[AArch64] Fix movk parsing with an .equ operand (#124428)
[llvm-project.git] / llvm / lib / Transforms / Instrumentation / IndirectCallPromotion.cpp
blob528d259f4caff96df2afc9ce26e174a5cb70355a
1 //===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the transformation that promotes indirect calls to
10 // conditional direct calls when the indirect-call value profile metadata is
11 // available.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
20 #include "llvm/Analysis/IndirectCallVisitor.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/Analysis/ProfileSummaryInfo.h"
23 #include "llvm/Analysis/TypeMetadataUtils.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/PassManager.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/ProfileData/InstrProf.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/Error.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
41 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
42 #include "llvm/Transforms/Utils/Instrumentation.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <set>
46 #include <string>
47 #include <unordered_map>
48 #include <utility>
49 #include <vector>
51 using namespace llvm;
53 #define DEBUG_TYPE "pgo-icall-prom"
55 STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions.");
56 STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites.");
58 extern cl::opt<unsigned> MaxNumVTableAnnotations;
60 namespace llvm {
61 extern cl::opt<bool> EnableVTableProfileUse;
64 // Command line option to disable indirect-call promotion with the default as
65 // false. This is for debug purpose.
66 static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden,
67 cl::desc("Disable indirect call promotion"));
69 // Set the cutoff value for the promotion. If the value is other than 0, we
70 // stop the transformation once the total number of promotions equals the cutoff
71 // value.
72 // For debug use only.
73 static cl::opt<unsigned>
74 ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden,
75 cl::desc("Max number of promotions for this compilation"));
77 // If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped.
78 // For debug use only.
79 static cl::opt<unsigned>
80 ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden,
81 cl::desc("Skip Callsite up to this number for this compilation"));
83 // Set if the pass is called in LTO optimization. The difference for LTO mode
84 // is the pass won't prefix the source module name to the internal linkage
85 // symbols.
86 static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden,
87 cl::desc("Run indirect-call promotion in LTO "
88 "mode"));
90 // Set if the pass is called in SamplePGO mode. The difference for SamplePGO
91 // mode is it will add prof metadatato the created direct call.
92 static cl::opt<bool>
93 ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden,
94 cl::desc("Run indirect-call promotion in SamplePGO mode"));
96 // If the option is set to true, only call instructions will be considered for
97 // transformation -- invoke instructions will be ignored.
98 static cl::opt<bool>
99 ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden,
100 cl::desc("Run indirect-call promotion for call instructions "
101 "only"));
103 // If the option is set to true, only invoke instructions will be considered for
104 // transformation -- call instructions will be ignored.
105 static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false),
106 cl::Hidden,
107 cl::desc("Run indirect-call promotion for "
108 "invoke instruction only"));
110 // Dump the function level IR if the transformation happened in this
111 // function. For debug use only.
112 static cl::opt<bool>
113 ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden,
114 cl::desc("Dump IR after transformation happens"));
116 // Indirect call promotion pass will fall back to function-based comparison if
117 // vtable-count / function-count is smaller than this threshold.
118 static cl::opt<float> ICPVTablePercentageThreshold(
119 "icp-vtable-percentage-threshold", cl::init(0.995), cl::Hidden,
120 cl::desc("The percentage threshold of vtable-count / function-count for "
121 "cost-benefit analysis."));
123 // Although comparing vtables can save a vtable load, we may need to compare
124 // vtable pointer with multiple vtable address points due to class inheritance.
125 // Comparing with multiple vtables inserts additional instructions on hot code
126 // path, and doing so for an earlier candidate delays the comparisons for later
127 // candidates. For the last candidate, only the fallback path is affected.
128 // We allow multiple vtable comparison for the last function candidate and use
129 // the option below to cap the number of vtables.
130 static cl::opt<int> ICPMaxNumVTableLastCandidate(
131 "icp-max-num-vtable-last-candidate", cl::init(1), cl::Hidden,
132 cl::desc("The maximum number of vtable for the last candidate."));
134 static cl::list<std::string> ICPIgnoredBaseTypes(
135 "icp-ignored-base-types", cl::Hidden,
136 cl::desc(
137 "A list of mangled vtable type info names. Classes specified by the "
138 "type info names and their derived ones will not be vtable-ICP'ed. "
139 "Useful when the profiled types and actual types in the optimized "
140 "binary could be different due to profiling limitations. Type info "
141 "names are those string literals used in LLVM type metadata"));
143 namespace {
145 // The key is a vtable global variable, and the value is a map.
146 // In the inner map, the key represents address point offsets and the value is a
147 // constant for this address point.
148 using VTableAddressPointOffsetValMap =
149 SmallDenseMap<const GlobalVariable *, std::unordered_map<int, Constant *>>;
151 // A struct to collect type information for a virtual call site.
152 struct VirtualCallSiteInfo {
153 // The offset from the address point to virtual function in the vtable.
154 uint64_t FunctionOffset;
155 // The instruction that computes the address point of vtable.
156 Instruction *VPtr;
157 // The compatible type used in LLVM type intrinsics.
158 StringRef CompatibleTypeStr;
161 // The key is a virtual call, and value is its type information.
162 using VirtualCallSiteTypeInfoMap =
163 SmallDenseMap<const CallBase *, VirtualCallSiteInfo>;
165 // The key is vtable GUID, and value is its value profile count.
166 using VTableGUIDCountsMap = SmallDenseMap<uint64_t, uint64_t, 16>;
168 // Return the address point offset of the given compatible type.
170 // Type metadata of a vtable specifies the types that can contain a pointer to
171 // this vtable, for example, `Base*` can be a pointer to an derived type
172 // but not vice versa. See also https://llvm.org/docs/TypeMetadata.html
173 static std::optional<uint64_t>
174 getAddressPointOffset(const GlobalVariable &VTableVar,
175 StringRef CompatibleType) {
176 SmallVector<MDNode *> Types;
177 VTableVar.getMetadata(LLVMContext::MD_type, Types);
179 for (MDNode *Type : Types)
180 if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get());
181 TypeId && TypeId->getString() == CompatibleType)
182 return cast<ConstantInt>(
183 cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
184 ->getZExtValue();
186 return std::nullopt;
189 // Return a constant representing the vtable's address point specified by the
190 // offset.
191 static Constant *getVTableAddressPointOffset(GlobalVariable *VTable,
192 uint32_t AddressPointOffset) {
193 Module &M = *VTable->getParent();
194 LLVMContext &Context = M.getContext();
195 assert(AddressPointOffset <
196 M.getDataLayout().getTypeAllocSize(VTable->getValueType()) &&
197 "Out-of-bound access");
199 return ConstantExpr::getInBoundsGetElementPtr(
200 Type::getInt8Ty(Context), VTable,
201 llvm::ConstantInt::get(Type::getInt32Ty(Context), AddressPointOffset));
204 // Return the basic block in which Use `U` is used via its `UserInst`.
205 static BasicBlock *getUserBasicBlock(Use &U, Instruction *UserInst) {
206 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
207 return PN->getIncomingBlock(U);
209 return UserInst->getParent();
212 // `DestBB` is a suitable basic block to sink `Inst` into when `Inst` have users
213 // and all users are in `DestBB`. The caller guarantees that `Inst->getParent()`
214 // is the sole predecessor of `DestBB` and `DestBB` is dominated by
215 // `Inst->getParent()`.
216 static bool isDestBBSuitableForSink(Instruction *Inst, BasicBlock *DestBB) {
217 // 'BB' is used only by assert.
218 [[maybe_unused]] BasicBlock *BB = Inst->getParent();
220 assert(BB != DestBB && BB->getTerminator()->getNumSuccessors() == 2 &&
221 DestBB->getUniquePredecessor() == BB &&
222 "Guaranteed by ICP transformation");
224 BasicBlock *UserBB = nullptr;
225 for (Use &Use : Inst->uses()) {
226 User *User = Use.getUser();
227 // Do checked cast since IR verifier guarantees that the user of an
228 // instruction must be an instruction. See `Verifier::visitInstruction`.
229 Instruction *UserInst = cast<Instruction>(User);
230 // We can sink debug or pseudo instructions together with Inst.
231 if (UserInst->isDebugOrPseudoInst())
232 continue;
233 UserBB = getUserBasicBlock(Use, UserInst);
234 // Do not sink if Inst is used in a basic block that is not DestBB.
235 // TODO: Sink to the common dominator of all user blocks.
236 if (UserBB != DestBB)
237 return false;
239 return UserBB != nullptr;
242 // For the virtual call dispatch sequence, try to sink vtable load instructions
243 // to the cold indirect call fallback.
244 // FIXME: Move the sink eligibility check below to a utility function in
245 // Transforms/Utils/ directory.
246 static bool tryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
247 if (!isDestBBSuitableForSink(I, DestBlock))
248 return false;
250 // Do not move control-flow-involving, volatile loads, vaarg, alloca
251 // instructions, etc.
252 if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
253 isa<AllocaInst>(I))
254 return false;
256 // Do not sink convergent call instructions.
257 if (const auto *C = dyn_cast<CallBase>(I))
258 if (C->isInlineAsm() || C->cannotMerge() || C->isConvergent())
259 return false;
261 // Do not move an instruction that may write to memory.
262 if (I->mayWriteToMemory())
263 return false;
265 // We can only sink load instructions if there is nothing between the load and
266 // the end of block that could change the value.
267 if (I->mayReadFromMemory()) {
268 // We already know that SrcBlock is the unique predecessor of DestBlock.
269 for (BasicBlock::iterator Scan = std::next(I->getIterator()),
270 E = I->getParent()->end();
271 Scan != E; ++Scan) {
272 // Note analysis analysis can tell whether two pointers can point to the
273 // same object in memory or not thereby find further opportunities to
274 // sink.
275 if (Scan->mayWriteToMemory())
276 return false;
280 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
281 I->moveBefore(*DestBlock, InsertPos);
283 // TODO: Sink debug intrinsic users of I to 'DestBlock'.
284 // 'InstCombinerImpl::tryToSinkInstructionDbgValues' and
285 // 'InstCombinerImpl::tryToSinkInstructionDbgVariableRecords' already have
286 // the core logic to do this.
287 return true;
290 // Try to sink instructions after VPtr to the indirect call fallback.
291 // Return the number of sunk IR instructions.
292 static int tryToSinkInstructions(BasicBlock *OriginalBB,
293 BasicBlock *IndirectCallBB) {
294 int SinkCount = 0;
295 // Do not sink across a critical edge for simplicity.
296 if (IndirectCallBB->getUniquePredecessor() != OriginalBB)
297 return SinkCount;
298 // Sink all eligible instructions in OriginalBB in reverse order.
299 for (Instruction &I :
300 llvm::make_early_inc_range(llvm::drop_begin(llvm::reverse(*OriginalBB))))
301 if (tryToSinkInstruction(&I, IndirectCallBB))
302 SinkCount++;
304 return SinkCount;
307 // Promote indirect calls to conditional direct calls, keeping track of
308 // thresholds.
309 class IndirectCallPromoter {
310 private:
311 Function &F;
312 Module &M;
314 // Symtab that maps indirect call profile values to function names and
315 // defines.
316 InstrProfSymtab *const Symtab;
318 const bool SamplePGO;
320 // A map from a virtual call to its type information.
321 const VirtualCallSiteTypeInfoMap &VirtualCSInfo;
323 VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal;
325 OptimizationRemarkEmitter &ORE;
327 const DenseSet<StringRef> &IgnoredBaseTypes;
329 // A struct that records the direct target and it's call count.
330 struct PromotionCandidate {
331 Function *const TargetFunction;
332 const uint64_t Count;
334 // The following fields only exists for promotion candidates with vtable
335 // information.
337 // Due to class inheritance, one virtual call candidate can come from
338 // multiple vtables. `VTableGUIDAndCounts` tracks the vtable GUIDs and
339 // counts for 'TargetFunction'. `AddressPoints` stores the vtable address
340 // points for comparison.
341 VTableGUIDCountsMap VTableGUIDAndCounts;
342 SmallVector<Constant *> AddressPoints;
344 PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {}
347 // Check if the indirect-call call site should be promoted. Return the number
348 // of promotions. Inst is the candidate indirect call, ValueDataRef
349 // contains the array of value profile data for profiled targets,
350 // TotalCount is the total profiled count of call executions, and
351 // NumCandidates is the number of candidate entries in ValueDataRef.
352 std::vector<PromotionCandidate> getPromotionCandidatesForCallSite(
353 const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
354 uint64_t TotalCount, uint32_t NumCandidates);
356 // Promote a list of targets for one indirect-call callsite by comparing
357 // indirect callee with functions. Return true if there are IR
358 // transformations and false otherwise.
359 bool tryToPromoteWithFuncCmp(CallBase &CB, Instruction *VPtr,
360 ArrayRef<PromotionCandidate> Candidates,
361 uint64_t TotalCount,
362 ArrayRef<InstrProfValueData> ICallProfDataRef,
363 uint32_t NumCandidates,
364 VTableGUIDCountsMap &VTableGUIDCounts);
366 // Promote a list of targets for one indirect call by comparing vtables with
367 // functions. Return true if there are IR transformations and false
368 // otherwise.
369 bool tryToPromoteWithVTableCmp(
370 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
371 uint64_t TotalFuncCount, uint32_t NumCandidates,
372 MutableArrayRef<InstrProfValueData> ICallProfDataRef,
373 VTableGUIDCountsMap &VTableGUIDCounts);
375 // Return true if it's profitable to compare vtables for the callsite.
376 bool isProfitableToCompareVTables(const CallBase &CB,
377 ArrayRef<PromotionCandidate> Candidates);
379 // Return true if the vtable corresponding to VTableGUID should be skipped
380 // for vtable-based comparison.
381 bool shouldSkipVTable(uint64_t VTableGUID);
383 // Given an indirect callsite and the list of function candidates, compute
384 // the following vtable information in output parameters and return vtable
385 // pointer if type profiles exist.
386 // - Populate `VTableGUIDCounts` with <vtable-guid, count> using !prof
387 // metadata attached on the vtable pointer.
388 // - For each function candidate, finds out the vtables from which it gets
389 // called and stores the <vtable-guid, count> in promotion candidate.
390 Instruction *computeVTableInfos(const CallBase *CB,
391 VTableGUIDCountsMap &VTableGUIDCounts,
392 std::vector<PromotionCandidate> &Candidates);
394 Constant *getOrCreateVTableAddressPointVar(GlobalVariable *GV,
395 uint64_t AddressPointOffset);
397 void updateFuncValueProfiles(CallBase &CB, ArrayRef<InstrProfValueData> VDs,
398 uint64_t Sum, uint32_t MaxMDCount);
400 void updateVPtrValueProfiles(Instruction *VPtr,
401 VTableGUIDCountsMap &VTableGUIDCounts);
403 public:
404 IndirectCallPromoter(
405 Function &Func, Module &M, InstrProfSymtab *Symtab, bool SamplePGO,
406 const VirtualCallSiteTypeInfoMap &VirtualCSInfo,
407 VTableAddressPointOffsetValMap &VTableAddressPointOffsetVal,
408 const DenseSet<StringRef> &IgnoredBaseTypes,
409 OptimizationRemarkEmitter &ORE)
410 : F(Func), M(M), Symtab(Symtab), SamplePGO(SamplePGO),
411 VirtualCSInfo(VirtualCSInfo),
412 VTableAddressPointOffsetVal(VTableAddressPointOffsetVal), ORE(ORE),
413 IgnoredBaseTypes(IgnoredBaseTypes) {}
414 IndirectCallPromoter(const IndirectCallPromoter &) = delete;
415 IndirectCallPromoter &operator=(const IndirectCallPromoter &) = delete;
417 bool processFunction(ProfileSummaryInfo *PSI);
420 } // end anonymous namespace
422 // Indirect-call promotion heuristic. The direct targets are sorted based on
423 // the count. Stop at the first target that is not promoted.
424 std::vector<IndirectCallPromoter::PromotionCandidate>
425 IndirectCallPromoter::getPromotionCandidatesForCallSite(
426 const CallBase &CB, ArrayRef<InstrProfValueData> ValueDataRef,
427 uint64_t TotalCount, uint32_t NumCandidates) {
428 std::vector<PromotionCandidate> Ret;
430 LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB
431 << " Num_targets: " << ValueDataRef.size()
432 << " Num_candidates: " << NumCandidates << "\n");
433 NumOfPGOICallsites++;
434 if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) {
435 LLVM_DEBUG(dbgs() << " Skip: User options.\n");
436 return Ret;
439 for (uint32_t I = 0; I < NumCandidates; I++) {
440 uint64_t Count = ValueDataRef[I].Count;
441 assert(Count <= TotalCount);
442 (void)TotalCount;
443 uint64_t Target = ValueDataRef[I].Value;
444 LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count
445 << " Target_func: " << Target << "\n");
447 if (ICPInvokeOnly && isa<CallInst>(CB)) {
448 LLVM_DEBUG(dbgs() << " Not promote: User options.\n");
449 ORE.emit([&]() {
450 return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
451 << " Not promote: User options";
453 break;
455 if (ICPCallOnly && isa<InvokeInst>(CB)) {
456 LLVM_DEBUG(dbgs() << " Not promote: User option.\n");
457 ORE.emit([&]() {
458 return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB)
459 << " Not promote: User options";
461 break;
463 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
464 LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n");
465 ORE.emit([&]() {
466 return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB)
467 << " Not promote: Cutoff reached";
469 break;
472 // Don't promote if the symbol is not defined in the module. This avoids
473 // creating a reference to a symbol that doesn't exist in the module
474 // This can happen when we compile with a sample profile collected from
475 // one binary but used for another, which may have profiled targets that
476 // aren't used in the new binary. We might have a declaration initially in
477 // the case where the symbol is globally dead in the binary and removed by
478 // ThinLTO.
479 Function *TargetFunction = Symtab->getFunction(Target);
480 if (TargetFunction == nullptr || TargetFunction->isDeclaration()) {
481 LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n");
482 ORE.emit([&]() {
483 return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB)
484 << "Cannot promote indirect call: target with md5sum "
485 << ore::NV("target md5sum", Target) << " not found";
487 break;
490 const char *Reason = nullptr;
491 if (!isLegalToPromote(CB, TargetFunction, &Reason)) {
492 using namespace ore;
494 ORE.emit([&]() {
495 return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB)
496 << "Cannot promote indirect call to "
497 << NV("TargetFunction", TargetFunction) << " with count of "
498 << NV("Count", Count) << ": " << Reason;
500 break;
503 Ret.push_back(PromotionCandidate(TargetFunction, Count));
504 TotalCount -= Count;
506 return Ret;
509 Constant *IndirectCallPromoter::getOrCreateVTableAddressPointVar(
510 GlobalVariable *GV, uint64_t AddressPointOffset) {
511 auto [Iter, Inserted] =
512 VTableAddressPointOffsetVal[GV].try_emplace(AddressPointOffset, nullptr);
513 if (Inserted)
514 Iter->second = getVTableAddressPointOffset(GV, AddressPointOffset);
515 return Iter->second;
518 Instruction *IndirectCallPromoter::computeVTableInfos(
519 const CallBase *CB, VTableGUIDCountsMap &GUIDCountsMap,
520 std::vector<PromotionCandidate> &Candidates) {
521 if (!EnableVTableProfileUse)
522 return nullptr;
524 // Take the following code sequence as an example, here is how the code works
525 // @vtable1 = {[n x ptr] [... ptr @func1]}
526 // @vtable2 = {[m x ptr] [... ptr @func2]}
528 // %vptr = load ptr, ptr %d, !prof !0
529 // %0 = tail call i1 @llvm.type.test(ptr %vptr, metadata !"vtable1")
530 // tail call void @llvm.assume(i1 %0)
531 // %vfn = getelementptr inbounds ptr, ptr %vptr, i64 1
532 // %1 = load ptr, ptr %vfn
533 // call void %1(ptr %d), !prof !1
535 // !0 = !{!"VP", i32 2, i64 100, i64 123, i64 50, i64 456, i64 50}
536 // !1 = !{!"VP", i32 0, i64 100, i64 789, i64 50, i64 579, i64 50}
538 // Step 1. Find out the %vptr instruction for indirect call and use its !prof
539 // to populate `GUIDCountsMap`.
540 // Step 2. For each vtable-guid, look up its definition from symtab. LTO can
541 // make vtable definitions visible across modules.
542 // Step 3. Compute the byte offset of the virtual call, by adding vtable
543 // address point offset and function's offset relative to vtable address
544 // point. For each function candidate, this step tells us the vtable from
545 // which it comes from, and the vtable address point to compare %vptr with.
547 // Only virtual calls have virtual call site info.
548 auto Iter = VirtualCSInfo.find(CB);
549 if (Iter == VirtualCSInfo.end())
550 return nullptr;
552 LLVM_DEBUG(dbgs() << "\nComputing vtable infos for callsite #"
553 << NumOfPGOICallsites << "\n");
555 const auto &VirtualCallInfo = Iter->second;
556 Instruction *VPtr = VirtualCallInfo.VPtr;
558 SmallDenseMap<Function *, int, 4> CalleeIndexMap;
559 for (size_t I = 0; I < Candidates.size(); I++)
560 CalleeIndexMap[Candidates[I].TargetFunction] = I;
562 uint64_t TotalVTableCount = 0;
563 auto VTableValueDataArray =
564 getValueProfDataFromInst(*VirtualCallInfo.VPtr, IPVK_VTableTarget,
565 MaxNumVTableAnnotations, TotalVTableCount);
566 if (VTableValueDataArray.empty())
567 return VPtr;
569 // Compute the functions and counts from by each vtable.
570 for (const auto &V : VTableValueDataArray) {
571 uint64_t VTableVal = V.Value;
572 GUIDCountsMap[VTableVal] = V.Count;
573 GlobalVariable *VTableVar = Symtab->getGlobalVariable(VTableVal);
574 if (!VTableVar) {
575 LLVM_DEBUG(dbgs() << " Cannot find vtable definition for " << VTableVal
576 << "; maybe the vtable isn't imported\n");
577 continue;
580 std::optional<uint64_t> MaybeAddressPointOffset =
581 getAddressPointOffset(*VTableVar, VirtualCallInfo.CompatibleTypeStr);
582 if (!MaybeAddressPointOffset)
583 continue;
585 const uint64_t AddressPointOffset = *MaybeAddressPointOffset;
587 Function *Callee = nullptr;
588 std::tie(Callee, std::ignore) = getFunctionAtVTableOffset(
589 VTableVar, AddressPointOffset + VirtualCallInfo.FunctionOffset, M);
590 if (!Callee)
591 continue;
592 auto CalleeIndexIter = CalleeIndexMap.find(Callee);
593 if (CalleeIndexIter == CalleeIndexMap.end())
594 continue;
596 auto &Candidate = Candidates[CalleeIndexIter->second];
597 // There shouldn't be duplicate GUIDs in one !prof metadata (except
598 // duplicated zeros), so assign counters directly won't cause overwrite or
599 // counter loss.
600 Candidate.VTableGUIDAndCounts[VTableVal] = V.Count;
601 Candidate.AddressPoints.push_back(
602 getOrCreateVTableAddressPointVar(VTableVar, AddressPointOffset));
605 return VPtr;
608 // Creates 'branch_weights' prof metadata using TrueWeight and FalseWeight.
609 // Scales uint64_t counters down to uint32_t if necessary to prevent overflow.
610 static MDNode *createBranchWeights(LLVMContext &Context, uint64_t TrueWeight,
611 uint64_t FalseWeight) {
612 MDBuilder MDB(Context);
613 uint64_t Scale = calculateCountScale(std::max(TrueWeight, FalseWeight));
614 return MDB.createBranchWeights(scaleBranchCount(TrueWeight, Scale),
615 scaleBranchCount(FalseWeight, Scale));
618 CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee,
619 uint64_t Count, uint64_t TotalCount,
620 bool AttachProfToDirectCall,
621 OptimizationRemarkEmitter *ORE) {
622 CallBase &NewInst = promoteCallWithIfThenElse(
623 CB, DirectCallee,
624 createBranchWeights(CB.getContext(), Count, TotalCount - Count));
626 if (AttachProfToDirectCall)
627 setBranchWeights(NewInst, {static_cast<uint32_t>(Count)},
628 /*IsExpected=*/false);
630 using namespace ore;
632 if (ORE)
633 ORE->emit([&]() {
634 return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB)
635 << "Promote indirect call to " << NV("DirectCallee", DirectCallee)
636 << " with count " << NV("Count", Count) << " out of "
637 << NV("TotalCount", TotalCount);
639 return NewInst;
642 // Promote indirect-call to conditional direct-call for one callsite.
643 bool IndirectCallPromoter::tryToPromoteWithFuncCmp(
644 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
645 uint64_t TotalCount, ArrayRef<InstrProfValueData> ICallProfDataRef,
646 uint32_t NumCandidates, VTableGUIDCountsMap &VTableGUIDCounts) {
647 uint32_t NumPromoted = 0;
649 for (const auto &C : Candidates) {
650 uint64_t FuncCount = C.Count;
651 pgo::promoteIndirectCall(CB, C.TargetFunction, FuncCount, TotalCount,
652 SamplePGO, &ORE);
653 assert(TotalCount >= FuncCount);
654 TotalCount -= FuncCount;
655 NumOfPGOICallPromotion++;
656 NumPromoted++;
658 if (!EnableVTableProfileUse || C.VTableGUIDAndCounts.empty())
659 continue;
661 // After a virtual call candidate gets promoted, update the vtable's counts
662 // proportionally. Each vtable-guid in `C.VTableGUIDAndCounts` represents
663 // a vtable from which the virtual call is loaded. Compute the sum and use
664 // 128-bit APInt to improve accuracy.
665 uint64_t SumVTableCount = 0;
666 for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts)
667 SumVTableCount += VTableCount;
669 for (const auto &[GUID, VTableCount] : C.VTableGUIDAndCounts) {
670 APInt APFuncCount((unsigned)128, FuncCount, false /*signed*/);
671 APFuncCount *= VTableCount;
672 VTableGUIDCounts[GUID] -= APFuncCount.udiv(SumVTableCount).getZExtValue();
675 if (NumPromoted == 0)
676 return false;
678 assert(NumPromoted <= ICallProfDataRef.size() &&
679 "Number of promoted functions should not be greater than the number "
680 "of values in profile metadata");
682 // Update value profiles on the indirect call.
683 updateFuncValueProfiles(CB, ICallProfDataRef.slice(NumPromoted), TotalCount,
684 NumCandidates);
685 updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
686 return true;
689 void IndirectCallPromoter::updateFuncValueProfiles(
690 CallBase &CB, ArrayRef<InstrProfValueData> CallVDs, uint64_t TotalCount,
691 uint32_t MaxMDCount) {
692 // First clear the existing !prof.
693 CB.setMetadata(LLVMContext::MD_prof, nullptr);
694 // Annotate the remaining value profiles if counter is not zero.
695 if (TotalCount != 0)
696 annotateValueSite(M, CB, CallVDs, TotalCount, IPVK_IndirectCallTarget,
697 MaxMDCount);
700 void IndirectCallPromoter::updateVPtrValueProfiles(
701 Instruction *VPtr, VTableGUIDCountsMap &VTableGUIDCounts) {
702 if (!EnableVTableProfileUse || VPtr == nullptr ||
703 !VPtr->getMetadata(LLVMContext::MD_prof))
704 return;
705 VPtr->setMetadata(LLVMContext::MD_prof, nullptr);
706 std::vector<InstrProfValueData> VTableValueProfiles;
707 uint64_t TotalVTableCount = 0;
708 for (auto [GUID, Count] : VTableGUIDCounts) {
709 if (Count == 0)
710 continue;
712 VTableValueProfiles.push_back({GUID, Count});
713 TotalVTableCount += Count;
715 llvm::sort(VTableValueProfiles,
716 [](const InstrProfValueData &LHS, const InstrProfValueData &RHS) {
717 return LHS.Count > RHS.Count;
720 annotateValueSite(M, *VPtr, VTableValueProfiles, TotalVTableCount,
721 IPVK_VTableTarget, VTableValueProfiles.size());
724 bool IndirectCallPromoter::tryToPromoteWithVTableCmp(
725 CallBase &CB, Instruction *VPtr, ArrayRef<PromotionCandidate> Candidates,
726 uint64_t TotalFuncCount, uint32_t NumCandidates,
727 MutableArrayRef<InstrProfValueData> ICallProfDataRef,
728 VTableGUIDCountsMap &VTableGUIDCounts) {
729 SmallVector<uint64_t, 4> PromotedFuncCount;
731 for (const auto &Candidate : Candidates) {
732 for (auto &[GUID, Count] : Candidate.VTableGUIDAndCounts)
733 VTableGUIDCounts[GUID] -= Count;
735 // 'OriginalBB' is the basic block of indirect call. After each candidate
736 // is promoted, a new basic block is created for the indirect fallback basic
737 // block and indirect call `CB` is moved into this new BB.
738 BasicBlock *OriginalBB = CB.getParent();
739 promoteCallWithVTableCmp(
740 CB, VPtr, Candidate.TargetFunction, Candidate.AddressPoints,
741 createBranchWeights(CB.getContext(), Candidate.Count,
742 TotalFuncCount - Candidate.Count));
744 int SinkCount = tryToSinkInstructions(OriginalBB, CB.getParent());
746 ORE.emit([&]() {
747 OptimizationRemark Remark(DEBUG_TYPE, "Promoted", &CB);
749 const auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
750 Remark << "Promote indirect call to "
751 << ore::NV("DirectCallee", Candidate.TargetFunction)
752 << " with count " << ore::NV("Count", Candidate.Count)
753 << " out of " << ore::NV("TotalCount", TotalFuncCount) << ", sink "
754 << ore::NV("SinkCount", SinkCount)
755 << " instruction(s) and compare "
756 << ore::NV("VTable", VTableGUIDAndCounts.size())
757 << " vtable(s): {";
759 // Sort GUIDs so remark message is deterministic.
760 std::set<uint64_t> GUIDSet;
761 for (auto [GUID, Count] : VTableGUIDAndCounts)
762 GUIDSet.insert(GUID);
763 for (auto Iter = GUIDSet.begin(); Iter != GUIDSet.end(); Iter++) {
764 if (Iter != GUIDSet.begin())
765 Remark << ", ";
766 Remark << ore::NV("VTable", Symtab->getGlobalVariable(*Iter));
769 Remark << "}";
771 return Remark;
774 PromotedFuncCount.push_back(Candidate.Count);
776 assert(TotalFuncCount >= Candidate.Count &&
777 "Within one prof metadata, total count is the sum of counts from "
778 "individual <target, count> pairs");
779 // Use std::min since 'TotalFuncCount' is the saturated sum of individual
780 // counts, see
781 // https://github.com/llvm/llvm-project/blob/abedb3b8356d5d56f1c575c4f7682fba2cb19787/llvm/lib/ProfileData/InstrProf.cpp#L1281-L1288
782 TotalFuncCount -= std::min(TotalFuncCount, Candidate.Count);
783 NumOfPGOICallPromotion++;
786 if (PromotedFuncCount.empty())
787 return false;
789 // Update value profiles for 'CB' and 'VPtr', assuming that each 'CB' has a
790 // a distinct 'VPtr'.
791 // FIXME: When Clang `-fstrict-vtable-pointers` is enabled, a vtable might be
792 // used to load multiple virtual functions. The vtable profiles needs to be
793 // updated properly in that case (e.g, for each indirect call annotate both
794 // type profiles and function profiles in one !prof).
795 for (size_t I = 0; I < PromotedFuncCount.size(); I++)
796 ICallProfDataRef[I].Count -=
797 std::max(PromotedFuncCount[I], ICallProfDataRef[I].Count);
798 // Sort value profiles by count in descending order.
799 llvm::stable_sort(ICallProfDataRef, [](const InstrProfValueData &LHS,
800 const InstrProfValueData &RHS) {
801 return LHS.Count > RHS.Count;
803 // Drop the <target-value, count> pair if count is zero.
804 ArrayRef<InstrProfValueData> VDs(
805 ICallProfDataRef.begin(),
806 llvm::upper_bound(ICallProfDataRef, 0U,
807 [](uint64_t Count, const InstrProfValueData &ProfData) {
808 return ProfData.Count <= Count;
809 }));
810 updateFuncValueProfiles(CB, VDs, TotalFuncCount, NumCandidates);
811 updateVPtrValueProfiles(VPtr, VTableGUIDCounts);
812 return true;
815 // Traverse all the indirect-call callsite and get the value profile
816 // annotation to perform indirect-call promotion.
817 bool IndirectCallPromoter::processFunction(ProfileSummaryInfo *PSI) {
818 bool Changed = false;
819 ICallPromotionAnalysis ICallAnalysis;
820 for (auto *CB : findIndirectCalls(F)) {
821 uint32_t NumCandidates;
822 uint64_t TotalCount;
823 auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction(
824 CB, TotalCount, NumCandidates);
825 if (!NumCandidates ||
826 (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount)))
827 continue;
829 auto PromotionCandidates = getPromotionCandidatesForCallSite(
830 *CB, ICallProfDataRef, TotalCount, NumCandidates);
832 VTableGUIDCountsMap VTableGUIDCounts;
833 Instruction *VPtr =
834 computeVTableInfos(CB, VTableGUIDCounts, PromotionCandidates);
836 if (isProfitableToCompareVTables(*CB, PromotionCandidates))
837 Changed |= tryToPromoteWithVTableCmp(*CB, VPtr, PromotionCandidates,
838 TotalCount, NumCandidates,
839 ICallProfDataRef, VTableGUIDCounts);
840 else
841 Changed |= tryToPromoteWithFuncCmp(*CB, VPtr, PromotionCandidates,
842 TotalCount, ICallProfDataRef,
843 NumCandidates, VTableGUIDCounts);
845 return Changed;
848 // TODO: Return false if the function addressing and vtable load instructions
849 // cannot sink to indirect fallback.
850 bool IndirectCallPromoter::isProfitableToCompareVTables(
851 const CallBase &CB, ArrayRef<PromotionCandidate> Candidates) {
852 if (!EnableVTableProfileUse || Candidates.empty())
853 return false;
854 LLVM_DEBUG(dbgs() << "\nEvaluating vtable profitability for callsite #"
855 << NumOfPGOICallsites << CB << "\n");
856 const size_t CandidateSize = Candidates.size();
857 for (size_t I = 0; I < CandidateSize; I++) {
858 auto &Candidate = Candidates[I];
859 auto &VTableGUIDAndCounts = Candidate.VTableGUIDAndCounts;
861 LLVM_DEBUG(dbgs() << " Candidate " << I << " FunctionCount: "
862 << Candidate.Count << ", VTableCounts:");
863 // Add [[maybe_unused]] since <GUID, Count> are only used by LLVM_DEBUG.
864 for ([[maybe_unused]] auto &[GUID, Count] : VTableGUIDAndCounts)
865 LLVM_DEBUG(dbgs() << " {" << Symtab->getGlobalVariable(GUID)->getName()
866 << ", " << Count << "}");
867 LLVM_DEBUG(dbgs() << "\n");
869 uint64_t CandidateVTableCount = 0;
871 for (auto &[GUID, Count] : VTableGUIDAndCounts) {
872 CandidateVTableCount += Count;
874 if (shouldSkipVTable(GUID))
875 return false;
878 if (CandidateVTableCount < Candidate.Count * ICPVTablePercentageThreshold) {
879 LLVM_DEBUG(
880 dbgs() << " function count " << Candidate.Count
881 << " and its vtable sum count " << CandidateVTableCount
882 << " have discrepancies. Bail out vtable comparison.\n");
883 return false;
886 // 'MaxNumVTable' limits the number of vtables to make vtable comparison
887 // profitable. Comparing multiple vtables for one function candidate will
888 // insert additional instructions on the hot path, and allowing more than
889 // one vtable for non last candidates may or may not elongate the dependency
890 // chain for the subsequent candidates. Set its value to 1 for non-last
891 // candidate and allow option to override it for the last candidate.
892 int MaxNumVTable = 1;
893 if (I == CandidateSize - 1)
894 MaxNumVTable = ICPMaxNumVTableLastCandidate;
896 if ((int)Candidate.AddressPoints.size() > MaxNumVTable) {
897 LLVM_DEBUG(dbgs() << " allow at most " << MaxNumVTable << " and got "
898 << Candidate.AddressPoints.size()
899 << " vtables. Bail out for vtable comparison.\n");
900 return false;
904 return true;
907 bool IndirectCallPromoter::shouldSkipVTable(uint64_t VTableGUID) {
908 if (IgnoredBaseTypes.empty())
909 return false;
911 auto *VTableVar = Symtab->getGlobalVariable(VTableGUID);
913 assert(VTableVar && "VTableVar must exist for GUID in VTableGUIDAndCounts");
915 SmallVector<MDNode *, 2> Types;
916 VTableVar->getMetadata(LLVMContext::MD_type, Types);
918 for (auto *Type : Types)
919 if (auto *TypeId = dyn_cast<MDString>(Type->getOperand(1).get()))
920 if (IgnoredBaseTypes.contains(TypeId->getString())) {
921 LLVM_DEBUG(dbgs() << " vtable profiles should be ignored. Bail "
922 "out of vtable comparison.");
923 return true;
925 return false;
928 // For virtual calls in the module, collect per-callsite information which will
929 // be used to associate an ICP candidate with a vtable and a specific function
930 // in the vtable. With type intrinsics (llvm.type.test), we can find virtual
931 // calls in a compile-time efficient manner (by iterating its users) and more
932 // importantly use the compatible type later to figure out the function byte
933 // offset relative to the start of vtables.
934 static void
935 computeVirtualCallSiteTypeInfoMap(Module &M, ModuleAnalysisManager &MAM,
936 VirtualCallSiteTypeInfoMap &VirtualCSInfo) {
937 // Right now only llvm.type.test is used to find out virtual call sites.
938 // With ThinLTO and whole-program-devirtualization, llvm.type.test and
939 // llvm.public.type.test are emitted, and llvm.public.type.test is either
940 // refined to llvm.type.test or dropped before indirect-call-promotion pass.
942 // FIXME: For fullLTO with VFE, `llvm.type.checked.load intrinsic` is emitted.
943 // Find out virtual calls by looking at users of llvm.type.checked.load in
944 // that case.
945 Function *TypeTestFunc =
946 Intrinsic::getDeclarationIfExists(&M, Intrinsic::type_test);
947 if (!TypeTestFunc || TypeTestFunc->use_empty())
948 return;
950 auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
951 auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
952 return FAM.getResult<DominatorTreeAnalysis>(F);
954 // Iterate all type.test calls to find all indirect calls.
955 for (Use &U : llvm::make_early_inc_range(TypeTestFunc->uses())) {
956 auto *CI = dyn_cast<CallInst>(U.getUser());
957 if (!CI)
958 continue;
959 auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
960 if (!TypeMDVal)
961 continue;
962 auto *CompatibleTypeId = dyn_cast<MDString>(TypeMDVal->getMetadata());
963 if (!CompatibleTypeId)
964 continue;
966 // Find out all devirtualizable call sites given a llvm.type.test
967 // intrinsic call.
968 SmallVector<DevirtCallSite, 1> DevirtCalls;
969 SmallVector<CallInst *, 1> Assumes;
970 auto &DT = LookupDomTree(*CI->getFunction());
971 findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
973 for (auto &DevirtCall : DevirtCalls) {
974 CallBase &CB = DevirtCall.CB;
975 // Given an indirect call, try find the instruction which loads a
976 // pointer to virtual table.
977 Instruction *VTablePtr =
978 PGOIndirectCallVisitor::tryGetVTableInstruction(&CB);
979 if (!VTablePtr)
980 continue;
981 VirtualCSInfo[&CB] = {DevirtCall.Offset, VTablePtr,
982 CompatibleTypeId->getString()};
987 // A wrapper function that does the actual work.
988 static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, bool InLTO,
989 bool SamplePGO, ModuleAnalysisManager &MAM) {
990 if (DisableICP)
991 return false;
992 InstrProfSymtab Symtab;
993 if (Error E = Symtab.create(M, InLTO)) {
994 std::string SymtabFailure = toString(std::move(E));
995 M.getContext().emitError("Failed to create symtab: " + SymtabFailure);
996 return false;
998 bool Changed = false;
999 VirtualCallSiteTypeInfoMap VirtualCSInfo;
1001 DenseSet<StringRef> IgnoredBaseTypes;
1003 if (EnableVTableProfileUse) {
1004 computeVirtualCallSiteTypeInfoMap(M, MAM, VirtualCSInfo);
1006 for (StringRef Str : ICPIgnoredBaseTypes)
1007 IgnoredBaseTypes.insert(Str);
1010 // VTableAddressPointOffsetVal stores the vtable address points. The vtable
1011 // address point of a given <vtable, address point offset> is static (doesn't
1012 // change after being computed once).
1013 // IndirectCallPromoter::getOrCreateVTableAddressPointVar creates the map
1014 // entry the first time a <vtable, offset> pair is seen, as
1015 // promoteIndirectCalls processes an IR module and calls IndirectCallPromoter
1016 // repeatedly on each function.
1017 VTableAddressPointOffsetValMap VTableAddressPointOffsetVal;
1019 for (auto &F : M) {
1020 if (F.isDeclaration() || F.hasOptNone())
1021 continue;
1023 auto &FAM =
1024 MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1025 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1027 IndirectCallPromoter CallPromoter(F, M, &Symtab, SamplePGO, VirtualCSInfo,
1028 VTableAddressPointOffsetVal,
1029 IgnoredBaseTypes, ORE);
1030 bool FuncChanged = CallPromoter.processFunction(PSI);
1031 if (ICPDUMPAFTER && FuncChanged) {
1032 LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs()));
1033 LLVM_DEBUG(dbgs() << "\n");
1035 Changed |= FuncChanged;
1036 if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) {
1037 LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n");
1038 break;
1041 return Changed;
1044 PreservedAnalyses PGOIndirectCallPromotion::run(Module &M,
1045 ModuleAnalysisManager &MAM) {
1046 ProfileSummaryInfo *PSI = &MAM.getResult<ProfileSummaryAnalysis>(M);
1048 if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode,
1049 SamplePGO | ICPSamplePGOMode, MAM))
1050 return PreservedAnalyses::all();
1052 return PreservedAnalyses::none();