1 //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the transformation that promotes indirect calls to
10 // conditional direct calls when the indirect-call value profile metadata is
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
20 #include "llvm/Analysis/IndirectCallVisitor.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TypeMetadataUtils.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/ProfileData/InstrProf.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
41 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
42 #include "llvm/Transforms/Utils/Instrumentation.h"
47 #include <unordered_map>
53 #define DEBUG_TYPE "pgo-icall-prom"
55 STATISTIC(NumOfPGOICallPromotion
, "Number of indirect call promotions.");
56 STATISTIC(NumOfPGOICallsites
, "Number of indirect call candidate sites.");
58 extern cl::opt
<unsigned> MaxNumVTableAnnotations
;
61 extern cl::opt
<bool> EnableVTableProfileUse
;
64 // Command line option to disable indirect-call promotion with the default as
65 // false. This is for debug purpose.
66 static cl::opt
<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden
,
67 cl::desc("Disable indirect call promotion"));
69 // Set the cutoff value for the promotion. If the value is other than 0, we
70 // stop the transformation once the total number of promotions equals the cutoff
72 // For debug use only.
73 static cl::opt
<unsigned>
74 ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden
,
75 cl::desc("Max number of promotions for this compilation"));
77 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
78 // For debug use only.
79 static cl::opt
<unsigned>
80 ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden
,
81 cl::desc("Skip Callsite up to this number for this compilation"));
83 // Set if the pass is called in LTO optimization. The difference for LTO mode
84 // is the pass won't prefix the source module name to the internal linkage
86 static cl::opt
<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden
,
87 cl::desc("Run indirect-call promotion in LTO "
90 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO
91 // mode is it will add prof metadatato the created direct call.
93 ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden
,
94 cl::desc("Run indirect-call promotion in SamplePGO mode"));
96 // If the option is set to true, only call instructions will be considered for
97 // transformation -- invoke instructions will be ignored.
99 ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden
,
100 cl::desc("Run indirect-call promotion for call instructions "
103 // If the option is set to true, only invoke instructions will be considered for
104 // transformation -- call instructions will be ignored.
105 static cl::opt
<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
107 cl::desc("Run indirect-call promotion for "
108 "invoke instruction only"));
110 // Dump the function level IR if the transformation happened in this
111 // function. For debug use only.
113 ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden
,
114 cl::desc("Dump IR after transformation happens"));
116 // Indirect call promotion pass will fall back to function-based comparison if
117 // vtable-count / function-count is smaller than this threshold.
118 static cl::opt
<float> ICPVTablePercentageThreshold(
119 "icp-vtable-percentage-threshold", cl::init(0.995), cl::Hidden
,
120 cl::desc("The percentage threshold of vtable-count / function-count for "
121 "cost-benefit analysis."));
123 // Although comparing vtables can save a vtable load, we may need to compare
124 // vtable pointer with multiple vtable address points due to class inheritance.
125 // Comparing with multiple vtables inserts additional instructions on hot code
126 // path, and doing so for an earlier candidate delays the comparisons for later
127 // candidates. For the last candidate, only the fallback path is affected.
128 // We allow multiple vtable comparison for the last function candidate and use
129 // the option below to cap the number of vtables.
130 static cl::opt
<int> ICPMaxNumVTableLastCandidate(
131 "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden
,
132 cl::desc("The maximum number of vtable for the last candidate."));
134 static cl::list
<std::string
> ICPIgnoredBaseTypes(
135 "icp-ignored-base-types", cl::Hidden
,
137 "A list of mangled vtable type info names. Classes specified by the "
138 "type info names and their derived ones will not be vtable-ICP'ed. "
139 "Useful when the profiled types and actual types in the optimized "
140 "binary could be different due to profiling limitations. Type info "
141 "names are those string literals used in LLVM type metadata"));
145 // The key is a vtable global variable, and the value is a map.
146 // In the inner map, the key represents address point offsets and the value is a
147 // constant for this address point.
148 using VTableAddressPointOffsetValMap
=
149 SmallDenseMap
<const GlobalVariable
*, std::unordered_map
<int, Constant
*>>;
151 // A struct to collect type information for a virtual call site.
152 struct VirtualCallSiteInfo
{
153 // The offset from the address point to virtual function in the vtable.
154 uint64_t FunctionOffset
;
155 // The instruction that computes the address point of vtable.
157 // The compatible type used in LLVM type intrinsics.
158 StringRef CompatibleTypeStr
;
161 // The key is a virtual call, and value is its type information.
162 using VirtualCallSiteTypeInfoMap
=
163 SmallDenseMap
<const CallBase
*, VirtualCallSiteInfo
>;
165 // The key is vtable GUID, and value is its value profile count.
166 using VTableGUIDCountsMap
= SmallDenseMap
<uint64_t, uint64_t, 16>;
168 // Return the address point offset of the given compatible type.
170 // Type metadata of a vtable specifies the types that can contain a pointer to
171 // this vtable, for example, `Base*` can be a pointer to an derived type
172 // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
173 static std::optional
<uint64_t>
174 getAddressPointOffset(const GlobalVariable
&VTableVar
,
175 StringRef CompatibleType
) {
176 SmallVector
<MDNode
*> Types
;
177 VTableVar
.getMetadata(LLVMContext::MD_type
, Types
);
179 for (MDNode
*Type
: Types
)
180 if (auto *TypeId
= dyn_cast
<MDString
>(Type
->getOperand(1).get());
181 TypeId
&& TypeId
->getString() == CompatibleType
)
182 return cast
<ConstantInt
>(
183 cast
<ConstantAsMetadata
>(Type
->getOperand(0))->getValue())
189 // Return a constant representing the vtable's address point specified by the
191 static Constant
*getVTableAddressPointOffset(GlobalVariable
*VTable
,
192 uint32_t AddressPointOffset
) {
193 Module
&M
= *VTable
->getParent();
194 LLVMContext
&Context
= M
.getContext();
195 assert(AddressPointOffset
<
196 M
.getDataLayout().getTypeAllocSize(VTable
->getValueType()) &&
197 "Out-of-bound access");
199 return ConstantExpr::getInBoundsGetElementPtr(
200 Type::getInt8Ty(Context
), VTable
,
201 llvm::ConstantInt::get(Type::getInt32Ty(Context
), AddressPointOffset
));
204 // Return the basic block in which Use `U` is used via its `UserInst`.
205 static BasicBlock
*getUserBasicBlock(Use
&U
, Instruction
*UserInst
) {
206 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
207 return PN
->getIncomingBlock(U
);
209 return UserInst
->getParent();
212 // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
213 // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
214 // is the sole predecessor of `DestBB` and `DestBB` is dominated by
215 // `Inst->getParent()`.
216 static bool isDestBBSuitableForSink(Instruction
*Inst
, BasicBlock
*DestBB
) {
217 // 'BB' is used only by assert.
218 [[maybe_unused
]] BasicBlock
*BB
= Inst
->getParent();
220 assert(BB
!= DestBB
&& BB
->getTerminator()->getNumSuccessors() == 2 &&
221 DestBB
->getUniquePredecessor() == BB
&&
222 "Guaranteed by ICP transformation");
224 BasicBlock
*UserBB
= nullptr;
225 for (Use
&Use
: Inst
->uses()) {
226 User
*User
= Use
.getUser();
227 // Do checked cast since IR verifier guarantees that the user of an
228 // instruction must be an instruction. See `Verifier::visitInstruction`.
229 Instruction
*UserInst
= cast
<Instruction
>(User
);
230 // We can sink debug or pseudo instructions together with Inst.
231 if (UserInst
->isDebugOrPseudoInst())
233 UserBB
= getUserBasicBlock(Use
, UserInst
);
234 // Do not sink if Inst is used in a basic block that is not DestBB.
235 // TODO: Sink to the common dominator of all user blocks.
236 if (UserBB
!= DestBB
)
239 return UserBB
!= nullptr;
242 // For the virtual call dispatch sequence, try to sink vtable load instructions
243 // to the cold indirect call fallback.
244 // FIXME: Move the sink eligibility check below to a utility function in
245 // Transforms/Utils/ directory.
246 static bool tryToSinkInstruction(Instruction
*I
, BasicBlock
*DestBlock
) {
247 if (!isDestBBSuitableForSink(I
, DestBlock
))
250 // Do not move control-flow-involving, volatile loads, vaarg, alloca
251 // instructions, etc.
252 if (isa
<PHINode
>(I
) || I
->isEHPad() || I
->mayThrow() || !I
->willReturn() ||
256 // Do not sink convergent call instructions.
257 if (const auto *C
= dyn_cast
<CallBase
>(I
))
258 if (C
->isInlineAsm() || C
->cannotMerge() || C
->isConvergent())
261 // Do not move an instruction that may write to memory.
262 if (I
->mayWriteToMemory())
265 // We can only sink load instructions if there is nothing between the load and
266 // the end of block that could change the value.
267 if (I
->mayReadFromMemory()) {
268 // We already know that SrcBlock is the unique predecessor of DestBlock.
269 for (BasicBlock::iterator Scan
= std::next(I
->getIterator()),
270 E
= I
->getParent()->end();
272 // Note analysis analysis can tell whether two pointers can point to the
273 // same object in memory or not thereby find further opportunities to
275 if (Scan
->mayWriteToMemory())
280 BasicBlock::iterator InsertPos
= DestBlock
->getFirstInsertionPt();
281 I
->moveBefore(*DestBlock
, InsertPos
);
283 // TODO: Sink debug intrinsic users of I to 'DestBlock'.
284 // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
285 // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
286 // the core logic to do this.
290 // Try to sink instructions after VPtr to the indirect call fallback.
291 // Return the number of sunk IR instructions.
292 static int tryToSinkInstructions(BasicBlock
*OriginalBB
,
293 BasicBlock
*IndirectCallBB
) {
295 // Do not sink across a critical edge for simplicity.
296 if (IndirectCallBB
->getUniquePredecessor() != OriginalBB
)
298 // Sink all eligible instructions in OriginalBB in reverse order.
299 for (Instruction
&I
:
300 llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB
))))
301 if (tryToSinkInstruction(&I
, IndirectCallBB
))
307 // Promote indirect calls to conditional direct calls, keeping track of
309 class IndirectCallPromoter
{
314 // Symtab that maps indirect call profile values to function names and
316 InstrProfSymtab
*const Symtab
;
318 const bool SamplePGO
;
320 // A map from a virtual call to its type information.
321 const VirtualCallSiteTypeInfoMap
&VirtualCSInfo
;
323 VTableAddressPointOffsetValMap
&VTableAddressPointOffsetVal
;
325 OptimizationRemarkEmitter
&ORE
;
327 const DenseSet
<StringRef
> &IgnoredBaseTypes
;
329 // A struct that records the direct target and it's call count.
330 struct PromotionCandidate
{
331 Function
*const TargetFunction
;
332 const uint64_t Count
;
334 // The following fields only exists for promotion candidates with vtable
337 // Due to class inheritance, one virtual call candidate can come from
338 // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
339 // counts for 'TargetFunction'. `AddressPoints` stores the vtable address
340 // points for comparison.
341 VTableGUIDCountsMap VTableGUIDAndCounts
;
342 SmallVector
<Constant
*> AddressPoints
;
344 PromotionCandidate(Function
*F
, uint64_t C
) : TargetFunction(F
), Count(C
) {}
347 // Check if the indirect-call call site should be promoted. Return the number
348 // of promotions. Inst is the candidate indirect call, ValueDataRef
349 // contains the array of value profile data for profiled targets,
350 // TotalCount is the total profiled count of call executions, and
351 // NumCandidates is the number of candidate entries in ValueDataRef.
352 std::vector
<PromotionCandidate
> getPromotionCandidatesForCallSite(
353 const CallBase
&CB
, ArrayRef
<InstrProfValueData
> ValueDataRef
,
354 uint64_t TotalCount
, uint32_t NumCandidates
);
356 // Promote a list of targets for one indirect-call callsite by comparing
357 // indirect callee with functions. Return true if there are IR
358 // transformations and false otherwise.
359 bool tryToPromoteWithFuncCmp(CallBase
&CB
, Instruction
*VPtr
,
360 ArrayRef
<PromotionCandidate
> Candidates
,
362 ArrayRef
<InstrProfValueData
> ICallProfDataRef
,
363 uint32_t NumCandidates
,
364 VTableGUIDCountsMap
&VTableGUIDCounts
);
366 // Promote a list of targets for one indirect call by comparing vtables with
367 // functions. Return true if there are IR transformations and false
369 bool tryToPromoteWithVTableCmp(
370 CallBase
&CB
, Instruction
*VPtr
, ArrayRef
<PromotionCandidate
> Candidates
,
371 uint64_t TotalFuncCount
, uint32_t NumCandidates
,
372 MutableArrayRef
<InstrProfValueData
> ICallProfDataRef
,
373 VTableGUIDCountsMap
&VTableGUIDCounts
);
375 // Return true if it's profitable to compare vtables for the callsite.
376 bool isProfitableToCompareVTables(const CallBase
&CB
,
377 ArrayRef
<PromotionCandidate
> Candidates
);
379 // Return true if the vtable corresponding to VTableGUID should be skipped
380 // for vtable-based comparison.
381 bool shouldSkipVTable(uint64_t VTableGUID
);
383 // Given an indirect callsite and the list of function candidates, compute
384 // the following vtable information in output parameters and return vtable
385 // pointer if type profiles exist.
386 // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
387 // metadata attached on the vtable pointer.
388 // - For each function candidate, finds out the vtables from which it gets
389 // called and stores the <vtable-guid, count> in promotion candidate.
390 Instruction
*computeVTableInfos(const CallBase
*CB
,
391 VTableGUIDCountsMap
&VTableGUIDCounts
,
392 std::vector
<PromotionCandidate
> &Candidates
);
394 Constant
*getOrCreateVTableAddressPointVar(GlobalVariable
*GV
,
395 uint64_t AddressPointOffset
);
397 void updateFuncValueProfiles(CallBase
&CB
, ArrayRef
<InstrProfValueData
> VDs
,
398 uint64_t Sum
, uint32_t MaxMDCount
);
400 void updateVPtrValueProfiles(Instruction
*VPtr
,
401 VTableGUIDCountsMap
&VTableGUIDCounts
);
404 IndirectCallPromoter(
405 Function
&Func
, Module
&M
, InstrProfSymtab
*Symtab
, bool SamplePGO
,
406 const VirtualCallSiteTypeInfoMap
&VirtualCSInfo
,
407 VTableAddressPointOffsetValMap
&VTableAddressPointOffsetVal
,
408 const DenseSet
<StringRef
> &IgnoredBaseTypes
,
409 OptimizationRemarkEmitter
&ORE
)
410 : F(Func
), M(M
), Symtab(Symtab
), SamplePGO(SamplePGO
),
411 VirtualCSInfo(VirtualCSInfo
),
412 VTableAddressPointOffsetVal(VTableAddressPointOffsetVal
), ORE(ORE
),
413 IgnoredBaseTypes(IgnoredBaseTypes
) {}
414 IndirectCallPromoter(const IndirectCallPromoter
&) = delete;
415 IndirectCallPromoter
&operator=(const IndirectCallPromoter
&) = delete;
417 bool processFunction(ProfileSummaryInfo
*PSI
);
420 } // end anonymous namespace
422 // Indirect-call promotion heuristic. The direct targets are sorted based on
423 // the count. Stop at the first target that is not promoted.
424 std::vector
<IndirectCallPromoter::PromotionCandidate
>
425 IndirectCallPromoter::getPromotionCandidatesForCallSite(
426 const CallBase
&CB
, ArrayRef
<InstrProfValueData
> ValueDataRef
,
427 uint64_t TotalCount
, uint32_t NumCandidates
) {
428 std::vector
<PromotionCandidate
> Ret
;
430 LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites
<< CB
431 << " Num_targets: " << ValueDataRef
.size()
432 << " Num_candidates: " << NumCandidates
<< "\n");
433 NumOfPGOICallsites
++;
434 if (ICPCSSkip
!= 0 && NumOfPGOICallsites
<= ICPCSSkip
) {
435 LLVM_DEBUG(dbgs() << " Skip: User options.\n");
439 for (uint32_t I
= 0; I
< NumCandidates
; I
++) {
440 uint64_t Count
= ValueDataRef
[I
].Count
;
441 assert(Count
<= TotalCount
);
443 uint64_t Target
= ValueDataRef
[I
].Value
;
444 LLVM_DEBUG(dbgs() << " Candidate " << I
<< " Count=" << Count
445 << " Target_func: " << Target
<< "\n");
447 if (ICPInvokeOnly
&& isa
<CallInst
>(CB
)) {
448 LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
450 return OptimizationRemarkMissed(DEBUG_TYPE
, "UserOptions", &CB
)
451 << " Not promote: User options";
455 if (ICPCallOnly
&& isa
<InvokeInst
>(CB
)) {
456 LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
458 return OptimizationRemarkMissed(DEBUG_TYPE
, "UserOptions", &CB
)
459 << " Not promote: User options";
463 if (ICPCutOff
!= 0 && NumOfPGOICallPromotion
>= ICPCutOff
) {
464 LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
466 return OptimizationRemarkMissed(DEBUG_TYPE
, "CutOffReached", &CB
)
467 << " Not promote: Cutoff reached";
472 // Don't promote if the symbol is not defined in the module. This avoids
473 // creating a reference to a symbol that doesn't exist in the module
474 // This can happen when we compile with a sample profile collected from
475 // one binary but used for another, which may have profiled targets that
476 // aren't used in the new binary. We might have a declaration initially in
477 // the case where the symbol is globally dead in the binary and removed by
479 Function
*TargetFunction
= Symtab
->getFunction(Target
);
480 if (TargetFunction
== nullptr || TargetFunction
->isDeclaration()) {
481 LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
483 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnableToFindTarget", &CB
)
484 << "Cannot promote indirect call: target with md5sum "
485 << ore::NV("target md5sum", Target
) << " not found";
490 const char *Reason
= nullptr;
491 if (!isLegalToPromote(CB
, TargetFunction
, &Reason
)) {
495 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnableToPromote", &CB
)
496 << "Cannot promote indirect call to "
497 << NV("TargetFunction", TargetFunction
) << " with count of "
498 << NV("Count", Count
) << ": " << Reason
;
503 Ret
.push_back(PromotionCandidate(TargetFunction
, Count
));
509 Constant
*IndirectCallPromoter::getOrCreateVTableAddressPointVar(
510 GlobalVariable
*GV
, uint64_t AddressPointOffset
) {
511 auto [Iter
, Inserted
] =
512 VTableAddressPointOffsetVal
[GV
].try_emplace(AddressPointOffset
, nullptr);
514 Iter
->second
= getVTableAddressPointOffset(GV
, AddressPointOffset
);
518 Instruction
*IndirectCallPromoter::computeVTableInfos(
519 const CallBase
*CB
, VTableGUIDCountsMap
&GUIDCountsMap
,
520 std::vector
<PromotionCandidate
> &Candidates
) {
521 if (!EnableVTableProfileUse
)
524 // Take the following code sequence as an example, here is how the code works
525 // @vtable1 = {[n x ptr] [... ptr @func1]}
526 // @vtable2 = {[m x ptr] [... ptr @func2]}
528 // %vptr = load ptr, ptr %d, !prof !0
529 // %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
530 // tail call void @llvm.assume(i1 %0)
531 // %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
532 // %1 = load ptr, ptr %vfn
533 // call void %1(ptr %d), !prof !1
535 // !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
536 // !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
538 // Step 1. Find out the %vptr instruction for indirect call and use its !prof
539 // to populate `GUIDCountsMap`.
540 // Step 2. For each vtable-guid, look up its definition from symtab. LTO can
541 // make vtable definitions visible across modules.
542 // Step 3. Compute the byte offset of the virtual call, by adding vtable
543 // address point offset and function's offset relative to vtable address
544 // point. For each function candidate, this step tells us the vtable from
545 // which it comes from, and the vtable address point to compare %vptr with.
547 // Only virtual calls have virtual call site info.
548 auto Iter
= VirtualCSInfo
.find(CB
);
549 if (Iter
== VirtualCSInfo
.end())
552 LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
553 << NumOfPGOICallsites
<< "\n");
555 const auto &VirtualCallInfo
= Iter
->second
;
556 Instruction
*VPtr
= VirtualCallInfo
.VPtr
;
558 SmallDenseMap
<Function
*, int, 4> CalleeIndexMap
;
559 for (size_t I
= 0; I
< Candidates
.size(); I
++)
560 CalleeIndexMap
[Candidates
[I
].TargetFunction
] = I
;
562 uint64_t TotalVTableCount
= 0;
563 auto VTableValueDataArray
=
564 getValueProfDataFromInst(*VirtualCallInfo
.VPtr
, IPVK_VTableTarget
,
565 MaxNumVTableAnnotations
, TotalVTableCount
);
566 if (VTableValueDataArray
.empty())
569 // Compute the functions and counts from by each vtable.
570 for (const auto &V
: VTableValueDataArray
) {
571 uint64_t VTableVal
= V
.Value
;
572 GUIDCountsMap
[VTableVal
] = V
.Count
;
573 GlobalVariable
*VTableVar
= Symtab
->getGlobalVariable(VTableVal
);
575 LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal
576 << "; maybe the vtable isn't imported\n");
580 std::optional
<uint64_t> MaybeAddressPointOffset
=
581 getAddressPointOffset(*VTableVar
, VirtualCallInfo
.CompatibleTypeStr
);
582 if (!MaybeAddressPointOffset
)
585 const uint64_t AddressPointOffset
= *MaybeAddressPointOffset
;
587 Function
*Callee
= nullptr;
588 std::tie(Callee
, std::ignore
) = getFunctionAtVTableOffset(
589 VTableVar
, AddressPointOffset
+ VirtualCallInfo
.FunctionOffset
, M
);
592 auto CalleeIndexIter
= CalleeIndexMap
.find(Callee
);
593 if (CalleeIndexIter
== CalleeIndexMap
.end())
596 auto &Candidate
= Candidates
[CalleeIndexIter
->second
];
597 // There shouldn't be duplicate GUIDs in one !prof metadata (except
598 // duplicated zeros), so assign counters directly won't cause overwrite or
600 Candidate
.VTableGUIDAndCounts
[VTableVal
] = V
.Count
;
601 Candidate
.AddressPoints
.push_back(
602 getOrCreateVTableAddressPointVar(VTableVar
, AddressPointOffset
));
608 // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
609 // Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
610 static MDNode
*createBranchWeights(LLVMContext
&Context
, uint64_t TrueWeight
,
611 uint64_t FalseWeight
) {
612 MDBuilder
MDB(Context
);
613 uint64_t Scale
= calculateCountScale(std::max(TrueWeight
, FalseWeight
));
614 return MDB
.createBranchWeights(scaleBranchCount(TrueWeight
, Scale
),
615 scaleBranchCount(FalseWeight
, Scale
));
618 CallBase
&llvm::pgo::promoteIndirectCall(CallBase
&CB
, Function
*DirectCallee
,
619 uint64_t Count
, uint64_t TotalCount
,
620 bool AttachProfToDirectCall
,
621 OptimizationRemarkEmitter
*ORE
) {
622 CallBase
&NewInst
= promoteCallWithIfThenElse(
624 createBranchWeights(CB
.getContext(), Count
, TotalCount
- Count
));
626 if (AttachProfToDirectCall
)
627 setBranchWeights(NewInst
, {static_cast<uint32_t>(Count
)},
628 /*IsExpected=*/false);
634 return OptimizationRemark(DEBUG_TYPE
, "Promoted", &CB
)
635 << "Promote indirect call to " << NV("DirectCallee", DirectCallee
)
636 << " with count " << NV("Count", Count
) << " out of "
637 << NV("TotalCount", TotalCount
);
642 // Promote indirect-call to conditional direct-call for one callsite.
643 bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
644 CallBase
&CB
, Instruction
*VPtr
, ArrayRef
<PromotionCandidate
> Candidates
,
645 uint64_t TotalCount
, ArrayRef
<InstrProfValueData
> ICallProfDataRef
,
646 uint32_t NumCandidates
, VTableGUIDCountsMap
&VTableGUIDCounts
) {
647 uint32_t NumPromoted
= 0;
649 for (const auto &C
: Candidates
) {
650 uint64_t FuncCount
= C
.Count
;
651 pgo::promoteIndirectCall(CB
, C
.TargetFunction
, FuncCount
, TotalCount
,
653 assert(TotalCount
>= FuncCount
);
654 TotalCount
-= FuncCount
;
655 NumOfPGOICallPromotion
++;
658 if (!EnableVTableProfileUse
|| C
.VTableGUIDAndCounts
.empty())
661 // After a virtual call candidate gets promoted, update the vtable's counts
662 // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
663 // a vtable from which the virtual call is loaded. Compute the sum and use
664 // 128-bit APInt to improve accuracy.
665 uint64_t SumVTableCount
= 0;
666 for (const auto &[GUID
, VTableCount
] : C
.VTableGUIDAndCounts
)
667 SumVTableCount
+= VTableCount
;
669 for (const auto &[GUID
, VTableCount
] : C
.VTableGUIDAndCounts
) {
670 APInt
APFuncCount((unsigned)128, FuncCount
, false /*signed*/);
671 APFuncCount
*= VTableCount
;
672 VTableGUIDCounts
[GUID
] -= APFuncCount
.udiv(SumVTableCount
).getZExtValue();
675 if (NumPromoted
== 0)
678 assert(NumPromoted
<= ICallProfDataRef
.size() &&
679 "Number of promoted functions should not be greater than the number "
680 "of values in profile metadata");
682 // Update value profiles on the indirect call.
683 updateFuncValueProfiles(CB
, ICallProfDataRef
.slice(NumPromoted
), TotalCount
,
685 updateVPtrValueProfiles(VPtr
, VTableGUIDCounts
);
689 void IndirectCallPromoter::updateFuncValueProfiles(
690 CallBase
&CB
, ArrayRef
<InstrProfValueData
> CallVDs
, uint64_t TotalCount
,
691 uint32_t MaxMDCount
) {
692 // First clear the existing !prof.
693 CB
.setMetadata(LLVMContext::MD_prof
, nullptr);
694 // Annotate the remaining value profiles if counter is not zero.
696 annotateValueSite(M
, CB
, CallVDs
, TotalCount
, IPVK_IndirectCallTarget
,
700 void IndirectCallPromoter::updateVPtrValueProfiles(
701 Instruction
*VPtr
, VTableGUIDCountsMap
&VTableGUIDCounts
) {
702 if (!EnableVTableProfileUse
|| VPtr
== nullptr ||
703 !VPtr
->getMetadata(LLVMContext::MD_prof
))
705 VPtr
->setMetadata(LLVMContext::MD_prof
, nullptr);
706 std::vector
<InstrProfValueData
> VTableValueProfiles
;
707 uint64_t TotalVTableCount
= 0;
708 for (auto [GUID
, Count
] : VTableGUIDCounts
) {
712 VTableValueProfiles
.push_back({GUID
, Count
});
713 TotalVTableCount
+= Count
;
715 llvm::sort(VTableValueProfiles
,
716 [](const InstrProfValueData
&LHS
, const InstrProfValueData
&RHS
) {
717 return LHS
.Count
> RHS
.Count
;
720 annotateValueSite(M
, *VPtr
, VTableValueProfiles
, TotalVTableCount
,
721 IPVK_VTableTarget
, VTableValueProfiles
.size());
724 bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
725 CallBase
&CB
, Instruction
*VPtr
, ArrayRef
<PromotionCandidate
> Candidates
,
726 uint64_t TotalFuncCount
, uint32_t NumCandidates
,
727 MutableArrayRef
<InstrProfValueData
> ICallProfDataRef
,
728 VTableGUIDCountsMap
&VTableGUIDCounts
) {
729 SmallVector
<uint64_t, 4> PromotedFuncCount
;
731 for (const auto &Candidate
: Candidates
) {
732 for (auto &[GUID
, Count
] : Candidate
.VTableGUIDAndCounts
)
733 VTableGUIDCounts
[GUID
] -= Count
;
735 // 'OriginalBB' is the basic block of indirect call. After each candidate
736 // is promoted, a new basic block is created for the indirect fallback basic
737 // block and indirect call `CB` is moved into this new BB.
738 BasicBlock
*OriginalBB
= CB
.getParent();
739 promoteCallWithVTableCmp(
740 CB
, VPtr
, Candidate
.TargetFunction
, Candidate
.AddressPoints
,
741 createBranchWeights(CB
.getContext(), Candidate
.Count
,
742 TotalFuncCount
- Candidate
.Count
));
744 int SinkCount
= tryToSinkInstructions(OriginalBB
, CB
.getParent());
747 OptimizationRemark
Remark(DEBUG_TYPE
, "Promoted", &CB
);
749 const auto &VTableGUIDAndCounts
= Candidate
.VTableGUIDAndCounts
;
750 Remark
<< "Promote indirect call to "
751 << ore::NV("DirectCallee", Candidate
.TargetFunction
)
752 << " with count " << ore::NV("Count", Candidate
.Count
)
753 << " out of " << ore::NV("TotalCount", TotalFuncCount
) << ", sink "
754 << ore::NV("SinkCount", SinkCount
)
755 << " instruction(s) and compare "
756 << ore::NV("VTable", VTableGUIDAndCounts
.size())
759 // Sort GUIDs so remark message is deterministic.
760 std::set
<uint64_t> GUIDSet
;
761 for (auto [GUID
, Count
] : VTableGUIDAndCounts
)
762 GUIDSet
.insert(GUID
);
763 for (auto Iter
= GUIDSet
.begin(); Iter
!= GUIDSet
.end(); Iter
++) {
764 if (Iter
!= GUIDSet
.begin())
766 Remark
<< ore::NV("VTable", Symtab
->getGlobalVariable(*Iter
));
774 PromotedFuncCount
.push_back(Candidate
.Count
);
776 assert(TotalFuncCount
>= Candidate
.Count
&&
777 "Within one prof metadata, total count is the sum of counts from "
778 "individual <target, count> pairs");
779 // Use std::min since 'TotalFuncCount' is the saturated sum of individual
781 // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
782 TotalFuncCount
-= std::min(TotalFuncCount
, Candidate
.Count
);
783 NumOfPGOICallPromotion
++;
786 if (PromotedFuncCount
.empty())
789 // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
790 // a distinct 'VPtr'.
791 // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
792 // used to load multiple virtual functions. The vtable profiles needs to be
793 // updated properly in that case (e.g, for each indirect call annotate both
794 // type profiles and function profiles in one !prof).
795 for (size_t I
= 0; I
< PromotedFuncCount
.size(); I
++)
796 ICallProfDataRef
[I
].Count
-=
797 std::max(PromotedFuncCount
[I
], ICallProfDataRef
[I
].Count
);
798 // Sort value profiles by count in descending order.
799 llvm::stable_sort(ICallProfDataRef
, [](const InstrProfValueData
&LHS
,
800 const InstrProfValueData
&RHS
) {
801 return LHS
.Count
> RHS
.Count
;
803 // Drop the <target-value, count> pair if count is zero.
804 ArrayRef
<InstrProfValueData
> VDs(
805 ICallProfDataRef
.begin(),
806 llvm::upper_bound(ICallProfDataRef
, 0U,
807 [](uint64_t Count
, const InstrProfValueData
&ProfData
) {
808 return ProfData
.Count
<= Count
;
810 updateFuncValueProfiles(CB
, VDs
, TotalFuncCount
, NumCandidates
);
811 updateVPtrValueProfiles(VPtr
, VTableGUIDCounts
);
815 // Traverse all the indirect-call callsite and get the value profile
816 // annotation to perform indirect-call promotion.
817 bool IndirectCallPromoter::processFunction(ProfileSummaryInfo
*PSI
) {
818 bool Changed
= false;
819 ICallPromotionAnalysis ICallAnalysis
;
820 for (auto *CB
: findIndirectCalls(F
)) {
821 uint32_t NumCandidates
;
823 auto ICallProfDataRef
= ICallAnalysis
.getPromotionCandidatesForInstruction(
824 CB
, TotalCount
, NumCandidates
);
825 if (!NumCandidates
||
826 (PSI
&& PSI
->hasProfileSummary() && !PSI
->isHotCount(TotalCount
)))
829 auto PromotionCandidates
= getPromotionCandidatesForCallSite(
830 *CB
, ICallProfDataRef
, TotalCount
, NumCandidates
);
832 VTableGUIDCountsMap VTableGUIDCounts
;
834 computeVTableInfos(CB
, VTableGUIDCounts
, PromotionCandidates
);
836 if (isProfitableToCompareVTables(*CB
, PromotionCandidates
))
837 Changed
|= tryToPromoteWithVTableCmp(*CB
, VPtr
, PromotionCandidates
,
838 TotalCount
, NumCandidates
,
839 ICallProfDataRef
, VTableGUIDCounts
);
841 Changed
|= tryToPromoteWithFuncCmp(*CB
, VPtr
, PromotionCandidates
,
842 TotalCount
, ICallProfDataRef
,
843 NumCandidates
, VTableGUIDCounts
);
848 // TODO: Return false if the function addressing and vtable load instructions
849 // cannot sink to indirect fallback.
850 bool IndirectCallPromoter::isProfitableToCompareVTables(
851 const CallBase
&CB
, ArrayRef
<PromotionCandidate
> Candidates
) {
852 if (!EnableVTableProfileUse
|| Candidates
.empty())
854 LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
855 << NumOfPGOICallsites
<< CB
<< "\n");
856 const size_t CandidateSize
= Candidates
.size();
857 for (size_t I
= 0; I
< CandidateSize
; I
++) {
858 auto &Candidate
= Candidates
[I
];
859 auto &VTableGUIDAndCounts
= Candidate
.VTableGUIDAndCounts
;
861 LLVM_DEBUG(dbgs() << " Candidate " << I
<< " FunctionCount: "
862 << Candidate
.Count
<< ", VTableCounts:");
863 // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
864 for ([[maybe_unused
]] auto &[GUID
, Count
] : VTableGUIDAndCounts
)
865 LLVM_DEBUG(dbgs() << " {" << Symtab
->getGlobalVariable(GUID
)->getName()
866 << ", " << Count
<< "}");
867 LLVM_DEBUG(dbgs() << "\n");
869 uint64_t CandidateVTableCount
= 0;
871 for (auto &[GUID
, Count
] : VTableGUIDAndCounts
) {
872 CandidateVTableCount
+= Count
;
874 if (shouldSkipVTable(GUID
))
878 if (CandidateVTableCount
< Candidate
.Count
* ICPVTablePercentageThreshold
) {
880 dbgs() << " function count " << Candidate
.Count
881 << " and its vtable sum count " << CandidateVTableCount
882 << " have discrepancies. Bail out vtable comparison.\n");
886 // 'MaxNumVTable' limits the number of vtables to make vtable comparison
887 // profitable. Comparing multiple vtables for one function candidate will
888 // insert additional instructions on the hot path, and allowing more than
889 // one vtable for non last candidates may or may not elongate the dependency
890 // chain for the subsequent candidates. Set its value to 1 for non-last
891 // candidate and allow option to override it for the last candidate.
892 int MaxNumVTable
= 1;
893 if (I
== CandidateSize
- 1)
894 MaxNumVTable
= ICPMaxNumVTableLastCandidate
;
896 if ((int)Candidate
.AddressPoints
.size() > MaxNumVTable
) {
897 LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable
<< " and got "
898 << Candidate
.AddressPoints
.size()
899 << " vtables. Bail out for vtable comparison.\n");
907 bool IndirectCallPromoter::shouldSkipVTable(uint64_t VTableGUID
) {
908 if (IgnoredBaseTypes
.empty())
911 auto *VTableVar
= Symtab
->getGlobalVariable(VTableGUID
);
913 assert(VTableVar
&& "VTableVar must exist for GUID in VTableGUIDAndCounts");
915 SmallVector
<MDNode
*, 2> Types
;
916 VTableVar
->getMetadata(LLVMContext::MD_type
, Types
);
918 for (auto *Type
: Types
)
919 if (auto *TypeId
= dyn_cast
<MDString
>(Type
->getOperand(1).get()))
920 if (IgnoredBaseTypes
.contains(TypeId
->getString())) {
921 LLVM_DEBUG(dbgs() << " vtable profiles should be ignored. Bail "
922 "out of vtable comparison.");
928 // For virtual calls in the module, collect per-callsite information which will
929 // be used to associate an ICP candidate with a vtable and a specific function
930 // in the vtable. With type intrinsics (llvm.type.test), we can find virtual
931 // calls in a compile-time efficient manner (by iterating its users) and more
932 // importantly use the compatible type later to figure out the function byte
933 // offset relative to the start of vtables.
935 computeVirtualCallSiteTypeInfoMap(Module
&M
, ModuleAnalysisManager
&MAM
,
936 VirtualCallSiteTypeInfoMap
&VirtualCSInfo
) {
937 // Right now only llvm.type.test is used to find out virtual call sites.
938 // With ThinLTO and whole-program-devirtualization, llvm.type.test and
939 // llvm.public.type.test are emitted, and llvm.public.type.test is either
940 // refined to llvm.type.test or dropped before indirect-call-promotion pass.
942 // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
943 // Find out virtual calls by looking at users of llvm.type.checked.load in
945 Function
*TypeTestFunc
=
946 Intrinsic::getDeclarationIfExists(&M
, Intrinsic::type_test
);
947 if (!TypeTestFunc
|| TypeTestFunc
->use_empty())
950 auto &FAM
= MAM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
951 auto LookupDomTree
= [&FAM
](Function
&F
) -> DominatorTree
& {
952 return FAM
.getResult
<DominatorTreeAnalysis
>(F
);
954 // Iterate all type.test calls to find all indirect calls.
955 for (Use
&U
: llvm::make_early_inc_range(TypeTestFunc
->uses())) {
956 auto *CI
= dyn_cast
<CallInst
>(U
.getUser());
959 auto *TypeMDVal
= cast
<MetadataAsValue
>(CI
->getArgOperand(1));
962 auto *CompatibleTypeId
= dyn_cast
<MDString
>(TypeMDVal
->getMetadata());
963 if (!CompatibleTypeId
)
966 // Find out all devirtualizable call sites given a llvm.type.test
968 SmallVector
<DevirtCallSite
, 1> DevirtCalls
;
969 SmallVector
<CallInst
*, 1> Assumes
;
970 auto &DT
= LookupDomTree(*CI
->getFunction());
971 findDevirtualizableCallsForTypeTest(DevirtCalls
, Assumes
, CI
, DT
);
973 for (auto &DevirtCall
: DevirtCalls
) {
974 CallBase
&CB
= DevirtCall
.CB
;
975 // Given an indirect call, try find the instruction which loads a
976 // pointer to virtual table.
977 Instruction
*VTablePtr
=
978 PGOIndirectCallVisitor::tryGetVTableInstruction(&CB
);
981 VirtualCSInfo
[&CB
] = {DevirtCall
.Offset
, VTablePtr
,
982 CompatibleTypeId
->getString()};
987 // A wrapper function that does the actual work.
988 static bool promoteIndirectCalls(Module
&M
, ProfileSummaryInfo
*PSI
, bool InLTO
,
989 bool SamplePGO
, ModuleAnalysisManager
&MAM
) {
992 InstrProfSymtab Symtab
;
993 if (Error E
= Symtab
.create(M
, InLTO
)) {
994 std::string SymtabFailure
= toString(std::move(E
));
995 M
.getContext().emitError("Failed to create symtab: " + SymtabFailure
);
998 bool Changed
= false;
999 VirtualCallSiteTypeInfoMap VirtualCSInfo
;
1001 DenseSet
<StringRef
> IgnoredBaseTypes
;
1003 if (EnableVTableProfileUse
) {
1004 computeVirtualCallSiteTypeInfoMap(M
, MAM
, VirtualCSInfo
);
1006 for (StringRef Str
: ICPIgnoredBaseTypes
)
1007 IgnoredBaseTypes
.insert(Str
);
1010 // VTableAddressPointOffsetVal stores the vtable address points. The vtable
1011 // address point of a given <vtable, address point offset> is static (doesn't
1012 // change after being computed once).
1013 // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
1014 // entry the first time a <vtable, offset> pair is seen, as
1015 // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
1016 // repeatedly on each function.
1017 VTableAddressPointOffsetValMap VTableAddressPointOffsetVal
;
1020 if (F
.isDeclaration() || F
.hasOptNone())
1024 MAM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
1025 auto &ORE
= FAM
.getResult
<OptimizationRemarkEmitterAnalysis
>(F
);
1027 IndirectCallPromoter
CallPromoter(F
, M
, &Symtab
, SamplePGO
, VirtualCSInfo
,
1028 VTableAddressPointOffsetVal
,
1029 IgnoredBaseTypes
, ORE
);
1030 bool FuncChanged
= CallPromoter
.processFunction(PSI
);
1031 if (ICPDUMPAFTER
&& FuncChanged
) {
1032 LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F
.print(dbgs()));
1033 LLVM_DEBUG(dbgs() << "\n");
1035 Changed
|= FuncChanged
;
1036 if (ICPCutOff
!= 0 && NumOfPGOICallPromotion
>= ICPCutOff
) {
1037 LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
1044 PreservedAnalyses
PGOIndirectCallPromotion::run(Module
&M
,
1045 ModuleAnalysisManager
&MAM
) {
1046 ProfileSummaryInfo
*PSI
= &MAM
.getResult
<ProfileSummaryAnalysis
>(M
);
1048 if (!promoteIndirectCalls(M
, PSI
, InLTO
| ICPLTOMode
,
1049 SamplePGO
| ICPSamplePGOMode
, MAM
))
1050 return PreservedAnalyses::all();
1052 return PreservedAnalyses::none();