeInBits();
806 // (X / +DivC) >> (Width - 1) --> ext (X <= -DivC)
807 // (X / -DivC) >> (Width - 1) --> ext (X >= +DivC)
808 const APInt *DivC;
809 if (!IsLeftShift && match(C1, m_SpecificIntAllowPoison(TypeBits - 1)) &&
810 match(Op0, m_SDiv(m_Value(X), m_APInt(DivC))) && !DivC->isZero() &&
811 !DivC->isMinSignedValue()) {
812 Constant *NegDivC = ConstantInt::get(Ty, -(*DivC));
813 ICmpInst::Predicate Pred =
814 DivC->isNegative() ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SLE;
815 Value *Cmp = Builder.CreateICmp(Pred, X, NegDivC);
816 auto ExtOpcode = (I.getOpcode() == Instruction::AShr) ? Instruction::SExt
817 : Instruction::ZExt;
818 return CastInst::Create(ExtOpcode, Cmp, Ty);
821 const APInt *Op1C;
822 if (!match(C1, m_APInt(Op1C)))
823 return nullptr;
825 assert(!Op1C->uge(TypeBits) &&
826 "Shift over the type width should have been removed already");
828 // See if we can propagate this shift into the input, this covers the trivial
829 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
830 if (I.getOpcode() != Instruction::AShr &&
831 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
832 LLVM_DEBUG(
833 dbgs() << "ICE: GetShiftedValue propagating shift through expression"
834 " to eliminate shift:\n IN: "
835 << *Op0 << "\n SH: " << I << "\n");
837 return replaceInstUsesWith(
838 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
841 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
842 return FoldedShift;
844 if (!Op0->hasOneUse())
845 return nullptr;
847 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
848 // If the operand is a bitwise operator with a constant RHS, and the
849 // shift is the only use, we can pull it out of the shift.
850 const APInt *Op0C;
851 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
852 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
853 Value *NewRHS =
854 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(1), C1);
856 Value *NewShift =
857 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), C1);
858 NewShift->takeName(Op0BO);
860 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
865 // If we have a select that conditionally executes some binary operator,
866 // see if we can pull it the select and operator through the shift.
868 // For example, turning:
869 // shl (select C, (add X, C1), X), C2
870 // Into:
871 // Y = shl X, C2
872 // select C, (add Y, C1 << C2), Y
873 Value *Cond;
874 BinaryOperator *TBO;
875 Value *FalseVal;
876 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
877 m_Value(FalseVal)))) {
878 const APInt *C;
879 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
880 match(TBO->getOperand(1), m_APInt(C)) &&
881 canShiftBinOpWithConstantRHS(I, TBO)) {
882 Value *NewRHS =
883 Builder.CreateBinOp(I.getOpcode(), TBO->getOperand(1), C1);
885 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, C1);
886 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
887 return SelectInst::Create(Cond, NewOp, NewShift);
891 BinaryOperator *FBO;
892 Value *TrueVal;
893 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
894 m_OneUse(m_BinOp(FBO))))) {
895 const APInt *C;
896 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
897 match(FBO->getOperand(1), m_APInt(C)) &&
898 canShiftBinOpWithConstantRHS(I, FBO)) {
899 Value *NewRHS =
900 Builder.CreateBinOp(I.getOpcode(), FBO->getOperand(1), C1);
902 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, C1);
903 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
904 return SelectInst::Create(Cond, NewShift, NewOp);
908 return nullptr;
911 // Tries to perform
912 // (lshr (add (zext X), (zext Y)), K)
913 // -> (icmp ult (add X, Y), X)
914 // where
915 // - The add's operands are zexts from a K-bits integer to a bigger type.
916 // - The add is only used by the shr, or by iK (or narrower) truncates.
917 // - The lshr type has more than 2 bits (other types are boolean math).
918 // - K > 1
919 // note that
920 // - The resulting add cannot have nuw/nsw, else on overflow we get a
921 // poison value and the transform isn't legal anymore.
922 Instruction *InstCombinerImpl::foldLShrOverflowBit(BinaryOperator &I) {
923 assert(I.getOpcode() == Instruction::LShr);
925 Value *Add = I.getOperand(0);
926 Value *ShiftAmt = I.getOperand(1);
927 Type *Ty = I.getType();
929 if (Ty->getScalarSizeInBits() < 3)
930 return nullptr;
932 const APInt *ShAmtAPInt = nullptr;
933 Value *X = nullptr, *Y = nullptr;
934 if (!match(ShiftAmt, m_APInt(ShAmtAPInt)) ||
935 !match(Add,
936 m_Add(m_OneUse(m_ZExt(m_Value(X))), m_OneUse(m_ZExt(m_Value(Y))))))
937 return nullptr;
939 const unsigned ShAmt = ShAmtAPInt->getZExtValue();
940 if (ShAmt == 1)
941 return nullptr;
943 // X/Y are zexts from `ShAmt`-sized ints.
944 if (X->getType()->getScalarSizeInBits() != ShAmt ||
945 Y->getType()->getScalarSizeInBits() != ShAmt)
946 return nullptr;
948 // Make sure that `Add` is only used by `I` and `ShAmt`-truncates.
949 if (!Add->hasOneUse()) {
950 for (User *U : Add->users()) {
951 if (U == &I)
952 continue;
954 TruncInst *Trunc = dyn_cast<TruncInst>(U);
955 if (!Trunc || Trunc->getType()->getScalarSizeInBits() > ShAmt)
956 return nullptr;
960 // Insert at Add so that the newly created `NarrowAdd` will dominate it's
961 // users (i.e. `Add`'s users).
962 Instruction *AddInst = cast<Instruction>(Add);
963 Builder.SetInsertPoint(AddInst);
965 Value *NarrowAdd = Builder.CreateAdd(X, Y, "add.narrowed");
966 Value *Overflow =
967 Builder.CreateICmpULT(NarrowAdd, X, "add.narrowed.overflow");
969 // Replace the uses of the original add with a zext of the
970 // NarrowAdd's result. Note that all users at this stage are known to
971 // be ShAmt-sized truncs, or the lshr itself.
972 if (!Add->hasOneUse()) {
973 replaceInstUsesWith(*AddInst, Builder.CreateZExt(NarrowAdd, Ty));
974 eraseInstFromFunction(*AddInst);
977 // Replace the LShr with a zext of the overflow check.
978 return new ZExtInst(Overflow, Ty);
981 // Try to set nuw/nsw flags on shl or exact flag on lshr/ashr using knownbits.
982 static bool setShiftFlags(BinaryOperator &I, const SimplifyQuery &Q) {
983 assert(I.isShift() && "Expected a shift as input");
984 // We already have all the flags.
985 if (I.getOpcode() == Instruction::Shl) {
986 if (I.hasNoUnsignedWrap() && I.hasNoSignedWrap())
987 return false;
988 } else {
989 if (I.isExact())
990 return false;
992 // shr (shl X, Y), Y
993 if (match(I.getOperand(0), m_Shl(m_Value(), m_Specific(I.getOperand(1))))) {
994 I.setIsExact();
995 return true;
999 // Compute what we know about shift count.
1000 KnownBits KnownCnt = computeKnownBits(I.getOperand(1), /* Depth */ 0, Q);
1001 unsigned BitWidth = KnownCnt.getBitWidth();
1002 // Since shift produces a poison value if RHS is equal to or larger than the
1003 // bit width, we can safely assume that RHS is less than the bit width.
1004 uint64_t MaxCnt = KnownCnt.getMaxValue().getLimitedValue(BitWidth - 1);
1006 KnownBits KnownAmt = computeKnownBits(I.getOperand(0), /* Depth */ 0, Q);
1007 bool Changed = false;
1009 if (I.getOpcode() == Instruction::Shl) {
1010 // If we have as many leading zeros than maximum shift cnt we have nuw.
1011 if (!I.hasNoUnsignedWrap() && MaxCnt <= KnownAmt.countMinLeadingZeros()) {
1012 I.setHasNoUnsignedWrap();
1013 Changed = true;
1015 // If we have more sign bits than maximum shift cnt we have nsw.
1016 if (!I.hasNoSignedWrap()) {
1017 if (MaxCnt < KnownAmt.countMinSignBits() ||
1018 MaxCnt < ComputeNumSignBits(I.getOperand(0), Q.DL, /*Depth*/ 0, Q.AC,
1019 Q.CxtI, Q.DT)) {
1020 I.setHasNoSignedWrap();
1021 Changed = true;
1024 return Changed;
1027 // If we have at least as many trailing zeros as maximum count then we have
1028 // exact.
1029 Changed = MaxCnt <= KnownAmt.countMinTrailingZeros();
1030 I.setIsExact(Changed);
1032 return Changed;
1035 Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
1036 const SimplifyQuery Q = SQ.getWithInstruction(&I);
1038 if (Value *V = simplifyShlInst(I.getOperand(0), I.getOperand(1),
1039 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
1040 return replaceInstUsesWith(I, V);
1042 if (Instruction *X = foldVectorBinop(I))
1043 return X;
1045 if (Instruction *V = commonShiftTransforms(I))
1046 return V;
1048 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
1049 return V;
1051 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1052 Type *Ty = I.getType();
1053 unsigned BitWidth = Ty->getScalarSizeInBits();
1055 const APInt *C;
1056 if (match(Op1, m_APInt(C))) {
1057 unsigned ShAmtC = C->getZExtValue();
1059 // shl (zext X), C --> zext (shl X, C)
1060 // This is only valid if X would have zeros shifted out.
1061 Value *X;
1062 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
1063 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1064 if (ShAmtC < SrcWidth &&
1065 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
1066 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
1069 // (X >> C) << C --> X & (-1 << C)
1070 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
1071 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1072 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1075 const APInt *C1;
1076 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
1077 C1->ult(BitWidth)) {
1078 unsigned ShrAmt = C1->getZExtValue();
1079 if (ShrAmt < ShAmtC) {
1080 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
1081 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1082 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1083 NewShl->setHasNoUnsignedWrap(
1084 I.hasNoUnsignedWrap() ||
1085 (ShrAmt &&
1086 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1087 I.hasNoSignedWrap()));
1088 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
1089 return NewShl;
1091 if (ShrAmt > ShAmtC) {
1092 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
1093 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1094 auto *NewShr = BinaryOperator::Create(
1095 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
1096 NewShr->setIsExact(true);
1097 return NewShr;
1101 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
1102 C1->ult(BitWidth)) {
1103 unsigned ShrAmt = C1->getZExtValue();
1104 if (ShrAmt < ShAmtC) {
1105 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
1106 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
1107 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1108 NewShl->setHasNoUnsignedWrap(
1109 I.hasNoUnsignedWrap() ||
1110 (ShrAmt &&
1111 cast<Instruction>(Op0)->getOpcode() == Instruction::LShr &&
1112 I.hasNoSignedWrap()));
1113 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
1114 Builder.Insert(NewShl);
1115 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1116 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1118 if (ShrAmt > ShAmtC) {
1119 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
1120 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
1121 auto *OldShr = cast<BinaryOperator>(Op0);
1122 auto *NewShr =
1123 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
1124 NewShr->setIsExact(OldShr->isExact());
1125 Builder.Insert(NewShr);
1126 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1127 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
1131 // Similar to above, but look through an intermediate trunc instruction.
1132 BinaryOperator *Shr;
1133 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
1134 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
1135 // The larger shift direction survives through the transform.
1136 unsigned ShrAmtC = C1->getZExtValue();
1137 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
1138 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
1139 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
1141 // If C1 > C:
1142 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
1143 // If C > C1:
1144 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
1145 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
1146 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
1147 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
1148 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
1151 // If we have an opposite shift by the same amount, we may be able to
1152 // reorder binops and shifts to eliminate math/logic.
1153 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
1154 switch (BinOpcode) {
1155 default:
1156 return false;
1157 case Instruction::Add:
1158 case Instruction::And:
1159 case Instruction::Or:
1160 case Instruction::Xor:
1161 case Instruction::Sub:
1162 // NOTE: Sub is not commutable and the tranforms below may not be valid
1163 // when the shift-right is operand 1 (RHS) of the sub.
1164 return true;
1167 BinaryOperator *Op0BO;
1168 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
1169 isSuitableBinOpcode(Op0BO->getOpcode())) {
1170 // Commute so shift-right is on LHS of the binop.
1171 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
1172 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
1173 Value *Shr = Op0BO->getOperand(0);
1174 Value *Y = Op0BO->getOperand(1);
1175 Value *X;
1176 const APInt *CC;
1177 if (Op0BO->isCommutative() && Y->hasOneUse() &&
1178 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
1179 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
1180 m_APInt(CC)))))
1181 std::swap(Shr, Y);
1183 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
1184 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1185 // Y << C
1186 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1187 // (X bop (Y << C))
1188 Value *B =
1189 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
1190 unsigned Op1Val = C->getLimitedValue(BitWidth);
1191 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
1192 Constant *Mask = ConstantInt::get(Ty, Bits);
1193 return BinaryOperator::CreateAnd(B, Mask);
1196 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
1197 if (match(Shr,
1198 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
1199 m_APInt(CC))))) {
1200 // Y << C
1201 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
1202 // X & (CC << C)
1203 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
1204 X->getName() + ".mask");
1205 auto *NewOp = BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
1206 if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0BO);
1207 Disjoint && Disjoint->isDisjoint())
1208 cast<PossiblyDisjointInst>(NewOp)->setIsDisjoint(true);
1209 return NewOp;
1213 // (C1 - X) << C --> (C1 << C) - (X << C)
1214 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
1215 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
1216 Value *NewShift = Builder.CreateShl(X, Op1);
1217 return BinaryOperator::CreateSub(NewLHS, NewShift);
1221 if (setShiftFlags(I, Q))
1222 return &I;
1224 // Transform (x >> y) << y to x & (-1 << y)
1225 // Valid for any type of right-shift.
1226 Value *X;
1227 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1228 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1229 Value *Mask = Builder.CreateShl(AllOnes, Op1);
1230 return BinaryOperator::CreateAnd(Mask, X);
1233 // Transform (-1 >> y) << y to -1 << y
1234 if (match(Op0, m_LShr(m_AllOnes(), m_Specific(Op1)))) {
1235 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1236 return BinaryOperator::CreateShl(AllOnes, Op1);
1239 Constant *C1;
1240 if (match(Op1, m_ImmConstant(C1))) {
1241 Constant *C2;
1242 Value *X;
1243 // (X * C2) << C1 --> X * (C2 << C1)
1244 if (match(Op0, m_Mul(m_Value(X), m_ImmConstant(C2))))
1245 return BinaryOperator::CreateMul(X, Builder.CreateShl(C2, C1));
1247 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1248 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1249 auto *NewC = Builder.CreateShl(ConstantInt::get(Ty, 1), C1);
1250 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1254 if (match(Op0, m_One())) {
1255 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1256 if (match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1257 return BinaryOperator::CreateLShr(
1258 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1260 // Canonicalize "extract lowest set bit" using cttz to and-with-negate:
1261 // 1 << (cttz X) --> -X & X
1262 if (match(Op1,
1263 m_OneUse(m_Intrinsic<Intrinsic::cttz>(m_Value(X), m_Value())))) {
1264 Value *NegX = Builder.CreateNeg(X, "neg");
1265 return BinaryOperator::CreateAnd(NegX, X);
1269 return nullptr;
1272 Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
1273 if (Value *V = simplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1274 SQ.getWithInstruction(&I)))
1275 return replaceInstUsesWith(I, V);
1277 if (Instruction *X = foldVectorBinop(I))
1278 return X;
1280 if (Instruction *R = commonShiftTransforms(I))
1281 return R;
1283 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1284 Type *Ty = I.getType();
1285 Value *X;
1286 const APInt *C;
1287 unsigned BitWidth = Ty->getScalarSizeInBits();
1289 // (iN (~X) u>> (N - 1)) --> zext (X > -1)
1290 if (match(Op0, m_OneUse(m_Not(m_Value(X)))) &&
1291 match(Op1, m_SpecificIntAllowPoison(BitWidth - 1)))
1292 return new ZExtInst(Builder.CreateIsNotNeg(X, "isnotneg"), Ty);
1294 // ((X << nuw Z) sub nuw Y) >>u exact Z --> X sub nuw (Y >>u exact Z)
1295 Value *Y;
1296 if (I.isExact() &&
1297 match(Op0, m_OneUse(m_NUWSub(m_NUWShl(m_Value(X), m_Specific(Op1)),
1298 m_Value(Y))))) {
1299 Value *NewLshr = Builder.CreateLShr(Y, Op1, "", /*isExact=*/true);
1300 auto *NewSub = BinaryOperator::CreateNUWSub(X, NewLshr);
1301 NewSub->setHasNoSignedWrap(
1302 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
1303 return NewSub;
1306 // Fold (X + Y) / 2 --> (X & Y) iff (X u<= 1) && (Y u<= 1)
1307 if (match(Op0, m_Add(m_Value(X), m_Value(Y))) && match(Op1, m_One()) &&
1308 computeKnownBits(X, /*Depth=*/0, &I).countMaxActiveBits() <= 1 &&
1309 computeKnownBits(Y, /*Depth=*/0, &I).countMaxActiveBits() <= 1)
1310 return BinaryOperator::CreateAnd(X, Y);
1312 // (sub nuw X, (Y << nuw Z)) >>u exact Z --> (X >>u exact Z) sub nuw Y
1313 if (I.isExact() &&
1314 match(Op0, m_OneUse(m_NUWSub(m_Value(X),
1315 m_NUWShl(m_Value(Y), m_Specific(Op1)))))) {
1316 Value *NewLshr = Builder.CreateLShr(X, Op1, "", /*isExact=*/true);
1317 auto *NewSub = BinaryOperator::CreateNUWSub(NewLshr, Y);
1318 NewSub->setHasNoSignedWrap(
1319 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
1320 return NewSub;
1323 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
1324 switch (BinOpcode) {
1325 default:
1326 return false;
1327 case Instruction::Add:
1328 case Instruction::And:
1329 case Instruction::Or:
1330 case Instruction::Xor:
1331 // Sub is handled separately.
1332 return true;
1336 // If both the binop and the shift are nuw, then:
1337 // ((X << nuw Z) binop nuw Y) >>u Z --> X binop nuw (Y >>u Z)
1338 if (match(Op0, m_OneUse(m_c_BinOp(m_NUWShl(m_Value(X), m_Specific(Op1)),
1339 m_Value(Y))))) {
1340 BinaryOperator *Op0OB = cast<BinaryOperator>(Op0);
1341 if (isSuitableBinOpcode(Op0OB->getOpcode())) {
1342 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op0);
1343 !OBO || OBO->hasNoUnsignedWrap()) {
1344 Value *NewLshr = Builder.CreateLShr(
1345 Y, Op1, "", I.isExact() && Op0OB->getOpcode() != Instruction::And);
1346 auto *NewBinOp = BinaryOperator::Create(Op0OB->getOpcode(), NewLshr, X);
1347 if (OBO) {
1348 NewBinOp->setHasNoUnsignedWrap(true);
1349 NewBinOp->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1350 } else if (auto *Disjoint = dyn_cast<PossiblyDisjointInst>(Op0)) {
1351 cast<PossiblyDisjointInst>(NewBinOp)->setIsDisjoint(
1352 Disjoint->isDisjoint());
1354 return NewBinOp;
1359 if (match(Op1, m_APInt(C))) {
1360 unsigned ShAmtC = C->getZExtValue();
1361 auto *II = dyn_cast<IntrinsicInst>(Op0);
1362 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1363 (II->getIntrinsicID() == Intrinsic::ctlz ||
1364 II->getIntrinsicID() == Intrinsic::cttz ||
1365 II->getIntrinsicID() == Intrinsic::ctpop)) {
1366 // ctlz.i32(x)>>5 --> zext(x == 0)
1367 // cttz.i32(x)>>5 --> zext(x == 0)
1368 // ctpop.i32(x)>>5 --> zext(x == -1)
1369 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1370 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1371 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1372 return new ZExtInst(Cmp, Ty);
1375 const APInt *C1;
1376 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1377 if (C1->ult(ShAmtC)) {
1378 unsigned ShlAmtC = C1->getZExtValue();
1379 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1380 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1381 // (X <<nuw C1) >>u C --> X >>u (C - C1)
1382 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1383 NewLShr->setIsExact(I.isExact());
1384 return NewLShr;
1386 if (Op0->hasOneUse()) {
1387 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1388 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1389 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1390 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1392 } else if (C1->ugt(ShAmtC)) {
1393 unsigned ShlAmtC = C1->getZExtValue();
1394 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1395 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1396 // (X <<nuw C1) >>u C --> X <<nuw/nsw (C1 - C)
1397 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1398 NewShl->setHasNoUnsignedWrap(true);
1399 NewShl->setHasNoSignedWrap(ShAmtC > 0);
1400 return NewShl;
1402 if (Op0->hasOneUse()) {
1403 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1404 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1405 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1406 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1408 } else {
1409 assert(*C1 == ShAmtC);
1410 // (X << C) >>u C --> X & (-1 >>u C)
1411 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1412 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1416 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1417 // TODO: Consolidate with the more general transform that starts from shl
1418 // (the shifts are in the opposite order).
1419 if (match(Op0,
1420 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1421 m_Value(Y))))) {
1422 Value *NewLshr = Builder.CreateLShr(Y, Op1);
1423 Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1424 unsigned Op1Val = C->getLimitedValue(BitWidth);
1425 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1426 Constant *Mask = ConstantInt::get(Ty, Bits);
1427 return BinaryOperator::CreateAnd(NewAdd, Mask);
1430 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1431 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1432 assert(ShAmtC < X->getType()->getScalarSizeInBits() &&
1433 "Big shift not simplified to zero?");
1434 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1435 Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1436 return new ZExtInst(NewLShr, Ty);
1439 if (match(Op0, m_SExt(m_Value(X)))) {
1440 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1441 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1442 if (SrcTyBitWidth == 1) {
1443 auto *NewC = ConstantInt::get(
1444 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1445 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1448 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1449 Op0->hasOneUse()) {
1450 // Are we moving the sign bit to the low bit and widening with high
1451 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1452 if (ShAmtC == BitWidth - 1) {
1453 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1454 return new ZExtInst(NewLShr, Ty);
1457 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1458 if (ShAmtC == BitWidth - SrcTyBitWidth) {
1459 // The new shift amount can't be more than the narrow source type.
1460 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1461 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1462 return new ZExtInst(AShr, Ty);
1467 if (ShAmtC == BitWidth - 1) {
1468 // lshr i32 or(X,-X), 31 --> zext (X != 0)
1469 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1470 return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1472 // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1473 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1474 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1476 // Check if a number is negative and odd:
1477 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1478 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1479 Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1480 return BinaryOperator::CreateAnd(Signbit, X);
1483 // lshr iN (X - 1) & ~X, N-1 --> zext (X == 0)
1484 if (match(Op0, m_OneUse(m_c_And(m_Add(m_Value(X), m_AllOnes()),
1485 m_Not(m_Deferred(X))))))
1486 return new ZExtInst(Builder.CreateIsNull(X), Ty);
1489 Instruction *TruncSrc;
1490 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1491 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1492 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1493 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1495 // If the combined shift fits in the source width:
1496 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1498 // If the first shift covers the number of bits truncated, then the
1499 // mask instruction is eliminated (and so the use check is relaxed).
1500 if (AmtSum < SrcWidth &&
1501 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1502 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1503 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1505 // If the first shift does not cover the number of bits truncated, then
1506 // we require a mask to get rid of high bits in the result.
1507 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1508 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1512 const APInt *MulC;
1513 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
1514 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1515 MulC->logBase2() == ShAmtC) {
1516 // Look for a "splat" mul pattern - it replicates bits across each half
1517 // of a value, so a right shift simplifies back to just X:
1518 // lshr i[2N] (mul nuw X, (2^N)+1), N --> X
1519 if (ShAmtC * 2 == BitWidth)
1520 return replaceInstUsesWith(I, X);
1522 // lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N))
1523 if (Op0->hasOneUse()) {
1524 auto *NewAdd = BinaryOperator::CreateNUWAdd(
1525 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
1526 I.isExact()));
1527 NewAdd->setHasNoSignedWrap(
1528 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
1529 return NewAdd;
1533 // The one-use check is not strictly necessary, but codegen may not be
1534 // able to invert the transform and perf may suffer with an extra mul
1535 // instruction.
1536 if (Op0->hasOneUse()) {
1537 APInt NewMulC = MulC->lshr(ShAmtC);
1538 // if c is divisible by (1 << ShAmtC):
1539 // lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC)
1540 if (MulC->eq(NewMulC.shl(ShAmtC))) {
1541 auto *NewMul =
1542 BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
1543 assert(ShAmtC != 0 &&
1544 "lshr X, 0 should be handled by simplifyLShrInst.");
1545 NewMul->setHasNoSignedWrap(true);
1546 return NewMul;
1551 // lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
1552 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
1553 if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1554 MulC->logBase2() == ShAmtC) {
1555 return BinaryOperator::CreateNSWAdd(
1556 X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
1557 I.isExact()));
1561 // Try to narrow bswap.
1562 // In the case where the shift amount equals the bitwidth difference, the
1563 // shift is eliminated.
1564 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
1565 m_OneUse(m_ZExt(m_Value(X))))))) {
1566 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1567 unsigned WidthDiff = BitWidth - SrcWidth;
1568 if (SrcWidth % 16 == 0) {
1569 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1570 if (ShAmtC >= WidthDiff) {
1571 // (bswap (zext X)) >> C --> zext (bswap X >> C')
1572 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1573 return new ZExtInst(NewShift, Ty);
1574 } else {
1575 // (bswap (zext X)) >> C --> (zext (bswap X)) << C'
1576 Value *NewZExt = Builder.CreateZExt(NarrowSwap, Ty);
1577 Constant *ShiftDiff = ConstantInt::get(Ty, WidthDiff - ShAmtC);
1578 return BinaryOperator::CreateShl(NewZExt, ShiftDiff);
1583 // Reduce add-carry of bools to logic:
1584 // ((zext BoolX) + (zext BoolY)) >> 1 --> zext (BoolX && BoolY)
1585 Value *BoolX, *BoolY;
1586 if (ShAmtC == 1 && match(Op0, m_Add(m_Value(X), m_Value(Y))) &&
1587 match(X, m_ZExt(m_Value(BoolX))) && match(Y, m_ZExt(m_Value(BoolY))) &&
1588 BoolX->getType()->isIntOrIntVectorTy(1) &&
1589 BoolY->getType()->isIntOrIntVectorTy(1) &&
1590 (X->hasOneUse() || Y->hasOneUse() || Op0->hasOneUse())) {
1591 Value *And = Builder.CreateAnd(BoolX, BoolY);
1592 return new ZExtInst(And, Ty);
1596 const SimplifyQuery Q = SQ.getWithInstruction(&I);
1597 if (setShiftFlags(I, Q))
1598 return &I;
1600 // Transform (x << y) >> y to x & (-1 >> y)
1601 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1602 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1603 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1604 return BinaryOperator::CreateAnd(Mask, X);
1607 // Transform (-1 << y) >> y to -1 >> y
1608 if (match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) {
1609 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1610 return BinaryOperator::CreateLShr(AllOnes, Op1);
1613 if (Instruction *Overflow = foldLShrOverflowBit(I))
1614 return Overflow;
1616 return nullptr;
1619 Instruction *
1620 InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1621 BinaryOperator &OldAShr) {
1622 assert(OldAShr.getOpcode() == Instruction::AShr &&
1623 "Must be called with arithmetic right-shift instruction only.");
1625 // Check that constant C is a splat of the element-wise bitwidth of V.
1626 auto BitWidthSplat = [](Constant *C, Value *V) {
1627 return match(
1628 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1629 APInt(C->getType()->getScalarSizeInBits(),
1630 V->getType()->getScalarSizeInBits())));
1633 // It should look like variable-length sign-extension on the outside:
1634 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1635 Value *NBits;
1636 Instruction *MaybeTrunc;
1637 Constant *C1, *C2;
1638 if (!match(&OldAShr,
1639 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1640 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1641 m_ZExtOrSelf(m_Value(NBits))))),
1642 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1643 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1644 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1645 return nullptr;
1647 // There may or may not be a truncation after outer two shifts.
1648 Instruction *HighBitExtract;
1649 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1650 bool HadTrunc = MaybeTrunc != HighBitExtract;
1652 // And finally, the innermost part of the pattern must be a right-shift.
1653 Value *X, *NumLowBitsToSkip;
1654 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1655 return nullptr;
1657 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1658 Constant *C0;
1659 if (!match(NumLowBitsToSkip,
1660 m_ZExtOrSelf(
1661 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1662 !BitWidthSplat(C0, HighBitExtract))
1663 return nullptr;
1665 // Since the NBits is identical for all shifts, if the outermost and
1666 // innermost shifts are identical, then outermost shifts are redundant.
1667 // If we had truncation, do keep it though.
1668 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1669 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1671 // Else, if there was a truncation, then we need to ensure that one
1672 // instruction will go away.
1673 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1674 return nullptr;
1676 // Finally, bypass two innermost shifts, and perform the outermost shift on
1677 // the operands of the innermost shift.
1678 Instruction *NewAShr =
1679 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1680 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1681 if (!HadTrunc)
1682 return NewAShr;
1684 Builder.Insert(NewAShr);
1685 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1688 Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1689 if (Value *V = simplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1690 SQ.getWithInstruction(&I)))
1691 return replaceInstUsesWith(I, V);
1693 if (Instruction *X = foldVectorBinop(I))
1694 return X;
1696 if (Instruction *R = commonShiftTransforms(I))
1697 return R;
1699 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1700 Type *Ty = I.getType();
1701 unsigned BitWidth = Ty->getScalarSizeInBits();
1702 const APInt *ShAmtAPInt;
1703 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1704 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1706 // If the shift amount equals the difference in width of the destination
1707 // and source scalar types:
1708 // ashr (shl (zext X), C), C --> sext X
1709 Value *X;
1710 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1711 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1712 return new SExtInst(X, Ty);
1714 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1715 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1716 const APInt *ShOp1;
1717 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1718 ShOp1->ult(BitWidth)) {
1719 unsigned ShlAmt = ShOp1->getZExtValue();
1720 if (ShlAmt < ShAmt) {
1721 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1722 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1723 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1724 NewAShr->setIsExact(I.isExact());
1725 return NewAShr;
1727 if (ShlAmt > ShAmt) {
1728 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1729 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1730 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1731 NewShl->setHasNoSignedWrap(true);
1732 return NewShl;
1736 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1737 ShOp1->ult(BitWidth)) {
1738 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1739 // Oversized arithmetic shifts replicate the sign bit.
1740 AmtSum = std::min(AmtSum, BitWidth - 1);
1741 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1742 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1745 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1746 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1747 // ashr (sext X), C --> sext (ashr X, C')
1748 Type *SrcTy = X->getType();
1749 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1750 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1751 return new SExtInst(NewSh, Ty);
1754 if (ShAmt == BitWidth - 1) {
1755 // ashr i32 or(X,-X), 31 --> sext (X != 0)
1756 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1757 return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1759 // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1760 Value *Y;
1761 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1762 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1764 // ashr iN (X - 1) & ~X, N-1 --> sext (X == 0)
1765 if (match(Op0, m_OneUse(m_c_And(m_Add(m_Value(X), m_AllOnes()),
1766 m_Not(m_Deferred(X))))))
1767 return new SExtInst(Builder.CreateIsNull(X), Ty);
1770 const APInt *MulC;
1771 if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC)))) &&
1772 (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
1773 MulC->logBase2() == ShAmt &&
1774 (ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ {
1776 // ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N))
1777 auto *NewAdd = BinaryOperator::CreateNSWAdd(
1779 Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "", I.isExact()));
1780 NewAdd->setHasNoUnsignedWrap(
1781 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap());
1782 return NewAdd;
1786 const SimplifyQuery Q = SQ.getWithInstruction(&I);
1787 if (setShiftFlags(I, Q))
1788 return &I;
1790 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1791 // as the pattern to splat the lowest bit.
1792 // FIXME: iff X is already masked, we don't need the one-use check.
1793 Value *X;
1794 if (match(Op1, m_SpecificIntAllowPoison(BitWidth - 1)) &&
1795 match(Op0, m_OneUse(m_Shl(m_Value(X),
1796 m_SpecificIntAllowPoison(BitWidth - 1))))) {
1797 Constant *Mask = ConstantInt::get(Ty, 1);
1798 // Retain the knowledge about the ignored lanes.
1799 Mask = Constant::mergeUndefsWith(
1800 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1801 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1802 X = Builder.CreateAnd(X, Mask);
1803 return BinaryOperator::CreateNeg(X);
1806 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1807 return R;
1809 // See if we can turn a signed shr into an unsigned shr.
1810 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I)) {
1811 Instruction *Lshr = BinaryOperator::CreateLShr(Op0, Op1);
1812 Lshr->setIsExact(I.isExact());
1813 return Lshr;
1816 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1817 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1818 // Note that we must drop 'exact'-ness of the shift!
1819 // Note that we can't keep undef's in -1 vector constant!
1820 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1821 return BinaryOperator::CreateNot(NewAShr);
1824 return nullptr;