1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Jump Threading pass.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/MapVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BlockFrequencyInfo.h"
22 #include "llvm/Analysis/BranchProbabilityInfo.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/GuardUtils.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/LazyValueInfo.h"
29 #include "llvm/Analysis/Loads.h"
30 #include "llvm/Analysis/LoopInfo.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CFG.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/ProfDataUtils.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/Support/BlockFrequency.h"
61 #include "llvm/Support/BranchProbability.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
78 using namespace jumpthreading
;
80 #define DEBUG_TYPE "jump-threading"
82 STATISTIC(NumThreads
, "Number of jumps threaded");
83 STATISTIC(NumFolds
, "Number of terminators folded");
84 STATISTIC(NumDupes
, "Number of branch blocks duplicated to eliminate phi");
86 static cl::opt
<unsigned>
87 BBDuplicateThreshold("jump-threading-threshold",
88 cl::desc("Max block size to duplicate for jump threading"),
89 cl::init(6), cl::Hidden
);
91 static cl::opt
<unsigned>
92 ImplicationSearchThreshold(
93 "jump-threading-implication-search-threshold",
94 cl::desc("The number of predecessors to search for a stronger "
95 "condition to use to thread over a weaker condition"),
96 cl::init(3), cl::Hidden
);
98 static cl::opt
<unsigned> PhiDuplicateThreshold(
99 "jump-threading-phi-threshold",
100 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103 static cl::opt
<bool> ThreadAcrossLoopHeaders(
104 "jump-threading-across-loop-headers",
105 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
106 cl::init(false), cl::Hidden
);
108 JumpThreadingPass::JumpThreadingPass(int T
) {
109 DefaultBBDupThreshold
= (T
== -1) ? BBDuplicateThreshold
: unsigned(T
);
112 // Update branch probability information according to conditional
113 // branch probability. This is usually made possible for cloned branches
114 // in inline instances by the context specific profile in the caller.
126 // cond = PN([true, %A], [..., %B]); // PHI node
129 // ... // P(cond == true) = 1%
132 // Here we know that when block A is taken, cond must be true, which means
133 // P(cond == true | A) = 1
135 // Given that P(cond == true) = P(cond == true | A) * P(A) +
136 // P(cond == true | B) * P(B)
138 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
141 // P(A) is less than P(cond == true), i.e.
142 // P(t == true) <= P(cond == true)
144 // In other words, if we know P(cond == true) is unlikely, we know
145 // that P(t == true) is also unlikely.
147 static void updatePredecessorProfileMetadata(PHINode
*PN
, BasicBlock
*BB
) {
148 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
152 uint64_t TrueWeight
, FalseWeight
;
153 if (!extractBranchWeights(*CondBr
, TrueWeight
, FalseWeight
))
156 if (TrueWeight
+ FalseWeight
== 0)
157 // Zero branch_weights do not give a hint for getting branch probabilities.
158 // Technically it would result in division by zero denominator, which is
159 // TrueWeight + FalseWeight.
162 // Returns the outgoing edge of the dominating predecessor block
163 // that leads to the PhiNode's incoming block:
164 auto GetPredOutEdge
=
165 [](BasicBlock
*IncomingBB
,
166 BasicBlock
*PhiBB
) -> std::pair
<BasicBlock
*, BasicBlock
*> {
167 auto *PredBB
= IncomingBB
;
168 auto *SuccBB
= PhiBB
;
169 SmallPtrSet
<BasicBlock
*, 16> Visited
;
171 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
172 if (PredBr
&& PredBr
->isConditional())
173 return {PredBB
, SuccBB
};
174 Visited
.insert(PredBB
);
175 auto *SinglePredBB
= PredBB
->getSinglePredecessor();
177 return {nullptr, nullptr};
179 // Stop searching when SinglePredBB has been visited. It means we see
180 // an unreachable loop.
181 if (Visited
.count(SinglePredBB
))
182 return {nullptr, nullptr};
185 PredBB
= SinglePredBB
;
189 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
190 Value
*PhiOpnd
= PN
->getIncomingValue(i
);
191 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(PhiOpnd
);
193 if (!CI
|| !CI
->getType()->isIntegerTy(1))
196 BranchProbability BP
=
197 (CI
->isOne() ? BranchProbability::getBranchProbability(
198 TrueWeight
, TrueWeight
+ FalseWeight
)
199 : BranchProbability::getBranchProbability(
200 FalseWeight
, TrueWeight
+ FalseWeight
));
202 auto PredOutEdge
= GetPredOutEdge(PN
->getIncomingBlock(i
), BB
);
203 if (!PredOutEdge
.first
)
206 BasicBlock
*PredBB
= PredOutEdge
.first
;
207 BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
211 uint64_t PredTrueWeight
, PredFalseWeight
;
212 // FIXME: We currently only set the profile data when it is missing.
213 // With PGO, this can be used to refine even existing profile data with
214 // context information. This needs to be done after more performance
216 if (extractBranchWeights(*PredBr
, PredTrueWeight
, PredFalseWeight
))
219 // We can not infer anything useful when BP >= 50%, because BP is the
220 // upper bound probability value.
221 if (BP
>= BranchProbability(50, 100))
225 if (PredBr
->getSuccessor(0) == PredOutEdge
.second
) {
226 Weights
[0] = BP
.getNumerator();
227 Weights
[1] = BP
.getCompl().getNumerator();
229 Weights
[0] = BP
.getCompl().getNumerator();
230 Weights
[1] = BP
.getNumerator();
232 setBranchWeights(*PredBr
, Weights
, hasBranchWeightOrigin(*PredBr
));
236 PreservedAnalyses
JumpThreadingPass::run(Function
&F
,
237 FunctionAnalysisManager
&AM
) {
238 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
239 // Jump Threading has no sense for the targets with divergent CF
240 if (TTI
.hasBranchDivergence(&F
))
241 return PreservedAnalyses::all();
242 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
243 auto &LVI
= AM
.getResult
<LazyValueAnalysis
>(F
);
244 auto &AA
= AM
.getResult
<AAManager
>(F
);
245 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
248 runImpl(F
, &AM
, &TLI
, &TTI
, &LVI
, &AA
,
249 std::make_unique
<DomTreeUpdater
>(
250 &DT
, nullptr, DomTreeUpdater::UpdateStrategy::Lazy
),
251 std::nullopt
, std::nullopt
);
254 return PreservedAnalyses::all();
257 getDomTreeUpdater()->flush();
259 #if defined(EXPENSIVE_CHECKS)
260 assert(getDomTreeUpdater()->getDomTree().verify(
261 DominatorTree::VerificationLevel::Full
) &&
262 "DT broken after JumpThreading");
263 assert((!getDomTreeUpdater()->hasPostDomTree() ||
264 getDomTreeUpdater()->getPostDomTree().verify(
265 PostDominatorTree::VerificationLevel::Full
)) &&
266 "PDT broken after JumpThreading");
268 assert(getDomTreeUpdater()->getDomTree().verify(
269 DominatorTree::VerificationLevel::Fast
) &&
270 "DT broken after JumpThreading");
271 assert((!getDomTreeUpdater()->hasPostDomTree() ||
272 getDomTreeUpdater()->getPostDomTree().verify(
273 PostDominatorTree::VerificationLevel::Fast
)) &&
274 "PDT broken after JumpThreading");
277 return getPreservedAnalysis();
280 bool JumpThreadingPass::runImpl(Function
&F_
, FunctionAnalysisManager
*FAM_
,
281 TargetLibraryInfo
*TLI_
,
282 TargetTransformInfo
*TTI_
, LazyValueInfo
*LVI_
,
284 std::unique_ptr
<DomTreeUpdater
> DTU_
,
285 std::optional
<BlockFrequencyInfo
*> BFI_
,
286 std::optional
<BranchProbabilityInfo
*> BPI_
) {
287 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_
.getName() << "'\n");
294 DTU
= std::move(DTU_
);
297 auto *GuardDecl
= Intrinsic::getDeclarationIfExists(
298 F
->getParent(), Intrinsic::experimental_guard
);
299 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
301 // Reduce the number of instructions duplicated when optimizing strictly for
303 if (BBDuplicateThreshold
.getNumOccurrences())
304 BBDupThreshold
= BBDuplicateThreshold
;
305 else if (F
->hasFnAttribute(Attribute::MinSize
))
308 BBDupThreshold
= DefaultBBDupThreshold
;
310 // JumpThreading must not processes blocks unreachable from entry. It's a
311 // waste of compute time and can potentially lead to hangs.
312 SmallPtrSet
<BasicBlock
*, 16> Unreachable
;
313 assert(DTU
&& "DTU isn't passed into JumpThreading before using it.");
314 assert(DTU
->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
315 DominatorTree
&DT
= DTU
->getDomTree();
317 if (!DT
.isReachableFromEntry(&BB
))
318 Unreachable
.insert(&BB
);
320 if (!ThreadAcrossLoopHeaders
)
323 bool EverChanged
= false;
327 for (auto &BB
: *F
) {
328 if (Unreachable
.count(&BB
))
330 while (processBlock(&BB
)) // Thread all of the branches we can over BB.
331 Changed
= ChangedSinceLastAnalysisUpdate
= true;
333 // Jump threading may have introduced redundant debug values into BB
334 // which should be removed.
336 RemoveRedundantDbgInstrs(&BB
);
338 // Stop processing BB if it's the entry or is now deleted. The following
339 // routines attempt to eliminate BB and locating a suitable replacement
340 // for the entry is non-trivial.
341 if (&BB
== &F
->getEntryBlock() || DTU
->isBBPendingDeletion(&BB
))
344 if (pred_empty(&BB
)) {
345 // When processBlock makes BB unreachable it doesn't bother to fix up
346 // the instructions in it. We must remove BB to prevent invalid IR.
347 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB
.getName()
348 << "' with terminator: " << *BB
.getTerminator()
350 LoopHeaders
.erase(&BB
);
351 LVI
->eraseBlock(&BB
);
352 DeleteDeadBlock(&BB
, DTU
.get());
353 Changed
= ChangedSinceLastAnalysisUpdate
= true;
357 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
358 // is "almost empty", we attempt to merge BB with its sole successor.
359 auto *BI
= dyn_cast
<BranchInst
>(BB
.getTerminator());
360 if (BI
&& BI
->isUnconditional()) {
361 BasicBlock
*Succ
= BI
->getSuccessor(0);
363 // The terminator must be the only non-phi instruction in BB.
364 BB
.getFirstNonPHIOrDbg(true)->isTerminator() &&
365 // Don't alter Loop headers and latches to ensure another pass can
366 // detect and transform nested loops later.
367 !LoopHeaders
.count(&BB
) && !LoopHeaders
.count(Succ
) &&
368 TryToSimplifyUncondBranchFromEmptyBlock(&BB
, DTU
.get())) {
369 RemoveRedundantDbgInstrs(Succ
);
370 // BB is valid for cleanup here because we passed in DTU. F remains
371 // BB's parent until a DTU->getDomTree() event.
372 LVI
->eraseBlock(&BB
);
373 Changed
= ChangedSinceLastAnalysisUpdate
= true;
377 EverChanged
|= Changed
;
384 // Replace uses of Cond with ToVal when safe to do so. If all uses are
385 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
386 // because we may incorrectly replace uses when guards/assumes are uses of
387 // of `Cond` and we used the guards/assume to reason about the `Cond` value
388 // at the end of block. RAUW unconditionally replaces all uses
389 // including the guards/assumes themselves and the uses before the
391 static bool replaceFoldableUses(Instruction
*Cond
, Value
*ToVal
,
392 BasicBlock
*KnownAtEndOfBB
) {
393 bool Changed
= false;
394 assert(Cond
->getType() == ToVal
->getType());
395 // We can unconditionally replace all uses in non-local blocks (i.e. uses
396 // strictly dominated by BB), since LVI information is true from the
398 if (Cond
->getParent() == KnownAtEndOfBB
)
399 Changed
|= replaceNonLocalUsesWith(Cond
, ToVal
);
400 for (Instruction
&I
: reverse(*KnownAtEndOfBB
)) {
401 // Replace any debug-info record users of Cond with ToVal.
402 for (DbgVariableRecord
&DVR
: filterDbgVars(I
.getDbgRecordRange()))
403 DVR
.replaceVariableLocationOp(Cond
, ToVal
, true);
405 // Reached the Cond whose uses we are trying to replace, so there are no
409 // We only replace uses in instructions that are guaranteed to reach the end
410 // of BB, where we know Cond is ToVal.
411 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
413 Changed
|= I
.replaceUsesOfWith(Cond
, ToVal
);
415 if (Cond
->use_empty() && !Cond
->mayHaveSideEffects()) {
416 Cond
->eraseFromParent();
422 /// Return the cost of duplicating a piece of this block from first non-phi
423 /// and before StopAt instruction to thread across it. Stop scanning the block
424 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
425 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo
*TTI
,
428 unsigned Threshold
) {
429 assert(StopAt
->getParent() == BB
&& "Not an instruction from proper BB?");
431 // Do not duplicate the BB if it has a lot of PHI nodes.
432 // If a threadable chain is too long then the number of PHI nodes can add up,
433 // leading to a substantial increase in compile time when rewriting the SSA.
434 unsigned PhiCount
= 0;
435 Instruction
*FirstNonPHI
= nullptr;
436 for (Instruction
&I
: *BB
) {
437 if (!isa
<PHINode
>(&I
)) {
441 if (++PhiCount
> PhiDuplicateThreshold
)
445 /// Ignore PHI nodes, these will be flattened when duplication happens.
446 BasicBlock::const_iterator
I(FirstNonPHI
);
448 // FIXME: THREADING will delete values that are just used to compute the
449 // branch, so they shouldn't count against the duplication cost.
452 if (BB
->getTerminator() == StopAt
) {
453 // Threading through a switch statement is particularly profitable. If this
454 // block ends in a switch, decrease its cost to make it more likely to
456 if (isa
<SwitchInst
>(StopAt
))
459 // The same holds for indirect branches, but slightly more so.
460 if (isa
<IndirectBrInst
>(StopAt
))
464 // Bump the threshold up so the early exit from the loop doesn't skip the
465 // terminator-based Size adjustment at the end.
468 // Sum up the cost of each instruction until we get to the terminator. Don't
469 // include the terminator because the copy won't include it.
471 for (; &*I
!= StopAt
; ++I
) {
473 // Stop scanning the block if we've reached the threshold.
474 if (Size
> Threshold
)
477 // Bail out if this instruction gives back a token type, it is not possible
478 // to duplicate it if it is used outside this BB.
479 if (I
->getType()->isTokenTy() && I
->isUsedOutsideOfBlock(BB
))
482 // Blocks with NoDuplicate are modelled as having infinite cost, so they
483 // are never duplicated.
484 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
485 if (CI
->cannotDuplicate() || CI
->isConvergent())
488 if (TTI
->getInstructionCost(&*I
, TargetTransformInfo::TCK_SizeAndLatency
) ==
489 TargetTransformInfo::TCC_Free
)
492 // All other instructions count for at least one unit.
495 // Calls are more expensive. If they are non-intrinsic calls, we model them
496 // as having cost of 4. If they are a non-vector intrinsic, we model them
497 // as having cost of 2 total, and if they are a vector intrinsic, we model
498 // them as having cost 1.
499 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
)) {
500 if (!isa
<IntrinsicInst
>(CI
))
502 else if (!CI
->getType()->isVectorTy())
507 return Size
> Bonus
? Size
- Bonus
: 0;
510 /// findLoopHeaders - We do not want jump threading to turn proper loop
511 /// structures into irreducible loops. Doing this breaks up the loop nesting
512 /// hierarchy and pessimizes later transformations. To prevent this from
513 /// happening, we first have to find the loop headers. Here we approximate this
514 /// by finding targets of backedges in the CFG.
516 /// Note that there definitely are cases when we want to allow threading of
517 /// edges across a loop header. For example, threading a jump from outside the
518 /// loop (the preheader) to an exit block of the loop is definitely profitable.
519 /// It is also almost always profitable to thread backedges from within the loop
520 /// to exit blocks, and is often profitable to thread backedges to other blocks
521 /// within the loop (forming a nested loop). This simple analysis is not rich
522 /// enough to track all of these properties and keep it up-to-date as the CFG
523 /// mutates, so we don't allow any of these transformations.
524 void JumpThreadingPass::findLoopHeaders(Function
&F
) {
525 SmallVector
<std::pair
<const BasicBlock
*,const BasicBlock
*>, 32> Edges
;
526 FindFunctionBackedges(F
, Edges
);
528 for (const auto &Edge
: Edges
)
529 LoopHeaders
.insert(Edge
.second
);
532 /// getKnownConstant - Helper method to determine if we can thread over a
533 /// terminator with the given value as its condition, and if so what value to
534 /// use for that. What kind of value this is depends on whether we want an
535 /// integer or a block address, but an undef is always accepted.
536 /// Returns null if Val is null or not an appropriate constant.
537 static Constant
*getKnownConstant(Value
*Val
, ConstantPreference Preference
) {
541 // Undef is "known" enough.
542 if (UndefValue
*U
= dyn_cast
<UndefValue
>(Val
))
545 if (Preference
== WantBlockAddress
)
546 return dyn_cast
<BlockAddress
>(Val
->stripPointerCasts());
548 return dyn_cast
<ConstantInt
>(Val
);
551 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
552 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
553 /// in any of our predecessors. If so, return the known list of value and pred
554 /// BB in the result vector.
556 /// This returns true if there were any known values.
557 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
558 Value
*V
, BasicBlock
*BB
, PredValueInfo
&Result
,
559 ConstantPreference Preference
, SmallPtrSet
<Value
*, 4> &RecursionSet
,
561 const DataLayout
&DL
= BB
->getDataLayout();
563 // This method walks up use-def chains recursively. Because of this, we could
564 // get into an infinite loop going around loops in the use-def chain. To
565 // prevent this, keep track of what (value, block) pairs we've already visited
566 // and terminate the search if we loop back to them
567 if (!RecursionSet
.insert(V
).second
)
570 // If V is a constant, then it is known in all predecessors.
571 if (Constant
*KC
= getKnownConstant(V
, Preference
)) {
572 for (BasicBlock
*Pred
: predecessors(BB
))
573 Result
.emplace_back(KC
, Pred
);
575 return !Result
.empty();
578 // If V is a non-instruction value, or an instruction in a different block,
579 // then it can't be derived from a PHI.
580 Instruction
*I
= dyn_cast
<Instruction
>(V
);
581 if (!I
|| I
->getParent() != BB
) {
583 // Okay, if this is a live-in value, see if it has a known value at the any
584 // edge from our predecessors.
585 for (BasicBlock
*P
: predecessors(BB
)) {
586 using namespace PatternMatch
;
587 // If the value is known by LazyValueInfo to be a constant in a
588 // predecessor, use that information to try to thread this block.
589 Constant
*PredCst
= LVI
->getConstantOnEdge(V
, P
, BB
, CxtI
);
590 // If I is a non-local compare-with-constant instruction, use more-rich
591 // 'getPredicateOnEdge' method. This would be able to handle value
592 // inequalities better, for example if the compare is "X < 4" and "X < 3"
593 // is known true but "X < 4" itself is not available.
594 CmpInst::Predicate Pred
;
597 if (!PredCst
&& match(V
, m_Cmp(Pred
, m_Value(Val
), m_Constant(Cst
))))
598 PredCst
= LVI
->getPredicateOnEdge(Pred
, Val
, Cst
, P
, BB
, CxtI
);
599 if (Constant
*KC
= getKnownConstant(PredCst
, Preference
))
600 Result
.emplace_back(KC
, P
);
603 return !Result
.empty();
606 /// If I is a PHI node, then we know the incoming values for any constants.
607 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
608 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
609 Value
*InVal
= PN
->getIncomingValue(i
);
610 if (Constant
*KC
= getKnownConstant(InVal
, Preference
)) {
611 Result
.emplace_back(KC
, PN
->getIncomingBlock(i
));
613 Constant
*CI
= LVI
->getConstantOnEdge(InVal
,
614 PN
->getIncomingBlock(i
),
616 if (Constant
*KC
= getKnownConstant(CI
, Preference
))
617 Result
.emplace_back(KC
, PN
->getIncomingBlock(i
));
621 return !Result
.empty();
624 // Handle Cast instructions.
625 if (CastInst
*CI
= dyn_cast
<CastInst
>(I
)) {
626 Value
*Source
= CI
->getOperand(0);
627 PredValueInfoTy Vals
;
628 computeValueKnownInPredecessorsImpl(Source
, BB
, Vals
, Preference
,
633 // Convert the known values.
634 for (auto &Val
: Vals
)
635 if (Constant
*Folded
= ConstantFoldCastOperand(CI
->getOpcode(), Val
.first
,
637 Result
.emplace_back(Folded
, Val
.second
);
639 return !Result
.empty();
642 if (FreezeInst
*FI
= dyn_cast
<FreezeInst
>(I
)) {
643 Value
*Source
= FI
->getOperand(0);
644 computeValueKnownInPredecessorsImpl(Source
, BB
, Result
, Preference
,
647 erase_if(Result
, [](auto &Pair
) {
648 return !isGuaranteedNotToBeUndefOrPoison(Pair
.first
);
651 return !Result
.empty();
654 // Handle some boolean conditions.
655 if (I
->getType()->getPrimitiveSizeInBits() == 1) {
656 using namespace PatternMatch
;
657 if (Preference
!= WantInteger
)
660 // X & false -> false
662 if (match(I
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
))) ||
663 match(I
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
664 PredValueInfoTy LHSVals
, RHSVals
;
666 computeValueKnownInPredecessorsImpl(Op0
, BB
, LHSVals
, WantInteger
,
668 computeValueKnownInPredecessorsImpl(Op1
, BB
, RHSVals
, WantInteger
,
671 if (LHSVals
.empty() && RHSVals
.empty())
674 ConstantInt
*InterestingVal
;
675 if (match(I
, m_LogicalOr()))
676 InterestingVal
= ConstantInt::getTrue(I
->getContext());
678 InterestingVal
= ConstantInt::getFalse(I
->getContext());
680 SmallPtrSet
<BasicBlock
*, 4> LHSKnownBBs
;
682 // Scan for the sentinel. If we find an undef, force it to the
683 // interesting value: x|undef -> true and x&undef -> false.
684 for (const auto &LHSVal
: LHSVals
)
685 if (LHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(LHSVal
.first
)) {
686 Result
.emplace_back(InterestingVal
, LHSVal
.second
);
687 LHSKnownBBs
.insert(LHSVal
.second
);
689 for (const auto &RHSVal
: RHSVals
)
690 if (RHSVal
.first
== InterestingVal
|| isa
<UndefValue
>(RHSVal
.first
)) {
691 // If we already inferred a value for this block on the LHS, don't
693 if (!LHSKnownBBs
.count(RHSVal
.second
))
694 Result
.emplace_back(InterestingVal
, RHSVal
.second
);
697 return !Result
.empty();
700 // Handle the NOT form of XOR.
701 if (I
->getOpcode() == Instruction::Xor
&&
702 isa
<ConstantInt
>(I
->getOperand(1)) &&
703 cast
<ConstantInt
>(I
->getOperand(1))->isOne()) {
704 computeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, Result
,
705 WantInteger
, RecursionSet
, CxtI
);
709 // Invert the known values.
710 for (auto &R
: Result
)
711 R
.first
= ConstantExpr::getNot(R
.first
);
716 // Try to simplify some other binary operator values.
717 } else if (BinaryOperator
*BO
= dyn_cast
<BinaryOperator
>(I
)) {
718 if (Preference
!= WantInteger
)
720 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->getOperand(1))) {
721 PredValueInfoTy LHSVals
;
722 computeValueKnownInPredecessorsImpl(BO
->getOperand(0), BB
, LHSVals
,
723 WantInteger
, RecursionSet
, CxtI
);
725 // Try to use constant folding to simplify the binary operator.
726 for (const auto &LHSVal
: LHSVals
) {
727 Constant
*V
= LHSVal
.first
;
729 ConstantFoldBinaryOpOperands(BO
->getOpcode(), V
, CI
, DL
);
731 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
732 Result
.emplace_back(KC
, LHSVal
.second
);
736 return !Result
.empty();
739 // Handle compare with phi operand, where the PHI is defined in this block.
740 if (CmpInst
*Cmp
= dyn_cast
<CmpInst
>(I
)) {
741 if (Preference
!= WantInteger
)
743 Type
*CmpType
= Cmp
->getType();
744 Value
*CmpLHS
= Cmp
->getOperand(0);
745 Value
*CmpRHS
= Cmp
->getOperand(1);
746 CmpInst::Predicate Pred
= Cmp
->getPredicate();
748 PHINode
*PN
= dyn_cast
<PHINode
>(CmpLHS
);
750 PN
= dyn_cast
<PHINode
>(CmpRHS
);
751 // Do not perform phi translation across a loop header phi, because this
752 // may result in comparison of values from two different loop iterations.
753 // FIXME: This check is broken if LoopHeaders is not populated.
754 if (PN
&& PN
->getParent() == BB
&& !LoopHeaders
.contains(BB
)) {
755 const DataLayout
&DL
= PN
->getDataLayout();
756 // We can do this simplification if any comparisons fold to true or false.
758 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
759 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
762 LHS
= PN
->getIncomingValue(i
);
763 RHS
= CmpRHS
->DoPHITranslation(BB
, PredBB
);
765 LHS
= CmpLHS
->DoPHITranslation(BB
, PredBB
);
766 RHS
= PN
->getIncomingValue(i
);
768 Value
*Res
= simplifyCmpInst(Pred
, LHS
, RHS
, {DL
});
770 if (!isa
<Constant
>(RHS
))
773 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
774 auto LHSInst
= dyn_cast
<Instruction
>(LHS
);
775 if (LHSInst
&& LHSInst
->getParent() == BB
)
778 Res
= LVI
->getPredicateOnEdge(Pred
, LHS
, cast
<Constant
>(RHS
), PredBB
,
779 BB
, CxtI
? CxtI
: Cmp
);
782 if (Constant
*KC
= getKnownConstant(Res
, WantInteger
))
783 Result
.emplace_back(KC
, PredBB
);
786 return !Result
.empty();
789 // If comparing a live-in value against a constant, see if we know the
790 // live-in value on any predecessors.
791 if (isa
<Constant
>(CmpRHS
) && !CmpType
->isVectorTy()) {
792 Constant
*CmpConst
= cast
<Constant
>(CmpRHS
);
794 if (!isa
<Instruction
>(CmpLHS
) ||
795 cast
<Instruction
>(CmpLHS
)->getParent() != BB
) {
796 for (BasicBlock
*P
: predecessors(BB
)) {
797 // If the value is known by LazyValueInfo to be a constant in a
798 // predecessor, use that information to try to thread this block.
799 Constant
*Res
= LVI
->getPredicateOnEdge(Pred
, CmpLHS
, CmpConst
, P
, BB
,
801 if (Constant
*KC
= getKnownConstant(Res
, WantInteger
))
802 Result
.emplace_back(KC
, P
);
805 return !Result
.empty();
808 // InstCombine can fold some forms of constant range checks into
809 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
812 using namespace PatternMatch
;
815 ConstantInt
*AddConst
;
816 if (isa
<ConstantInt
>(CmpConst
) &&
817 match(CmpLHS
, m_Add(m_Value(AddLHS
), m_ConstantInt(AddConst
)))) {
818 if (!isa
<Instruction
>(AddLHS
) ||
819 cast
<Instruction
>(AddLHS
)->getParent() != BB
) {
820 for (BasicBlock
*P
: predecessors(BB
)) {
821 // If the value is known by LazyValueInfo to be a ConstantRange in
822 // a predecessor, use that information to try to thread this
824 ConstantRange CR
= LVI
->getConstantRangeOnEdge(
825 AddLHS
, P
, BB
, CxtI
? CxtI
: cast
<Instruction
>(CmpLHS
));
826 // Propagate the range through the addition.
827 CR
= CR
.add(AddConst
->getValue());
829 // Get the range where the compare returns true.
830 ConstantRange CmpRange
= ConstantRange::makeExactICmpRegion(
831 Pred
, cast
<ConstantInt
>(CmpConst
)->getValue());
834 if (CmpRange
.contains(CR
))
835 ResC
= ConstantInt::getTrue(CmpType
);
836 else if (CmpRange
.inverse().contains(CR
))
837 ResC
= ConstantInt::getFalse(CmpType
);
841 Result
.emplace_back(ResC
, P
);
844 return !Result
.empty();
849 // Try to find a constant value for the LHS of a comparison,
850 // and evaluate it statically if we can.
851 PredValueInfoTy LHSVals
;
852 computeValueKnownInPredecessorsImpl(I
->getOperand(0), BB
, LHSVals
,
853 WantInteger
, RecursionSet
, CxtI
);
855 for (const auto &LHSVal
: LHSVals
) {
856 Constant
*V
= LHSVal
.first
;
858 ConstantFoldCompareInstOperands(Pred
, V
, CmpConst
, DL
);
859 if (Constant
*KC
= getKnownConstant(Folded
, WantInteger
))
860 Result
.emplace_back(KC
, LHSVal
.second
);
863 return !Result
.empty();
867 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
868 // Handle select instructions where at least one operand is a known constant
869 // and we can figure out the condition value for any predecessor block.
870 Constant
*TrueVal
= getKnownConstant(SI
->getTrueValue(), Preference
);
871 Constant
*FalseVal
= getKnownConstant(SI
->getFalseValue(), Preference
);
872 PredValueInfoTy Conds
;
873 if ((TrueVal
|| FalseVal
) &&
874 computeValueKnownInPredecessorsImpl(SI
->getCondition(), BB
, Conds
,
875 WantInteger
, RecursionSet
, CxtI
)) {
876 for (auto &C
: Conds
) {
877 Constant
*Cond
= C
.first
;
879 // Figure out what value to use for the condition.
881 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Cond
)) {
883 KnownCond
= CI
->isOne();
885 assert(isa
<UndefValue
>(Cond
) && "Unexpected condition value");
886 // Either operand will do, so be sure to pick the one that's a known
888 // FIXME: Do this more cleverly if both values are known constants?
889 KnownCond
= (TrueVal
!= nullptr);
892 // See if the select has a known constant value for this predecessor.
893 if (Constant
*Val
= KnownCond
? TrueVal
: FalseVal
)
894 Result
.emplace_back(Val
, C
.second
);
897 return !Result
.empty();
901 // If all else fails, see if LVI can figure out a constant value for us.
902 assert(CxtI
->getParent() == BB
&& "CxtI should be in BB");
903 Constant
*CI
= LVI
->getConstant(V
, CxtI
);
904 if (Constant
*KC
= getKnownConstant(CI
, Preference
)) {
905 for (BasicBlock
*Pred
: predecessors(BB
))
906 Result
.emplace_back(KC
, Pred
);
909 return !Result
.empty();
912 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
913 /// in an undefined jump, decide which block is best to revector to.
915 /// Since we can pick an arbitrary destination, we pick the successor with the
916 /// fewest predecessors. This should reduce the in-degree of the others.
917 static unsigned getBestDestForJumpOnUndef(BasicBlock
*BB
) {
918 Instruction
*BBTerm
= BB
->getTerminator();
919 unsigned MinSucc
= 0;
920 BasicBlock
*TestBB
= BBTerm
->getSuccessor(MinSucc
);
921 // Compute the successor with the minimum number of predecessors.
922 unsigned MinNumPreds
= pred_size(TestBB
);
923 for (unsigned i
= 1, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
924 TestBB
= BBTerm
->getSuccessor(i
);
925 unsigned NumPreds
= pred_size(TestBB
);
926 if (NumPreds
< MinNumPreds
) {
928 MinNumPreds
= NumPreds
;
935 static bool hasAddressTakenAndUsed(BasicBlock
*BB
) {
936 if (!BB
->hasAddressTaken()) return false;
938 // If the block has its address taken, it may be a tree of dead constants
939 // hanging off of it. These shouldn't keep the block alive.
940 BlockAddress
*BA
= BlockAddress::get(BB
);
941 BA
->removeDeadConstantUsers();
942 return !BA
->use_empty();
945 /// processBlock - If there are any predecessors whose control can be threaded
946 /// through to a successor, transform them now.
947 bool JumpThreadingPass::processBlock(BasicBlock
*BB
) {
948 // If the block is trivially dead, just return and let the caller nuke it.
949 // This simplifies other transformations.
950 if (DTU
->isBBPendingDeletion(BB
) ||
951 (pred_empty(BB
) && BB
!= &BB
->getParent()->getEntryBlock()))
954 // If this block has a single predecessor, and if that pred has a single
955 // successor, merge the blocks. This encourages recursive jump threading
956 // because now the condition in this block can be threaded through
957 // predecessors of our predecessor block.
958 if (maybeMergeBasicBlockIntoOnlyPred(BB
))
961 if (tryToUnfoldSelectInCurrBB(BB
))
964 // Look if we can propagate guards to predecessors.
965 if (HasGuards
&& processGuards(BB
))
968 // What kind of constant we're looking for.
969 ConstantPreference Preference
= WantInteger
;
971 // Look to see if the terminator is a conditional branch, switch or indirect
972 // branch, if not we can't thread it.
974 Instruction
*Terminator
= BB
->getTerminator();
975 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Terminator
)) {
976 // Can't thread an unconditional jump.
977 if (BI
->isUnconditional()) return false;
978 Condition
= BI
->getCondition();
979 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Terminator
)) {
980 Condition
= SI
->getCondition();
981 } else if (IndirectBrInst
*IB
= dyn_cast
<IndirectBrInst
>(Terminator
)) {
982 // Can't thread indirect branch with no successors.
983 if (IB
->getNumSuccessors() == 0) return false;
984 Condition
= IB
->getAddress()->stripPointerCasts();
985 Preference
= WantBlockAddress
;
987 return false; // Must be an invoke or callbr.
990 // Keep track if we constant folded the condition in this invocation.
991 bool ConstantFolded
= false;
993 // Run constant folding to see if we can reduce the condition to a simple
995 if (Instruction
*I
= dyn_cast
<Instruction
>(Condition
)) {
997 ConstantFoldInstruction(I
, BB
->getDataLayout(), TLI
);
999 I
->replaceAllUsesWith(SimpleVal
);
1000 if (isInstructionTriviallyDead(I
, TLI
))
1001 I
->eraseFromParent();
1002 Condition
= SimpleVal
;
1003 ConstantFolded
= true;
1007 // If the terminator is branching on an undef or freeze undef, we can pick any
1008 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1009 auto *FI
= dyn_cast
<FreezeInst
>(Condition
);
1010 if (isa
<UndefValue
>(Condition
) ||
1011 (FI
&& isa
<UndefValue
>(FI
->getOperand(0)) && FI
->hasOneUse())) {
1012 unsigned BestSucc
= getBestDestForJumpOnUndef(BB
);
1013 std::vector
<DominatorTree::UpdateType
> Updates
;
1015 // Fold the branch/switch.
1016 Instruction
*BBTerm
= BB
->getTerminator();
1017 Updates
.reserve(BBTerm
->getNumSuccessors());
1018 for (unsigned i
= 0, e
= BBTerm
->getNumSuccessors(); i
!= e
; ++i
) {
1019 if (i
== BestSucc
) continue;
1020 BasicBlock
*Succ
= BBTerm
->getSuccessor(i
);
1021 Succ
->removePredecessor(BB
, true);
1022 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
1025 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1026 << "' folding undef terminator: " << *BBTerm
<< '\n');
1027 Instruction
*NewBI
= BranchInst::Create(BBTerm
->getSuccessor(BestSucc
), BBTerm
->getIterator());
1028 NewBI
->setDebugLoc(BBTerm
->getDebugLoc());
1030 BBTerm
->eraseFromParent();
1031 DTU
->applyUpdatesPermissive(Updates
);
1033 FI
->eraseFromParent();
1037 // If the terminator of this block is branching on a constant, simplify the
1038 // terminator to an unconditional branch. This can occur due to threading in
1040 if (getKnownConstant(Condition
, Preference
)) {
1041 LLVM_DEBUG(dbgs() << " In block '" << BB
->getName()
1042 << "' folding terminator: " << *BB
->getTerminator()
1045 ConstantFoldTerminator(BB
, true, nullptr, DTU
.get());
1046 if (auto *BPI
= getBPI())
1047 BPI
->eraseBlock(BB
);
1051 Instruction
*CondInst
= dyn_cast
<Instruction
>(Condition
);
1053 // All the rest of our checks depend on the condition being an instruction.
1055 // FIXME: Unify this with code below.
1056 if (processThreadableEdges(Condition
, BB
, Preference
, Terminator
))
1058 return ConstantFolded
;
1061 // Some of the following optimization can safely work on the unfrozen cond.
1062 Value
*CondWithoutFreeze
= CondInst
;
1063 if (auto *FI
= dyn_cast
<FreezeInst
>(CondInst
))
1064 CondWithoutFreeze
= FI
->getOperand(0);
1066 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(CondWithoutFreeze
)) {
1067 // If we're branching on a conditional, LVI might be able to determine
1068 // it's value at the branch instruction. We only handle comparisons
1069 // against a constant at this time.
1070 if (Constant
*CondConst
= dyn_cast
<Constant
>(CondCmp
->getOperand(1))) {
1072 LVI
->getPredicateAt(CondCmp
->getPredicate(), CondCmp
->getOperand(0),
1073 CondConst
, BB
->getTerminator(),
1074 /*UseBlockValue=*/false);
1076 // We can safely replace *some* uses of the CondInst if it has
1077 // exactly one value as returned by LVI. RAUW is incorrect in the
1078 // presence of guards and assumes, that have the `Cond` as the use. This
1079 // is because we use the guards/assume to reason about the `Cond` value
1080 // at the end of block, but RAUW unconditionally replaces all uses
1081 // including the guards/assumes themselves and the uses before the
1083 if (replaceFoldableUses(CondCmp
, Res
, BB
))
1087 // We did not manage to simplify this branch, try to see whether
1088 // CondCmp depends on a known phi-select pattern.
1089 if (tryToUnfoldSelect(CondCmp
, BB
))
1094 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator()))
1095 if (tryToUnfoldSelect(SI
, BB
))
1098 // Check for some cases that are worth simplifying. Right now we want to look
1099 // for loads that are used by a switch or by the condition for the branch. If
1100 // we see one, check to see if it's partially redundant. If so, insert a PHI
1101 // which can then be used to thread the values.
1102 Value
*SimplifyValue
= CondWithoutFreeze
;
1104 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(SimplifyValue
))
1105 if (isa
<Constant
>(CondCmp
->getOperand(1)))
1106 SimplifyValue
= CondCmp
->getOperand(0);
1108 // TODO: There are other places where load PRE would be profitable, such as
1109 // more complex comparisons.
1110 if (LoadInst
*LoadI
= dyn_cast
<LoadInst
>(SimplifyValue
))
1111 if (simplifyPartiallyRedundantLoad(LoadI
))
1114 // Before threading, try to propagate profile data backwards:
1115 if (PHINode
*PN
= dyn_cast
<PHINode
>(CondInst
))
1116 if (PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1117 updatePredecessorProfileMetadata(PN
, BB
);
1119 // Handle a variety of cases where we are branching on something derived from
1120 // a PHI node in the current block. If we can prove that any predecessors
1121 // compute a predictable value based on a PHI node, thread those predecessors.
1122 if (processThreadableEdges(CondInst
, BB
, Preference
, Terminator
))
1125 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1126 // the current block, see if we can simplify.
1127 PHINode
*PN
= dyn_cast
<PHINode
>(CondWithoutFreeze
);
1128 if (PN
&& PN
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1129 return processBranchOnPHI(PN
);
1131 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1132 if (CondInst
->getOpcode() == Instruction::Xor
&&
1133 CondInst
->getParent() == BB
&& isa
<BranchInst
>(BB
->getTerminator()))
1134 return processBranchOnXOR(cast
<BinaryOperator
>(CondInst
));
1136 // Search for a stronger dominating condition that can be used to simplify a
1137 // conditional branch leaving BB.
1138 if (processImpliedCondition(BB
))
1144 bool JumpThreadingPass::processImpliedCondition(BasicBlock
*BB
) {
1145 auto *BI
= dyn_cast
<BranchInst
>(BB
->getTerminator());
1146 if (!BI
|| !BI
->isConditional())
1149 Value
*Cond
= BI
->getCondition();
1150 // Assuming that predecessor's branch was taken, if pred's branch condition
1151 // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1152 // freeze(Cond) is either true or a nondeterministic value.
1153 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1154 // without affecting other instructions.
1155 auto *FICond
= dyn_cast
<FreezeInst
>(Cond
);
1156 if (FICond
&& FICond
->hasOneUse())
1157 Cond
= FICond
->getOperand(0);
1161 BasicBlock
*CurrentBB
= BB
;
1162 BasicBlock
*CurrentPred
= BB
->getSinglePredecessor();
1165 auto &DL
= BB
->getDataLayout();
1167 while (CurrentPred
&& Iter
++ < ImplicationSearchThreshold
) {
1168 auto *PBI
= dyn_cast
<BranchInst
>(CurrentPred
->getTerminator());
1169 if (!PBI
|| !PBI
->isConditional())
1171 if (PBI
->getSuccessor(0) != CurrentBB
&& PBI
->getSuccessor(1) != CurrentBB
)
1174 bool CondIsTrue
= PBI
->getSuccessor(0) == CurrentBB
;
1175 std::optional
<bool> Implication
=
1176 isImpliedCondition(PBI
->getCondition(), Cond
, DL
, CondIsTrue
);
1178 // If the branch condition of BB (which is Cond) and CurrentPred are
1179 // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1180 if (!Implication
&& FICond
&& isa
<FreezeInst
>(PBI
->getCondition())) {
1181 if (cast
<FreezeInst
>(PBI
->getCondition())->getOperand(0) ==
1182 FICond
->getOperand(0))
1183 Implication
= CondIsTrue
;
1187 BasicBlock
*KeepSucc
= BI
->getSuccessor(*Implication
? 0 : 1);
1188 BasicBlock
*RemoveSucc
= BI
->getSuccessor(*Implication
? 1 : 0);
1189 RemoveSucc
->removePredecessor(BB
);
1190 BranchInst
*UncondBI
= BranchInst::Create(KeepSucc
, BI
->getIterator());
1191 UncondBI
->setDebugLoc(BI
->getDebugLoc());
1193 BI
->eraseFromParent();
1195 FICond
->eraseFromParent();
1197 DTU
->applyUpdatesPermissive({{DominatorTree::Delete
, BB
, RemoveSucc
}});
1198 if (auto *BPI
= getBPI())
1199 BPI
->eraseBlock(BB
);
1202 CurrentBB
= CurrentPred
;
1203 CurrentPred
= CurrentBB
->getSinglePredecessor();
1209 /// Return true if Op is an instruction defined in the given block.
1210 static bool isOpDefinedInBlock(Value
*Op
, BasicBlock
*BB
) {
1211 if (Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
))
1212 if (OpInst
->getParent() == BB
)
1217 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1218 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1219 /// This is an important optimization that encourages jump threading, and needs
1220 /// to be run interlaced with other jump threading tasks.
1221 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst
*LoadI
) {
1222 // Don't hack volatile and ordered loads.
1223 if (!LoadI
->isUnordered()) return false;
1225 // If the load is defined in a block with exactly one predecessor, it can't be
1226 // partially redundant.
1227 BasicBlock
*LoadBB
= LoadI
->getParent();
1228 if (LoadBB
->getSinglePredecessor())
1231 // If the load is defined in an EH pad, it can't be partially redundant,
1232 // because the edges between the invoke and the EH pad cannot have other
1233 // instructions between them.
1234 if (LoadBB
->isEHPad())
1237 Value
*LoadedPtr
= LoadI
->getOperand(0);
1239 // If the loaded operand is defined in the LoadBB and its not a phi,
1240 // it can't be available in predecessors.
1241 if (isOpDefinedInBlock(LoadedPtr
, LoadBB
) && !isa
<PHINode
>(LoadedPtr
))
1244 // Scan a few instructions up from the load, to see if it is obviously live at
1245 // the entry to its block.
1246 BasicBlock::iterator
BBIt(LoadI
);
1248 BatchAAResults
BatchAA(*AA
);
1249 // The dominator tree is updated lazily and may not be valid at this point.
1250 BatchAA
.disableDominatorTree();
1251 if (Value
*AvailableVal
= FindAvailableLoadedValue(
1252 LoadI
, LoadBB
, BBIt
, DefMaxInstsToScan
, &BatchAA
, &IsLoadCSE
)) {
1253 // If the value of the load is locally available within the block, just use
1254 // it. This frequently occurs for reg2mem'd allocas.
1257 LoadInst
*NLoadI
= cast
<LoadInst
>(AvailableVal
);
1258 combineMetadataForCSE(NLoadI
, LoadI
, false);
1259 LVI
->forgetValue(NLoadI
);
1262 // If the returned value is the load itself, replace with poison. This can
1263 // only happen in dead loops.
1264 if (AvailableVal
== LoadI
)
1265 AvailableVal
= PoisonValue::get(LoadI
->getType());
1266 if (AvailableVal
->getType() != LoadI
->getType()) {
1267 AvailableVal
= CastInst::CreateBitOrPointerCast(
1268 AvailableVal
, LoadI
->getType(), "", LoadI
->getIterator());
1269 cast
<Instruction
>(AvailableVal
)->setDebugLoc(LoadI
->getDebugLoc());
1271 LoadI
->replaceAllUsesWith(AvailableVal
);
1272 LoadI
->eraseFromParent();
1276 // Otherwise, if we scanned the whole block and got to the top of the block,
1277 // we know the block is locally transparent to the load. If not, something
1278 // might clobber its value.
1279 if (BBIt
!= LoadBB
->begin())
1282 // If all of the loads and stores that feed the value have the same AA tags,
1283 // then we can propagate them onto any newly inserted loads.
1284 AAMDNodes AATags
= LoadI
->getAAMetadata();
1286 SmallPtrSet
<BasicBlock
*, 8> PredsScanned
;
1288 using AvailablePredsTy
= SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8>;
1290 AvailablePredsTy AvailablePreds
;
1291 BasicBlock
*OneUnavailablePred
= nullptr;
1292 SmallVector
<LoadInst
*, 8> CSELoads
;
1294 // If we got here, the loaded value is transparent through to the start of the
1295 // block. Check to see if it is available in any of the predecessor blocks.
1296 for (BasicBlock
*PredBB
: predecessors(LoadBB
)) {
1297 // If we already scanned this predecessor, skip it.
1298 if (!PredsScanned
.insert(PredBB
).second
)
1301 BBIt
= PredBB
->end();
1302 unsigned NumScanedInst
= 0;
1303 Value
*PredAvailable
= nullptr;
1304 // NOTE: We don't CSE load that is volatile or anything stronger than
1305 // unordered, that should have been checked when we entered the function.
1306 assert(LoadI
->isUnordered() &&
1307 "Attempting to CSE volatile or atomic loads");
1308 // If this is a load on a phi pointer, phi-translate it and search
1309 // for available load/store to the pointer in predecessors.
1310 Type
*AccessTy
= LoadI
->getType();
1311 const auto &DL
= LoadI
->getDataLayout();
1312 MemoryLocation
Loc(LoadedPtr
->DoPHITranslation(LoadBB
, PredBB
),
1313 LocationSize::precise(DL
.getTypeStoreSize(AccessTy
)),
1315 PredAvailable
= findAvailablePtrLoadStore(
1316 Loc
, AccessTy
, LoadI
->isAtomic(), PredBB
, BBIt
, DefMaxInstsToScan
,
1317 &BatchAA
, &IsLoadCSE
, &NumScanedInst
);
1319 // If PredBB has a single predecessor, continue scanning through the
1320 // single predecessor.
1321 BasicBlock
*SinglePredBB
= PredBB
;
1322 while (!PredAvailable
&& SinglePredBB
&& BBIt
== SinglePredBB
->begin() &&
1323 NumScanedInst
< DefMaxInstsToScan
) {
1324 SinglePredBB
= SinglePredBB
->getSinglePredecessor();
1326 BBIt
= SinglePredBB
->end();
1327 PredAvailable
= findAvailablePtrLoadStore(
1328 Loc
, AccessTy
, LoadI
->isAtomic(), SinglePredBB
, BBIt
,
1329 (DefMaxInstsToScan
- NumScanedInst
), &BatchAA
, &IsLoadCSE
,
1334 if (!PredAvailable
) {
1335 OneUnavailablePred
= PredBB
;
1340 CSELoads
.push_back(cast
<LoadInst
>(PredAvailable
));
1342 // If so, this load is partially redundant. Remember this info so that we
1343 // can create a PHI node.
1344 AvailablePreds
.emplace_back(PredBB
, PredAvailable
);
1347 // If the loaded value isn't available in any predecessor, it isn't partially
1349 if (AvailablePreds
.empty()) return false;
1351 // Okay, the loaded value is available in at least one (and maybe all!)
1352 // predecessors. If the value is unavailable in more than one unique
1353 // predecessor, we want to insert a merge block for those common predecessors.
1354 // This ensures that we only have to insert one reload, thus not increasing
1356 BasicBlock
*UnavailablePred
= nullptr;
1358 // If the value is unavailable in one of predecessors, we will end up
1359 // inserting a new instruction into them. It is only valid if all the
1360 // instructions before LoadI are guaranteed to pass execution to its
1361 // successor, or if LoadI is safe to speculate.
1362 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1363 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1364 // It requires domination tree analysis, so for this simple case it is an
1366 if (PredsScanned
.size() != AvailablePreds
.size() &&
1367 !isSafeToSpeculativelyExecute(LoadI
))
1368 for (auto I
= LoadBB
->begin(); &*I
!= LoadI
; ++I
)
1369 if (!isGuaranteedToTransferExecutionToSuccessor(&*I
))
1372 // If there is exactly one predecessor where the value is unavailable, the
1373 // already computed 'OneUnavailablePred' block is it. If it ends in an
1374 // unconditional branch, we know that it isn't a critical edge.
1375 if (PredsScanned
.size() == AvailablePreds
.size()+1 &&
1376 OneUnavailablePred
->getTerminator()->getNumSuccessors() == 1) {
1377 UnavailablePred
= OneUnavailablePred
;
1378 } else if (PredsScanned
.size() != AvailablePreds
.size()) {
1379 // Otherwise, we had multiple unavailable predecessors or we had a critical
1380 // edge from the one.
1381 SmallVector
<BasicBlock
*, 8> PredsToSplit
;
1382 SmallPtrSet
<BasicBlock
*, 8> AvailablePredSet
;
1384 for (const auto &AvailablePred
: AvailablePreds
)
1385 AvailablePredSet
.insert(AvailablePred
.first
);
1387 // Add all the unavailable predecessors to the PredsToSplit list.
1388 for (BasicBlock
*P
: predecessors(LoadBB
)) {
1389 // If the predecessor is an indirect goto, we can't split the edge.
1390 if (isa
<IndirectBrInst
>(P
->getTerminator()))
1393 if (!AvailablePredSet
.count(P
))
1394 PredsToSplit
.push_back(P
);
1397 // Split them out to their own block.
1398 UnavailablePred
= splitBlockPreds(LoadBB
, PredsToSplit
, "thread-pre-split");
1401 // If the value isn't available in all predecessors, then there will be
1402 // exactly one where it isn't available. Insert a load on that edge and add
1403 // it to the AvailablePreds list.
1404 if (UnavailablePred
) {
1405 assert(UnavailablePred
->getTerminator()->getNumSuccessors() == 1 &&
1406 "Can't handle critical edge here!");
1407 LoadInst
*NewVal
= new LoadInst(
1408 LoadI
->getType(), LoadedPtr
->DoPHITranslation(LoadBB
, UnavailablePred
),
1409 LoadI
->getName() + ".pr", false, LoadI
->getAlign(),
1410 LoadI
->getOrdering(), LoadI
->getSyncScopeID(),
1411 UnavailablePred
->getTerminator()->getIterator());
1412 NewVal
->setDebugLoc(LoadI
->getDebugLoc());
1414 NewVal
->setAAMetadata(AATags
);
1416 AvailablePreds
.emplace_back(UnavailablePred
, NewVal
);
1419 // Now we know that each predecessor of this block has a value in
1420 // AvailablePreds, sort them for efficient access as we're walking the preds.
1421 array_pod_sort(AvailablePreds
.begin(), AvailablePreds
.end());
1423 // Create a PHI node at the start of the block for the PRE'd load value.
1424 PHINode
*PN
= PHINode::Create(LoadI
->getType(), pred_size(LoadBB
), "");
1425 PN
->insertBefore(LoadBB
->begin());
1426 PN
->takeName(LoadI
);
1427 PN
->setDebugLoc(LoadI
->getDebugLoc());
1429 // Insert new entries into the PHI for each predecessor. A single block may
1430 // have multiple entries here.
1431 for (BasicBlock
*P
: predecessors(LoadBB
)) {
1432 AvailablePredsTy::iterator I
=
1433 llvm::lower_bound(AvailablePreds
, std::make_pair(P
, (Value
*)nullptr));
1435 assert(I
!= AvailablePreds
.end() && I
->first
== P
&&
1436 "Didn't find entry for predecessor!");
1438 // If we have an available predecessor but it requires casting, insert the
1439 // cast in the predecessor and use the cast. Note that we have to update the
1440 // AvailablePreds vector as we go so that all of the PHI entries for this
1441 // predecessor use the same bitcast.
1442 Value
*&PredV
= I
->second
;
1443 if (PredV
->getType() != LoadI
->getType())
1444 PredV
= CastInst::CreateBitOrPointerCast(
1445 PredV
, LoadI
->getType(), "", P
->getTerminator()->getIterator());
1447 PN
->addIncoming(PredV
, I
->first
);
1450 for (LoadInst
*PredLoadI
: CSELoads
) {
1451 combineMetadataForCSE(PredLoadI
, LoadI
, true);
1452 LVI
->forgetValue(PredLoadI
);
1455 LoadI
->replaceAllUsesWith(PN
);
1456 LoadI
->eraseFromParent();
1461 /// findMostPopularDest - The specified list contains multiple possible
1462 /// threadable destinations. Pick the one that occurs the most frequently in
1465 findMostPopularDest(BasicBlock
*BB
,
1466 const SmallVectorImpl
<std::pair
<BasicBlock
*,
1467 BasicBlock
*>> &PredToDestList
) {
1468 assert(!PredToDestList
.empty());
1470 // Determine popularity. If there are multiple possible destinations, we
1471 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1472 // blocks with known and real destinations to threading undef. We'll handle
1473 // them later if interesting.
1474 MapVector
<BasicBlock
*, unsigned> DestPopularity
;
1476 // Populate DestPopularity with the successors in the order they appear in the
1477 // successor list. This way, we ensure determinism by iterating it in the
1478 // same order in llvm::max_element below. We map nullptr to 0 so that we can
1479 // return nullptr when PredToDestList contains nullptr only.
1480 DestPopularity
[nullptr] = 0;
1481 for (auto *SuccBB
: successors(BB
))
1482 DestPopularity
[SuccBB
] = 0;
1484 for (const auto &PredToDest
: PredToDestList
)
1485 if (PredToDest
.second
)
1486 DestPopularity
[PredToDest
.second
]++;
1488 // Find the most popular dest.
1489 auto MostPopular
= llvm::max_element(DestPopularity
, llvm::less_second());
1491 // Okay, we have finally picked the most popular destination.
1492 return MostPopular
->first
;
1495 // Try to evaluate the value of V when the control flows from PredPredBB to
1496 // BB->getSinglePredecessor() and then on to BB.
1497 Constant
*JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock
*BB
,
1498 BasicBlock
*PredPredBB
,
1500 const DataLayout
&DL
) {
1501 BasicBlock
*PredBB
= BB
->getSinglePredecessor();
1502 assert(PredBB
&& "Expected a single predecessor");
1504 if (Constant
*Cst
= dyn_cast
<Constant
>(V
)) {
1508 // Consult LVI if V is not an instruction in BB or PredBB.
1509 Instruction
*I
= dyn_cast
<Instruction
>(V
);
1510 if (!I
|| (I
->getParent() != BB
&& I
->getParent() != PredBB
)) {
1511 return LVI
->getConstantOnEdge(V
, PredPredBB
, PredBB
, nullptr);
1514 // Look into a PHI argument.
1515 if (PHINode
*PHI
= dyn_cast
<PHINode
>(V
)) {
1516 if (PHI
->getParent() == PredBB
)
1517 return dyn_cast
<Constant
>(PHI
->getIncomingValueForBlock(PredPredBB
));
1521 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1522 if (CmpInst
*CondCmp
= dyn_cast
<CmpInst
>(V
)) {
1523 if (CondCmp
->getParent() == BB
) {
1525 evaluateOnPredecessorEdge(BB
, PredPredBB
, CondCmp
->getOperand(0), DL
);
1527 evaluateOnPredecessorEdge(BB
, PredPredBB
, CondCmp
->getOperand(1), DL
);
1529 return ConstantFoldCompareInstOperands(CondCmp
->getPredicate(), Op0
,
1539 bool JumpThreadingPass::processThreadableEdges(Value
*Cond
, BasicBlock
*BB
,
1540 ConstantPreference Preference
,
1541 Instruction
*CxtI
) {
1542 // If threading this would thread across a loop header, don't even try to
1544 if (LoopHeaders
.count(BB
))
1547 PredValueInfoTy PredValues
;
1548 if (!computeValueKnownInPredecessors(Cond
, BB
, PredValues
, Preference
,
1550 // We don't have known values in predecessors. See if we can thread through
1551 // BB and its sole predecessor.
1552 return maybethreadThroughTwoBasicBlocks(BB
, Cond
);
1555 assert(!PredValues
.empty() &&
1556 "computeValueKnownInPredecessors returned true with no values");
1558 LLVM_DEBUG(dbgs() << "IN BB: " << *BB
;
1559 for (const auto &PredValue
: PredValues
) {
1560 dbgs() << " BB '" << BB
->getName()
1561 << "': FOUND condition = " << *PredValue
.first
1562 << " for pred '" << PredValue
.second
->getName() << "'.\n";
1565 // Decide what we want to thread through. Convert our list of known values to
1566 // a list of known destinations for each pred. This also discards duplicate
1567 // predecessors and keeps track of the undefined inputs (which are represented
1568 // as a null dest in the PredToDestList).
1569 SmallPtrSet
<BasicBlock
*, 16> SeenPreds
;
1570 SmallVector
<std::pair
<BasicBlock
*, BasicBlock
*>, 16> PredToDestList
;
1572 BasicBlock
*OnlyDest
= nullptr;
1573 BasicBlock
*MultipleDestSentinel
= (BasicBlock
*)(intptr_t)~0ULL;
1574 Constant
*OnlyVal
= nullptr;
1575 Constant
*MultipleVal
= (Constant
*)(intptr_t)~0ULL;
1577 for (const auto &PredValue
: PredValues
) {
1578 BasicBlock
*Pred
= PredValue
.second
;
1579 if (!SeenPreds
.insert(Pred
).second
)
1580 continue; // Duplicate predecessor entry.
1582 Constant
*Val
= PredValue
.first
;
1585 if (isa
<UndefValue
>(Val
))
1587 else if (BranchInst
*BI
= dyn_cast
<BranchInst
>(BB
->getTerminator())) {
1588 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1589 DestBB
= BI
->getSuccessor(cast
<ConstantInt
>(Val
)->isZero());
1590 } else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(BB
->getTerminator())) {
1591 assert(isa
<ConstantInt
>(Val
) && "Expecting a constant integer");
1592 DestBB
= SI
->findCaseValue(cast
<ConstantInt
>(Val
))->getCaseSuccessor();
1594 assert(isa
<IndirectBrInst
>(BB
->getTerminator())
1595 && "Unexpected terminator");
1596 assert(isa
<BlockAddress
>(Val
) && "Expecting a constant blockaddress");
1597 DestBB
= cast
<BlockAddress
>(Val
)->getBasicBlock();
1600 // If we have exactly one destination, remember it for efficiency below.
1601 if (PredToDestList
.empty()) {
1605 if (OnlyDest
!= DestBB
)
1606 OnlyDest
= MultipleDestSentinel
;
1607 // It possible we have same destination, but different value, e.g. default
1608 // case in switchinst.
1610 OnlyVal
= MultipleVal
;
1613 // If the predecessor ends with an indirect goto, we can't change its
1615 if (isa
<IndirectBrInst
>(Pred
->getTerminator()))
1618 PredToDestList
.emplace_back(Pred
, DestBB
);
1621 // If all edges were unthreadable, we fail.
1622 if (PredToDestList
.empty())
1625 // If all the predecessors go to a single known successor, we want to fold,
1626 // not thread. By doing so, we do not need to duplicate the current block and
1627 // also miss potential opportunities in case we dont/cant duplicate.
1628 if (OnlyDest
&& OnlyDest
!= MultipleDestSentinel
) {
1629 if (BB
->hasNPredecessors(PredToDestList
.size())) {
1630 bool SeenFirstBranchToOnlyDest
= false;
1631 std::vector
<DominatorTree::UpdateType
> Updates
;
1632 Updates
.reserve(BB
->getTerminator()->getNumSuccessors() - 1);
1633 for (BasicBlock
*SuccBB
: successors(BB
)) {
1634 if (SuccBB
== OnlyDest
&& !SeenFirstBranchToOnlyDest
) {
1635 SeenFirstBranchToOnlyDest
= true; // Don't modify the first branch.
1637 SuccBB
->removePredecessor(BB
, true); // This is unreachable successor.
1638 Updates
.push_back({DominatorTree::Delete
, BB
, SuccBB
});
1642 // Finally update the terminator.
1643 Instruction
*Term
= BB
->getTerminator();
1644 Instruction
*NewBI
= BranchInst::Create(OnlyDest
, Term
->getIterator());
1645 NewBI
->setDebugLoc(Term
->getDebugLoc());
1647 Term
->eraseFromParent();
1648 DTU
->applyUpdatesPermissive(Updates
);
1649 if (auto *BPI
= getBPI())
1650 BPI
->eraseBlock(BB
);
1652 // If the condition is now dead due to the removal of the old terminator,
1654 if (auto *CondInst
= dyn_cast
<Instruction
>(Cond
)) {
1655 if (CondInst
->use_empty() && !CondInst
->mayHaveSideEffects())
1656 CondInst
->eraseFromParent();
1657 // We can safely replace *some* uses of the CondInst if it has
1658 // exactly one value as returned by LVI. RAUW is incorrect in the
1659 // presence of guards and assumes, that have the `Cond` as the use. This
1660 // is because we use the guards/assume to reason about the `Cond` value
1661 // at the end of block, but RAUW unconditionally replaces all uses
1662 // including the guards/assumes themselves and the uses before the
1664 else if (OnlyVal
&& OnlyVal
!= MultipleVal
)
1665 replaceFoldableUses(CondInst
, OnlyVal
, BB
);
1671 // Determine which is the most common successor. If we have many inputs and
1672 // this block is a switch, we want to start by threading the batch that goes
1673 // to the most popular destination first. If we only know about one
1674 // threadable destination (the common case) we can avoid this.
1675 BasicBlock
*MostPopularDest
= OnlyDest
;
1677 if (MostPopularDest
== MultipleDestSentinel
) {
1678 // Remove any loop headers from the Dest list, threadEdge conservatively
1679 // won't process them, but we might have other destination that are eligible
1680 // and we still want to process.
1681 erase_if(PredToDestList
,
1682 [&](const std::pair
<BasicBlock
*, BasicBlock
*> &PredToDest
) {
1683 return LoopHeaders
.contains(PredToDest
.second
);
1686 if (PredToDestList
.empty())
1689 MostPopularDest
= findMostPopularDest(BB
, PredToDestList
);
1692 // Now that we know what the most popular destination is, factor all
1693 // predecessors that will jump to it into a single predecessor.
1694 SmallVector
<BasicBlock
*, 16> PredsToFactor
;
1695 for (const auto &PredToDest
: PredToDestList
)
1696 if (PredToDest
.second
== MostPopularDest
) {
1697 BasicBlock
*Pred
= PredToDest
.first
;
1699 // This predecessor may be a switch or something else that has multiple
1700 // edges to the block. Factor each of these edges by listing them
1701 // according to # occurrences in PredsToFactor.
1702 for (BasicBlock
*Succ
: successors(Pred
))
1704 PredsToFactor
.push_back(Pred
);
1707 // If the threadable edges are branching on an undefined value, we get to pick
1708 // the destination that these predecessors should get to.
1709 if (!MostPopularDest
)
1710 MostPopularDest
= BB
->getTerminator()->
1711 getSuccessor(getBestDestForJumpOnUndef(BB
));
1713 // Ok, try to thread it!
1714 return tryThreadEdge(BB
, PredsToFactor
, MostPopularDest
);
1717 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1718 /// a PHI node (or freeze PHI) in the current block. See if there are any
1719 /// simplifications we can do based on inputs to the phi node.
1720 bool JumpThreadingPass::processBranchOnPHI(PHINode
*PN
) {
1721 BasicBlock
*BB
= PN
->getParent();
1723 // TODO: We could make use of this to do it once for blocks with common PHI
1725 SmallVector
<BasicBlock
*, 1> PredBBs
;
1728 // If any of the predecessor blocks end in an unconditional branch, we can
1729 // *duplicate* the conditional branch into that block in order to further
1730 // encourage jump threading and to eliminate cases where we have branch on a
1731 // phi of an icmp (branch on icmp is much better).
1732 // This is still beneficial when a frozen phi is used as the branch condition
1733 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1734 // to br(icmp(freeze ...)).
1735 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
1736 BasicBlock
*PredBB
= PN
->getIncomingBlock(i
);
1737 if (BranchInst
*PredBr
= dyn_cast
<BranchInst
>(PredBB
->getTerminator()))
1738 if (PredBr
->isUnconditional()) {
1739 PredBBs
[0] = PredBB
;
1740 // Try to duplicate BB into PredBB.
1741 if (duplicateCondBranchOnPHIIntoPred(BB
, PredBBs
))
1749 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1750 /// a xor instruction in the current block. See if there are any
1751 /// simplifications we can do based on inputs to the xor.
1752 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator
*BO
) {
1753 BasicBlock
*BB
= BO
->getParent();
1755 // If either the LHS or RHS of the xor is a constant, don't do this
1757 if (isa
<ConstantInt
>(BO
->getOperand(0)) ||
1758 isa
<ConstantInt
>(BO
->getOperand(1)))
1761 // If the first instruction in BB isn't a phi, we won't be able to infer
1762 // anything special about any particular predecessor.
1763 if (!isa
<PHINode
>(BB
->front()))
1766 // If this BB is a landing pad, we won't be able to split the edge into it.
1770 // If we have a xor as the branch input to this block, and we know that the
1771 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1772 // the condition into the predecessor and fix that value to true, saving some
1773 // logical ops on that path and encouraging other paths to simplify.
1775 // This copies something like this:
1778 // %X = phi i1 [1], [%X']
1779 // %Y = icmp eq i32 %A, %B
1780 // %Z = xor i1 %X, %Y
1785 // %Y = icmp ne i32 %A, %B
1788 PredValueInfoTy XorOpValues
;
1790 if (!computeValueKnownInPredecessors(BO
->getOperand(0), BB
, XorOpValues
,
1792 assert(XorOpValues
.empty());
1793 if (!computeValueKnownInPredecessors(BO
->getOperand(1), BB
, XorOpValues
,
1799 assert(!XorOpValues
.empty() &&
1800 "computeValueKnownInPredecessors returned true with no values");
1802 // Scan the information to see which is most popular: true or false. The
1803 // predecessors can be of the set true, false, or undef.
1804 unsigned NumTrue
= 0, NumFalse
= 0;
1805 for (const auto &XorOpValue
: XorOpValues
) {
1806 if (isa
<UndefValue
>(XorOpValue
.first
))
1807 // Ignore undefs for the count.
1809 if (cast
<ConstantInt
>(XorOpValue
.first
)->isZero())
1815 // Determine which value to split on, true, false, or undef if neither.
1816 ConstantInt
*SplitVal
= nullptr;
1817 if (NumTrue
> NumFalse
)
1818 SplitVal
= ConstantInt::getTrue(BB
->getContext());
1819 else if (NumTrue
!= 0 || NumFalse
!= 0)
1820 SplitVal
= ConstantInt::getFalse(BB
->getContext());
1822 // Collect all of the blocks that this can be folded into so that we can
1823 // factor this once and clone it once.
1824 SmallVector
<BasicBlock
*, 8> BlocksToFoldInto
;
1825 for (const auto &XorOpValue
: XorOpValues
) {
1826 if (XorOpValue
.first
!= SplitVal
&& !isa
<UndefValue
>(XorOpValue
.first
))
1829 BlocksToFoldInto
.push_back(XorOpValue
.second
);
1832 // If we inferred a value for all of the predecessors, then duplication won't
1833 // help us. However, we can just replace the LHS or RHS with the constant.
1834 if (BlocksToFoldInto
.size() ==
1835 cast
<PHINode
>(BB
->front()).getNumIncomingValues()) {
1837 // If all preds provide undef, just nuke the xor, because it is undef too.
1838 BO
->replaceAllUsesWith(UndefValue::get(BO
->getType()));
1839 BO
->eraseFromParent();
1840 } else if (SplitVal
->isZero() && BO
!= BO
->getOperand(isLHS
)) {
1841 // If all preds provide 0, replace the xor with the other input.
1842 BO
->replaceAllUsesWith(BO
->getOperand(isLHS
));
1843 BO
->eraseFromParent();
1845 // If all preds provide 1, set the computed value to 1.
1846 BO
->setOperand(!isLHS
, SplitVal
);
1852 // If any of predecessors end with an indirect goto, we can't change its
1854 if (any_of(BlocksToFoldInto
, [](BasicBlock
*Pred
) {
1855 return isa
<IndirectBrInst
>(Pred
->getTerminator());
1859 // Try to duplicate BB into PredBB.
1860 return duplicateCondBranchOnPHIIntoPred(BB
, BlocksToFoldInto
);
1863 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1864 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1865 /// NewPred using the entries from OldPred (suitably mapped).
1866 static void addPHINodeEntriesForMappedBlock(BasicBlock
*PHIBB
,
1867 BasicBlock
*OldPred
,
1868 BasicBlock
*NewPred
,
1869 ValueToValueMapTy
&ValueMap
) {
1870 for (PHINode
&PN
: PHIBB
->phis()) {
1871 // Ok, we have a PHI node. Figure out what the incoming value was for the
1873 Value
*IV
= PN
.getIncomingValueForBlock(OldPred
);
1875 // Remap the value if necessary.
1876 if (Instruction
*Inst
= dyn_cast
<Instruction
>(IV
)) {
1877 ValueToValueMapTy::iterator I
= ValueMap
.find(Inst
);
1878 if (I
!= ValueMap
.end())
1882 PN
.addIncoming(IV
, NewPred
);
1886 /// Merge basic block BB into its sole predecessor if possible.
1887 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock
*BB
) {
1888 BasicBlock
*SinglePred
= BB
->getSinglePredecessor();
1892 const Instruction
*TI
= SinglePred
->getTerminator();
1893 if (TI
->isSpecialTerminator() || TI
->getNumSuccessors() != 1 ||
1894 SinglePred
== BB
|| hasAddressTakenAndUsed(BB
))
1897 // If SinglePred was a loop header, BB becomes one.
1898 if (LoopHeaders
.erase(SinglePred
))
1899 LoopHeaders
.insert(BB
);
1901 LVI
->eraseBlock(SinglePred
);
1902 MergeBasicBlockIntoOnlyPred(BB
, DTU
.get());
1904 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1905 // BB code within one basic block `BB`), we need to invalidate the LVI
1906 // information associated with BB, because the LVI information need not be
1907 // true for all of BB after the merge. For example,
1908 // Before the merge, LVI info and code is as follows:
1909 // SinglePred: <LVI info1 for %p val>
1911 // call @exit() // need not transfer execution to successor.
1912 // assume(%p) // from this point on %p is true
1914 // BB: <LVI info2 for %p val, i.e. %p is true>
1918 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1919 // (info2 and info1 respectively). After the merge and the deletion of the
1920 // LVI info1 for SinglePred. We have the following code:
1921 // BB: <LVI info2 for %p val>
1925 // %x = use of %p <-- LVI info2 is correct from here onwards.
1927 // LVI info2 for BB is incorrect at the beginning of BB.
1929 // Invalidate LVI information for BB if the LVI is not provably true for
1931 if (!isGuaranteedToTransferExecutionToSuccessor(BB
))
1932 LVI
->eraseBlock(BB
);
1936 /// Update the SSA form. NewBB contains instructions that are copied from BB.
1937 /// ValueMapping maps old values in BB to new ones in NewBB.
1938 void JumpThreadingPass::updateSSA(BasicBlock
*BB
, BasicBlock
*NewBB
,
1939 ValueToValueMapTy
&ValueMapping
) {
1940 // If there were values defined in BB that are used outside the block, then we
1941 // now have to update all uses of the value to use either the original value,
1942 // the cloned value, or some PHI derived value. This can require arbitrary
1943 // PHI insertion, of which we are prepared to do, clean these up now.
1944 SSAUpdater SSAUpdate
;
1945 SmallVector
<Use
*, 16> UsesToRename
;
1946 SmallVector
<DbgValueInst
*, 4> DbgValues
;
1947 SmallVector
<DbgVariableRecord
*, 4> DbgVariableRecords
;
1949 for (Instruction
&I
: *BB
) {
1950 // Scan all uses of this instruction to see if it is used outside of its
1951 // block, and if so, record them in UsesToRename.
1952 for (Use
&U
: I
.uses()) {
1953 Instruction
*User
= cast
<Instruction
>(U
.getUser());
1954 if (PHINode
*UserPN
= dyn_cast
<PHINode
>(User
)) {
1955 if (UserPN
->getIncomingBlock(U
) == BB
)
1957 } else if (User
->getParent() == BB
)
1960 UsesToRename
.push_back(&U
);
1963 // Find debug values outside of the block
1964 findDbgValues(DbgValues
, &I
, &DbgVariableRecords
);
1965 llvm::erase_if(DbgValues
, [&](const DbgValueInst
*DbgVal
) {
1966 return DbgVal
->getParent() == BB
;
1968 llvm::erase_if(DbgVariableRecords
, [&](const DbgVariableRecord
*DbgVarRec
) {
1969 return DbgVarRec
->getParent() == BB
;
1972 // If there are no uses outside the block, we're done with this instruction.
1973 if (UsesToRename
.empty() && DbgValues
.empty() && DbgVariableRecords
.empty())
1975 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I
<< "\n");
1977 // We found a use of I outside of BB. Rename all uses of I that are outside
1978 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1979 // with the two values we know.
1980 SSAUpdate
.Initialize(I
.getType(), I
.getName());
1981 SSAUpdate
.AddAvailableValue(BB
, &I
);
1982 SSAUpdate
.AddAvailableValue(NewBB
, ValueMapping
[&I
]);
1984 while (!UsesToRename
.empty())
1985 SSAUpdate
.RewriteUse(*UsesToRename
.pop_back_val());
1986 if (!DbgValues
.empty() || !DbgVariableRecords
.empty()) {
1987 SSAUpdate
.UpdateDebugValues(&I
, DbgValues
);
1988 SSAUpdate
.UpdateDebugValues(&I
, DbgVariableRecords
);
1990 DbgVariableRecords
.clear();
1993 LLVM_DEBUG(dbgs() << "\n");
1997 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
1998 /// arguments that come from PredBB. Return the map from the variables in the
1999 /// source basic block to the variables in the newly created basic block.
2001 void JumpThreadingPass::cloneInstructions(ValueToValueMapTy
&ValueMapping
,
2002 BasicBlock::iterator BI
,
2003 BasicBlock::iterator BE
,
2005 BasicBlock
*PredBB
) {
2006 // We are going to have to map operands from the source basic block to the new
2007 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2008 // block, evaluate them to account for entry from PredBB.
2010 // Retargets llvm.dbg.value to any renamed variables.
2011 auto RetargetDbgValueIfPossible
= [&](Instruction
*NewInst
) -> bool {
2012 auto DbgInstruction
= dyn_cast
<DbgValueInst
>(NewInst
);
2013 if (!DbgInstruction
)
2016 SmallSet
<std::pair
<Value
*, Value
*>, 16> OperandsToRemap
;
2017 for (auto DbgOperand
: DbgInstruction
->location_ops()) {
2018 auto DbgOperandInstruction
= dyn_cast
<Instruction
>(DbgOperand
);
2019 if (!DbgOperandInstruction
)
2022 auto I
= ValueMapping
.find(DbgOperandInstruction
);
2023 if (I
!= ValueMapping
.end()) {
2024 OperandsToRemap
.insert(
2025 std::pair
<Value
*, Value
*>(DbgOperand
, I
->second
));
2029 for (auto &[OldOp
, MappedOp
] : OperandsToRemap
)
2030 DbgInstruction
->replaceVariableLocationOp(OldOp
, MappedOp
);
2034 // Duplicate implementation of the above dbg.value code, using
2035 // DbgVariableRecords instead.
2036 auto RetargetDbgVariableRecordIfPossible
= [&](DbgVariableRecord
*DVR
) {
2037 SmallSet
<std::pair
<Value
*, Value
*>, 16> OperandsToRemap
;
2038 for (auto *Op
: DVR
->location_ops()) {
2039 Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
);
2043 auto I
= ValueMapping
.find(OpInst
);
2044 if (I
!= ValueMapping
.end())
2045 OperandsToRemap
.insert({OpInst
, I
->second
});
2048 for (auto &[OldOp
, MappedOp
] : OperandsToRemap
)
2049 DVR
->replaceVariableLocationOp(OldOp
, MappedOp
);
2052 BasicBlock
*RangeBB
= BI
->getParent();
2054 // Clone the phi nodes of the source basic block into NewBB. The resulting
2055 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2056 // might need to rewrite the operand of the cloned phi.
2057 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
) {
2058 PHINode
*NewPN
= PHINode::Create(PN
->getType(), 1, PN
->getName(), NewBB
);
2059 NewPN
->addIncoming(PN
->getIncomingValueForBlock(PredBB
), PredBB
);
2060 ValueMapping
[PN
] = NewPN
;
2063 // Clone noalias scope declarations in the threaded block. When threading a
2064 // loop exit, we would otherwise end up with two idential scope declarations
2065 // visible at the same time.
2066 SmallVector
<MDNode
*> NoAliasScopes
;
2067 DenseMap
<MDNode
*, MDNode
*> ClonedScopes
;
2068 LLVMContext
&Context
= PredBB
->getContext();
2069 identifyNoAliasScopesToClone(BI
, BE
, NoAliasScopes
);
2070 cloneNoAliasScopes(NoAliasScopes
, ClonedScopes
, "thread", Context
);
2072 auto CloneAndRemapDbgInfo
= [&](Instruction
*NewInst
, Instruction
*From
) {
2073 auto DVRRange
= NewInst
->cloneDebugInfoFrom(From
);
2074 for (DbgVariableRecord
&DVR
: filterDbgVars(DVRRange
))
2075 RetargetDbgVariableRecordIfPossible(&DVR
);
2078 // Clone the non-phi instructions of the source basic block into NewBB,
2079 // keeping track of the mapping and using it to remap operands in the cloned
2081 for (; BI
!= BE
; ++BI
) {
2082 Instruction
*New
= BI
->clone();
2083 New
->setName(BI
->getName());
2084 New
->insertInto(NewBB
, NewBB
->end());
2085 ValueMapping
[&*BI
] = New
;
2086 adaptNoAliasScopes(New
, ClonedScopes
, Context
);
2088 CloneAndRemapDbgInfo(New
, &*BI
);
2090 if (RetargetDbgValueIfPossible(New
))
2093 // Remap operands to patch up intra-block references.
2094 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2095 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
2096 ValueToValueMapTy::iterator I
= ValueMapping
.find(Inst
);
2097 if (I
!= ValueMapping
.end())
2098 New
->setOperand(i
, I
->second
);
2102 // There may be DbgVariableRecords on the terminator, clone directly from
2103 // marker to marker as there isn't an instruction there.
2104 if (BE
!= RangeBB
->end() && BE
->hasDbgRecords()) {
2105 // Dump them at the end.
2106 DbgMarker
*Marker
= RangeBB
->getMarker(BE
);
2107 DbgMarker
*EndMarker
= NewBB
->createMarker(NewBB
->end());
2108 auto DVRRange
= EndMarker
->cloneDebugInfoFrom(Marker
, std::nullopt
);
2109 for (DbgVariableRecord
&DVR
: filterDbgVars(DVRRange
))
2110 RetargetDbgVariableRecordIfPossible(&DVR
);
2114 /// Attempt to thread through two successive basic blocks.
2115 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock
*BB
,
2120 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2121 // %tobool = icmp eq i32 %cond, 0
2122 // br i1 %tobool, label %BB, label ...
2125 // %cmp = icmp eq i32* %var, null
2126 // br i1 %cmp, label ..., label ...
2128 // We don't know the value of %var at BB even if we know which incoming edge
2129 // we take to BB. However, once we duplicate PredBB for each of its incoming
2130 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2131 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2133 // Require that BB end with a Branch for simplicity.
2134 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2138 // BB must have exactly one predecessor.
2139 BasicBlock
*PredBB
= BB
->getSinglePredecessor();
2143 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2144 // unconditional branch, we should be merging PredBB and BB instead. For
2145 // simplicity, we don't deal with a switch.
2146 BranchInst
*PredBBBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2147 if (!PredBBBranch
|| PredBBBranch
->isUnconditional())
2150 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2152 if (PredBB
->getSinglePredecessor())
2155 // Don't thread through PredBB if it contains a successor edge to itself, in
2156 // which case we would infinite loop. Suppose we are threading an edge from
2157 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2158 // successor edge to itself. If we allowed jump threading in this case, we
2159 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2160 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2161 // with another jump threading opportunity from PredBB.thread through PredBB
2162 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2163 // would keep peeling one iteration from PredBB.
2164 if (llvm::is_contained(successors(PredBB
), PredBB
))
2167 // Don't thread across a loop header.
2168 if (LoopHeaders
.count(PredBB
))
2171 // Avoid complication with duplicating EH pads.
2172 if (PredBB
->isEHPad())
2175 // Find a predecessor that we can thread. For simplicity, we only consider a
2176 // successor edge out of BB to which we thread exactly one incoming edge into
2178 unsigned ZeroCount
= 0;
2179 unsigned OneCount
= 0;
2180 BasicBlock
*ZeroPred
= nullptr;
2181 BasicBlock
*OnePred
= nullptr;
2182 const DataLayout
&DL
= BB
->getDataLayout();
2183 for (BasicBlock
*P
: predecessors(PredBB
)) {
2184 // If PredPred ends with IndirectBrInst, we can't handle it.
2185 if (isa
<IndirectBrInst
>(P
->getTerminator()))
2187 if (ConstantInt
*CI
= dyn_cast_or_null
<ConstantInt
>(
2188 evaluateOnPredecessorEdge(BB
, P
, Cond
, DL
))) {
2192 } else if (CI
->isOne()) {
2199 // Disregard complicated cases where we have to thread multiple edges.
2200 BasicBlock
*PredPredBB
;
2201 if (ZeroCount
== 1) {
2202 PredPredBB
= ZeroPred
;
2203 } else if (OneCount
== 1) {
2204 PredPredBB
= OnePred
;
2209 BasicBlock
*SuccBB
= CondBr
->getSuccessor(PredPredBB
== ZeroPred
);
2211 // If threading to the same block as we come from, we would infinite loop.
2213 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
2214 << "' - would thread to self!\n");
2218 // If threading this would thread across a loop header, don't thread the edge.
2219 // See the comments above findLoopHeaders for justifications and caveats.
2220 if (LoopHeaders
.count(BB
) || LoopHeaders
.count(SuccBB
)) {
2222 bool BBIsHeader
= LoopHeaders
.count(BB
);
2223 bool SuccIsHeader
= LoopHeaders
.count(SuccBB
);
2224 dbgs() << " Not threading across "
2225 << (BBIsHeader
? "loop header BB '" : "block BB '")
2226 << BB
->getName() << "' to dest "
2227 << (SuccIsHeader
? "loop header BB '" : "block BB '")
2228 << SuccBB
->getName()
2229 << "' - it might create an irreducible loop!\n";
2234 // Compute the cost of duplicating BB and PredBB.
2235 unsigned BBCost
= getJumpThreadDuplicationCost(
2236 TTI
, BB
, BB
->getTerminator(), BBDupThreshold
);
2237 unsigned PredBBCost
= getJumpThreadDuplicationCost(
2238 TTI
, PredBB
, PredBB
->getTerminator(), BBDupThreshold
);
2240 // Give up if costs are too high. We need to check BBCost and PredBBCost
2241 // individually before checking their sum because getJumpThreadDuplicationCost
2242 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2243 if (BBCost
> BBDupThreshold
|| PredBBCost
> BBDupThreshold
||
2244 BBCost
+ PredBBCost
> BBDupThreshold
) {
2245 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
2246 << "' - Cost is too high: " << PredBBCost
2247 << " for PredBB, " << BBCost
<< "for BB\n");
2251 // Now we are ready to duplicate PredBB.
2252 threadThroughTwoBasicBlocks(PredPredBB
, PredBB
, BB
, SuccBB
);
2256 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock
*PredPredBB
,
2259 BasicBlock
*SuccBB
) {
2260 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB
->getName() << "' and '"
2261 << BB
->getName() << "'\n");
2263 // Build BPI/BFI before any changes are made to IR.
2264 bool HasProfile
= doesBlockHaveProfileData(BB
);
2265 auto *BFI
= getOrCreateBFI(HasProfile
);
2266 auto *BPI
= getOrCreateBPI(BFI
!= nullptr);
2268 BranchInst
*CondBr
= cast
<BranchInst
>(BB
->getTerminator());
2269 BranchInst
*PredBBBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
2272 BasicBlock::Create(PredBB
->getContext(), PredBB
->getName() + ".thread",
2273 PredBB
->getParent(), PredBB
);
2274 NewBB
->moveAfter(PredBB
);
2276 // Set the block frequency of NewBB.
2278 assert(BPI
&& "It's expected BPI to exist along with BFI");
2279 auto NewBBFreq
= BFI
->getBlockFreq(PredPredBB
) *
2280 BPI
->getEdgeProbability(PredPredBB
, PredBB
);
2281 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2284 // We are going to have to map operands from the original BB block to the new
2285 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2286 // to account for entry from PredPredBB.
2287 ValueToValueMapTy ValueMapping
;
2288 cloneInstructions(ValueMapping
, PredBB
->begin(), PredBB
->end(), NewBB
,
2291 // Copy the edge probabilities from PredBB to NewBB.
2293 BPI
->copyEdgeProbabilities(PredBB
, NewBB
);
2295 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2296 // This eliminates predecessors from PredPredBB, which requires us to simplify
2297 // any PHI nodes in PredBB.
2298 Instruction
*PredPredTerm
= PredPredBB
->getTerminator();
2299 for (unsigned i
= 0, e
= PredPredTerm
->getNumSuccessors(); i
!= e
; ++i
)
2300 if (PredPredTerm
->getSuccessor(i
) == PredBB
) {
2301 PredBB
->removePredecessor(PredPredBB
, true);
2302 PredPredTerm
->setSuccessor(i
, NewBB
);
2305 addPHINodeEntriesForMappedBlock(PredBBBranch
->getSuccessor(0), PredBB
, NewBB
,
2307 addPHINodeEntriesForMappedBlock(PredBBBranch
->getSuccessor(1), PredBB
, NewBB
,
2310 DTU
->applyUpdatesPermissive(
2311 {{DominatorTree::Insert
, NewBB
, CondBr
->getSuccessor(0)},
2312 {DominatorTree::Insert
, NewBB
, CondBr
->getSuccessor(1)},
2313 {DominatorTree::Insert
, PredPredBB
, NewBB
},
2314 {DominatorTree::Delete
, PredPredBB
, PredBB
}});
2316 updateSSA(PredBB
, NewBB
, ValueMapping
);
2318 // Clean up things like PHI nodes with single operands, dead instructions,
2320 SimplifyInstructionsInBlock(NewBB
, TLI
);
2321 SimplifyInstructionsInBlock(PredBB
, TLI
);
2323 SmallVector
<BasicBlock
*, 1> PredsToFactor
;
2324 PredsToFactor
.push_back(NewBB
);
2325 threadEdge(BB
, PredsToFactor
, SuccBB
);
2328 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2329 bool JumpThreadingPass::tryThreadEdge(
2330 BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
2331 BasicBlock
*SuccBB
) {
2332 // If threading to the same block as we come from, we would infinite loop.
2334 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB
->getName()
2335 << "' - would thread to self!\n");
2339 // If threading this would thread across a loop header, don't thread the edge.
2340 // See the comments above findLoopHeaders for justifications and caveats.
2341 if (LoopHeaders
.count(BB
) || LoopHeaders
.count(SuccBB
)) {
2343 bool BBIsHeader
= LoopHeaders
.count(BB
);
2344 bool SuccIsHeader
= LoopHeaders
.count(SuccBB
);
2345 dbgs() << " Not threading across "
2346 << (BBIsHeader
? "loop header BB '" : "block BB '") << BB
->getName()
2347 << "' to dest " << (SuccIsHeader
? "loop header BB '" : "block BB '")
2348 << SuccBB
->getName() << "' - it might create an irreducible loop!\n";
2353 unsigned JumpThreadCost
= getJumpThreadDuplicationCost(
2354 TTI
, BB
, BB
->getTerminator(), BBDupThreshold
);
2355 if (JumpThreadCost
> BBDupThreshold
) {
2356 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB
->getName()
2357 << "' - Cost is too high: " << JumpThreadCost
<< "\n");
2361 threadEdge(BB
, PredBBs
, SuccBB
);
2365 /// threadEdge - We have decided that it is safe and profitable to factor the
2366 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2367 /// across BB. Transform the IR to reflect this change.
2368 void JumpThreadingPass::threadEdge(BasicBlock
*BB
,
2369 const SmallVectorImpl
<BasicBlock
*> &PredBBs
,
2370 BasicBlock
*SuccBB
) {
2371 assert(SuccBB
!= BB
&& "Don't create an infinite loop");
2373 assert(!LoopHeaders
.count(BB
) && !LoopHeaders
.count(SuccBB
) &&
2374 "Don't thread across loop headers");
2376 // Build BPI/BFI before any changes are made to IR.
2377 bool HasProfile
= doesBlockHaveProfileData(BB
);
2378 auto *BFI
= getOrCreateBFI(HasProfile
);
2379 auto *BPI
= getOrCreateBPI(BFI
!= nullptr);
2381 // And finally, do it! Start by factoring the predecessors if needed.
2383 if (PredBBs
.size() == 1)
2384 PredBB
= PredBBs
[0];
2386 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
2387 << " common predecessors.\n");
2388 PredBB
= splitBlockPreds(BB
, PredBBs
, ".thr_comm");
2391 // And finally, do it!
2392 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB
->getName()
2393 << "' to '" << SuccBB
->getName()
2394 << ", across block:\n " << *BB
<< "\n");
2396 LVI
->threadEdge(PredBB
, BB
, SuccBB
);
2398 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(),
2399 BB
->getName()+".thread",
2400 BB
->getParent(), BB
);
2401 NewBB
->moveAfter(PredBB
);
2403 // Set the block frequency of NewBB.
2405 assert(BPI
&& "It's expected BPI to exist along with BFI");
2407 BFI
->getBlockFreq(PredBB
) * BPI
->getEdgeProbability(PredBB
, BB
);
2408 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2411 // Copy all the instructions from BB to NewBB except the terminator.
2412 ValueToValueMapTy ValueMapping
;
2413 cloneInstructions(ValueMapping
, BB
->begin(), std::prev(BB
->end()), NewBB
,
2416 // We didn't copy the terminator from BB over to NewBB, because there is now
2417 // an unconditional jump to SuccBB. Insert the unconditional jump.
2418 BranchInst
*NewBI
= BranchInst::Create(SuccBB
, NewBB
);
2419 NewBI
->setDebugLoc(BB
->getTerminator()->getDebugLoc());
2421 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2422 // PHI nodes for NewBB now.
2423 addPHINodeEntriesForMappedBlock(SuccBB
, BB
, NewBB
, ValueMapping
);
2425 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2426 // eliminates predecessors from BB, which requires us to simplify any PHI
2428 Instruction
*PredTerm
= PredBB
->getTerminator();
2429 for (unsigned i
= 0, e
= PredTerm
->getNumSuccessors(); i
!= e
; ++i
)
2430 if (PredTerm
->getSuccessor(i
) == BB
) {
2431 BB
->removePredecessor(PredBB
, true);
2432 PredTerm
->setSuccessor(i
, NewBB
);
2435 // Enqueue required DT updates.
2436 DTU
->applyUpdatesPermissive({{DominatorTree::Insert
, NewBB
, SuccBB
},
2437 {DominatorTree::Insert
, PredBB
, NewBB
},
2438 {DominatorTree::Delete
, PredBB
, BB
}});
2440 updateSSA(BB
, NewBB
, ValueMapping
);
2442 // At this point, the IR is fully up to date and consistent. Do a quick scan
2443 // over the new instructions and zap any that are constants or dead. This
2444 // frequently happens because of phi translation.
2445 SimplifyInstructionsInBlock(NewBB
, TLI
);
2447 // Update the edge weight from BB to SuccBB, which should be less than before.
2448 updateBlockFreqAndEdgeWeight(PredBB
, BB
, NewBB
, SuccBB
, BFI
, BPI
, HasProfile
);
2450 // Threaded an edge!
2454 /// Create a new basic block that will be the predecessor of BB and successor of
2455 /// all blocks in Preds. When profile data is available, update the frequency of
2457 BasicBlock
*JumpThreadingPass::splitBlockPreds(BasicBlock
*BB
,
2458 ArrayRef
<BasicBlock
*> Preds
,
2459 const char *Suffix
) {
2460 SmallVector
<BasicBlock
*, 2> NewBBs
;
2462 // Collect the frequencies of all predecessors of BB, which will be used to
2463 // update the edge weight of the result of splitting predecessors.
2464 DenseMap
<BasicBlock
*, BlockFrequency
> FreqMap
;
2465 auto *BFI
= getBFI();
2467 auto *BPI
= getOrCreateBPI(true);
2468 for (auto *Pred
: Preds
)
2469 FreqMap
.insert(std::make_pair(
2470 Pred
, BFI
->getBlockFreq(Pred
) * BPI
->getEdgeProbability(Pred
, BB
)));
2473 // In the case when BB is a LandingPad block we create 2 new predecessors
2474 // instead of just one.
2475 if (BB
->isLandingPad()) {
2476 std::string NewName
= std::string(Suffix
) + ".split-lp";
2477 SplitLandingPadPredecessors(BB
, Preds
, Suffix
, NewName
.c_str(), NewBBs
);
2479 NewBBs
.push_back(SplitBlockPredecessors(BB
, Preds
, Suffix
));
2482 std::vector
<DominatorTree::UpdateType
> Updates
;
2483 Updates
.reserve((2 * Preds
.size()) + NewBBs
.size());
2484 for (auto *NewBB
: NewBBs
) {
2485 BlockFrequency
NewBBFreq(0);
2486 Updates
.push_back({DominatorTree::Insert
, NewBB
, BB
});
2487 for (auto *Pred
: predecessors(NewBB
)) {
2488 Updates
.push_back({DominatorTree::Delete
, Pred
, BB
});
2489 Updates
.push_back({DominatorTree::Insert
, Pred
, NewBB
});
2490 if (BFI
) // Update frequencies between Pred -> NewBB.
2491 NewBBFreq
+= FreqMap
.lookup(Pred
);
2493 if (BFI
) // Apply the summed frequency to NewBB.
2494 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2497 DTU
->applyUpdatesPermissive(Updates
);
2501 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock
*BB
) {
2502 const Instruction
*TI
= BB
->getTerminator();
2503 if (!TI
|| TI
->getNumSuccessors() < 2)
2506 return hasValidBranchWeightMD(*TI
);
2509 /// Update the block frequency of BB and branch weight and the metadata on the
2510 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2511 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2512 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock
*PredBB
,
2516 BlockFrequencyInfo
*BFI
,
2517 BranchProbabilityInfo
*BPI
,
2519 assert(((BFI
&& BPI
) || (!BFI
&& !BFI
)) &&
2520 "Both BFI & BPI should either be set or unset");
2523 assert(!HasProfile
&&
2524 "It's expected to have BFI/BPI when profile info exists");
2528 // As the edge from PredBB to BB is deleted, we have to update the block
2530 auto BBOrigFreq
= BFI
->getBlockFreq(BB
);
2531 auto NewBBFreq
= BFI
->getBlockFreq(NewBB
);
2532 auto BB2SuccBBFreq
= BBOrigFreq
* BPI
->getEdgeProbability(BB
, SuccBB
);
2533 auto BBNewFreq
= BBOrigFreq
- NewBBFreq
;
2534 BFI
->setBlockFreq(BB
, BBNewFreq
);
2536 // Collect updated outgoing edges' frequencies from BB and use them to update
2537 // edge probabilities.
2538 SmallVector
<uint64_t, 4> BBSuccFreq
;
2539 for (BasicBlock
*Succ
: successors(BB
)) {
2540 auto SuccFreq
= (Succ
== SuccBB
)
2541 ? BB2SuccBBFreq
- NewBBFreq
2542 : BBOrigFreq
* BPI
->getEdgeProbability(BB
, Succ
);
2543 BBSuccFreq
.push_back(SuccFreq
.getFrequency());
2546 uint64_t MaxBBSuccFreq
= *llvm::max_element(BBSuccFreq
);
2548 SmallVector
<BranchProbability
, 4> BBSuccProbs
;
2549 if (MaxBBSuccFreq
== 0)
2550 BBSuccProbs
.assign(BBSuccFreq
.size(),
2551 {1, static_cast<unsigned>(BBSuccFreq
.size())});
2553 for (uint64_t Freq
: BBSuccFreq
)
2554 BBSuccProbs
.push_back(
2555 BranchProbability::getBranchProbability(Freq
, MaxBBSuccFreq
));
2556 // Normalize edge probabilities so that they sum up to one.
2557 BranchProbability::normalizeProbabilities(BBSuccProbs
.begin(),
2561 // Update edge probabilities in BPI.
2562 BPI
->setEdgeProbability(BB
, BBSuccProbs
);
2564 // Update the profile metadata as well.
2566 // Don't do this if the profile of the transformed blocks was statically
2567 // estimated. (This could occur despite the function having an entry
2568 // frequency in completely cold parts of the CFG.)
2570 // In this case we don't want to suggest to subsequent passes that the
2571 // calculated weights are fully consistent. Consider this graph:
2586 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2587 // the overall probabilities are inconsistent; the total probability that the
2588 // value is either 1, 2 or 3 is 150%.
2590 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2591 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2592 // the loop exit edge. Then based solely on static estimation we would assume
2593 // the loop was extremely hot.
2595 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2596 // shouldn't make edges extremely likely or unlikely based solely on static
2598 if (BBSuccProbs
.size() >= 2 && HasProfile
) {
2599 SmallVector
<uint32_t, 4> Weights
;
2600 for (auto Prob
: BBSuccProbs
)
2601 Weights
.push_back(Prob
.getNumerator());
2603 auto TI
= BB
->getTerminator();
2604 setBranchWeights(*TI
, Weights
, hasBranchWeightOrigin(*TI
));
2608 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2609 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2610 /// If we can duplicate the contents of BB up into PredBB do so now, this
2611 /// improves the odds that the branch will be on an analyzable instruction like
2613 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2614 BasicBlock
*BB
, const SmallVectorImpl
<BasicBlock
*> &PredBBs
) {
2615 assert(!PredBBs
.empty() && "Can't handle an empty set");
2617 // If BB is a loop header, then duplicating this block outside the loop would
2618 // cause us to transform this into an irreducible loop, don't do this.
2619 // See the comments above findLoopHeaders for justifications and caveats.
2620 if (LoopHeaders
.count(BB
)) {
2621 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB
->getName()
2622 << "' into predecessor block '" << PredBBs
[0]->getName()
2623 << "' - it might create an irreducible loop!\n");
2627 unsigned DuplicationCost
= getJumpThreadDuplicationCost(
2628 TTI
, BB
, BB
->getTerminator(), BBDupThreshold
);
2629 if (DuplicationCost
> BBDupThreshold
) {
2630 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB
->getName()
2631 << "' - Cost is too high: " << DuplicationCost
<< "\n");
2635 // And finally, do it! Start by factoring the predecessors if needed.
2636 std::vector
<DominatorTree::UpdateType
> Updates
;
2638 if (PredBBs
.size() == 1)
2639 PredBB
= PredBBs
[0];
2641 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs
.size()
2642 << " common predecessors.\n");
2643 PredBB
= splitBlockPreds(BB
, PredBBs
, ".thr_comm");
2645 Updates
.push_back({DominatorTree::Delete
, PredBB
, BB
});
2647 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2649 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB
->getName()
2650 << "' into end of '" << PredBB
->getName()
2651 << "' to eliminate branch on phi. Cost: "
2652 << DuplicationCost
<< " block is:" << *BB
<< "\n");
2654 // Unless PredBB ends with an unconditional branch, split the edge so that we
2655 // can just clone the bits from BB into the end of the new PredBB.
2656 BranchInst
*OldPredBranch
= dyn_cast
<BranchInst
>(PredBB
->getTerminator());
2658 if (!OldPredBranch
|| !OldPredBranch
->isUnconditional()) {
2659 BasicBlock
*OldPredBB
= PredBB
;
2660 PredBB
= SplitEdge(OldPredBB
, BB
);
2661 Updates
.push_back({DominatorTree::Insert
, OldPredBB
, PredBB
});
2662 Updates
.push_back({DominatorTree::Insert
, PredBB
, BB
});
2663 Updates
.push_back({DominatorTree::Delete
, OldPredBB
, BB
});
2664 OldPredBranch
= cast
<BranchInst
>(PredBB
->getTerminator());
2667 // We are going to have to map operands from the original BB block into the
2668 // PredBB block. Evaluate PHI nodes in BB.
2669 ValueToValueMapTy ValueMapping
;
2671 BasicBlock::iterator BI
= BB
->begin();
2672 for (; PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
)
2673 ValueMapping
[PN
] = PN
->getIncomingValueForBlock(PredBB
);
2674 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2675 // mapping and using it to remap operands in the cloned instructions.
2676 for (; BI
!= BB
->end(); ++BI
) {
2677 Instruction
*New
= BI
->clone();
2678 New
->insertInto(PredBB
, OldPredBranch
->getIterator());
2680 // Remap operands to patch up intra-block references.
2681 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2682 if (Instruction
*Inst
= dyn_cast
<Instruction
>(New
->getOperand(i
))) {
2683 ValueToValueMapTy::iterator I
= ValueMapping
.find(Inst
);
2684 if (I
!= ValueMapping
.end())
2685 New
->setOperand(i
, I
->second
);
2688 // Remap debug variable operands.
2689 remapDebugVariable(ValueMapping
, New
);
2691 // If this instruction can be simplified after the operands are updated,
2692 // just use the simplified value instead. This frequently happens due to
2694 if (Value
*IV
= simplifyInstruction(
2696 {BB
->getDataLayout(), TLI
, nullptr, nullptr, New
})) {
2697 ValueMapping
[&*BI
] = IV
;
2698 if (!New
->mayHaveSideEffects()) {
2699 New
->eraseFromParent();
2701 // Clone debug-info on the elided instruction to the destination
2703 OldPredBranch
->cloneDebugInfoFrom(&*BI
, std::nullopt
, true);
2706 ValueMapping
[&*BI
] = New
;
2709 // Otherwise, insert the new instruction into the block.
2710 New
->setName(BI
->getName());
2711 // Clone across any debug-info attached to the old instruction.
2712 New
->cloneDebugInfoFrom(&*BI
);
2713 // Update Dominance from simplified New instruction operands.
2714 for (unsigned i
= 0, e
= New
->getNumOperands(); i
!= e
; ++i
)
2715 if (BasicBlock
*SuccBB
= dyn_cast
<BasicBlock
>(New
->getOperand(i
)))
2716 Updates
.push_back({DominatorTree::Insert
, PredBB
, SuccBB
});
2720 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2721 // add entries to the PHI nodes for branch from PredBB now.
2722 BranchInst
*BBBranch
= cast
<BranchInst
>(BB
->getTerminator());
2723 addPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(0), BB
, PredBB
,
2725 addPHINodeEntriesForMappedBlock(BBBranch
->getSuccessor(1), BB
, PredBB
,
2728 updateSSA(BB
, PredBB
, ValueMapping
);
2730 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2732 BB
->removePredecessor(PredBB
, true);
2734 // Remove the unconditional branch at the end of the PredBB block.
2735 OldPredBranch
->eraseFromParent();
2736 if (auto *BPI
= getBPI())
2737 BPI
->copyEdgeProbabilities(BB
, PredBB
);
2738 DTU
->applyUpdatesPermissive(Updates
);
2744 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2745 // a Select instruction in Pred. BB has other predecessors and SI is used in
2746 // a PHI node in BB. SI has no other use.
2747 // A new basic block, NewBB, is created and SI is converted to compare and
2748 // conditional branch. SI is erased from parent.
2749 void JumpThreadingPass::unfoldSelectInstr(BasicBlock
*Pred
, BasicBlock
*BB
,
2750 SelectInst
*SI
, PHINode
*SIUse
,
2752 // Expand the select.
2761 BranchInst
*PredTerm
= cast
<BranchInst
>(Pred
->getTerminator());
2762 BasicBlock
*NewBB
= BasicBlock::Create(BB
->getContext(), "select.unfold",
2763 BB
->getParent(), BB
);
2764 // Move the unconditional branch to NewBB.
2765 PredTerm
->removeFromParent();
2766 PredTerm
->insertInto(NewBB
, NewBB
->end());
2767 // Create a conditional branch and update PHI nodes.
2768 auto *BI
= BranchInst::Create(NewBB
, BB
, SI
->getCondition(), Pred
);
2769 BI
->applyMergedLocation(PredTerm
->getDebugLoc(), SI
->getDebugLoc());
2770 BI
->copyMetadata(*SI
, {LLVMContext::MD_prof
});
2771 SIUse
->setIncomingValue(Idx
, SI
->getFalseValue());
2772 SIUse
->addIncoming(SI
->getTrueValue(), NewBB
);
2774 uint64_t TrueWeight
= 1;
2775 uint64_t FalseWeight
= 1;
2776 // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2777 if (extractBranchWeights(*SI
, TrueWeight
, FalseWeight
) &&
2778 (TrueWeight
+ FalseWeight
) != 0) {
2779 SmallVector
<BranchProbability
, 2> BP
;
2780 BP
.emplace_back(BranchProbability::getBranchProbability(
2781 TrueWeight
, TrueWeight
+ FalseWeight
));
2782 BP
.emplace_back(BranchProbability::getBranchProbability(
2783 FalseWeight
, TrueWeight
+ FalseWeight
));
2784 // Update BPI if exists.
2785 if (auto *BPI
= getBPI())
2786 BPI
->setEdgeProbability(Pred
, BP
);
2788 // Set the block frequency of NewBB.
2789 if (auto *BFI
= getBFI()) {
2790 if ((TrueWeight
+ FalseWeight
) == 0) {
2794 BranchProbability PredToNewBBProb
= BranchProbability::getBranchProbability(
2795 TrueWeight
, TrueWeight
+ FalseWeight
);
2796 auto NewBBFreq
= BFI
->getBlockFreq(Pred
) * PredToNewBBProb
;
2797 BFI
->setBlockFreq(NewBB
, NewBBFreq
);
2800 // The select is now dead.
2801 SI
->eraseFromParent();
2802 DTU
->applyUpdatesPermissive({{DominatorTree::Insert
, NewBB
, BB
},
2803 {DominatorTree::Insert
, Pred
, NewBB
}});
2805 // Update any other PHI nodes in BB.
2806 for (BasicBlock::iterator BI
= BB
->begin();
2807 PHINode
*Phi
= dyn_cast
<PHINode
>(BI
); ++BI
)
2809 Phi
->addIncoming(Phi
->getIncomingValueForBlock(Pred
), NewBB
);
2812 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst
*SI
, BasicBlock
*BB
) {
2813 PHINode
*CondPHI
= dyn_cast
<PHINode
>(SI
->getCondition());
2815 if (!CondPHI
|| CondPHI
->getParent() != BB
)
2818 for (unsigned I
= 0, E
= CondPHI
->getNumIncomingValues(); I
!= E
; ++I
) {
2819 BasicBlock
*Pred
= CondPHI
->getIncomingBlock(I
);
2820 SelectInst
*PredSI
= dyn_cast
<SelectInst
>(CondPHI
->getIncomingValue(I
));
2822 // The second and third condition can be potentially relaxed. Currently
2823 // the conditions help to simplify the code and allow us to reuse existing
2824 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2825 if (!PredSI
|| PredSI
->getParent() != Pred
|| !PredSI
->hasOneUse())
2828 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2829 if (!PredTerm
|| !PredTerm
->isUnconditional())
2832 unfoldSelectInstr(Pred
, BB
, PredSI
, CondPHI
, I
);
2838 /// tryToUnfoldSelect - Look for blocks of the form
2844 /// %p = phi [%a, %bb1] ...
2848 /// And expand the select into a branch structure if one of its arms allows %c
2849 /// to be folded. This later enables threading from bb1 over bb2.
2850 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst
*CondCmp
, BasicBlock
*BB
) {
2851 BranchInst
*CondBr
= dyn_cast
<BranchInst
>(BB
->getTerminator());
2852 PHINode
*CondLHS
= dyn_cast
<PHINode
>(CondCmp
->getOperand(0));
2853 Constant
*CondRHS
= cast
<Constant
>(CondCmp
->getOperand(1));
2855 if (!CondBr
|| !CondBr
->isConditional() || !CondLHS
||
2856 CondLHS
->getParent() != BB
)
2859 for (unsigned I
= 0, E
= CondLHS
->getNumIncomingValues(); I
!= E
; ++I
) {
2860 BasicBlock
*Pred
= CondLHS
->getIncomingBlock(I
);
2861 SelectInst
*SI
= dyn_cast
<SelectInst
>(CondLHS
->getIncomingValue(I
));
2863 // Look if one of the incoming values is a select in the corresponding
2865 if (!SI
|| SI
->getParent() != Pred
|| !SI
->hasOneUse())
2868 BranchInst
*PredTerm
= dyn_cast
<BranchInst
>(Pred
->getTerminator());
2869 if (!PredTerm
|| !PredTerm
->isUnconditional())
2872 // Now check if one of the select values would allow us to constant fold the
2873 // terminator in BB. We don't do the transform if both sides fold, those
2874 // cases will be threaded in any case.
2876 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(1),
2877 CondRHS
, Pred
, BB
, CondCmp
);
2879 LVI
->getPredicateOnEdge(CondCmp
->getPredicate(), SI
->getOperand(2),
2880 CondRHS
, Pred
, BB
, CondCmp
);
2881 if ((LHSRes
|| RHSRes
) && LHSRes
!= RHSRes
) {
2882 unfoldSelectInstr(Pred
, BB
, SI
, CondLHS
, I
);
2889 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2890 /// same BB in the form
2892 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2893 /// %s = select %p, trueval, falseval
2898 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2900 /// %s = select %c, trueval, falseval
2902 /// And expand the select into a branch structure. This later enables
2903 /// jump-threading over bb in this pass.
2905 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2906 /// select if the associated PHI has at least one constant. If the unfolded
2907 /// select is not jump-threaded, it will be folded again in the later
2909 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock
*BB
) {
2910 // This transform would reduce the quality of msan diagnostics.
2911 // Disable this transform under MemorySanitizer.
2912 if (BB
->getParent()->hasFnAttribute(Attribute::SanitizeMemory
))
2915 // If threading this would thread across a loop header, don't thread the edge.
2916 // See the comments above findLoopHeaders for justifications and caveats.
2917 if (LoopHeaders
.count(BB
))
2920 for (BasicBlock::iterator BI
= BB
->begin();
2921 PHINode
*PN
= dyn_cast
<PHINode
>(BI
); ++BI
) {
2922 // Look for a Phi having at least one constant incoming value.
2923 if (llvm::all_of(PN
->incoming_values(),
2924 [](Value
*V
) { return !isa
<ConstantInt
>(V
); }))
2927 auto isUnfoldCandidate
= [BB
](SelectInst
*SI
, Value
*V
) {
2928 using namespace PatternMatch
;
2930 // Check if SI is in BB and use V as condition.
2931 if (SI
->getParent() != BB
)
2933 Value
*Cond
= SI
->getCondition();
2934 bool IsAndOr
= match(SI
, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2935 return Cond
&& Cond
== V
&& Cond
->getType()->isIntegerTy(1) && !IsAndOr
;
2938 SelectInst
*SI
= nullptr;
2939 for (Use
&U
: PN
->uses()) {
2940 if (ICmpInst
*Cmp
= dyn_cast
<ICmpInst
>(U
.getUser())) {
2941 // Look for a ICmp in BB that compares PN with a constant and is the
2942 // condition of a Select.
2943 if (Cmp
->getParent() == BB
&& Cmp
->hasOneUse() &&
2944 isa
<ConstantInt
>(Cmp
->getOperand(1 - U
.getOperandNo())))
2945 if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(Cmp
->user_back()))
2946 if (isUnfoldCandidate(SelectI
, Cmp
->use_begin()->get())) {
2950 } else if (SelectInst
*SelectI
= dyn_cast
<SelectInst
>(U
.getUser())) {
2951 // Look for a Select in BB that uses PN as condition.
2952 if (isUnfoldCandidate(SelectI
, U
.get())) {
2961 // Expand the select.
2962 Value
*Cond
= SI
->getCondition();
2963 if (!isGuaranteedNotToBeUndefOrPoison(Cond
, nullptr, SI
))
2964 Cond
= new FreezeInst(Cond
, "cond.fr", SI
->getIterator());
2965 MDNode
*BranchWeights
= getBranchWeightMDNode(*SI
);
2967 SplitBlockAndInsertIfThen(Cond
, SI
, false, BranchWeights
);
2968 BasicBlock
*SplitBB
= SI
->getParent();
2969 BasicBlock
*NewBB
= Term
->getParent();
2970 PHINode
*NewPN
= PHINode::Create(SI
->getType(), 2, "", SI
->getIterator());
2971 NewPN
->addIncoming(SI
->getTrueValue(), Term
->getParent());
2972 NewPN
->addIncoming(SI
->getFalseValue(), BB
);
2973 NewPN
->setDebugLoc(SI
->getDebugLoc());
2974 SI
->replaceAllUsesWith(NewPN
);
2975 SI
->eraseFromParent();
2976 // NewBB and SplitBB are newly created blocks which require insertion.
2977 std::vector
<DominatorTree::UpdateType
> Updates
;
2978 Updates
.reserve((2 * SplitBB
->getTerminator()->getNumSuccessors()) + 3);
2979 Updates
.push_back({DominatorTree::Insert
, BB
, SplitBB
});
2980 Updates
.push_back({DominatorTree::Insert
, BB
, NewBB
});
2981 Updates
.push_back({DominatorTree::Insert
, NewBB
, SplitBB
});
2982 // BB's successors were moved to SplitBB, update DTU accordingly.
2983 for (auto *Succ
: successors(SplitBB
)) {
2984 Updates
.push_back({DominatorTree::Delete
, BB
, Succ
});
2985 Updates
.push_back({DominatorTree::Insert
, SplitBB
, Succ
});
2987 DTU
->applyUpdatesPermissive(Updates
);
2993 /// Try to propagate a guard from the current BB into one of its predecessors
2994 /// in case if another branch of execution implies that the condition of this
2995 /// guard is always true. Currently we only process the simplest case that
3000 /// br i1 %cond, label %T1, label %F1
3006 /// %condGuard = ...
3007 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
3009 /// And cond either implies condGuard or !condGuard. In this case all the
3010 /// instructions before the guard can be duplicated in both branches, and the
3011 /// guard is then threaded to one of them.
3012 bool JumpThreadingPass::processGuards(BasicBlock
*BB
) {
3013 using namespace PatternMatch
;
3015 // We only want to deal with two predecessors.
3016 BasicBlock
*Pred1
, *Pred2
;
3017 auto PI
= pred_begin(BB
), PE
= pred_end(BB
);
3029 // Try to thread one of the guards of the block.
3030 // TODO: Look up deeper than to immediate predecessor?
3031 auto *Parent
= Pred1
->getSinglePredecessor();
3032 if (!Parent
|| Parent
!= Pred2
->getSinglePredecessor())
3035 if (auto *BI
= dyn_cast
<BranchInst
>(Parent
->getTerminator()))
3037 if (isGuard(&I
) && threadGuard(BB
, cast
<IntrinsicInst
>(&I
), BI
))
3043 /// Try to propagate the guard from BB which is the lower block of a diamond
3044 /// to one of its branches, in case if diamond's condition implies guard's
3046 bool JumpThreadingPass::threadGuard(BasicBlock
*BB
, IntrinsicInst
*Guard
,
3048 assert(BI
->getNumSuccessors() == 2 && "Wrong number of successors?");
3049 assert(BI
->isConditional() && "Unconditional branch has 2 successors?");
3050 Value
*GuardCond
= Guard
->getArgOperand(0);
3051 Value
*BranchCond
= BI
->getCondition();
3052 BasicBlock
*TrueDest
= BI
->getSuccessor(0);
3053 BasicBlock
*FalseDest
= BI
->getSuccessor(1);
3055 auto &DL
= BB
->getDataLayout();
3056 bool TrueDestIsSafe
= false;
3057 bool FalseDestIsSafe
= false;
3059 // True dest is safe if BranchCond => GuardCond.
3060 auto Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
);
3062 TrueDestIsSafe
= true;
3064 // False dest is safe if !BranchCond => GuardCond.
3065 Impl
= isImpliedCondition(BranchCond
, GuardCond
, DL
, /* LHSIsTrue */ false);
3067 FalseDestIsSafe
= true;
3070 if (!TrueDestIsSafe
&& !FalseDestIsSafe
)
3073 BasicBlock
*PredUnguardedBlock
= TrueDestIsSafe
? TrueDest
: FalseDest
;
3074 BasicBlock
*PredGuardedBlock
= FalseDestIsSafe
? TrueDest
: FalseDest
;
3076 ValueToValueMapTy UnguardedMapping
, GuardedMapping
;
3077 Instruction
*AfterGuard
= Guard
->getNextNode();
3079 getJumpThreadDuplicationCost(TTI
, BB
, AfterGuard
, BBDupThreshold
);
3080 if (Cost
> BBDupThreshold
)
3082 // Duplicate all instructions before the guard and the guard itself to the
3083 // branch where implication is not proved.
3084 BasicBlock
*GuardedBlock
= DuplicateInstructionsInSplitBetween(
3085 BB
, PredGuardedBlock
, AfterGuard
, GuardedMapping
, *DTU
);
3086 assert(GuardedBlock
&& "Could not create the guarded block?");
3087 // Duplicate all instructions before the guard in the unguarded branch.
3088 // Since we have successfully duplicated the guarded block and this block
3089 // has fewer instructions, we expect it to succeed.
3090 BasicBlock
*UnguardedBlock
= DuplicateInstructionsInSplitBetween(
3091 BB
, PredUnguardedBlock
, Guard
, UnguardedMapping
, *DTU
);
3092 assert(UnguardedBlock
&& "Could not create the unguarded block?");
3093 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard
<< " to block "
3094 << GuardedBlock
->getName() << "\n");
3095 // Some instructions before the guard may still have uses. For them, we need
3096 // to create Phi nodes merging their copies in both guarded and unguarded
3097 // branches. Those instructions that have no uses can be just removed.
3098 SmallVector
<Instruction
*, 4> ToRemove
;
3099 for (auto BI
= BB
->begin(); &*BI
!= AfterGuard
; ++BI
)
3100 if (!isa
<PHINode
>(&*BI
))
3101 ToRemove
.push_back(&*BI
);
3103 BasicBlock::iterator InsertionPoint
= BB
->getFirstInsertionPt();
3104 assert(InsertionPoint
!= BB
->end() && "Empty block?");
3105 // Substitute with Phis & remove.
3106 for (auto *Inst
: reverse(ToRemove
)) {
3107 if (!Inst
->use_empty()) {
3108 PHINode
*NewPN
= PHINode::Create(Inst
->getType(), 2);
3109 NewPN
->addIncoming(UnguardedMapping
[Inst
], UnguardedBlock
);
3110 NewPN
->addIncoming(GuardedMapping
[Inst
], GuardedBlock
);
3111 NewPN
->setDebugLoc(Inst
->getDebugLoc());
3112 NewPN
->insertBefore(InsertionPoint
);
3113 Inst
->replaceAllUsesWith(NewPN
);
3115 Inst
->dropDbgRecords();
3116 Inst
->eraseFromParent();
3121 PreservedAnalyses
JumpThreadingPass::getPreservedAnalysis() const {
3122 PreservedAnalyses PA
;
3123 PA
.preserve
<LazyValueAnalysis
>();
3124 PA
.preserve
<DominatorTreeAnalysis
>();
3126 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3127 // TODO: Would be nice to verify BPI/BFI consistency as well.
3131 template <typename AnalysisT
>
3132 typename
AnalysisT::Result
*JumpThreadingPass::runExternalAnalysis() {
3133 assert(FAM
&& "Can't run external analysis without FunctionAnalysisManager");
3135 // If there were no changes since last call to 'runExternalAnalysis' then all
3136 // analysis is either up to date or explicitly invalidated. Just go ahead and
3137 // run the "external" analysis.
3138 if (!ChangedSinceLastAnalysisUpdate
) {
3139 assert(!DTU
->hasPendingUpdates() &&
3140 "Lost update of 'ChangedSinceLastAnalysisUpdate'?");
3141 // Run the "external" analysis.
3142 return &FAM
->getResult
<AnalysisT
>(*F
);
3144 ChangedSinceLastAnalysisUpdate
= false;
3146 auto PA
= getPreservedAnalysis();
3147 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3149 PA
.preserve
<BranchProbabilityAnalysis
>();
3150 PA
.preserve
<BlockFrequencyAnalysis
>();
3151 // Report everything except explicitly preserved as invalid.
3152 FAM
->invalidate(*F
, PA
);
3155 // Make sure DT/PDT are valid before running "external" analysis.
3156 assert(DTU
->getDomTree().verify(DominatorTree::VerificationLevel::Fast
));
3157 assert((!DTU
->hasPostDomTree() ||
3158 DTU
->getPostDomTree().verify(
3159 PostDominatorTree::VerificationLevel::Fast
)));
3160 // Run the "external" analysis.
3161 auto *Result
= &FAM
->getResult
<AnalysisT
>(*F
);
3162 // Update analysis JumpThreading depends on and not explicitly preserved.
3163 TTI
= &FAM
->getResult
<TargetIRAnalysis
>(*F
);
3164 TLI
= &FAM
->getResult
<TargetLibraryAnalysis
>(*F
);
3165 AA
= &FAM
->getResult
<AAManager
>(*F
);
3170 BranchProbabilityInfo
*JumpThreadingPass::getBPI() {
3172 assert(FAM
&& "Can't create BPI without FunctionAnalysisManager");
3173 BPI
= FAM
->getCachedResult
<BranchProbabilityAnalysis
>(*F
);
3178 BlockFrequencyInfo
*JumpThreadingPass::getBFI() {
3180 assert(FAM
&& "Can't create BFI without FunctionAnalysisManager");
3181 BFI
= FAM
->getCachedResult
<BlockFrequencyAnalysis
>(*F
);
3186 // Important note on validity of BPI/BFI. JumpThreading tries to preserve
3187 // BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3188 // Otherwise, new instance of BPI/BFI is created (up to date by definition).
3189 BranchProbabilityInfo
*JumpThreadingPass::getOrCreateBPI(bool Force
) {
3190 auto *Res
= getBPI();
3195 BPI
= runExternalAnalysis
<BranchProbabilityAnalysis
>();
3200 BlockFrequencyInfo
*JumpThreadingPass::getOrCreateBFI(bool Force
) {
3201 auto *Res
= getBFI();
3206 BFI
= runExternalAnalysis
<BlockFrequencyAnalysis
>();