[lld/COFF] Demangle symbol name in discarded section relocation error message (#119726)
[llvm-project.git] / llvm / lib / Transforms / Scalar / ConstantHoisting.cpp
blob889c432eef8466cb773d38d1e9d7c8d83c10d925
1 //===- ConstantHoisting.cpp - Prepare code for expensive constants --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass identifies expensive constants to hoist and coalesces them to
10 // better prepare it for SelectionDAG-based code generation. This works around
11 // the limitations of the basic-block-at-a-time approach.
13 // First it scans all instructions for integer constants and calculates its
14 // cost. If the constant can be folded into the instruction (the cost is
15 // TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
16 // consider it expensive and leave it alone. This is the default behavior and
17 // the default implementation of getIntImmCostInst will always return TCC_Free.
19 // If the cost is more than TCC_BASIC, then the integer constant can't be folded
20 // into the instruction and it might be beneficial to hoist the constant.
21 // Similar constants are coalesced to reduce register pressure and
22 // materialization code.
24 // When a constant is hoisted, it is also hidden behind a bitcast to force it to
25 // be live-out of the basic block. Otherwise the constant would be just
26 // duplicated and each basic block would have its own copy in the SelectionDAG.
27 // The SelectionDAG recognizes such constants as opaque and doesn't perform
28 // certain transformations on them, which would create a new expensive constant.
30 // This optimization is only applied to integer constants in instructions and
31 // simple (this means not nested) constant cast expressions. For example:
32 // %0 = load i64* inttoptr (i64 big_constant to i64*)
33 //===----------------------------------------------------------------------===//
35 #include "llvm/Transforms/Scalar/ConstantHoisting.h"
36 #include "llvm/ADT/APInt.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/SmallPtrSet.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/Statistic.h"
41 #include "llvm/Analysis/BlockFrequencyInfo.h"
42 #include "llvm/Analysis/ProfileSummaryInfo.h"
43 #include "llvm/Analysis/TargetTransformInfo.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constants.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/Dominators.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Transforms/Scalar.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Transforms/Utils/SizeOpts.h"
66 #include <cassert>
67 #include <iterator>
68 #include <tuple>
69 #include <utility>
71 using namespace llvm;
72 using namespace consthoist;
74 #define DEBUG_TYPE "consthoist"
76 STATISTIC(NumConstantsHoisted, "Number of constants hoisted");
77 STATISTIC(NumConstantsRebased, "Number of constants rebased");
79 static cl::opt<bool> ConstHoistWithBlockFrequency(
80 "consthoist-with-block-frequency", cl::init(true), cl::Hidden,
81 cl::desc("Enable the use of the block frequency analysis to reduce the "
82 "chance to execute const materialization more frequently than "
83 "without hoisting."));
85 static cl::opt<bool> ConstHoistGEP(
86 "consthoist-gep", cl::init(false), cl::Hidden,
87 cl::desc("Try hoisting constant gep expressions"));
89 static cl::opt<unsigned>
90 MinNumOfDependentToRebase("consthoist-min-num-to-rebase",
91 cl::desc("Do not rebase if number of dependent constants of a Base is less "
92 "than this number."),
93 cl::init(0), cl::Hidden);
95 namespace {
97 /// The constant hoisting pass.
98 class ConstantHoistingLegacyPass : public FunctionPass {
99 public:
100 static char ID; // Pass identification, replacement for typeid
102 ConstantHoistingLegacyPass() : FunctionPass(ID) {
103 initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry());
106 bool runOnFunction(Function &Fn) override;
108 StringRef getPassName() const override { return "Constant Hoisting"; }
110 void getAnalysisUsage(AnalysisUsage &AU) const override {
111 AU.setPreservesCFG();
112 if (ConstHoistWithBlockFrequency)
113 AU.addRequired<BlockFrequencyInfoWrapperPass>();
114 AU.addRequired<DominatorTreeWrapperPass>();
115 AU.addRequired<ProfileSummaryInfoWrapperPass>();
116 AU.addRequired<TargetTransformInfoWrapperPass>();
119 private:
120 ConstantHoistingPass Impl;
123 } // end anonymous namespace
125 char ConstantHoistingLegacyPass::ID = 0;
127 INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist",
128 "Constant Hoisting", false, false)
129 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
130 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
131 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
132 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
133 INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist",
134 "Constant Hoisting", false, false)
136 FunctionPass *llvm::createConstantHoistingPass() {
137 return new ConstantHoistingLegacyPass();
140 /// Perform the constant hoisting optimization for the given function.
141 bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) {
142 if (skipFunction(Fn))
143 return false;
145 LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n");
146 LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n');
148 bool MadeChange =
149 Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn),
150 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
151 ConstHoistWithBlockFrequency
152 ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI()
153 : nullptr,
154 Fn.getEntryBlock(),
155 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
157 LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n");
159 return MadeChange;
162 void ConstantHoistingPass::collectMatInsertPts(
163 const RebasedConstantListType &RebasedConstants,
164 SmallVectorImpl<BasicBlock::iterator> &MatInsertPts) const {
165 for (const RebasedConstantInfo &RCI : RebasedConstants)
166 for (const ConstantUser &U : RCI.Uses)
167 MatInsertPts.emplace_back(findMatInsertPt(U.Inst, U.OpndIdx));
170 /// Find the constant materialization insertion point.
171 BasicBlock::iterator ConstantHoistingPass::findMatInsertPt(Instruction *Inst,
172 unsigned Idx) const {
173 // If the operand is a cast instruction, then we have to materialize the
174 // constant before the cast instruction.
175 if (Idx != ~0U) {
176 Value *Opnd = Inst->getOperand(Idx);
177 if (auto CastInst = dyn_cast<Instruction>(Opnd))
178 if (CastInst->isCast())
179 return CastInst->getIterator();
182 // The simple and common case. This also includes constant expressions.
183 if (!isa<PHINode>(Inst) && !Inst->isEHPad())
184 return Inst->getIterator();
186 // We can't insert directly before a phi node or an eh pad. Insert before
187 // the terminator of the incoming or dominating block.
188 assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!");
189 BasicBlock *InsertionBlock = nullptr;
190 if (Idx != ~0U && isa<PHINode>(Inst)) {
191 InsertionBlock = cast<PHINode>(Inst)->getIncomingBlock(Idx);
192 if (!InsertionBlock->isEHPad()) {
193 return InsertionBlock->getTerminator()->getIterator();
195 } else {
196 InsertionBlock = Inst->getParent();
199 // This must be an EH pad. Iterate over immediate dominators until we find a
200 // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads
201 // and terminators.
202 auto *IDom = DT->getNode(InsertionBlock)->getIDom();
203 while (IDom->getBlock()->isEHPad()) {
204 assert(Entry != IDom->getBlock() && "eh pad in entry block");
205 IDom = IDom->getIDom();
208 return IDom->getBlock()->getTerminator()->getIterator();
211 /// Given \p BBs as input, find another set of BBs which collectively
212 /// dominates \p BBs and have the minimal sum of frequencies. Return the BB
213 /// set found in \p BBs.
214 static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI,
215 BasicBlock *Entry,
216 SetVector<BasicBlock *> &BBs) {
217 assert(!BBs.count(Entry) && "Assume Entry is not in BBs");
218 // Nodes on the current path to the root.
219 SmallPtrSet<BasicBlock *, 8> Path;
220 // Candidates includes any block 'BB' in set 'BBs' that is not strictly
221 // dominated by any other blocks in set 'BBs', and all nodes in the path
222 // in the dominator tree from Entry to 'BB'.
223 SmallPtrSet<BasicBlock *, 16> Candidates;
224 for (auto *BB : BBs) {
225 // Ignore unreachable basic blocks.
226 if (!DT.isReachableFromEntry(BB))
227 continue;
228 Path.clear();
229 // Walk up the dominator tree until Entry or another BB in BBs
230 // is reached. Insert the nodes on the way to the Path.
231 BasicBlock *Node = BB;
232 // The "Path" is a candidate path to be added into Candidates set.
233 bool isCandidate = false;
234 do {
235 Path.insert(Node);
236 if (Node == Entry || Candidates.count(Node)) {
237 isCandidate = true;
238 break;
240 assert(DT.getNode(Node)->getIDom() &&
241 "Entry doens't dominate current Node");
242 Node = DT.getNode(Node)->getIDom()->getBlock();
243 } while (!BBs.count(Node));
245 // If isCandidate is false, Node is another Block in BBs dominating
246 // current 'BB'. Drop the nodes on the Path.
247 if (!isCandidate)
248 continue;
250 // Add nodes on the Path into Candidates.
251 Candidates.insert(Path.begin(), Path.end());
254 // Sort the nodes in Candidates in top-down order and save the nodes
255 // in Orders.
256 unsigned Idx = 0;
257 SmallVector<BasicBlock *, 16> Orders;
258 Orders.push_back(Entry);
259 while (Idx != Orders.size()) {
260 BasicBlock *Node = Orders[Idx++];
261 for (auto *ChildDomNode : DT.getNode(Node)->children()) {
262 if (Candidates.count(ChildDomNode->getBlock()))
263 Orders.push_back(ChildDomNode->getBlock());
267 // Visit Orders in bottom-up order.
268 using InsertPtsCostPair =
269 std::pair<SetVector<BasicBlock *>, BlockFrequency>;
271 // InsertPtsMap is a map from a BB to the best insertion points for the
272 // subtree of BB (subtree not including the BB itself).
273 DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap;
274 InsertPtsMap.reserve(Orders.size() + 1);
275 for (BasicBlock *Node : llvm::reverse(Orders)) {
276 bool NodeInBBs = BBs.count(Node);
277 auto &InsertPts = InsertPtsMap[Node].first;
278 BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second;
280 // Return the optimal insert points in BBs.
281 if (Node == Entry) {
282 BBs.clear();
283 if (InsertPtsFreq > BFI.getBlockFreq(Node) ||
284 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1))
285 BBs.insert(Entry);
286 else
287 BBs.insert(InsertPts.begin(), InsertPts.end());
288 break;
291 BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock();
292 // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child
293 // will update its parent's ParentInsertPts and ParentPtsFreq.
294 auto &ParentInsertPts = InsertPtsMap[Parent].first;
295 BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second;
296 // Choose to insert in Node or in subtree of Node.
297 // Don't hoist to EHPad because we may not find a proper place to insert
298 // in EHPad.
299 // If the total frequency of InsertPts is the same as the frequency of the
300 // target Node, and InsertPts contains more than one nodes, choose hoisting
301 // to reduce code size.
302 if (NodeInBBs ||
303 (!Node->isEHPad() &&
304 (InsertPtsFreq > BFI.getBlockFreq(Node) ||
305 (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) {
306 ParentInsertPts.insert(Node);
307 ParentPtsFreq += BFI.getBlockFreq(Node);
308 } else {
309 ParentInsertPts.insert(InsertPts.begin(), InsertPts.end());
310 ParentPtsFreq += InsertPtsFreq;
315 /// Find an insertion point that dominates all uses.
316 SetVector<BasicBlock::iterator>
317 ConstantHoistingPass::findConstantInsertionPoint(
318 const ConstantInfo &ConstInfo,
319 const ArrayRef<BasicBlock::iterator> MatInsertPts) const {
320 assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry.");
321 // Collect all basic blocks.
322 SetVector<BasicBlock *> BBs;
323 SetVector<BasicBlock::iterator> InsertPts;
325 for (BasicBlock::iterator MatInsertPt : MatInsertPts)
326 BBs.insert(MatInsertPt->getParent());
328 if (BBs.count(Entry)) {
329 InsertPts.insert(Entry->begin());
330 return InsertPts;
333 if (BFI) {
334 findBestInsertionSet(*DT, *BFI, Entry, BBs);
335 for (BasicBlock *BB : BBs)
336 InsertPts.insert(BB->getFirstInsertionPt());
337 return InsertPts;
340 while (BBs.size() >= 2) {
341 BasicBlock *BB, *BB1, *BB2;
342 BB1 = BBs.pop_back_val();
343 BB2 = BBs.pop_back_val();
344 BB = DT->findNearestCommonDominator(BB1, BB2);
345 if (BB == Entry) {
346 InsertPts.insert(Entry->begin());
347 return InsertPts;
349 BBs.insert(BB);
351 assert((BBs.size() == 1) && "Expected only one element.");
352 Instruction &FirstInst = (*BBs.begin())->front();
353 InsertPts.insert(findMatInsertPt(&FirstInst));
354 return InsertPts;
357 /// Record constant integer ConstInt for instruction Inst at operand
358 /// index Idx.
360 /// The operand at index Idx is not necessarily the constant integer itself. It
361 /// could also be a cast instruction or a constant expression that uses the
362 /// constant integer.
363 void ConstantHoistingPass::collectConstantCandidates(
364 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
365 ConstantInt *ConstInt) {
366 if (ConstInt->getType()->isVectorTy())
367 return;
369 InstructionCost Cost;
370 // Ask the target about the cost of materializing the constant for the given
371 // instruction and operand index.
372 if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst))
373 Cost = TTI->getIntImmCostIntrin(IntrInst->getIntrinsicID(), Idx,
374 ConstInt->getValue(), ConstInt->getType(),
375 TargetTransformInfo::TCK_SizeAndLatency);
376 else
377 Cost = TTI->getIntImmCostInst(
378 Inst->getOpcode(), Idx, ConstInt->getValue(), ConstInt->getType(),
379 TargetTransformInfo::TCK_SizeAndLatency, Inst);
381 // Ignore cheap integer constants.
382 if (Cost > TargetTransformInfo::TCC_Basic) {
383 ConstCandMapType::iterator Itr;
384 bool Inserted;
385 ConstPtrUnionType Cand = ConstInt;
386 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
387 if (Inserted) {
388 ConstIntCandVec.push_back(ConstantCandidate(ConstInt));
389 Itr->second = ConstIntCandVec.size() - 1;
391 ConstIntCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
392 LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs()
393 << "Collect constant " << *ConstInt << " from " << *Inst
394 << " with cost " << Cost << '\n';
395 else dbgs() << "Collect constant " << *ConstInt
396 << " indirectly from " << *Inst << " via "
397 << *Inst->getOperand(Idx) << " with cost " << Cost
398 << '\n';);
402 /// Record constant GEP expression for instruction Inst at operand index Idx.
403 void ConstantHoistingPass::collectConstantCandidates(
404 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx,
405 ConstantExpr *ConstExpr) {
406 // TODO: Handle vector GEPs
407 if (ConstExpr->getType()->isVectorTy())
408 return;
410 GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
411 if (!BaseGV)
412 return;
414 // Get offset from the base GV.
415 PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType());
416 IntegerType *OffsetTy = DL->getIndexType(*Ctx, GVPtrTy->getAddressSpace());
417 APInt Offset(DL->getTypeSizeInBits(OffsetTy), /*val*/ 0, /*isSigned*/ true);
418 auto *GEPO = cast<GEPOperator>(ConstExpr);
420 // TODO: If we have a mix of inbounds and non-inbounds GEPs, then basing a
421 // non-inbounds GEP on an inbounds GEP is potentially incorrect. Restrict to
422 // inbounds GEP for now -- alternatively, we could drop inbounds from the
423 // constant expression,
424 if (!GEPO->isInBounds())
425 return;
427 if (!GEPO->accumulateConstantOffset(*DL, Offset))
428 return;
430 if (!Offset.isIntN(32))
431 return;
433 // A constant GEP expression that has a GlobalVariable as base pointer is
434 // usually lowered to a load from constant pool. Such operation is unlikely
435 // to be cheaper than compute it by <Base + Offset>, which can be lowered to
436 // an ADD instruction or folded into Load/Store instruction.
437 InstructionCost Cost =
438 TTI->getIntImmCostInst(Instruction::Add, 1, Offset, OffsetTy,
439 TargetTransformInfo::TCK_SizeAndLatency, Inst);
440 ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV];
441 ConstCandMapType::iterator Itr;
442 bool Inserted;
443 ConstPtrUnionType Cand = ConstExpr;
444 std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0));
445 if (Inserted) {
446 ExprCandVec.push_back(ConstantCandidate(
447 ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()),
448 ConstExpr));
449 Itr->second = ExprCandVec.size() - 1;
451 ExprCandVec[Itr->second].addUser(Inst, Idx, *Cost.getValue());
454 /// Check the operand for instruction Inst at index Idx.
455 void ConstantHoistingPass::collectConstantCandidates(
456 ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) {
457 Value *Opnd = Inst->getOperand(Idx);
459 // Visit constant integers.
460 if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) {
461 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
462 return;
465 // Visit cast instructions that have constant integers.
466 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
467 // Only visit cast instructions, which have been skipped. All other
468 // instructions should have already been visited.
469 if (!CastInst->isCast())
470 return;
472 if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) {
473 // Pretend the constant is directly used by the instruction and ignore
474 // the cast instruction.
475 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
476 return;
480 // Visit constant expressions that have constant integers.
481 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
482 // Handle constant gep expressions.
483 if (ConstHoistGEP && isa<GEPOperator>(ConstExpr))
484 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr);
486 // Only visit constant cast expressions.
487 if (!ConstExpr->isCast())
488 return;
490 if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) {
491 // Pretend the constant is directly used by the instruction and ignore
492 // the constant expression.
493 collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt);
494 return;
499 /// Scan the instruction for expensive integer constants and record them
500 /// in the constant candidate vector.
501 void ConstantHoistingPass::collectConstantCandidates(
502 ConstCandMapType &ConstCandMap, Instruction *Inst) {
503 // Skip all cast instructions. They are visited indirectly later on.
504 if (Inst->isCast())
505 return;
507 // Scan all operands.
508 for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) {
509 // The cost of materializing the constants (defined in
510 // `TargetTransformInfo::getIntImmCostInst`) for instructions which only
511 // take constant variables is lower than `TargetTransformInfo::TCC_Basic`.
512 // So it's safe for us to collect constant candidates from all
513 // IntrinsicInsts.
514 if (canReplaceOperandWithVariable(Inst, Idx)) {
515 collectConstantCandidates(ConstCandMap, Inst, Idx);
517 } // end of for all operands
520 /// Collect all integer constants in the function that cannot be folded
521 /// into an instruction itself.
522 void ConstantHoistingPass::collectConstantCandidates(Function &Fn) {
523 ConstCandMapType ConstCandMap;
524 for (BasicBlock &BB : Fn) {
525 // Ignore unreachable basic blocks.
526 if (!DT->isReachableFromEntry(&BB))
527 continue;
528 for (Instruction &Inst : BB)
529 if (!TTI->preferToKeepConstantsAttached(Inst, Fn))
530 collectConstantCandidates(ConstCandMap, &Inst);
534 // From a list of constants, one needs to picked as the base and the other
535 // constants will be transformed into an offset from that base constant. The
536 // question is which we can pick best? For example, consider these constants
537 // and their number of uses:
539 // Constants| 2 | 4 | 12 | 42 |
540 // NumUses | 3 | 2 | 8 | 7 |
542 // Selecting constant 12 because it has the most uses will generate negative
543 // offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative
544 // offsets lead to less optimal code generation, then there might be better
545 // solutions. Suppose immediates in the range of 0..35 are most optimally
546 // supported by the architecture, then selecting constant 2 is most optimal
547 // because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in
548 // range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would
549 // have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in
550 // selecting the base constant the range of the offsets is a very important
551 // factor too that we take into account here. This algorithm calculates a total
552 // costs for selecting a constant as the base and substract the costs if
553 // immediates are out of range. It has quadratic complexity, so we call this
554 // function only when we're optimising for size and there are less than 100
555 // constants, we fall back to the straightforward algorithm otherwise
556 // which does not do all the offset calculations.
557 unsigned
558 ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S,
559 ConstCandVecType::iterator E,
560 ConstCandVecType::iterator &MaxCostItr) {
561 unsigned NumUses = 0;
563 if (!OptForSize || std::distance(S,E) > 100) {
564 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
565 NumUses += ConstCand->Uses.size();
566 if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost)
567 MaxCostItr = ConstCand;
569 return NumUses;
572 LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n");
573 InstructionCost MaxCost = -1;
574 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
575 auto Value = ConstCand->ConstInt->getValue();
576 Type *Ty = ConstCand->ConstInt->getType();
577 InstructionCost Cost = 0;
578 NumUses += ConstCand->Uses.size();
579 LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue()
580 << "\n");
582 for (auto User : ConstCand->Uses) {
583 unsigned Opcode = User.Inst->getOpcode();
584 unsigned OpndIdx = User.OpndIdx;
585 Cost += TTI->getIntImmCostInst(Opcode, OpndIdx, Value, Ty,
586 TargetTransformInfo::TCK_SizeAndLatency);
587 LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n");
589 for (auto C2 = S; C2 != E; ++C2) {
590 APInt Diff = C2->ConstInt->getValue() - ConstCand->ConstInt->getValue();
591 const InstructionCost ImmCosts =
592 TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff, Ty);
593 Cost -= ImmCosts;
594 LLVM_DEBUG(dbgs() << "Offset " << Diff << " "
595 << "has penalty: " << ImmCosts << "\n"
596 << "Adjusted cost: " << Cost << "\n");
599 LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n");
600 if (Cost > MaxCost) {
601 MaxCost = Cost;
602 MaxCostItr = ConstCand;
603 LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue()
604 << "\n");
607 return NumUses;
610 /// Find the base constant within the given range and rebase all other
611 /// constants with respect to the base constant.
612 void ConstantHoistingPass::findAndMakeBaseConstant(
613 ConstCandVecType::iterator S, ConstCandVecType::iterator E,
614 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) {
615 auto MaxCostItr = S;
616 unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr);
618 // Don't hoist constants that have only one use.
619 if (NumUses <= 1)
620 return;
622 ConstantInt *ConstInt = MaxCostItr->ConstInt;
623 ConstantExpr *ConstExpr = MaxCostItr->ConstExpr;
624 ConstantInfo ConstInfo;
625 ConstInfo.BaseInt = ConstInt;
626 ConstInfo.BaseExpr = ConstExpr;
627 Type *Ty = ConstInt->getType();
629 // Rebase the constants with respect to the base constant.
630 for (auto ConstCand = S; ConstCand != E; ++ConstCand) {
631 APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue();
632 Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff);
633 Type *ConstTy =
634 ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr;
635 ConstInfo.RebasedConstants.push_back(
636 RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy));
638 ConstInfoVec.push_back(std::move(ConstInfo));
641 /// Finds and combines constant candidates that can be easily
642 /// rematerialized with an add from a common base constant.
643 void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) {
644 // If BaseGV is nullptr, find base among candidate constant integers;
645 // Otherwise find base among constant GEPs that share the same BaseGV.
646 ConstCandVecType &ConstCandVec = BaseGV ?
647 ConstGEPCandMap[BaseGV] : ConstIntCandVec;
648 ConstInfoVecType &ConstInfoVec = BaseGV ?
649 ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
651 // Sort the constants by value and type. This invalidates the mapping!
652 llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS,
653 const ConstantCandidate &RHS) {
654 if (LHS.ConstInt->getType() != RHS.ConstInt->getType())
655 return LHS.ConstInt->getBitWidth() < RHS.ConstInt->getBitWidth();
656 return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue());
659 // Simple linear scan through the sorted constant candidate vector for viable
660 // merge candidates.
661 auto MinValItr = ConstCandVec.begin();
662 for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end();
663 CC != E; ++CC) {
664 if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) {
665 Type *MemUseValTy = nullptr;
666 for (auto &U : CC->Uses) {
667 auto *UI = U.Inst;
668 if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
669 MemUseValTy = LI->getType();
670 break;
671 } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
672 // Make sure the constant is used as pointer operand of the StoreInst.
673 if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) {
674 MemUseValTy = SI->getValueOperand()->getType();
675 break;
680 // Check if the constant is in range of an add with immediate.
681 APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue();
682 if ((Diff.getBitWidth() <= 64) &&
683 TTI->isLegalAddImmediate(Diff.getSExtValue()) &&
684 // Check if Diff can be used as offset in addressing mode of the user
685 // memory instruction.
686 (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy,
687 /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(),
688 /*HasBaseReg*/true, /*Scale*/0)))
689 continue;
691 // We either have now a different constant type or the constant is not in
692 // range of an add with immediate anymore.
693 findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec);
694 // Start a new base constant search.
695 MinValItr = CC;
697 // Finalize the last base constant search.
698 findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec);
701 /// Updates the operand at Idx in instruction Inst with the result of
702 /// instruction Mat. If the instruction is a PHI node then special
703 /// handling for duplicate values from the same incoming basic block is
704 /// required.
705 /// \return The update will always succeed, but the return value indicated if
706 /// Mat was used for the update or not.
707 static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) {
708 if (auto PHI = dyn_cast<PHINode>(Inst)) {
709 // Check if any previous operand of the PHI node has the same incoming basic
710 // block. This is a very odd case that happens when the incoming basic block
711 // has a switch statement. In this case use the same value as the previous
712 // operand(s), otherwise we will fail verification due to different values.
713 // The values are actually the same, but the variable names are different
714 // and the verifier doesn't like that.
715 BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx);
716 for (unsigned i = 0; i < Idx; ++i) {
717 if (PHI->getIncomingBlock(i) == IncomingBB) {
718 Value *IncomingVal = PHI->getIncomingValue(i);
719 Inst->setOperand(Idx, IncomingVal);
720 return false;
725 Inst->setOperand(Idx, Mat);
726 return true;
729 /// Emit materialization code for all rebased constants and update their
730 /// users.
731 void ConstantHoistingPass::emitBaseConstants(Instruction *Base,
732 UserAdjustment *Adj) {
733 Instruction *Mat = Base;
735 // The same offset can be dereferenced to different types in nested struct.
736 if (!Adj->Offset && Adj->Ty && Adj->Ty != Base->getType())
737 Adj->Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0);
739 if (Adj->Offset) {
740 if (Adj->Ty) {
741 // Constant being rebased is a ConstantExpr.
742 Mat = GetElementPtrInst::Create(Type::getInt8Ty(*Ctx), Base, Adj->Offset,
743 "mat_gep", Adj->MatInsertPt);
744 // Hide it behind a bitcast.
745 Mat = new BitCastInst(Mat, Adj->Ty, "mat_bitcast",
746 Adj->MatInsertPt->getIterator());
747 } else
748 // Constant being rebased is a ConstantInt.
749 Mat =
750 BinaryOperator::Create(Instruction::Add, Base, Adj->Offset,
751 "const_mat", Adj->MatInsertPt->getIterator());
753 LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0)
754 << " + " << *Adj->Offset << ") in BB "
755 << Mat->getParent()->getName() << '\n'
756 << *Mat << '\n');
757 Mat->setDebugLoc(Adj->User.Inst->getDebugLoc());
759 Value *Opnd = Adj->User.Inst->getOperand(Adj->User.OpndIdx);
761 // Visit constant integer.
762 if (isa<ConstantInt>(Opnd)) {
763 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
764 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat) && Adj->Offset)
765 Mat->eraseFromParent();
766 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
767 return;
770 // Visit cast instruction.
771 if (auto CastInst = dyn_cast<Instruction>(Opnd)) {
772 assert(CastInst->isCast() && "Expected an cast instruction!");
773 // Check if we already have visited this cast instruction before to avoid
774 // unnecessary cloning.
775 Instruction *&ClonedCastInst = ClonedCastMap[CastInst];
776 if (!ClonedCastInst) {
777 ClonedCastInst = CastInst->clone();
778 ClonedCastInst->setOperand(0, Mat);
779 ClonedCastInst->insertAfter(CastInst);
780 // Use the same debug location as the original cast instruction.
781 ClonedCastInst->setDebugLoc(CastInst->getDebugLoc());
782 LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n'
783 << "To : " << *ClonedCastInst << '\n');
786 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
787 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ClonedCastInst);
788 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
789 return;
792 // Visit constant expression.
793 if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) {
794 if (isa<GEPOperator>(ConstExpr)) {
795 // Operand is a ConstantGEP, replace it.
796 updateOperand(Adj->User.Inst, Adj->User.OpndIdx, Mat);
797 return;
800 // Aside from constant GEPs, only constant cast expressions are collected.
801 assert(ConstExpr->isCast() && "ConstExpr should be a cast");
802 Instruction *ConstExprInst = ConstExpr->getAsInstruction();
803 ConstExprInst->insertBefore(Adj->MatInsertPt);
804 ConstExprInst->setOperand(0, Mat);
806 // Use the same debug location as the instruction we are about to update.
807 ConstExprInst->setDebugLoc(Adj->User.Inst->getDebugLoc());
809 LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n'
810 << "From : " << *ConstExpr << '\n');
811 LLVM_DEBUG(dbgs() << "Update: " << *Adj->User.Inst << '\n');
812 if (!updateOperand(Adj->User.Inst, Adj->User.OpndIdx, ConstExprInst)) {
813 ConstExprInst->eraseFromParent();
814 if (Adj->Offset)
815 Mat->eraseFromParent();
817 LLVM_DEBUG(dbgs() << "To : " << *Adj->User.Inst << '\n');
818 return;
822 /// Hoist and hide the base constant behind a bitcast and emit
823 /// materialization code for derived constants.
824 bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) {
825 bool MadeChange = false;
826 SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec =
827 BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec;
828 for (const consthoist::ConstantInfo &ConstInfo : ConstInfoVec) {
829 SmallVector<BasicBlock::iterator, 4> MatInsertPts;
830 collectMatInsertPts(ConstInfo.RebasedConstants, MatInsertPts);
831 SetVector<BasicBlock::iterator> IPSet =
832 findConstantInsertionPoint(ConstInfo, MatInsertPts);
833 // We can have an empty set if the function contains unreachable blocks.
834 if (IPSet.empty())
835 continue;
837 unsigned UsesNum = 0;
838 unsigned ReBasesNum = 0;
839 unsigned NotRebasedNum = 0;
840 for (const BasicBlock::iterator &IP : IPSet) {
841 // First, collect constants depending on this IP of the base.
842 UsesNum = 0;
843 SmallVector<UserAdjustment, 4> ToBeRebased;
844 unsigned MatCtr = 0;
845 for (auto const &RCI : ConstInfo.RebasedConstants) {
846 UsesNum += RCI.Uses.size();
847 for (auto const &U : RCI.Uses) {
848 const BasicBlock::iterator &MatInsertPt = MatInsertPts[MatCtr++];
849 BasicBlock *OrigMatInsertBB = MatInsertPt->getParent();
850 // If Base constant is to be inserted in multiple places,
851 // generate rebase for U using the Base dominating U.
852 if (IPSet.size() == 1 ||
853 DT->dominates(IP->getParent(), OrigMatInsertBB))
854 ToBeRebased.emplace_back(RCI.Offset, RCI.Ty, MatInsertPt, U);
858 // If only few constants depend on this IP of base, skip rebasing,
859 // assuming the base and the rebased have the same materialization cost.
860 if (ToBeRebased.size() < MinNumOfDependentToRebase) {
861 NotRebasedNum += ToBeRebased.size();
862 continue;
865 // Emit an instance of the base at this IP.
866 Instruction *Base = nullptr;
867 // Hoist and hide the base constant behind a bitcast.
868 if (ConstInfo.BaseExpr) {
869 assert(BaseGV && "A base constant expression must have an base GV");
870 Type *Ty = ConstInfo.BaseExpr->getType();
871 Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP);
872 } else {
873 IntegerType *Ty = ConstInfo.BaseInt->getIntegerType();
874 Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP);
877 Base->setDebugLoc(IP->getDebugLoc());
879 LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt
880 << ") to BB " << IP->getParent()->getName() << '\n'
881 << *Base << '\n');
883 // Emit materialization code for rebased constants depending on this IP.
884 for (UserAdjustment &R : ToBeRebased) {
885 emitBaseConstants(Base, &R);
886 ReBasesNum++;
887 // Use the same debug location as the last user of the constant.
888 Base->setDebugLoc(DILocation::getMergedLocation(
889 Base->getDebugLoc(), R.User.Inst->getDebugLoc()));
891 assert(!Base->use_empty() && "The use list is empty!?");
892 assert(isa<Instruction>(Base->user_back()) &&
893 "All uses should be instructions.");
895 (void)UsesNum;
896 (void)ReBasesNum;
897 (void)NotRebasedNum;
898 // Expect all uses are rebased after rebase is done.
899 assert(UsesNum == (ReBasesNum + NotRebasedNum) &&
900 "Not all uses are rebased");
902 NumConstantsHoisted++;
904 // Base constant is also included in ConstInfo.RebasedConstants, so
905 // deduct 1 from ConstInfo.RebasedConstants.size().
906 NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1;
908 MadeChange = true;
910 return MadeChange;
913 /// Check all cast instructions we made a copy of and remove them if they
914 /// have no more users.
915 void ConstantHoistingPass::deleteDeadCastInst() const {
916 for (auto const &I : ClonedCastMap)
917 if (I.first->use_empty())
918 I.first->eraseFromParent();
921 /// Optimize expensive integer constants in the given function.
922 bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI,
923 DominatorTree &DT, BlockFrequencyInfo *BFI,
924 BasicBlock &Entry, ProfileSummaryInfo *PSI) {
925 this->TTI = &TTI;
926 this->DT = &DT;
927 this->BFI = BFI;
928 this->DL = &Fn.getDataLayout();
929 this->Ctx = &Fn.getContext();
930 this->Entry = &Entry;
931 this->PSI = PSI;
932 this->OptForSize = llvm::shouldOptimizeForSize(Entry.getParent(), PSI, BFI,
933 PGSOQueryType::IRPass);
935 // Collect all constant candidates.
936 collectConstantCandidates(Fn);
938 // Combine constants that can be easily materialized with an add from a common
939 // base constant.
940 if (!ConstIntCandVec.empty())
941 findBaseConstants(nullptr);
942 for (const auto &MapEntry : ConstGEPCandMap)
943 if (!MapEntry.second.empty())
944 findBaseConstants(MapEntry.first);
946 // Finally hoist the base constant and emit materialization code for dependent
947 // constants.
948 bool MadeChange = false;
949 if (!ConstIntInfoVec.empty())
950 MadeChange = emitBaseConstants(nullptr);
951 for (const auto &MapEntry : ConstGEPInfoMap)
952 if (!MapEntry.second.empty())
953 MadeChange |= emitBaseConstants(MapEntry.first);
956 // Cleanup dead instructions.
957 deleteDeadCastInst();
959 cleanup();
961 return MadeChange;
964 PreservedAnalyses ConstantHoistingPass::run(Function &F,
965 FunctionAnalysisManager &AM) {
966 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
967 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
968 auto BFI = ConstHoistWithBlockFrequency
969 ? &AM.getResult<BlockFrequencyAnalysis>(F)
970 : nullptr;
971 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
972 auto *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
973 if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI))
974 return PreservedAnalyses::all();
976 PreservedAnalyses PA;
977 PA.preserveSet<CFGAnalyses>();
978 return PA;