1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // InstructionCombining - Combine instructions to form fewer, simple
10 // instructions. This pass does not modify the CFG. This pass is where
11 // algebraic simplification happens.
13 // This pass combines things like:
19 // This is a simple worklist driven algorithm.
21 // This pass guarantees that the following canonicalizations are performed on
23 // 1. If a binary operator has a constant operand, it is moved to the RHS
24 // 2. Bitwise operators with constant operands are always grouped so that
25 // shifts are performed first, then or's, then and's, then xor's.
26 // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27 // 4. All cmp instructions on boolean values are replaced with logical ops
28 // 5. add X, X is represented as (X*2) => (X << 1)
29 // 6. Multiplies with a power-of-two constant argument are transformed into
33 //===----------------------------------------------------------------------===//
35 #include "InstCombineInternal.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/ArrayRef.h"
38 #include "llvm/ADT/DenseMap.h"
39 #include "llvm/ADT/SmallPtrSet.h"
40 #include "llvm/ADT/SmallVector.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AssumptionCache.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CFG.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/InstructionSimplify.h"
50 #include "llvm/Analysis/LastRunTrackingAnalysis.h"
51 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
52 #include "llvm/Analysis/MemoryBuiltins.h"
53 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
54 #include "llvm/Analysis/ProfileSummaryInfo.h"
55 #include "llvm/Analysis/TargetFolder.h"
56 #include "llvm/Analysis/TargetLibraryInfo.h"
57 #include "llvm/Analysis/TargetTransformInfo.h"
58 #include "llvm/Analysis/Utils/Local.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/Analysis/VectorUtils.h"
61 #include "llvm/IR/BasicBlock.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constant.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DIBuilder.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfo.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/IRBuilder.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instruction.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/Metadata.h"
80 #include "llvm/IR/Operator.h"
81 #include "llvm/IR/PassManager.h"
82 #include "llvm/IR/PatternMatch.h"
83 #include "llvm/IR/Type.h"
84 #include "llvm/IR/Use.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/IR/ValueHandle.h"
88 #include "llvm/InitializePasses.h"
89 #include "llvm/Support/Casting.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Compiler.h"
92 #include "llvm/Support/Debug.h"
93 #include "llvm/Support/DebugCounter.h"
94 #include "llvm/Support/ErrorHandling.h"
95 #include "llvm/Support/KnownBits.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Transforms/InstCombine/InstCombine.h"
98 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
99 #include "llvm/Transforms/Utils/Local.h"
108 #define DEBUG_TYPE "instcombine"
109 #include "llvm/Transforms/Utils/InstructionWorklist.h"
112 using namespace llvm
;
113 using namespace llvm::PatternMatch
;
115 STATISTIC(NumWorklistIterations
,
116 "Number of instruction combining iterations performed");
117 STATISTIC(NumOneIteration
, "Number of functions with one iteration");
118 STATISTIC(NumTwoIterations
, "Number of functions with two iterations");
119 STATISTIC(NumThreeIterations
, "Number of functions with three iterations");
120 STATISTIC(NumFourOrMoreIterations
,
121 "Number of functions with four or more iterations");
123 STATISTIC(NumCombined
, "Number of insts combined");
124 STATISTIC(NumConstProp
, "Number of constant folds");
125 STATISTIC(NumDeadInst
, "Number of dead inst eliminated");
126 STATISTIC(NumSunkInst
, "Number of instructions sunk");
127 STATISTIC(NumExpand
, "Number of expansions");
128 STATISTIC(NumFactor
, "Number of factorizations");
129 STATISTIC(NumReassoc
, "Number of reassociations");
130 DEBUG_COUNTER(VisitCounter
, "instcombine-visit",
131 "Controls which instructions are visited");
134 EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
137 static cl::opt
<unsigned> MaxSinkNumUsers(
138 "instcombine-max-sink-users", cl::init(32),
139 cl::desc("Maximum number of undroppable users for instruction sinking"));
141 static cl::opt
<unsigned>
142 MaxArraySize("instcombine-maxarray-size", cl::init(1024),
143 cl::desc("Maximum array size considered when doing a combine"));
145 // FIXME: Remove this flag when it is no longer necessary to convert
146 // llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
147 // increases variable availability at the cost of accuracy. Variables that
148 // cannot be promoted by mem2reg or SROA will be described as living in memory
149 // for their entire lifetime. However, passes like DSE and instcombine can
150 // delete stores to the alloca, leading to misleading and inaccurate debug
151 // information. This flag can be removed when those passes are fixed.
152 static cl::opt
<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
153 cl::Hidden
, cl::init(true));
155 std::optional
<Instruction
*>
156 InstCombiner::targetInstCombineIntrinsic(IntrinsicInst
&II
) {
157 // Handle target specific intrinsics
158 if (II
.getCalledFunction()->isTargetIntrinsic()) {
159 return TTIForTargetIntrinsicsOnly
.instCombineIntrinsic(*this, II
);
164 std::optional
<Value
*> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
165 IntrinsicInst
&II
, APInt DemandedMask
, KnownBits
&Known
,
166 bool &KnownBitsComputed
) {
167 // Handle target specific intrinsics
168 if (II
.getCalledFunction()->isTargetIntrinsic()) {
169 return TTIForTargetIntrinsicsOnly
.simplifyDemandedUseBitsIntrinsic(
170 *this, II
, DemandedMask
, Known
, KnownBitsComputed
);
175 std::optional
<Value
*> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
176 IntrinsicInst
&II
, APInt DemandedElts
, APInt
&PoisonElts
,
177 APInt
&PoisonElts2
, APInt
&PoisonElts3
,
178 std::function
<void(Instruction
*, unsigned, APInt
, APInt
&)>
180 // Handle target specific intrinsics
181 if (II
.getCalledFunction()->isTargetIntrinsic()) {
182 return TTIForTargetIntrinsicsOnly
.simplifyDemandedVectorEltsIntrinsic(
183 *this, II
, DemandedElts
, PoisonElts
, PoisonElts2
, PoisonElts3
,
189 bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS
, unsigned ToAS
) const {
190 // Approved exception for TTI use: This queries a legality property of the
191 // target, not an profitability heuristic. Ideally this should be part of
192 // DataLayout instead.
193 return TTIForTargetIntrinsicsOnly
.isValidAddrSpaceCast(FromAS
, ToAS
);
196 Value
*InstCombinerImpl::EmitGEPOffset(GEPOperator
*GEP
, bool RewriteGEP
) {
198 return llvm::emitGEPOffset(&Builder
, DL
, GEP
);
200 IRBuilderBase::InsertPointGuard
Guard(Builder
);
201 auto *Inst
= dyn_cast
<Instruction
>(GEP
);
203 Builder
.SetInsertPoint(Inst
);
205 Value
*Offset
= EmitGEPOffset(GEP
);
206 // If a non-trivial GEP has other uses, rewrite it to avoid duplicating
207 // the offset arithmetic.
208 if (Inst
&& !GEP
->hasOneUse() && !GEP
->hasAllConstantIndices() &&
209 !GEP
->getSourceElementType()->isIntegerTy(8)) {
211 *Inst
, Builder
.CreateGEP(Builder
.getInt8Ty(), GEP
->getPointerOperand(),
212 Offset
, "", GEP
->getNoWrapFlags()));
213 eraseInstFromFunction(*Inst
);
218 /// Legal integers and common types are considered desirable. This is used to
219 /// avoid creating instructions with types that may not be supported well by the
221 /// NOTE: This treats i8, i16 and i32 specially because they are common
222 /// types in frontend languages.
223 bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth
) const {
230 return DL
.isLegalInteger(BitWidth
);
234 /// Return true if it is desirable to convert an integer computation from a
235 /// given bit width to a new bit width.
236 /// We don't want to convert from a legal or desirable type (like i8) to an
237 /// illegal type or from a smaller to a larger illegal type. A width of '1'
238 /// is always treated as a desirable type because i1 is a fundamental type in
239 /// IR, and there are many specialized optimizations for i1 types.
240 /// Common/desirable widths are equally treated as legal to convert to, in
241 /// order to open up more combining opportunities.
242 bool InstCombinerImpl::shouldChangeType(unsigned FromWidth
,
243 unsigned ToWidth
) const {
244 bool FromLegal
= FromWidth
== 1 || DL
.isLegalInteger(FromWidth
);
245 bool ToLegal
= ToWidth
== 1 || DL
.isLegalInteger(ToWidth
);
247 // Convert to desirable widths even if they are not legal types.
248 // Only shrink types, to prevent infinite loops.
249 if (ToWidth
< FromWidth
&& isDesirableIntType(ToWidth
))
252 // If this is a legal or desiable integer from type, and the result would be
253 // an illegal type, don't do the transformation.
254 if ((FromLegal
|| isDesirableIntType(FromWidth
)) && !ToLegal
)
257 // Otherwise, if both are illegal, do not increase the size of the result. We
258 // do allow things like i160 -> i64, but not i64 -> i160.
259 if (!FromLegal
&& !ToLegal
&& ToWidth
> FromWidth
)
265 /// Return true if it is desirable to convert a computation from 'From' to 'To'.
266 /// We don't want to convert from a legal to an illegal type or from a smaller
267 /// to a larger illegal type. i1 is always treated as a legal type because it is
268 /// a fundamental type in IR, and there are many specialized optimizations for
270 bool InstCombinerImpl::shouldChangeType(Type
*From
, Type
*To
) const {
271 // TODO: This could be extended to allow vectors. Datalayout changes might be
272 // needed to properly support that.
273 if (!From
->isIntegerTy() || !To
->isIntegerTy())
276 unsigned FromWidth
= From
->getPrimitiveSizeInBits();
277 unsigned ToWidth
= To
->getPrimitiveSizeInBits();
278 return shouldChangeType(FromWidth
, ToWidth
);
281 // Return true, if No Signed Wrap should be maintained for I.
282 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
283 // where both B and C should be ConstantInts, results in a constant that does
284 // not overflow. This function only handles the Add and Sub opcodes. For
285 // all other opcodes, the function conservatively returns false.
286 static bool maintainNoSignedWrap(BinaryOperator
&I
, Value
*B
, Value
*C
) {
287 auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(&I
);
288 if (!OBO
|| !OBO
->hasNoSignedWrap())
291 // We reason about Add and Sub Only.
292 Instruction::BinaryOps Opcode
= I
.getOpcode();
293 if (Opcode
!= Instruction::Add
&& Opcode
!= Instruction::Sub
)
296 const APInt
*BVal
, *CVal
;
297 if (!match(B
, m_APInt(BVal
)) || !match(C
, m_APInt(CVal
)))
300 bool Overflow
= false;
301 if (Opcode
== Instruction::Add
)
302 (void)BVal
->sadd_ov(*CVal
, Overflow
);
304 (void)BVal
->ssub_ov(*CVal
, Overflow
);
309 static bool hasNoUnsignedWrap(BinaryOperator
&I
) {
310 auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(&I
);
311 return OBO
&& OBO
->hasNoUnsignedWrap();
314 static bool hasNoSignedWrap(BinaryOperator
&I
) {
315 auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(&I
);
316 return OBO
&& OBO
->hasNoSignedWrap();
319 /// Conservatively clears subclassOptionalData after a reassociation or
320 /// commutation. We preserve fast-math flags when applicable as they can be
322 static void ClearSubclassDataAfterReassociation(BinaryOperator
&I
) {
323 FPMathOperator
*FPMO
= dyn_cast
<FPMathOperator
>(&I
);
325 I
.clearSubclassOptionalData();
329 FastMathFlags FMF
= I
.getFastMathFlags();
330 I
.clearSubclassOptionalData();
331 I
.setFastMathFlags(FMF
);
334 /// Combine constant operands of associative operations either before or after a
335 /// cast to eliminate one of the associative operations:
336 /// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
337 /// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
338 static bool simplifyAssocCastAssoc(BinaryOperator
*BinOp1
,
339 InstCombinerImpl
&IC
) {
340 auto *Cast
= dyn_cast
<CastInst
>(BinOp1
->getOperand(0));
341 if (!Cast
|| !Cast
->hasOneUse())
344 // TODO: Enhance logic for other casts and remove this check.
345 auto CastOpcode
= Cast
->getOpcode();
346 if (CastOpcode
!= Instruction::ZExt
)
349 // TODO: Enhance logic for other BinOps and remove this check.
350 if (!BinOp1
->isBitwiseLogicOp())
353 auto AssocOpcode
= BinOp1
->getOpcode();
354 auto *BinOp2
= dyn_cast
<BinaryOperator
>(Cast
->getOperand(0));
355 if (!BinOp2
|| !BinOp2
->hasOneUse() || BinOp2
->getOpcode() != AssocOpcode
)
359 if (!match(BinOp1
->getOperand(1), m_Constant(C1
)) ||
360 !match(BinOp2
->getOperand(1), m_Constant(C2
)))
363 // TODO: This assumes a zext cast.
364 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
365 // to the destination type might lose bits.
367 // Fold the constants together in the destination type:
368 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
369 const DataLayout
&DL
= IC
.getDataLayout();
370 Type
*DestTy
= C1
->getType();
371 Constant
*CastC2
= ConstantFoldCastOperand(CastOpcode
, C2
, DestTy
, DL
);
374 Constant
*FoldedC
= ConstantFoldBinaryOpOperands(AssocOpcode
, C1
, CastC2
, DL
);
378 IC
.replaceOperand(*Cast
, 0, BinOp2
->getOperand(0));
379 IC
.replaceOperand(*BinOp1
, 1, FoldedC
);
380 BinOp1
->dropPoisonGeneratingFlags();
381 Cast
->dropPoisonGeneratingFlags();
385 // Simplifies IntToPtr/PtrToInt RoundTrip Cast.
386 // inttoptr ( ptrtoint (x) ) --> x
387 Value
*InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value
*Val
) {
388 auto *IntToPtr
= dyn_cast
<IntToPtrInst
>(Val
);
389 if (IntToPtr
&& DL
.getTypeSizeInBits(IntToPtr
->getDestTy()) ==
390 DL
.getTypeSizeInBits(IntToPtr
->getSrcTy())) {
391 auto *PtrToInt
= dyn_cast
<PtrToIntInst
>(IntToPtr
->getOperand(0));
392 Type
*CastTy
= IntToPtr
->getDestTy();
394 CastTy
->getPointerAddressSpace() ==
395 PtrToInt
->getSrcTy()->getPointerAddressSpace() &&
396 DL
.getTypeSizeInBits(PtrToInt
->getSrcTy()) ==
397 DL
.getTypeSizeInBits(PtrToInt
->getDestTy()))
398 return PtrToInt
->getOperand(0);
403 /// This performs a few simplifications for operators that are associative or
406 /// Commutative operators:
408 /// 1. Order operands such that they are listed from right (least complex) to
409 /// left (most complex). This puts constants before unary operators before
410 /// binary operators.
412 /// Associative operators:
414 /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
415 /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
417 /// Associative and commutative operators:
419 /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
420 /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
421 /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
422 /// if C1 and C2 are constants.
423 bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator
&I
) {
424 Instruction::BinaryOps Opcode
= I
.getOpcode();
425 bool Changed
= false;
428 // Order operands such that they are listed from right (least complex) to
429 // left (most complex). This puts constants before unary operators before
431 if (I
.isCommutative() && getComplexity(I
.getOperand(0)) <
432 getComplexity(I
.getOperand(1)))
433 Changed
= !I
.swapOperands();
435 if (I
.isCommutative()) {
436 if (auto Pair
= matchSymmetricPair(I
.getOperand(0), I
.getOperand(1))) {
437 replaceOperand(I
, 0, Pair
->first
);
438 replaceOperand(I
, 1, Pair
->second
);
443 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(I
.getOperand(0));
444 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(I
.getOperand(1));
446 if (I
.isAssociative()) {
447 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
448 if (Op0
&& Op0
->getOpcode() == Opcode
) {
449 Value
*A
= Op0
->getOperand(0);
450 Value
*B
= Op0
->getOperand(1);
451 Value
*C
= I
.getOperand(1);
453 // Does "B op C" simplify?
454 if (Value
*V
= simplifyBinOp(Opcode
, B
, C
, SQ
.getWithInstruction(&I
))) {
455 // It simplifies to V. Form "A op V".
456 replaceOperand(I
, 0, A
);
457 replaceOperand(I
, 1, V
);
458 bool IsNUW
= hasNoUnsignedWrap(I
) && hasNoUnsignedWrap(*Op0
);
459 bool IsNSW
= maintainNoSignedWrap(I
, B
, C
) && hasNoSignedWrap(*Op0
);
461 // Conservatively clear all optional flags since they may not be
462 // preserved by the reassociation. Reset nsw/nuw based on the above
464 ClearSubclassDataAfterReassociation(I
);
466 // Note: this is only valid because SimplifyBinOp doesn't look at
467 // the operands to Op0.
469 I
.setHasNoUnsignedWrap(true);
472 I
.setHasNoSignedWrap(true);
480 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
481 if (Op1
&& Op1
->getOpcode() == Opcode
) {
482 Value
*A
= I
.getOperand(0);
483 Value
*B
= Op1
->getOperand(0);
484 Value
*C
= Op1
->getOperand(1);
486 // Does "A op B" simplify?
487 if (Value
*V
= simplifyBinOp(Opcode
, A
, B
, SQ
.getWithInstruction(&I
))) {
488 // It simplifies to V. Form "V op C".
489 replaceOperand(I
, 0, V
);
490 replaceOperand(I
, 1, C
);
491 // Conservatively clear the optional flags, since they may not be
492 // preserved by the reassociation.
493 ClearSubclassDataAfterReassociation(I
);
501 if (I
.isAssociative() && I
.isCommutative()) {
502 if (simplifyAssocCastAssoc(&I
, *this)) {
508 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
509 if (Op0
&& Op0
->getOpcode() == Opcode
) {
510 Value
*A
= Op0
->getOperand(0);
511 Value
*B
= Op0
->getOperand(1);
512 Value
*C
= I
.getOperand(1);
514 // Does "C op A" simplify?
515 if (Value
*V
= simplifyBinOp(Opcode
, C
, A
, SQ
.getWithInstruction(&I
))) {
516 // It simplifies to V. Form "V op B".
517 replaceOperand(I
, 0, V
);
518 replaceOperand(I
, 1, B
);
519 // Conservatively clear the optional flags, since they may not be
520 // preserved by the reassociation.
521 ClearSubclassDataAfterReassociation(I
);
528 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
529 if (Op1
&& Op1
->getOpcode() == Opcode
) {
530 Value
*A
= I
.getOperand(0);
531 Value
*B
= Op1
->getOperand(0);
532 Value
*C
= Op1
->getOperand(1);
534 // Does "C op A" simplify?
535 if (Value
*V
= simplifyBinOp(Opcode
, C
, A
, SQ
.getWithInstruction(&I
))) {
536 // It simplifies to V. Form "B op V".
537 replaceOperand(I
, 0, B
);
538 replaceOperand(I
, 1, V
);
539 // Conservatively clear the optional flags, since they may not be
540 // preserved by the reassociation.
541 ClearSubclassDataAfterReassociation(I
);
548 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
549 // if C1 and C2 are constants.
551 Constant
*C1
, *C2
, *CRes
;
553 Op0
->getOpcode() == Opcode
&& Op1
->getOpcode() == Opcode
&&
554 match(Op0
, m_OneUse(m_BinOp(m_Value(A
), m_Constant(C1
)))) &&
555 match(Op1
, m_OneUse(m_BinOp(m_Value(B
), m_Constant(C2
)))) &&
556 (CRes
= ConstantFoldBinaryOpOperands(Opcode
, C1
, C2
, DL
))) {
557 bool IsNUW
= hasNoUnsignedWrap(I
) &&
558 hasNoUnsignedWrap(*Op0
) &&
559 hasNoUnsignedWrap(*Op1
);
560 BinaryOperator
*NewBO
= (IsNUW
&& Opcode
== Instruction::Add
) ?
561 BinaryOperator::CreateNUW(Opcode
, A
, B
) :
562 BinaryOperator::Create(Opcode
, A
, B
);
564 if (isa
<FPMathOperator
>(NewBO
)) {
565 FastMathFlags Flags
= I
.getFastMathFlags() &
566 Op0
->getFastMathFlags() &
567 Op1
->getFastMathFlags();
568 NewBO
->setFastMathFlags(Flags
);
570 InsertNewInstWith(NewBO
, I
.getIterator());
571 NewBO
->takeName(Op1
);
572 replaceOperand(I
, 0, NewBO
);
573 replaceOperand(I
, 1, CRes
);
574 // Conservatively clear the optional flags, since they may not be
575 // preserved by the reassociation.
576 ClearSubclassDataAfterReassociation(I
);
578 I
.setHasNoUnsignedWrap(true);
585 // No further simplifications.
590 /// Return whether "X LOp (Y ROp Z)" is always equal to
591 /// "(X LOp Y) ROp (X LOp Z)".
592 static bool leftDistributesOverRight(Instruction::BinaryOps LOp
,
593 Instruction::BinaryOps ROp
) {
594 // X & (Y | Z) <--> (X & Y) | (X & Z)
595 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
596 if (LOp
== Instruction::And
)
597 return ROp
== Instruction::Or
|| ROp
== Instruction::Xor
;
599 // X | (Y & Z) <--> (X | Y) & (X | Z)
600 if (LOp
== Instruction::Or
)
601 return ROp
== Instruction::And
;
603 // X * (Y + Z) <--> (X * Y) + (X * Z)
604 // X * (Y - Z) <--> (X * Y) - (X * Z)
605 if (LOp
== Instruction::Mul
)
606 return ROp
== Instruction::Add
|| ROp
== Instruction::Sub
;
611 /// Return whether "(X LOp Y) ROp Z" is always equal to
612 /// "(X ROp Z) LOp (Y ROp Z)".
613 static bool rightDistributesOverLeft(Instruction::BinaryOps LOp
,
614 Instruction::BinaryOps ROp
) {
615 if (Instruction::isCommutative(ROp
))
616 return leftDistributesOverRight(ROp
, LOp
);
618 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
619 return Instruction::isBitwiseLogicOp(LOp
) && Instruction::isShift(ROp
);
621 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
622 // but this requires knowing that the addition does not overflow and other
626 /// This function returns identity value for given opcode, which can be used to
627 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
628 static Value
*getIdentityValue(Instruction::BinaryOps Opcode
, Value
*V
) {
629 if (isa
<Constant
>(V
))
632 return ConstantExpr::getBinOpIdentity(Opcode
, V
->getType());
635 /// This function predicates factorization using distributive laws. By default,
636 /// it just returns the 'Op' inputs. But for special-cases like
637 /// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
638 /// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
639 /// allow more factorization opportunities.
640 static Instruction::BinaryOps
641 getBinOpsForFactorization(Instruction::BinaryOps TopOpcode
, BinaryOperator
*Op
,
642 Value
*&LHS
, Value
*&RHS
, BinaryOperator
*OtherOp
) {
643 assert(Op
&& "Expected a binary operator");
644 LHS
= Op
->getOperand(0);
645 RHS
= Op
->getOperand(1);
646 if (TopOpcode
== Instruction::Add
|| TopOpcode
== Instruction::Sub
) {
648 if (match(Op
, m_Shl(m_Value(), m_ImmConstant(C
)))) {
649 // X << C --> X * (1 << C)
650 RHS
= ConstantFoldBinaryInstruction(
651 Instruction::Shl
, ConstantInt::get(Op
->getType(), 1), C
);
652 assert(RHS
&& "Constant folding of immediate constants failed");
653 return Instruction::Mul
;
655 // TODO: We can add other conversions e.g. shr => div etc.
657 if (Instruction::isBitwiseLogicOp(TopOpcode
)) {
658 if (OtherOp
&& OtherOp
->getOpcode() == Instruction::AShr
&&
659 match(Op
, m_LShr(m_NonNegative(), m_Value()))) {
660 // lshr nneg C, X --> ashr nneg C, X
661 return Instruction::AShr
;
664 return Op
->getOpcode();
667 /// This tries to simplify binary operations by factorizing out common terms
668 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
669 static Value
*tryFactorization(BinaryOperator
&I
, const SimplifyQuery
&SQ
,
670 InstCombiner::BuilderTy
&Builder
,
671 Instruction::BinaryOps InnerOpcode
, Value
*A
,
672 Value
*B
, Value
*C
, Value
*D
) {
673 assert(A
&& B
&& C
&& D
&& "All values must be provided");
676 Value
*RetVal
= nullptr;
677 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
678 Instruction::BinaryOps TopLevelOpcode
= I
.getOpcode();
680 // Does "X op' Y" always equal "Y op' X"?
681 bool InnerCommutative
= Instruction::isCommutative(InnerOpcode
);
683 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
684 if (leftDistributesOverRight(InnerOpcode
, TopLevelOpcode
)) {
685 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
686 // commutative case, "(A op' B) op (C op' A)"?
687 if (A
== C
|| (InnerCommutative
&& A
== D
)) {
690 // Consider forming "A op' (B op D)".
691 // If "B op D" simplifies then it can be formed with no cost.
692 V
= simplifyBinOp(TopLevelOpcode
, B
, D
, SQ
.getWithInstruction(&I
));
694 // If "B op D" doesn't simplify then only go on if one of the existing
695 // operations "A op' B" and "C op' D" will be zapped as no longer used.
696 if (!V
&& (LHS
->hasOneUse() || RHS
->hasOneUse()))
697 V
= Builder
.CreateBinOp(TopLevelOpcode
, B
, D
, RHS
->getName());
699 RetVal
= Builder
.CreateBinOp(InnerOpcode
, A
, V
);
703 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
704 if (!RetVal
&& rightDistributesOverLeft(TopLevelOpcode
, InnerOpcode
)) {
705 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
706 // commutative case, "(A op' B) op (B op' D)"?
707 if (B
== D
|| (InnerCommutative
&& B
== C
)) {
710 // Consider forming "(A op C) op' B".
711 // If "A op C" simplifies then it can be formed with no cost.
712 V
= simplifyBinOp(TopLevelOpcode
, A
, C
, SQ
.getWithInstruction(&I
));
714 // If "A op C" doesn't simplify then only go on if one of the existing
715 // operations "A op' B" and "C op' D" will be zapped as no longer used.
716 if (!V
&& (LHS
->hasOneUse() || RHS
->hasOneUse()))
717 V
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
, LHS
->getName());
719 RetVal
= Builder
.CreateBinOp(InnerOpcode
, V
, B
);
727 RetVal
->takeName(&I
);
729 // Try to add no-overflow flags to the final value.
730 if (isa
<OverflowingBinaryOperator
>(RetVal
)) {
733 if (isa
<OverflowingBinaryOperator
>(&I
)) {
734 HasNSW
= I
.hasNoSignedWrap();
735 HasNUW
= I
.hasNoUnsignedWrap();
737 if (auto *LOBO
= dyn_cast
<OverflowingBinaryOperator
>(LHS
)) {
738 HasNSW
&= LOBO
->hasNoSignedWrap();
739 HasNUW
&= LOBO
->hasNoUnsignedWrap();
742 if (auto *ROBO
= dyn_cast
<OverflowingBinaryOperator
>(RHS
)) {
743 HasNSW
&= ROBO
->hasNoSignedWrap();
744 HasNUW
&= ROBO
->hasNoUnsignedWrap();
747 if (TopLevelOpcode
== Instruction::Add
&& InnerOpcode
== Instruction::Mul
) {
748 // We can propagate 'nsw' if we know that
749 // %Y = mul nsw i16 %X, C
750 // %Z = add nsw i16 %Y, %X
752 // %Z = mul nsw i16 %X, C+1
754 // iff C+1 isn't INT_MIN
756 if (match(V
, m_APInt(CInt
)) && !CInt
->isMinSignedValue())
757 cast
<Instruction
>(RetVal
)->setHasNoSignedWrap(HasNSW
);
759 // nuw can be propagated with any constant or nuw value.
760 cast
<Instruction
>(RetVal
)->setHasNoUnsignedWrap(HasNUW
);
766 // If `I` has one Const operand and the other matches `(ctpop (not x))`,
767 // replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
768 // This is only useful is the new subtract can fold so we only handle the
770 // 1) (add/sub/disjoint_or C, (ctpop (not x))
771 // -> (add/sub/disjoint_or C', (ctpop x))
772 // 1) (cmp pred C, (ctpop (not x))
773 // -> (cmp pred C', (ctpop x))
774 Instruction
*InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction
*I
) {
775 unsigned Opc
= I
->getOpcode();
776 unsigned ConstIdx
= 1;
780 // (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
781 // We can fold the BitWidth(x) with add/sub/icmp as long the other operand
783 case Instruction::Sub
:
786 case Instruction::ICmp
:
787 // Signed predicates aren't correct in some edge cases like for i2 types, as
788 // well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
789 // comparisons against it are simplfied to unsigned.
790 if (cast
<ICmpInst
>(I
)->isSigned())
793 case Instruction::Or
:
794 if (!match(I
, m_DisjointOr(m_Value(), m_Value())))
797 case Instruction::Add
:
803 if (!match(I
->getOperand(1 - ConstIdx
),
804 m_OneUse(m_Intrinsic
<Intrinsic::ctpop
>(m_Value(Op
)))))
808 // Check other operand is ImmConstant.
809 if (!match(I
->getOperand(ConstIdx
), m_ImmConstant(C
)))
812 Type
*Ty
= Op
->getType();
813 Constant
*BitWidthC
= ConstantInt::get(Ty
, Ty
->getScalarSizeInBits());
814 // Need extra check for icmp. Note if this check is true, it generally means
815 // the icmp will simplify to true/false.
816 if (Opc
== Instruction::ICmp
&& !cast
<ICmpInst
>(I
)->isEquality()) {
818 ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT
, C
, BitWidthC
, DL
);
819 if (!Cmp
|| !Cmp
->isZeroValue())
823 // Check we can invert `(not x)` for free.
824 bool Consumes
= false;
825 if (!isFreeToInvert(Op
, Op
->hasOneUse(), Consumes
) || !Consumes
)
827 Value
*NotOp
= getFreelyInverted(Op
, Op
->hasOneUse(), &Builder
);
828 assert(NotOp
!= nullptr &&
829 "Desync between isFreeToInvert and getFreelyInverted");
831 Value
*CtpopOfNotOp
= Builder
.CreateIntrinsic(Ty
, Intrinsic::ctpop
, NotOp
);
835 // Do the transformation here to avoid potentially introducing an infinite
838 case Instruction::Sub
:
839 R
= Builder
.CreateAdd(CtpopOfNotOp
, ConstantExpr::getSub(C
, BitWidthC
));
841 case Instruction::Or
:
842 case Instruction::Add
:
843 R
= Builder
.CreateSub(ConstantExpr::getAdd(C
, BitWidthC
), CtpopOfNotOp
);
845 case Instruction::ICmp
:
846 R
= Builder
.CreateICmp(cast
<ICmpInst
>(I
)->getSwappedPredicate(),
847 CtpopOfNotOp
, ConstantExpr::getSub(BitWidthC
, C
));
850 llvm_unreachable("Unhandled Opcode");
852 assert(R
!= nullptr);
853 return replaceInstUsesWith(*I
, R
);
856 // (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
858 // 1) the logic_shifts match
859 // 2) either both binops are binops and one is `and` or
861 // (logic_shift (inv_logic_shift C1, C), C) == C1 or
863 // -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
865 // (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
867 // 1) the logic_shifts match
868 // 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
870 // -> (BinOp (logic_shift (BinOp X, Y)), Mask)
872 // (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
874 // 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
875 // 2) Binop2 is `not`
877 // -> (arithmetic_shift Binop1((not X), Y), Amt)
879 Instruction
*InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator
&I
) {
880 const DataLayout
&DL
= I
.getDataLayout();
881 auto IsValidBinOpc
= [](unsigned Opc
) {
885 case Instruction::And
:
886 case Instruction::Or
:
887 case Instruction::Xor
:
888 case Instruction::Add
:
889 // Skip Sub as we only match constant masks which will canonicalize to use
895 // Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
897 auto IsCompletelyDistributable
= [](unsigned BinOpc1
, unsigned BinOpc2
,
899 assert(ShOpc
!= Instruction::AShr
);
900 return (BinOpc1
!= Instruction::Add
&& BinOpc2
!= Instruction::Add
) ||
901 ShOpc
== Instruction::Shl
;
904 auto GetInvShift
= [](unsigned ShOpc
) {
905 assert(ShOpc
!= Instruction::AShr
);
906 return ShOpc
== Instruction::LShr
? Instruction::Shl
: Instruction::LShr
;
909 auto CanDistributeBinops
= [&](unsigned BinOpc1
, unsigned BinOpc2
,
910 unsigned ShOpc
, Constant
*CMask
,
912 // If the BinOp1 is `and` we don't need to check the mask.
913 if (BinOpc1
== Instruction::And
)
916 // For all other possible transfers we need complete distributable
917 // binop/shift (anything but `add` + `lshr`).
918 if (!IsCompletelyDistributable(BinOpc1
, BinOpc2
, ShOpc
))
921 // If BinOp2 is `and`, any mask works (this only really helps for non-splat
922 // vecs, otherwise the mask will be simplified and the following check will
924 if (BinOpc2
== Instruction::And
)
927 // Otherwise, need mask that meets the below requirement.
928 // (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
929 Constant
*MaskInvShift
=
930 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc
), CMask
, CShift
, DL
);
931 return ConstantFoldBinaryOpOperands(ShOpc
, MaskInvShift
, CShift
, DL
) ==
935 auto MatchBinOp
= [&](unsigned ShOpnum
) -> Instruction
* {
936 Constant
*CMask
, *CShift
;
937 Value
*X
, *Y
, *ShiftedX
, *Mask
, *Shift
;
938 if (!match(I
.getOperand(ShOpnum
),
939 m_OneUse(m_Shift(m_Value(Y
), m_Value(Shift
)))))
941 if (!match(I
.getOperand(1 - ShOpnum
),
942 m_BinOp(m_Value(ShiftedX
), m_Value(Mask
))))
945 if (!match(ShiftedX
, m_OneUse(m_Shift(m_Value(X
), m_Specific(Shift
)))))
948 // Make sure we are matching instruction shifts and not ConstantExpr
949 auto *IY
= dyn_cast
<Instruction
>(I
.getOperand(ShOpnum
));
950 auto *IX
= dyn_cast
<Instruction
>(ShiftedX
);
954 // LHS and RHS need same shift opcode
955 unsigned ShOpc
= IY
->getOpcode();
956 if (ShOpc
!= IX
->getOpcode())
959 // Make sure binop is real instruction and not ConstantExpr
960 auto *BO2
= dyn_cast
<Instruction
>(I
.getOperand(1 - ShOpnum
));
964 unsigned BinOpc
= BO2
->getOpcode();
965 // Make sure we have valid binops.
966 if (!IsValidBinOpc(I
.getOpcode()) || !IsValidBinOpc(BinOpc
))
969 if (ShOpc
== Instruction::AShr
) {
970 if (Instruction::isBitwiseLogicOp(I
.getOpcode()) &&
971 BinOpc
== Instruction::Xor
&& match(Mask
, m_AllOnes())) {
972 Value
*NotX
= Builder
.CreateNot(X
);
973 Value
*NewBinOp
= Builder
.CreateBinOp(I
.getOpcode(), Y
, NotX
);
974 return BinaryOperator::Create(
975 static_cast<Instruction::BinaryOps
>(ShOpc
), NewBinOp
, Shift
);
981 // If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
982 // distribute to drop the shift irrelevant of constants.
983 if (BinOpc
== I
.getOpcode() &&
984 IsCompletelyDistributable(I
.getOpcode(), BinOpc
, ShOpc
)) {
985 Value
*NewBinOp2
= Builder
.CreateBinOp(I
.getOpcode(), X
, Y
);
986 Value
*NewBinOp1
= Builder
.CreateBinOp(
987 static_cast<Instruction::BinaryOps
>(ShOpc
), NewBinOp2
, Shift
);
988 return BinaryOperator::Create(I
.getOpcode(), NewBinOp1
, Mask
);
991 // Otherwise we can only distribute by constant shifting the mask, so
992 // ensure we have constants.
993 if (!match(Shift
, m_ImmConstant(CShift
)))
995 if (!match(Mask
, m_ImmConstant(CMask
)))
998 // Check if we can distribute the binops.
999 if (!CanDistributeBinops(I
.getOpcode(), BinOpc
, ShOpc
, CMask
, CShift
))
1002 Constant
*NewCMask
=
1003 ConstantFoldBinaryOpOperands(GetInvShift(ShOpc
), CMask
, CShift
, DL
);
1004 Value
*NewBinOp2
= Builder
.CreateBinOp(
1005 static_cast<Instruction::BinaryOps
>(BinOpc
), X
, NewCMask
);
1006 Value
*NewBinOp1
= Builder
.CreateBinOp(I
.getOpcode(), Y
, NewBinOp2
);
1007 return BinaryOperator::Create(static_cast<Instruction::BinaryOps
>(ShOpc
),
1011 if (Instruction
*R
= MatchBinOp(0))
1013 return MatchBinOp(1);
1016 // (Binop (zext C), (select C, T, F))
1017 // -> (select C, (binop 1, T), (binop 0, F))
1019 // (Binop (sext C), (select C, T, F))
1020 // -> (select C, (binop -1, T), (binop 0, F))
1022 // Attempt to simplify binary operations into a select with folded args, when
1023 // one operand of the binop is a select instruction and the other operand is a
1024 // zext/sext extension, whose value is the select condition.
1026 InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator
&I
) {
1027 // TODO: this simplification may be extended to any speculatable instruction,
1028 // not just binops, and would possibly be handled better in FoldOpIntoSelect.
1029 Instruction::BinaryOps Opc
= I
.getOpcode();
1030 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
1031 Value
*A
, *CondVal
, *TrueVal
, *FalseVal
;
1034 auto MatchSelectAndCast
= [&](Value
*CastOp
, Value
*SelectOp
) {
1035 return match(CastOp
, m_ZExtOrSExt(m_Value(A
))) &&
1036 A
->getType()->getScalarSizeInBits() == 1 &&
1037 match(SelectOp
, m_Select(m_Value(CondVal
), m_Value(TrueVal
),
1038 m_Value(FalseVal
)));
1041 // Make sure one side of the binop is a select instruction, and the other is a
1042 // zero/sign extension operating on a i1.
1043 if (MatchSelectAndCast(LHS
, RHS
))
1045 else if (MatchSelectAndCast(RHS
, LHS
))
1050 auto NewFoldedConst
= [&](bool IsTrueArm
, Value
*V
) {
1051 bool IsCastOpRHS
= (CastOp
== RHS
);
1052 bool IsZExt
= isa
<ZExtInst
>(CastOp
);
1056 C
= Constant::getNullValue(V
->getType());
1057 } else if (IsZExt
) {
1058 unsigned BitWidth
= V
->getType()->getScalarSizeInBits();
1059 C
= Constant::getIntegerValue(V
->getType(), APInt(BitWidth
, 1));
1061 C
= Constant::getAllOnesValue(V
->getType());
1064 return IsCastOpRHS
? Builder
.CreateBinOp(Opc
, V
, C
)
1065 : Builder
.CreateBinOp(Opc
, C
, V
);
1068 // If the value used in the zext/sext is the select condition, or the negated
1069 // of the select condition, the binop can be simplified.
1071 Value
*NewTrueVal
= NewFoldedConst(false, TrueVal
);
1072 return SelectInst::Create(CondVal
, NewTrueVal
,
1073 NewFoldedConst(true, FalseVal
));
1076 if (match(A
, m_Not(m_Specific(CondVal
)))) {
1077 Value
*NewTrueVal
= NewFoldedConst(true, TrueVal
);
1078 return SelectInst::Create(CondVal
, NewTrueVal
,
1079 NewFoldedConst(false, FalseVal
));
1085 Value
*InstCombinerImpl::tryFactorizationFolds(BinaryOperator
&I
) {
1086 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
1087 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
1088 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
1089 Instruction::BinaryOps TopLevelOpcode
= I
.getOpcode();
1090 Value
*A
, *B
, *C
, *D
;
1091 Instruction::BinaryOps LHSOpcode
, RHSOpcode
;
1094 LHSOpcode
= getBinOpsForFactorization(TopLevelOpcode
, Op0
, A
, B
, Op1
);
1096 RHSOpcode
= getBinOpsForFactorization(TopLevelOpcode
, Op1
, C
, D
, Op0
);
1098 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
1100 if (Op0
&& Op1
&& LHSOpcode
== RHSOpcode
)
1101 if (Value
*V
= tryFactorization(I
, SQ
, Builder
, LHSOpcode
, A
, B
, C
, D
))
1104 // The instruction has the form "(A op' B) op (C)". Try to factorize common
1107 if (Value
*Ident
= getIdentityValue(LHSOpcode
, RHS
))
1109 tryFactorization(I
, SQ
, Builder
, LHSOpcode
, A
, B
, RHS
, Ident
))
1112 // The instruction has the form "(B) op (C op' D)". Try to factorize common
1115 if (Value
*Ident
= getIdentityValue(RHSOpcode
, LHS
))
1117 tryFactorization(I
, SQ
, Builder
, RHSOpcode
, LHS
, Ident
, C
, D
))
1123 /// This tries to simplify binary operations which some other binary operation
1124 /// distributes over either by factorizing out common terms
1125 /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
1126 /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
1127 /// Returns the simplified value, or null if it didn't simplify.
1128 Value
*InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator
&I
) {
1129 Value
*LHS
= I
.getOperand(0), *RHS
= I
.getOperand(1);
1130 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
1131 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
1132 Instruction::BinaryOps TopLevelOpcode
= I
.getOpcode();
1135 if (Value
*R
= tryFactorizationFolds(I
))
1139 if (Op0
&& rightDistributesOverLeft(Op0
->getOpcode(), TopLevelOpcode
)) {
1140 // The instruction has the form "(A op' B) op C". See if expanding it out
1141 // to "(A op C) op' (B op C)" results in simplifications.
1142 Value
*A
= Op0
->getOperand(0), *B
= Op0
->getOperand(1), *C
= RHS
;
1143 Instruction::BinaryOps InnerOpcode
= Op0
->getOpcode(); // op'
1145 // Disable the use of undef because it's not safe to distribute undef.
1146 auto SQDistributive
= SQ
.getWithInstruction(&I
).getWithoutUndef();
1147 Value
*L
= simplifyBinOp(TopLevelOpcode
, A
, C
, SQDistributive
);
1148 Value
*R
= simplifyBinOp(TopLevelOpcode
, B
, C
, SQDistributive
);
1150 // Do "A op C" and "B op C" both simplify?
1152 // They do! Return "L op' R".
1154 C
= Builder
.CreateBinOp(InnerOpcode
, L
, R
);
1159 // Does "A op C" simplify to the identity value for the inner opcode?
1160 if (L
&& L
== ConstantExpr::getBinOpIdentity(InnerOpcode
, L
->getType())) {
1161 // They do! Return "B op C".
1163 C
= Builder
.CreateBinOp(TopLevelOpcode
, B
, C
);
1168 // Does "B op C" simplify to the identity value for the inner opcode?
1169 if (R
&& R
== ConstantExpr::getBinOpIdentity(InnerOpcode
, R
->getType())) {
1170 // They do! Return "A op C".
1172 C
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
);
1178 if (Op1
&& leftDistributesOverRight(TopLevelOpcode
, Op1
->getOpcode())) {
1179 // The instruction has the form "A op (B op' C)". See if expanding it out
1180 // to "(A op B) op' (A op C)" results in simplifications.
1181 Value
*A
= LHS
, *B
= Op1
->getOperand(0), *C
= Op1
->getOperand(1);
1182 Instruction::BinaryOps InnerOpcode
= Op1
->getOpcode(); // op'
1184 // Disable the use of undef because it's not safe to distribute undef.
1185 auto SQDistributive
= SQ
.getWithInstruction(&I
).getWithoutUndef();
1186 Value
*L
= simplifyBinOp(TopLevelOpcode
, A
, B
, SQDistributive
);
1187 Value
*R
= simplifyBinOp(TopLevelOpcode
, A
, C
, SQDistributive
);
1189 // Do "A op B" and "A op C" both simplify?
1191 // They do! Return "L op' R".
1193 A
= Builder
.CreateBinOp(InnerOpcode
, L
, R
);
1198 // Does "A op B" simplify to the identity value for the inner opcode?
1199 if (L
&& L
== ConstantExpr::getBinOpIdentity(InnerOpcode
, L
->getType())) {
1200 // They do! Return "A op C".
1202 A
= Builder
.CreateBinOp(TopLevelOpcode
, A
, C
);
1207 // Does "A op C" simplify to the identity value for the inner opcode?
1208 if (R
&& R
== ConstantExpr::getBinOpIdentity(InnerOpcode
, R
->getType())) {
1209 // They do! Return "A op B".
1211 A
= Builder
.CreateBinOp(TopLevelOpcode
, A
, B
);
1217 return SimplifySelectsFeedingBinaryOp(I
, LHS
, RHS
);
1220 static std::optional
<std::pair
<Value
*, Value
*>>
1221 matchSymmetricPhiNodesPair(PHINode
*LHS
, PHINode
*RHS
) {
1222 if (LHS
->getParent() != RHS
->getParent())
1223 return std::nullopt
;
1225 if (LHS
->getNumIncomingValues() < 2)
1226 return std::nullopt
;
1228 if (!equal(LHS
->blocks(), RHS
->blocks()))
1229 return std::nullopt
;
1231 Value
*L0
= LHS
->getIncomingValue(0);
1232 Value
*R0
= RHS
->getIncomingValue(0);
1234 for (unsigned I
= 1, E
= LHS
->getNumIncomingValues(); I
!= E
; ++I
) {
1235 Value
*L1
= LHS
->getIncomingValue(I
);
1236 Value
*R1
= RHS
->getIncomingValue(I
);
1238 if ((L0
== L1
&& R0
== R1
) || (L0
== R1
&& R0
== L1
))
1241 return std::nullopt
;
1244 return std::optional(std::pair(L0
, R0
));
1247 std::optional
<std::pair
<Value
*, Value
*>>
1248 InstCombinerImpl::matchSymmetricPair(Value
*LHS
, Value
*RHS
) {
1249 Instruction
*LHSInst
= dyn_cast
<Instruction
>(LHS
);
1250 Instruction
*RHSInst
= dyn_cast
<Instruction
>(RHS
);
1251 if (!LHSInst
|| !RHSInst
|| LHSInst
->getOpcode() != RHSInst
->getOpcode())
1252 return std::nullopt
;
1253 switch (LHSInst
->getOpcode()) {
1254 case Instruction::PHI
:
1255 return matchSymmetricPhiNodesPair(cast
<PHINode
>(LHS
), cast
<PHINode
>(RHS
));
1256 case Instruction::Select
: {
1257 Value
*Cond
= LHSInst
->getOperand(0);
1258 Value
*TrueVal
= LHSInst
->getOperand(1);
1259 Value
*FalseVal
= LHSInst
->getOperand(2);
1260 if (Cond
== RHSInst
->getOperand(0) && TrueVal
== RHSInst
->getOperand(2) &&
1261 FalseVal
== RHSInst
->getOperand(1))
1262 return std::pair(TrueVal
, FalseVal
);
1263 return std::nullopt
;
1265 case Instruction::Call
: {
1266 // Match min(a, b) and max(a, b)
1267 MinMaxIntrinsic
*LHSMinMax
= dyn_cast
<MinMaxIntrinsic
>(LHSInst
);
1268 MinMaxIntrinsic
*RHSMinMax
= dyn_cast
<MinMaxIntrinsic
>(RHSInst
);
1269 if (LHSMinMax
&& RHSMinMax
&&
1270 LHSMinMax
->getPredicate() ==
1271 ICmpInst::getSwappedPredicate(RHSMinMax
->getPredicate()) &&
1272 ((LHSMinMax
->getLHS() == RHSMinMax
->getLHS() &&
1273 LHSMinMax
->getRHS() == RHSMinMax
->getRHS()) ||
1274 (LHSMinMax
->getLHS() == RHSMinMax
->getRHS() &&
1275 LHSMinMax
->getRHS() == RHSMinMax
->getLHS())))
1276 return std::pair(LHSMinMax
->getLHS(), LHSMinMax
->getRHS());
1277 return std::nullopt
;
1280 return std::nullopt
;
1284 Value
*InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator
&I
,
1287 Value
*A
, *B
, *C
, *D
, *E
, *F
;
1288 bool LHSIsSelect
= match(LHS
, m_Select(m_Value(A
), m_Value(B
), m_Value(C
)));
1289 bool RHSIsSelect
= match(RHS
, m_Select(m_Value(D
), m_Value(E
), m_Value(F
)));
1290 if (!LHSIsSelect
&& !RHSIsSelect
)
1294 BuilderTy::FastMathFlagGuard
Guard(Builder
);
1295 if (isa
<FPMathOperator
>(&I
)) {
1296 FMF
= I
.getFastMathFlags();
1297 Builder
.setFastMathFlags(FMF
);
1300 Instruction::BinaryOps Opcode
= I
.getOpcode();
1301 SimplifyQuery Q
= SQ
.getWithInstruction(&I
);
1303 Value
*Cond
, *True
= nullptr, *False
= nullptr;
1305 // Special-case for add/negate combination. Replace the zero in the negation
1306 // with the trailing add operand:
1307 // (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
1308 // (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
1309 auto foldAddNegate
= [&](Value
*TVal
, Value
*FVal
, Value
*Z
) -> Value
* {
1310 // We need an 'add' and exactly 1 arm of the select to have been simplified.
1311 if (Opcode
!= Instruction::Add
|| (!True
&& !False
) || (True
&& False
))
1315 if (True
&& match(FVal
, m_Neg(m_Value(N
)))) {
1316 Value
*Sub
= Builder
.CreateSub(Z
, N
);
1317 return Builder
.CreateSelect(Cond
, True
, Sub
, I
.getName());
1319 if (False
&& match(TVal
, m_Neg(m_Value(N
)))) {
1320 Value
*Sub
= Builder
.CreateSub(Z
, N
);
1321 return Builder
.CreateSelect(Cond
, Sub
, False
, I
.getName());
1326 if (LHSIsSelect
&& RHSIsSelect
&& A
== D
) {
1327 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
1329 True
= simplifyBinOp(Opcode
, B
, E
, FMF
, Q
);
1330 False
= simplifyBinOp(Opcode
, C
, F
, FMF
, Q
);
1332 if (LHS
->hasOneUse() && RHS
->hasOneUse()) {
1334 True
= Builder
.CreateBinOp(Opcode
, B
, E
);
1335 else if (True
&& !False
)
1336 False
= Builder
.CreateBinOp(Opcode
, C
, F
);
1338 } else if (LHSIsSelect
&& LHS
->hasOneUse()) {
1339 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
1341 True
= simplifyBinOp(Opcode
, B
, RHS
, FMF
, Q
);
1342 False
= simplifyBinOp(Opcode
, C
, RHS
, FMF
, Q
);
1343 if (Value
*NewSel
= foldAddNegate(B
, C
, RHS
))
1345 } else if (RHSIsSelect
&& RHS
->hasOneUse()) {
1346 // X op (D ? E : F) -> D ? (X op E) : (X op F)
1348 True
= simplifyBinOp(Opcode
, LHS
, E
, FMF
, Q
);
1349 False
= simplifyBinOp(Opcode
, LHS
, F
, FMF
, Q
);
1350 if (Value
*NewSel
= foldAddNegate(E
, F
, LHS
))
1354 if (!True
|| !False
)
1357 Value
*SI
= Builder
.CreateSelect(Cond
, True
, False
);
1362 /// Freely adapt every user of V as-if V was changed to !V.
1363 /// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
1364 void InstCombinerImpl::freelyInvertAllUsersOf(Value
*I
, Value
*IgnoredUser
) {
1365 assert(!isa
<Constant
>(I
) && "Shouldn't invert users of constant");
1366 for (User
*U
: make_early_inc_range(I
->users())) {
1367 if (U
== IgnoredUser
)
1368 continue; // Don't consider this user.
1369 switch (cast
<Instruction
>(U
)->getOpcode()) {
1370 case Instruction::Select
: {
1371 auto *SI
= cast
<SelectInst
>(U
);
1373 SI
->swapProfMetadata();
1376 case Instruction::Br
: {
1377 BranchInst
*BI
= cast
<BranchInst
>(U
);
1378 BI
->swapSuccessors(); // swaps prof metadata too
1380 BPI
->swapSuccEdgesProbabilities(BI
->getParent());
1383 case Instruction::Xor
:
1384 replaceInstUsesWith(cast
<Instruction
>(*U
), I
);
1385 // Add to worklist for DCE.
1386 addToWorklist(cast
<Instruction
>(U
));
1389 llvm_unreachable("Got unexpected user - out of sync with "
1390 "canFreelyInvertAllUsersOf() ?");
1395 /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
1396 /// constant zero (which is the 'negate' form).
1397 Value
*InstCombinerImpl::dyn_castNegVal(Value
*V
) const {
1399 if (match(V
, m_Neg(m_Value(NegV
))))
1402 // Constants can be considered to be negated values if they can be folded.
1403 if (ConstantInt
*C
= dyn_cast
<ConstantInt
>(V
))
1404 return ConstantExpr::getNeg(C
);
1406 if (ConstantDataVector
*C
= dyn_cast
<ConstantDataVector
>(V
))
1407 if (C
->getType()->getElementType()->isIntegerTy())
1408 return ConstantExpr::getNeg(C
);
1410 if (ConstantVector
*CV
= dyn_cast
<ConstantVector
>(V
)) {
1411 for (unsigned i
= 0, e
= CV
->getNumOperands(); i
!= e
; ++i
) {
1412 Constant
*Elt
= CV
->getAggregateElement(i
);
1416 if (isa
<UndefValue
>(Elt
))
1419 if (!isa
<ConstantInt
>(Elt
))
1422 return ConstantExpr::getNeg(CV
);
1425 // Negate integer vector splats.
1426 if (auto *CV
= dyn_cast
<Constant
>(V
))
1427 if (CV
->getType()->isVectorTy() &&
1428 CV
->getType()->getScalarType()->isIntegerTy() && CV
->getSplatValue())
1429 return ConstantExpr::getNeg(CV
);
1435 // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1436 // -> ({s|u}itofp (int_binop x, y))
1437 // 2) (fp_binop ({s|u}itofp x), FpC)
1438 // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1440 // Assuming the sign of the cast for x/y is `OpsFromSigned`.
1441 Instruction
*InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
1442 BinaryOperator
&BO
, bool OpsFromSigned
, std::array
<Value
*, 2> IntOps
,
1443 Constant
*Op1FpC
, SmallVectorImpl
<WithCache
<const Value
*>> &OpsKnown
) {
1445 Type
*FPTy
= BO
.getType();
1446 Type
*IntTy
= IntOps
[0]->getType();
1448 unsigned IntSz
= IntTy
->getScalarSizeInBits();
1449 // This is the maximum number of inuse bits by the integer where the int -> fp
1451 unsigned MaxRepresentableBits
=
1452 APFloat::semanticsPrecision(FPTy
->getScalarType()->getFltSemantics());
1454 // Preserve known number of leading bits. This can allow us to trivial nsw/nuw
1456 unsigned NumUsedLeadingBits
[2] = {IntSz
, IntSz
};
1458 // NB: This only comes up if OpsFromSigned is true, so there is no need to
1459 // cache if between calls to `foldFBinOpOfIntCastsFromSign`.
1460 auto IsNonZero
= [&](unsigned OpNo
) -> bool {
1461 if (OpsKnown
[OpNo
].hasKnownBits() &&
1462 OpsKnown
[OpNo
].getKnownBits(SQ
).isNonZero())
1464 return isKnownNonZero(IntOps
[OpNo
], SQ
);
1467 auto IsNonNeg
= [&](unsigned OpNo
) -> bool {
1468 // NB: This matches the impl in ValueTracking, we just try to use cached
1469 // knownbits here. If we ever start supporting WithCache for
1470 // `isKnownNonNegative`, change this to an explicit call.
1471 return OpsKnown
[OpNo
].getKnownBits(SQ
).isNonNegative();
1474 // Check if we know for certain that ({s|u}itofp op) is exact.
1475 auto IsValidPromotion
= [&](unsigned OpNo
) -> bool {
1476 // Can we treat this operand as the desired sign?
1477 if (OpsFromSigned
!= isa
<SIToFPInst
>(BO
.getOperand(OpNo
)) &&
1481 // If fp precision >= bitwidth(op) then its exact.
1482 // NB: This is slightly conservative for `sitofp`. For signed conversion, we
1483 // can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
1484 // handled specially. We can't, however, increase the bound arbitrarily for
1485 // `sitofp` as for larger sizes, it won't sign extend.
1486 if (MaxRepresentableBits
< IntSz
) {
1487 // Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
1489 // TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
1490 // `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
1492 NumUsedLeadingBits
[OpNo
] = IntSz
- ComputeNumSignBits(IntOps
[OpNo
]);
1493 // Finally for unsigned check that fp precision >= bitwidth(op) -
1494 // numLeadingZeros(op).
1496 NumUsedLeadingBits
[OpNo
] =
1497 IntSz
- OpsKnown
[OpNo
].getKnownBits(SQ
).countMinLeadingZeros();
1500 // NB: We could also check if op is known to be a power of 2 or zero (which
1501 // will always be representable). Its unlikely, however, that is we are
1502 // unable to bound op in any way we will be able to pass the overflow checks
1505 if (MaxRepresentableBits
< NumUsedLeadingBits
[OpNo
])
1507 // Signed + Mul also requires that op is non-zero to avoid -0 cases.
1508 return !OpsFromSigned
|| BO
.getOpcode() != Instruction::FMul
||
1512 // If we have a constant rhs, see if we can losslessly convert it to an int.
1513 if (Op1FpC
!= nullptr) {
1514 // Signed + Mul req non-zero
1515 if (OpsFromSigned
&& BO
.getOpcode() == Instruction::FMul
&&
1516 !match(Op1FpC
, m_NonZeroFP()))
1519 Constant
*Op1IntC
= ConstantFoldCastOperand(
1520 OpsFromSigned
? Instruction::FPToSI
: Instruction::FPToUI
, Op1FpC
,
1522 if (Op1IntC
== nullptr)
1524 if (ConstantFoldCastOperand(OpsFromSigned
? Instruction::SIToFP
1525 : Instruction::UIToFP
,
1526 Op1IntC
, FPTy
, DL
) != Op1FpC
)
1529 // First try to keep sign of cast the same.
1530 IntOps
[1] = Op1IntC
;
1533 // Ensure lhs/rhs integer types match.
1534 if (IntTy
!= IntOps
[1]->getType())
1537 if (Op1FpC
== nullptr) {
1538 if (!IsValidPromotion(1))
1541 if (!IsValidPromotion(0))
1544 // Final we check if the integer version of the binop will not overflow.
1545 BinaryOperator::BinaryOps IntOpc
;
1546 // Because of the precision check, we can often rule out overflows.
1547 bool NeedsOverflowCheck
= true;
1548 // Try to conservatively rule out overflow based on the already done precision
1550 unsigned OverflowMaxOutputBits
= OpsFromSigned
? 2 : 1;
1551 unsigned OverflowMaxCurBits
=
1552 std::max(NumUsedLeadingBits
[0], NumUsedLeadingBits
[1]);
1553 bool OutputSigned
= OpsFromSigned
;
1554 switch (BO
.getOpcode()) {
1555 case Instruction::FAdd
:
1556 IntOpc
= Instruction::Add
;
1557 OverflowMaxOutputBits
+= OverflowMaxCurBits
;
1559 case Instruction::FSub
:
1560 IntOpc
= Instruction::Sub
;
1561 OverflowMaxOutputBits
+= OverflowMaxCurBits
;
1563 case Instruction::FMul
:
1564 IntOpc
= Instruction::Mul
;
1565 OverflowMaxOutputBits
+= OverflowMaxCurBits
* 2;
1568 llvm_unreachable("Unsupported binop");
1570 // The precision check may have already ruled out overflow.
1571 if (OverflowMaxOutputBits
< IntSz
) {
1572 NeedsOverflowCheck
= false;
1573 // We can bound unsigned overflow from sub to in range signed value (this is
1574 // what allows us to avoid the overflow check for sub).
1575 if (IntOpc
== Instruction::Sub
)
1576 OutputSigned
= true;
1579 // Precision check did not rule out overflow, so need to check.
1580 // TODO: If we add support for `WithCache` in `willNotOverflow`, change
1581 // `IntOps[...]` arguments to `KnownOps[...]`.
1582 if (NeedsOverflowCheck
&&
1583 !willNotOverflow(IntOpc
, IntOps
[0], IntOps
[1], BO
, OutputSigned
))
1586 Value
*IntBinOp
= Builder
.CreateBinOp(IntOpc
, IntOps
[0], IntOps
[1]);
1587 if (auto *IntBO
= dyn_cast
<BinaryOperator
>(IntBinOp
)) {
1588 IntBO
->setHasNoSignedWrap(OutputSigned
);
1589 IntBO
->setHasNoUnsignedWrap(!OutputSigned
);
1592 return new SIToFPInst(IntBinOp
, FPTy
);
1593 return new UIToFPInst(IntBinOp
, FPTy
);
1597 // 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
1598 // -> ({s|u}itofp (int_binop x, y))
1599 // 2) (fp_binop ({s|u}itofp x), FpC)
1600 // -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
1601 Instruction
*InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator
&BO
) {
1602 std::array
<Value
*, 2> IntOps
= {nullptr, nullptr};
1603 Constant
*Op1FpC
= nullptr;
1605 // 1) (binop ({s|u}itofp x), ({s|u}itofp y))
1606 // 2) (binop ({s|u}itofp x), FpC)
1607 if (!match(BO
.getOperand(0), m_SIToFP(m_Value(IntOps
[0]))) &&
1608 !match(BO
.getOperand(0), m_UIToFP(m_Value(IntOps
[0]))))
1611 if (!match(BO
.getOperand(1), m_Constant(Op1FpC
)) &&
1612 !match(BO
.getOperand(1), m_SIToFP(m_Value(IntOps
[1]))) &&
1613 !match(BO
.getOperand(1), m_UIToFP(m_Value(IntOps
[1]))))
1616 // Cache KnownBits a bit to potentially save some analysis.
1617 SmallVector
<WithCache
<const Value
*>, 2> OpsKnown
= {IntOps
[0], IntOps
[1]};
1619 // Try treating x/y as coming from both `uitofp` and `sitofp`. There are
1620 // different constraints depending on the sign of the cast.
1621 // NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
1622 if (Instruction
*R
= foldFBinOpOfIntCastsFromSign(BO
, /*OpsFromSigned=*/false,
1623 IntOps
, Op1FpC
, OpsKnown
))
1625 return foldFBinOpOfIntCastsFromSign(BO
, /*OpsFromSigned=*/true, IntOps
,
1629 /// A binop with a constant operand and a sign-extended boolean operand may be
1630 /// converted into a select of constants by applying the binary operation to
1631 /// the constant with the two possible values of the extended boolean (0 or -1).
1632 Instruction
*InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator
&BO
) {
1633 // TODO: Handle non-commutative binop (constant is operand 0).
1634 // TODO: Handle zext.
1635 // TODO: Peek through 'not' of cast.
1636 Value
*BO0
= BO
.getOperand(0);
1637 Value
*BO1
= BO
.getOperand(1);
1640 if (!match(BO0
, m_SExt(m_Value(X
))) || !match(BO1
, m_ImmConstant(C
)) ||
1641 !X
->getType()->isIntOrIntVectorTy(1))
1644 // bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
1645 Constant
*Ones
= ConstantInt::getAllOnesValue(BO
.getType());
1646 Constant
*Zero
= ConstantInt::getNullValue(BO
.getType());
1647 Value
*TVal
= Builder
.CreateBinOp(BO
.getOpcode(), Ones
, C
);
1648 Value
*FVal
= Builder
.CreateBinOp(BO
.getOpcode(), Zero
, C
);
1649 return SelectInst::Create(X
, TVal
, FVal
);
1652 static Value
*simplifyOperationIntoSelectOperand(Instruction
&I
, SelectInst
*SI
,
1654 SmallVector
<Value
*> Ops
;
1655 for (Value
*Op
: I
.operands()) {
1658 V
= IsTrueArm
? SI
->getTrueValue() : SI
->getFalseValue();
1659 } else if (match(SI
->getCondition(),
1660 m_SpecificICmp(IsTrueArm
? ICmpInst::ICMP_EQ
1661 : ICmpInst::ICMP_NE
,
1662 m_Specific(Op
), m_Value(V
))) &&
1663 isGuaranteedNotToBeUndefOrPoison(V
)) {
1671 return simplifyInstructionWithOperands(&I
, Ops
, I
.getDataLayout());
1674 static Value
*foldOperationIntoSelectOperand(Instruction
&I
, SelectInst
*SI
,
1675 Value
*NewOp
, InstCombiner
&IC
) {
1676 Instruction
*Clone
= I
.clone();
1677 Clone
->replaceUsesOfWith(SI
, NewOp
);
1678 Clone
->dropUBImplyingAttrsAndMetadata();
1679 IC
.InsertNewInstBefore(Clone
, I
.getIterator());
1683 Instruction
*InstCombinerImpl::FoldOpIntoSelect(Instruction
&Op
, SelectInst
*SI
,
1684 bool FoldWithMultiUse
) {
1685 // Don't modify shared select instructions unless set FoldWithMultiUse
1686 if (!SI
->hasOneUse() && !FoldWithMultiUse
)
1689 Value
*TV
= SI
->getTrueValue();
1690 Value
*FV
= SI
->getFalseValue();
1692 // Bool selects with constant operands can be folded to logical ops.
1693 if (SI
->getType()->isIntOrIntVectorTy(1))
1696 // Test if a FCmpInst instruction is used exclusively by a select as
1697 // part of a minimum or maximum operation. If so, refrain from doing
1698 // any other folding. This helps out other analyses which understand
1699 // non-obfuscated minimum and maximum idioms. And in this case, at
1700 // least one of the comparison operands has at least one user besides
1701 // the compare (the select), which would often largely negate the
1702 // benefit of folding anyway.
1703 if (auto *CI
= dyn_cast
<FCmpInst
>(SI
->getCondition())) {
1704 if (CI
->hasOneUse()) {
1705 Value
*Op0
= CI
->getOperand(0), *Op1
= CI
->getOperand(1);
1706 if ((TV
== Op0
&& FV
== Op1
) || (FV
== Op0
&& TV
== Op1
))
1711 // Make sure that one of the select arms folds successfully.
1712 Value
*NewTV
= simplifyOperationIntoSelectOperand(Op
, SI
, /*IsTrueArm=*/true);
1714 simplifyOperationIntoSelectOperand(Op
, SI
, /*IsTrueArm=*/false);
1715 if (!NewTV
&& !NewFV
)
1718 // Create an instruction for the arm that did not fold.
1720 NewTV
= foldOperationIntoSelectOperand(Op
, SI
, TV
, *this);
1722 NewFV
= foldOperationIntoSelectOperand(Op
, SI
, FV
, *this);
1723 return SelectInst::Create(SI
->getCondition(), NewTV
, NewFV
, "", nullptr, SI
);
1726 static Value
*simplifyInstructionWithPHI(Instruction
&I
, PHINode
*PN
,
1727 Value
*InValue
, BasicBlock
*InBB
,
1728 const DataLayout
&DL
,
1729 const SimplifyQuery SQ
) {
1730 // NB: It is a precondition of this transform that the operands be
1731 // phi translatable!
1732 SmallVector
<Value
*> Ops
;
1733 for (Value
*Op
: I
.operands()) {
1735 Ops
.push_back(InValue
);
1737 Ops
.push_back(Op
->DoPHITranslation(PN
->getParent(), InBB
));
1740 // Don't consider the simplification successful if we get back a constant
1741 // expression. That's just an instruction in hiding.
1742 // Also reject the case where we simplify back to the phi node. We wouldn't
1743 // be able to remove it in that case.
1744 Value
*NewVal
= simplifyInstructionWithOperands(
1745 &I
, Ops
, SQ
.getWithInstruction(InBB
->getTerminator()));
1746 if (NewVal
&& NewVal
!= PN
&& !match(NewVal
, m_ConstantExpr()))
1749 // Check if incoming PHI value can be replaced with constant
1750 // based on implied condition.
1751 BranchInst
*TerminatorBI
= dyn_cast
<BranchInst
>(InBB
->getTerminator());
1752 const ICmpInst
*ICmp
= dyn_cast
<ICmpInst
>(&I
);
1753 if (TerminatorBI
&& TerminatorBI
->isConditional() &&
1754 TerminatorBI
->getSuccessor(0) != TerminatorBI
->getSuccessor(1) && ICmp
) {
1755 bool LHSIsTrue
= TerminatorBI
->getSuccessor(0) == PN
->getParent();
1756 std::optional
<bool> ImpliedCond
= isImpliedCondition(
1757 TerminatorBI
->getCondition(), ICmp
->getCmpPredicate(), Ops
[0], Ops
[1],
1760 return ConstantInt::getBool(I
.getType(), ImpliedCond
.value());
1766 Instruction
*InstCombinerImpl::foldOpIntoPhi(Instruction
&I
, PHINode
*PN
,
1767 bool AllowMultipleUses
) {
1768 unsigned NumPHIValues
= PN
->getNumIncomingValues();
1769 if (NumPHIValues
== 0)
1772 // We normally only transform phis with a single use. However, if a PHI has
1773 // multiple uses and they are all the same operation, we can fold *all* of the
1774 // uses into the PHI.
1775 bool OneUse
= PN
->hasOneUse();
1776 bool IdenticalUsers
= false;
1777 if (!AllowMultipleUses
&& !OneUse
) {
1778 // Walk the use list for the instruction, comparing them to I.
1779 for (User
*U
: PN
->users()) {
1780 Instruction
*UI
= cast
<Instruction
>(U
);
1781 if (UI
!= &I
&& !I
.isIdenticalTo(UI
))
1784 // Otherwise, we can replace *all* users with the new PHI we form.
1785 IdenticalUsers
= true;
1788 // Check that all operands are phi-translatable.
1789 for (Value
*Op
: I
.operands()) {
1793 // Non-instructions never require phi-translation.
1794 auto *I
= dyn_cast
<Instruction
>(Op
);
1798 // Phi-translate can handle phi nodes in the same block.
1799 if (isa
<PHINode
>(I
))
1800 if (I
->getParent() == PN
->getParent())
1803 // Operand dominates the block, no phi-translation necessary.
1804 if (DT
.dominates(I
, PN
->getParent()))
1807 // Not phi-translatable, bail out.
1811 // Check to see whether the instruction can be folded into each phi operand.
1812 // If there is one operand that does not fold, remember the BB it is in.
1813 SmallVector
<Value
*> NewPhiValues
;
1814 SmallVector
<unsigned int> OpsToMoveUseToIncomingBB
;
1815 bool SeenNonSimplifiedInVal
= false;
1816 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
) {
1817 Value
*InVal
= PN
->getIncomingValue(i
);
1818 BasicBlock
*InBB
= PN
->getIncomingBlock(i
);
1820 if (auto *NewVal
= simplifyInstructionWithPHI(I
, PN
, InVal
, InBB
, DL
, SQ
)) {
1821 NewPhiValues
.push_back(NewVal
);
1825 // Handle some cases that can't be fully simplified, but where we know that
1826 // the two instructions will fold into one.
1827 auto WillFold
= [&]() {
1828 if (!InVal
->hasOneUser())
1831 // icmp of ucmp/scmp with constant will fold to icmp.
1832 const APInt
*Ignored
;
1833 if (isa
<CmpIntrinsic
>(InVal
) &&
1834 match(&I
, m_ICmp(m_Specific(PN
), m_APInt(Ignored
))))
1837 // icmp eq zext(bool), 0 will fold to !bool.
1838 if (isa
<ZExtInst
>(InVal
) &&
1839 cast
<ZExtInst
>(InVal
)->getSrcTy()->isIntOrIntVectorTy(1) &&
1841 m_SpecificICmp(ICmpInst::ICMP_EQ
, m_Specific(PN
), m_Zero())))
1848 OpsToMoveUseToIncomingBB
.push_back(i
);
1849 NewPhiValues
.push_back(nullptr);
1853 if (!OneUse
&& !IdenticalUsers
)
1856 if (SeenNonSimplifiedInVal
)
1857 return nullptr; // More than one non-simplified value.
1858 SeenNonSimplifiedInVal
= true;
1860 // If there is exactly one non-simplified value, we can insert a copy of the
1861 // operation in that block. However, if this is a critical edge, we would
1862 // be inserting the computation on some other paths (e.g. inside a loop).
1863 // Only do this if the pred block is unconditionally branching into the phi
1864 // block. Also, make sure that the pred block is not dead code.
1865 BranchInst
*BI
= dyn_cast
<BranchInst
>(InBB
->getTerminator());
1866 if (!BI
|| !BI
->isUnconditional() || !DT
.isReachableFromEntry(InBB
))
1869 NewPhiValues
.push_back(nullptr);
1870 OpsToMoveUseToIncomingBB
.push_back(i
);
1872 // If the InVal is an invoke at the end of the pred block, then we can't
1873 // insert a computation after it without breaking the edge.
1874 if (isa
<InvokeInst
>(InVal
))
1875 if (cast
<Instruction
>(InVal
)->getParent() == InBB
)
1878 // Do not push the operation across a loop backedge. This could result in
1879 // an infinite combine loop, and is generally non-profitable (especially
1880 // if the operation was originally outside the loop).
1881 if (isBackEdge(InBB
, PN
->getParent()))
1885 // Clone the instruction that uses the phi node and move it into the incoming
1886 // BB because we know that the next iteration of InstCombine will simplify it.
1887 SmallDenseMap
<BasicBlock
*, Instruction
*> Clones
;
1888 for (auto OpIndex
: OpsToMoveUseToIncomingBB
) {
1889 Value
*Op
= PN
->getIncomingValue(OpIndex
);
1890 BasicBlock
*OpBB
= PN
->getIncomingBlock(OpIndex
);
1892 Instruction
*Clone
= Clones
.lookup(OpBB
);
1895 for (Use
&U
: Clone
->operands()) {
1899 U
= U
->DoPHITranslation(PN
->getParent(), OpBB
);
1901 Clone
= InsertNewInstBefore(Clone
, OpBB
->getTerminator()->getIterator());
1902 Clones
.insert({OpBB
, Clone
});
1905 NewPhiValues
[OpIndex
] = Clone
;
1908 // Okay, we can do the transformation: create the new PHI node.
1909 PHINode
*NewPN
= PHINode::Create(I
.getType(), PN
->getNumIncomingValues());
1910 InsertNewInstBefore(NewPN
, PN
->getIterator());
1911 NewPN
->takeName(PN
);
1912 NewPN
->setDebugLoc(PN
->getDebugLoc());
1914 for (unsigned i
= 0; i
!= NumPHIValues
; ++i
)
1915 NewPN
->addIncoming(NewPhiValues
[i
], PN
->getIncomingBlock(i
));
1917 if (IdenticalUsers
) {
1918 for (User
*U
: make_early_inc_range(PN
->users())) {
1919 Instruction
*User
= cast
<Instruction
>(U
);
1922 replaceInstUsesWith(*User
, NewPN
);
1923 eraseInstFromFunction(*User
);
1929 replaceAllDbgUsesWith(const_cast<PHINode
&>(*PN
),
1930 const_cast<PHINode
&>(*NewPN
),
1931 const_cast<PHINode
&>(*PN
), DT
);
1933 return replaceInstUsesWith(I
, NewPN
);
1936 Instruction
*InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator
&BO
) {
1937 // TODO: This should be similar to the incoming values check in foldOpIntoPhi:
1938 // we are guarding against replicating the binop in >1 predecessor.
1939 // This could miss matching a phi with 2 constant incoming values.
1940 auto *Phi0
= dyn_cast
<PHINode
>(BO
.getOperand(0));
1941 auto *Phi1
= dyn_cast
<PHINode
>(BO
.getOperand(1));
1942 if (!Phi0
|| !Phi1
|| !Phi0
->hasOneUse() || !Phi1
->hasOneUse() ||
1943 Phi0
->getNumOperands() != Phi1
->getNumOperands())
1946 // TODO: Remove the restriction for binop being in the same block as the phis.
1947 if (BO
.getParent() != Phi0
->getParent() ||
1948 BO
.getParent() != Phi1
->getParent())
1951 // Fold if there is at least one specific constant value in phi0 or phi1's
1952 // incoming values that comes from the same block and this specific constant
1953 // value can be used to do optimization for specific binary operator.
1955 // %phi0 = phi i32 [0, %bb0], [%i, %bb1]
1956 // %phi1 = phi i32 [%j, %bb0], [0, %bb1]
1957 // %add = add i32 %phi0, %phi1
1959 // %add = phi i32 [%j, %bb0], [%i, %bb1]
1960 Constant
*C
= ConstantExpr::getBinOpIdentity(BO
.getOpcode(), BO
.getType(),
1961 /*AllowRHSConstant*/ false);
1963 SmallVector
<Value
*, 4> NewIncomingValues
;
1964 auto CanFoldIncomingValuePair
= [&](std::tuple
<Use
&, Use
&> T
) {
1965 auto &Phi0Use
= std::get
<0>(T
);
1966 auto &Phi1Use
= std::get
<1>(T
);
1967 if (Phi0
->getIncomingBlock(Phi0Use
) != Phi1
->getIncomingBlock(Phi1Use
))
1969 Value
*Phi0UseV
= Phi0Use
.get();
1970 Value
*Phi1UseV
= Phi1Use
.get();
1972 NewIncomingValues
.push_back(Phi1UseV
);
1973 else if (Phi1UseV
== C
)
1974 NewIncomingValues
.push_back(Phi0UseV
);
1980 if (all_of(zip(Phi0
->operands(), Phi1
->operands()),
1981 CanFoldIncomingValuePair
)) {
1983 PHINode::Create(Phi0
->getType(), Phi0
->getNumOperands());
1984 assert(NewIncomingValues
.size() == Phi0
->getNumOperands() &&
1985 "The number of collected incoming values should equal the number "
1986 "of the original PHINode operands!");
1987 for (unsigned I
= 0; I
< Phi0
->getNumOperands(); I
++)
1988 NewPhi
->addIncoming(NewIncomingValues
[I
], Phi0
->getIncomingBlock(I
));
1993 if (Phi0
->getNumOperands() != 2 || Phi1
->getNumOperands() != 2)
1996 // Match a pair of incoming constants for one of the predecessor blocks.
1997 BasicBlock
*ConstBB
, *OtherBB
;
1999 if (match(Phi0
->getIncomingValue(0), m_ImmConstant(C0
))) {
2000 ConstBB
= Phi0
->getIncomingBlock(0);
2001 OtherBB
= Phi0
->getIncomingBlock(1);
2002 } else if (match(Phi0
->getIncomingValue(1), m_ImmConstant(C0
))) {
2003 ConstBB
= Phi0
->getIncomingBlock(1);
2004 OtherBB
= Phi0
->getIncomingBlock(0);
2008 if (!match(Phi1
->getIncomingValueForBlock(ConstBB
), m_ImmConstant(C1
)))
2011 // The block that we are hoisting to must reach here unconditionally.
2012 // Otherwise, we could be speculatively executing an expensive or
2013 // non-speculative op.
2014 auto *PredBlockBranch
= dyn_cast
<BranchInst
>(OtherBB
->getTerminator());
2015 if (!PredBlockBranch
|| PredBlockBranch
->isConditional() ||
2016 !DT
.isReachableFromEntry(OtherBB
))
2019 // TODO: This check could be tightened to only apply to binops (div/rem) that
2020 // are not safe to speculatively execute. But that could allow hoisting
2021 // potentially expensive instructions (fdiv for example).
2022 for (auto BBIter
= BO
.getParent()->begin(); &*BBIter
!= &BO
; ++BBIter
)
2023 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter
))
2026 // Fold constants for the predecessor block with constant incoming values.
2027 Constant
*NewC
= ConstantFoldBinaryOpOperands(BO
.getOpcode(), C0
, C1
, DL
);
2031 // Make a new binop in the predecessor block with the non-constant incoming
2033 Builder
.SetInsertPoint(PredBlockBranch
);
2034 Value
*NewBO
= Builder
.CreateBinOp(BO
.getOpcode(),
2035 Phi0
->getIncomingValueForBlock(OtherBB
),
2036 Phi1
->getIncomingValueForBlock(OtherBB
));
2037 if (auto *NotFoldedNewBO
= dyn_cast
<BinaryOperator
>(NewBO
))
2038 NotFoldedNewBO
->copyIRFlags(&BO
);
2040 // Replace the binop with a phi of the new values. The old phis are dead.
2041 PHINode
*NewPhi
= PHINode::Create(BO
.getType(), 2);
2042 NewPhi
->addIncoming(NewBO
, OtherBB
);
2043 NewPhi
->addIncoming(NewC
, ConstBB
);
2047 Instruction
*InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator
&I
) {
2048 if (!isa
<Constant
>(I
.getOperand(1)))
2051 if (auto *Sel
= dyn_cast
<SelectInst
>(I
.getOperand(0))) {
2052 if (Instruction
*NewSel
= FoldOpIntoSelect(I
, Sel
))
2054 } else if (auto *PN
= dyn_cast
<PHINode
>(I
.getOperand(0))) {
2055 if (Instruction
*NewPhi
= foldOpIntoPhi(I
, PN
))
2061 static bool shouldMergeGEPs(GEPOperator
&GEP
, GEPOperator
&Src
) {
2062 // If this GEP has only 0 indices, it is the same pointer as
2063 // Src. If Src is not a trivial GEP too, don't combine
2065 if (GEP
.hasAllZeroIndices() && !Src
.hasAllZeroIndices() &&
2071 Instruction
*InstCombinerImpl::foldVectorBinop(BinaryOperator
&Inst
) {
2072 if (!isa
<VectorType
>(Inst
.getType()))
2075 BinaryOperator::BinaryOps Opcode
= Inst
.getOpcode();
2076 Value
*LHS
= Inst
.getOperand(0), *RHS
= Inst
.getOperand(1);
2077 assert(cast
<VectorType
>(LHS
->getType())->getElementCount() ==
2078 cast
<VectorType
>(Inst
.getType())->getElementCount());
2079 assert(cast
<VectorType
>(RHS
->getType())->getElementCount() ==
2080 cast
<VectorType
>(Inst
.getType())->getElementCount());
2082 // If both operands of the binop are vector concatenations, then perform the
2083 // narrow binop on each pair of the source operands followed by concatenation
2085 Value
*L0
, *L1
, *R0
, *R1
;
2087 if (match(LHS
, m_Shuffle(m_Value(L0
), m_Value(L1
), m_Mask(Mask
))) &&
2088 match(RHS
, m_Shuffle(m_Value(R0
), m_Value(R1
), m_SpecificMask(Mask
))) &&
2089 LHS
->hasOneUse() && RHS
->hasOneUse() &&
2090 cast
<ShuffleVectorInst
>(LHS
)->isConcat() &&
2091 cast
<ShuffleVectorInst
>(RHS
)->isConcat()) {
2092 // This transform does not have the speculative execution constraint as
2093 // below because the shuffle is a concatenation. The new binops are
2094 // operating on exactly the same elements as the existing binop.
2095 // TODO: We could ease the mask requirement to allow different undef lanes,
2096 // but that requires an analysis of the binop-with-undef output value.
2097 Value
*NewBO0
= Builder
.CreateBinOp(Opcode
, L0
, R0
);
2098 if (auto *BO
= dyn_cast
<BinaryOperator
>(NewBO0
))
2099 BO
->copyIRFlags(&Inst
);
2100 Value
*NewBO1
= Builder
.CreateBinOp(Opcode
, L1
, R1
);
2101 if (auto *BO
= dyn_cast
<BinaryOperator
>(NewBO1
))
2102 BO
->copyIRFlags(&Inst
);
2103 return new ShuffleVectorInst(NewBO0
, NewBO1
, Mask
);
2106 auto createBinOpReverse
= [&](Value
*X
, Value
*Y
) {
2107 Value
*V
= Builder
.CreateBinOp(Opcode
, X
, Y
, Inst
.getName());
2108 if (auto *BO
= dyn_cast
<BinaryOperator
>(V
))
2109 BO
->copyIRFlags(&Inst
);
2110 Module
*M
= Inst
.getModule();
2111 Function
*F
= Intrinsic::getOrInsertDeclaration(
2112 M
, Intrinsic::vector_reverse
, V
->getType());
2113 return CallInst::Create(F
, V
);
2116 // NOTE: Reverse shuffles don't require the speculative execution protection
2117 // below because they don't affect which lanes take part in the computation.
2120 if (match(LHS
, m_VecReverse(m_Value(V1
)))) {
2121 // Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
2122 if (match(RHS
, m_VecReverse(m_Value(V2
))) &&
2123 (LHS
->hasOneUse() || RHS
->hasOneUse() ||
2124 (LHS
== RHS
&& LHS
->hasNUses(2))))
2125 return createBinOpReverse(V1
, V2
);
2127 // Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
2128 if (LHS
->hasOneUse() && isSplatValue(RHS
))
2129 return createBinOpReverse(V1
, RHS
);
2131 // Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
2132 else if (isSplatValue(LHS
) && match(RHS
, m_OneUse(m_VecReverse(m_Value(V2
)))))
2133 return createBinOpReverse(LHS
, V2
);
2135 // It may not be safe to reorder shuffles and things like div, urem, etc.
2136 // because we may trap when executing those ops on unknown vector elements.
2138 if (!isSafeToSpeculativelyExecuteWithVariableReplaced(&Inst
))
2141 auto createBinOpShuffle
= [&](Value
*X
, Value
*Y
, ArrayRef
<int> M
) {
2142 Value
*XY
= Builder
.CreateBinOp(Opcode
, X
, Y
);
2143 if (auto *BO
= dyn_cast
<BinaryOperator
>(XY
))
2144 BO
->copyIRFlags(&Inst
);
2145 return new ShuffleVectorInst(XY
, M
);
2148 // If both arguments of the binary operation are shuffles that use the same
2149 // mask and shuffle within a single vector, move the shuffle after the binop.
2150 if (match(LHS
, m_Shuffle(m_Value(V1
), m_Poison(), m_Mask(Mask
))) &&
2151 match(RHS
, m_Shuffle(m_Value(V2
), m_Poison(), m_SpecificMask(Mask
))) &&
2152 V1
->getType() == V2
->getType() &&
2153 (LHS
->hasOneUse() || RHS
->hasOneUse() || LHS
== RHS
)) {
2154 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
2155 return createBinOpShuffle(V1
, V2
, Mask
);
2158 // If both arguments of a commutative binop are select-shuffles that use the
2159 // same mask with commuted operands, the shuffles are unnecessary.
2160 if (Inst
.isCommutative() &&
2161 match(LHS
, m_Shuffle(m_Value(V1
), m_Value(V2
), m_Mask(Mask
))) &&
2163 m_Shuffle(m_Specific(V2
), m_Specific(V1
), m_SpecificMask(Mask
)))) {
2164 auto *LShuf
= cast
<ShuffleVectorInst
>(LHS
);
2165 auto *RShuf
= cast
<ShuffleVectorInst
>(RHS
);
2166 // TODO: Allow shuffles that contain undefs in the mask?
2167 // That is legal, but it reduces undef knowledge.
2168 // TODO: Allow arbitrary shuffles by shuffling after binop?
2169 // That might be legal, but we have to deal with poison.
2170 if (LShuf
->isSelect() &&
2171 !is_contained(LShuf
->getShuffleMask(), PoisonMaskElem
) &&
2172 RShuf
->isSelect() &&
2173 !is_contained(RShuf
->getShuffleMask(), PoisonMaskElem
)) {
2175 // LHS = shuffle V1, V2, <0, 5, 6, 3>
2176 // RHS = shuffle V2, V1, <0, 5, 6, 3>
2177 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
2178 Instruction
*NewBO
= BinaryOperator::Create(Opcode
, V1
, V2
);
2179 NewBO
->copyIRFlags(&Inst
);
2184 // If one argument is a shuffle within one vector and the other is a constant,
2185 // try moving the shuffle after the binary operation. This canonicalization
2186 // intends to move shuffles closer to other shuffles and binops closer to
2187 // other binops, so they can be folded. It may also enable demanded elements
2190 auto *InstVTy
= dyn_cast
<FixedVectorType
>(Inst
.getType());
2192 match(&Inst
, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1
), m_Poison(),
2194 m_ImmConstant(C
))) &&
2195 cast
<FixedVectorType
>(V1
->getType())->getNumElements() <=
2196 InstVTy
->getNumElements()) {
2197 assert(InstVTy
->getScalarType() == V1
->getType()->getScalarType() &&
2198 "Shuffle should not change scalar type");
2200 // Find constant NewC that has property:
2201 // shuffle(NewC, ShMask) = C
2202 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
2203 // reorder is not possible. A 1-to-1 mapping is not required. Example:
2204 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
2205 bool ConstOp1
= isa
<Constant
>(RHS
);
2206 ArrayRef
<int> ShMask
= Mask
;
2207 unsigned SrcVecNumElts
=
2208 cast
<FixedVectorType
>(V1
->getType())->getNumElements();
2209 PoisonValue
*PoisonScalar
= PoisonValue::get(C
->getType()->getScalarType());
2210 SmallVector
<Constant
*, 16> NewVecC(SrcVecNumElts
, PoisonScalar
);
2211 bool MayChange
= true;
2212 unsigned NumElts
= InstVTy
->getNumElements();
2213 for (unsigned I
= 0; I
< NumElts
; ++I
) {
2214 Constant
*CElt
= C
->getAggregateElement(I
);
2215 if (ShMask
[I
] >= 0) {
2216 assert(ShMask
[I
] < (int)NumElts
&& "Not expecting narrowing shuffle");
2217 Constant
*NewCElt
= NewVecC
[ShMask
[I
]];
2219 // 1. The constant vector contains a constant expression.
2220 // 2. The shuffle needs an element of the constant vector that can't
2221 // be mapped to a new constant vector.
2222 // 3. This is a widening shuffle that copies elements of V1 into the
2223 // extended elements (extending with poison is allowed).
2224 if (!CElt
|| (!isa
<PoisonValue
>(NewCElt
) && NewCElt
!= CElt
) ||
2225 I
>= SrcVecNumElts
) {
2229 NewVecC
[ShMask
[I
]] = CElt
;
2231 // If this is a widening shuffle, we must be able to extend with poison
2232 // elements. If the original binop does not produce a poison in the high
2233 // lanes, then this transform is not safe.
2234 // Similarly for poison lanes due to the shuffle mask, we can only
2235 // transform binops that preserve poison.
2236 // TODO: We could shuffle those non-poison constant values into the
2237 // result by using a constant vector (rather than an poison vector)
2238 // as operand 1 of the new binop, but that might be too aggressive
2239 // for target-independent shuffle creation.
2240 if (I
>= SrcVecNumElts
|| ShMask
[I
] < 0) {
2241 Constant
*MaybePoison
=
2243 ? ConstantFoldBinaryOpOperands(Opcode
, PoisonScalar
, CElt
, DL
)
2244 : ConstantFoldBinaryOpOperands(Opcode
, CElt
, PoisonScalar
, DL
);
2245 if (!MaybePoison
|| !isa
<PoisonValue
>(MaybePoison
)) {
2252 Constant
*NewC
= ConstantVector::get(NewVecC
);
2253 // It may not be safe to execute a binop on a vector with poison elements
2254 // because the entire instruction can be folded to undef or create poison
2255 // that did not exist in the original code.
2256 // TODO: The shift case should not be necessary.
2257 if (Inst
.isIntDivRem() || (Inst
.isShift() && ConstOp1
))
2258 NewC
= getSafeVectorConstantForBinop(Opcode
, NewC
, ConstOp1
);
2260 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
2261 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
2262 Value
*NewLHS
= ConstOp1
? V1
: NewC
;
2263 Value
*NewRHS
= ConstOp1
? NewC
: V1
;
2264 return createBinOpShuffle(NewLHS
, NewRHS
, Mask
);
2268 // Try to reassociate to sink a splat shuffle after a binary operation.
2269 if (Inst
.isAssociative() && Inst
.isCommutative()) {
2270 // Canonicalize shuffle operand as LHS.
2271 if (isa
<ShuffleVectorInst
>(RHS
))
2272 std::swap(LHS
, RHS
);
2275 ArrayRef
<int> MaskC
;
2279 m_OneUse(m_Shuffle(m_Value(X
), m_Undef(), m_Mask(MaskC
)))) ||
2280 !match(MaskC
, m_SplatOrPoisonMask(SplatIndex
)) ||
2281 X
->getType() != Inst
.getType() ||
2282 !match(RHS
, m_OneUse(m_BinOp(Opcode
, m_Value(Y
), m_Value(OtherOp
)))))
2285 // FIXME: This may not be safe if the analysis allows undef elements. By
2286 // moving 'Y' before the splat shuffle, we are implicitly assuming
2287 // that it is not undef/poison at the splat index.
2288 if (isSplatValue(OtherOp
, SplatIndex
)) {
2289 std::swap(Y
, OtherOp
);
2290 } else if (!isSplatValue(Y
, SplatIndex
)) {
2294 // X and Y are splatted values, so perform the binary operation on those
2295 // values followed by a splat followed by the 2nd binary operation:
2296 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
2297 Value
*NewBO
= Builder
.CreateBinOp(Opcode
, X
, Y
);
2298 SmallVector
<int, 8> NewMask(MaskC
.size(), SplatIndex
);
2299 Value
*NewSplat
= Builder
.CreateShuffleVector(NewBO
, NewMask
);
2300 Instruction
*R
= BinaryOperator::Create(Opcode
, NewSplat
, OtherOp
);
2302 // Intersect FMF on both new binops. Other (poison-generating) flags are
2303 // dropped to be safe.
2304 if (isa
<FPMathOperator
>(R
)) {
2305 R
->copyFastMathFlags(&Inst
);
2308 if (auto *NewInstBO
= dyn_cast
<BinaryOperator
>(NewBO
))
2309 NewInstBO
->copyIRFlags(R
);
2316 /// Try to narrow the width of a binop if at least 1 operand is an extend of
2317 /// of a value. This requires a potentially expensive known bits check to make
2318 /// sure the narrow op does not overflow.
2319 Instruction
*InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator
&BO
) {
2320 // We need at least one extended operand.
2321 Value
*Op0
= BO
.getOperand(0), *Op1
= BO
.getOperand(1);
2323 // If this is a sub, we swap the operands since we always want an extension
2324 // on the RHS. The LHS can be an extension or a constant.
2325 if (BO
.getOpcode() == Instruction::Sub
)
2326 std::swap(Op0
, Op1
);
2329 bool IsSext
= match(Op0
, m_SExt(m_Value(X
)));
2330 if (!IsSext
&& !match(Op0
, m_ZExt(m_Value(X
))))
2333 // If both operands are the same extension from the same source type and we
2334 // can eliminate at least one (hasOneUse), this might work.
2335 CastInst::CastOps CastOpc
= IsSext
? Instruction::SExt
: Instruction::ZExt
;
2337 if (!(match(Op1
, m_ZExtOrSExt(m_Value(Y
))) && X
->getType() == Y
->getType() &&
2338 cast
<Operator
>(Op1
)->getOpcode() == CastOpc
&&
2339 (Op0
->hasOneUse() || Op1
->hasOneUse()))) {
2340 // If that did not match, see if we have a suitable constant operand.
2341 // Truncating and extending must produce the same constant.
2343 if (!Op0
->hasOneUse() || !match(Op1
, m_Constant(WideC
)))
2345 Constant
*NarrowC
= getLosslessTrunc(WideC
, X
->getType(), CastOpc
);
2351 // Swap back now that we found our operands.
2352 if (BO
.getOpcode() == Instruction::Sub
)
2355 // Both operands have narrow versions. Last step: the math must not overflow
2356 // in the narrow width.
2357 if (!willNotOverflow(BO
.getOpcode(), X
, Y
, BO
, IsSext
))
2360 // bo (ext X), (ext Y) --> ext (bo X, Y)
2361 // bo (ext X), C --> ext (bo X, C')
2362 Value
*NarrowBO
= Builder
.CreateBinOp(BO
.getOpcode(), X
, Y
, "narrow");
2363 if (auto *NewBinOp
= dyn_cast
<BinaryOperator
>(NarrowBO
)) {
2365 NewBinOp
->setHasNoSignedWrap();
2367 NewBinOp
->setHasNoUnsignedWrap();
2369 return CastInst::Create(CastOpc
, NarrowBO
, BO
.getType());
2372 /// Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y))
2374 static GEPNoWrapFlags
getMergedGEPNoWrapFlags(GEPOperator
&GEP1
,
2375 GEPOperator
&GEP2
) {
2376 return GEP1
.getNoWrapFlags().intersectForOffsetAdd(GEP2
.getNoWrapFlags());
2379 /// Thread a GEP operation with constant indices through the constant true/false
2380 /// arms of a select.
2381 static Instruction
*foldSelectGEP(GetElementPtrInst
&GEP
,
2382 InstCombiner::BuilderTy
&Builder
) {
2383 if (!GEP
.hasAllConstantIndices())
2388 Constant
*TrueC
, *FalseC
;
2389 if (!match(GEP
.getPointerOperand(), m_Instruction(Sel
)) ||
2391 m_Select(m_Value(Cond
), m_Constant(TrueC
), m_Constant(FalseC
))))
2394 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
2395 // Propagate 'inbounds' and metadata from existing instructions.
2396 // Note: using IRBuilder to create the constants for efficiency.
2397 SmallVector
<Value
*, 4> IndexC(GEP
.indices());
2398 GEPNoWrapFlags NW
= GEP
.getNoWrapFlags();
2399 Type
*Ty
= GEP
.getSourceElementType();
2400 Value
*NewTrueC
= Builder
.CreateGEP(Ty
, TrueC
, IndexC
, "", NW
);
2401 Value
*NewFalseC
= Builder
.CreateGEP(Ty
, FalseC
, IndexC
, "", NW
);
2402 return SelectInst::Create(Cond
, NewTrueC
, NewFalseC
, "", nullptr, Sel
);
2405 // Canonicalization:
2406 // gep T, (gep i8, base, C1), (Index + C2) into
2407 // gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
2408 static Instruction
*canonicalizeGEPOfConstGEPI8(GetElementPtrInst
&GEP
,
2410 InstCombinerImpl
&IC
) {
2411 if (GEP
.getNumIndices() != 1)
2413 auto &DL
= IC
.getDataLayout();
2416 if (!match(Src
, m_PtrAdd(m_Value(Base
), m_APInt(C1
))))
2420 Type
*PtrTy
= Src
->getType()->getScalarType();
2421 unsigned IndexSizeInBits
= DL
.getIndexTypeSizeInBits(PtrTy
);
2422 if (!match(GEP
.getOperand(1), m_AddLike(m_Value(VarIndex
), m_APInt(C2
))))
2424 if (C1
->getBitWidth() != IndexSizeInBits
||
2425 C2
->getBitWidth() != IndexSizeInBits
)
2427 Type
*BaseType
= GEP
.getSourceElementType();
2428 if (isa
<ScalableVectorType
>(BaseType
))
2430 APInt
TypeSize(IndexSizeInBits
, DL
.getTypeAllocSize(BaseType
));
2431 APInt NewOffset
= TypeSize
* *C2
+ *C1
;
2432 if (NewOffset
.isZero() ||
2433 (Src
->hasOneUse() && GEP
.getOperand(1)->hasOneUse())) {
2435 IC
.Builder
.CreatePtrAdd(Base
, IC
.Builder
.getInt(NewOffset
));
2436 return GetElementPtrInst::Create(BaseType
, GEPConst
, VarIndex
);
2442 Instruction
*InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst
&GEP
,
2444 // Combine Indices - If the source pointer to this getelementptr instruction
2445 // is a getelementptr instruction with matching element type, combine the
2446 // indices of the two getelementptr instructions into a single instruction.
2447 if (!shouldMergeGEPs(*cast
<GEPOperator
>(&GEP
), *Src
))
2450 if (auto *I
= canonicalizeGEPOfConstGEPI8(GEP
, Src
, *this))
2453 // For constant GEPs, use a more general offset-based folding approach.
2454 Type
*PtrTy
= Src
->getType()->getScalarType();
2455 if (GEP
.hasAllConstantIndices() &&
2456 (Src
->hasOneUse() || Src
->hasAllConstantIndices())) {
2457 // Split Src into a variable part and a constant suffix.
2458 gep_type_iterator GTI
= gep_type_begin(*Src
);
2459 Type
*BaseType
= GTI
.getIndexedType();
2460 bool IsFirstType
= true;
2461 unsigned NumVarIndices
= 0;
2462 for (auto Pair
: enumerate(Src
->indices())) {
2463 if (!isa
<ConstantInt
>(Pair
.value())) {
2464 BaseType
= GTI
.getIndexedType();
2465 IsFirstType
= false;
2466 NumVarIndices
= Pair
.index() + 1;
2471 // Determine the offset for the constant suffix of Src.
2472 APInt
Offset(DL
.getIndexTypeSizeInBits(PtrTy
), 0);
2473 if (NumVarIndices
!= Src
->getNumIndices()) {
2474 // FIXME: getIndexedOffsetInType() does not handled scalable vectors.
2475 if (BaseType
->isScalableTy())
2478 SmallVector
<Value
*> ConstantIndices
;
2480 ConstantIndices
.push_back(
2481 Constant::getNullValue(Type::getInt32Ty(GEP
.getContext())));
2482 append_range(ConstantIndices
, drop_begin(Src
->indices(), NumVarIndices
));
2483 Offset
+= DL
.getIndexedOffsetInType(BaseType
, ConstantIndices
);
2486 // Add the offset for GEP (which is fully constant).
2487 if (!GEP
.accumulateConstantOffset(DL
, Offset
))
2490 // Convert the total offset back into indices.
2491 SmallVector
<APInt
> ConstIndices
=
2492 DL
.getGEPIndicesForOffset(BaseType
, Offset
);
2493 if (!Offset
.isZero() || (!IsFirstType
&& !ConstIndices
[0].isZero()))
2496 GEPNoWrapFlags NW
= getMergedGEPNoWrapFlags(*Src
, *cast
<GEPOperator
>(&GEP
));
2497 SmallVector
<Value
*> Indices
;
2498 append_range(Indices
, drop_end(Src
->indices(),
2499 Src
->getNumIndices() - NumVarIndices
));
2500 for (const APInt
&Idx
: drop_begin(ConstIndices
, !IsFirstType
)) {
2501 Indices
.push_back(ConstantInt::get(GEP
.getContext(), Idx
));
2502 // Even if the total offset is inbounds, we may end up representing it
2503 // by first performing a larger negative offset, and then a smaller
2504 // positive one. The large negative offset might go out of bounds. Only
2505 // preserve inbounds if all signs are the same.
2506 if (Idx
.isNonNegative() != ConstIndices
[0].isNonNegative())
2507 NW
= NW
.withoutNoUnsignedSignedWrap();
2508 if (!Idx
.isNonNegative())
2509 NW
= NW
.withoutNoUnsignedWrap();
2512 return replaceInstUsesWith(
2513 GEP
, Builder
.CreateGEP(Src
->getSourceElementType(), Src
->getOperand(0),
2517 if (Src
->getResultElementType() != GEP
.getSourceElementType())
2520 SmallVector
<Value
*, 8> Indices
;
2522 // Find out whether the last index in the source GEP is a sequential idx.
2523 bool EndsWithSequential
= false;
2524 for (gep_type_iterator I
= gep_type_begin(*Src
), E
= gep_type_end(*Src
);
2526 EndsWithSequential
= I
.isSequential();
2528 // Can we combine the two pointer arithmetics offsets?
2529 if (EndsWithSequential
) {
2530 // Replace: gep (gep %P, long B), long A, ...
2531 // With: T = long A+B; gep %P, T, ...
2532 Value
*SO1
= Src
->getOperand(Src
->getNumOperands()-1);
2533 Value
*GO1
= GEP
.getOperand(1);
2535 // If they aren't the same type, then the input hasn't been processed
2536 // by the loop above yet (which canonicalizes sequential index types to
2537 // intptr_t). Just avoid transforming this until the input has been
2539 if (SO1
->getType() != GO1
->getType())
2543 simplifyAddInst(GO1
, SO1
, false, false, SQ
.getWithInstruction(&GEP
));
2544 // Only do the combine when we are sure the cost after the
2545 // merge is never more than that before the merge.
2549 Indices
.append(Src
->op_begin()+1, Src
->op_end()-1);
2550 Indices
.push_back(Sum
);
2551 Indices
.append(GEP
.op_begin()+2, GEP
.op_end());
2552 } else if (isa
<Constant
>(*GEP
.idx_begin()) &&
2553 cast
<Constant
>(*GEP
.idx_begin())->isNullValue() &&
2554 Src
->getNumOperands() != 1) {
2555 // Otherwise we can do the fold if the first index of the GEP is a zero
2556 Indices
.append(Src
->op_begin()+1, Src
->op_end());
2557 Indices
.append(GEP
.idx_begin()+1, GEP
.idx_end());
2560 if (!Indices
.empty())
2561 return replaceInstUsesWith(
2562 GEP
, Builder
.CreateGEP(
2563 Src
->getSourceElementType(), Src
->getOperand(0), Indices
, "",
2564 getMergedGEPNoWrapFlags(*Src
, *cast
<GEPOperator
>(&GEP
))));
2569 Value
*InstCombiner::getFreelyInvertedImpl(Value
*V
, bool WillInvertAllUses
,
2571 bool &DoesConsume
, unsigned Depth
) {
2572 static Value
*const NonNull
= reinterpret_cast<Value
*>(uintptr_t(1));
2575 if (match(V
, m_Not(m_Value(A
)))) {
2581 // Constants can be considered to be not'ed values.
2582 if (match(V
, m_ImmConstant(C
)))
2583 return ConstantExpr::getNot(C
);
2585 if (Depth
++ >= MaxAnalysisRecursionDepth
)
2588 // The rest of the cases require that we invert all uses so don't bother
2589 // doing the analysis if we know we can't use the result.
2590 if (!WillInvertAllUses
)
2593 // Compares can be inverted if all of their uses are being modified to use
2595 if (auto *I
= dyn_cast
<CmpInst
>(V
)) {
2596 if (Builder
!= nullptr)
2597 return Builder
->CreateCmp(I
->getInversePredicate(), I
->getOperand(0),
2602 // If `V` is of the form `A + B` then `-1 - V` can be folded into
2603 // `(-1 - B) - A` if we are willing to invert all of the uses.
2604 if (match(V
, m_Add(m_Value(A
), m_Value(B
)))) {
2605 if (auto *BV
= getFreelyInvertedImpl(B
, B
->hasOneUse(), Builder
,
2606 DoesConsume
, Depth
))
2607 return Builder
? Builder
->CreateSub(BV
, A
) : NonNull
;
2608 if (auto *AV
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2609 DoesConsume
, Depth
))
2610 return Builder
? Builder
->CreateSub(AV
, B
) : NonNull
;
2614 // If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
2615 // into `A ^ B` if we are willing to invert all of the uses.
2616 if (match(V
, m_Xor(m_Value(A
), m_Value(B
)))) {
2617 if (auto *BV
= getFreelyInvertedImpl(B
, B
->hasOneUse(), Builder
,
2618 DoesConsume
, Depth
))
2619 return Builder
? Builder
->CreateXor(A
, BV
) : NonNull
;
2620 if (auto *AV
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2621 DoesConsume
, Depth
))
2622 return Builder
? Builder
->CreateXor(AV
, B
) : NonNull
;
2626 // If `V` is of the form `B - A` then `-1 - V` can be folded into
2627 // `A + (-1 - B)` if we are willing to invert all of the uses.
2628 if (match(V
, m_Sub(m_Value(A
), m_Value(B
)))) {
2629 if (auto *AV
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2630 DoesConsume
, Depth
))
2631 return Builder
? Builder
->CreateAdd(AV
, B
) : NonNull
;
2635 // If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
2636 // into `A s>> B` if we are willing to invert all of the uses.
2637 if (match(V
, m_AShr(m_Value(A
), m_Value(B
)))) {
2638 if (auto *AV
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2639 DoesConsume
, Depth
))
2640 return Builder
? Builder
->CreateAShr(AV
, B
) : NonNull
;
2645 // LogicOps are special in that we canonicalize them at the cost of an
2647 bool IsSelect
= match(V
, m_Select(m_Value(Cond
), m_Value(A
), m_Value(B
))) &&
2648 !shouldAvoidAbsorbingNotIntoSelect(*cast
<SelectInst
>(V
));
2649 // Selects/min/max with invertible operands are freely invertible
2650 if (IsSelect
|| match(V
, m_MaxOrMin(m_Value(A
), m_Value(B
)))) {
2651 bool LocalDoesConsume
= DoesConsume
;
2652 if (!getFreelyInvertedImpl(B
, B
->hasOneUse(), /*Builder*/ nullptr,
2653 LocalDoesConsume
, Depth
))
2655 if (Value
*NotA
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2656 LocalDoesConsume
, Depth
)) {
2657 DoesConsume
= LocalDoesConsume
;
2658 if (Builder
!= nullptr) {
2659 Value
*NotB
= getFreelyInvertedImpl(B
, B
->hasOneUse(), Builder
,
2660 DoesConsume
, Depth
);
2661 assert(NotB
!= nullptr &&
2662 "Unable to build inverted value for known freely invertable op");
2663 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
2664 return Builder
->CreateBinaryIntrinsic(
2665 getInverseMinMaxIntrinsic(II
->getIntrinsicID()), NotA
, NotB
);
2666 return Builder
->CreateSelect(Cond
, NotA
, NotB
);
2672 if (PHINode
*PN
= dyn_cast
<PHINode
>(V
)) {
2673 bool LocalDoesConsume
= DoesConsume
;
2674 SmallVector
<std::pair
<Value
*, BasicBlock
*>, 8> IncomingValues
;
2675 for (Use
&U
: PN
->operands()) {
2676 BasicBlock
*IncomingBlock
= PN
->getIncomingBlock(U
);
2677 Value
*NewIncomingVal
= getFreelyInvertedImpl(
2678 U
.get(), /*WillInvertAllUses=*/false,
2679 /*Builder=*/nullptr, LocalDoesConsume
, MaxAnalysisRecursionDepth
- 1);
2680 if (NewIncomingVal
== nullptr)
2682 // Make sure that we can safely erase the original PHI node.
2683 if (NewIncomingVal
== V
)
2685 if (Builder
!= nullptr)
2686 IncomingValues
.emplace_back(NewIncomingVal
, IncomingBlock
);
2689 DoesConsume
= LocalDoesConsume
;
2690 if (Builder
!= nullptr) {
2691 IRBuilderBase::InsertPointGuard
Guard(*Builder
);
2692 Builder
->SetInsertPoint(PN
);
2694 Builder
->CreatePHI(PN
->getType(), PN
->getNumIncomingValues());
2695 for (auto [Val
, Pred
] : IncomingValues
)
2696 NewPN
->addIncoming(Val
, Pred
);
2702 if (match(V
, m_SExtLike(m_Value(A
)))) {
2703 if (auto *AV
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2704 DoesConsume
, Depth
))
2705 return Builder
? Builder
->CreateSExt(AV
, V
->getType()) : NonNull
;
2709 if (match(V
, m_Trunc(m_Value(A
)))) {
2710 if (auto *AV
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2711 DoesConsume
, Depth
))
2712 return Builder
? Builder
->CreateTrunc(AV
, V
->getType()) : NonNull
;
2716 // De Morgan's Laws:
2717 // (~(A | B)) -> (~A & ~B)
2718 // (~(A & B)) -> (~A | ~B)
2719 auto TryInvertAndOrUsingDeMorgan
= [&](Instruction::BinaryOps Opcode
,
2720 bool IsLogical
, Value
*A
,
2721 Value
*B
) -> Value
* {
2722 bool LocalDoesConsume
= DoesConsume
;
2723 if (!getFreelyInvertedImpl(B
, B
->hasOneUse(), /*Builder=*/nullptr,
2724 LocalDoesConsume
, Depth
))
2726 if (auto *NotA
= getFreelyInvertedImpl(A
, A
->hasOneUse(), Builder
,
2727 LocalDoesConsume
, Depth
)) {
2728 auto *NotB
= getFreelyInvertedImpl(B
, B
->hasOneUse(), Builder
,
2729 LocalDoesConsume
, Depth
);
2730 DoesConsume
= LocalDoesConsume
;
2732 return Builder
? Builder
->CreateLogicalOp(Opcode
, NotA
, NotB
) : NonNull
;
2733 return Builder
? Builder
->CreateBinOp(Opcode
, NotA
, NotB
) : NonNull
;
2739 if (match(V
, m_Or(m_Value(A
), m_Value(B
))))
2740 return TryInvertAndOrUsingDeMorgan(Instruction::And
, /*IsLogical=*/false, A
,
2743 if (match(V
, m_And(m_Value(A
), m_Value(B
))))
2744 return TryInvertAndOrUsingDeMorgan(Instruction::Or
, /*IsLogical=*/false, A
,
2747 if (match(V
, m_LogicalOr(m_Value(A
), m_Value(B
))))
2748 return TryInvertAndOrUsingDeMorgan(Instruction::And
, /*IsLogical=*/true, A
,
2751 if (match(V
, m_LogicalAnd(m_Value(A
), m_Value(B
))))
2752 return TryInvertAndOrUsingDeMorgan(Instruction::Or
, /*IsLogical=*/true, A
,
2758 /// Return true if we should canonicalize the gep to an i8 ptradd.
2759 static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst
&GEP
) {
2760 Value
*PtrOp
= GEP
.getOperand(0);
2761 Type
*GEPEltType
= GEP
.getSourceElementType();
2762 if (GEPEltType
->isIntegerTy(8))
2765 // Canonicalize scalable GEPs to an explicit offset using the llvm.vscale
2766 // intrinsic. This has better support in BasicAA.
2767 if (GEPEltType
->isScalableTy())
2770 // gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two multiplies
2772 if (GEP
.getNumIndices() == 1 &&
2773 match(GEP
.getOperand(1),
2774 m_OneUse(m_CombineOr(m_Mul(m_Value(), m_ConstantInt()),
2775 m_Shl(m_Value(), m_ConstantInt())))))
2778 // gep (gep %p, C1), %x, C2 is expanded so the two constants can
2779 // possibly be merged together.
2780 auto PtrOpGep
= dyn_cast
<GEPOperator
>(PtrOp
);
2781 return PtrOpGep
&& PtrOpGep
->hasAllConstantIndices() &&
2782 any_of(GEP
.indices(), [](Value
*V
) {
2784 return match(V
, m_APInt(C
)) && !C
->isZero();
2788 static Instruction
*foldGEPOfPhi(GetElementPtrInst
&GEP
, PHINode
*PN
,
2789 IRBuilderBase
&Builder
) {
2790 auto *Op1
= dyn_cast
<GetElementPtrInst
>(PN
->getOperand(0));
2794 // Don't fold a GEP into itself through a PHI node. This can only happen
2795 // through the back-edge of a loop. Folding a GEP into itself means that
2796 // the value of the previous iteration needs to be stored in the meantime,
2797 // thus requiring an additional register variable to be live, but not
2798 // actually achieving anything (the GEP still needs to be executed once per
2802 GEPNoWrapFlags NW
= Op1
->getNoWrapFlags();
2806 for (auto I
= PN
->op_begin()+1, E
= PN
->op_end(); I
!=E
; ++I
) {
2807 auto *Op2
= dyn_cast
<GetElementPtrInst
>(*I
);
2808 if (!Op2
|| Op1
->getNumOperands() != Op2
->getNumOperands() ||
2809 Op1
->getSourceElementType() != Op2
->getSourceElementType())
2812 // As for Op1 above, don't try to fold a GEP into itself.
2816 // Keep track of the type as we walk the GEP.
2817 Type
*CurTy
= nullptr;
2819 for (unsigned J
= 0, F
= Op1
->getNumOperands(); J
!= F
; ++J
) {
2820 if (Op1
->getOperand(J
)->getType() != Op2
->getOperand(J
)->getType())
2823 if (Op1
->getOperand(J
) != Op2
->getOperand(J
)) {
2825 // We have not seen any differences yet in the GEPs feeding the
2826 // PHI yet, so we record this one if it is allowed to be a
2829 // The first two arguments can vary for any GEP, the rest have to be
2830 // static for struct slots
2832 assert(CurTy
&& "No current type?");
2833 if (CurTy
->isStructTy())
2839 // The GEP is different by more than one input. While this could be
2840 // extended to support GEPs that vary by more than one variable it
2841 // doesn't make sense since it greatly increases the complexity and
2842 // would result in an R+R+R addressing mode which no backend
2843 // directly supports and would need to be broken into several
2844 // simpler instructions anyway.
2849 // Sink down a layer of the type for the next iteration.
2852 CurTy
= Op1
->getSourceElementType();
2855 GetElementPtrInst::getTypeAtIndex(CurTy
, Op1
->getOperand(J
));
2860 NW
&= Op2
->getNoWrapFlags();
2863 // If not all GEPs are identical we'll have to create a new PHI node.
2864 // Check that the old PHI node has only one use so that it will get
2866 if (DI
!= -1 && !PN
->hasOneUse())
2869 auto *NewGEP
= cast
<GetElementPtrInst
>(Op1
->clone());
2870 NewGEP
->setNoWrapFlags(NW
);
2873 // All the GEPs feeding the PHI are identical. Clone one down into our
2874 // BB so that it can be merged with the current GEP.
2876 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2877 // into the current block so it can be merged, and create a new PHI to
2881 IRBuilderBase::InsertPointGuard
Guard(Builder
);
2882 Builder
.SetInsertPoint(PN
);
2883 NewPN
= Builder
.CreatePHI(Op1
->getOperand(DI
)->getType(),
2884 PN
->getNumOperands());
2887 for (auto &I
: PN
->operands())
2888 NewPN
->addIncoming(cast
<GEPOperator
>(I
)->getOperand(DI
),
2889 PN
->getIncomingBlock(I
));
2891 NewGEP
->setOperand(DI
, NewPN
);
2894 NewGEP
->insertBefore(*GEP
.getParent(), GEP
.getParent()->getFirstInsertionPt());
2898 Instruction
*InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
2899 Value
*PtrOp
= GEP
.getOperand(0);
2900 SmallVector
<Value
*, 8> Indices(GEP
.indices());
2901 Type
*GEPType
= GEP
.getType();
2902 Type
*GEPEltType
= GEP
.getSourceElementType();
2904 simplifyGEPInst(GEPEltType
, PtrOp
, Indices
, GEP
.getNoWrapFlags(),
2905 SQ
.getWithInstruction(&GEP
)))
2906 return replaceInstUsesWith(GEP
, V
);
2908 // For vector geps, use the generic demanded vector support.
2909 // Skip if GEP return type is scalable. The number of elements is unknown at
2911 if (auto *GEPFVTy
= dyn_cast
<FixedVectorType
>(GEPType
)) {
2912 auto VWidth
= GEPFVTy
->getNumElements();
2913 APInt
PoisonElts(VWidth
, 0);
2914 APInt
AllOnesEltMask(APInt::getAllOnes(VWidth
));
2915 if (Value
*V
= SimplifyDemandedVectorElts(&GEP
, AllOnesEltMask
,
2918 return replaceInstUsesWith(GEP
, V
);
2922 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
2923 // possible (decide on canonical form for pointer broadcast), 3) exploit
2924 // undef elements to decrease demanded bits
2927 // Eliminate unneeded casts for indices, and replace indices which displace
2928 // by multiples of a zero size type with zero.
2929 bool MadeChange
= false;
2931 // Index width may not be the same width as pointer width.
2932 // Data layout chooses the right type based on supported integer types.
2933 Type
*NewScalarIndexTy
=
2934 DL
.getIndexType(GEP
.getPointerOperandType()->getScalarType());
2936 gep_type_iterator GTI
= gep_type_begin(GEP
);
2937 for (User::op_iterator I
= GEP
.op_begin() + 1, E
= GEP
.op_end(); I
!= E
;
2939 // Skip indices into struct types.
2943 Type
*IndexTy
= (*I
)->getType();
2944 Type
*NewIndexType
=
2945 IndexTy
->isVectorTy()
2946 ? VectorType::get(NewScalarIndexTy
,
2947 cast
<VectorType
>(IndexTy
)->getElementCount())
2950 // If the element type has zero size then any index over it is equivalent
2951 // to an index of zero, so replace it with zero if it is not zero already.
2952 Type
*EltTy
= GTI
.getIndexedType();
2953 if (EltTy
->isSized() && DL
.getTypeAllocSize(EltTy
).isZero())
2954 if (!isa
<Constant
>(*I
) || !match(I
->get(), m_Zero())) {
2955 *I
= Constant::getNullValue(NewIndexType
);
2959 if (IndexTy
!= NewIndexType
) {
2960 // If we are using a wider index than needed for this platform, shrink
2961 // it to what we need. If narrower, sign-extend it to what we need.
2962 // This explicit cast can make subsequent optimizations more obvious.
2963 *I
= Builder
.CreateIntCast(*I
, NewIndexType
, true);
2970 // Canonicalize constant GEPs to i8 type.
2971 if (!GEPEltType
->isIntegerTy(8) && GEP
.hasAllConstantIndices()) {
2972 APInt
Offset(DL
.getIndexTypeSizeInBits(GEPType
), 0);
2973 if (GEP
.accumulateConstantOffset(DL
, Offset
))
2974 return replaceInstUsesWith(
2975 GEP
, Builder
.CreatePtrAdd(PtrOp
, Builder
.getInt(Offset
), "",
2976 GEP
.getNoWrapFlags()));
2979 if (shouldCanonicalizeGEPToPtrAdd(GEP
)) {
2980 Value
*Offset
= EmitGEPOffset(cast
<GEPOperator
>(&GEP
));
2982 Builder
.CreatePtrAdd(PtrOp
, Offset
, "", GEP
.getNoWrapFlags());
2983 return replaceInstUsesWith(GEP
, NewGEP
);
2986 // Check to see if the inputs to the PHI node are getelementptr instructions.
2987 if (auto *PN
= dyn_cast
<PHINode
>(PtrOp
)) {
2988 if (Value
*NewPtrOp
= foldGEPOfPhi(GEP
, PN
, Builder
))
2989 return replaceOperand(GEP
, 0, NewPtrOp
);
2992 if (auto *Src
= dyn_cast
<GEPOperator
>(PtrOp
))
2993 if (Instruction
*I
= visitGEPOfGEP(GEP
, Src
))
2996 if (GEP
.getNumIndices() == 1) {
2997 unsigned AS
= GEP
.getPointerAddressSpace();
2998 if (GEP
.getOperand(1)->getType()->getScalarSizeInBits() ==
2999 DL
.getIndexSizeInBits(AS
)) {
3000 uint64_t TyAllocSize
= DL
.getTypeAllocSize(GEPEltType
).getFixedValue();
3002 if (TyAllocSize
== 1) {
3003 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
3004 // but only if the result pointer is only used as if it were an integer,
3005 // or both point to the same underlying object (otherwise provenance is
3006 // not necessarily retained).
3007 Value
*X
= GEP
.getPointerOperand();
3009 if (match(GEP
.getOperand(1),
3010 m_Sub(m_PtrToInt(m_Value(Y
)), m_PtrToInt(m_Specific(X
)))) &&
3011 GEPType
== Y
->getType()) {
3012 bool HasSameUnderlyingObject
=
3013 getUnderlyingObject(X
) == getUnderlyingObject(Y
);
3014 bool Changed
= false;
3015 GEP
.replaceUsesWithIf(Y
, [&](Use
&U
) {
3016 bool ShouldReplace
= HasSameUnderlyingObject
||
3017 isa
<ICmpInst
>(U
.getUser()) ||
3018 isa
<PtrToIntInst
>(U
.getUser());
3019 Changed
|= ShouldReplace
;
3020 return ShouldReplace
;
3022 return Changed
? &GEP
: nullptr;
3024 } else if (auto *ExactIns
=
3025 dyn_cast
<PossiblyExactOperator
>(GEP
.getOperand(1))) {
3026 // Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
3028 if (ExactIns
->isExact()) {
3029 if ((has_single_bit(TyAllocSize
) &&
3030 match(GEP
.getOperand(1),
3032 m_SpecificInt(countr_zero(TyAllocSize
))))) ||
3033 match(GEP
.getOperand(1),
3034 m_IDiv(m_Value(V
), m_SpecificInt(TyAllocSize
)))) {
3035 return GetElementPtrInst::Create(Builder
.getInt8Ty(),
3036 GEP
.getPointerOperand(), V
,
3037 GEP
.getNoWrapFlags());
3040 if (ExactIns
->isExact() && ExactIns
->hasOneUse()) {
3041 // Try to canonicalize non-i8 element type to i8 if the index is an
3042 // exact instruction. If the index is an exact instruction (div/shr)
3043 // with a constant RHS, we can fold the non-i8 element scale into the
3044 // div/shr (similiar to the mul case, just inverted).
3046 std::optional
<APInt
> NewC
;
3047 if (has_single_bit(TyAllocSize
) &&
3048 match(ExactIns
, m_Shr(m_Value(V
), m_APInt(C
))) &&
3049 C
->uge(countr_zero(TyAllocSize
)))
3050 NewC
= *C
- countr_zero(TyAllocSize
);
3051 else if (match(ExactIns
, m_UDiv(m_Value(V
), m_APInt(C
)))) {
3054 APInt::udivrem(*C
, TyAllocSize
, Quot
, Rem
);
3057 } else if (match(ExactIns
, m_SDiv(m_Value(V
), m_APInt(C
)))) {
3060 APInt::sdivrem(*C
, TyAllocSize
, Quot
, Rem
);
3061 // For sdiv we need to make sure we arent creating INT_MIN / -1.
3062 if (!Quot
.isAllOnes() && Rem
== 0)
3066 if (NewC
.has_value()) {
3067 Value
*NewOp
= Builder
.CreateBinOp(
3068 static_cast<Instruction::BinaryOps
>(ExactIns
->getOpcode()), V
,
3069 ConstantInt::get(V
->getType(), *NewC
));
3070 cast
<BinaryOperator
>(NewOp
)->setIsExact();
3071 return GetElementPtrInst::Create(Builder
.getInt8Ty(),
3072 GEP
.getPointerOperand(), NewOp
,
3073 GEP
.getNoWrapFlags());
3079 // We do not handle pointer-vector geps here.
3080 if (GEPType
->isVectorTy())
3083 if (GEP
.getNumIndices() == 1) {
3084 // We can only preserve inbounds if the original gep is inbounds, the add
3085 // is nsw, and the add operands are non-negative.
3086 auto CanPreserveInBounds
= [&](bool AddIsNSW
, Value
*Idx1
, Value
*Idx2
) {
3087 SimplifyQuery Q
= SQ
.getWithInstruction(&GEP
);
3088 return GEP
.isInBounds() && AddIsNSW
&& isKnownNonNegative(Idx1
, Q
) &&
3089 isKnownNonNegative(Idx2
, Q
);
3092 // Try to replace ADD + GEP with GEP + GEP.
3094 if (match(GEP
.getOperand(1),
3095 m_OneUse(m_Add(m_Value(Idx1
), m_Value(Idx2
))))) {
3096 // %idx = add i64 %idx1, %idx2
3097 // %gep = getelementptr i32, ptr %ptr, i64 %idx
3099 // %newptr = getelementptr i32, ptr %ptr, i64 %idx1
3100 // %newgep = getelementptr i32, ptr %newptr, i64 %idx2
3101 bool IsInBounds
= CanPreserveInBounds(
3102 cast
<OverflowingBinaryOperator
>(GEP
.getOperand(1))->hasNoSignedWrap(),
3105 Builder
.CreateGEP(GEP
.getSourceElementType(), GEP
.getPointerOperand(),
3106 Idx1
, "", IsInBounds
);
3107 return replaceInstUsesWith(
3108 GEP
, Builder
.CreateGEP(GEP
.getSourceElementType(), NewPtr
, Idx2
, "",
3112 if (match(GEP
.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAdd(
3113 m_Value(Idx1
), m_ConstantInt(C
))))))) {
3114 // %add = add nsw i32 %idx1, idx2
3115 // %sidx = sext i32 %add to i64
3116 // %gep = getelementptr i32, ptr %ptr, i64 %sidx
3118 // %newptr = getelementptr i32, ptr %ptr, i32 %idx1
3119 // %newgep = getelementptr i32, ptr %newptr, i32 idx2
3120 bool IsInBounds
= CanPreserveInBounds(
3121 /*IsNSW=*/true, Idx1
, C
);
3122 auto *NewPtr
= Builder
.CreateGEP(
3123 GEP
.getSourceElementType(), GEP
.getPointerOperand(),
3124 Builder
.CreateSExt(Idx1
, GEP
.getOperand(1)->getType()), "",
3126 return replaceInstUsesWith(
3128 Builder
.CreateGEP(GEP
.getSourceElementType(), NewPtr
,
3129 Builder
.CreateSExt(C
, GEP
.getOperand(1)->getType()),
3134 if (!GEP
.isInBounds()) {
3136 DL
.getIndexSizeInBits(PtrOp
->getType()->getPointerAddressSpace());
3137 APInt
BasePtrOffset(IdxWidth
, 0);
3138 Value
*UnderlyingPtrOp
=
3139 PtrOp
->stripAndAccumulateInBoundsConstantOffsets(DL
,
3141 bool CanBeNull
, CanBeFreed
;
3142 uint64_t DerefBytes
= UnderlyingPtrOp
->getPointerDereferenceableBytes(
3143 DL
, CanBeNull
, CanBeFreed
);
3144 if (!CanBeNull
&& !CanBeFreed
&& DerefBytes
!= 0) {
3145 if (GEP
.accumulateConstantOffset(DL
, BasePtrOffset
) &&
3146 BasePtrOffset
.isNonNegative()) {
3147 APInt
AllocSize(IdxWidth
, DerefBytes
);
3148 if (BasePtrOffset
.ule(AllocSize
)) {
3149 return GetElementPtrInst::CreateInBounds(
3150 GEP
.getSourceElementType(), PtrOp
, Indices
, GEP
.getName());
3156 // nusw + nneg -> nuw
3157 if (GEP
.hasNoUnsignedSignedWrap() && !GEP
.hasNoUnsignedWrap() &&
3158 all_of(GEP
.indices(), [&](Value
*Idx
) {
3159 return isKnownNonNegative(Idx
, SQ
.getWithInstruction(&GEP
));
3161 GEP
.setNoWrapFlags(GEP
.getNoWrapFlags() | GEPNoWrapFlags::noUnsignedWrap());
3165 if (Instruction
*R
= foldSelectGEP(GEP
, Builder
))
3171 static bool isNeverEqualToUnescapedAlloc(Value
*V
, const TargetLibraryInfo
&TLI
,
3173 if (isa
<ConstantPointerNull
>(V
))
3175 if (auto *LI
= dyn_cast
<LoadInst
>(V
))
3176 return isa
<GlobalVariable
>(LI
->getPointerOperand());
3177 // Two distinct allocations will never be equal.
3178 return isAllocLikeFn(V
, &TLI
) && V
!= AI
;
3181 /// Given a call CB which uses an address UsedV, return true if we can prove the
3182 /// call's only possible effect is storing to V.
3183 static bool isRemovableWrite(CallBase
&CB
, Value
*UsedV
,
3184 const TargetLibraryInfo
&TLI
) {
3185 if (!CB
.use_empty())
3186 // TODO: add recursion if returned attribute is present
3189 if (CB
.isTerminator())
3190 // TODO: remove implementation restriction
3193 if (!CB
.willReturn() || !CB
.doesNotThrow())
3196 // If the only possible side effect of the call is writing to the alloca,
3197 // and the result isn't used, we can safely remove any reads implied by the
3198 // call including those which might read the alloca itself.
3199 std::optional
<MemoryLocation
> Dest
= MemoryLocation::getForDest(&CB
, TLI
);
3200 return Dest
&& Dest
->Ptr
== UsedV
;
3203 static bool isAllocSiteRemovable(Instruction
*AI
,
3204 SmallVectorImpl
<WeakTrackingVH
> &Users
,
3205 const TargetLibraryInfo
&TLI
) {
3206 SmallVector
<Instruction
*, 4> Worklist
;
3207 const std::optional
<StringRef
> Family
= getAllocationFamily(AI
, &TLI
);
3208 Worklist
.push_back(AI
);
3211 Instruction
*PI
= Worklist
.pop_back_val();
3212 for (User
*U
: PI
->users()) {
3213 Instruction
*I
= cast
<Instruction
>(U
);
3214 switch (I
->getOpcode()) {
3216 // Give up the moment we see something we can't handle.
3219 case Instruction::AddrSpaceCast
:
3220 case Instruction::BitCast
:
3221 case Instruction::GetElementPtr
:
3222 Users
.emplace_back(I
);
3223 Worklist
.push_back(I
);
3226 case Instruction::ICmp
: {
3227 ICmpInst
*ICI
= cast
<ICmpInst
>(I
);
3228 // We can fold eq/ne comparisons with null to false/true, respectively.
3229 // We also fold comparisons in some conditions provided the alloc has
3230 // not escaped (see isNeverEqualToUnescapedAlloc).
3231 if (!ICI
->isEquality())
3233 unsigned OtherIndex
= (ICI
->getOperand(0) == PI
) ? 1 : 0;
3234 if (!isNeverEqualToUnescapedAlloc(ICI
->getOperand(OtherIndex
), TLI
, AI
))
3237 // Do not fold compares to aligned_alloc calls, as they may have to
3238 // return null in case the required alignment cannot be satisfied,
3239 // unless we can prove that both alignment and size are valid.
3240 auto AlignmentAndSizeKnownValid
= [](CallBase
*CB
) {
3241 // Check if alignment and size of a call to aligned_alloc is valid,
3242 // that is alignment is a power-of-2 and the size is a multiple of the
3244 const APInt
*Alignment
;
3246 return match(CB
->getArgOperand(0), m_APInt(Alignment
)) &&
3247 match(CB
->getArgOperand(1), m_APInt(Size
)) &&
3248 Alignment
->isPowerOf2() && Size
->urem(*Alignment
).isZero();
3250 auto *CB
= dyn_cast
<CallBase
>(AI
);
3252 if (CB
&& TLI
.getLibFunc(*CB
->getCalledFunction(), TheLibFunc
) &&
3253 TLI
.has(TheLibFunc
) && TheLibFunc
== LibFunc_aligned_alloc
&&
3254 !AlignmentAndSizeKnownValid(CB
))
3256 Users
.emplace_back(I
);
3260 case Instruction::Call
:
3261 // Ignore no-op and store intrinsics.
3262 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
3263 switch (II
->getIntrinsicID()) {
3267 case Intrinsic::memmove
:
3268 case Intrinsic::memcpy
:
3269 case Intrinsic::memset
: {
3270 MemIntrinsic
*MI
= cast
<MemIntrinsic
>(II
);
3271 if (MI
->isVolatile() || MI
->getRawDest() != PI
)
3275 case Intrinsic::assume
:
3276 case Intrinsic::invariant_start
:
3277 case Intrinsic::invariant_end
:
3278 case Intrinsic::lifetime_start
:
3279 case Intrinsic::lifetime_end
:
3280 case Intrinsic::objectsize
:
3281 Users
.emplace_back(I
);
3283 case Intrinsic::launder_invariant_group
:
3284 case Intrinsic::strip_invariant_group
:
3285 Users
.emplace_back(I
);
3286 Worklist
.push_back(I
);
3291 if (isRemovableWrite(*cast
<CallBase
>(I
), PI
, TLI
)) {
3292 Users
.emplace_back(I
);
3296 if (getFreedOperand(cast
<CallBase
>(I
), &TLI
) == PI
&&
3297 getAllocationFamily(I
, &TLI
) == Family
) {
3299 Users
.emplace_back(I
);
3303 if (getReallocatedOperand(cast
<CallBase
>(I
)) == PI
&&
3304 getAllocationFamily(I
, &TLI
) == Family
) {
3306 Users
.emplace_back(I
);
3307 Worklist
.push_back(I
);
3313 case Instruction::Store
: {
3314 StoreInst
*SI
= cast
<StoreInst
>(I
);
3315 if (SI
->isVolatile() || SI
->getPointerOperand() != PI
)
3317 Users
.emplace_back(I
);
3321 llvm_unreachable("missing a return?");
3323 } while (!Worklist
.empty());
3327 Instruction
*InstCombinerImpl::visitAllocSite(Instruction
&MI
) {
3328 assert(isa
<AllocaInst
>(MI
) || isRemovableAlloc(&cast
<CallBase
>(MI
), &TLI
));
3330 // If we have a malloc call which is only used in any amount of comparisons to
3331 // null and free calls, delete the calls and replace the comparisons with true
3332 // or false as appropriate.
3334 // This is based on the principle that we can substitute our own allocation
3335 // function (which will never return null) rather than knowledge of the
3336 // specific function being called. In some sense this can change the permitted
3337 // outputs of a program (when we convert a malloc to an alloca, the fact that
3338 // the allocation is now on the stack is potentially visible, for example),
3339 // but we believe in a permissible manner.
3340 SmallVector
<WeakTrackingVH
, 64> Users
;
3342 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
3343 // before each store.
3344 SmallVector
<DbgVariableIntrinsic
*, 8> DVIs
;
3345 SmallVector
<DbgVariableRecord
*, 8> DVRs
;
3346 std::unique_ptr
<DIBuilder
> DIB
;
3347 if (isa
<AllocaInst
>(MI
)) {
3348 findDbgUsers(DVIs
, &MI
, &DVRs
);
3349 DIB
.reset(new DIBuilder(*MI
.getModule(), /*AllowUnresolved=*/false));
3352 if (isAllocSiteRemovable(&MI
, Users
, TLI
)) {
3353 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
) {
3354 // Lowering all @llvm.objectsize calls first because they may
3355 // use a bitcast/GEP of the alloca we are removing.
3359 Instruction
*I
= cast
<Instruction
>(&*Users
[i
]);
3361 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
)) {
3362 if (II
->getIntrinsicID() == Intrinsic::objectsize
) {
3363 SmallVector
<Instruction
*> InsertedInstructions
;
3364 Value
*Result
= lowerObjectSizeCall(
3365 II
, DL
, &TLI
, AA
, /*MustSucceed=*/true, &InsertedInstructions
);
3366 for (Instruction
*Inserted
: InsertedInstructions
)
3367 Worklist
.add(Inserted
);
3368 replaceInstUsesWith(*I
, Result
);
3369 eraseInstFromFunction(*I
);
3370 Users
[i
] = nullptr; // Skip examining in the next loop.
3374 for (unsigned i
= 0, e
= Users
.size(); i
!= e
; ++i
) {
3378 Instruction
*I
= cast
<Instruction
>(&*Users
[i
]);
3380 if (ICmpInst
*C
= dyn_cast
<ICmpInst
>(I
)) {
3381 replaceInstUsesWith(*C
,
3382 ConstantInt::get(Type::getInt1Ty(C
->getContext()),
3383 C
->isFalseWhenEqual()));
3384 } else if (auto *SI
= dyn_cast
<StoreInst
>(I
)) {
3385 for (auto *DVI
: DVIs
)
3386 if (DVI
->isAddressOfVariable())
3387 ConvertDebugDeclareToDebugValue(DVI
, SI
, *DIB
);
3388 for (auto *DVR
: DVRs
)
3389 if (DVR
->isAddressOfVariable())
3390 ConvertDebugDeclareToDebugValue(DVR
, SI
, *DIB
);
3392 // Casts, GEP, or anything else: we're about to delete this instruction,
3393 // so it can not have any valid uses.
3394 replaceInstUsesWith(*I
, PoisonValue::get(I
->getType()));
3396 eraseInstFromFunction(*I
);
3399 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(&MI
)) {
3400 // Replace invoke with a NOP intrinsic to maintain the original CFG
3401 Module
*M
= II
->getModule();
3402 Function
*F
= Intrinsic::getOrInsertDeclaration(M
, Intrinsic::donothing
);
3403 InvokeInst::Create(F
, II
->getNormalDest(), II
->getUnwindDest(), {}, "",
3407 // Remove debug intrinsics which describe the value contained within the
3408 // alloca. In addition to removing dbg.{declare,addr} which simply point to
3409 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
3412 // define void @foo(i32 %0) {
3413 // %a = alloca i32 ; Deleted.
3414 // store i32 %0, i32* %a
3415 // dbg.value(i32 %0, "arg0") ; Not deleted.
3416 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
3417 // call void @trivially_inlinable_no_op(i32* %a)
3422 // This may not be required if we stop describing the contents of allocas
3423 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
3424 // the LowerDbgDeclare utility.
3426 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
3427 // "arg0" dbg.value may be stale after the call. However, failing to remove
3428 // the DW_OP_deref dbg.value causes large gaps in location coverage.
3430 // FIXME: the Assignment Tracking project has now likely made this
3431 // redundant (and it's sometimes harmful).
3432 for (auto *DVI
: DVIs
)
3433 if (DVI
->isAddressOfVariable() || DVI
->getExpression()->startsWithDeref())
3434 DVI
->eraseFromParent();
3435 for (auto *DVR
: DVRs
)
3436 if (DVR
->isAddressOfVariable() || DVR
->getExpression()->startsWithDeref())
3437 DVR
->eraseFromParent();
3439 return eraseInstFromFunction(MI
);
3444 /// Move the call to free before a NULL test.
3446 /// Check if this free is accessed after its argument has been test
3447 /// against NULL (property 0).
3448 /// If yes, it is legal to move this call in its predecessor block.
3450 /// The move is performed only if the block containing the call to free
3451 /// will be removed, i.e.:
3452 /// 1. it has only one predecessor P, and P has two successors
3453 /// 2. it contains the call, noops, and an unconditional branch
3454 /// 3. its successor is the same as its predecessor's successor
3456 /// The profitability is out-of concern here and this function should
3457 /// be called only if the caller knows this transformation would be
3458 /// profitable (e.g., for code size).
3459 static Instruction
*tryToMoveFreeBeforeNullTest(CallInst
&FI
,
3460 const DataLayout
&DL
) {
3461 Value
*Op
= FI
.getArgOperand(0);
3462 BasicBlock
*FreeInstrBB
= FI
.getParent();
3463 BasicBlock
*PredBB
= FreeInstrBB
->getSinglePredecessor();
3465 // Validate part of constraint #1: Only one predecessor
3466 // FIXME: We can extend the number of predecessor, but in that case, we
3467 // would duplicate the call to free in each predecessor and it may
3468 // not be profitable even for code size.
3472 // Validate constraint #2: Does this block contains only the call to
3473 // free, noops, and an unconditional branch?
3475 Instruction
*FreeInstrBBTerminator
= FreeInstrBB
->getTerminator();
3476 if (!match(FreeInstrBBTerminator
, m_UnconditionalBr(SuccBB
)))
3479 // If there are only 2 instructions in the block, at this point,
3480 // this is the call to free and unconditional.
3481 // If there are more than 2 instructions, check that they are noops
3482 // i.e., they won't hurt the performance of the generated code.
3483 if (FreeInstrBB
->size() != 2) {
3484 for (const Instruction
&Inst
: FreeInstrBB
->instructionsWithoutDebug()) {
3485 if (&Inst
== &FI
|| &Inst
== FreeInstrBBTerminator
)
3487 auto *Cast
= dyn_cast
<CastInst
>(&Inst
);
3488 if (!Cast
|| !Cast
->isNoopCast(DL
))
3492 // Validate the rest of constraint #1 by matching on the pred branch.
3493 Instruction
*TI
= PredBB
->getTerminator();
3494 BasicBlock
*TrueBB
, *FalseBB
;
3496 if (!match(TI
, m_Br(m_ICmp(Pred
,
3497 m_CombineOr(m_Specific(Op
),
3498 m_Specific(Op
->stripPointerCasts())),
3502 if (Pred
!= ICmpInst::ICMP_EQ
&& Pred
!= ICmpInst::ICMP_NE
)
3505 // Validate constraint #3: Ensure the null case just falls through.
3506 if (SuccBB
!= (Pred
== ICmpInst::ICMP_EQ
? TrueBB
: FalseBB
))
3508 assert(FreeInstrBB
== (Pred
== ICmpInst::ICMP_EQ
? FalseBB
: TrueBB
) &&
3509 "Broken CFG: missing edge from predecessor to successor");
3511 // At this point, we know that everything in FreeInstrBB can be moved
3513 for (Instruction
&Instr
: llvm::make_early_inc_range(*FreeInstrBB
)) {
3514 if (&Instr
== FreeInstrBBTerminator
)
3516 Instr
.moveBeforePreserving(TI
);
3518 assert(FreeInstrBB
->size() == 1 &&
3519 "Only the branch instruction should remain");
3521 // Now that we've moved the call to free before the NULL check, we have to
3522 // remove any attributes on its parameter that imply it's non-null, because
3523 // those attributes might have only been valid because of the NULL check, and
3524 // we can get miscompiles if we keep them. This is conservative if non-null is
3525 // also implied by something other than the NULL check, but it's guaranteed to
3526 // be correct, and the conservativeness won't matter in practice, since the
3527 // attributes are irrelevant for the call to free itself and the pointer
3528 // shouldn't be used after the call.
3529 AttributeList Attrs
= FI
.getAttributes();
3530 Attrs
= Attrs
.removeParamAttribute(FI
.getContext(), 0, Attribute::NonNull
);
3531 Attribute Dereferenceable
= Attrs
.getParamAttr(0, Attribute::Dereferenceable
);
3532 if (Dereferenceable
.isValid()) {
3533 uint64_t Bytes
= Dereferenceable
.getDereferenceableBytes();
3534 Attrs
= Attrs
.removeParamAttribute(FI
.getContext(), 0,
3535 Attribute::Dereferenceable
);
3536 Attrs
= Attrs
.addDereferenceableOrNullParamAttr(FI
.getContext(), 0, Bytes
);
3538 FI
.setAttributes(Attrs
);
3543 Instruction
*InstCombinerImpl::visitFree(CallInst
&FI
, Value
*Op
) {
3544 // free undef -> unreachable.
3545 if (isa
<UndefValue
>(Op
)) {
3546 // Leave a marker since we can't modify the CFG here.
3547 CreateNonTerminatorUnreachable(&FI
);
3548 return eraseInstFromFunction(FI
);
3551 // If we have 'free null' delete the instruction. This can happen in stl code
3552 // when lots of inlining happens.
3553 if (isa
<ConstantPointerNull
>(Op
))
3554 return eraseInstFromFunction(FI
);
3556 // If we had free(realloc(...)) with no intervening uses, then eliminate the
3557 // realloc() entirely.
3558 CallInst
*CI
= dyn_cast
<CallInst
>(Op
);
3559 if (CI
&& CI
->hasOneUse())
3560 if (Value
*ReallocatedOp
= getReallocatedOperand(CI
))
3561 return eraseInstFromFunction(*replaceInstUsesWith(*CI
, ReallocatedOp
));
3563 // If we optimize for code size, try to move the call to free before the null
3564 // test so that simplify cfg can remove the empty block and dead code
3565 // elimination the branch. I.e., helps to turn something like:
3566 // if (foo) free(foo);
3570 // Note that we can only do this for 'free' and not for any flavor of
3571 // 'operator delete'; there is no 'operator delete' symbol for which we are
3572 // permitted to invent a call, even if we're passing in a null pointer.
3575 if (TLI
.getLibFunc(FI
, Func
) && TLI
.has(Func
) && Func
== LibFunc_free
)
3576 if (Instruction
*I
= tryToMoveFreeBeforeNullTest(FI
, DL
))
3583 Instruction
*InstCombinerImpl::visitReturnInst(ReturnInst
&RI
) {
3584 Value
*RetVal
= RI
.getReturnValue();
3585 if (!RetVal
|| !AttributeFuncs::isNoFPClassCompatibleType(RetVal
->getType()))
3588 Function
*F
= RI
.getFunction();
3589 FPClassTest ReturnClass
= F
->getAttributes().getRetNoFPClass();
3590 if (ReturnClass
== fcNone
)
3593 KnownFPClass KnownClass
;
3595 SimplifyDemandedUseFPClass(RetVal
, ~ReturnClass
, KnownClass
, 0, &RI
);
3599 return ReturnInst::Create(RI
.getContext(), Simplified
);
3602 // WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
3603 bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction
&I
) {
3604 // Try to remove the previous instruction if it must lead to unreachable.
3605 // This includes instructions like stores and "llvm.assume" that may not get
3606 // removed by simple dead code elimination.
3607 bool Changed
= false;
3608 while (Instruction
*Prev
= I
.getPrevNonDebugInstruction()) {
3609 // While we theoretically can erase EH, that would result in a block that
3610 // used to start with an EH no longer starting with EH, which is invalid.
3611 // To make it valid, we'd need to fixup predecessors to no longer refer to
3612 // this block, but that changes CFG, which is not allowed in InstCombine.
3613 if (Prev
->isEHPad())
3614 break; // Can not drop any more instructions. We're done here.
3616 if (!isGuaranteedToTransferExecutionToSuccessor(Prev
))
3617 break; // Can not drop any more instructions. We're done here.
3618 // Otherwise, this instruction can be freely erased,
3619 // even if it is not side-effect free.
3621 // A value may still have uses before we process it here (for example, in
3622 // another unreachable block), so convert those to poison.
3623 replaceInstUsesWith(*Prev
, PoisonValue::get(Prev
->getType()));
3624 eraseInstFromFunction(*Prev
);
3630 Instruction
*InstCombinerImpl::visitUnreachableInst(UnreachableInst
&I
) {
3631 removeInstructionsBeforeUnreachable(I
);
3635 Instruction
*InstCombinerImpl::visitUnconditionalBranchInst(BranchInst
&BI
) {
3636 assert(BI
.isUnconditional() && "Only for unconditional branches.");
3638 // If this store is the second-to-last instruction in the basic block
3639 // (excluding debug info and bitcasts of pointers) and if the block ends with
3640 // an unconditional branch, try to move the store to the successor block.
3642 auto GetLastSinkableStore
= [](BasicBlock::iterator BBI
) {
3643 auto IsNoopInstrForStoreMerging
= [](BasicBlock::iterator BBI
) {
3644 return BBI
->isDebugOrPseudoInst() ||
3645 (isa
<BitCastInst
>(BBI
) && BBI
->getType()->isPointerTy());
3648 BasicBlock::iterator FirstInstr
= BBI
->getParent()->begin();
3650 if (BBI
!= FirstInstr
)
3652 } while (BBI
!= FirstInstr
&& IsNoopInstrForStoreMerging(BBI
));
3654 return dyn_cast
<StoreInst
>(BBI
);
3657 if (StoreInst
*SI
= GetLastSinkableStore(BasicBlock::iterator(BI
)))
3658 if (mergeStoreIntoSuccessor(*SI
))
3664 void InstCombinerImpl::addDeadEdge(BasicBlock
*From
, BasicBlock
*To
,
3665 SmallVectorImpl
<BasicBlock
*> &Worklist
) {
3666 if (!DeadEdges
.insert({From
, To
}).second
)
3669 // Replace phi node operands in successor with poison.
3670 for (PHINode
&PN
: To
->phis())
3671 for (Use
&U
: PN
.incoming_values())
3672 if (PN
.getIncomingBlock(U
) == From
&& !isa
<PoisonValue
>(U
)) {
3673 replaceUse(U
, PoisonValue::get(PN
.getType()));
3675 MadeIRChange
= true;
3678 Worklist
.push_back(To
);
3681 // Under the assumption that I is unreachable, remove it and following
3682 // instructions. Changes are reported directly to MadeIRChange.
3683 void InstCombinerImpl::handleUnreachableFrom(
3684 Instruction
*I
, SmallVectorImpl
<BasicBlock
*> &Worklist
) {
3685 BasicBlock
*BB
= I
->getParent();
3686 for (Instruction
&Inst
: make_early_inc_range(
3687 make_range(std::next(BB
->getTerminator()->getReverseIterator()),
3688 std::next(I
->getReverseIterator())))) {
3689 if (!Inst
.use_empty() && !Inst
.getType()->isTokenTy()) {
3690 replaceInstUsesWith(Inst
, PoisonValue::get(Inst
.getType()));
3691 MadeIRChange
= true;
3693 if (Inst
.isEHPad() || Inst
.getType()->isTokenTy())
3695 // RemoveDIs: erase debug-info on this instruction manually.
3696 Inst
.dropDbgRecords();
3697 eraseInstFromFunction(Inst
);
3698 MadeIRChange
= true;
3701 SmallVector
<Value
*> Changed
;
3702 if (handleUnreachableTerminator(BB
->getTerminator(), Changed
)) {
3703 MadeIRChange
= true;
3704 for (Value
*V
: Changed
)
3705 addToWorklist(cast
<Instruction
>(V
));
3708 // Handle potentially dead successors.
3709 for (BasicBlock
*Succ
: successors(BB
))
3710 addDeadEdge(BB
, Succ
, Worklist
);
3713 void InstCombinerImpl::handlePotentiallyDeadBlocks(
3714 SmallVectorImpl
<BasicBlock
*> &Worklist
) {
3715 while (!Worklist
.empty()) {
3716 BasicBlock
*BB
= Worklist
.pop_back_val();
3717 if (!all_of(predecessors(BB
), [&](BasicBlock
*Pred
) {
3718 return DeadEdges
.contains({Pred
, BB
}) || DT
.dominates(BB
, Pred
);
3722 handleUnreachableFrom(&BB
->front(), Worklist
);
3726 void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock
*BB
,
3727 BasicBlock
*LiveSucc
) {
3728 SmallVector
<BasicBlock
*> Worklist
;
3729 for (BasicBlock
*Succ
: successors(BB
)) {
3730 // The live successor isn't dead.
3731 if (Succ
== LiveSucc
)
3734 addDeadEdge(BB
, Succ
, Worklist
);
3737 handlePotentiallyDeadBlocks(Worklist
);
3740 Instruction
*InstCombinerImpl::visitBranchInst(BranchInst
&BI
) {
3741 if (BI
.isUnconditional())
3742 return visitUnconditionalBranchInst(BI
);
3744 // Change br (not X), label True, label False to: br X, label False, True
3745 Value
*Cond
= BI
.getCondition();
3747 if (match(Cond
, m_Not(m_Value(X
))) && !isa
<Constant
>(X
)) {
3748 // Swap Destinations and condition...
3749 BI
.swapSuccessors();
3751 BPI
->swapSuccEdgesProbabilities(BI
.getParent());
3752 return replaceOperand(BI
, 0, X
);
3755 // Canonicalize logical-and-with-invert as logical-or-with-invert.
3756 // This is done by inverting the condition and swapping successors:
3757 // br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
3759 if (isa
<SelectInst
>(Cond
) &&
3761 m_OneUse(m_LogicalAnd(m_Value(X
), m_OneUse(m_Not(m_Value(Y
))))))) {
3762 Value
*NotX
= Builder
.CreateNot(X
, "not." + X
->getName());
3763 Value
*Or
= Builder
.CreateLogicalOr(NotX
, Y
);
3764 BI
.swapSuccessors();
3766 BPI
->swapSuccEdgesProbabilities(BI
.getParent());
3767 return replaceOperand(BI
, 0, Or
);
3770 // If the condition is irrelevant, remove the use so that other
3771 // transforms on the condition become more effective.
3772 if (!isa
<ConstantInt
>(Cond
) && BI
.getSuccessor(0) == BI
.getSuccessor(1))
3773 return replaceOperand(BI
, 0, ConstantInt::getFalse(Cond
->getType()));
3775 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
3777 if (match(Cond
, m_OneUse(m_FCmp(Pred
, m_Value(), m_Value()))) &&
3778 !isCanonicalPredicate(Pred
)) {
3779 // Swap destinations and condition.
3780 auto *Cmp
= cast
<CmpInst
>(Cond
);
3781 Cmp
->setPredicate(CmpInst::getInversePredicate(Pred
));
3782 BI
.swapSuccessors();
3784 BPI
->swapSuccEdgesProbabilities(BI
.getParent());
3789 if (isa
<UndefValue
>(Cond
)) {
3790 handlePotentiallyDeadSuccessors(BI
.getParent(), /*LiveSucc*/ nullptr);
3793 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
)) {
3794 handlePotentiallyDeadSuccessors(BI
.getParent(),
3795 BI
.getSuccessor(!CI
->getZExtValue()));
3799 // Replace all dominated uses of the condition with true/false
3800 // Ignore constant expressions to avoid iterating over uses on other
3802 if (!isa
<Constant
>(Cond
) && BI
.getSuccessor(0) != BI
.getSuccessor(1)) {
3803 for (auto &U
: make_early_inc_range(Cond
->uses())) {
3804 BasicBlockEdge
Edge0(BI
.getParent(), BI
.getSuccessor(0));
3805 if (DT
.dominates(Edge0
, U
)) {
3806 replaceUse(U
, ConstantInt::getTrue(Cond
->getType()));
3807 addToWorklist(cast
<Instruction
>(U
.getUser()));
3810 BasicBlockEdge
Edge1(BI
.getParent(), BI
.getSuccessor(1));
3811 if (DT
.dominates(Edge1
, U
)) {
3812 replaceUse(U
, ConstantInt::getFalse(Cond
->getType()));
3813 addToWorklist(cast
<Instruction
>(U
.getUser()));
3818 DC
.registerBranch(&BI
);
3822 // Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
3823 // we can prove that both (switch C) and (switch X) go to the default when cond
3825 static Value
*simplifySwitchOnSelectUsingRanges(SwitchInst
&SI
,
3828 unsigned CstOpIdx
= IsTrueArm
? 1 : 2;
3829 auto *C
= dyn_cast
<ConstantInt
>(Select
->getOperand(CstOpIdx
));
3833 BasicBlock
*CstBB
= SI
.findCaseValue(C
)->getCaseSuccessor();
3834 if (CstBB
!= SI
.getDefaultDest())
3836 Value
*X
= Select
->getOperand(3 - CstOpIdx
);
3839 if (!match(Select
->getCondition(),
3840 m_ICmp(Pred
, m_Specific(X
), m_APInt(RHSC
))))
3843 Pred
= ICmpInst::getInversePredicate(Pred
);
3845 // See whether we can replace the select with X
3846 ConstantRange CR
= ConstantRange::makeExactICmpRegion(Pred
, *RHSC
);
3847 for (auto Case
: SI
.cases())
3848 if (!CR
.contains(Case
.getCaseValue()->getValue()))
3854 Instruction
*InstCombinerImpl::visitSwitchInst(SwitchInst
&SI
) {
3855 Value
*Cond
= SI
.getCondition();
3857 ConstantInt
*AddRHS
;
3858 if (match(Cond
, m_Add(m_Value(Op0
), m_ConstantInt(AddRHS
)))) {
3859 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
3860 for (auto Case
: SI
.cases()) {
3861 Constant
*NewCase
= ConstantExpr::getSub(Case
.getCaseValue(), AddRHS
);
3862 assert(isa
<ConstantInt
>(NewCase
) &&
3863 "Result of expression should be constant");
3864 Case
.setValue(cast
<ConstantInt
>(NewCase
));
3866 return replaceOperand(SI
, 0, Op0
);
3869 ConstantInt
*SubLHS
;
3870 if (match(Cond
, m_Sub(m_ConstantInt(SubLHS
), m_Value(Op0
)))) {
3871 // Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
3872 for (auto Case
: SI
.cases()) {
3873 Constant
*NewCase
= ConstantExpr::getSub(SubLHS
, Case
.getCaseValue());
3874 assert(isa
<ConstantInt
>(NewCase
) &&
3875 "Result of expression should be constant");
3876 Case
.setValue(cast
<ConstantInt
>(NewCase
));
3878 return replaceOperand(SI
, 0, Op0
);
3882 if (match(Cond
, m_Shl(m_Value(Op0
), m_ConstantInt(ShiftAmt
))) &&
3883 ShiftAmt
< Op0
->getType()->getScalarSizeInBits() &&
3884 all_of(SI
.cases(), [&](const auto &Case
) {
3885 return Case
.getCaseValue()->getValue().countr_zero() >= ShiftAmt
;
3887 // Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
3888 OverflowingBinaryOperator
*Shl
= cast
<OverflowingBinaryOperator
>(Cond
);
3889 if (Shl
->hasNoUnsignedWrap() || Shl
->hasNoSignedWrap() ||
3891 Value
*NewCond
= Op0
;
3892 if (!Shl
->hasNoUnsignedWrap() && !Shl
->hasNoSignedWrap()) {
3893 // If the shift may wrap, we need to mask off the shifted bits.
3894 unsigned BitWidth
= Op0
->getType()->getScalarSizeInBits();
3895 NewCond
= Builder
.CreateAnd(
3896 Op0
, APInt::getLowBitsSet(BitWidth
, BitWidth
- ShiftAmt
));
3898 for (auto Case
: SI
.cases()) {
3899 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
3900 APInt ShiftedCase
= Shl
->hasNoSignedWrap() ? CaseVal
.ashr(ShiftAmt
)
3901 : CaseVal
.lshr(ShiftAmt
);
3902 Case
.setValue(ConstantInt::get(SI
.getContext(), ShiftedCase
));
3904 return replaceOperand(SI
, 0, NewCond
);
3908 // Fold switch(zext/sext(X)) into switch(X) if possible.
3909 if (match(Cond
, m_ZExtOrSExt(m_Value(Op0
)))) {
3910 bool IsZExt
= isa
<ZExtInst
>(Cond
);
3911 Type
*SrcTy
= Op0
->getType();
3912 unsigned NewWidth
= SrcTy
->getScalarSizeInBits();
3914 if (all_of(SI
.cases(), [&](const auto &Case
) {
3915 const APInt
&CaseVal
= Case
.getCaseValue()->getValue();
3916 return IsZExt
? CaseVal
.isIntN(NewWidth
)
3917 : CaseVal
.isSignedIntN(NewWidth
);
3919 for (auto &Case
: SI
.cases()) {
3920 APInt TruncatedCase
= Case
.getCaseValue()->getValue().trunc(NewWidth
);
3921 Case
.setValue(ConstantInt::get(SI
.getContext(), TruncatedCase
));
3923 return replaceOperand(SI
, 0, Op0
);
3927 // Fold switch(select cond, X, Y) into switch(X/Y) if possible
3928 if (auto *Select
= dyn_cast
<SelectInst
>(Cond
)) {
3930 simplifySwitchOnSelectUsingRanges(SI
, Select
, /*IsTrueArm=*/true))
3931 return replaceOperand(SI
, 0, V
);
3933 simplifySwitchOnSelectUsingRanges(SI
, Select
, /*IsTrueArm=*/false))
3934 return replaceOperand(SI
, 0, V
);
3937 KnownBits Known
= computeKnownBits(Cond
, 0, &SI
);
3938 unsigned LeadingKnownZeros
= Known
.countMinLeadingZeros();
3939 unsigned LeadingKnownOnes
= Known
.countMinLeadingOnes();
3941 // Compute the number of leading bits we can ignore.
3942 // TODO: A better way to determine this would use ComputeNumSignBits().
3943 for (const auto &C
: SI
.cases()) {
3945 std::min(LeadingKnownZeros
, C
.getCaseValue()->getValue().countl_zero());
3947 std::min(LeadingKnownOnes
, C
.getCaseValue()->getValue().countl_one());
3950 unsigned NewWidth
= Known
.getBitWidth() - std::max(LeadingKnownZeros
, LeadingKnownOnes
);
3952 // Shrink the condition operand if the new type is smaller than the old type.
3953 // But do not shrink to a non-standard type, because backend can't generate
3954 // good code for that yet.
3955 // TODO: We can make it aggressive again after fixing PR39569.
3956 if (NewWidth
> 0 && NewWidth
< Known
.getBitWidth() &&
3957 shouldChangeType(Known
.getBitWidth(), NewWidth
)) {
3958 IntegerType
*Ty
= IntegerType::get(SI
.getContext(), NewWidth
);
3959 Builder
.SetInsertPoint(&SI
);
3960 Value
*NewCond
= Builder
.CreateTrunc(Cond
, Ty
, "trunc");
3962 for (auto Case
: SI
.cases()) {
3963 APInt TruncatedCase
= Case
.getCaseValue()->getValue().trunc(NewWidth
);
3964 Case
.setValue(ConstantInt::get(SI
.getContext(), TruncatedCase
));
3966 return replaceOperand(SI
, 0, NewCond
);
3969 if (isa
<UndefValue
>(Cond
)) {
3970 handlePotentiallyDeadSuccessors(SI
.getParent(), /*LiveSucc*/ nullptr);
3973 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
)) {
3974 handlePotentiallyDeadSuccessors(SI
.getParent(),
3975 SI
.findCaseValue(CI
)->getCaseSuccessor());
3983 InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst
&EV
) {
3984 auto *WO
= dyn_cast
<WithOverflowInst
>(EV
.getAggregateOperand());
3988 Intrinsic::ID OvID
= WO
->getIntrinsicID();
3989 const APInt
*C
= nullptr;
3990 if (match(WO
->getRHS(), m_APIntAllowPoison(C
))) {
3991 if (*EV
.idx_begin() == 0 && (OvID
== Intrinsic::smul_with_overflow
||
3992 OvID
== Intrinsic::umul_with_overflow
)) {
3993 // extractvalue (any_mul_with_overflow X, -1), 0 --> -X
3995 return BinaryOperator::CreateNeg(WO
->getLHS());
3996 // extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
3997 if (C
->isPowerOf2()) {
3998 return BinaryOperator::CreateShl(
4000 ConstantInt::get(WO
->getLHS()->getType(), C
->logBase2()));
4005 // We're extracting from an overflow intrinsic. See if we're the only user.
4006 // That allows us to simplify multiple result intrinsics to simpler things
4007 // that just get one value.
4008 if (!WO
->hasOneUse())
4011 // Check if we're grabbing only the result of a 'with overflow' intrinsic
4012 // and replace it with a traditional binary instruction.
4013 if (*EV
.idx_begin() == 0) {
4014 Instruction::BinaryOps BinOp
= WO
->getBinaryOp();
4015 Value
*LHS
= WO
->getLHS(), *RHS
= WO
->getRHS();
4016 // Replace the old instruction's uses with poison.
4017 replaceInstUsesWith(*WO
, PoisonValue::get(WO
->getType()));
4018 eraseInstFromFunction(*WO
);
4019 return BinaryOperator::Create(BinOp
, LHS
, RHS
);
4022 assert(*EV
.idx_begin() == 1 && "Unexpected extract index for overflow inst");
4024 // (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
4025 if (OvID
== Intrinsic::usub_with_overflow
)
4026 return new ICmpInst(ICmpInst::ICMP_ULT
, WO
->getLHS(), WO
->getRHS());
4028 // smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
4029 // +1 is not possible because we assume signed values.
4030 if (OvID
== Intrinsic::smul_with_overflow
&&
4031 WO
->getLHS()->getType()->isIntOrIntVectorTy(1))
4032 return BinaryOperator::CreateAnd(WO
->getLHS(), WO
->getRHS());
4034 // extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
4035 if (OvID
== Intrinsic::umul_with_overflow
&& WO
->getLHS() == WO
->getRHS()) {
4036 unsigned BitWidth
= WO
->getLHS()->getType()->getScalarSizeInBits();
4037 // Only handle even bitwidths for performance reasons.
4038 if (BitWidth
% 2 == 0)
4039 return new ICmpInst(
4040 ICmpInst::ICMP_UGT
, WO
->getLHS(),
4041 ConstantInt::get(WO
->getLHS()->getType(),
4042 APInt::getLowBitsSet(BitWidth
, BitWidth
/ 2)));
4045 // If only the overflow result is used, and the right hand side is a
4046 // constant (or constant splat), we can remove the intrinsic by directly
4047 // checking for overflow.
4049 // Compute the no-wrap range for LHS given RHS=C, then construct an
4050 // equivalent icmp, potentially using an offset.
4051 ConstantRange NWR
= ConstantRange::makeExactNoWrapRegion(
4052 WO
->getBinaryOp(), *C
, WO
->getNoWrapKind());
4054 CmpInst::Predicate Pred
;
4055 APInt NewRHSC
, Offset
;
4056 NWR
.getEquivalentICmp(Pred
, NewRHSC
, Offset
);
4057 auto *OpTy
= WO
->getRHS()->getType();
4058 auto *NewLHS
= WO
->getLHS();
4060 NewLHS
= Builder
.CreateAdd(NewLHS
, ConstantInt::get(OpTy
, Offset
));
4061 return new ICmpInst(ICmpInst::getInversePredicate(Pred
), NewLHS
,
4062 ConstantInt::get(OpTy
, NewRHSC
));
4068 Instruction
*InstCombinerImpl::visitExtractValueInst(ExtractValueInst
&EV
) {
4069 Value
*Agg
= EV
.getAggregateOperand();
4071 if (!EV
.hasIndices())
4072 return replaceInstUsesWith(EV
, Agg
);
4074 if (Value
*V
= simplifyExtractValueInst(Agg
, EV
.getIndices(),
4075 SQ
.getWithInstruction(&EV
)))
4076 return replaceInstUsesWith(EV
, V
);
4078 if (InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(Agg
)) {
4079 // We're extracting from an insertvalue instruction, compare the indices
4080 const unsigned *exti
, *exte
, *insi
, *inse
;
4081 for (exti
= EV
.idx_begin(), insi
= IV
->idx_begin(),
4082 exte
= EV
.idx_end(), inse
= IV
->idx_end();
4083 exti
!= exte
&& insi
!= inse
;
4086 // The insert and extract both reference distinctly different elements.
4087 // This means the extract is not influenced by the insert, and we can
4088 // replace the aggregate operand of the extract with the aggregate
4089 // operand of the insert. i.e., replace
4090 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4091 // %E = extractvalue { i32, { i32 } } %I, 0
4093 // %E = extractvalue { i32, { i32 } } %A, 0
4094 return ExtractValueInst::Create(IV
->getAggregateOperand(),
4097 if (exti
== exte
&& insi
== inse
)
4098 // Both iterators are at the end: Index lists are identical. Replace
4099 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4100 // %C = extractvalue { i32, { i32 } } %B, 1, 0
4102 return replaceInstUsesWith(EV
, IV
->getInsertedValueOperand());
4104 // The extract list is a prefix of the insert list. i.e. replace
4105 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
4106 // %E = extractvalue { i32, { i32 } } %I, 1
4108 // %X = extractvalue { i32, { i32 } } %A, 1
4109 // %E = insertvalue { i32 } %X, i32 42, 0
4110 // by switching the order of the insert and extract (though the
4111 // insertvalue should be left in, since it may have other uses).
4112 Value
*NewEV
= Builder
.CreateExtractValue(IV
->getAggregateOperand(),
4114 return InsertValueInst::Create(NewEV
, IV
->getInsertedValueOperand(),
4115 ArrayRef(insi
, inse
));
4118 // The insert list is a prefix of the extract list
4119 // We can simply remove the common indices from the extract and make it
4120 // operate on the inserted value instead of the insertvalue result.
4122 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
4123 // %E = extractvalue { i32, { i32 } } %I, 1, 0
4125 // %E extractvalue { i32 } { i32 42 }, 0
4126 return ExtractValueInst::Create(IV
->getInsertedValueOperand(),
4127 ArrayRef(exti
, exte
));
4130 if (Instruction
*R
= foldExtractOfOverflowIntrinsic(EV
))
4133 if (LoadInst
*L
= dyn_cast
<LoadInst
>(Agg
)) {
4134 // Bail out if the aggregate contains scalable vector type
4135 if (auto *STy
= dyn_cast
<StructType
>(Agg
->getType());
4136 STy
&& STy
->isScalableTy())
4139 // If the (non-volatile) load only has one use, we can rewrite this to a
4140 // load from a GEP. This reduces the size of the load. If a load is used
4141 // only by extractvalue instructions then this either must have been
4142 // optimized before, or it is a struct with padding, in which case we
4143 // don't want to do the transformation as it loses padding knowledge.
4144 if (L
->isSimple() && L
->hasOneUse()) {
4145 // extractvalue has integer indices, getelementptr has Value*s. Convert.
4146 SmallVector
<Value
*, 4> Indices
;
4147 // Prefix an i32 0 since we need the first element.
4148 Indices
.push_back(Builder
.getInt32(0));
4149 for (unsigned Idx
: EV
.indices())
4150 Indices
.push_back(Builder
.getInt32(Idx
));
4152 // We need to insert these at the location of the old load, not at that of
4153 // the extractvalue.
4154 Builder
.SetInsertPoint(L
);
4155 Value
*GEP
= Builder
.CreateInBoundsGEP(L
->getType(),
4156 L
->getPointerOperand(), Indices
);
4157 Instruction
*NL
= Builder
.CreateLoad(EV
.getType(), GEP
);
4158 // Whatever aliasing information we had for the orignal load must also
4159 // hold for the smaller load, so propagate the annotations.
4160 NL
->setAAMetadata(L
->getAAMetadata());
4161 // Returning the load directly will cause the main loop to insert it in
4162 // the wrong spot, so use replaceInstUsesWith().
4163 return replaceInstUsesWith(EV
, NL
);
4167 if (auto *PN
= dyn_cast
<PHINode
>(Agg
))
4168 if (Instruction
*Res
= foldOpIntoPhi(EV
, PN
))
4171 // Canonicalize extract (select Cond, TV, FV)
4172 // -> select cond, (extract TV), (extract FV)
4173 if (auto *SI
= dyn_cast
<SelectInst
>(Agg
))
4174 if (Instruction
*R
= FoldOpIntoSelect(EV
, SI
, /*FoldWithMultiUse=*/true))
4177 // We could simplify extracts from other values. Note that nested extracts may
4178 // already be simplified implicitly by the above: extract (extract (insert) )
4179 // will be translated into extract ( insert ( extract ) ) first and then just
4180 // the value inserted, if appropriate. Similarly for extracts from single-use
4181 // loads: extract (extract (load)) will be translated to extract (load (gep))
4182 // and if again single-use then via load (gep (gep)) to load (gep).
4183 // However, double extracts from e.g. function arguments or return values
4184 // aren't handled yet.
4188 /// Return 'true' if the given typeinfo will match anything.
4189 static bool isCatchAll(EHPersonality Personality
, Constant
*TypeInfo
) {
4190 switch (Personality
) {
4191 case EHPersonality::GNU_C
:
4192 case EHPersonality::GNU_C_SjLj
:
4193 case EHPersonality::Rust
:
4194 // The GCC C EH and Rust personality only exists to support cleanups, so
4195 // it's not clear what the semantics of catch clauses are.
4197 case EHPersonality::Unknown
:
4199 case EHPersonality::GNU_Ada
:
4200 // While __gnat_all_others_value will match any Ada exception, it doesn't
4201 // match foreign exceptions (or didn't, before gcc-4.7).
4203 case EHPersonality::GNU_CXX
:
4204 case EHPersonality::GNU_CXX_SjLj
:
4205 case EHPersonality::GNU_ObjC
:
4206 case EHPersonality::MSVC_X86SEH
:
4207 case EHPersonality::MSVC_TableSEH
:
4208 case EHPersonality::MSVC_CXX
:
4209 case EHPersonality::CoreCLR
:
4210 case EHPersonality::Wasm_CXX
:
4211 case EHPersonality::XL_CXX
:
4212 case EHPersonality::ZOS_CXX
:
4213 return TypeInfo
->isNullValue();
4215 llvm_unreachable("invalid enum");
4218 static bool shorter_filter(const Value
*LHS
, const Value
*RHS
) {
4220 cast
<ArrayType
>(LHS
->getType())->getNumElements()
4222 cast
<ArrayType
>(RHS
->getType())->getNumElements();
4225 Instruction
*InstCombinerImpl::visitLandingPadInst(LandingPadInst
&LI
) {
4226 // The logic here should be correct for any real-world personality function.
4227 // However if that turns out not to be true, the offending logic can always
4228 // be conditioned on the personality function, like the catch-all logic is.
4229 EHPersonality Personality
=
4230 classifyEHPersonality(LI
.getParent()->getParent()->getPersonalityFn());
4232 // Simplify the list of clauses, eg by removing repeated catch clauses
4233 // (these are often created by inlining).
4234 bool MakeNewInstruction
= false; // If true, recreate using the following:
4235 SmallVector
<Constant
*, 16> NewClauses
; // - Clauses for the new instruction;
4236 bool CleanupFlag
= LI
.isCleanup(); // - The new instruction is a cleanup.
4238 SmallPtrSet
<Value
*, 16> AlreadyCaught
; // Typeinfos known caught already.
4239 for (unsigned i
= 0, e
= LI
.getNumClauses(); i
!= e
; ++i
) {
4240 bool isLastClause
= i
+ 1 == e
;
4241 if (LI
.isCatch(i
)) {
4243 Constant
*CatchClause
= LI
.getClause(i
);
4244 Constant
*TypeInfo
= CatchClause
->stripPointerCasts();
4246 // If we already saw this clause, there is no point in having a second
4248 if (AlreadyCaught
.insert(TypeInfo
).second
) {
4249 // This catch clause was not already seen.
4250 NewClauses
.push_back(CatchClause
);
4252 // Repeated catch clause - drop the redundant copy.
4253 MakeNewInstruction
= true;
4256 // If this is a catch-all then there is no point in keeping any following
4257 // clauses or marking the landingpad as having a cleanup.
4258 if (isCatchAll(Personality
, TypeInfo
)) {
4260 MakeNewInstruction
= true;
4261 CleanupFlag
= false;
4265 // A filter clause. If any of the filter elements were already caught
4266 // then they can be dropped from the filter. It is tempting to try to
4267 // exploit the filter further by saying that any typeinfo that does not
4268 // occur in the filter can't be caught later (and thus can be dropped).
4269 // However this would be wrong, since typeinfos can match without being
4270 // equal (for example if one represents a C++ class, and the other some
4271 // class derived from it).
4272 assert(LI
.isFilter(i
) && "Unsupported landingpad clause!");
4273 Constant
*FilterClause
= LI
.getClause(i
);
4274 ArrayType
*FilterType
= cast
<ArrayType
>(FilterClause
->getType());
4275 unsigned NumTypeInfos
= FilterType
->getNumElements();
4277 // An empty filter catches everything, so there is no point in keeping any
4278 // following clauses or marking the landingpad as having a cleanup. By
4279 // dealing with this case here the following code is made a bit simpler.
4280 if (!NumTypeInfos
) {
4281 NewClauses
.push_back(FilterClause
);
4283 MakeNewInstruction
= true;
4284 CleanupFlag
= false;
4288 bool MakeNewFilter
= false; // If true, make a new filter.
4289 SmallVector
<Constant
*, 16> NewFilterElts
; // New elements.
4290 if (isa
<ConstantAggregateZero
>(FilterClause
)) {
4291 // Not an empty filter - it contains at least one null typeinfo.
4292 assert(NumTypeInfos
> 0 && "Should have handled empty filter already!");
4293 Constant
*TypeInfo
=
4294 Constant::getNullValue(FilterType
->getElementType());
4295 // If this typeinfo is a catch-all then the filter can never match.
4296 if (isCatchAll(Personality
, TypeInfo
)) {
4297 // Throw the filter away.
4298 MakeNewInstruction
= true;
4302 // There is no point in having multiple copies of this typeinfo, so
4303 // discard all but the first copy if there is more than one.
4304 NewFilterElts
.push_back(TypeInfo
);
4305 if (NumTypeInfos
> 1)
4306 MakeNewFilter
= true;
4308 ConstantArray
*Filter
= cast
<ConstantArray
>(FilterClause
);
4309 SmallPtrSet
<Value
*, 16> SeenInFilter
; // For uniquing the elements.
4310 NewFilterElts
.reserve(NumTypeInfos
);
4312 // Remove any filter elements that were already caught or that already
4313 // occurred in the filter. While there, see if any of the elements are
4314 // catch-alls. If so, the filter can be discarded.
4315 bool SawCatchAll
= false;
4316 for (unsigned j
= 0; j
!= NumTypeInfos
; ++j
) {
4317 Constant
*Elt
= Filter
->getOperand(j
);
4318 Constant
*TypeInfo
= Elt
->stripPointerCasts();
4319 if (isCatchAll(Personality
, TypeInfo
)) {
4320 // This element is a catch-all. Bail out, noting this fact.
4325 // Even if we've seen a type in a catch clause, we don't want to
4326 // remove it from the filter. An unexpected type handler may be
4327 // set up for a call site which throws an exception of the same
4328 // type caught. In order for the exception thrown by the unexpected
4329 // handler to propagate correctly, the filter must be correctly
4330 // described for the call site.
4334 // void unexpected() { throw 1;}
4335 // void foo() throw (int) {
4336 // std::set_unexpected(unexpected);
4339 // } catch (int i) {}
4342 // There is no point in having multiple copies of the same typeinfo in
4343 // a filter, so only add it if we didn't already.
4344 if (SeenInFilter
.insert(TypeInfo
).second
)
4345 NewFilterElts
.push_back(cast
<Constant
>(Elt
));
4347 // A filter containing a catch-all cannot match anything by definition.
4349 // Throw the filter away.
4350 MakeNewInstruction
= true;
4354 // If we dropped something from the filter, make a new one.
4355 if (NewFilterElts
.size() < NumTypeInfos
)
4356 MakeNewFilter
= true;
4358 if (MakeNewFilter
) {
4359 FilterType
= ArrayType::get(FilterType
->getElementType(),
4360 NewFilterElts
.size());
4361 FilterClause
= ConstantArray::get(FilterType
, NewFilterElts
);
4362 MakeNewInstruction
= true;
4365 NewClauses
.push_back(FilterClause
);
4367 // If the new filter is empty then it will catch everything so there is
4368 // no point in keeping any following clauses or marking the landingpad
4369 // as having a cleanup. The case of the original filter being empty was
4370 // already handled above.
4371 if (MakeNewFilter
&& !NewFilterElts
.size()) {
4372 assert(MakeNewInstruction
&& "New filter but not a new instruction!");
4373 CleanupFlag
= false;
4379 // If several filters occur in a row then reorder them so that the shortest
4380 // filters come first (those with the smallest number of elements). This is
4381 // advantageous because shorter filters are more likely to match, speeding up
4382 // unwinding, but mostly because it increases the effectiveness of the other
4383 // filter optimizations below.
4384 for (unsigned i
= 0, e
= NewClauses
.size(); i
+ 1 < e
; ) {
4386 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
4387 for (j
= i
; j
!= e
; ++j
)
4388 if (!isa
<ArrayType
>(NewClauses
[j
]->getType()))
4391 // Check whether the filters are already sorted by length. We need to know
4392 // if sorting them is actually going to do anything so that we only make a
4393 // new landingpad instruction if it does.
4394 for (unsigned k
= i
; k
+ 1 < j
; ++k
)
4395 if (shorter_filter(NewClauses
[k
+1], NewClauses
[k
])) {
4396 // Not sorted, so sort the filters now. Doing an unstable sort would be
4397 // correct too but reordering filters pointlessly might confuse users.
4398 std::stable_sort(NewClauses
.begin() + i
, NewClauses
.begin() + j
,
4400 MakeNewInstruction
= true;
4404 // Look for the next batch of filters.
4408 // If typeinfos matched if and only if equal, then the elements of a filter L
4409 // that occurs later than a filter F could be replaced by the intersection of
4410 // the elements of F and L. In reality two typeinfos can match without being
4411 // equal (for example if one represents a C++ class, and the other some class
4412 // derived from it) so it would be wrong to perform this transform in general.
4413 // However the transform is correct and useful if F is a subset of L. In that
4414 // case L can be replaced by F, and thus removed altogether since repeating a
4415 // filter is pointless. So here we look at all pairs of filters F and L where
4416 // L follows F in the list of clauses, and remove L if every element of F is
4417 // an element of L. This can occur when inlining C++ functions with exception
4419 for (unsigned i
= 0; i
+ 1 < NewClauses
.size(); ++i
) {
4420 // Examine each filter in turn.
4421 Value
*Filter
= NewClauses
[i
];
4422 ArrayType
*FTy
= dyn_cast
<ArrayType
>(Filter
->getType());
4424 // Not a filter - skip it.
4426 unsigned FElts
= FTy
->getNumElements();
4427 // Examine each filter following this one. Doing this backwards means that
4428 // we don't have to worry about filters disappearing under us when removed.
4429 for (unsigned j
= NewClauses
.size() - 1; j
!= i
; --j
) {
4430 Value
*LFilter
= NewClauses
[j
];
4431 ArrayType
*LTy
= dyn_cast
<ArrayType
>(LFilter
->getType());
4433 // Not a filter - skip it.
4435 // If Filter is a subset of LFilter, i.e. every element of Filter is also
4436 // an element of LFilter, then discard LFilter.
4437 SmallVectorImpl
<Constant
*>::iterator J
= NewClauses
.begin() + j
;
4438 // If Filter is empty then it is a subset of LFilter.
4441 NewClauses
.erase(J
);
4442 MakeNewInstruction
= true;
4443 // Move on to the next filter.
4446 unsigned LElts
= LTy
->getNumElements();
4447 // If Filter is longer than LFilter then it cannot be a subset of it.
4449 // Move on to the next filter.
4451 // At this point we know that LFilter has at least one element.
4452 if (isa
<ConstantAggregateZero
>(LFilter
)) { // LFilter only contains zeros.
4453 // Filter is a subset of LFilter iff Filter contains only zeros (as we
4454 // already know that Filter is not longer than LFilter).
4455 if (isa
<ConstantAggregateZero
>(Filter
)) {
4456 assert(FElts
<= LElts
&& "Should have handled this case earlier!");
4458 NewClauses
.erase(J
);
4459 MakeNewInstruction
= true;
4461 // Move on to the next filter.
4464 ConstantArray
*LArray
= cast
<ConstantArray
>(LFilter
);
4465 if (isa
<ConstantAggregateZero
>(Filter
)) { // Filter only contains zeros.
4466 // Since Filter is non-empty and contains only zeros, it is a subset of
4467 // LFilter iff LFilter contains a zero.
4468 assert(FElts
> 0 && "Should have eliminated the empty filter earlier!");
4469 for (unsigned l
= 0; l
!= LElts
; ++l
)
4470 if (LArray
->getOperand(l
)->isNullValue()) {
4471 // LFilter contains a zero - discard it.
4472 NewClauses
.erase(J
);
4473 MakeNewInstruction
= true;
4476 // Move on to the next filter.
4479 // At this point we know that both filters are ConstantArrays. Loop over
4480 // operands to see whether every element of Filter is also an element of
4481 // LFilter. Since filters tend to be short this is probably faster than
4482 // using a method that scales nicely.
4483 ConstantArray
*FArray
= cast
<ConstantArray
>(Filter
);
4484 bool AllFound
= true;
4485 for (unsigned f
= 0; f
!= FElts
; ++f
) {
4486 Value
*FTypeInfo
= FArray
->getOperand(f
)->stripPointerCasts();
4488 for (unsigned l
= 0; l
!= LElts
; ++l
) {
4489 Value
*LTypeInfo
= LArray
->getOperand(l
)->stripPointerCasts();
4490 if (LTypeInfo
== FTypeInfo
) {
4500 NewClauses
.erase(J
);
4501 MakeNewInstruction
= true;
4503 // Move on to the next filter.
4507 // If we changed any of the clauses, replace the old landingpad instruction
4509 if (MakeNewInstruction
) {
4510 LandingPadInst
*NLI
= LandingPadInst::Create(LI
.getType(),
4512 for (Constant
*C
: NewClauses
)
4514 // A landing pad with no clauses must have the cleanup flag set. It is
4515 // theoretically possible, though highly unlikely, that we eliminated all
4516 // clauses. If so, force the cleanup flag to true.
4517 if (NewClauses
.empty())
4519 NLI
->setCleanup(CleanupFlag
);
4523 // Even if none of the clauses changed, we may nonetheless have understood
4524 // that the cleanup flag is pointless. Clear it if so.
4525 if (LI
.isCleanup() != CleanupFlag
) {
4526 assert(!CleanupFlag
&& "Adding a cleanup, not removing one?!");
4527 LI
.setCleanup(CleanupFlag
);
4535 InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst
&OrigFI
) {
4536 // Try to push freeze through instructions that propagate but don't produce
4537 // poison as far as possible. If an operand of freeze follows three
4538 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
4539 // guaranteed-non-poison operands then push the freeze through to the one
4540 // operand that is not guaranteed non-poison. The actual transform is as
4542 // Op1 = ... ; Op1 can be posion
4543 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
4544 // ; single guaranteed-non-poison operands
4545 // ... = Freeze(Op0)
4548 // Op1.fr = Freeze(Op1)
4549 // ... = Inst(Op1.fr, NonPoisonOps...)
4550 auto *OrigOp
= OrigFI
.getOperand(0);
4551 auto *OrigOpInst
= dyn_cast
<Instruction
>(OrigOp
);
4553 // While we could change the other users of OrigOp to use freeze(OrigOp), that
4554 // potentially reduces their optimization potential, so let's only do this iff
4555 // the OrigOp is only used by the freeze.
4556 if (!OrigOpInst
|| !OrigOpInst
->hasOneUse() || isa
<PHINode
>(OrigOp
))
4559 // We can't push the freeze through an instruction which can itself create
4560 // poison. If the only source of new poison is flags, we can simply
4561 // strip them (since we know the only use is the freeze and nothing can
4562 // benefit from them.)
4563 if (canCreateUndefOrPoison(cast
<Operator
>(OrigOp
),
4564 /*ConsiderFlagsAndMetadata*/ false))
4567 // If operand is guaranteed not to be poison, there is no need to add freeze
4568 // to the operand. So we first find the operand that is not guaranteed to be
4570 Use
*MaybePoisonOperand
= nullptr;
4571 for (Use
&U
: OrigOpInst
->operands()) {
4572 if (isa
<MetadataAsValue
>(U
.get()) ||
4573 isGuaranteedNotToBeUndefOrPoison(U
.get()))
4575 if (!MaybePoisonOperand
)
4576 MaybePoisonOperand
= &U
;
4581 OrigOpInst
->dropPoisonGeneratingAnnotations();
4583 // If all operands are guaranteed to be non-poison, we can drop freeze.
4584 if (!MaybePoisonOperand
)
4587 Builder
.SetInsertPoint(OrigOpInst
);
4588 auto *FrozenMaybePoisonOperand
= Builder
.CreateFreeze(
4589 MaybePoisonOperand
->get(), MaybePoisonOperand
->get()->getName() + ".fr");
4591 replaceUse(*MaybePoisonOperand
, FrozenMaybePoisonOperand
);
4595 Instruction
*InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst
&FI
,
4597 // Detect whether this is a recurrence with a start value and some number of
4598 // backedge values. We'll check whether we can push the freeze through the
4599 // backedge values (possibly dropping poison flags along the way) until we
4600 // reach the phi again. In that case, we can move the freeze to the start
4602 Use
*StartU
= nullptr;
4603 SmallVector
<Value
*> Worklist
;
4604 for (Use
&U
: PN
->incoming_values()) {
4605 if (DT
.dominates(PN
->getParent(), PN
->getIncomingBlock(U
))) {
4606 // Add backedge value to worklist.
4607 Worklist
.push_back(U
.get());
4611 // Don't bother handling multiple start values.
4617 if (!StartU
|| Worklist
.empty())
4618 return nullptr; // Not a recurrence.
4620 Value
*StartV
= StartU
->get();
4621 BasicBlock
*StartBB
= PN
->getIncomingBlock(*StartU
);
4622 bool StartNeedsFreeze
= !isGuaranteedNotToBeUndefOrPoison(StartV
);
4623 // We can't insert freeze if the start value is the result of the
4624 // terminator (e.g. an invoke).
4625 if (StartNeedsFreeze
&& StartBB
->getTerminator() == StartV
)
4628 SmallPtrSet
<Value
*, 32> Visited
;
4629 SmallVector
<Instruction
*> DropFlags
;
4630 while (!Worklist
.empty()) {
4631 Value
*V
= Worklist
.pop_back_val();
4632 if (!Visited
.insert(V
).second
)
4635 if (Visited
.size() > 32)
4636 return nullptr; // Limit the total number of values we inspect.
4638 // Assume that PN is non-poison, because it will be after the transform.
4639 if (V
== PN
|| isGuaranteedNotToBeUndefOrPoison(V
))
4642 Instruction
*I
= dyn_cast
<Instruction
>(V
);
4643 if (!I
|| canCreateUndefOrPoison(cast
<Operator
>(I
),
4644 /*ConsiderFlagsAndMetadata*/ false))
4647 DropFlags
.push_back(I
);
4648 append_range(Worklist
, I
->operands());
4651 for (Instruction
*I
: DropFlags
)
4652 I
->dropPoisonGeneratingAnnotations();
4654 if (StartNeedsFreeze
) {
4655 Builder
.SetInsertPoint(StartBB
->getTerminator());
4656 Value
*FrozenStartV
= Builder
.CreateFreeze(StartV
,
4657 StartV
->getName() + ".fr");
4658 replaceUse(*StartU
, FrozenStartV
);
4660 return replaceInstUsesWith(FI
, PN
);
4663 bool InstCombinerImpl::freezeOtherUses(FreezeInst
&FI
) {
4664 Value
*Op
= FI
.getOperand(0);
4666 if (isa
<Constant
>(Op
) || Op
->hasOneUse())
4669 // Move the freeze directly after the definition of its operand, so that
4670 // it dominates the maximum number of uses. Note that it may not dominate
4671 // *all* uses if the operand is an invoke/callbr and the use is in a phi on
4672 // the normal/default destination. This is why the domination check in the
4673 // replacement below is still necessary.
4674 BasicBlock::iterator MoveBefore
;
4675 if (isa
<Argument
>(Op
)) {
4677 FI
.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
4679 auto MoveBeforeOpt
= cast
<Instruction
>(Op
)->getInsertionPointAfterDef();
4682 MoveBefore
= *MoveBeforeOpt
;
4685 // Don't move to the position of a debug intrinsic.
4686 if (isa
<DbgInfoIntrinsic
>(MoveBefore
))
4687 MoveBefore
= MoveBefore
->getNextNonDebugInstruction()->getIterator();
4688 // Re-point iterator to come after any debug-info records, if we're
4689 // running in "RemoveDIs" mode
4690 MoveBefore
.setHeadBit(false);
4692 bool Changed
= false;
4693 if (&FI
!= &*MoveBefore
) {
4694 FI
.moveBefore(*MoveBefore
->getParent(), MoveBefore
);
4698 Op
->replaceUsesWithIf(&FI
, [&](Use
&U
) -> bool {
4699 bool Dominates
= DT
.dominates(&FI
, U
);
4700 Changed
|= Dominates
;
4707 // Check if any direct or bitcast user of this value is a shuffle instruction.
4708 static bool isUsedWithinShuffleVector(Value
*V
) {
4709 for (auto *U
: V
->users()) {
4710 if (isa
<ShuffleVectorInst
>(U
))
4712 else if (match(U
, m_BitCast(m_Specific(V
))) && isUsedWithinShuffleVector(U
))
4718 Instruction
*InstCombinerImpl::visitFreeze(FreezeInst
&I
) {
4719 Value
*Op0
= I
.getOperand(0);
4721 if (Value
*V
= simplifyFreezeInst(Op0
, SQ
.getWithInstruction(&I
)))
4722 return replaceInstUsesWith(I
, V
);
4724 // freeze (phi const, x) --> phi const, (freeze x)
4725 if (auto *PN
= dyn_cast
<PHINode
>(Op0
)) {
4726 if (Instruction
*NV
= foldOpIntoPhi(I
, PN
))
4728 if (Instruction
*NV
= foldFreezeIntoRecurrence(I
, PN
))
4732 if (Value
*NI
= pushFreezeToPreventPoisonFromPropagating(I
))
4733 return replaceInstUsesWith(I
, NI
);
4735 // If I is freeze(undef), check its uses and fold it to a fixed constant.
4737 // - select's condition: if the true value is constant, choose it by making
4738 // the condition true.
4739 // - default: pick 0
4741 // Note that this transform is intentionally done here rather than
4742 // via an analysis in InstSimplify or at individual user sites. That is
4743 // because we must produce the same value for all uses of the freeze -
4744 // it's the reason "freeze" exists!
4746 // TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
4747 // duplicating logic for binops at least.
4748 auto getUndefReplacement
= [&I
](Type
*Ty
) {
4749 Constant
*BestValue
= nullptr;
4750 Constant
*NullValue
= Constant::getNullValue(Ty
);
4751 for (const auto *U
: I
.users()) {
4752 Constant
*C
= NullValue
;
4753 if (match(U
, m_Or(m_Value(), m_Value())))
4754 C
= ConstantInt::getAllOnesValue(Ty
);
4755 else if (match(U
, m_Select(m_Specific(&I
), m_Constant(), m_Value())))
4756 C
= ConstantInt::getTrue(Ty
);
4760 else if (BestValue
!= C
)
4761 BestValue
= NullValue
;
4763 assert(BestValue
&& "Must have at least one use");
4767 if (match(Op0
, m_Undef())) {
4768 // Don't fold freeze(undef/poison) if it's used as a vector operand in
4769 // a shuffle. This may improve codegen for shuffles that allow
4770 // unspecified inputs.
4771 if (isUsedWithinShuffleVector(&I
))
4773 return replaceInstUsesWith(I
, getUndefReplacement(I
.getType()));
4777 if (match(Op0
, m_Constant(C
)) && C
->containsUndefOrPoisonElement()) {
4778 Constant
*ReplaceC
= getUndefReplacement(I
.getType()->getScalarType());
4779 return replaceInstUsesWith(I
, Constant::replaceUndefsWith(C
, ReplaceC
));
4782 // Replace uses of Op with freeze(Op).
4783 if (freezeOtherUses(I
))
4789 /// Check for case where the call writes to an otherwise dead alloca. This
4790 /// shows up for unused out-params in idiomatic C/C++ code. Note that this
4791 /// helper *only* analyzes the write; doesn't check any other legality aspect.
4792 static bool SoleWriteToDeadLocal(Instruction
*I
, TargetLibraryInfo
&TLI
) {
4793 auto *CB
= dyn_cast
<CallBase
>(I
);
4795 // TODO: handle e.g. store to alloca here - only worth doing if we extend
4796 // to allow reload along used path as described below. Otherwise, this
4797 // is simply a store to a dead allocation which will be removed.
4799 std::optional
<MemoryLocation
> Dest
= MemoryLocation::getForDest(CB
, TLI
);
4802 auto *AI
= dyn_cast
<AllocaInst
>(getUnderlyingObject(Dest
->Ptr
));
4804 // TODO: allow malloc?
4806 // TODO: allow memory access dominated by move point? Note that since AI
4807 // could have a reference to itself captured by the call, we would need to
4808 // account for cycles in doing so.
4809 SmallVector
<const User
*> AllocaUsers
;
4810 SmallPtrSet
<const User
*, 4> Visited
;
4811 auto pushUsers
= [&](const Instruction
&I
) {
4812 for (const User
*U
: I
.users()) {
4813 if (Visited
.insert(U
).second
)
4814 AllocaUsers
.push_back(U
);
4818 while (!AllocaUsers
.empty()) {
4819 auto *UserI
= cast
<Instruction
>(AllocaUsers
.pop_back_val());
4820 if (isa
<GetElementPtrInst
>(UserI
) || isa
<AddrSpaceCastInst
>(UserI
)) {
4826 // TODO: support lifetime.start/end here
4832 /// Try to move the specified instruction from its current block into the
4833 /// beginning of DestBlock, which can only happen if it's safe to move the
4834 /// instruction past all of the instructions between it and the end of its
4836 bool InstCombinerImpl::tryToSinkInstruction(Instruction
*I
,
4837 BasicBlock
*DestBlock
) {
4838 BasicBlock
*SrcBlock
= I
->getParent();
4840 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
4841 if (isa
<PHINode
>(I
) || I
->isEHPad() || I
->mayThrow() || !I
->willReturn() ||
4845 // Do not sink static or dynamic alloca instructions. Static allocas must
4846 // remain in the entry block, and dynamic allocas must not be sunk in between
4847 // a stacksave / stackrestore pair, which would incorrectly shorten its
4849 if (isa
<AllocaInst
>(I
))
4852 // Do not sink into catchswitch blocks.
4853 if (isa
<CatchSwitchInst
>(DestBlock
->getTerminator()))
4856 // Do not sink convergent call instructions.
4857 if (auto *CI
= dyn_cast
<CallInst
>(I
)) {
4858 if (CI
->isConvergent())
4862 // Unless we can prove that the memory write isn't visibile except on the
4863 // path we're sinking to, we must bail.
4864 if (I
->mayWriteToMemory()) {
4865 if (!SoleWriteToDeadLocal(I
, TLI
))
4869 // We can only sink load instructions if there is nothing between the load and
4870 // the end of block that could change the value.
4871 if (I
->mayReadFromMemory() &&
4872 !I
->hasMetadata(LLVMContext::MD_invariant_load
)) {
4873 // We don't want to do any sophisticated alias analysis, so we only check
4874 // the instructions after I in I's parent block if we try to sink to its
4876 if (DestBlock
->getUniquePredecessor() != I
->getParent())
4878 for (BasicBlock::iterator Scan
= std::next(I
->getIterator()),
4879 E
= I
->getParent()->end();
4881 if (Scan
->mayWriteToMemory())
4885 I
->dropDroppableUses([&](const Use
*U
) {
4886 auto *I
= dyn_cast
<Instruction
>(U
->getUser());
4887 if (I
&& I
->getParent() != DestBlock
) {
4893 /// FIXME: We could remove droppable uses that are not dominated by
4894 /// the new position.
4896 BasicBlock::iterator InsertPos
= DestBlock
->getFirstInsertionPt();
4897 I
->moveBefore(*DestBlock
, InsertPos
);
4900 // Also sink all related debug uses from the source basic block. Otherwise we
4901 // get debug use before the def. Attempt to salvage debug uses first, to
4902 // maximise the range variables have location for. If we cannot salvage, then
4903 // mark the location undef: we know it was supposed to receive a new location
4904 // here, but that computation has been sunk.
4905 SmallVector
<DbgVariableIntrinsic
*, 2> DbgUsers
;
4906 SmallVector
<DbgVariableRecord
*, 2> DbgVariableRecords
;
4907 findDbgUsers(DbgUsers
, I
, &DbgVariableRecords
);
4908 if (!DbgUsers
.empty())
4909 tryToSinkInstructionDbgValues(I
, InsertPos
, SrcBlock
, DestBlock
, DbgUsers
);
4910 if (!DbgVariableRecords
.empty())
4911 tryToSinkInstructionDbgVariableRecords(I
, InsertPos
, SrcBlock
, DestBlock
,
4912 DbgVariableRecords
);
4914 // PS: there are numerous flaws with this behaviour, not least that right now
4915 // assignments can be re-ordered past other assignments to the same variable
4916 // if they use different Values. Creating more undef assignements can never be
4917 // undone. And salvaging all users outside of this block can un-necessarily
4918 // alter the lifetime of the live-value that the variable refers to.
4919 // Some of these things can be resolved by tolerating debug use-before-defs in
4920 // LLVM-IR, however it depends on the instruction-referencing CodeGen backend
4921 // being used for more architectures.
4926 void InstCombinerImpl::tryToSinkInstructionDbgValues(
4927 Instruction
*I
, BasicBlock::iterator InsertPos
, BasicBlock
*SrcBlock
,
4928 BasicBlock
*DestBlock
, SmallVectorImpl
<DbgVariableIntrinsic
*> &DbgUsers
) {
4929 // For all debug values in the destination block, the sunk instruction
4930 // will still be available, so they do not need to be dropped.
4931 SmallVector
<DbgVariableIntrinsic
*, 2> DbgUsersToSalvage
;
4932 for (auto &DbgUser
: DbgUsers
)
4933 if (DbgUser
->getParent() != DestBlock
)
4934 DbgUsersToSalvage
.push_back(DbgUser
);
4936 // Process the sinking DbgUsersToSalvage in reverse order, as we only want
4937 // to clone the last appearing debug intrinsic for each given variable.
4938 SmallVector
<DbgVariableIntrinsic
*, 2> DbgUsersToSink
;
4939 for (DbgVariableIntrinsic
*DVI
: DbgUsersToSalvage
)
4940 if (DVI
->getParent() == SrcBlock
)
4941 DbgUsersToSink
.push_back(DVI
);
4942 llvm::sort(DbgUsersToSink
,
4943 [](auto *A
, auto *B
) { return B
->comesBefore(A
); });
4945 SmallVector
<DbgVariableIntrinsic
*, 2> DIIClones
;
4946 SmallSet
<DebugVariable
, 4> SunkVariables
;
4947 for (auto *User
: DbgUsersToSink
) {
4948 // A dbg.declare instruction should not be cloned, since there can only be
4949 // one per variable fragment. It should be left in the original place
4950 // because the sunk instruction is not an alloca (otherwise we could not be
4952 if (isa
<DbgDeclareInst
>(User
))
4955 DebugVariable DbgUserVariable
=
4956 DebugVariable(User
->getVariable(), User
->getExpression(),
4957 User
->getDebugLoc()->getInlinedAt());
4959 if (!SunkVariables
.insert(DbgUserVariable
).second
)
4962 // Leave dbg.assign intrinsics in their original positions and there should
4963 // be no need to insert a clone.
4964 if (isa
<DbgAssignIntrinsic
>(User
))
4967 DIIClones
.emplace_back(cast
<DbgVariableIntrinsic
>(User
->clone()));
4968 if (isa
<DbgDeclareInst
>(User
) && isa
<CastInst
>(I
))
4969 DIIClones
.back()->replaceVariableLocationOp(I
, I
->getOperand(0));
4970 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones
.back() << '\n');
4973 // Perform salvaging without the clones, then sink the clones.
4974 if (!DIIClones
.empty()) {
4975 salvageDebugInfoForDbgValues(*I
, DbgUsersToSalvage
, {});
4976 // The clones are in reverse order of original appearance, reverse again to
4977 // maintain the original order.
4978 for (auto &DIIClone
: llvm::reverse(DIIClones
)) {
4979 DIIClone
->insertBefore(&*InsertPos
);
4980 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone
<< '\n');
4985 void InstCombinerImpl::tryToSinkInstructionDbgVariableRecords(
4986 Instruction
*I
, BasicBlock::iterator InsertPos
, BasicBlock
*SrcBlock
,
4987 BasicBlock
*DestBlock
,
4988 SmallVectorImpl
<DbgVariableRecord
*> &DbgVariableRecords
) {
4989 // Implementation of tryToSinkInstructionDbgValues, but for the
4990 // DbgVariableRecord of variable assignments rather than dbg.values.
4992 // Fetch all DbgVariableRecords not already in the destination.
4993 SmallVector
<DbgVariableRecord
*, 2> DbgVariableRecordsToSalvage
;
4994 for (auto &DVR
: DbgVariableRecords
)
4995 if (DVR
->getParent() != DestBlock
)
4996 DbgVariableRecordsToSalvage
.push_back(DVR
);
4998 // Fetch a second collection, of DbgVariableRecords in the source block that
4999 // we're going to sink.
5000 SmallVector
<DbgVariableRecord
*> DbgVariableRecordsToSink
;
5001 for (DbgVariableRecord
*DVR
: DbgVariableRecordsToSalvage
)
5002 if (DVR
->getParent() == SrcBlock
)
5003 DbgVariableRecordsToSink
.push_back(DVR
);
5005 // Sort DbgVariableRecords according to their position in the block. This is a
5006 // partial order: DbgVariableRecords attached to different instructions will
5007 // be ordered by the instruction order, but DbgVariableRecords attached to the
5008 // same instruction won't have an order.
5009 auto Order
= [](DbgVariableRecord
*A
, DbgVariableRecord
*B
) -> bool {
5010 return B
->getInstruction()->comesBefore(A
->getInstruction());
5012 llvm::stable_sort(DbgVariableRecordsToSink
, Order
);
5014 // If there are two assignments to the same variable attached to the same
5015 // instruction, the ordering between the two assignments is important. Scan
5016 // for this (rare) case and establish which is the last assignment.
5017 using InstVarPair
= std::pair
<const Instruction
*, DebugVariable
>;
5018 SmallDenseMap
<InstVarPair
, DbgVariableRecord
*> FilterOutMap
;
5019 if (DbgVariableRecordsToSink
.size() > 1) {
5020 SmallDenseMap
<InstVarPair
, unsigned> CountMap
;
5021 // Count how many assignments to each variable there is per instruction.
5022 for (DbgVariableRecord
*DVR
: DbgVariableRecordsToSink
) {
5023 DebugVariable DbgUserVariable
=
5024 DebugVariable(DVR
->getVariable(), DVR
->getExpression(),
5025 DVR
->getDebugLoc()->getInlinedAt());
5026 CountMap
[std::make_pair(DVR
->getInstruction(), DbgUserVariable
)] += 1;
5029 // If there are any instructions with two assignments, add them to the
5030 // FilterOutMap to record that they need extra filtering.
5031 SmallPtrSet
<const Instruction
*, 4> DupSet
;
5032 for (auto It
: CountMap
) {
5033 if (It
.second
> 1) {
5034 FilterOutMap
[It
.first
] = nullptr;
5035 DupSet
.insert(It
.first
.first
);
5039 // For all instruction/variable pairs needing extra filtering, find the
5040 // latest assignment.
5041 for (const Instruction
*Inst
: DupSet
) {
5042 for (DbgVariableRecord
&DVR
:
5043 llvm::reverse(filterDbgVars(Inst
->getDbgRecordRange()))) {
5044 DebugVariable DbgUserVariable
=
5045 DebugVariable(DVR
.getVariable(), DVR
.getExpression(),
5046 DVR
.getDebugLoc()->getInlinedAt());
5048 FilterOutMap
.find(std::make_pair(Inst
, DbgUserVariable
));
5049 if (FilterIt
== FilterOutMap
.end())
5051 if (FilterIt
->second
!= nullptr)
5053 FilterIt
->second
= &DVR
;
5058 // Perform cloning of the DbgVariableRecords that we plan on sinking, filter
5059 // out any duplicate assignments identified above.
5060 SmallVector
<DbgVariableRecord
*, 2> DVRClones
;
5061 SmallSet
<DebugVariable
, 4> SunkVariables
;
5062 for (DbgVariableRecord
*DVR
: DbgVariableRecordsToSink
) {
5063 if (DVR
->Type
== DbgVariableRecord::LocationType::Declare
)
5066 DebugVariable DbgUserVariable
=
5067 DebugVariable(DVR
->getVariable(), DVR
->getExpression(),
5068 DVR
->getDebugLoc()->getInlinedAt());
5070 // For any variable where there were multiple assignments in the same place,
5071 // ignore all but the last assignment.
5072 if (!FilterOutMap
.empty()) {
5073 InstVarPair IVP
= std::make_pair(DVR
->getInstruction(), DbgUserVariable
);
5074 auto It
= FilterOutMap
.find(IVP
);
5077 if (It
!= FilterOutMap
.end() && It
->second
!= DVR
)
5081 if (!SunkVariables
.insert(DbgUserVariable
).second
)
5084 if (DVR
->isDbgAssign())
5087 DVRClones
.emplace_back(DVR
->clone());
5088 LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones
.back() << '\n');
5091 // Perform salvaging without the clones, then sink the clones.
5092 if (DVRClones
.empty())
5095 salvageDebugInfoForDbgValues(*I
, {}, DbgVariableRecordsToSalvage
);
5097 // The clones are in reverse order of original appearance. Assert that the
5098 // head bit is set on the iterator as we _should_ have received it via
5099 // getFirstInsertionPt. Inserting like this will reverse the clone order as
5100 // we'll repeatedly insert at the head, such as:
5101 // DVR-3 (third insertion goes here)
5102 // DVR-2 (second insertion goes here)
5103 // DVR-1 (first insertion goes here)
5106 assert(InsertPos
.getHeadBit());
5107 for (DbgVariableRecord
*DVRClone
: DVRClones
) {
5108 InsertPos
->getParent()->insertDbgRecordBefore(DVRClone
, InsertPos
);
5109 LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone
<< '\n');
5113 bool InstCombinerImpl::run() {
5114 while (!Worklist
.isEmpty()) {
5115 // Walk deferred instructions in reverse order, and push them to the
5116 // worklist, which means they'll end up popped from the worklist in-order.
5117 while (Instruction
*I
= Worklist
.popDeferred()) {
5118 // Check to see if we can DCE the instruction. We do this already here to
5119 // reduce the number of uses and thus allow other folds to trigger.
5120 // Note that eraseInstFromFunction() may push additional instructions on
5121 // the deferred worklist, so this will DCE whole instruction chains.
5122 if (isInstructionTriviallyDead(I
, &TLI
)) {
5123 eraseInstFromFunction(*I
);
5131 Instruction
*I
= Worklist
.removeOne();
5132 if (I
== nullptr) continue; // skip null values.
5134 // Check to see if we can DCE the instruction.
5135 if (isInstructionTriviallyDead(I
, &TLI
)) {
5136 eraseInstFromFunction(*I
);
5141 if (!DebugCounter::shouldExecute(VisitCounter
))
5144 // See if we can trivially sink this instruction to its user if we can
5145 // prove that the successor is not executed more frequently than our block.
5146 // Return the UserBlock if successful.
5147 auto getOptionalSinkBlockForInst
=
5148 [this](Instruction
*I
) -> std::optional
<BasicBlock
*> {
5149 if (!EnableCodeSinking
)
5150 return std::nullopt
;
5152 BasicBlock
*BB
= I
->getParent();
5153 BasicBlock
*UserParent
= nullptr;
5154 unsigned NumUsers
= 0;
5156 for (Use
&U
: I
->uses()) {
5157 User
*User
= U
.getUser();
5158 if (User
->isDroppable())
5160 if (NumUsers
> MaxSinkNumUsers
)
5161 return std::nullopt
;
5163 Instruction
*UserInst
= cast
<Instruction
>(User
);
5164 // Special handling for Phi nodes - get the block the use occurs in.
5165 BasicBlock
*UserBB
= UserInst
->getParent();
5166 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
5167 UserBB
= PN
->getIncomingBlock(U
);
5168 // Bail out if we have uses in different blocks. We don't do any
5169 // sophisticated analysis (i.e finding NearestCommonDominator of these
5171 if (UserParent
&& UserParent
!= UserBB
)
5172 return std::nullopt
;
5173 UserParent
= UserBB
;
5175 // Make sure these checks are done only once, naturally we do the checks
5176 // the first time we get the userparent, this will save compile time.
5177 if (NumUsers
== 0) {
5178 // Try sinking to another block. If that block is unreachable, then do
5179 // not bother. SimplifyCFG should handle it.
5180 if (UserParent
== BB
|| !DT
.isReachableFromEntry(UserParent
))
5181 return std::nullopt
;
5183 auto *Term
= UserParent
->getTerminator();
5184 // See if the user is one of our successors that has only one
5185 // predecessor, so that we don't have to split the critical edge.
5186 // Another option where we can sink is a block that ends with a
5187 // terminator that does not pass control to other block (such as
5188 // return or unreachable or resume). In this case:
5189 // - I dominates the User (by SSA form);
5190 // - the User will be executed at most once.
5191 // So sinking I down to User is always profitable or neutral.
5192 if (UserParent
->getUniquePredecessor() != BB
&& !succ_empty(Term
))
5193 return std::nullopt
;
5195 assert(DT
.dominates(BB
, UserParent
) && "Dominance relation broken?");
5201 // No user or only has droppable users.
5203 return std::nullopt
;
5208 auto OptBB
= getOptionalSinkBlockForInst(I
);
5210 auto *UserParent
= *OptBB
;
5211 // Okay, the CFG is simple enough, try to sink this instruction.
5212 if (tryToSinkInstruction(I
, UserParent
)) {
5213 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I
<< '\n');
5214 MadeIRChange
= true;
5215 // We'll add uses of the sunk instruction below, but since
5216 // sinking can expose opportunities for it's *operands* add
5217 // them to the worklist
5218 for (Use
&U
: I
->operands())
5219 if (Instruction
*OpI
= dyn_cast
<Instruction
>(U
.get()))
5224 // Now that we have an instruction, try combining it to simplify it.
5225 Builder
.SetInsertPoint(I
);
5226 Builder
.CollectMetadataToCopy(
5227 I
, {LLVMContext::MD_dbg
, LLVMContext::MD_annotation
});
5232 LLVM_DEBUG(raw_string_ostream
SS(OrigI
); I
->print(SS
););
5233 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI
<< '\n');
5235 if (Instruction
*Result
= visit(*I
)) {
5237 // Should we replace the old instruction with a new one?
5239 LLVM_DEBUG(dbgs() << "IC: Old = " << *I
<< '\n'
5240 << " New = " << *Result
<< '\n');
5242 // We copy the old instruction's DebugLoc to the new instruction, unless
5243 // InstCombine already assigned a DebugLoc to it, in which case we
5244 // should trust the more specifically selected DebugLoc.
5245 if (!Result
->getDebugLoc())
5246 Result
->setDebugLoc(I
->getDebugLoc());
5247 // We also copy annotation metadata to the new instruction.
5248 Result
->copyMetadata(*I
, LLVMContext::MD_annotation
);
5249 // Everything uses the new instruction now.
5250 I
->replaceAllUsesWith(Result
);
5252 // Move the name to the new instruction first.
5253 Result
->takeName(I
);
5255 // Insert the new instruction into the basic block...
5256 BasicBlock
*InstParent
= I
->getParent();
5257 BasicBlock::iterator InsertPos
= I
->getIterator();
5259 // Are we replace a PHI with something that isn't a PHI, or vice versa?
5260 if (isa
<PHINode
>(Result
) != isa
<PHINode
>(I
)) {
5261 // We need to fix up the insertion point.
5262 if (isa
<PHINode
>(I
)) // PHI -> Non-PHI
5263 InsertPos
= InstParent
->getFirstInsertionPt();
5264 else // Non-PHI -> PHI
5265 InsertPos
= InstParent
->getFirstNonPHIIt();
5268 Result
->insertInto(InstParent
, InsertPos
);
5270 // Push the new instruction and any users onto the worklist.
5271 Worklist
.pushUsersToWorkList(*Result
);
5272 Worklist
.push(Result
);
5274 eraseInstFromFunction(*I
);
5276 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI
<< '\n'
5277 << " New = " << *I
<< '\n');
5279 // If the instruction was modified, it's possible that it is now dead.
5280 // if so, remove it.
5281 if (isInstructionTriviallyDead(I
, &TLI
)) {
5282 eraseInstFromFunction(*I
);
5284 Worklist
.pushUsersToWorkList(*I
);
5288 MadeIRChange
= true;
5293 return MadeIRChange
;
5296 // Track the scopes used by !alias.scope and !noalias. In a function, a
5297 // @llvm.experimental.noalias.scope.decl is only useful if that scope is used
5298 // by both sets. If not, the declaration of the scope can be safely omitted.
5299 // The MDNode of the scope can be omitted as well for the instructions that are
5300 // part of this function. We do not do that at this point, as this might become
5301 // too time consuming to do.
5302 class AliasScopeTracker
{
5303 SmallPtrSet
<const MDNode
*, 8> UsedAliasScopesAndLists
;
5304 SmallPtrSet
<const MDNode
*, 8> UsedNoAliasScopesAndLists
;
5307 void analyse(Instruction
*I
) {
5308 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
5309 if (!I
->hasMetadataOtherThanDebugLoc())
5312 auto Track
= [](Metadata
*ScopeList
, auto &Container
) {
5313 const auto *MDScopeList
= dyn_cast_or_null
<MDNode
>(ScopeList
);
5314 if (!MDScopeList
|| !Container
.insert(MDScopeList
).second
)
5316 for (const auto &MDOperand
: MDScopeList
->operands())
5317 if (auto *MDScope
= dyn_cast
<MDNode
>(MDOperand
))
5318 Container
.insert(MDScope
);
5321 Track(I
->getMetadata(LLVMContext::MD_alias_scope
), UsedAliasScopesAndLists
);
5322 Track(I
->getMetadata(LLVMContext::MD_noalias
), UsedNoAliasScopesAndLists
);
5325 bool isNoAliasScopeDeclDead(Instruction
*Inst
) {
5326 NoAliasScopeDeclInst
*Decl
= dyn_cast
<NoAliasScopeDeclInst
>(Inst
);
5330 assert(Decl
->use_empty() &&
5331 "llvm.experimental.noalias.scope.decl in use ?");
5332 const MDNode
*MDSL
= Decl
->getScopeList();
5333 assert(MDSL
->getNumOperands() == 1 &&
5334 "llvm.experimental.noalias.scope should refer to a single scope");
5335 auto &MDOperand
= MDSL
->getOperand(0);
5336 if (auto *MD
= dyn_cast
<MDNode
>(MDOperand
))
5337 return !UsedAliasScopesAndLists
.contains(MD
) ||
5338 !UsedNoAliasScopesAndLists
.contains(MD
);
5340 // Not an MDNode ? throw away.
5345 /// Populate the IC worklist from a function, by walking it in reverse
5346 /// post-order and adding all reachable code to the worklist.
5348 /// This has a couple of tricks to make the code faster and more powerful. In
5349 /// particular, we constant fold and DCE instructions as we go, to avoid adding
5350 /// them to the worklist (this significantly speeds up instcombine on code where
5351 /// many instructions are dead or constant). Additionally, if we find a branch
5352 /// whose condition is a known constant, we only visit the reachable successors.
5353 bool InstCombinerImpl::prepareWorklist(Function
&F
) {
5354 bool MadeIRChange
= false;
5355 SmallPtrSet
<BasicBlock
*, 32> LiveBlocks
;
5356 SmallVector
<Instruction
*, 128> InstrsForInstructionWorklist
;
5357 DenseMap
<Constant
*, Constant
*> FoldedConstants
;
5358 AliasScopeTracker SeenAliasScopes
;
5360 auto HandleOnlyLiveSuccessor
= [&](BasicBlock
*BB
, BasicBlock
*LiveSucc
) {
5361 for (BasicBlock
*Succ
: successors(BB
))
5362 if (Succ
!= LiveSucc
&& DeadEdges
.insert({BB
, Succ
}).second
)
5363 for (PHINode
&PN
: Succ
->phis())
5364 for (Use
&U
: PN
.incoming_values())
5365 if (PN
.getIncomingBlock(U
) == BB
&& !isa
<PoisonValue
>(U
)) {
5366 U
.set(PoisonValue::get(PN
.getType()));
5367 MadeIRChange
= true;
5371 for (BasicBlock
*BB
: RPOT
) {
5372 if (!BB
->isEntryBlock() && all_of(predecessors(BB
), [&](BasicBlock
*Pred
) {
5373 return DeadEdges
.contains({Pred
, BB
}) || DT
.dominates(BB
, Pred
);
5375 HandleOnlyLiveSuccessor(BB
, nullptr);
5378 LiveBlocks
.insert(BB
);
5380 for (Instruction
&Inst
: llvm::make_early_inc_range(*BB
)) {
5381 // ConstantProp instruction if trivially constant.
5382 if (!Inst
.use_empty() &&
5383 (Inst
.getNumOperands() == 0 || isa
<Constant
>(Inst
.getOperand(0))))
5384 if (Constant
*C
= ConstantFoldInstruction(&Inst
, DL
, &TLI
)) {
5385 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C
<< " from: " << Inst
5387 Inst
.replaceAllUsesWith(C
);
5389 if (isInstructionTriviallyDead(&Inst
, &TLI
))
5390 Inst
.eraseFromParent();
5391 MadeIRChange
= true;
5395 // See if we can constant fold its operands.
5396 for (Use
&U
: Inst
.operands()) {
5397 if (!isa
<ConstantVector
>(U
) && !isa
<ConstantExpr
>(U
))
5400 auto *C
= cast
<Constant
>(U
);
5401 Constant
*&FoldRes
= FoldedConstants
[C
];
5403 FoldRes
= ConstantFoldConstant(C
, DL
, &TLI
);
5406 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
5407 << "\n Old = " << *C
5408 << "\n New = " << *FoldRes
<< '\n');
5410 MadeIRChange
= true;
5414 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
5415 // these call instructions consumes non-trivial amount of time and
5416 // provides no value for the optimization.
5417 if (!Inst
.isDebugOrPseudoInst()) {
5418 InstrsForInstructionWorklist
.push_back(&Inst
);
5419 SeenAliasScopes
.analyse(&Inst
);
5423 // If this is a branch or switch on a constant, mark only the single
5424 // live successor. Otherwise assume all successors are live.
5425 Instruction
*TI
= BB
->getTerminator();
5426 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(TI
); BI
&& BI
->isConditional()) {
5427 if (isa
<UndefValue
>(BI
->getCondition())) {
5428 // Branch on undef is UB.
5429 HandleOnlyLiveSuccessor(BB
, nullptr);
5432 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
5433 bool CondVal
= Cond
->getZExtValue();
5434 HandleOnlyLiveSuccessor(BB
, BI
->getSuccessor(!CondVal
));
5437 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(TI
)) {
5438 if (isa
<UndefValue
>(SI
->getCondition())) {
5439 // Switch on undef is UB.
5440 HandleOnlyLiveSuccessor(BB
, nullptr);
5443 if (auto *Cond
= dyn_cast
<ConstantInt
>(SI
->getCondition())) {
5444 HandleOnlyLiveSuccessor(BB
,
5445 SI
->findCaseValue(Cond
)->getCaseSuccessor());
5451 // Remove instructions inside unreachable blocks. This prevents the
5452 // instcombine code from having to deal with some bad special cases, and
5453 // reduces use counts of instructions.
5454 for (BasicBlock
&BB
: F
) {
5455 if (LiveBlocks
.count(&BB
))
5458 unsigned NumDeadInstInBB
;
5459 unsigned NumDeadDbgInstInBB
;
5460 std::tie(NumDeadInstInBB
, NumDeadDbgInstInBB
) =
5461 removeAllNonTerminatorAndEHPadInstructions(&BB
);
5463 MadeIRChange
|= NumDeadInstInBB
+ NumDeadDbgInstInBB
> 0;
5464 NumDeadInst
+= NumDeadInstInBB
;
5467 // Once we've found all of the instructions to add to instcombine's worklist,
5468 // add them in reverse order. This way instcombine will visit from the top
5469 // of the function down. This jives well with the way that it adds all uses
5470 // of instructions to the worklist after doing a transformation, thus avoiding
5471 // some N^2 behavior in pathological cases.
5472 Worklist
.reserve(InstrsForInstructionWorklist
.size());
5473 for (Instruction
*Inst
: reverse(InstrsForInstructionWorklist
)) {
5474 // DCE instruction if trivially dead. As we iterate in reverse program
5475 // order here, we will clean up whole chains of dead instructions.
5476 if (isInstructionTriviallyDead(Inst
, &TLI
) ||
5477 SeenAliasScopes
.isNoAliasScopeDeclDead(Inst
)) {
5479 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst
<< '\n');
5480 salvageDebugInfo(*Inst
);
5481 Inst
->eraseFromParent();
5482 MadeIRChange
= true;
5486 Worklist
.push(Inst
);
5489 return MadeIRChange
;
5492 void InstCombiner::computeBackEdges() {
5493 // Collect backedges.
5494 SmallPtrSet
<BasicBlock
*, 16> Visited
;
5495 for (BasicBlock
*BB
: RPOT
) {
5497 for (BasicBlock
*Succ
: successors(BB
))
5498 if (Visited
.contains(Succ
))
5499 BackEdges
.insert({BB
, Succ
});
5501 ComputedBackEdges
= true;
5504 static bool combineInstructionsOverFunction(
5505 Function
&F
, InstructionWorklist
&Worklist
, AliasAnalysis
*AA
,
5506 AssumptionCache
&AC
, TargetLibraryInfo
&TLI
, TargetTransformInfo
&TTI
,
5507 DominatorTree
&DT
, OptimizationRemarkEmitter
&ORE
, BlockFrequencyInfo
*BFI
,
5508 BranchProbabilityInfo
*BPI
, ProfileSummaryInfo
*PSI
,
5509 const InstCombineOptions
&Opts
) {
5510 auto &DL
= F
.getDataLayout();
5511 bool VerifyFixpoint
= Opts
.VerifyFixpoint
&&
5512 !F
.hasFnAttribute("instcombine-no-verify-fixpoint");
5514 /// Builder - This is an IRBuilder that automatically inserts new
5515 /// instructions into the worklist when they are created.
5516 IRBuilder
<TargetFolder
, IRBuilderCallbackInserter
> Builder(
5517 F
.getContext(), TargetFolder(DL
),
5518 IRBuilderCallbackInserter([&Worklist
, &AC
](Instruction
*I
) {
5520 if (auto *Assume
= dyn_cast
<AssumeInst
>(I
))
5521 AC
.registerAssumption(Assume
);
5524 ReversePostOrderTraversal
<BasicBlock
*> RPOT(&F
.front());
5526 // Lower dbg.declare intrinsics otherwise their value may be clobbered
5528 bool MadeIRChange
= false;
5529 if (ShouldLowerDbgDeclare
)
5530 MadeIRChange
= LowerDbgDeclare(F
);
5532 // Iterate while there is work to do.
5533 unsigned Iteration
= 0;
5537 if (Iteration
> Opts
.MaxIterations
&& !VerifyFixpoint
) {
5538 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts
.MaxIterations
5539 << " on " << F
.getName()
5540 << " reached; stopping without verifying fixpoint\n");
5544 ++NumWorklistIterations
;
5545 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration
<< " on "
5546 << F
.getName() << "\n");
5548 InstCombinerImpl
IC(Worklist
, Builder
, F
.hasMinSize(), AA
, AC
, TLI
, TTI
, DT
,
5549 ORE
, BFI
, BPI
, PSI
, DL
, RPOT
);
5550 IC
.MaxArraySizeForCombine
= MaxArraySize
;
5551 bool MadeChangeInThisIteration
= IC
.prepareWorklist(F
);
5552 MadeChangeInThisIteration
|= IC
.run();
5553 if (!MadeChangeInThisIteration
)
5556 MadeIRChange
= true;
5557 if (Iteration
> Opts
.MaxIterations
) {
5559 "Instruction Combining on " + Twine(F
.getName()) +
5560 " did not reach a fixpoint after " + Twine(Opts
.MaxIterations
) +
5562 "Use 'instcombine<no-verify-fixpoint>' or function attribute "
5563 "'instcombine-no-verify-fixpoint' to suppress this error.",
5564 /*GenCrashDiag=*/false);
5570 else if (Iteration
== 2)
5572 else if (Iteration
== 3)
5573 ++NumThreeIterations
;
5575 ++NumFourOrMoreIterations
;
5577 return MadeIRChange
;
5580 InstCombinePass::InstCombinePass(InstCombineOptions Opts
) : Options(Opts
) {}
5582 void InstCombinePass::printPipeline(
5583 raw_ostream
&OS
, function_ref
<StringRef(StringRef
)> MapClassName2PassName
) {
5584 static_cast<PassInfoMixin
<InstCombinePass
> *>(this)->printPipeline(
5585 OS
, MapClassName2PassName
);
5587 OS
<< "max-iterations=" << Options
.MaxIterations
<< ";";
5588 OS
<< (Options
.VerifyFixpoint
? "" : "no-") << "verify-fixpoint";
5592 char InstCombinePass::ID
= 0;
5594 PreservedAnalyses
InstCombinePass::run(Function
&F
,
5595 FunctionAnalysisManager
&AM
) {
5596 auto &LRT
= AM
.getResult
<LastRunTrackingAnalysis
>(F
);
5597 // No changes since last InstCombine pass, exit early.
5598 if (LRT
.shouldSkip(&ID
))
5599 return PreservedAnalyses::all();
5601 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
5602 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
5603 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
5604 auto &ORE
= AM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
5605 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
5607 auto *AA
= &AM
.getResult
<AAManager
>(F
);
5608 auto &MAMProxy
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
);
5609 ProfileSummaryInfo
*PSI
=
5610 MAMProxy
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
5611 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
5612 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
5613 auto *BPI
= AM
.getCachedResult
<BranchProbabilityAnalysis
>(F
);
5615 if (!combineInstructionsOverFunction(F
, Worklist
, AA
, AC
, TLI
, TTI
, DT
, ORE
,
5616 BFI
, BPI
, PSI
, Options
)) {
5617 // No changes, all analyses are preserved.
5618 LRT
.update(&ID
, /*Changed=*/false);
5619 return PreservedAnalyses::all();
5622 // Mark all the analyses that instcombine updates as preserved.
5623 PreservedAnalyses PA
;
5624 LRT
.update(&ID
, /*Changed=*/true);
5625 PA
.preserve
<LastRunTrackingAnalysis
>();
5626 PA
.preserveSet
<CFGAnalyses
>();
5630 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
5631 AU
.setPreservesCFG();
5632 AU
.addRequired
<AAResultsWrapperPass
>();
5633 AU
.addRequired
<AssumptionCacheTracker
>();
5634 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
5635 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
5636 AU
.addRequired
<DominatorTreeWrapperPass
>();
5637 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
5638 AU
.addPreserved
<DominatorTreeWrapperPass
>();
5639 AU
.addPreserved
<AAResultsWrapperPass
>();
5640 AU
.addPreserved
<BasicAAWrapperPass
>();
5641 AU
.addPreserved
<GlobalsAAWrapperPass
>();
5642 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
5643 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU
);
5646 bool InstructionCombiningPass::runOnFunction(Function
&F
) {
5647 if (skipFunction(F
))
5650 // Required analyses.
5651 auto AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
5652 auto &AC
= getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
5653 auto &TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
5654 auto &TTI
= getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
5655 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
5656 auto &ORE
= getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
5658 // Optional analyses.
5659 ProfileSummaryInfo
*PSI
=
5660 &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
5661 BlockFrequencyInfo
*BFI
=
5662 (PSI
&& PSI
->hasProfileSummary()) ?
5663 &getAnalysis
<LazyBlockFrequencyInfoPass
>().getBFI() :
5665 BranchProbabilityInfo
*BPI
= nullptr;
5666 if (auto *WrapperPass
=
5667 getAnalysisIfAvailable
<BranchProbabilityInfoWrapperPass
>())
5668 BPI
= &WrapperPass
->getBPI();
5670 return combineInstructionsOverFunction(F
, Worklist
, AA
, AC
, TLI
, TTI
, DT
, ORE
,
5671 BFI
, BPI
, PSI
, InstCombineOptions());
5674 char InstructionCombiningPass::ID
= 0;
5676 InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID
) {
5677 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
5680 INITIALIZE_PASS_BEGIN(InstructionCombiningPass
, "instcombine",
5681 "Combine redundant instructions", false, false)
5682 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
5683 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
5684 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
5685 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
5686 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
5687 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
5688 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
5689 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass
)
5690 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
5691 INITIALIZE_PASS_END(InstructionCombiningPass
, "instcombine",
5692 "Combine redundant instructions", false, false)
5694 // Initialization Routines
5695 void llvm::initializeInstCombine(PassRegistry
&Registry
) {
5696 initializeInstructionCombiningPassPass(Registry
);
5699 FunctionPass
*llvm::createInstructionCombiningPass() {
5700 return new InstructionCombiningPass();