[libcxx][test] Fix a test for the range of file offsets on ARMv7 Linux targets. ...
[llvm-project.git] / llvm / lib / Transforms / Scalar / LoopStrengthReduce.cpp
blobd51d043f9f0d9b14ce0be4ca16e3f410da1230fc
1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into forms suitable for efficient execution
11 // on the target.
13 // This pass performs a strength reduction on array references inside loops that
14 // have as one or more of their components the loop induction variable, it
15 // rewrites expressions to take advantage of scaled-index addressing modes
16 // available on the target, and it performs a variety of other optimizations
17 // related to loop induction variables.
19 // Terminology note: this code has a lot of handling for "post-increment" or
20 // "post-inc" users. This is not talking about post-increment addressing modes;
21 // it is instead talking about code like this:
23 // %i = phi [ 0, %entry ], [ %i.next, %latch ]
24 // ...
25 // %i.next = add %i, 1
26 // %c = icmp eq %i.next, %n
28 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29 // it's useful to think about these as the same register, with some uses using
30 // the value of the register before the add and some using it after. In this
31 // example, the icmp is a post-increment user, since it uses %i.next, which is
32 // the value of the induction variable after the increment. The other common
33 // case of post-increment users is users outside the loop.
35 // TODO: More sophistication in the way Formulae are generated and filtered.
37 // TODO: Handle multiple loops at a time.
39 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40 // of a GlobalValue?
42 // TODO: When truncation is free, truncate ICmp users' operands to make it a
43 // smaller encoding (on x86 at least).
45 // TODO: When a negated register is used by an add (such as in a list of
46 // multiple base registers, or as the increment expression in an addrec),
47 // we may not actually need both reg and (-1 * reg) in registers; the
48 // negation can be implemented by using a sub instead of an add. The
49 // lack of support for taking this into consideration when making
50 // register pressure decisions is partly worked around by the "Special"
51 // use kind.
53 //===----------------------------------------------------------------------===//
55 #include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56 #include "llvm/ADT/APInt.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseSet.h"
59 #include "llvm/ADT/Hashing.h"
60 #include "llvm/ADT/PointerIntPair.h"
61 #include "llvm/ADT/STLExtras.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallBitVector.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/SmallSet.h"
66 #include "llvm/ADT/SmallVector.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/ADT/iterator_range.h"
69 #include "llvm/Analysis/AssumptionCache.h"
70 #include "llvm/Analysis/DomTreeUpdater.h"
71 #include "llvm/Analysis/IVUsers.h"
72 #include "llvm/Analysis/LoopAnalysisManager.h"
73 #include "llvm/Analysis/LoopInfo.h"
74 #include "llvm/Analysis/LoopPass.h"
75 #include "llvm/Analysis/MemorySSA.h"
76 #include "llvm/Analysis/MemorySSAUpdater.h"
77 #include "llvm/Analysis/ScalarEvolution.h"
78 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
79 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
80 #include "llvm/Analysis/TargetLibraryInfo.h"
81 #include "llvm/Analysis/TargetTransformInfo.h"
82 #include "llvm/Analysis/ValueTracking.h"
83 #include "llvm/BinaryFormat/Dwarf.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/BasicBlock.h"
86 #include "llvm/IR/Constant.h"
87 #include "llvm/IR/Constants.h"
88 #include "llvm/IR/DebugInfoMetadata.h"
89 #include "llvm/IR/DerivedTypes.h"
90 #include "llvm/IR/Dominators.h"
91 #include "llvm/IR/GlobalValue.h"
92 #include "llvm/IR/IRBuilder.h"
93 #include "llvm/IR/InstrTypes.h"
94 #include "llvm/IR/Instruction.h"
95 #include "llvm/IR/Instructions.h"
96 #include "llvm/IR/IntrinsicInst.h"
97 #include "llvm/IR/Module.h"
98 #include "llvm/IR/Operator.h"
99 #include "llvm/IR/Type.h"
100 #include "llvm/IR/Use.h"
101 #include "llvm/IR/User.h"
102 #include "llvm/IR/Value.h"
103 #include "llvm/IR/ValueHandle.h"
104 #include "llvm/InitializePasses.h"
105 #include "llvm/Pass.h"
106 #include "llvm/Support/Casting.h"
107 #include "llvm/Support/CommandLine.h"
108 #include "llvm/Support/Compiler.h"
109 #include "llvm/Support/Debug.h"
110 #include "llvm/Support/ErrorHandling.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Transforms/Scalar.h"
114 #include "llvm/Transforms/Utils.h"
115 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include "llvm/Transforms/Utils/LoopUtils.h"
118 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
119 #include <algorithm>
120 #include <cassert>
121 #include <cstddef>
122 #include <cstdint>
123 #include <iterator>
124 #include <limits>
125 #include <map>
126 #include <numeric>
127 #include <optional>
128 #include <utility>
130 using namespace llvm;
132 #define DEBUG_TYPE "loop-reduce"
134 /// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
135 /// bail out. This threshold is far beyond the number of users that LSR can
136 /// conceivably solve, so it should not affect generated code, but catches the
137 /// worst cases before LSR burns too much compile time and stack space.
138 static const unsigned MaxIVUsers = 200;
140 /// Limit the size of expression that SCEV-based salvaging will attempt to
141 /// translate into a DIExpression.
142 /// Choose a maximum size such that debuginfo is not excessively increased and
143 /// the salvaging is not too expensive for the compiler.
144 static const unsigned MaxSCEVSalvageExpressionSize = 64;
146 // Cleanup congruent phis after LSR phi expansion.
147 static cl::opt<bool> EnablePhiElim(
148 "enable-lsr-phielim", cl::Hidden, cl::init(true),
149 cl::desc("Enable LSR phi elimination"));
151 // The flag adds instruction count to solutions cost comparison.
152 static cl::opt<bool> InsnsCost(
153 "lsr-insns-cost", cl::Hidden, cl::init(true),
154 cl::desc("Add instruction count to a LSR cost model"));
156 // Flag to choose how to narrow complex lsr solution
157 static cl::opt<bool> LSRExpNarrow(
158 "lsr-exp-narrow", cl::Hidden, cl::init(false),
159 cl::desc("Narrow LSR complex solution using"
160 " expectation of registers number"));
162 // Flag to narrow search space by filtering non-optimal formulae with
163 // the same ScaledReg and Scale.
164 static cl::opt<bool> FilterSameScaledReg(
165 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
166 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
167 " with the same ScaledReg and Scale"));
169 static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
170 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
171 cl::desc("A flag that overrides the target's preferred addressing mode."),
172 cl::values(clEnumValN(TTI::AMK_None,
173 "none",
174 "Don't prefer any addressing mode"),
175 clEnumValN(TTI::AMK_PreIndexed,
176 "preindexed",
177 "Prefer pre-indexed addressing mode"),
178 clEnumValN(TTI::AMK_PostIndexed,
179 "postindexed",
180 "Prefer post-indexed addressing mode")));
182 static cl::opt<unsigned> ComplexityLimit(
183 "lsr-complexity-limit", cl::Hidden,
184 cl::init(std::numeric_limits<uint16_t>::max()),
185 cl::desc("LSR search space complexity limit"));
187 static cl::opt<unsigned> SetupCostDepthLimit(
188 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
189 cl::desc("The limit on recursion depth for LSRs setup cost"));
191 static cl::opt<cl::boolOrDefault> AllowDropSolutionIfLessProfitable(
192 "lsr-drop-solution", cl::Hidden,
193 cl::desc("Attempt to drop solution if it is less profitable"));
195 static cl::opt<bool> EnableVScaleImmediates(
196 "lsr-enable-vscale-immediates", cl::Hidden, cl::init(true),
197 cl::desc("Enable analysis of vscale-relative immediates in LSR"));
199 static cl::opt<bool> DropScaledForVScale(
200 "lsr-drop-scaled-reg-for-vscale", cl::Hidden, cl::init(true),
201 cl::desc("Avoid using scaled registers with vscale-relative addressing"));
203 #ifndef NDEBUG
204 // Stress test IV chain generation.
205 static cl::opt<bool> StressIVChain(
206 "stress-ivchain", cl::Hidden, cl::init(false),
207 cl::desc("Stress test LSR IV chains"));
208 #else
209 static bool StressIVChain = false;
210 #endif
212 namespace {
214 struct MemAccessTy {
215 /// Used in situations where the accessed memory type is unknown.
216 static const unsigned UnknownAddressSpace =
217 std::numeric_limits<unsigned>::max();
219 Type *MemTy = nullptr;
220 unsigned AddrSpace = UnknownAddressSpace;
222 MemAccessTy() = default;
223 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
225 bool operator==(MemAccessTy Other) const {
226 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
229 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
231 static MemAccessTy getUnknown(LLVMContext &Ctx,
232 unsigned AS = UnknownAddressSpace) {
233 return MemAccessTy(Type::getVoidTy(Ctx), AS);
236 Type *getType() { return MemTy; }
239 /// This class holds data which is used to order reuse candidates.
240 class RegSortData {
241 public:
242 /// This represents the set of LSRUse indices which reference
243 /// a particular register.
244 SmallBitVector UsedByIndices;
246 void print(raw_ostream &OS) const;
247 void dump() const;
250 // An offset from an address that is either scalable or fixed. Used for
251 // per-target optimizations of addressing modes.
252 class Immediate : public details::FixedOrScalableQuantity<Immediate, int64_t> {
253 constexpr Immediate(ScalarTy MinVal, bool Scalable)
254 : FixedOrScalableQuantity(MinVal, Scalable) {}
256 constexpr Immediate(const FixedOrScalableQuantity<Immediate, int64_t> &V)
257 : FixedOrScalableQuantity(V) {}
259 public:
260 constexpr Immediate() = delete;
262 static constexpr Immediate getFixed(ScalarTy MinVal) {
263 return {MinVal, false};
265 static constexpr Immediate getScalable(ScalarTy MinVal) {
266 return {MinVal, true};
268 static constexpr Immediate get(ScalarTy MinVal, bool Scalable) {
269 return {MinVal, Scalable};
271 static constexpr Immediate getZero() { return {0, false}; }
272 static constexpr Immediate getFixedMin() {
273 return {std::numeric_limits<int64_t>::min(), false};
275 static constexpr Immediate getFixedMax() {
276 return {std::numeric_limits<int64_t>::max(), false};
278 static constexpr Immediate getScalableMin() {
279 return {std::numeric_limits<int64_t>::min(), true};
281 static constexpr Immediate getScalableMax() {
282 return {std::numeric_limits<int64_t>::max(), true};
285 constexpr bool isLessThanZero() const { return Quantity < 0; }
287 constexpr bool isGreaterThanZero() const { return Quantity > 0; }
289 constexpr bool isCompatibleImmediate(const Immediate &Imm) const {
290 return isZero() || Imm.isZero() || Imm.Scalable == Scalable;
293 constexpr bool isMin() const {
294 return Quantity == std::numeric_limits<ScalarTy>::min();
297 constexpr bool isMax() const {
298 return Quantity == std::numeric_limits<ScalarTy>::max();
301 // Arithmetic 'operators' that cast to unsigned types first.
302 constexpr Immediate addUnsigned(const Immediate &RHS) const {
303 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates");
304 ScalarTy Value = (uint64_t)Quantity + RHS.getKnownMinValue();
305 return {Value, Scalable || RHS.isScalable()};
308 constexpr Immediate subUnsigned(const Immediate &RHS) const {
309 assert(isCompatibleImmediate(RHS) && "Incompatible Immediates");
310 ScalarTy Value = (uint64_t)Quantity - RHS.getKnownMinValue();
311 return {Value, Scalable || RHS.isScalable()};
314 // Scale the quantity by a constant without caring about runtime scalability.
315 constexpr Immediate mulUnsigned(const ScalarTy RHS) const {
316 ScalarTy Value = (uint64_t)Quantity * RHS;
317 return {Value, Scalable};
320 // Helpers for generating SCEVs with vscale terms where needed.
321 const SCEV *getSCEV(ScalarEvolution &SE, Type *Ty) const {
322 const SCEV *S = SE.getConstant(Ty, Quantity);
323 if (Scalable)
324 S = SE.getMulExpr(S, SE.getVScale(S->getType()));
325 return S;
328 const SCEV *getNegativeSCEV(ScalarEvolution &SE, Type *Ty) const {
329 const SCEV *NegS = SE.getConstant(Ty, -(uint64_t)Quantity);
330 if (Scalable)
331 NegS = SE.getMulExpr(NegS, SE.getVScale(NegS->getType()));
332 return NegS;
335 const SCEV *getUnknownSCEV(ScalarEvolution &SE, Type *Ty) const {
336 const SCEV *SU = SE.getUnknown(ConstantInt::getSigned(Ty, Quantity));
337 if (Scalable)
338 SU = SE.getMulExpr(SU, SE.getVScale(SU->getType()));
339 return SU;
343 // This is needed for the Compare type of std::map when Immediate is used
344 // as a key. We don't need it to be fully correct against any value of vscale,
345 // just to make sure that vscale-related terms in the map are considered against
346 // each other rather than being mixed up and potentially missing opportunities.
347 struct KeyOrderTargetImmediate {
348 bool operator()(const Immediate &LHS, const Immediate &RHS) const {
349 if (LHS.isScalable() && !RHS.isScalable())
350 return false;
351 if (!LHS.isScalable() && RHS.isScalable())
352 return true;
353 return LHS.getKnownMinValue() < RHS.getKnownMinValue();
357 // This would be nicer if we could be generic instead of directly using size_t,
358 // but there doesn't seem to be a type trait for is_orderable or
359 // is_lessthan_comparable or similar.
360 struct KeyOrderSizeTAndImmediate {
361 bool operator()(const std::pair<size_t, Immediate> &LHS,
362 const std::pair<size_t, Immediate> &RHS) const {
363 size_t LSize = LHS.first;
364 size_t RSize = RHS.first;
365 if (LSize != RSize)
366 return LSize < RSize;
367 return KeyOrderTargetImmediate()(LHS.second, RHS.second);
370 } // end anonymous namespace
372 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
373 void RegSortData::print(raw_ostream &OS) const {
374 OS << "[NumUses=" << UsedByIndices.count() << ']';
377 LLVM_DUMP_METHOD void RegSortData::dump() const {
378 print(errs()); errs() << '\n';
380 #endif
382 namespace {
384 /// Map register candidates to information about how they are used.
385 class RegUseTracker {
386 using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
388 RegUsesTy RegUsesMap;
389 SmallVector<const SCEV *, 16> RegSequence;
391 public:
392 void countRegister(const SCEV *Reg, size_t LUIdx);
393 void dropRegister(const SCEV *Reg, size_t LUIdx);
394 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
396 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
398 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
400 void clear();
402 using iterator = SmallVectorImpl<const SCEV *>::iterator;
403 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
405 iterator begin() { return RegSequence.begin(); }
406 iterator end() { return RegSequence.end(); }
407 const_iterator begin() const { return RegSequence.begin(); }
408 const_iterator end() const { return RegSequence.end(); }
411 } // end anonymous namespace
413 void
414 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
415 std::pair<RegUsesTy::iterator, bool> Pair =
416 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
417 RegSortData &RSD = Pair.first->second;
418 if (Pair.second)
419 RegSequence.push_back(Reg);
420 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
421 RSD.UsedByIndices.set(LUIdx);
424 void
425 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
426 RegUsesTy::iterator It = RegUsesMap.find(Reg);
427 assert(It != RegUsesMap.end());
428 RegSortData &RSD = It->second;
429 assert(RSD.UsedByIndices.size() > LUIdx);
430 RSD.UsedByIndices.reset(LUIdx);
433 void
434 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
435 assert(LUIdx <= LastLUIdx);
437 // Update RegUses. The data structure is not optimized for this purpose;
438 // we must iterate through it and update each of the bit vectors.
439 for (auto &Pair : RegUsesMap) {
440 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
441 if (LUIdx < UsedByIndices.size())
442 UsedByIndices[LUIdx] =
443 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
444 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
448 bool
449 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
450 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
451 if (I == RegUsesMap.end())
452 return false;
453 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
454 int i = UsedByIndices.find_first();
455 if (i == -1) return false;
456 if ((size_t)i != LUIdx) return true;
457 return UsedByIndices.find_next(i) != -1;
460 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
461 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
462 assert(I != RegUsesMap.end() && "Unknown register!");
463 return I->second.UsedByIndices;
466 void RegUseTracker::clear() {
467 RegUsesMap.clear();
468 RegSequence.clear();
471 namespace {
473 /// This class holds information that describes a formula for computing
474 /// satisfying a use. It may include broken-out immediates and scaled registers.
475 struct Formula {
476 /// Global base address used for complex addressing.
477 GlobalValue *BaseGV = nullptr;
479 /// Base offset for complex addressing.
480 Immediate BaseOffset = Immediate::getZero();
482 /// Whether any complex addressing has a base register.
483 bool HasBaseReg = false;
485 /// The scale of any complex addressing.
486 int64_t Scale = 0;
488 /// The list of "base" registers for this use. When this is non-empty. The
489 /// canonical representation of a formula is
490 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
491 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
492 /// 3. The reg containing recurrent expr related with currect loop in the
493 /// formula should be put in the ScaledReg.
494 /// #1 enforces that the scaled register is always used when at least two
495 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
496 /// #2 enforces that 1 * reg is reg.
497 /// #3 ensures invariant regs with respect to current loop can be combined
498 /// together in LSR codegen.
499 /// This invariant can be temporarily broken while building a formula.
500 /// However, every formula inserted into the LSRInstance must be in canonical
501 /// form.
502 SmallVector<const SCEV *, 4> BaseRegs;
504 /// The 'scaled' register for this use. This should be non-null when Scale is
505 /// not zero.
506 const SCEV *ScaledReg = nullptr;
508 /// An additional constant offset which added near the use. This requires a
509 /// temporary register, but the offset itself can live in an add immediate
510 /// field rather than a register.
511 Immediate UnfoldedOffset = Immediate::getZero();
513 Formula() = default;
515 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
517 bool isCanonical(const Loop &L) const;
519 void canonicalize(const Loop &L);
521 bool unscale();
523 bool hasZeroEnd() const;
525 size_t getNumRegs() const;
526 Type *getType() const;
528 void deleteBaseReg(const SCEV *&S);
530 bool referencesReg(const SCEV *S) const;
531 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
532 const RegUseTracker &RegUses) const;
534 void print(raw_ostream &OS) const;
535 void dump() const;
538 } // end anonymous namespace
540 /// Recursion helper for initialMatch.
541 static void DoInitialMatch(const SCEV *S, Loop *L,
542 SmallVectorImpl<const SCEV *> &Good,
543 SmallVectorImpl<const SCEV *> &Bad,
544 ScalarEvolution &SE) {
545 // Collect expressions which properly dominate the loop header.
546 if (SE.properlyDominates(S, L->getHeader())) {
547 Good.push_back(S);
548 return;
551 // Look at add operands.
552 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
553 for (const SCEV *S : Add->operands())
554 DoInitialMatch(S, L, Good, Bad, SE);
555 return;
558 // Look at addrec operands.
559 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
560 if (!AR->getStart()->isZero() && AR->isAffine()) {
561 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
562 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
563 AR->getStepRecurrence(SE),
564 // FIXME: AR->getNoWrapFlags()
565 AR->getLoop(), SCEV::FlagAnyWrap),
566 L, Good, Bad, SE);
567 return;
570 // Handle a multiplication by -1 (negation) if it didn't fold.
571 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
572 if (Mul->getOperand(0)->isAllOnesValue()) {
573 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
574 const SCEV *NewMul = SE.getMulExpr(Ops);
576 SmallVector<const SCEV *, 4> MyGood;
577 SmallVector<const SCEV *, 4> MyBad;
578 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
579 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
580 SE.getEffectiveSCEVType(NewMul->getType())));
581 for (const SCEV *S : MyGood)
582 Good.push_back(SE.getMulExpr(NegOne, S));
583 for (const SCEV *S : MyBad)
584 Bad.push_back(SE.getMulExpr(NegOne, S));
585 return;
588 // Ok, we can't do anything interesting. Just stuff the whole thing into a
589 // register and hope for the best.
590 Bad.push_back(S);
593 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
594 /// all loop-invariant and loop-computable values in a single base register.
595 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
596 SmallVector<const SCEV *, 4> Good;
597 SmallVector<const SCEV *, 4> Bad;
598 DoInitialMatch(S, L, Good, Bad, SE);
599 if (!Good.empty()) {
600 const SCEV *Sum = SE.getAddExpr(Good);
601 if (!Sum->isZero())
602 BaseRegs.push_back(Sum);
603 HasBaseReg = true;
605 if (!Bad.empty()) {
606 const SCEV *Sum = SE.getAddExpr(Bad);
607 if (!Sum->isZero())
608 BaseRegs.push_back(Sum);
609 HasBaseReg = true;
611 canonicalize(*L);
614 static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
615 return SCEVExprContains(S, [&L](const SCEV *S) {
616 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
620 /// Check whether or not this formula satisfies the canonical
621 /// representation.
622 /// \see Formula::BaseRegs.
623 bool Formula::isCanonical(const Loop &L) const {
624 assert((Scale == 0 || ScaledReg) &&
625 "ScaledReg must be non-null if Scale is non-zero");
627 if (!ScaledReg)
628 return BaseRegs.size() <= 1;
630 if (Scale != 1)
631 return true;
633 if (Scale == 1 && BaseRegs.empty())
634 return false;
636 if (containsAddRecDependentOnLoop(ScaledReg, L))
637 return true;
639 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
640 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
641 // loop, we want to swap the reg in BaseRegs with ScaledReg.
642 return none_of(BaseRegs, [&L](const SCEV *S) {
643 return containsAddRecDependentOnLoop(S, L);
647 /// Helper method to morph a formula into its canonical representation.
648 /// \see Formula::BaseRegs.
649 /// Every formula having more than one base register, must use the ScaledReg
650 /// field. Otherwise, we would have to do special cases everywhere in LSR
651 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
652 /// On the other hand, 1*reg should be canonicalized into reg.
653 void Formula::canonicalize(const Loop &L) {
654 if (isCanonical(L))
655 return;
657 if (BaseRegs.empty()) {
658 // No base reg? Use scale reg with scale = 1 as such.
659 assert(ScaledReg && "Expected 1*reg => reg");
660 assert(Scale == 1 && "Expected 1*reg => reg");
661 BaseRegs.push_back(ScaledReg);
662 Scale = 0;
663 ScaledReg = nullptr;
664 return;
667 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
668 if (!ScaledReg) {
669 ScaledReg = BaseRegs.pop_back_val();
670 Scale = 1;
673 // If ScaledReg is an invariant with respect to L, find the reg from
674 // BaseRegs containing the recurrent expr related with Loop L. Swap the
675 // reg with ScaledReg.
676 if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
677 auto I = find_if(BaseRegs, [&L](const SCEV *S) {
678 return containsAddRecDependentOnLoop(S, L);
680 if (I != BaseRegs.end())
681 std::swap(ScaledReg, *I);
683 assert(isCanonical(L) && "Failed to canonicalize?");
686 /// Get rid of the scale in the formula.
687 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
688 /// \return true if it was possible to get rid of the scale, false otherwise.
689 /// \note After this operation the formula may not be in the canonical form.
690 bool Formula::unscale() {
691 if (Scale != 1)
692 return false;
693 Scale = 0;
694 BaseRegs.push_back(ScaledReg);
695 ScaledReg = nullptr;
696 return true;
699 bool Formula::hasZeroEnd() const {
700 if (UnfoldedOffset || BaseOffset)
701 return false;
702 if (BaseRegs.size() != 1 || ScaledReg)
703 return false;
704 return true;
707 /// Return the total number of register operands used by this formula. This does
708 /// not include register uses implied by non-constant addrec strides.
709 size_t Formula::getNumRegs() const {
710 return !!ScaledReg + BaseRegs.size();
713 /// Return the type of this formula, if it has one, or null otherwise. This type
714 /// is meaningless except for the bit size.
715 Type *Formula::getType() const {
716 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
717 ScaledReg ? ScaledReg->getType() :
718 BaseGV ? BaseGV->getType() :
719 nullptr;
722 /// Delete the given base reg from the BaseRegs list.
723 void Formula::deleteBaseReg(const SCEV *&S) {
724 if (&S != &BaseRegs.back())
725 std::swap(S, BaseRegs.back());
726 BaseRegs.pop_back();
729 /// Test if this formula references the given register.
730 bool Formula::referencesReg(const SCEV *S) const {
731 return S == ScaledReg || is_contained(BaseRegs, S);
734 /// Test whether this formula uses registers which are used by uses other than
735 /// the use with the given index.
736 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
737 const RegUseTracker &RegUses) const {
738 if (ScaledReg)
739 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
740 return true;
741 for (const SCEV *BaseReg : BaseRegs)
742 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
743 return true;
744 return false;
747 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
748 void Formula::print(raw_ostream &OS) const {
749 bool First = true;
750 if (BaseGV) {
751 if (!First) OS << " + "; else First = false;
752 BaseGV->printAsOperand(OS, /*PrintType=*/false);
754 if (BaseOffset.isNonZero()) {
755 if (!First) OS << " + "; else First = false;
756 OS << BaseOffset;
758 for (const SCEV *BaseReg : BaseRegs) {
759 if (!First) OS << " + "; else First = false;
760 OS << "reg(" << *BaseReg << ')';
762 if (HasBaseReg && BaseRegs.empty()) {
763 if (!First) OS << " + "; else First = false;
764 OS << "**error: HasBaseReg**";
765 } else if (!HasBaseReg && !BaseRegs.empty()) {
766 if (!First) OS << " + "; else First = false;
767 OS << "**error: !HasBaseReg**";
769 if (Scale != 0) {
770 if (!First) OS << " + "; else First = false;
771 OS << Scale << "*reg(";
772 if (ScaledReg)
773 OS << *ScaledReg;
774 else
775 OS << "<unknown>";
776 OS << ')';
778 if (UnfoldedOffset.isNonZero()) {
779 if (!First) OS << " + ";
780 OS << "imm(" << UnfoldedOffset << ')';
784 LLVM_DUMP_METHOD void Formula::dump() const {
785 print(errs()); errs() << '\n';
787 #endif
789 /// Return true if the given addrec can be sign-extended without changing its
790 /// value.
791 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
792 Type *WideTy =
793 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
794 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
797 /// Return true if the given add can be sign-extended without changing its
798 /// value.
799 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
800 Type *WideTy =
801 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
802 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
805 /// Return true if the given mul can be sign-extended without changing its
806 /// value.
807 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
808 Type *WideTy =
809 IntegerType::get(SE.getContext(),
810 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
811 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
814 /// Return an expression for LHS /s RHS, if it can be determined and if the
815 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
816 /// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
817 /// the multiplication may overflow, which is useful when the result will be
818 /// used in a context where the most significant bits are ignored.
819 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
820 ScalarEvolution &SE,
821 bool IgnoreSignificantBits = false) {
822 // Handle the trivial case, which works for any SCEV type.
823 if (LHS == RHS)
824 return SE.getConstant(LHS->getType(), 1);
826 // Handle a few RHS special cases.
827 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
828 if (RC) {
829 const APInt &RA = RC->getAPInt();
830 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
831 // some folding.
832 if (RA.isAllOnes()) {
833 if (LHS->getType()->isPointerTy())
834 return nullptr;
835 return SE.getMulExpr(LHS, RC);
837 // Handle x /s 1 as x.
838 if (RA == 1)
839 return LHS;
842 // Check for a division of a constant by a constant.
843 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
844 if (!RC)
845 return nullptr;
846 const APInt &LA = C->getAPInt();
847 const APInt &RA = RC->getAPInt();
848 if (LA.srem(RA) != 0)
849 return nullptr;
850 return SE.getConstant(LA.sdiv(RA));
853 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
854 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
855 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
856 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
857 IgnoreSignificantBits);
858 if (!Step) return nullptr;
859 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
860 IgnoreSignificantBits);
861 if (!Start) return nullptr;
862 // FlagNW is independent of the start value, step direction, and is
863 // preserved with smaller magnitude steps.
864 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
865 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
867 return nullptr;
870 // Distribute the sdiv over add operands, if the add doesn't overflow.
871 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
872 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
873 SmallVector<const SCEV *, 8> Ops;
874 for (const SCEV *S : Add->operands()) {
875 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
876 if (!Op) return nullptr;
877 Ops.push_back(Op);
879 return SE.getAddExpr(Ops);
881 return nullptr;
884 // Check for a multiply operand that we can pull RHS out of.
885 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
886 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
887 // Handle special case C1*X*Y /s C2*X*Y.
888 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
889 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
890 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
891 const SCEVConstant *RC =
892 dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
893 if (LC && RC) {
894 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
895 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
896 if (LOps == ROps)
897 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
902 SmallVector<const SCEV *, 4> Ops;
903 bool Found = false;
904 for (const SCEV *S : Mul->operands()) {
905 if (!Found)
906 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
907 IgnoreSignificantBits)) {
908 S = Q;
909 Found = true;
911 Ops.push_back(S);
913 return Found ? SE.getMulExpr(Ops) : nullptr;
915 return nullptr;
918 // Otherwise we don't know.
919 return nullptr;
922 /// If S involves the addition of a constant integer value, return that integer
923 /// value, and mutate S to point to a new SCEV with that value excluded.
924 static Immediate ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
925 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
926 if (C->getAPInt().getSignificantBits() <= 64) {
927 S = SE.getConstant(C->getType(), 0);
928 return Immediate::getFixed(C->getValue()->getSExtValue());
930 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
931 SmallVector<const SCEV *, 8> NewOps(Add->operands());
932 Immediate Result = ExtractImmediate(NewOps.front(), SE);
933 if (Result.isNonZero())
934 S = SE.getAddExpr(NewOps);
935 return Result;
936 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
937 SmallVector<const SCEV *, 8> NewOps(AR->operands());
938 Immediate Result = ExtractImmediate(NewOps.front(), SE);
939 if (Result.isNonZero())
940 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
941 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
942 SCEV::FlagAnyWrap);
943 return Result;
944 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
945 if (EnableVScaleImmediates && M->getNumOperands() == 2) {
946 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
947 if (isa<SCEVVScale>(M->getOperand(1))) {
948 S = SE.getConstant(M->getType(), 0);
949 return Immediate::getScalable(C->getValue()->getSExtValue());
953 return Immediate::getZero();
956 /// If S involves the addition of a GlobalValue address, return that symbol, and
957 /// mutate S to point to a new SCEV with that value excluded.
958 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
959 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
960 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
961 S = SE.getConstant(GV->getType(), 0);
962 return GV;
964 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
965 SmallVector<const SCEV *, 8> NewOps(Add->operands());
966 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
967 if (Result)
968 S = SE.getAddExpr(NewOps);
969 return Result;
970 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
971 SmallVector<const SCEV *, 8> NewOps(AR->operands());
972 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
973 if (Result)
974 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
975 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
976 SCEV::FlagAnyWrap);
977 return Result;
979 return nullptr;
982 /// Returns true if the specified instruction is using the specified value as an
983 /// address.
984 static bool isAddressUse(const TargetTransformInfo &TTI,
985 Instruction *Inst, Value *OperandVal) {
986 bool isAddress = isa<LoadInst>(Inst);
987 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
988 if (SI->getPointerOperand() == OperandVal)
989 isAddress = true;
990 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
991 // Addressing modes can also be folded into prefetches and a variety
992 // of intrinsics.
993 switch (II->getIntrinsicID()) {
994 case Intrinsic::memset:
995 case Intrinsic::prefetch:
996 case Intrinsic::masked_load:
997 if (II->getArgOperand(0) == OperandVal)
998 isAddress = true;
999 break;
1000 case Intrinsic::masked_store:
1001 if (II->getArgOperand(1) == OperandVal)
1002 isAddress = true;
1003 break;
1004 case Intrinsic::memmove:
1005 case Intrinsic::memcpy:
1006 if (II->getArgOperand(0) == OperandVal ||
1007 II->getArgOperand(1) == OperandVal)
1008 isAddress = true;
1009 break;
1010 default: {
1011 MemIntrinsicInfo IntrInfo;
1012 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
1013 if (IntrInfo.PtrVal == OperandVal)
1014 isAddress = true;
1018 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
1019 if (RMW->getPointerOperand() == OperandVal)
1020 isAddress = true;
1021 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
1022 if (CmpX->getPointerOperand() == OperandVal)
1023 isAddress = true;
1025 return isAddress;
1028 /// Return the type of the memory being accessed.
1029 static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
1030 Instruction *Inst, Value *OperandVal) {
1031 MemAccessTy AccessTy = MemAccessTy::getUnknown(Inst->getContext());
1033 // First get the type of memory being accessed.
1034 if (Type *Ty = Inst->getAccessType())
1035 AccessTy.MemTy = Ty;
1037 // Then get the pointer address space.
1038 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1039 AccessTy.AddrSpace = SI->getPointerAddressSpace();
1040 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1041 AccessTy.AddrSpace = LI->getPointerAddressSpace();
1042 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
1043 AccessTy.AddrSpace = RMW->getPointerAddressSpace();
1044 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
1045 AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
1046 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
1047 switch (II->getIntrinsicID()) {
1048 case Intrinsic::prefetch:
1049 case Intrinsic::memset:
1050 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
1051 AccessTy.MemTy = OperandVal->getType();
1052 break;
1053 case Intrinsic::memmove:
1054 case Intrinsic::memcpy:
1055 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
1056 AccessTy.MemTy = OperandVal->getType();
1057 break;
1058 case Intrinsic::masked_load:
1059 AccessTy.AddrSpace =
1060 II->getArgOperand(0)->getType()->getPointerAddressSpace();
1061 break;
1062 case Intrinsic::masked_store:
1063 AccessTy.AddrSpace =
1064 II->getArgOperand(1)->getType()->getPointerAddressSpace();
1065 break;
1066 default: {
1067 MemIntrinsicInfo IntrInfo;
1068 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
1069 AccessTy.AddrSpace
1070 = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
1073 break;
1078 return AccessTy;
1081 /// Return true if this AddRec is already a phi in its loop.
1082 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
1083 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
1084 if (SE.isSCEVable(PN.getType()) &&
1085 (SE.getEffectiveSCEVType(PN.getType()) ==
1086 SE.getEffectiveSCEVType(AR->getType())) &&
1087 SE.getSCEV(&PN) == AR)
1088 return true;
1090 return false;
1093 /// Check if expanding this expression is likely to incur significant cost. This
1094 /// is tricky because SCEV doesn't track which expressions are actually computed
1095 /// by the current IR.
1097 /// We currently allow expansion of IV increments that involve adds,
1098 /// multiplication by constants, and AddRecs from existing phis.
1100 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
1101 /// obvious multiple of the UDivExpr.
1102 static bool isHighCostExpansion(const SCEV *S,
1103 SmallPtrSetImpl<const SCEV*> &Processed,
1104 ScalarEvolution &SE) {
1105 // Zero/One operand expressions
1106 switch (S->getSCEVType()) {
1107 case scUnknown:
1108 case scConstant:
1109 case scVScale:
1110 return false;
1111 case scTruncate:
1112 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
1113 Processed, SE);
1114 case scZeroExtend:
1115 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
1116 Processed, SE);
1117 case scSignExtend:
1118 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
1119 Processed, SE);
1120 default:
1121 break;
1124 if (!Processed.insert(S).second)
1125 return false;
1127 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1128 for (const SCEV *S : Add->operands()) {
1129 if (isHighCostExpansion(S, Processed, SE))
1130 return true;
1132 return false;
1135 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1136 if (Mul->getNumOperands() == 2) {
1137 // Multiplication by a constant is ok
1138 if (isa<SCEVConstant>(Mul->getOperand(0)))
1139 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1141 // If we have the value of one operand, check if an existing
1142 // multiplication already generates this expression.
1143 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1144 Value *UVal = U->getValue();
1145 for (User *UR : UVal->users()) {
1146 // If U is a constant, it may be used by a ConstantExpr.
1147 Instruction *UI = dyn_cast<Instruction>(UR);
1148 if (UI && UI->getOpcode() == Instruction::Mul &&
1149 SE.isSCEVable(UI->getType())) {
1150 return SE.getSCEV(UI) == Mul;
1157 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1158 if (isExistingPhi(AR, SE))
1159 return false;
1162 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1163 return true;
1166 namespace {
1168 class LSRUse;
1170 } // end anonymous namespace
1172 /// Check if the addressing mode defined by \p F is completely
1173 /// folded in \p LU at isel time.
1174 /// This includes address-mode folding and special icmp tricks.
1175 /// This function returns true if \p LU can accommodate what \p F
1176 /// defines and up to 1 base + 1 scaled + offset.
1177 /// In other words, if \p F has several base registers, this function may
1178 /// still return true. Therefore, users still need to account for
1179 /// additional base registers and/or unfolded offsets to derive an
1180 /// accurate cost model.
1181 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1182 const LSRUse &LU, const Formula &F);
1184 // Get the cost of the scaling factor used in F for LU.
1185 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1186 const LSRUse &LU, const Formula &F,
1187 const Loop &L);
1189 namespace {
1191 /// This class is used to measure and compare candidate formulae.
1192 class Cost {
1193 const Loop *L = nullptr;
1194 ScalarEvolution *SE = nullptr;
1195 const TargetTransformInfo *TTI = nullptr;
1196 TargetTransformInfo::LSRCost C;
1197 TTI::AddressingModeKind AMK = TTI::AMK_None;
1199 public:
1200 Cost() = delete;
1201 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1202 TTI::AddressingModeKind AMK) :
1203 L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1204 C.Insns = 0;
1205 C.NumRegs = 0;
1206 C.AddRecCost = 0;
1207 C.NumIVMuls = 0;
1208 C.NumBaseAdds = 0;
1209 C.ImmCost = 0;
1210 C.SetupCost = 0;
1211 C.ScaleCost = 0;
1214 bool isLess(const Cost &Other) const;
1216 void Lose();
1218 #ifndef NDEBUG
1219 // Once any of the metrics loses, they must all remain losers.
1220 bool isValid() {
1221 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1222 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1223 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1224 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1226 #endif
1228 bool isLoser() {
1229 assert(isValid() && "invalid cost");
1230 return C.NumRegs == ~0u;
1233 void RateFormula(const Formula &F,
1234 SmallPtrSetImpl<const SCEV *> &Regs,
1235 const DenseSet<const SCEV *> &VisitedRegs,
1236 const LSRUse &LU,
1237 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1239 void print(raw_ostream &OS) const;
1240 void dump() const;
1242 private:
1243 void RateRegister(const Formula &F, const SCEV *Reg,
1244 SmallPtrSetImpl<const SCEV *> &Regs);
1245 void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1246 SmallPtrSetImpl<const SCEV *> &Regs,
1247 SmallPtrSetImpl<const SCEV *> *LoserRegs);
1250 /// An operand value in an instruction which is to be replaced with some
1251 /// equivalent, possibly strength-reduced, replacement.
1252 struct LSRFixup {
1253 /// The instruction which will be updated.
1254 Instruction *UserInst = nullptr;
1256 /// The operand of the instruction which will be replaced. The operand may be
1257 /// used more than once; every instance will be replaced.
1258 Value *OperandValToReplace = nullptr;
1260 /// If this user is to use the post-incremented value of an induction
1261 /// variable, this set is non-empty and holds the loops associated with the
1262 /// induction variable.
1263 PostIncLoopSet PostIncLoops;
1265 /// A constant offset to be added to the LSRUse expression. This allows
1266 /// multiple fixups to share the same LSRUse with different offsets, for
1267 /// example in an unrolled loop.
1268 Immediate Offset = Immediate::getZero();
1270 LSRFixup() = default;
1272 bool isUseFullyOutsideLoop(const Loop *L) const;
1274 void print(raw_ostream &OS) const;
1275 void dump() const;
1278 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1279 /// SmallVectors of const SCEV*.
1280 struct UniquifierDenseMapInfo {
1281 static SmallVector<const SCEV *, 4> getEmptyKey() {
1282 SmallVector<const SCEV *, 4> V;
1283 V.push_back(reinterpret_cast<const SCEV *>(-1));
1284 return V;
1287 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1288 SmallVector<const SCEV *, 4> V;
1289 V.push_back(reinterpret_cast<const SCEV *>(-2));
1290 return V;
1293 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1294 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1297 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1298 const SmallVector<const SCEV *, 4> &RHS) {
1299 return LHS == RHS;
1303 /// This class holds the state that LSR keeps for each use in IVUsers, as well
1304 /// as uses invented by LSR itself. It includes information about what kinds of
1305 /// things can be folded into the user, information about the user itself, and
1306 /// information about how the use may be satisfied. TODO: Represent multiple
1307 /// users of the same expression in common?
1308 class LSRUse {
1309 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1311 public:
1312 /// An enum for a kind of use, indicating what types of scaled and immediate
1313 /// operands it might support.
1314 enum KindType {
1315 Basic, ///< A normal use, with no folding.
1316 Special, ///< A special case of basic, allowing -1 scales.
1317 Address, ///< An address use; folding according to TargetLowering
1318 ICmpZero ///< An equality icmp with both operands folded into one.
1319 // TODO: Add a generic icmp too?
1322 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1324 KindType Kind;
1325 MemAccessTy AccessTy;
1327 /// The list of operands which are to be replaced.
1328 SmallVector<LSRFixup, 8> Fixups;
1330 /// Keep track of the min and max offsets of the fixups.
1331 Immediate MinOffset = Immediate::getFixedMax();
1332 Immediate MaxOffset = Immediate::getFixedMin();
1334 /// This records whether all of the fixups using this LSRUse are outside of
1335 /// the loop, in which case some special-case heuristics may be used.
1336 bool AllFixupsOutsideLoop = true;
1338 /// RigidFormula is set to true to guarantee that this use will be associated
1339 /// with a single formula--the one that initially matched. Some SCEV
1340 /// expressions cannot be expanded. This allows LSR to consider the registers
1341 /// used by those expressions without the need to expand them later after
1342 /// changing the formula.
1343 bool RigidFormula = false;
1345 /// This records the widest use type for any fixup using this
1346 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1347 /// fixup widths to be equivalent, because the narrower one may be relying on
1348 /// the implicit truncation to truncate away bogus bits.
1349 Type *WidestFixupType = nullptr;
1351 /// A list of ways to build a value that can satisfy this user. After the
1352 /// list is populated, one of these is selected heuristically and used to
1353 /// formulate a replacement for OperandValToReplace in UserInst.
1354 SmallVector<Formula, 12> Formulae;
1356 /// The set of register candidates used by all formulae in this LSRUse.
1357 SmallPtrSet<const SCEV *, 4> Regs;
1359 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1361 LSRFixup &getNewFixup() {
1362 Fixups.push_back(LSRFixup());
1363 return Fixups.back();
1366 void pushFixup(LSRFixup &f) {
1367 Fixups.push_back(f);
1368 if (Immediate::isKnownGT(f.Offset, MaxOffset))
1369 MaxOffset = f.Offset;
1370 if (Immediate::isKnownLT(f.Offset, MinOffset))
1371 MinOffset = f.Offset;
1374 bool HasFormulaWithSameRegs(const Formula &F) const;
1375 float getNotSelectedProbability(const SCEV *Reg) const;
1376 bool InsertFormula(const Formula &F, const Loop &L);
1377 void DeleteFormula(Formula &F);
1378 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1380 void print(raw_ostream &OS) const;
1381 void dump() const;
1384 } // end anonymous namespace
1386 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1387 LSRUse::KindType Kind, MemAccessTy AccessTy,
1388 GlobalValue *BaseGV, Immediate BaseOffset,
1389 bool HasBaseReg, int64_t Scale,
1390 Instruction *Fixup = nullptr);
1392 static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1393 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1394 return 1;
1395 if (Depth == 0)
1396 return 0;
1397 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1398 return getSetupCost(S->getStart(), Depth - 1);
1399 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1400 return getSetupCost(S->getOperand(), Depth - 1);
1401 if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1402 return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1403 [&](unsigned i, const SCEV *Reg) {
1404 return i + getSetupCost(Reg, Depth - 1);
1406 if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1407 return getSetupCost(S->getLHS(), Depth - 1) +
1408 getSetupCost(S->getRHS(), Depth - 1);
1409 return 0;
1412 /// Tally up interesting quantities from the given register.
1413 void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1414 SmallPtrSetImpl<const SCEV *> &Regs) {
1415 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1416 // If this is an addrec for another loop, it should be an invariant
1417 // with respect to L since L is the innermost loop (at least
1418 // for now LSR only handles innermost loops).
1419 if (AR->getLoop() != L) {
1420 // If the AddRec exists, consider it's register free and leave it alone.
1421 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1422 return;
1424 // It is bad to allow LSR for current loop to add induction variables
1425 // for its sibling loops.
1426 if (!AR->getLoop()->contains(L)) {
1427 Lose();
1428 return;
1431 // Otherwise, it will be an invariant with respect to Loop L.
1432 ++C.NumRegs;
1433 return;
1436 unsigned LoopCost = 1;
1437 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1438 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1440 // If the step size matches the base offset, we could use pre-indexed
1441 // addressing.
1442 if (AMK == TTI::AMK_PreIndexed && F.BaseOffset.isFixed()) {
1443 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1444 if (Step->getAPInt() == F.BaseOffset.getFixedValue())
1445 LoopCost = 0;
1446 } else if (AMK == TTI::AMK_PostIndexed) {
1447 const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1448 if (isa<SCEVConstant>(LoopStep)) {
1449 const SCEV *LoopStart = AR->getStart();
1450 if (!isa<SCEVConstant>(LoopStart) &&
1451 SE->isLoopInvariant(LoopStart, L))
1452 LoopCost = 0;
1456 C.AddRecCost += LoopCost;
1458 // Add the step value register, if it needs one.
1459 // TODO: The non-affine case isn't precisely modeled here.
1460 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1461 if (!Regs.count(AR->getOperand(1))) {
1462 RateRegister(F, AR->getOperand(1), Regs);
1463 if (isLoser())
1464 return;
1468 ++C.NumRegs;
1470 // Rough heuristic; favor registers which don't require extra setup
1471 // instructions in the preheader.
1472 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1473 // Ensure we don't, even with the recusion limit, produce invalid costs.
1474 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1476 C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1477 SE->hasComputableLoopEvolution(Reg, L);
1480 /// Record this register in the set. If we haven't seen it before, rate
1481 /// it. Optional LoserRegs provides a way to declare any formula that refers to
1482 /// one of those regs an instant loser.
1483 void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1484 SmallPtrSetImpl<const SCEV *> &Regs,
1485 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1486 if (LoserRegs && LoserRegs->count(Reg)) {
1487 Lose();
1488 return;
1490 if (Regs.insert(Reg).second) {
1491 RateRegister(F, Reg, Regs);
1492 if (LoserRegs && isLoser())
1493 LoserRegs->insert(Reg);
1497 void Cost::RateFormula(const Formula &F,
1498 SmallPtrSetImpl<const SCEV *> &Regs,
1499 const DenseSet<const SCEV *> &VisitedRegs,
1500 const LSRUse &LU,
1501 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1502 if (isLoser())
1503 return;
1504 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
1505 // Tally up the registers.
1506 unsigned PrevAddRecCost = C.AddRecCost;
1507 unsigned PrevNumRegs = C.NumRegs;
1508 unsigned PrevNumBaseAdds = C.NumBaseAdds;
1509 if (const SCEV *ScaledReg = F.ScaledReg) {
1510 if (VisitedRegs.count(ScaledReg)) {
1511 Lose();
1512 return;
1514 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1515 if (isLoser())
1516 return;
1518 for (const SCEV *BaseReg : F.BaseRegs) {
1519 if (VisitedRegs.count(BaseReg)) {
1520 Lose();
1521 return;
1523 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1524 if (isLoser())
1525 return;
1528 // Determine how many (unfolded) adds we'll need inside the loop.
1529 size_t NumBaseParts = F.getNumRegs();
1530 if (NumBaseParts > 1)
1531 // Do not count the base and a possible second register if the target
1532 // allows to fold 2 registers.
1533 C.NumBaseAdds +=
1534 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1535 C.NumBaseAdds += (F.UnfoldedOffset.isNonZero());
1537 // Accumulate non-free scaling amounts.
1538 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1540 // Tally up the non-zero immediates.
1541 for (const LSRFixup &Fixup : LU.Fixups) {
1542 if (Fixup.Offset.isCompatibleImmediate(F.BaseOffset)) {
1543 Immediate Offset = Fixup.Offset.addUnsigned(F.BaseOffset);
1544 if (F.BaseGV)
1545 C.ImmCost += 64; // Handle symbolic values conservatively.
1546 // TODO: This should probably be the pointer size.
1547 else if (Offset.isNonZero())
1548 C.ImmCost +=
1549 APInt(64, Offset.getKnownMinValue(), true).getSignificantBits();
1551 // Check with target if this offset with this instruction is
1552 // specifically not supported.
1553 if (LU.Kind == LSRUse::Address && Offset.isNonZero() &&
1554 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1555 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1556 C.NumBaseAdds++;
1557 } else {
1558 // Incompatible immediate type, increase cost to avoid using
1559 C.ImmCost += 2048;
1563 // If we don't count instruction cost exit here.
1564 if (!InsnsCost) {
1565 assert(isValid() && "invalid cost");
1566 return;
1569 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1570 // additional instruction (at least fill).
1571 // TODO: Need distinguish register class?
1572 unsigned TTIRegNum = TTI->getNumberOfRegisters(
1573 TTI->getRegisterClassForType(false, F.getType())) - 1;
1574 if (C.NumRegs > TTIRegNum) {
1575 // Cost already exceeded TTIRegNum, then only newly added register can add
1576 // new instructions.
1577 if (PrevNumRegs > TTIRegNum)
1578 C.Insns += (C.NumRegs - PrevNumRegs);
1579 else
1580 C.Insns += (C.NumRegs - TTIRegNum);
1583 // If ICmpZero formula ends with not 0, it could not be replaced by
1584 // just add or sub. We'll need to compare final result of AddRec.
1585 // That means we'll need an additional instruction. But if the target can
1586 // macro-fuse a compare with a branch, don't count this extra instruction.
1587 // For -10 + {0, +, 1}:
1588 // i = i + 1;
1589 // cmp i, 10
1591 // For {-10, +, 1}:
1592 // i = i + 1;
1593 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1594 !TTI->canMacroFuseCmp())
1595 C.Insns++;
1596 // Each new AddRec adds 1 instruction to calculation.
1597 C.Insns += (C.AddRecCost - PrevAddRecCost);
1599 // BaseAdds adds instructions for unfolded registers.
1600 if (LU.Kind != LSRUse::ICmpZero)
1601 C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1602 assert(isValid() && "invalid cost");
1605 /// Set this cost to a losing value.
1606 void Cost::Lose() {
1607 C.Insns = std::numeric_limits<unsigned>::max();
1608 C.NumRegs = std::numeric_limits<unsigned>::max();
1609 C.AddRecCost = std::numeric_limits<unsigned>::max();
1610 C.NumIVMuls = std::numeric_limits<unsigned>::max();
1611 C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1612 C.ImmCost = std::numeric_limits<unsigned>::max();
1613 C.SetupCost = std::numeric_limits<unsigned>::max();
1614 C.ScaleCost = std::numeric_limits<unsigned>::max();
1617 /// Choose the lower cost.
1618 bool Cost::isLess(const Cost &Other) const {
1619 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1620 C.Insns != Other.C.Insns)
1621 return C.Insns < Other.C.Insns;
1622 return TTI->isLSRCostLess(C, Other.C);
1625 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1626 void Cost::print(raw_ostream &OS) const {
1627 if (InsnsCost)
1628 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1629 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1630 if (C.AddRecCost != 0)
1631 OS << ", with addrec cost " << C.AddRecCost;
1632 if (C.NumIVMuls != 0)
1633 OS << ", plus " << C.NumIVMuls << " IV mul"
1634 << (C.NumIVMuls == 1 ? "" : "s");
1635 if (C.NumBaseAdds != 0)
1636 OS << ", plus " << C.NumBaseAdds << " base add"
1637 << (C.NumBaseAdds == 1 ? "" : "s");
1638 if (C.ScaleCost != 0)
1639 OS << ", plus " << C.ScaleCost << " scale cost";
1640 if (C.ImmCost != 0)
1641 OS << ", plus " << C.ImmCost << " imm cost";
1642 if (C.SetupCost != 0)
1643 OS << ", plus " << C.SetupCost << " setup cost";
1646 LLVM_DUMP_METHOD void Cost::dump() const {
1647 print(errs()); errs() << '\n';
1649 #endif
1651 /// Test whether this fixup always uses its value outside of the given loop.
1652 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1653 // PHI nodes use their value in their incoming blocks.
1654 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1655 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1656 if (PN->getIncomingValue(i) == OperandValToReplace &&
1657 L->contains(PN->getIncomingBlock(i)))
1658 return false;
1659 return true;
1662 return !L->contains(UserInst);
1665 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1666 void LSRFixup::print(raw_ostream &OS) const {
1667 OS << "UserInst=";
1668 // Store is common and interesting enough to be worth special-casing.
1669 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1670 OS << "store ";
1671 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1672 } else if (UserInst->getType()->isVoidTy())
1673 OS << UserInst->getOpcodeName();
1674 else
1675 UserInst->printAsOperand(OS, /*PrintType=*/false);
1677 OS << ", OperandValToReplace=";
1678 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1680 for (const Loop *PIL : PostIncLoops) {
1681 OS << ", PostIncLoop=";
1682 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1685 if (Offset.isNonZero())
1686 OS << ", Offset=" << Offset;
1689 LLVM_DUMP_METHOD void LSRFixup::dump() const {
1690 print(errs()); errs() << '\n';
1692 #endif
1694 /// Test whether this use as a formula which has the same registers as the given
1695 /// formula.
1696 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1697 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1698 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1699 // Unstable sort by host order ok, because this is only used for uniquifying.
1700 llvm::sort(Key);
1701 return Uniquifier.count(Key);
1704 /// The function returns a probability of selecting formula without Reg.
1705 float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1706 unsigned FNum = 0;
1707 for (const Formula &F : Formulae)
1708 if (F.referencesReg(Reg))
1709 FNum++;
1710 return ((float)(Formulae.size() - FNum)) / Formulae.size();
1713 /// If the given formula has not yet been inserted, add it to the list, and
1714 /// return true. Return false otherwise. The formula must be in canonical form.
1715 bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1716 assert(F.isCanonical(L) && "Invalid canonical representation");
1718 if (!Formulae.empty() && RigidFormula)
1719 return false;
1721 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1722 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1723 // Unstable sort by host order ok, because this is only used for uniquifying.
1724 llvm::sort(Key);
1726 if (!Uniquifier.insert(Key).second)
1727 return false;
1729 // Using a register to hold the value of 0 is not profitable.
1730 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
1731 "Zero allocated in a scaled register!");
1732 #ifndef NDEBUG
1733 for (const SCEV *BaseReg : F.BaseRegs)
1734 assert(!BaseReg->isZero() && "Zero allocated in a base register!");
1735 #endif
1737 // Add the formula to the list.
1738 Formulae.push_back(F);
1740 // Record registers now being used by this use.
1741 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1742 if (F.ScaledReg)
1743 Regs.insert(F.ScaledReg);
1745 return true;
1748 /// Remove the given formula from this use's list.
1749 void LSRUse::DeleteFormula(Formula &F) {
1750 if (&F != &Formulae.back())
1751 std::swap(F, Formulae.back());
1752 Formulae.pop_back();
1755 /// Recompute the Regs field, and update RegUses.
1756 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1757 // Now that we've filtered out some formulae, recompute the Regs set.
1758 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1759 Regs.clear();
1760 for (const Formula &F : Formulae) {
1761 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1762 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1765 // Update the RegTracker.
1766 for (const SCEV *S : OldRegs)
1767 if (!Regs.count(S))
1768 RegUses.dropRegister(S, LUIdx);
1771 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1772 void LSRUse::print(raw_ostream &OS) const {
1773 OS << "LSR Use: Kind=";
1774 switch (Kind) {
1775 case Basic: OS << "Basic"; break;
1776 case Special: OS << "Special"; break;
1777 case ICmpZero: OS << "ICmpZero"; break;
1778 case Address:
1779 OS << "Address of ";
1780 if (AccessTy.MemTy->isPointerTy())
1781 OS << "pointer"; // the full pointer type could be really verbose
1782 else {
1783 OS << *AccessTy.MemTy;
1786 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1789 OS << ", Offsets={";
1790 bool NeedComma = false;
1791 for (const LSRFixup &Fixup : Fixups) {
1792 if (NeedComma) OS << ',';
1793 OS << Fixup.Offset;
1794 NeedComma = true;
1796 OS << '}';
1798 if (AllFixupsOutsideLoop)
1799 OS << ", all-fixups-outside-loop";
1801 if (WidestFixupType)
1802 OS << ", widest fixup type: " << *WidestFixupType;
1805 LLVM_DUMP_METHOD void LSRUse::dump() const {
1806 print(errs()); errs() << '\n';
1808 #endif
1810 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1811 LSRUse::KindType Kind, MemAccessTy AccessTy,
1812 GlobalValue *BaseGV, Immediate BaseOffset,
1813 bool HasBaseReg, int64_t Scale,
1814 Instruction *Fixup /* = nullptr */) {
1815 switch (Kind) {
1816 case LSRUse::Address: {
1817 int64_t FixedOffset =
1818 BaseOffset.isScalable() ? 0 : BaseOffset.getFixedValue();
1819 int64_t ScalableOffset =
1820 BaseOffset.isScalable() ? BaseOffset.getKnownMinValue() : 0;
1821 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, FixedOffset,
1822 HasBaseReg, Scale, AccessTy.AddrSpace,
1823 Fixup, ScalableOffset);
1825 case LSRUse::ICmpZero:
1826 // There's not even a target hook for querying whether it would be legal to
1827 // fold a GV into an ICmp.
1828 if (BaseGV)
1829 return false;
1831 // ICmp only has two operands; don't allow more than two non-trivial parts.
1832 if (Scale != 0 && HasBaseReg && BaseOffset.isNonZero())
1833 return false;
1835 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1836 // putting the scaled register in the other operand of the icmp.
1837 if (Scale != 0 && Scale != -1)
1838 return false;
1840 // If we have low-level target information, ask the target if it can fold an
1841 // integer immediate on an icmp.
1842 if (BaseOffset.isNonZero()) {
1843 // We don't have an interface to query whether the target supports
1844 // icmpzero against scalable quantities yet.
1845 if (BaseOffset.isScalable())
1846 return false;
1848 // We have one of:
1849 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1850 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1851 // Offs is the ICmp immediate.
1852 if (Scale == 0)
1853 // The cast does the right thing with
1854 // std::numeric_limits<int64_t>::min().
1855 BaseOffset = BaseOffset.getFixed(-(uint64_t)BaseOffset.getFixedValue());
1856 return TTI.isLegalICmpImmediate(BaseOffset.getFixedValue());
1859 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1860 return true;
1862 case LSRUse::Basic:
1863 // Only handle single-register values.
1864 return !BaseGV && Scale == 0 && BaseOffset.isZero();
1866 case LSRUse::Special:
1867 // Special case Basic to handle -1 scales.
1868 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset.isZero();
1871 llvm_unreachable("Invalid LSRUse Kind!");
1874 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1875 Immediate MinOffset, Immediate MaxOffset,
1876 LSRUse::KindType Kind, MemAccessTy AccessTy,
1877 GlobalValue *BaseGV, Immediate BaseOffset,
1878 bool HasBaseReg, int64_t Scale) {
1879 if (BaseOffset.isNonZero() &&
1880 (BaseOffset.isScalable() != MinOffset.isScalable() ||
1881 BaseOffset.isScalable() != MaxOffset.isScalable()))
1882 return false;
1883 // Check for overflow.
1884 int64_t Base = BaseOffset.getKnownMinValue();
1885 int64_t Min = MinOffset.getKnownMinValue();
1886 int64_t Max = MaxOffset.getKnownMinValue();
1887 if (((int64_t)((uint64_t)Base + Min) > Base) != (Min > 0))
1888 return false;
1889 MinOffset = Immediate::get((uint64_t)Base + Min, MinOffset.isScalable());
1890 if (((int64_t)((uint64_t)Base + Max) > Base) != (Max > 0))
1891 return false;
1892 MaxOffset = Immediate::get((uint64_t)Base + Max, MaxOffset.isScalable());
1894 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1895 HasBaseReg, Scale) &&
1896 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1897 HasBaseReg, Scale);
1900 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1901 Immediate MinOffset, Immediate MaxOffset,
1902 LSRUse::KindType Kind, MemAccessTy AccessTy,
1903 const Formula &F, const Loop &L) {
1904 // For the purpose of isAMCompletelyFolded either having a canonical formula
1905 // or a scale not equal to zero is correct.
1906 // Problems may arise from non canonical formulae having a scale == 0.
1907 // Strictly speaking it would best to just rely on canonical formulae.
1908 // However, when we generate the scaled formulae, we first check that the
1909 // scaling factor is profitable before computing the actual ScaledReg for
1910 // compile time sake.
1911 assert((F.isCanonical(L) || F.Scale != 0));
1912 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1913 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1916 /// Test whether we know how to expand the current formula.
1917 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset,
1918 Immediate MaxOffset, LSRUse::KindType Kind,
1919 MemAccessTy AccessTy, GlobalValue *BaseGV,
1920 Immediate BaseOffset, bool HasBaseReg, int64_t Scale) {
1921 // We know how to expand completely foldable formulae.
1922 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1923 BaseOffset, HasBaseReg, Scale) ||
1924 // Or formulae that use a base register produced by a sum of base
1925 // registers.
1926 (Scale == 1 &&
1927 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1928 BaseGV, BaseOffset, true, 0));
1931 static bool isLegalUse(const TargetTransformInfo &TTI, Immediate MinOffset,
1932 Immediate MaxOffset, LSRUse::KindType Kind,
1933 MemAccessTy AccessTy, const Formula &F) {
1934 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1935 F.BaseOffset, F.HasBaseReg, F.Scale);
1938 static bool isLegalAddImmediate(const TargetTransformInfo &TTI,
1939 Immediate Offset) {
1940 if (Offset.isScalable())
1941 return TTI.isLegalAddScalableImmediate(Offset.getKnownMinValue());
1943 return TTI.isLegalAddImmediate(Offset.getFixedValue());
1946 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1947 const LSRUse &LU, const Formula &F) {
1948 // Target may want to look at the user instructions.
1949 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1950 for (const LSRFixup &Fixup : LU.Fixups)
1951 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1952 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1953 F.Scale, Fixup.UserInst))
1954 return false;
1955 return true;
1958 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1959 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1960 F.Scale);
1963 static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1964 const LSRUse &LU, const Formula &F,
1965 const Loop &L) {
1966 if (!F.Scale)
1967 return 0;
1969 // If the use is not completely folded in that instruction, we will have to
1970 // pay an extra cost only for scale != 1.
1971 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1972 LU.AccessTy, F, L))
1973 return F.Scale != 1;
1975 switch (LU.Kind) {
1976 case LSRUse::Address: {
1977 // Check the scaling factor cost with both the min and max offsets.
1978 int64_t ScalableMin = 0, ScalableMax = 0, FixedMin = 0, FixedMax = 0;
1979 if (F.BaseOffset.isScalable()) {
1980 ScalableMin = (F.BaseOffset + LU.MinOffset).getKnownMinValue();
1981 ScalableMax = (F.BaseOffset + LU.MaxOffset).getKnownMinValue();
1982 } else {
1983 FixedMin = (F.BaseOffset + LU.MinOffset).getFixedValue();
1984 FixedMax = (F.BaseOffset + LU.MaxOffset).getFixedValue();
1986 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1987 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMin, ScalableMin),
1988 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace);
1989 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1990 LU.AccessTy.MemTy, F.BaseGV, StackOffset::get(FixedMax, ScalableMax),
1991 F.HasBaseReg, F.Scale, LU.AccessTy.AddrSpace);
1993 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
1994 "Legal addressing mode has an illegal cost!");
1995 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1997 case LSRUse::ICmpZero:
1998 case LSRUse::Basic:
1999 case LSRUse::Special:
2000 // The use is completely folded, i.e., everything is folded into the
2001 // instruction.
2002 return 0;
2005 llvm_unreachable("Invalid LSRUse Kind!");
2008 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
2009 LSRUse::KindType Kind, MemAccessTy AccessTy,
2010 GlobalValue *BaseGV, Immediate BaseOffset,
2011 bool HasBaseReg) {
2012 // Fast-path: zero is always foldable.
2013 if (BaseOffset.isZero() && !BaseGV)
2014 return true;
2016 // Conservatively, create an address with an immediate and a
2017 // base and a scale.
2018 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
2020 // Canonicalize a scale of 1 to a base register if the formula doesn't
2021 // already have a base register.
2022 if (!HasBaseReg && Scale == 1) {
2023 Scale = 0;
2024 HasBaseReg = true;
2027 // FIXME: Try with + without a scale? Maybe based on TTI?
2028 // I think basereg + scaledreg + immediateoffset isn't a good 'conservative'
2029 // default for many architectures, not just AArch64 SVE. More investigation
2030 // needed later to determine if this should be used more widely than just
2031 // on scalable types.
2032 if (HasBaseReg && BaseOffset.isNonZero() && Kind != LSRUse::ICmpZero &&
2033 AccessTy.MemTy && AccessTy.MemTy->isScalableTy() && DropScaledForVScale)
2034 Scale = 0;
2036 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
2037 HasBaseReg, Scale);
2040 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
2041 ScalarEvolution &SE, Immediate MinOffset,
2042 Immediate MaxOffset, LSRUse::KindType Kind,
2043 MemAccessTy AccessTy, const SCEV *S,
2044 bool HasBaseReg) {
2045 // Fast-path: zero is always foldable.
2046 if (S->isZero()) return true;
2048 // Conservatively, create an address with an immediate and a
2049 // base and a scale.
2050 Immediate BaseOffset = ExtractImmediate(S, SE);
2051 GlobalValue *BaseGV = ExtractSymbol(S, SE);
2053 // If there's anything else involved, it's not foldable.
2054 if (!S->isZero()) return false;
2056 // Fast-path: zero is always foldable.
2057 if (BaseOffset.isZero() && !BaseGV)
2058 return true;
2060 if (BaseOffset.isScalable())
2061 return false;
2063 // Conservatively, create an address with an immediate and a
2064 // base and a scale.
2065 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
2067 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
2068 BaseOffset, HasBaseReg, Scale);
2071 namespace {
2073 /// An individual increment in a Chain of IV increments. Relate an IV user to
2074 /// an expression that computes the IV it uses from the IV used by the previous
2075 /// link in the Chain.
2077 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
2078 /// original IVOperand. The head of the chain's IVOperand is only valid during
2079 /// chain collection, before LSR replaces IV users. During chain generation,
2080 /// IncExpr can be used to find the new IVOperand that computes the same
2081 /// expression.
2082 struct IVInc {
2083 Instruction *UserInst;
2084 Value* IVOperand;
2085 const SCEV *IncExpr;
2087 IVInc(Instruction *U, Value *O, const SCEV *E)
2088 : UserInst(U), IVOperand(O), IncExpr(E) {}
2091 // The list of IV increments in program order. We typically add the head of a
2092 // chain without finding subsequent links.
2093 struct IVChain {
2094 SmallVector<IVInc, 1> Incs;
2095 const SCEV *ExprBase = nullptr;
2097 IVChain() = default;
2098 IVChain(const IVInc &Head, const SCEV *Base)
2099 : Incs(1, Head), ExprBase(Base) {}
2101 using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
2103 // Return the first increment in the chain.
2104 const_iterator begin() const {
2105 assert(!Incs.empty());
2106 return std::next(Incs.begin());
2108 const_iterator end() const {
2109 return Incs.end();
2112 // Returns true if this chain contains any increments.
2113 bool hasIncs() const { return Incs.size() >= 2; }
2115 // Add an IVInc to the end of this chain.
2116 void add(const IVInc &X) { Incs.push_back(X); }
2118 // Returns the last UserInst in the chain.
2119 Instruction *tailUserInst() const { return Incs.back().UserInst; }
2121 // Returns true if IncExpr can be profitably added to this chain.
2122 bool isProfitableIncrement(const SCEV *OperExpr,
2123 const SCEV *IncExpr,
2124 ScalarEvolution&);
2127 /// Helper for CollectChains to track multiple IV increment uses. Distinguish
2128 /// between FarUsers that definitely cross IV increments and NearUsers that may
2129 /// be used between IV increments.
2130 struct ChainUsers {
2131 SmallPtrSet<Instruction*, 4> FarUsers;
2132 SmallPtrSet<Instruction*, 4> NearUsers;
2135 /// This class holds state for the main loop strength reduction logic.
2136 class LSRInstance {
2137 IVUsers &IU;
2138 ScalarEvolution &SE;
2139 DominatorTree &DT;
2140 LoopInfo &LI;
2141 AssumptionCache &AC;
2142 TargetLibraryInfo &TLI;
2143 const TargetTransformInfo &TTI;
2144 Loop *const L;
2145 MemorySSAUpdater *MSSAU;
2146 TTI::AddressingModeKind AMK;
2147 mutable SCEVExpander Rewriter;
2148 bool Changed = false;
2150 /// This is the insert position that the current loop's induction variable
2151 /// increment should be placed. In simple loops, this is the latch block's
2152 /// terminator. But in more complicated cases, this is a position which will
2153 /// dominate all the in-loop post-increment users.
2154 Instruction *IVIncInsertPos = nullptr;
2156 /// Interesting factors between use strides.
2158 /// We explicitly use a SetVector which contains a SmallSet, instead of the
2159 /// default, a SmallDenseSet, because we need to use the full range of
2160 /// int64_ts, and there's currently no good way of doing that with
2161 /// SmallDenseSet.
2162 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
2164 /// The cost of the current SCEV, the best solution by LSR will be dropped if
2165 /// the solution is not profitable.
2166 Cost BaselineCost;
2168 /// Interesting use types, to facilitate truncation reuse.
2169 SmallSetVector<Type *, 4> Types;
2171 /// The list of interesting uses.
2172 mutable SmallVector<LSRUse, 16> Uses;
2174 /// Track which uses use which register candidates.
2175 RegUseTracker RegUses;
2177 // Limit the number of chains to avoid quadratic behavior. We don't expect to
2178 // have more than a few IV increment chains in a loop. Missing a Chain falls
2179 // back to normal LSR behavior for those uses.
2180 static const unsigned MaxChains = 8;
2182 /// IV users can form a chain of IV increments.
2183 SmallVector<IVChain, MaxChains> IVChainVec;
2185 /// IV users that belong to profitable IVChains.
2186 SmallPtrSet<Use*, MaxChains> IVIncSet;
2188 /// Induction variables that were generated and inserted by the SCEV Expander.
2189 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2191 // Inserting instructions in the loop and using them as PHI's input could
2192 // break LCSSA in case if PHI's parent block is not a loop exit (i.e. the
2193 // corresponding incoming block is not loop exiting). So collect all such
2194 // instructions to form LCSSA for them later.
2195 SmallSetVector<Instruction *, 4> InsertedNonLCSSAInsts;
2197 void OptimizeShadowIV();
2198 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2199 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2200 void OptimizeLoopTermCond();
2202 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2203 SmallVectorImpl<ChainUsers> &ChainUsersVec);
2204 void FinalizeChain(IVChain &Chain);
2205 void CollectChains();
2206 void GenerateIVChain(const IVChain &Chain,
2207 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2209 void CollectInterestingTypesAndFactors();
2210 void CollectFixupsAndInitialFormulae();
2212 // Support for sharing of LSRUses between LSRFixups.
2213 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2214 UseMapTy UseMap;
2216 bool reconcileNewOffset(LSRUse &LU, Immediate NewOffset, bool HasBaseReg,
2217 LSRUse::KindType Kind, MemAccessTy AccessTy);
2219 std::pair<size_t, Immediate> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2220 MemAccessTy AccessTy);
2222 void DeleteUse(LSRUse &LU, size_t LUIdx);
2224 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2226 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2227 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2228 void CountRegisters(const Formula &F, size_t LUIdx);
2229 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2231 void CollectLoopInvariantFixupsAndFormulae();
2233 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2234 unsigned Depth = 0);
2236 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2237 const Formula &Base, unsigned Depth,
2238 size_t Idx, bool IsScaledReg = false);
2239 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2240 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2241 const Formula &Base, size_t Idx,
2242 bool IsScaledReg = false);
2243 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2244 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2245 const Formula &Base,
2246 const SmallVectorImpl<Immediate> &Worklist,
2247 size_t Idx, bool IsScaledReg = false);
2248 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2249 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2250 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2251 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2252 void GenerateCrossUseConstantOffsets();
2253 void GenerateAllReuseFormulae();
2255 void FilterOutUndesirableDedicatedRegisters();
2257 size_t EstimateSearchSpaceComplexity() const;
2258 void NarrowSearchSpaceByDetectingSupersets();
2259 void NarrowSearchSpaceByCollapsingUnrolledCode();
2260 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2261 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2262 void NarrowSearchSpaceByFilterPostInc();
2263 void NarrowSearchSpaceByDeletingCostlyFormulas();
2264 void NarrowSearchSpaceByPickingWinnerRegs();
2265 void NarrowSearchSpaceUsingHeuristics();
2267 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2268 Cost &SolutionCost,
2269 SmallVectorImpl<const Formula *> &Workspace,
2270 const Cost &CurCost,
2271 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2272 DenseSet<const SCEV *> &VisitedRegs) const;
2273 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2275 BasicBlock::iterator
2276 HoistInsertPosition(BasicBlock::iterator IP,
2277 const SmallVectorImpl<Instruction *> &Inputs) const;
2278 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2279 const LSRFixup &LF,
2280 const LSRUse &LU) const;
2282 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2283 BasicBlock::iterator IP,
2284 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2285 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2286 const Formula &F,
2287 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2288 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2289 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2290 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2292 public:
2293 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2294 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2295 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2297 bool getChanged() const { return Changed; }
2298 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2299 return ScalarEvolutionIVs;
2302 void print_factors_and_types(raw_ostream &OS) const;
2303 void print_fixups(raw_ostream &OS) const;
2304 void print_uses(raw_ostream &OS) const;
2305 void print(raw_ostream &OS) const;
2306 void dump() const;
2309 } // end anonymous namespace
2311 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
2312 /// the cast operation.
2313 void LSRInstance::OptimizeShadowIV() {
2314 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2315 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2316 return;
2318 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2319 UI != E; /* empty */) {
2320 IVUsers::const_iterator CandidateUI = UI;
2321 ++UI;
2322 Instruction *ShadowUse = CandidateUI->getUser();
2323 Type *DestTy = nullptr;
2324 bool IsSigned = false;
2326 /* If shadow use is a int->float cast then insert a second IV
2327 to eliminate this cast.
2329 for (unsigned i = 0; i < n; ++i)
2330 foo((double)i);
2332 is transformed into
2334 double d = 0.0;
2335 for (unsigned i = 0; i < n; ++i, ++d)
2336 foo(d);
2338 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2339 IsSigned = false;
2340 DestTy = UCast->getDestTy();
2342 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2343 IsSigned = true;
2344 DestTy = SCast->getDestTy();
2346 if (!DestTy) continue;
2348 // If target does not support DestTy natively then do not apply
2349 // this transformation.
2350 if (!TTI.isTypeLegal(DestTy)) continue;
2352 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2353 if (!PH) continue;
2354 if (PH->getNumIncomingValues() != 2) continue;
2356 // If the calculation in integers overflows, the result in FP type will
2357 // differ. So we only can do this transformation if we are guaranteed to not
2358 // deal with overflowing values
2359 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2360 if (!AR) continue;
2361 if (IsSigned && !AR->hasNoSignedWrap()) continue;
2362 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2364 Type *SrcTy = PH->getType();
2365 int Mantissa = DestTy->getFPMantissaWidth();
2366 if (Mantissa == -1) continue;
2367 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2368 continue;
2370 unsigned Entry, Latch;
2371 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2372 Entry = 0;
2373 Latch = 1;
2374 } else {
2375 Entry = 1;
2376 Latch = 0;
2379 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2380 if (!Init) continue;
2381 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2382 (double)Init->getSExtValue() :
2383 (double)Init->getZExtValue());
2385 BinaryOperator *Incr =
2386 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2387 if (!Incr) continue;
2388 if (Incr->getOpcode() != Instruction::Add
2389 && Incr->getOpcode() != Instruction::Sub)
2390 continue;
2392 /* Initialize new IV, double d = 0.0 in above example. */
2393 ConstantInt *C = nullptr;
2394 if (Incr->getOperand(0) == PH)
2395 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2396 else if (Incr->getOperand(1) == PH)
2397 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2398 else
2399 continue;
2401 if (!C) continue;
2403 // Ignore negative constants, as the code below doesn't handle them
2404 // correctly. TODO: Remove this restriction.
2405 if (!C->getValue().isStrictlyPositive())
2406 continue;
2408 /* Add new PHINode. */
2409 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH->getIterator());
2410 NewPH->setDebugLoc(PH->getDebugLoc());
2412 /* create new increment. '++d' in above example. */
2413 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2414 BinaryOperator *NewIncr = BinaryOperator::Create(
2415 Incr->getOpcode() == Instruction::Add ? Instruction::FAdd
2416 : Instruction::FSub,
2417 NewPH, CFP, "IV.S.next.", Incr->getIterator());
2418 NewIncr->setDebugLoc(Incr->getDebugLoc());
2420 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2421 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2423 /* Remove cast operation */
2424 ShadowUse->replaceAllUsesWith(NewPH);
2425 ShadowUse->eraseFromParent();
2426 Changed = true;
2427 break;
2431 /// If Cond has an operand that is an expression of an IV, set the IV user and
2432 /// stride information and return true, otherwise return false.
2433 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2434 for (IVStrideUse &U : IU)
2435 if (U.getUser() == Cond) {
2436 // NOTE: we could handle setcc instructions with multiple uses here, but
2437 // InstCombine does it as well for simple uses, it's not clear that it
2438 // occurs enough in real life to handle.
2439 CondUse = &U;
2440 return true;
2442 return false;
2445 /// Rewrite the loop's terminating condition if it uses a max computation.
2447 /// This is a narrow solution to a specific, but acute, problem. For loops
2448 /// like this:
2450 /// i = 0;
2451 /// do {
2452 /// p[i] = 0.0;
2453 /// } while (++i < n);
2455 /// the trip count isn't just 'n', because 'n' might not be positive. And
2456 /// unfortunately this can come up even for loops where the user didn't use
2457 /// a C do-while loop. For example, seemingly well-behaved top-test loops
2458 /// will commonly be lowered like this:
2460 /// if (n > 0) {
2461 /// i = 0;
2462 /// do {
2463 /// p[i] = 0.0;
2464 /// } while (++i < n);
2465 /// }
2467 /// and then it's possible for subsequent optimization to obscure the if
2468 /// test in such a way that indvars can't find it.
2470 /// When indvars can't find the if test in loops like this, it creates a
2471 /// max expression, which allows it to give the loop a canonical
2472 /// induction variable:
2474 /// i = 0;
2475 /// max = n < 1 ? 1 : n;
2476 /// do {
2477 /// p[i] = 0.0;
2478 /// } while (++i != max);
2480 /// Canonical induction variables are necessary because the loop passes
2481 /// are designed around them. The most obvious example of this is the
2482 /// LoopInfo analysis, which doesn't remember trip count values. It
2483 /// expects to be able to rediscover the trip count each time it is
2484 /// needed, and it does this using a simple analysis that only succeeds if
2485 /// the loop has a canonical induction variable.
2487 /// However, when it comes time to generate code, the maximum operation
2488 /// can be quite costly, especially if it's inside of an outer loop.
2490 /// This function solves this problem by detecting this type of loop and
2491 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2492 /// the instructions for the maximum computation.
2493 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2494 // Check that the loop matches the pattern we're looking for.
2495 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2496 Cond->getPredicate() != CmpInst::ICMP_NE)
2497 return Cond;
2499 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2500 if (!Sel || !Sel->hasOneUse()) return Cond;
2502 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2503 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2504 return Cond;
2505 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2507 // Add one to the backedge-taken count to get the trip count.
2508 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2509 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2511 // Check for a max calculation that matches the pattern. There's no check
2512 // for ICMP_ULE here because the comparison would be with zero, which
2513 // isn't interesting.
2514 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2515 const SCEVNAryExpr *Max = nullptr;
2516 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2517 Pred = ICmpInst::ICMP_SLE;
2518 Max = S;
2519 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2520 Pred = ICmpInst::ICMP_SLT;
2521 Max = S;
2522 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2523 Pred = ICmpInst::ICMP_ULT;
2524 Max = U;
2525 } else {
2526 // No match; bail.
2527 return Cond;
2530 // To handle a max with more than two operands, this optimization would
2531 // require additional checking and setup.
2532 if (Max->getNumOperands() != 2)
2533 return Cond;
2535 const SCEV *MaxLHS = Max->getOperand(0);
2536 const SCEV *MaxRHS = Max->getOperand(1);
2538 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2539 // for a comparison with 1. For <= and >=, a comparison with zero.
2540 if (!MaxLHS ||
2541 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2542 return Cond;
2544 // Check the relevant induction variable for conformance to
2545 // the pattern.
2546 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2547 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2548 if (!AR || !AR->isAffine() ||
2549 AR->getStart() != One ||
2550 AR->getStepRecurrence(SE) != One)
2551 return Cond;
2553 assert(AR->getLoop() == L &&
2554 "Loop condition operand is an addrec in a different loop!");
2556 // Check the right operand of the select, and remember it, as it will
2557 // be used in the new comparison instruction.
2558 Value *NewRHS = nullptr;
2559 if (ICmpInst::isTrueWhenEqual(Pred)) {
2560 // Look for n+1, and grab n.
2561 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2562 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2563 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2564 NewRHS = BO->getOperand(0);
2565 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2566 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2567 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2568 NewRHS = BO->getOperand(0);
2569 if (!NewRHS)
2570 return Cond;
2571 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2572 NewRHS = Sel->getOperand(1);
2573 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2574 NewRHS = Sel->getOperand(2);
2575 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2576 NewRHS = SU->getValue();
2577 else
2578 // Max doesn't match expected pattern.
2579 return Cond;
2581 // Determine the new comparison opcode. It may be signed or unsigned,
2582 // and the original comparison may be either equality or inequality.
2583 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2584 Pred = CmpInst::getInversePredicate(Pred);
2586 // Ok, everything looks ok to change the condition into an SLT or SGE and
2587 // delete the max calculation.
2588 ICmpInst *NewCond = new ICmpInst(Cond->getIterator(), Pred,
2589 Cond->getOperand(0), NewRHS, "scmp");
2591 // Delete the max calculation instructions.
2592 NewCond->setDebugLoc(Cond->getDebugLoc());
2593 Cond->replaceAllUsesWith(NewCond);
2594 CondUse->setUser(NewCond);
2595 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2596 Cond->eraseFromParent();
2597 Sel->eraseFromParent();
2598 if (Cmp->use_empty())
2599 Cmp->eraseFromParent();
2600 return NewCond;
2603 /// Change loop terminating condition to use the postinc iv when possible.
2604 void
2605 LSRInstance::OptimizeLoopTermCond() {
2606 SmallPtrSet<Instruction *, 4> PostIncs;
2608 // We need a different set of heuristics for rotated and non-rotated loops.
2609 // If a loop is rotated then the latch is also the backedge, so inserting
2610 // post-inc expressions just before the latch is ideal. To reduce live ranges
2611 // it also makes sense to rewrite terminating conditions to use post-inc
2612 // expressions.
2614 // If the loop is not rotated then the latch is not a backedge; the latch
2615 // check is done in the loop head. Adding post-inc expressions before the
2616 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2617 // in the loop body. In this case we do *not* want to use post-inc expressions
2618 // in the latch check, and we want to insert post-inc expressions before
2619 // the backedge.
2620 BasicBlock *LatchBlock = L->getLoopLatch();
2621 SmallVector<BasicBlock*, 8> ExitingBlocks;
2622 L->getExitingBlocks(ExitingBlocks);
2623 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2624 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2625 IVIncInsertPos = LatchBlock->getTerminator();
2626 return;
2629 // Otherwise treat this as a rotated loop.
2630 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2631 // Get the terminating condition for the loop if possible. If we
2632 // can, we want to change it to use a post-incremented version of its
2633 // induction variable, to allow coalescing the live ranges for the IV into
2634 // one register value.
2636 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2637 if (!TermBr)
2638 continue;
2639 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2640 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2641 continue;
2643 // Search IVUsesByStride to find Cond's IVUse if there is one.
2644 IVStrideUse *CondUse = nullptr;
2645 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2646 if (!FindIVUserForCond(Cond, CondUse))
2647 continue;
2649 // If the trip count is computed in terms of a max (due to ScalarEvolution
2650 // being unable to find a sufficient guard, for example), change the loop
2651 // comparison to use SLT or ULT instead of NE.
2652 // One consequence of doing this now is that it disrupts the count-down
2653 // optimization. That's not always a bad thing though, because in such
2654 // cases it may still be worthwhile to avoid a max.
2655 Cond = OptimizeMax(Cond, CondUse);
2657 // If this exiting block dominates the latch block, it may also use
2658 // the post-inc value if it won't be shared with other uses.
2659 // Check for dominance.
2660 if (!DT.dominates(ExitingBlock, LatchBlock))
2661 continue;
2663 // Conservatively avoid trying to use the post-inc value in non-latch
2664 // exits if there may be pre-inc users in intervening blocks.
2665 if (LatchBlock != ExitingBlock)
2666 for (const IVStrideUse &UI : IU)
2667 // Test if the use is reachable from the exiting block. This dominator
2668 // query is a conservative approximation of reachability.
2669 if (&UI != CondUse &&
2670 !DT.properlyDominates(UI.getUser()->getParent(), ExitingBlock)) {
2671 // Conservatively assume there may be reuse if the quotient of their
2672 // strides could be a legal scale.
2673 const SCEV *A = IU.getStride(*CondUse, L);
2674 const SCEV *B = IU.getStride(UI, L);
2675 if (!A || !B) continue;
2676 if (SE.getTypeSizeInBits(A->getType()) !=
2677 SE.getTypeSizeInBits(B->getType())) {
2678 if (SE.getTypeSizeInBits(A->getType()) >
2679 SE.getTypeSizeInBits(B->getType()))
2680 B = SE.getSignExtendExpr(B, A->getType());
2681 else
2682 A = SE.getSignExtendExpr(A, B->getType());
2684 if (const SCEVConstant *D =
2685 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2686 const ConstantInt *C = D->getValue();
2687 // Stride of one or negative one can have reuse with non-addresses.
2688 if (C->isOne() || C->isMinusOne())
2689 goto decline_post_inc;
2690 // Avoid weird situations.
2691 if (C->getValue().getSignificantBits() >= 64 ||
2692 C->getValue().isMinSignedValue())
2693 goto decline_post_inc;
2694 // Check for possible scaled-address reuse.
2695 if (isAddressUse(TTI, UI.getUser(), UI.getOperandValToReplace())) {
2696 MemAccessTy AccessTy =
2697 getAccessType(TTI, UI.getUser(), UI.getOperandValToReplace());
2698 int64_t Scale = C->getSExtValue();
2699 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2700 /*BaseOffset=*/0,
2701 /*HasBaseReg=*/true, Scale,
2702 AccessTy.AddrSpace))
2703 goto decline_post_inc;
2704 Scale = -Scale;
2705 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2706 /*BaseOffset=*/0,
2707 /*HasBaseReg=*/true, Scale,
2708 AccessTy.AddrSpace))
2709 goto decline_post_inc;
2714 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
2715 << *Cond << '\n');
2717 // It's possible for the setcc instruction to be anywhere in the loop, and
2718 // possible for it to have multiple users. If it is not immediately before
2719 // the exiting block branch, move it.
2720 if (Cond->getNextNonDebugInstruction() != TermBr) {
2721 if (Cond->hasOneUse()) {
2722 Cond->moveBefore(TermBr);
2723 } else {
2724 // Clone the terminating condition and insert into the loopend.
2725 ICmpInst *OldCond = Cond;
2726 Cond = cast<ICmpInst>(Cond->clone());
2727 Cond->setName(L->getHeader()->getName() + ".termcond");
2728 Cond->insertInto(ExitingBlock, TermBr->getIterator());
2730 // Clone the IVUse, as the old use still exists!
2731 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2732 TermBr->replaceUsesOfWith(OldCond, Cond);
2736 // If we get to here, we know that we can transform the setcc instruction to
2737 // use the post-incremented version of the IV, allowing us to coalesce the
2738 // live ranges for the IV correctly.
2739 CondUse->transformToPostInc(L);
2740 Changed = true;
2742 PostIncs.insert(Cond);
2743 decline_post_inc:;
2746 // Determine an insertion point for the loop induction variable increment. It
2747 // must dominate all the post-inc comparisons we just set up, and it must
2748 // dominate the loop latch edge.
2749 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2750 for (Instruction *Inst : PostIncs)
2751 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2754 /// Determine if the given use can accommodate a fixup at the given offset and
2755 /// other details. If so, update the use and return true.
2756 bool LSRInstance::reconcileNewOffset(LSRUse &LU, Immediate NewOffset,
2757 bool HasBaseReg, LSRUse::KindType Kind,
2758 MemAccessTy AccessTy) {
2759 Immediate NewMinOffset = LU.MinOffset;
2760 Immediate NewMaxOffset = LU.MaxOffset;
2761 MemAccessTy NewAccessTy = AccessTy;
2763 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2764 // something conservative, however this can pessimize in the case that one of
2765 // the uses will have all its uses outside the loop, for example.
2766 if (LU.Kind != Kind)
2767 return false;
2769 // Check for a mismatched access type, and fall back conservatively as needed.
2770 // TODO: Be less conservative when the type is similar and can use the same
2771 // addressing modes.
2772 if (Kind == LSRUse::Address) {
2773 if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2774 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2775 AccessTy.AddrSpace);
2779 // Conservatively assume HasBaseReg is true for now.
2780 if (Immediate::isKnownLT(NewOffset, LU.MinOffset)) {
2781 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2782 LU.MaxOffset - NewOffset, HasBaseReg))
2783 return false;
2784 NewMinOffset = NewOffset;
2785 } else if (Immediate::isKnownGT(NewOffset, LU.MaxOffset)) {
2786 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2787 NewOffset - LU.MinOffset, HasBaseReg))
2788 return false;
2789 NewMaxOffset = NewOffset;
2792 // FIXME: We should be able to handle some level of scalable offset support
2793 // for 'void', but in order to get basic support up and running this is
2794 // being left out.
2795 if (NewAccessTy.MemTy && NewAccessTy.MemTy->isVoidTy() &&
2796 (NewMinOffset.isScalable() || NewMaxOffset.isScalable()))
2797 return false;
2799 // Update the use.
2800 LU.MinOffset = NewMinOffset;
2801 LU.MaxOffset = NewMaxOffset;
2802 LU.AccessTy = NewAccessTy;
2803 return true;
2806 /// Return an LSRUse index and an offset value for a fixup which needs the given
2807 /// expression, with the given kind and optional access type. Either reuse an
2808 /// existing use or create a new one, as needed.
2809 std::pair<size_t, Immediate> LSRInstance::getUse(const SCEV *&Expr,
2810 LSRUse::KindType Kind,
2811 MemAccessTy AccessTy) {
2812 const SCEV *Copy = Expr;
2813 Immediate Offset = ExtractImmediate(Expr, SE);
2815 // Basic uses can't accept any offset, for example.
2816 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2817 Offset, /*HasBaseReg=*/ true)) {
2818 Expr = Copy;
2819 Offset = Immediate::getFixed(0);
2822 std::pair<UseMapTy::iterator, bool> P =
2823 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2824 if (!P.second) {
2825 // A use already existed with this base.
2826 size_t LUIdx = P.first->second;
2827 LSRUse &LU = Uses[LUIdx];
2828 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2829 // Reuse this use.
2830 return std::make_pair(LUIdx, Offset);
2833 // Create a new use.
2834 size_t LUIdx = Uses.size();
2835 P.first->second = LUIdx;
2836 Uses.push_back(LSRUse(Kind, AccessTy));
2837 LSRUse &LU = Uses[LUIdx];
2839 LU.MinOffset = Offset;
2840 LU.MaxOffset = Offset;
2841 return std::make_pair(LUIdx, Offset);
2844 /// Delete the given use from the Uses list.
2845 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2846 if (&LU != &Uses.back())
2847 std::swap(LU, Uses.back());
2848 Uses.pop_back();
2850 // Update RegUses.
2851 RegUses.swapAndDropUse(LUIdx, Uses.size());
2854 /// Look for a use distinct from OrigLU which is has a formula that has the same
2855 /// registers as the given formula.
2856 LSRUse *
2857 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2858 const LSRUse &OrigLU) {
2859 // Search all uses for the formula. This could be more clever.
2860 for (LSRUse &LU : Uses) {
2861 // Check whether this use is close enough to OrigLU, to see whether it's
2862 // worthwhile looking through its formulae.
2863 // Ignore ICmpZero uses because they may contain formulae generated by
2864 // GenerateICmpZeroScales, in which case adding fixup offsets may
2865 // be invalid.
2866 if (&LU != &OrigLU &&
2867 LU.Kind != LSRUse::ICmpZero &&
2868 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2869 LU.WidestFixupType == OrigLU.WidestFixupType &&
2870 LU.HasFormulaWithSameRegs(OrigF)) {
2871 // Scan through this use's formulae.
2872 for (const Formula &F : LU.Formulae) {
2873 // Check to see if this formula has the same registers and symbols
2874 // as OrigF.
2875 if (F.BaseRegs == OrigF.BaseRegs &&
2876 F.ScaledReg == OrigF.ScaledReg &&
2877 F.BaseGV == OrigF.BaseGV &&
2878 F.Scale == OrigF.Scale &&
2879 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2880 if (F.BaseOffset.isZero())
2881 return &LU;
2882 // This is the formula where all the registers and symbols matched;
2883 // there aren't going to be any others. Since we declined it, we
2884 // can skip the rest of the formulae and proceed to the next LSRUse.
2885 break;
2891 // Nothing looked good.
2892 return nullptr;
2895 void LSRInstance::CollectInterestingTypesAndFactors() {
2896 SmallSetVector<const SCEV *, 4> Strides;
2898 // Collect interesting types and strides.
2899 SmallVector<const SCEV *, 4> Worklist;
2900 for (const IVStrideUse &U : IU) {
2901 const SCEV *Expr = IU.getExpr(U);
2902 if (!Expr)
2903 continue;
2905 // Collect interesting types.
2906 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2908 // Add strides for mentioned loops.
2909 Worklist.push_back(Expr);
2910 do {
2911 const SCEV *S = Worklist.pop_back_val();
2912 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2913 if (AR->getLoop() == L)
2914 Strides.insert(AR->getStepRecurrence(SE));
2915 Worklist.push_back(AR->getStart());
2916 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2917 append_range(Worklist, Add->operands());
2919 } while (!Worklist.empty());
2922 // Compute interesting factors from the set of interesting strides.
2923 for (SmallSetVector<const SCEV *, 4>::const_iterator
2924 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2925 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2926 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2927 const SCEV *OldStride = *I;
2928 const SCEV *NewStride = *NewStrideIter;
2930 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2931 SE.getTypeSizeInBits(NewStride->getType())) {
2932 if (SE.getTypeSizeInBits(OldStride->getType()) >
2933 SE.getTypeSizeInBits(NewStride->getType()))
2934 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2935 else
2936 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2938 if (const SCEVConstant *Factor =
2939 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2940 SE, true))) {
2941 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2942 Factors.insert(Factor->getAPInt().getSExtValue());
2943 } else if (const SCEVConstant *Factor =
2944 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2945 NewStride,
2946 SE, true))) {
2947 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2948 Factors.insert(Factor->getAPInt().getSExtValue());
2952 // If all uses use the same type, don't bother looking for truncation-based
2953 // reuse.
2954 if (Types.size() == 1)
2955 Types.clear();
2957 LLVM_DEBUG(print_factors_and_types(dbgs()));
2960 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2961 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2962 /// IVStrideUses, we could partially skip this.
2963 static User::op_iterator
2964 findIVOperand(User::op_iterator OI, User::op_iterator OE,
2965 Loop *L, ScalarEvolution &SE) {
2966 for(; OI != OE; ++OI) {
2967 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2968 if (!SE.isSCEVable(Oper->getType()))
2969 continue;
2971 if (const SCEVAddRecExpr *AR =
2972 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2973 if (AR->getLoop() == L)
2974 break;
2978 return OI;
2981 /// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2982 /// a convenient helper.
2983 static Value *getWideOperand(Value *Oper) {
2984 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2985 return Trunc->getOperand(0);
2986 return Oper;
2989 /// Return an approximation of this SCEV expression's "base", or NULL for any
2990 /// constant. Returning the expression itself is conservative. Returning a
2991 /// deeper subexpression is more precise and valid as long as it isn't less
2992 /// complex than another subexpression. For expressions involving multiple
2993 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2994 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2995 /// IVInc==b-a.
2997 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2998 /// SCEVUnknown, we simply return the rightmost SCEV operand.
2999 static const SCEV *getExprBase(const SCEV *S) {
3000 switch (S->getSCEVType()) {
3001 default: // including scUnknown.
3002 return S;
3003 case scConstant:
3004 case scVScale:
3005 return nullptr;
3006 case scTruncate:
3007 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
3008 case scZeroExtend:
3009 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
3010 case scSignExtend:
3011 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
3012 case scAddExpr: {
3013 // Skip over scaled operands (scMulExpr) to follow add operands as long as
3014 // there's nothing more complex.
3015 // FIXME: not sure if we want to recognize negation.
3016 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
3017 for (const SCEV *SubExpr : reverse(Add->operands())) {
3018 if (SubExpr->getSCEVType() == scAddExpr)
3019 return getExprBase(SubExpr);
3021 if (SubExpr->getSCEVType() != scMulExpr)
3022 return SubExpr;
3024 return S; // all operands are scaled, be conservative.
3026 case scAddRecExpr:
3027 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
3029 llvm_unreachable("Unknown SCEV kind!");
3032 /// Return true if the chain increment is profitable to expand into a loop
3033 /// invariant value, which may require its own register. A profitable chain
3034 /// increment will be an offset relative to the same base. We allow such offsets
3035 /// to potentially be used as chain increment as long as it's not obviously
3036 /// expensive to expand using real instructions.
3037 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
3038 const SCEV *IncExpr,
3039 ScalarEvolution &SE) {
3040 // Aggressively form chains when -stress-ivchain.
3041 if (StressIVChain)
3042 return true;
3044 // Do not replace a constant offset from IV head with a nonconstant IV
3045 // increment.
3046 if (!isa<SCEVConstant>(IncExpr)) {
3047 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
3048 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
3049 return false;
3052 SmallPtrSet<const SCEV*, 8> Processed;
3053 return !isHighCostExpansion(IncExpr, Processed, SE);
3056 /// Return true if the number of registers needed for the chain is estimated to
3057 /// be less than the number required for the individual IV users. First prohibit
3058 /// any IV users that keep the IV live across increments (the Users set should
3059 /// be empty). Next count the number and type of increments in the chain.
3061 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
3062 /// effectively use postinc addressing modes. Only consider it profitable it the
3063 /// increments can be computed in fewer registers when chained.
3065 /// TODO: Consider IVInc free if it's already used in another chains.
3066 static bool isProfitableChain(IVChain &Chain,
3067 SmallPtrSetImpl<Instruction *> &Users,
3068 ScalarEvolution &SE,
3069 const TargetTransformInfo &TTI) {
3070 if (StressIVChain)
3071 return true;
3073 if (!Chain.hasIncs())
3074 return false;
3076 if (!Users.empty()) {
3077 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
3078 for (Instruction *Inst
3079 : Users) { dbgs() << " " << *Inst << "\n"; });
3080 return false;
3082 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3084 // The chain itself may require a register, so intialize cost to 1.
3085 int cost = 1;
3087 // A complete chain likely eliminates the need for keeping the original IV in
3088 // a register. LSR does not currently know how to form a complete chain unless
3089 // the header phi already exists.
3090 if (isa<PHINode>(Chain.tailUserInst())
3091 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
3092 --cost;
3094 const SCEV *LastIncExpr = nullptr;
3095 unsigned NumConstIncrements = 0;
3096 unsigned NumVarIncrements = 0;
3097 unsigned NumReusedIncrements = 0;
3099 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
3100 return true;
3102 for (const IVInc &Inc : Chain) {
3103 if (TTI.isProfitableLSRChainElement(Inc.UserInst))
3104 return true;
3105 if (Inc.IncExpr->isZero())
3106 continue;
3108 // Incrementing by zero or some constant is neutral. We assume constants can
3109 // be folded into an addressing mode or an add's immediate operand.
3110 if (isa<SCEVConstant>(Inc.IncExpr)) {
3111 ++NumConstIncrements;
3112 continue;
3115 if (Inc.IncExpr == LastIncExpr)
3116 ++NumReusedIncrements;
3117 else
3118 ++NumVarIncrements;
3120 LastIncExpr = Inc.IncExpr;
3122 // An IV chain with a single increment is handled by LSR's postinc
3123 // uses. However, a chain with multiple increments requires keeping the IV's
3124 // value live longer than it needs to be if chained.
3125 if (NumConstIncrements > 1)
3126 --cost;
3128 // Materializing increment expressions in the preheader that didn't exist in
3129 // the original code may cost a register. For example, sign-extended array
3130 // indices can produce ridiculous increments like this:
3131 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
3132 cost += NumVarIncrements;
3134 // Reusing variable increments likely saves a register to hold the multiple of
3135 // the stride.
3136 cost -= NumReusedIncrements;
3138 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
3139 << "\n");
3141 return cost < 0;
3144 /// Add this IV user to an existing chain or make it the head of a new chain.
3145 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
3146 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
3147 // When IVs are used as types of varying widths, they are generally converted
3148 // to a wider type with some uses remaining narrow under a (free) trunc.
3149 Value *const NextIV = getWideOperand(IVOper);
3150 const SCEV *const OperExpr = SE.getSCEV(NextIV);
3151 const SCEV *const OperExprBase = getExprBase(OperExpr);
3153 // Visit all existing chains. Check if its IVOper can be computed as a
3154 // profitable loop invariant increment from the last link in the Chain.
3155 unsigned ChainIdx = 0, NChains = IVChainVec.size();
3156 const SCEV *LastIncExpr = nullptr;
3157 for (; ChainIdx < NChains; ++ChainIdx) {
3158 IVChain &Chain = IVChainVec[ChainIdx];
3160 // Prune the solution space aggressively by checking that both IV operands
3161 // are expressions that operate on the same unscaled SCEVUnknown. This
3162 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
3163 // first avoids creating extra SCEV expressions.
3164 if (!StressIVChain && Chain.ExprBase != OperExprBase)
3165 continue;
3167 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
3168 if (PrevIV->getType() != NextIV->getType())
3169 continue;
3171 // A phi node terminates a chain.
3172 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
3173 continue;
3175 // The increment must be loop-invariant so it can be kept in a register.
3176 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
3177 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
3178 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
3179 continue;
3181 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
3182 LastIncExpr = IncExpr;
3183 break;
3186 // If we haven't found a chain, create a new one, unless we hit the max. Don't
3187 // bother for phi nodes, because they must be last in the chain.
3188 if (ChainIdx == NChains) {
3189 if (isa<PHINode>(UserInst))
3190 return;
3191 if (NChains >= MaxChains && !StressIVChain) {
3192 LLVM_DEBUG(dbgs() << "IV Chain Limit\n");
3193 return;
3195 LastIncExpr = OperExpr;
3196 // IVUsers may have skipped over sign/zero extensions. We don't currently
3197 // attempt to form chains involving extensions unless they can be hoisted
3198 // into this loop's AddRec.
3199 if (!isa<SCEVAddRecExpr>(LastIncExpr))
3200 return;
3201 ++NChains;
3202 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3203 OperExprBase));
3204 ChainUsersVec.resize(NChains);
3205 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
3206 << ") IV=" << *LastIncExpr << "\n");
3207 } else {
3208 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInst
3209 << ") IV+" << *LastIncExpr << "\n");
3210 // Add this IV user to the end of the chain.
3211 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3213 IVChain &Chain = IVChainVec[ChainIdx];
3215 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3216 // This chain's NearUsers become FarUsers.
3217 if (!LastIncExpr->isZero()) {
3218 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3219 NearUsers.end());
3220 NearUsers.clear();
3223 // All other uses of IVOperand become near uses of the chain.
3224 // We currently ignore intermediate values within SCEV expressions, assuming
3225 // they will eventually be used be the current chain, or can be computed
3226 // from one of the chain increments. To be more precise we could
3227 // transitively follow its user and only add leaf IV users to the set.
3228 for (User *U : IVOper->users()) {
3229 Instruction *OtherUse = dyn_cast<Instruction>(U);
3230 if (!OtherUse)
3231 continue;
3232 // Uses in the chain will no longer be uses if the chain is formed.
3233 // Include the head of the chain in this iteration (not Chain.begin()).
3234 IVChain::const_iterator IncIter = Chain.Incs.begin();
3235 IVChain::const_iterator IncEnd = Chain.Incs.end();
3236 for( ; IncIter != IncEnd; ++IncIter) {
3237 if (IncIter->UserInst == OtherUse)
3238 break;
3240 if (IncIter != IncEnd)
3241 continue;
3243 if (SE.isSCEVable(OtherUse->getType())
3244 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3245 && IU.isIVUserOrOperand(OtherUse)) {
3246 continue;
3248 NearUsers.insert(OtherUse);
3251 // Since this user is part of the chain, it's no longer considered a use
3252 // of the chain.
3253 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3256 /// Populate the vector of Chains.
3258 /// This decreases ILP at the architecture level. Targets with ample registers,
3259 /// multiple memory ports, and no register renaming probably don't want
3260 /// this. However, such targets should probably disable LSR altogether.
3262 /// The job of LSR is to make a reasonable choice of induction variables across
3263 /// the loop. Subsequent passes can easily "unchain" computation exposing more
3264 /// ILP *within the loop* if the target wants it.
3266 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
3267 /// will not reorder memory operations, it will recognize this as a chain, but
3268 /// will generate redundant IV increments. Ideally this would be corrected later
3269 /// by a smart scheduler:
3270 /// = A[i]
3271 /// = A[i+x]
3272 /// A[i] =
3273 /// A[i+x] =
3275 /// TODO: Walk the entire domtree within this loop, not just the path to the
3276 /// loop latch. This will discover chains on side paths, but requires
3277 /// maintaining multiple copies of the Chains state.
3278 void LSRInstance::CollectChains() {
3279 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n");
3280 SmallVector<ChainUsers, 8> ChainUsersVec;
3282 SmallVector<BasicBlock *,8> LatchPath;
3283 BasicBlock *LoopHeader = L->getHeader();
3284 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3285 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3286 LatchPath.push_back(Rung->getBlock());
3288 LatchPath.push_back(LoopHeader);
3290 // Walk the instruction stream from the loop header to the loop latch.
3291 for (BasicBlock *BB : reverse(LatchPath)) {
3292 for (Instruction &I : *BB) {
3293 // Skip instructions that weren't seen by IVUsers analysis.
3294 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3295 continue;
3297 // Ignore users that are part of a SCEV expression. This way we only
3298 // consider leaf IV Users. This effectively rediscovers a portion of
3299 // IVUsers analysis but in program order this time.
3300 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3301 continue;
3303 // Remove this instruction from any NearUsers set it may be in.
3304 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3305 ChainIdx < NChains; ++ChainIdx) {
3306 ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3308 // Search for operands that can be chained.
3309 SmallPtrSet<Instruction*, 4> UniqueOperands;
3310 User::op_iterator IVOpEnd = I.op_end();
3311 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3312 while (IVOpIter != IVOpEnd) {
3313 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3314 if (UniqueOperands.insert(IVOpInst).second)
3315 ChainInstruction(&I, IVOpInst, ChainUsersVec);
3316 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3318 } // Continue walking down the instructions.
3319 } // Continue walking down the domtree.
3320 // Visit phi backedges to determine if the chain can generate the IV postinc.
3321 for (PHINode &PN : L->getHeader()->phis()) {
3322 if (!SE.isSCEVable(PN.getType()))
3323 continue;
3325 Instruction *IncV =
3326 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3327 if (IncV)
3328 ChainInstruction(&PN, IncV, ChainUsersVec);
3330 // Remove any unprofitable chains.
3331 unsigned ChainIdx = 0;
3332 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3333 UsersIdx < NChains; ++UsersIdx) {
3334 if (!isProfitableChain(IVChainVec[UsersIdx],
3335 ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3336 continue;
3337 // Preserve the chain at UsesIdx.
3338 if (ChainIdx != UsersIdx)
3339 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3340 FinalizeChain(IVChainVec[ChainIdx]);
3341 ++ChainIdx;
3343 IVChainVec.resize(ChainIdx);
3346 void LSRInstance::FinalizeChain(IVChain &Chain) {
3347 assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
3348 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
3350 for (const IVInc &Inc : Chain) {
3351 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n");
3352 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3353 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
3354 IVIncSet.insert(UseI);
3358 /// Return true if the IVInc can be folded into an addressing mode.
3359 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3360 Value *Operand, const TargetTransformInfo &TTI) {
3361 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3362 Immediate IncOffset = Immediate::getZero();
3363 if (IncConst) {
3364 if (IncConst && IncConst->getAPInt().getSignificantBits() > 64)
3365 return false;
3366 IncOffset = Immediate::getFixed(IncConst->getValue()->getSExtValue());
3367 } else {
3368 // Look for mul(vscale, constant), to detect a scalable offset.
3369 auto *IncVScale = dyn_cast<SCEVMulExpr>(IncExpr);
3370 if (!IncVScale || IncVScale->getNumOperands() != 2 ||
3371 !isa<SCEVVScale>(IncVScale->getOperand(1)))
3372 return false;
3373 auto *Scale = dyn_cast<SCEVConstant>(IncVScale->getOperand(0));
3374 if (!Scale || Scale->getType()->getScalarSizeInBits() > 64)
3375 return false;
3376 IncOffset = Immediate::getScalable(Scale->getValue()->getSExtValue());
3379 if (!isAddressUse(TTI, UserInst, Operand))
3380 return false;
3382 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3383 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3384 IncOffset, /*HasBaseReg=*/false))
3385 return false;
3387 return true;
3390 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
3391 /// user's operand from the previous IV user's operand.
3392 void LSRInstance::GenerateIVChain(const IVChain &Chain,
3393 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3394 // Find the new IVOperand for the head of the chain. It may have been replaced
3395 // by LSR.
3396 const IVInc &Head = Chain.Incs[0];
3397 User::op_iterator IVOpEnd = Head.UserInst->op_end();
3398 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3399 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3400 IVOpEnd, L, SE);
3401 Value *IVSrc = nullptr;
3402 while (IVOpIter != IVOpEnd) {
3403 IVSrc = getWideOperand(*IVOpIter);
3405 // If this operand computes the expression that the chain needs, we may use
3406 // it. (Check this after setting IVSrc which is used below.)
3408 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3409 // narrow for the chain, so we can no longer use it. We do allow using a
3410 // wider phi, assuming the LSR checked for free truncation. In that case we
3411 // should already have a truncate on this operand such that
3412 // getSCEV(IVSrc) == IncExpr.
3413 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3414 || SE.getSCEV(IVSrc) == Head.IncExpr) {
3415 break;
3417 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3419 if (IVOpIter == IVOpEnd) {
3420 // Gracefully give up on this chain.
3421 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
3422 return;
3424 assert(IVSrc && "Failed to find IV chain source");
3426 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
3427 Type *IVTy = IVSrc->getType();
3428 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3429 const SCEV *LeftOverExpr = nullptr;
3430 const SCEV *Accum = SE.getZero(IntTy);
3431 SmallVector<std::pair<const SCEV *, Value *>> Bases;
3432 Bases.emplace_back(Accum, IVSrc);
3434 for (const IVInc &Inc : Chain) {
3435 Instruction *InsertPt = Inc.UserInst;
3436 if (isa<PHINode>(InsertPt))
3437 InsertPt = L->getLoopLatch()->getTerminator();
3439 // IVOper will replace the current IV User's operand. IVSrc is the IV
3440 // value currently held in a register.
3441 Value *IVOper = IVSrc;
3442 if (!Inc.IncExpr->isZero()) {
3443 // IncExpr was the result of subtraction of two narrow values, so must
3444 // be signed.
3445 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3446 Accum = SE.getAddExpr(Accum, IncExpr);
3447 LeftOverExpr = LeftOverExpr ?
3448 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3451 // Look through each base to see if any can produce a nice addressing mode.
3452 bool FoundBase = false;
3453 for (auto [MapScev, MapIVOper] : reverse(Bases)) {
3454 const SCEV *Remainder = SE.getMinusSCEV(Accum, MapScev);
3455 if (canFoldIVIncExpr(Remainder, Inc.UserInst, Inc.IVOperand, TTI)) {
3456 if (!Remainder->isZero()) {
3457 Rewriter.clearPostInc();
3458 Value *IncV = Rewriter.expandCodeFor(Remainder, IntTy, InsertPt);
3459 const SCEV *IVOperExpr =
3460 SE.getAddExpr(SE.getUnknown(MapIVOper), SE.getUnknown(IncV));
3461 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3462 } else {
3463 IVOper = MapIVOper;
3466 FoundBase = true;
3467 break;
3470 if (!FoundBase && LeftOverExpr && !LeftOverExpr->isZero()) {
3471 // Expand the IV increment.
3472 Rewriter.clearPostInc();
3473 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3474 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3475 SE.getUnknown(IncV));
3476 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3478 // If an IV increment can't be folded, use it as the next IV value.
3479 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3480 assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
3481 Bases.emplace_back(Accum, IVOper);
3482 IVSrc = IVOper;
3483 LeftOverExpr = nullptr;
3486 Type *OperTy = Inc.IVOperand->getType();
3487 if (IVTy != OperTy) {
3488 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
3489 "cannot extend a chained IV");
3490 IRBuilder<> Builder(InsertPt);
3491 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3493 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3494 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3495 DeadInsts.emplace_back(OperandIsInstr);
3497 // If LSR created a new, wider phi, we may also replace its postinc. We only
3498 // do this if we also found a wide value for the head of the chain.
3499 if (isa<PHINode>(Chain.tailUserInst())) {
3500 for (PHINode &Phi : L->getHeader()->phis()) {
3501 if (Phi.getType() != IVSrc->getType())
3502 continue;
3503 Instruction *PostIncV = dyn_cast<Instruction>(
3504 Phi.getIncomingValueForBlock(L->getLoopLatch()));
3505 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3506 continue;
3507 Value *IVOper = IVSrc;
3508 Type *PostIncTy = PostIncV->getType();
3509 if (IVTy != PostIncTy) {
3510 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
3511 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3512 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3513 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3515 Phi.replaceUsesOfWith(PostIncV, IVOper);
3516 DeadInsts.emplace_back(PostIncV);
3521 void LSRInstance::CollectFixupsAndInitialFormulae() {
3522 BranchInst *ExitBranch = nullptr;
3523 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3525 // For calculating baseline cost
3526 SmallPtrSet<const SCEV *, 16> Regs;
3527 DenseSet<const SCEV *> VisitedRegs;
3528 DenseSet<size_t> VisitedLSRUse;
3530 for (const IVStrideUse &U : IU) {
3531 Instruction *UserInst = U.getUser();
3532 // Skip IV users that are part of profitable IV Chains.
3533 User::op_iterator UseI =
3534 find(UserInst->operands(), U.getOperandValToReplace());
3535 assert(UseI != UserInst->op_end() && "cannot find IV operand");
3536 if (IVIncSet.count(UseI)) {
3537 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n');
3538 continue;
3541 LSRUse::KindType Kind = LSRUse::Basic;
3542 MemAccessTy AccessTy;
3543 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3544 Kind = LSRUse::Address;
3545 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3548 const SCEV *S = IU.getExpr(U);
3549 if (!S)
3550 continue;
3551 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3553 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3554 // (N - i == 0), and this allows (N - i) to be the expression that we work
3555 // with rather than just N or i, so we can consider the register
3556 // requirements for both N and i at the same time. Limiting this code to
3557 // equality icmps is not a problem because all interesting loops use
3558 // equality icmps, thanks to IndVarSimplify.
3559 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3560 // If CI can be saved in some target, like replaced inside hardware loop
3561 // in PowerPC, no need to generate initial formulae for it.
3562 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3563 continue;
3564 if (CI->isEquality()) {
3565 // Swap the operands if needed to put the OperandValToReplace on the
3566 // left, for consistency.
3567 Value *NV = CI->getOperand(1);
3568 if (NV == U.getOperandValToReplace()) {
3569 CI->setOperand(1, CI->getOperand(0));
3570 CI->setOperand(0, NV);
3571 NV = CI->getOperand(1);
3572 Changed = true;
3575 // x == y --> x - y == 0
3576 const SCEV *N = SE.getSCEV(NV);
3577 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3578 (!NV->getType()->isPointerTy() ||
3579 SE.getPointerBase(N) == SE.getPointerBase(S))) {
3580 // S is normalized, so normalize N before folding it into S
3581 // to keep the result normalized.
3582 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3583 if (!N)
3584 continue;
3585 Kind = LSRUse::ICmpZero;
3586 S = SE.getMinusSCEV(N, S);
3587 } else if (L->isLoopInvariant(NV) &&
3588 (!isa<Instruction>(NV) ||
3589 DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3590 !NV->getType()->isPointerTy()) {
3591 // If we can't generally expand the expression (e.g. it contains
3592 // a divide), but it is already at a loop invariant point before the
3593 // loop, wrap it in an unknown (to prevent the expander from trying
3594 // to re-expand in a potentially unsafe way.) The restriction to
3595 // integer types is required because the unknown hides the base, and
3596 // SCEV can't compute the difference of two unknown pointers.
3597 N = SE.getUnknown(NV);
3598 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3599 if (!N)
3600 continue;
3601 Kind = LSRUse::ICmpZero;
3602 S = SE.getMinusSCEV(N, S);
3603 assert(!isa<SCEVCouldNotCompute>(S));
3606 // -1 and the negations of all interesting strides (except the negation
3607 // of -1) are now also interesting.
3608 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3609 if (Factors[i] != -1)
3610 Factors.insert(-(uint64_t)Factors[i]);
3611 Factors.insert(-1);
3615 // Get or create an LSRUse.
3616 std::pair<size_t, Immediate> P = getUse(S, Kind, AccessTy);
3617 size_t LUIdx = P.first;
3618 Immediate Offset = P.second;
3619 LSRUse &LU = Uses[LUIdx];
3621 // Record the fixup.
3622 LSRFixup &LF = LU.getNewFixup();
3623 LF.UserInst = UserInst;
3624 LF.OperandValToReplace = U.getOperandValToReplace();
3625 LF.PostIncLoops = TmpPostIncLoops;
3626 LF.Offset = Offset;
3627 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3629 // Create SCEV as Formula for calculating baseline cost
3630 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3631 Formula F;
3632 F.initialMatch(S, L, SE);
3633 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3634 VisitedLSRUse.insert(LUIdx);
3637 if (!LU.WidestFixupType ||
3638 SE.getTypeSizeInBits(LU.WidestFixupType) <
3639 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3640 LU.WidestFixupType = LF.OperandValToReplace->getType();
3642 // If this is the first use of this LSRUse, give it a formula.
3643 if (LU.Formulae.empty()) {
3644 InsertInitialFormula(S, LU, LUIdx);
3645 CountRegisters(LU.Formulae.back(), LUIdx);
3649 LLVM_DEBUG(print_fixups(dbgs()));
3652 /// Insert a formula for the given expression into the given use, separating out
3653 /// loop-variant portions from loop-invariant and loop-computable portions.
3654 void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3655 size_t LUIdx) {
3656 // Mark uses whose expressions cannot be expanded.
3657 if (!Rewriter.isSafeToExpand(S))
3658 LU.RigidFormula = true;
3660 Formula F;
3661 F.initialMatch(S, L, SE);
3662 bool Inserted = InsertFormula(LU, LUIdx, F);
3663 assert(Inserted && "Initial formula already exists!"); (void)Inserted;
3666 /// Insert a simple single-register formula for the given expression into the
3667 /// given use.
3668 void
3669 LSRInstance::InsertSupplementalFormula(const SCEV *S,
3670 LSRUse &LU, size_t LUIdx) {
3671 Formula F;
3672 F.BaseRegs.push_back(S);
3673 F.HasBaseReg = true;
3674 bool Inserted = InsertFormula(LU, LUIdx, F);
3675 assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
3678 /// Note which registers are used by the given formula, updating RegUses.
3679 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3680 if (F.ScaledReg)
3681 RegUses.countRegister(F.ScaledReg, LUIdx);
3682 for (const SCEV *BaseReg : F.BaseRegs)
3683 RegUses.countRegister(BaseReg, LUIdx);
3686 /// If the given formula has not yet been inserted, add it to the list, and
3687 /// return true. Return false otherwise.
3688 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3689 // Do not insert formula that we will not be able to expand.
3690 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
3691 "Formula is illegal");
3693 if (!LU.InsertFormula(F, *L))
3694 return false;
3696 CountRegisters(F, LUIdx);
3697 return true;
3700 /// Check for other uses of loop-invariant values which we're tracking. These
3701 /// other uses will pin these values in registers, making them less profitable
3702 /// for elimination.
3703 /// TODO: This currently misses non-constant addrec step registers.
3704 /// TODO: Should this give more weight to users inside the loop?
3705 void
3706 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3707 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3708 SmallPtrSet<const SCEV *, 32> Visited;
3710 // Don't collect outside uses if we are favoring postinc - the instructions in
3711 // the loop are more important than the ones outside of it.
3712 if (AMK == TTI::AMK_PostIndexed)
3713 return;
3715 while (!Worklist.empty()) {
3716 const SCEV *S = Worklist.pop_back_val();
3718 // Don't process the same SCEV twice
3719 if (!Visited.insert(S).second)
3720 continue;
3722 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3723 append_range(Worklist, N->operands());
3724 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3725 Worklist.push_back(C->getOperand());
3726 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3727 Worklist.push_back(D->getLHS());
3728 Worklist.push_back(D->getRHS());
3729 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3730 const Value *V = US->getValue();
3731 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3732 // Look for instructions defined outside the loop.
3733 if (L->contains(Inst)) continue;
3734 } else if (isa<Constant>(V))
3735 // Constants can be re-materialized.
3736 continue;
3737 for (const Use &U : V->uses()) {
3738 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3739 // Ignore non-instructions.
3740 if (!UserInst)
3741 continue;
3742 // Don't bother if the instruction is an EHPad.
3743 if (UserInst->isEHPad())
3744 continue;
3745 // Ignore instructions in other functions (as can happen with
3746 // Constants).
3747 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3748 continue;
3749 // Ignore instructions not dominated by the loop.
3750 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3751 UserInst->getParent() :
3752 cast<PHINode>(UserInst)->getIncomingBlock(
3753 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3754 if (!DT.dominates(L->getHeader(), UseBB))
3755 continue;
3756 // Don't bother if the instruction is in a BB which ends in an EHPad.
3757 if (UseBB->getTerminator()->isEHPad())
3758 continue;
3760 // Ignore cases in which the currently-examined value could come from
3761 // a basic block terminated with an EHPad. This checks all incoming
3762 // blocks of the phi node since it is possible that the same incoming
3763 // value comes from multiple basic blocks, only some of which may end
3764 // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3765 // pass would try to insert instructions into an EHPad, hitting an
3766 // assertion.
3767 if (isa<PHINode>(UserInst)) {
3768 const auto *PhiNode = cast<PHINode>(UserInst);
3769 bool HasIncompatibleEHPTerminatedBlock = false;
3770 llvm::Value *ExpectedValue = U;
3771 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3772 if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3773 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3774 HasIncompatibleEHPTerminatedBlock = true;
3775 break;
3779 if (HasIncompatibleEHPTerminatedBlock) {
3780 continue;
3784 // Don't bother rewriting PHIs in catchswitch blocks.
3785 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3786 continue;
3787 // Ignore uses which are part of other SCEV expressions, to avoid
3788 // analyzing them multiple times.
3789 if (SE.isSCEVable(UserInst->getType())) {
3790 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3791 // If the user is a no-op, look through to its uses.
3792 if (!isa<SCEVUnknown>(UserS))
3793 continue;
3794 if (UserS == US) {
3795 Worklist.push_back(
3796 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3797 continue;
3800 // Ignore icmp instructions which are already being analyzed.
3801 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3802 unsigned OtherIdx = !U.getOperandNo();
3803 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3804 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3805 continue;
3808 std::pair<size_t, Immediate> P =
3809 getUse(S, LSRUse::Basic, MemAccessTy());
3810 size_t LUIdx = P.first;
3811 Immediate Offset = P.second;
3812 LSRUse &LU = Uses[LUIdx];
3813 LSRFixup &LF = LU.getNewFixup();
3814 LF.UserInst = const_cast<Instruction *>(UserInst);
3815 LF.OperandValToReplace = U;
3816 LF.Offset = Offset;
3817 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3818 if (!LU.WidestFixupType ||
3819 SE.getTypeSizeInBits(LU.WidestFixupType) <
3820 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3821 LU.WidestFixupType = LF.OperandValToReplace->getType();
3822 InsertSupplementalFormula(US, LU, LUIdx);
3823 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3824 break;
3830 /// Split S into subexpressions which can be pulled out into separate
3831 /// registers. If C is non-null, multiply each subexpression by C.
3833 /// Return remainder expression after factoring the subexpressions captured by
3834 /// Ops. If Ops is complete, return NULL.
3835 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3836 SmallVectorImpl<const SCEV *> &Ops,
3837 const Loop *L,
3838 ScalarEvolution &SE,
3839 unsigned Depth = 0) {
3840 // Arbitrarily cap recursion to protect compile time.
3841 if (Depth >= 3)
3842 return S;
3844 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3845 // Break out add operands.
3846 for (const SCEV *S : Add->operands()) {
3847 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3848 if (Remainder)
3849 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3851 return nullptr;
3852 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3853 // Split a non-zero base out of an addrec.
3854 if (AR->getStart()->isZero() || !AR->isAffine())
3855 return S;
3857 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3858 C, Ops, L, SE, Depth+1);
3859 // Split the non-zero AddRec unless it is part of a nested recurrence that
3860 // does not pertain to this loop.
3861 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3862 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3863 Remainder = nullptr;
3865 if (Remainder != AR->getStart()) {
3866 if (!Remainder)
3867 Remainder = SE.getConstant(AR->getType(), 0);
3868 return SE.getAddRecExpr(Remainder,
3869 AR->getStepRecurrence(SE),
3870 AR->getLoop(),
3871 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3872 SCEV::FlagAnyWrap);
3874 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3875 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3876 if (Mul->getNumOperands() != 2)
3877 return S;
3878 if (const SCEVConstant *Op0 =
3879 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3880 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3881 const SCEV *Remainder =
3882 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3883 if (Remainder)
3884 Ops.push_back(SE.getMulExpr(C, Remainder));
3885 return nullptr;
3888 return S;
3891 /// Return true if the SCEV represents a value that may end up as a
3892 /// post-increment operation.
3893 static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3894 LSRUse &LU, const SCEV *S, const Loop *L,
3895 ScalarEvolution &SE) {
3896 if (LU.Kind != LSRUse::Address ||
3897 !LU.AccessTy.getType()->isIntOrIntVectorTy())
3898 return false;
3899 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3900 if (!AR)
3901 return false;
3902 const SCEV *LoopStep = AR->getStepRecurrence(SE);
3903 if (!isa<SCEVConstant>(LoopStep))
3904 return false;
3905 // Check if a post-indexed load/store can be used.
3906 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3907 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3908 const SCEV *LoopStart = AR->getStart();
3909 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3910 return true;
3912 return false;
3915 /// Helper function for LSRInstance::GenerateReassociations.
3916 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3917 const Formula &Base,
3918 unsigned Depth, size_t Idx,
3919 bool IsScaledReg) {
3920 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3921 // Don't generate reassociations for the base register of a value that
3922 // may generate a post-increment operator. The reason is that the
3923 // reassociations cause extra base+register formula to be created,
3924 // and possibly chosen, but the post-increment is more efficient.
3925 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3926 return;
3927 SmallVector<const SCEV *, 8> AddOps;
3928 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3929 if (Remainder)
3930 AddOps.push_back(Remainder);
3932 if (AddOps.size() == 1)
3933 return;
3935 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3936 JE = AddOps.end();
3937 J != JE; ++J) {
3938 // Loop-variant "unknown" values are uninteresting; we won't be able to
3939 // do anything meaningful with them.
3940 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3941 continue;
3943 // Don't pull a constant into a register if the constant could be folded
3944 // into an immediate field.
3945 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3946 LU.AccessTy, *J, Base.getNumRegs() > 1))
3947 continue;
3949 // Collect all operands except *J.
3950 SmallVector<const SCEV *, 8> InnerAddOps(
3951 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3952 InnerAddOps.append(std::next(J),
3953 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3955 // Don't leave just a constant behind in a register if the constant could
3956 // be folded into an immediate field.
3957 if (InnerAddOps.size() == 1 &&
3958 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3959 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3960 continue;
3962 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3963 if (InnerSum->isZero())
3964 continue;
3965 Formula F = Base;
3967 if (F.UnfoldedOffset.isNonZero() && F.UnfoldedOffset.isScalable())
3968 continue;
3970 // Add the remaining pieces of the add back into the new formula.
3971 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3972 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3973 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() +
3974 InnerSumSC->getValue()->getZExtValue())) {
3975 F.UnfoldedOffset =
3976 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() +
3977 InnerSumSC->getValue()->getZExtValue());
3978 if (IsScaledReg) {
3979 F.ScaledReg = nullptr;
3980 F.Scale = 0;
3981 } else
3982 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3983 } else if (IsScaledReg)
3984 F.ScaledReg = InnerSum;
3985 else
3986 F.BaseRegs[Idx] = InnerSum;
3988 // Add J as its own register, or an unfolded immediate.
3989 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3990 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3991 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset.getFixedValue() +
3992 SC->getValue()->getZExtValue()))
3993 F.UnfoldedOffset =
3994 Immediate::getFixed((uint64_t)F.UnfoldedOffset.getFixedValue() +
3995 SC->getValue()->getZExtValue());
3996 else
3997 F.BaseRegs.push_back(*J);
3998 // We may have changed the number of register in base regs, adjust the
3999 // formula accordingly.
4000 F.canonicalize(*L);
4002 if (InsertFormula(LU, LUIdx, F))
4003 // If that formula hadn't been seen before, recurse to find more like
4004 // it.
4005 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
4006 // Because just Depth is not enough to bound compile time.
4007 // This means that every time AddOps.size() is greater 16^x we will add
4008 // x to Depth.
4009 GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
4010 Depth + 1 + (Log2_32(AddOps.size()) >> 2));
4014 /// Split out subexpressions from adds and the bases of addrecs.
4015 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
4016 Formula Base, unsigned Depth) {
4017 assert(Base.isCanonical(*L) && "Input must be in the canonical form");
4018 // Arbitrarily cap recursion to protect compile time.
4019 if (Depth >= 3)
4020 return;
4022 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
4023 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
4025 if (Base.Scale == 1)
4026 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
4027 /* Idx */ -1, /* IsScaledReg */ true);
4030 /// Generate a formula consisting of all of the loop-dominating registers added
4031 /// into a single register.
4032 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
4033 Formula Base) {
4034 // This method is only interesting on a plurality of registers.
4035 if (Base.BaseRegs.size() + (Base.Scale == 1) +
4036 (Base.UnfoldedOffset.isNonZero()) <=
4038 return;
4040 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
4041 // processing the formula.
4042 Base.unscale();
4043 SmallVector<const SCEV *, 4> Ops;
4044 Formula NewBase = Base;
4045 NewBase.BaseRegs.clear();
4046 Type *CombinedIntegerType = nullptr;
4047 for (const SCEV *BaseReg : Base.BaseRegs) {
4048 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
4049 !SE.hasComputableLoopEvolution(BaseReg, L)) {
4050 if (!CombinedIntegerType)
4051 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
4052 Ops.push_back(BaseReg);
4054 else
4055 NewBase.BaseRegs.push_back(BaseReg);
4058 // If no register is relevant, we're done.
4059 if (Ops.size() == 0)
4060 return;
4062 // Utility function for generating the required variants of the combined
4063 // registers.
4064 auto GenerateFormula = [&](const SCEV *Sum) {
4065 Formula F = NewBase;
4067 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
4068 // opportunity to fold something. For now, just ignore such cases
4069 // rather than proceed with zero in a register.
4070 if (Sum->isZero())
4071 return;
4073 F.BaseRegs.push_back(Sum);
4074 F.canonicalize(*L);
4075 (void)InsertFormula(LU, LUIdx, F);
4078 // If we collected at least two registers, generate a formula combining them.
4079 if (Ops.size() > 1) {
4080 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
4081 GenerateFormula(SE.getAddExpr(OpsCopy));
4084 // If we have an unfolded offset, generate a formula combining it with the
4085 // registers collected.
4086 if (NewBase.UnfoldedOffset.isNonZero() && NewBase.UnfoldedOffset.isFixed()) {
4087 assert(CombinedIntegerType && "Missing a type for the unfolded offset");
4088 Ops.push_back(SE.getConstant(CombinedIntegerType,
4089 NewBase.UnfoldedOffset.getFixedValue(), true));
4090 NewBase.UnfoldedOffset = Immediate::getFixed(0);
4091 GenerateFormula(SE.getAddExpr(Ops));
4095 /// Helper function for LSRInstance::GenerateSymbolicOffsets.
4096 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
4097 const Formula &Base, size_t Idx,
4098 bool IsScaledReg) {
4099 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
4100 GlobalValue *GV = ExtractSymbol(G, SE);
4101 if (G->isZero() || !GV)
4102 return;
4103 Formula F = Base;
4104 F.BaseGV = GV;
4105 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
4106 return;
4107 if (IsScaledReg)
4108 F.ScaledReg = G;
4109 else
4110 F.BaseRegs[Idx] = G;
4111 (void)InsertFormula(LU, LUIdx, F);
4114 /// Generate reuse formulae using symbolic offsets.
4115 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
4116 Formula Base) {
4117 // We can't add a symbolic offset if the address already contains one.
4118 if (Base.BaseGV) return;
4120 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
4121 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
4122 if (Base.Scale == 1)
4123 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
4124 /* IsScaledReg */ true);
4127 /// Helper function for LSRInstance::GenerateConstantOffsets.
4128 void LSRInstance::GenerateConstantOffsetsImpl(
4129 LSRUse &LU, unsigned LUIdx, const Formula &Base,
4130 const SmallVectorImpl<Immediate> &Worklist, size_t Idx, bool IsScaledReg) {
4132 auto GenerateOffset = [&](const SCEV *G, Immediate Offset) {
4133 Formula F = Base;
4134 if (!Base.BaseOffset.isCompatibleImmediate(Offset))
4135 return;
4136 F.BaseOffset = Base.BaseOffset.subUnsigned(Offset);
4138 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
4139 // Add the offset to the base register.
4140 const SCEV *NewOffset = Offset.getSCEV(SE, G->getType());
4141 const SCEV *NewG = SE.getAddExpr(NewOffset, G);
4142 // If it cancelled out, drop the base register, otherwise update it.
4143 if (NewG->isZero()) {
4144 if (IsScaledReg) {
4145 F.Scale = 0;
4146 F.ScaledReg = nullptr;
4147 } else
4148 F.deleteBaseReg(F.BaseRegs[Idx]);
4149 F.canonicalize(*L);
4150 } else if (IsScaledReg)
4151 F.ScaledReg = NewG;
4152 else
4153 F.BaseRegs[Idx] = NewG;
4155 (void)InsertFormula(LU, LUIdx, F);
4159 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
4161 // With constant offsets and constant steps, we can generate pre-inc
4162 // accesses by having the offset equal the step. So, for access #0 with a
4163 // step of 8, we generate a G - 8 base which would require the first access
4164 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
4165 // for itself and hopefully becomes the base for other accesses. This means
4166 // means that a single pre-indexed access can be generated to become the new
4167 // base pointer for each iteration of the loop, resulting in no extra add/sub
4168 // instructions for pointer updating.
4169 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
4170 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
4171 if (auto *StepRec =
4172 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
4173 const APInt &StepInt = StepRec->getAPInt();
4174 int64_t Step = StepInt.isNegative() ?
4175 StepInt.getSExtValue() : StepInt.getZExtValue();
4177 for (Immediate Offset : Worklist) {
4178 if (Offset.isFixed()) {
4179 Offset = Immediate::getFixed(Offset.getFixedValue() - Step);
4180 GenerateOffset(G, Offset);
4186 for (Immediate Offset : Worklist)
4187 GenerateOffset(G, Offset);
4189 Immediate Imm = ExtractImmediate(G, SE);
4190 if (G->isZero() || Imm.isZero() ||
4191 !Base.BaseOffset.isCompatibleImmediate(Imm))
4192 return;
4193 Formula F = Base;
4194 F.BaseOffset = F.BaseOffset.addUnsigned(Imm);
4195 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
4196 return;
4197 if (IsScaledReg) {
4198 F.ScaledReg = G;
4199 } else {
4200 F.BaseRegs[Idx] = G;
4201 // We may generate non canonical Formula if G is a recurrent expr reg
4202 // related with current loop while F.ScaledReg is not.
4203 F.canonicalize(*L);
4205 (void)InsertFormula(LU, LUIdx, F);
4208 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
4209 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
4210 Formula Base) {
4211 // TODO: For now, just add the min and max offset, because it usually isn't
4212 // worthwhile looking at everything inbetween.
4213 SmallVector<Immediate, 2> Worklist;
4214 Worklist.push_back(LU.MinOffset);
4215 if (LU.MaxOffset != LU.MinOffset)
4216 Worklist.push_back(LU.MaxOffset);
4218 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
4219 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
4220 if (Base.Scale == 1)
4221 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
4222 /* IsScaledReg */ true);
4225 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
4226 /// == y -> x*c == y*c.
4227 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
4228 Formula Base) {
4229 if (LU.Kind != LSRUse::ICmpZero) return;
4231 // Determine the integer type for the base formula.
4232 Type *IntTy = Base.getType();
4233 if (!IntTy) return;
4234 if (SE.getTypeSizeInBits(IntTy) > 64) return;
4236 // Don't do this if there is more than one offset.
4237 if (LU.MinOffset != LU.MaxOffset) return;
4239 // Check if transformation is valid. It is illegal to multiply pointer.
4240 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4241 return;
4242 for (const SCEV *BaseReg : Base.BaseRegs)
4243 if (BaseReg->getType()->isPointerTy())
4244 return;
4245 assert(!Base.BaseGV && "ICmpZero use is not legal!");
4247 // Check each interesting stride.
4248 for (int64_t Factor : Factors) {
4249 // Check that Factor can be represented by IntTy
4250 if (!ConstantInt::isValueValidForType(IntTy, Factor))
4251 continue;
4252 // Check that the multiplication doesn't overflow.
4253 if (Base.BaseOffset.isMin() && Factor == -1)
4254 continue;
4255 // Not supporting scalable immediates.
4256 if (Base.BaseOffset.isNonZero() && Base.BaseOffset.isScalable())
4257 continue;
4258 Immediate NewBaseOffset = Base.BaseOffset.mulUnsigned(Factor);
4259 assert(Factor != 0 && "Zero factor not expected!");
4260 if (NewBaseOffset.getFixedValue() / Factor !=
4261 Base.BaseOffset.getFixedValue())
4262 continue;
4263 // If the offset will be truncated at this use, check that it is in bounds.
4264 if (!IntTy->isPointerTy() &&
4265 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset.getFixedValue()))
4266 continue;
4268 // Check that multiplying with the use offset doesn't overflow.
4269 Immediate Offset = LU.MinOffset;
4270 if (Offset.isMin() && Factor == -1)
4271 continue;
4272 Offset = Offset.mulUnsigned(Factor);
4273 if (Offset.getFixedValue() / Factor != LU.MinOffset.getFixedValue())
4274 continue;
4275 // If the offset will be truncated at this use, check that it is in bounds.
4276 if (!IntTy->isPointerTy() &&
4277 !ConstantInt::isValueValidForType(IntTy, Offset.getFixedValue()))
4278 continue;
4280 Formula F = Base;
4281 F.BaseOffset = NewBaseOffset;
4283 // Check that this scale is legal.
4284 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4285 continue;
4287 // Compensate for the use having MinOffset built into it.
4288 F.BaseOffset = F.BaseOffset.addUnsigned(Offset).subUnsigned(LU.MinOffset);
4290 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4292 // Check that multiplying with each base register doesn't overflow.
4293 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4294 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4295 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4296 goto next;
4299 // Check that multiplying with the scaled register doesn't overflow.
4300 if (F.ScaledReg) {
4301 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4302 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4303 continue;
4306 // Check that multiplying with the unfolded offset doesn't overflow.
4307 if (F.UnfoldedOffset.isNonZero()) {
4308 if (F.UnfoldedOffset.isMin() && Factor == -1)
4309 continue;
4310 F.UnfoldedOffset = F.UnfoldedOffset.mulUnsigned(Factor);
4311 if (F.UnfoldedOffset.getFixedValue() / Factor !=
4312 Base.UnfoldedOffset.getFixedValue())
4313 continue;
4314 // If the offset will be truncated, check that it is in bounds.
4315 if (!IntTy->isPointerTy() && !ConstantInt::isValueValidForType(
4316 IntTy, F.UnfoldedOffset.getFixedValue()))
4317 continue;
4320 // If we make it here and it's legal, add it.
4321 (void)InsertFormula(LU, LUIdx, F);
4322 next:;
4326 /// Generate stride factor reuse formulae by making use of scaled-offset address
4327 /// modes, for example.
4328 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4329 // Determine the integer type for the base formula.
4330 Type *IntTy = Base.getType();
4331 if (!IntTy) return;
4333 // If this Formula already has a scaled register, we can't add another one.
4334 // Try to unscale the formula to generate a better scale.
4335 if (Base.Scale != 0 && !Base.unscale())
4336 return;
4338 assert(Base.Scale == 0 && "unscale did not did its job!");
4340 // Check each interesting stride.
4341 for (int64_t Factor : Factors) {
4342 Base.Scale = Factor;
4343 Base.HasBaseReg = Base.BaseRegs.size() > 1;
4344 // Check whether this scale is going to be legal.
4345 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4346 Base)) {
4347 // As a special-case, handle special out-of-loop Basic users specially.
4348 // TODO: Reconsider this special case.
4349 if (LU.Kind == LSRUse::Basic &&
4350 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4351 LU.AccessTy, Base) &&
4352 LU.AllFixupsOutsideLoop)
4353 LU.Kind = LSRUse::Special;
4354 else
4355 continue;
4357 // For an ICmpZero, negating a solitary base register won't lead to
4358 // new solutions.
4359 if (LU.Kind == LSRUse::ICmpZero && !Base.HasBaseReg &&
4360 Base.BaseOffset.isZero() && !Base.BaseGV)
4361 continue;
4362 // For each addrec base reg, if its loop is current loop, apply the scale.
4363 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4364 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4365 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4366 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4367 if (FactorS->isZero())
4368 continue;
4369 // Divide out the factor, ignoring high bits, since we'll be
4370 // scaling the value back up in the end.
4371 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4372 if (!Quotient->isZero()) {
4373 // TODO: This could be optimized to avoid all the copying.
4374 Formula F = Base;
4375 F.ScaledReg = Quotient;
4376 F.deleteBaseReg(F.BaseRegs[i]);
4377 // The canonical representation of 1*reg is reg, which is already in
4378 // Base. In that case, do not try to insert the formula, it will be
4379 // rejected anyway.
4380 if (F.Scale == 1 && (F.BaseRegs.empty() ||
4381 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4382 continue;
4383 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4384 // non canonical Formula with ScaledReg's loop not being L.
4385 if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4386 F.canonicalize(*L);
4387 (void)InsertFormula(LU, LUIdx, F);
4394 /// Extend/Truncate \p Expr to \p ToTy considering post-inc uses in \p Loops.
4395 /// For all PostIncLoopSets in \p Loops, first de-normalize \p Expr, then
4396 /// perform the extension/truncate and normalize again, as the normalized form
4397 /// can result in folds that are not valid in the post-inc use contexts. The
4398 /// expressions for all PostIncLoopSets must match, otherwise return nullptr.
4399 static const SCEV *
4400 getAnyExtendConsideringPostIncUses(ArrayRef<PostIncLoopSet> Loops,
4401 const SCEV *Expr, Type *ToTy,
4402 ScalarEvolution &SE) {
4403 const SCEV *Result = nullptr;
4404 for (auto &L : Loops) {
4405 auto *DenormExpr = denormalizeForPostIncUse(Expr, L, SE);
4406 const SCEV *NewDenormExpr = SE.getAnyExtendExpr(DenormExpr, ToTy);
4407 const SCEV *New = normalizeForPostIncUse(NewDenormExpr, L, SE);
4408 if (!New || (Result && New != Result))
4409 return nullptr;
4410 Result = New;
4413 assert(Result && "failed to create expression");
4414 return Result;
4417 /// Generate reuse formulae from different IV types.
4418 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4419 // Don't bother truncating symbolic values.
4420 if (Base.BaseGV) return;
4422 // Determine the integer type for the base formula.
4423 Type *DstTy = Base.getType();
4424 if (!DstTy) return;
4425 if (DstTy->isPointerTy())
4426 return;
4428 // It is invalid to extend a pointer type so exit early if ScaledReg or
4429 // any of the BaseRegs are pointers.
4430 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4431 return;
4432 if (any_of(Base.BaseRegs,
4433 [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4434 return;
4436 SmallVector<PostIncLoopSet> Loops;
4437 for (auto &LF : LU.Fixups)
4438 Loops.push_back(LF.PostIncLoops);
4440 for (Type *SrcTy : Types) {
4441 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4442 Formula F = Base;
4444 // Sometimes SCEV is able to prove zero during ext transform. It may
4445 // happen if SCEV did not do all possible transforms while creating the
4446 // initial node (maybe due to depth limitations), but it can do them while
4447 // taking ext.
4448 if (F.ScaledReg) {
4449 const SCEV *NewScaledReg =
4450 getAnyExtendConsideringPostIncUses(Loops, F.ScaledReg, SrcTy, SE);
4451 if (!NewScaledReg || NewScaledReg->isZero())
4452 continue;
4453 F.ScaledReg = NewScaledReg;
4455 bool HasZeroBaseReg = false;
4456 for (const SCEV *&BaseReg : F.BaseRegs) {
4457 const SCEV *NewBaseReg =
4458 getAnyExtendConsideringPostIncUses(Loops, BaseReg, SrcTy, SE);
4459 if (!NewBaseReg || NewBaseReg->isZero()) {
4460 HasZeroBaseReg = true;
4461 break;
4463 BaseReg = NewBaseReg;
4465 if (HasZeroBaseReg)
4466 continue;
4468 // TODO: This assumes we've done basic processing on all uses and
4469 // have an idea what the register usage is.
4470 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4471 continue;
4473 F.canonicalize(*L);
4474 (void)InsertFormula(LU, LUIdx, F);
4479 namespace {
4481 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4482 /// modifications so that the search phase doesn't have to worry about the data
4483 /// structures moving underneath it.
4484 struct WorkItem {
4485 size_t LUIdx;
4486 Immediate Imm;
4487 const SCEV *OrigReg;
4489 WorkItem(size_t LI, Immediate I, const SCEV *R)
4490 : LUIdx(LI), Imm(I), OrigReg(R) {}
4492 void print(raw_ostream &OS) const;
4493 void dump() const;
4496 } // end anonymous namespace
4498 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4499 void WorkItem::print(raw_ostream &OS) const {
4500 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4501 << " , add offset " << Imm;
4504 LLVM_DUMP_METHOD void WorkItem::dump() const {
4505 print(errs()); errs() << '\n';
4507 #endif
4509 /// Look for registers which are a constant distance apart and try to form reuse
4510 /// opportunities between them.
4511 void LSRInstance::GenerateCrossUseConstantOffsets() {
4512 // Group the registers by their value without any added constant offset.
4513 using ImmMapTy = std::map<Immediate, const SCEV *, KeyOrderTargetImmediate>;
4515 DenseMap<const SCEV *, ImmMapTy> Map;
4516 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4517 SmallVector<const SCEV *, 8> Sequence;
4518 for (const SCEV *Use : RegUses) {
4519 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4520 Immediate Imm = ExtractImmediate(Reg, SE);
4521 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4522 if (Pair.second)
4523 Sequence.push_back(Reg);
4524 Pair.first->second.insert(std::make_pair(Imm, Use));
4525 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4528 // Now examine each set of registers with the same base value. Build up
4529 // a list of work to do and do the work in a separate step so that we're
4530 // not adding formulae and register counts while we're searching.
4531 SmallVector<WorkItem, 32> WorkItems;
4532 SmallSet<std::pair<size_t, Immediate>, 32, KeyOrderSizeTAndImmediate>
4533 UniqueItems;
4534 for (const SCEV *Reg : Sequence) {
4535 const ImmMapTy &Imms = Map.find(Reg)->second;
4537 // It's not worthwhile looking for reuse if there's only one offset.
4538 if (Imms.size() == 1)
4539 continue;
4541 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
4542 for (const auto &Entry
4543 : Imms) dbgs()
4544 << ' ' << Entry.first;
4545 dbgs() << '\n');
4547 // Examine each offset.
4548 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4549 J != JE; ++J) {
4550 const SCEV *OrigReg = J->second;
4552 Immediate JImm = J->first;
4553 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4555 if (!isa<SCEVConstant>(OrigReg) &&
4556 UsedByIndicesMap[Reg].count() == 1) {
4557 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4558 << '\n');
4559 continue;
4562 // Conservatively examine offsets between this orig reg a few selected
4563 // other orig regs.
4564 Immediate First = Imms.begin()->first;
4565 Immediate Last = std::prev(Imms.end())->first;
4566 if (!First.isCompatibleImmediate(Last)) {
4567 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg
4568 << "\n");
4569 continue;
4571 // Only scalable if both terms are scalable, or if one is scalable and
4572 // the other is 0.
4573 bool Scalable = First.isScalable() || Last.isScalable();
4574 int64_t FI = First.getKnownMinValue();
4575 int64_t LI = Last.getKnownMinValue();
4576 // Compute (First + Last) / 2 without overflow using the fact that
4577 // First + Last = 2 * (First + Last) + (First ^ Last).
4578 int64_t Avg = (FI & LI) + ((FI ^ LI) >> 1);
4579 // If the result is negative and FI is odd and LI even (or vice versa),
4580 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4581 Avg = Avg + ((FI ^ LI) & ((uint64_t)Avg >> 63));
4582 ImmMapTy::const_iterator OtherImms[] = {
4583 Imms.begin(), std::prev(Imms.end()),
4584 Imms.lower_bound(Immediate::get(Avg, Scalable))};
4585 for (const auto &M : OtherImms) {
4586 if (M == J || M == JE) continue;
4587 if (!JImm.isCompatibleImmediate(M->first))
4588 continue;
4590 // Compute the difference between the two.
4591 Immediate Imm = JImm.subUnsigned(M->first);
4592 for (unsigned LUIdx : UsedByIndices.set_bits())
4593 // Make a memo of this use, offset, and register tuple.
4594 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4595 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4600 Map.clear();
4601 Sequence.clear();
4602 UsedByIndicesMap.clear();
4603 UniqueItems.clear();
4605 // Now iterate through the worklist and add new formulae.
4606 for (const WorkItem &WI : WorkItems) {
4607 size_t LUIdx = WI.LUIdx;
4608 LSRUse &LU = Uses[LUIdx];
4609 Immediate Imm = WI.Imm;
4610 const SCEV *OrigReg = WI.OrigReg;
4612 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4613 const SCEV *NegImmS = Imm.getNegativeSCEV(SE, IntTy);
4614 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4616 // TODO: Use a more targeted data structure.
4617 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4618 Formula F = LU.Formulae[L];
4619 // FIXME: The code for the scaled and unscaled registers looks
4620 // very similar but slightly different. Investigate if they
4621 // could be merged. That way, we would not have to unscale the
4622 // Formula.
4623 F.unscale();
4624 // Use the immediate in the scaled register.
4625 if (F.ScaledReg == OrigReg) {
4626 if (!F.BaseOffset.isCompatibleImmediate(Imm))
4627 continue;
4628 Immediate Offset = F.BaseOffset.addUnsigned(Imm.mulUnsigned(F.Scale));
4629 // Don't create 50 + reg(-50).
4630 const SCEV *S = Offset.getNegativeSCEV(SE, IntTy);
4631 if (F.referencesReg(S))
4632 continue;
4633 Formula NewF = F;
4634 NewF.BaseOffset = Offset;
4635 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4636 NewF))
4637 continue;
4638 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4640 // If the new scale is a constant in a register, and adding the constant
4641 // value to the immediate would produce a value closer to zero than the
4642 // immediate itself, then the formula isn't worthwhile.
4643 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg)) {
4644 // FIXME: Do we need to do something for scalable immediates here?
4645 // A scalable SCEV won't be constant, but we might still have
4646 // something in the offset? Bail out for now to be safe.
4647 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable())
4648 continue;
4649 if (C->getValue()->isNegative() !=
4650 (NewF.BaseOffset.isLessThanZero()) &&
4651 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4652 .ule(std::abs(NewF.BaseOffset.getFixedValue())))
4653 continue;
4656 // OK, looks good.
4657 NewF.canonicalize(*this->L);
4658 (void)InsertFormula(LU, LUIdx, NewF);
4659 } else {
4660 // Use the immediate in a base register.
4661 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4662 const SCEV *BaseReg = F.BaseRegs[N];
4663 if (BaseReg != OrigReg)
4664 continue;
4665 Formula NewF = F;
4666 if (!NewF.BaseOffset.isCompatibleImmediate(Imm) ||
4667 !NewF.UnfoldedOffset.isCompatibleImmediate(Imm) ||
4668 !NewF.BaseOffset.isCompatibleImmediate(NewF.UnfoldedOffset))
4669 continue;
4670 NewF.BaseOffset = NewF.BaseOffset.addUnsigned(Imm);
4671 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4672 LU.Kind, LU.AccessTy, NewF)) {
4673 if (AMK == TTI::AMK_PostIndexed &&
4674 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4675 continue;
4676 Immediate NewUnfoldedOffset = NewF.UnfoldedOffset.addUnsigned(Imm);
4677 if (!isLegalAddImmediate(TTI, NewUnfoldedOffset))
4678 continue;
4679 NewF = F;
4680 NewF.UnfoldedOffset = NewUnfoldedOffset;
4682 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4684 // If the new formula has a constant in a register, and adding the
4685 // constant value to the immediate would produce a value closer to
4686 // zero than the immediate itself, then the formula isn't worthwhile.
4687 for (const SCEV *NewReg : NewF.BaseRegs)
4688 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg)) {
4689 if (NewF.BaseOffset.isNonZero() && NewF.BaseOffset.isScalable())
4690 goto skip_formula;
4691 if ((C->getAPInt() + NewF.BaseOffset.getFixedValue())
4692 .abs()
4693 .slt(std::abs(NewF.BaseOffset.getFixedValue())) &&
4694 (C->getAPInt() + NewF.BaseOffset.getFixedValue())
4695 .countr_zero() >=
4696 (unsigned)llvm::countr_zero<uint64_t>(
4697 NewF.BaseOffset.getFixedValue()))
4698 goto skip_formula;
4701 // Ok, looks good.
4702 NewF.canonicalize(*this->L);
4703 (void)InsertFormula(LU, LUIdx, NewF);
4704 break;
4705 skip_formula:;
4712 /// Generate formulae for each use.
4713 void
4714 LSRInstance::GenerateAllReuseFormulae() {
4715 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4716 // queries are more precise.
4717 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4718 LSRUse &LU = Uses[LUIdx];
4719 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4720 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4721 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4722 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4724 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4725 LSRUse &LU = Uses[LUIdx];
4726 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4727 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4728 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4729 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4730 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4731 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4732 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4733 GenerateScales(LU, LUIdx, LU.Formulae[i]);
4735 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4736 LSRUse &LU = Uses[LUIdx];
4737 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4738 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4741 GenerateCrossUseConstantOffsets();
4743 LLVM_DEBUG(dbgs() << "\n"
4744 "After generating reuse formulae:\n";
4745 print_uses(dbgs()));
4748 /// If there are multiple formulae with the same set of registers used
4749 /// by other uses, pick the best one and delete the others.
4750 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4751 DenseSet<const SCEV *> VisitedRegs;
4752 SmallPtrSet<const SCEV *, 16> Regs;
4753 SmallPtrSet<const SCEV *, 16> LoserRegs;
4754 #ifndef NDEBUG
4755 bool ChangedFormulae = false;
4756 #endif
4758 // Collect the best formula for each unique set of shared registers. This
4759 // is reset for each use.
4760 using BestFormulaeTy =
4761 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4763 BestFormulaeTy BestFormulae;
4765 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4766 LSRUse &LU = Uses[LUIdx];
4767 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
4768 dbgs() << '\n');
4770 bool Any = false;
4771 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4772 FIdx != NumForms; ++FIdx) {
4773 Formula &F = LU.Formulae[FIdx];
4775 // Some formulas are instant losers. For example, they may depend on
4776 // nonexistent AddRecs from other loops. These need to be filtered
4777 // immediately, otherwise heuristics could choose them over others leading
4778 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4779 // avoids the need to recompute this information across formulae using the
4780 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4781 // the corresponding bad register from the Regs set.
4782 Cost CostF(L, SE, TTI, AMK);
4783 Regs.clear();
4784 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4785 if (CostF.isLoser()) {
4786 // During initial formula generation, undesirable formulae are generated
4787 // by uses within other loops that have some non-trivial address mode or
4788 // use the postinc form of the IV. LSR needs to provide these formulae
4789 // as the basis of rediscovering the desired formula that uses an AddRec
4790 // corresponding to the existing phi. Once all formulae have been
4791 // generated, these initial losers may be pruned.
4792 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());
4793 dbgs() << "\n");
4795 else {
4796 SmallVector<const SCEV *, 4> Key;
4797 for (const SCEV *Reg : F.BaseRegs) {
4798 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4799 Key.push_back(Reg);
4801 if (F.ScaledReg &&
4802 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4803 Key.push_back(F.ScaledReg);
4804 // Unstable sort by host order ok, because this is only used for
4805 // uniquifying.
4806 llvm::sort(Key);
4808 std::pair<BestFormulaeTy::const_iterator, bool> P =
4809 BestFormulae.insert(std::make_pair(Key, FIdx));
4810 if (P.second)
4811 continue;
4813 Formula &Best = LU.Formulae[P.first->second];
4815 Cost CostBest(L, SE, TTI, AMK);
4816 Regs.clear();
4817 CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4818 if (CostF.isLess(CostBest))
4819 std::swap(F, Best);
4820 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
4821 dbgs() << "\n"
4822 " in favor of formula ";
4823 Best.print(dbgs()); dbgs() << '\n');
4825 #ifndef NDEBUG
4826 ChangedFormulae = true;
4827 #endif
4828 LU.DeleteFormula(F);
4829 --FIdx;
4830 --NumForms;
4831 Any = true;
4834 // Now that we've filtered out some formulae, recompute the Regs set.
4835 if (Any)
4836 LU.RecomputeRegs(LUIdx, RegUses);
4838 // Reset this to prepare for the next use.
4839 BestFormulae.clear();
4842 LLVM_DEBUG(if (ChangedFormulae) {
4843 dbgs() << "\n"
4844 "After filtering out undesirable candidates:\n";
4845 print_uses(dbgs());
4849 /// Estimate the worst-case number of solutions the solver might have to
4850 /// consider. It almost never considers this many solutions because it prune the
4851 /// search space, but the pruning isn't always sufficient.
4852 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4853 size_t Power = 1;
4854 for (const LSRUse &LU : Uses) {
4855 size_t FSize = LU.Formulae.size();
4856 if (FSize >= ComplexityLimit) {
4857 Power = ComplexityLimit;
4858 break;
4860 Power *= FSize;
4861 if (Power >= ComplexityLimit)
4862 break;
4864 return Power;
4867 /// When one formula uses a superset of the registers of another formula, it
4868 /// won't help reduce register pressure (though it may not necessarily hurt
4869 /// register pressure); remove it to simplify the system.
4870 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4871 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4872 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
4874 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
4875 "which use a superset of registers used by other "
4876 "formulae.\n");
4878 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4879 LSRUse &LU = Uses[LUIdx];
4880 bool Any = false;
4881 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4882 Formula &F = LU.Formulae[i];
4883 if (F.BaseOffset.isNonZero() && F.BaseOffset.isScalable())
4884 continue;
4885 // Look for a formula with a constant or GV in a register. If the use
4886 // also has a formula with that same value in an immediate field,
4887 // delete the one that uses a register.
4888 for (SmallVectorImpl<const SCEV *>::const_iterator
4889 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4890 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4891 Formula NewF = F;
4892 //FIXME: Formulas should store bitwidth to do wrapping properly.
4893 // See PR41034.
4894 NewF.BaseOffset =
4895 Immediate::getFixed(NewF.BaseOffset.getFixedValue() +
4896 (uint64_t)C->getValue()->getSExtValue());
4897 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4898 (I - F.BaseRegs.begin()));
4899 if (LU.HasFormulaWithSameRegs(NewF)) {
4900 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4901 dbgs() << '\n');
4902 LU.DeleteFormula(F);
4903 --i;
4904 --e;
4905 Any = true;
4906 break;
4908 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4909 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4910 if (!F.BaseGV) {
4911 Formula NewF = F;
4912 NewF.BaseGV = GV;
4913 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4914 (I - F.BaseRegs.begin()));
4915 if (LU.HasFormulaWithSameRegs(NewF)) {
4916 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());
4917 dbgs() << '\n');
4918 LU.DeleteFormula(F);
4919 --i;
4920 --e;
4921 Any = true;
4922 break;
4928 if (Any)
4929 LU.RecomputeRegs(LUIdx, RegUses);
4932 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
4936 /// When there are many registers for expressions like A, A+1, A+2, etc.,
4937 /// allocate a single register for them.
4938 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4939 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4940 return;
4942 LLVM_DEBUG(
4943 dbgs() << "The search space is too complex.\n"
4944 "Narrowing the search space by assuming that uses separated "
4945 "by a constant offset will use the same registers.\n");
4947 // This is especially useful for unrolled loops.
4949 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4950 LSRUse &LU = Uses[LUIdx];
4951 for (const Formula &F : LU.Formulae) {
4952 if (F.BaseOffset.isZero() || (F.Scale != 0 && F.Scale != 1))
4953 continue;
4955 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4956 if (!LUThatHas)
4957 continue;
4959 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4960 LU.Kind, LU.AccessTy))
4961 continue;
4963 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n');
4965 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4967 // Transfer the fixups of LU to LUThatHas.
4968 for (LSRFixup &Fixup : LU.Fixups) {
4969 Fixup.Offset += F.BaseOffset;
4970 LUThatHas->pushFixup(Fixup);
4971 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
4974 // Delete formulae from the new use which are no longer legal.
4975 bool Any = false;
4976 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4977 Formula &F = LUThatHas->Formulae[i];
4978 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4979 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4980 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
4981 LUThatHas->DeleteFormula(F);
4982 --i;
4983 --e;
4984 Any = true;
4988 if (Any)
4989 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4991 // Delete the old use.
4992 DeleteUse(LU, LUIdx);
4993 --LUIdx;
4994 --NumUses;
4995 break;
4999 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5002 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
5003 /// we've done more filtering, as it may be able to find more formulae to
5004 /// eliminate.
5005 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
5006 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5007 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5009 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
5010 "undesirable dedicated registers.\n");
5012 FilterOutUndesirableDedicatedRegisters();
5014 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5018 /// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
5019 /// Pick the best one and delete the others.
5020 /// This narrowing heuristic is to keep as many formulae with different
5021 /// Scale and ScaledReg pair as possible while narrowing the search space.
5022 /// The benefit is that it is more likely to find out a better solution
5023 /// from a formulae set with more Scale and ScaledReg variations than
5024 /// a formulae set with the same Scale and ScaledReg. The picking winner
5025 /// reg heuristic will often keep the formulae with the same Scale and
5026 /// ScaledReg and filter others, and we want to avoid that if possible.
5027 void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
5028 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5029 return;
5031 LLVM_DEBUG(
5032 dbgs() << "The search space is too complex.\n"
5033 "Narrowing the search space by choosing the best Formula "
5034 "from the Formulae with the same Scale and ScaledReg.\n");
5036 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
5037 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
5039 BestFormulaeTy BestFormulae;
5040 #ifndef NDEBUG
5041 bool ChangedFormulae = false;
5042 #endif
5043 DenseSet<const SCEV *> VisitedRegs;
5044 SmallPtrSet<const SCEV *, 16> Regs;
5046 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5047 LSRUse &LU = Uses[LUIdx];
5048 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());
5049 dbgs() << '\n');
5051 // Return true if Formula FA is better than Formula FB.
5052 auto IsBetterThan = [&](Formula &FA, Formula &FB) {
5053 // First we will try to choose the Formula with fewer new registers.
5054 // For a register used by current Formula, the more the register is
5055 // shared among LSRUses, the less we increase the register number
5056 // counter of the formula.
5057 size_t FARegNum = 0;
5058 for (const SCEV *Reg : FA.BaseRegs) {
5059 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
5060 FARegNum += (NumUses - UsedByIndices.count() + 1);
5062 size_t FBRegNum = 0;
5063 for (const SCEV *Reg : FB.BaseRegs) {
5064 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
5065 FBRegNum += (NumUses - UsedByIndices.count() + 1);
5067 if (FARegNum != FBRegNum)
5068 return FARegNum < FBRegNum;
5070 // If the new register numbers are the same, choose the Formula with
5071 // less Cost.
5072 Cost CostFA(L, SE, TTI, AMK);
5073 Cost CostFB(L, SE, TTI, AMK);
5074 Regs.clear();
5075 CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
5076 Regs.clear();
5077 CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
5078 return CostFA.isLess(CostFB);
5081 bool Any = false;
5082 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
5083 ++FIdx) {
5084 Formula &F = LU.Formulae[FIdx];
5085 if (!F.ScaledReg)
5086 continue;
5087 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
5088 if (P.second)
5089 continue;
5091 Formula &Best = LU.Formulae[P.first->second];
5092 if (IsBetterThan(F, Best))
5093 std::swap(F, Best);
5094 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
5095 dbgs() << "\n"
5096 " in favor of formula ";
5097 Best.print(dbgs()); dbgs() << '\n');
5098 #ifndef NDEBUG
5099 ChangedFormulae = true;
5100 #endif
5101 LU.DeleteFormula(F);
5102 --FIdx;
5103 --NumForms;
5104 Any = true;
5106 if (Any)
5107 LU.RecomputeRegs(LUIdx, RegUses);
5109 // Reset this to prepare for the next use.
5110 BestFormulae.clear();
5113 LLVM_DEBUG(if (ChangedFormulae) {
5114 dbgs() << "\n"
5115 "After filtering out undesirable candidates:\n";
5116 print_uses(dbgs());
5120 /// If we are over the complexity limit, filter out any post-inc prefering
5121 /// variables to only post-inc values.
5122 void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
5123 if (AMK != TTI::AMK_PostIndexed)
5124 return;
5125 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5126 return;
5128 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"
5129 "Narrowing the search space by choosing the lowest "
5130 "register Formula for PostInc Uses.\n");
5132 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5133 LSRUse &LU = Uses[LUIdx];
5135 if (LU.Kind != LSRUse::Address)
5136 continue;
5137 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
5138 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
5139 continue;
5141 size_t MinRegs = std::numeric_limits<size_t>::max();
5142 for (const Formula &F : LU.Formulae)
5143 MinRegs = std::min(F.getNumRegs(), MinRegs);
5145 bool Any = false;
5146 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
5147 ++FIdx) {
5148 Formula &F = LU.Formulae[FIdx];
5149 if (F.getNumRegs() > MinRegs) {
5150 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());
5151 dbgs() << "\n");
5152 LU.DeleteFormula(F);
5153 --FIdx;
5154 --NumForms;
5155 Any = true;
5158 if (Any)
5159 LU.RecomputeRegs(LUIdx, RegUses);
5161 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5162 break;
5165 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5168 /// The function delete formulas with high registers number expectation.
5169 /// Assuming we don't know the value of each formula (already delete
5170 /// all inefficient), generate probability of not selecting for each
5171 /// register.
5172 /// For example,
5173 /// Use1:
5174 /// reg(a) + reg({0,+,1})
5175 /// reg(a) + reg({-1,+,1}) + 1
5176 /// reg({a,+,1})
5177 /// Use2:
5178 /// reg(b) + reg({0,+,1})
5179 /// reg(b) + reg({-1,+,1}) + 1
5180 /// reg({b,+,1})
5181 /// Use3:
5182 /// reg(c) + reg(b) + reg({0,+,1})
5183 /// reg(c) + reg({b,+,1})
5185 /// Probability of not selecting
5186 /// Use1 Use2 Use3
5187 /// reg(a) (1/3) * 1 * 1
5188 /// reg(b) 1 * (1/3) * (1/2)
5189 /// reg({0,+,1}) (2/3) * (2/3) * (1/2)
5190 /// reg({-1,+,1}) (2/3) * (2/3) * 1
5191 /// reg({a,+,1}) (2/3) * 1 * 1
5192 /// reg({b,+,1}) 1 * (2/3) * (2/3)
5193 /// reg(c) 1 * 1 * 0
5195 /// Now count registers number mathematical expectation for each formula:
5196 /// Note that for each use we exclude probability if not selecting for the use.
5197 /// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
5198 /// probabilty 1/3 of not selecting for Use1).
5199 /// Use1:
5200 /// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
5201 /// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
5202 /// reg({a,+,1}) 1
5203 /// Use2:
5204 /// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
5205 /// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
5206 /// reg({b,+,1}) 2/3
5207 /// Use3:
5208 /// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
5209 /// reg(c) + reg({b,+,1}) 1 + 2/3
5210 void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
5211 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
5212 return;
5213 // Ok, we have too many of formulae on our hands to conveniently handle.
5214 // Use a rough heuristic to thin out the list.
5216 // Set of Regs wich will be 100% used in final solution.
5217 // Used in each formula of a solution (in example above this is reg(c)).
5218 // We can skip them in calculations.
5219 SmallPtrSet<const SCEV *, 4> UniqRegs;
5220 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5222 // Map each register to probability of not selecting
5223 DenseMap <const SCEV *, float> RegNumMap;
5224 for (const SCEV *Reg : RegUses) {
5225 if (UniqRegs.count(Reg))
5226 continue;
5227 float PNotSel = 1;
5228 for (const LSRUse &LU : Uses) {
5229 if (!LU.Regs.count(Reg))
5230 continue;
5231 float P = LU.getNotSelectedProbability(Reg);
5232 if (P != 0.0)
5233 PNotSel *= P;
5234 else
5235 UniqRegs.insert(Reg);
5237 RegNumMap.insert(std::make_pair(Reg, PNotSel));
5240 LLVM_DEBUG(
5241 dbgs() << "Narrowing the search space by deleting costly formulas\n");
5243 // Delete formulas where registers number expectation is high.
5244 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5245 LSRUse &LU = Uses[LUIdx];
5246 // If nothing to delete - continue.
5247 if (LU.Formulae.size() < 2)
5248 continue;
5249 // This is temporary solution to test performance. Float should be
5250 // replaced with round independent type (based on integers) to avoid
5251 // different results for different target builds.
5252 float FMinRegNum = LU.Formulae[0].getNumRegs();
5253 float FMinARegNum = LU.Formulae[0].getNumRegs();
5254 size_t MinIdx = 0;
5255 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5256 Formula &F = LU.Formulae[i];
5257 float FRegNum = 0;
5258 float FARegNum = 0;
5259 for (const SCEV *BaseReg : F.BaseRegs) {
5260 if (UniqRegs.count(BaseReg))
5261 continue;
5262 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
5263 if (isa<SCEVAddRecExpr>(BaseReg))
5264 FARegNum +=
5265 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
5267 if (const SCEV *ScaledReg = F.ScaledReg) {
5268 if (!UniqRegs.count(ScaledReg)) {
5269 FRegNum +=
5270 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
5271 if (isa<SCEVAddRecExpr>(ScaledReg))
5272 FARegNum +=
5273 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
5276 if (FMinRegNum > FRegNum ||
5277 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
5278 FMinRegNum = FRegNum;
5279 FMinARegNum = FARegNum;
5280 MinIdx = i;
5283 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());
5284 dbgs() << " with min reg num " << FMinRegNum << '\n');
5285 if (MinIdx != 0)
5286 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
5287 while (LU.Formulae.size() != 1) {
5288 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());
5289 dbgs() << '\n');
5290 LU.Formulae.pop_back();
5292 LU.RecomputeRegs(LUIdx, RegUses);
5293 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula");
5294 Formula &F = LU.Formulae[0];
5295 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n');
5296 // When we choose the formula, the regs become unique.
5297 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
5298 if (F.ScaledReg)
5299 UniqRegs.insert(F.ScaledReg);
5301 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5304 // Check if Best and Reg are SCEVs separated by a constant amount C, and if so
5305 // would the addressing offset +C would be legal where the negative offset -C is
5306 // not.
5307 static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI,
5308 ScalarEvolution &SE, const SCEV *Best,
5309 const SCEV *Reg,
5310 MemAccessTy AccessType) {
5311 if (Best->getType() != Reg->getType() ||
5312 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) &&
5313 cast<SCEVAddRecExpr>(Best)->getLoop() !=
5314 cast<SCEVAddRecExpr>(Reg)->getLoop()))
5315 return false;
5316 std::optional<APInt> Diff = SE.computeConstantDifference(Best, Reg);
5317 if (!Diff)
5318 return false;
5320 return TTI.isLegalAddressingMode(
5321 AccessType.MemTy, /*BaseGV=*/nullptr,
5322 /*BaseOffset=*/Diff->getSExtValue(),
5323 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace) &&
5324 !TTI.isLegalAddressingMode(
5325 AccessType.MemTy, /*BaseGV=*/nullptr,
5326 /*BaseOffset=*/-Diff->getSExtValue(),
5327 /*HasBaseReg=*/true, /*Scale=*/0, AccessType.AddrSpace);
5330 /// Pick a register which seems likely to be profitable, and then in any use
5331 /// which has any reference to that register, delete all formulae which do not
5332 /// reference that register.
5333 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
5334 // With all other options exhausted, loop until the system is simple
5335 // enough to handle.
5336 SmallPtrSet<const SCEV *, 4> Taken;
5337 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5338 // Ok, we have too many of formulae on our hands to conveniently handle.
5339 // Use a rough heuristic to thin out the list.
5340 LLVM_DEBUG(dbgs() << "The search space is too complex.\n");
5342 // Pick the register which is used by the most LSRUses, which is likely
5343 // to be a good reuse register candidate.
5344 const SCEV *Best = nullptr;
5345 unsigned BestNum = 0;
5346 for (const SCEV *Reg : RegUses) {
5347 if (Taken.count(Reg))
5348 continue;
5349 if (!Best) {
5350 Best = Reg;
5351 BestNum = RegUses.getUsedByIndices(Reg).count();
5352 } else {
5353 unsigned Count = RegUses.getUsedByIndices(Reg).count();
5354 if (Count > BestNum) {
5355 Best = Reg;
5356 BestNum = Count;
5359 // If the scores are the same, but the Reg is simpler for the target
5360 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can
5361 // handle +C but not -C), opt for the simpler formula.
5362 if (Count == BestNum) {
5363 int LUIdx = RegUses.getUsedByIndices(Reg).find_first();
5364 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address &&
5365 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg,
5366 Uses[LUIdx].AccessTy)) {
5367 Best = Reg;
5368 BestNum = Count;
5373 assert(Best && "Failed to find best LSRUse candidate");
5375 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
5376 << " will yield profitable reuse.\n");
5377 Taken.insert(Best);
5379 // In any use with formulae which references this register, delete formulae
5380 // which don't reference it.
5381 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5382 LSRUse &LU = Uses[LUIdx];
5383 if (!LU.Regs.count(Best)) continue;
5385 bool Any = false;
5386 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5387 Formula &F = LU.Formulae[i];
5388 if (!F.referencesReg(Best)) {
5389 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n');
5390 LU.DeleteFormula(F);
5391 --e;
5392 --i;
5393 Any = true;
5394 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
5395 continue;
5399 if (Any)
5400 LU.RecomputeRegs(LUIdx, RegUses);
5403 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
5407 /// If there are an extraordinary number of formulae to choose from, use some
5408 /// rough heuristics to prune down the number of formulae. This keeps the main
5409 /// solver from taking an extraordinary amount of time in some worst-case
5410 /// scenarios.
5411 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5412 NarrowSearchSpaceByDetectingSupersets();
5413 NarrowSearchSpaceByCollapsingUnrolledCode();
5414 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5415 if (FilterSameScaledReg)
5416 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5417 NarrowSearchSpaceByFilterPostInc();
5418 if (LSRExpNarrow)
5419 NarrowSearchSpaceByDeletingCostlyFormulas();
5420 else
5421 NarrowSearchSpaceByPickingWinnerRegs();
5424 /// This is the recursive solver.
5425 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5426 Cost &SolutionCost,
5427 SmallVectorImpl<const Formula *> &Workspace,
5428 const Cost &CurCost,
5429 const SmallPtrSet<const SCEV *, 16> &CurRegs,
5430 DenseSet<const SCEV *> &VisitedRegs) const {
5431 // Some ideas:
5432 // - prune more:
5433 // - use more aggressive filtering
5434 // - sort the formula so that the most profitable solutions are found first
5435 // - sort the uses too
5436 // - search faster:
5437 // - don't compute a cost, and then compare. compare while computing a cost
5438 // and bail early.
5439 // - track register sets with SmallBitVector
5441 const LSRUse &LU = Uses[Workspace.size()];
5443 // If this use references any register that's already a part of the
5444 // in-progress solution, consider it a requirement that a formula must
5445 // reference that register in order to be considered. This prunes out
5446 // unprofitable searching.
5447 SmallSetVector<const SCEV *, 4> ReqRegs;
5448 for (const SCEV *S : CurRegs)
5449 if (LU.Regs.count(S))
5450 ReqRegs.insert(S);
5452 SmallPtrSet<const SCEV *, 16> NewRegs;
5453 Cost NewCost(L, SE, TTI, AMK);
5454 for (const Formula &F : LU.Formulae) {
5455 // Ignore formulae which may not be ideal in terms of register reuse of
5456 // ReqRegs. The formula should use all required registers before
5457 // introducing new ones.
5458 // This can sometimes (notably when trying to favour postinc) lead to
5459 // sub-optimial decisions. There it is best left to the cost modelling to
5460 // get correct.
5461 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5462 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5463 for (const SCEV *Reg : ReqRegs) {
5464 if ((F.ScaledReg && F.ScaledReg == Reg) ||
5465 is_contained(F.BaseRegs, Reg)) {
5466 --NumReqRegsToFind;
5467 if (NumReqRegsToFind == 0)
5468 break;
5471 if (NumReqRegsToFind != 0) {
5472 // If none of the formulae satisfied the required registers, then we could
5473 // clear ReqRegs and try again. Currently, we simply give up in this case.
5474 continue;
5478 // Evaluate the cost of the current formula. If it's already worse than
5479 // the current best, prune the search at that point.
5480 NewCost = CurCost;
5481 NewRegs = CurRegs;
5482 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5483 if (NewCost.isLess(SolutionCost)) {
5484 Workspace.push_back(&F);
5485 if (Workspace.size() != Uses.size()) {
5486 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5487 NewRegs, VisitedRegs);
5488 if (F.getNumRegs() == 1 && Workspace.size() == 1)
5489 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5490 } else {
5491 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
5492 dbgs() << ".\nRegs:\n";
5493 for (const SCEV *S : NewRegs) dbgs()
5494 << "- " << *S << "\n";
5495 dbgs() << '\n');
5497 SolutionCost = NewCost;
5498 Solution = Workspace;
5500 Workspace.pop_back();
5505 /// Choose one formula from each use. Return the results in the given Solution
5506 /// vector.
5507 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5508 SmallVector<const Formula *, 8> Workspace;
5509 Cost SolutionCost(L, SE, TTI, AMK);
5510 SolutionCost.Lose();
5511 Cost CurCost(L, SE, TTI, AMK);
5512 SmallPtrSet<const SCEV *, 16> CurRegs;
5513 DenseSet<const SCEV *> VisitedRegs;
5514 Workspace.reserve(Uses.size());
5516 // SolveRecurse does all the work.
5517 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5518 CurRegs, VisitedRegs);
5519 if (Solution.empty()) {
5520 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
5521 return;
5524 // Ok, we've now made all our decisions.
5525 LLVM_DEBUG(dbgs() << "\n"
5526 "The chosen solution requires ";
5527 SolutionCost.print(dbgs()); dbgs() << ":\n";
5528 for (size_t i = 0, e = Uses.size(); i != e; ++i) {
5529 dbgs() << " ";
5530 Uses[i].print(dbgs());
5531 dbgs() << "\n"
5532 " ";
5533 Solution[i]->print(dbgs());
5534 dbgs() << '\n';
5537 assert(Solution.size() == Uses.size() && "Malformed solution!");
5539 const bool EnableDropUnprofitableSolution = [&] {
5540 switch (AllowDropSolutionIfLessProfitable) {
5541 case cl::BOU_TRUE:
5542 return true;
5543 case cl::BOU_FALSE:
5544 return false;
5545 case cl::BOU_UNSET:
5546 return TTI.shouldDropLSRSolutionIfLessProfitable();
5548 llvm_unreachable("Unhandled cl::boolOrDefault enum");
5549 }();
5551 if (BaselineCost.isLess(SolutionCost)) {
5552 if (!EnableDropUnprofitableSolution)
5553 LLVM_DEBUG(
5554 dbgs() << "Baseline is more profitable than chosen solution, "
5555 "add option 'lsr-drop-solution' to drop LSR solution.\n");
5556 else {
5557 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "
5558 "solution, dropping LSR solution.\n";);
5559 Solution.clear();
5564 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5565 /// we can go while still being dominated by the input positions. This helps
5566 /// canonicalize the insert position, which encourages sharing.
5567 BasicBlock::iterator
5568 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5569 const SmallVectorImpl<Instruction *> &Inputs)
5570 const {
5571 Instruction *Tentative = &*IP;
5572 while (true) {
5573 bool AllDominate = true;
5574 Instruction *BetterPos = nullptr;
5575 // Don't bother attempting to insert before a catchswitch, their basic block
5576 // cannot have other non-PHI instructions.
5577 if (isa<CatchSwitchInst>(Tentative))
5578 return IP;
5580 for (Instruction *Inst : Inputs) {
5581 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5582 AllDominate = false;
5583 break;
5585 // Attempt to find an insert position in the middle of the block,
5586 // instead of at the end, so that it can be used for other expansions.
5587 if (Tentative->getParent() == Inst->getParent() &&
5588 (!BetterPos || !DT.dominates(Inst, BetterPos)))
5589 BetterPos = &*std::next(BasicBlock::iterator(Inst));
5591 if (!AllDominate)
5592 break;
5593 if (BetterPos)
5594 IP = BetterPos->getIterator();
5595 else
5596 IP = Tentative->getIterator();
5598 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5599 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5601 BasicBlock *IDom;
5602 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5603 if (!Rung) return IP;
5604 Rung = Rung->getIDom();
5605 if (!Rung) return IP;
5606 IDom = Rung->getBlock();
5608 // Don't climb into a loop though.
5609 const Loop *IDomLoop = LI.getLoopFor(IDom);
5610 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5611 if (IDomDepth <= IPLoopDepth &&
5612 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5613 break;
5616 Tentative = IDom->getTerminator();
5619 return IP;
5622 /// Determine an input position which will be dominated by the operands and
5623 /// which will dominate the result.
5624 BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5625 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5626 // Collect some instructions which must be dominated by the
5627 // expanding replacement. These must be dominated by any operands that
5628 // will be required in the expansion.
5629 SmallVector<Instruction *, 4> Inputs;
5630 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5631 Inputs.push_back(I);
5632 if (LU.Kind == LSRUse::ICmpZero)
5633 if (Instruction *I =
5634 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5635 Inputs.push_back(I);
5636 if (LF.PostIncLoops.count(L)) {
5637 if (LF.isUseFullyOutsideLoop(L))
5638 Inputs.push_back(L->getLoopLatch()->getTerminator());
5639 else
5640 Inputs.push_back(IVIncInsertPos);
5642 // The expansion must also be dominated by the increment positions of any
5643 // loops it for which it is using post-inc mode.
5644 for (const Loop *PIL : LF.PostIncLoops) {
5645 if (PIL == L) continue;
5647 // Be dominated by the loop exit.
5648 SmallVector<BasicBlock *, 4> ExitingBlocks;
5649 PIL->getExitingBlocks(ExitingBlocks);
5650 if (!ExitingBlocks.empty()) {
5651 BasicBlock *BB = ExitingBlocks[0];
5652 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5653 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5654 Inputs.push_back(BB->getTerminator());
5658 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
5659 && !isa<DbgInfoIntrinsic>(LowestIP) &&
5660 "Insertion point must be a normal instruction");
5662 // Then, climb up the immediate dominator tree as far as we can go while
5663 // still being dominated by the input positions.
5664 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5666 // Don't insert instructions before PHI nodes.
5667 while (isa<PHINode>(IP)) ++IP;
5669 // Ignore landingpad instructions.
5670 while (IP->isEHPad()) ++IP;
5672 // Ignore debug intrinsics.
5673 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5675 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5676 // IP consistent across expansions and allows the previously inserted
5677 // instructions to be reused by subsequent expansion.
5678 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5679 ++IP;
5681 return IP;
5684 /// Emit instructions for the leading candidate expression for this LSRUse (this
5685 /// is called "expanding").
5686 Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5687 const Formula &F, BasicBlock::iterator IP,
5688 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5689 if (LU.RigidFormula)
5690 return LF.OperandValToReplace;
5692 // Determine an input position which will be dominated by the operands and
5693 // which will dominate the result.
5694 IP = AdjustInsertPositionForExpand(IP, LF, LU);
5695 Rewriter.setInsertPoint(&*IP);
5697 // Inform the Rewriter if we have a post-increment use, so that it can
5698 // perform an advantageous expansion.
5699 Rewriter.setPostInc(LF.PostIncLoops);
5701 // This is the type that the user actually needs.
5702 Type *OpTy = LF.OperandValToReplace->getType();
5703 // This will be the type that we'll initially expand to.
5704 Type *Ty = F.getType();
5705 if (!Ty)
5706 // No type known; just expand directly to the ultimate type.
5707 Ty = OpTy;
5708 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5709 // Expand directly to the ultimate type if it's the right size.
5710 Ty = OpTy;
5711 // This is the type to do integer arithmetic in.
5712 Type *IntTy = SE.getEffectiveSCEVType(Ty);
5714 // Build up a list of operands to add together to form the full base.
5715 SmallVector<const SCEV *, 8> Ops;
5717 // Expand the BaseRegs portion.
5718 for (const SCEV *Reg : F.BaseRegs) {
5719 assert(!Reg->isZero() && "Zero allocated in a base register!");
5721 // If we're expanding for a post-inc user, make the post-inc adjustment.
5722 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5723 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5726 // Expand the ScaledReg portion.
5727 Value *ICmpScaledV = nullptr;
5728 if (F.Scale != 0) {
5729 const SCEV *ScaledS = F.ScaledReg;
5731 // If we're expanding for a post-inc user, make the post-inc adjustment.
5732 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5733 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5735 if (LU.Kind == LSRUse::ICmpZero) {
5736 // Expand ScaleReg as if it was part of the base regs.
5737 if (F.Scale == 1)
5738 Ops.push_back(
5739 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5740 else {
5741 // An interesting way of "folding" with an icmp is to use a negated
5742 // scale, which we'll implement by inserting it into the other operand
5743 // of the icmp.
5744 assert(F.Scale == -1 &&
5745 "The only scale supported by ICmpZero uses is -1!");
5746 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5748 } else {
5749 // Otherwise just expand the scaled register and an explicit scale,
5750 // which is expected to be matched as part of the address.
5752 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5753 // Unless the addressing mode will not be folded.
5754 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5755 isAMCompletelyFolded(TTI, LU, F)) {
5756 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5757 Ops.clear();
5758 Ops.push_back(SE.getUnknown(FullV));
5760 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5761 if (F.Scale != 1)
5762 ScaledS =
5763 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5764 Ops.push_back(ScaledS);
5768 // Expand the GV portion.
5769 if (F.BaseGV) {
5770 // Flush the operand list to suppress SCEVExpander hoisting.
5771 if (!Ops.empty()) {
5772 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5773 Ops.clear();
5774 Ops.push_back(SE.getUnknown(FullV));
5776 Ops.push_back(SE.getUnknown(F.BaseGV));
5779 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5780 // unfolded offsets. LSR assumes they both live next to their uses.
5781 if (!Ops.empty()) {
5782 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5783 Ops.clear();
5784 Ops.push_back(SE.getUnknown(FullV));
5787 // FIXME: Are we sure we won't get a mismatch here? Is there a way to bail
5788 // out at this point, or should we generate a SCEV adding together mixed
5789 // offsets?
5790 assert(F.BaseOffset.isCompatibleImmediate(LF.Offset) &&
5791 "Expanding mismatched offsets\n");
5792 // Expand the immediate portion.
5793 Immediate Offset = F.BaseOffset.addUnsigned(LF.Offset);
5794 if (Offset.isNonZero()) {
5795 if (LU.Kind == LSRUse::ICmpZero) {
5796 // The other interesting way of "folding" with an ICmpZero is to use a
5797 // negated immediate.
5798 if (!ICmpScaledV)
5799 ICmpScaledV =
5800 ConstantInt::get(IntTy, -(uint64_t)Offset.getFixedValue());
5801 else {
5802 Ops.push_back(SE.getUnknown(ICmpScaledV));
5803 ICmpScaledV = ConstantInt::get(IntTy, Offset.getFixedValue());
5805 } else {
5806 // Just add the immediate values. These again are expected to be matched
5807 // as part of the address.
5808 Ops.push_back(Offset.getUnknownSCEV(SE, IntTy));
5812 // Expand the unfolded offset portion.
5813 Immediate UnfoldedOffset = F.UnfoldedOffset;
5814 if (UnfoldedOffset.isNonZero()) {
5815 // Just add the immediate values.
5816 Ops.push_back(UnfoldedOffset.getUnknownSCEV(SE, IntTy));
5819 // Emit instructions summing all the operands.
5820 const SCEV *FullS = Ops.empty() ?
5821 SE.getConstant(IntTy, 0) :
5822 SE.getAddExpr(Ops);
5823 Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5825 // We're done expanding now, so reset the rewriter.
5826 Rewriter.clearPostInc();
5828 // An ICmpZero Formula represents an ICmp which we're handling as a
5829 // comparison against zero. Now that we've expanded an expression for that
5830 // form, update the ICmp's other operand.
5831 if (LU.Kind == LSRUse::ICmpZero) {
5832 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5833 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5834 DeadInsts.emplace_back(OperandIsInstr);
5835 assert(!F.BaseGV && "ICmp does not support folding a global value and "
5836 "a scale at the same time!");
5837 if (F.Scale == -1) {
5838 if (ICmpScaledV->getType() != OpTy) {
5839 Instruction *Cast = CastInst::Create(
5840 CastInst::getCastOpcode(ICmpScaledV, false, OpTy, false),
5841 ICmpScaledV, OpTy, "tmp", CI->getIterator());
5842 ICmpScaledV = Cast;
5844 CI->setOperand(1, ICmpScaledV);
5845 } else {
5846 // A scale of 1 means that the scale has been expanded as part of the
5847 // base regs.
5848 assert((F.Scale == 0 || F.Scale == 1) &&
5849 "ICmp does not support folding a global value and "
5850 "a scale at the same time!");
5851 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5852 -(uint64_t)Offset.getFixedValue());
5853 if (C->getType() != OpTy) {
5854 C = ConstantFoldCastOperand(
5855 CastInst::getCastOpcode(C, false, OpTy, false), C, OpTy,
5856 CI->getDataLayout());
5857 assert(C && "Cast of ConstantInt should have folded");
5860 CI->setOperand(1, C);
5864 return FullV;
5867 /// Helper for Rewrite. PHI nodes are special because the use of their operands
5868 /// effectively happens in their predecessor blocks, so the expression may need
5869 /// to be expanded in multiple places.
5870 void LSRInstance::RewriteForPHI(PHINode *PN, const LSRUse &LU,
5871 const LSRFixup &LF, const Formula &F,
5872 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
5873 DenseMap<BasicBlock *, Value *> Inserted;
5875 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5876 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
5877 bool needUpdateFixups = false;
5878 BasicBlock *BB = PN->getIncomingBlock(i);
5880 // If this is a critical edge, split the edge so that we do not insert
5881 // the code on all predecessor/successor paths. We do this unless this
5882 // is the canonical backedge for this loop, which complicates post-inc
5883 // users.
5884 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5885 !isa<IndirectBrInst>(BB->getTerminator()) &&
5886 !isa<CatchSwitchInst>(BB->getTerminator())) {
5887 BasicBlock *Parent = PN->getParent();
5888 Loop *PNLoop = LI.getLoopFor(Parent);
5889 if (!PNLoop || Parent != PNLoop->getHeader()) {
5890 // Split the critical edge.
5891 BasicBlock *NewBB = nullptr;
5892 if (!Parent->isLandingPad()) {
5893 NewBB =
5894 SplitCriticalEdge(BB, Parent,
5895 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5896 .setMergeIdenticalEdges()
5897 .setKeepOneInputPHIs());
5898 } else {
5899 SmallVector<BasicBlock*, 2> NewBBs;
5900 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
5901 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DTU, &LI);
5902 NewBB = NewBBs[0];
5904 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5905 // phi predecessors are identical. The simple thing to do is skip
5906 // splitting in this case rather than complicate the API.
5907 if (NewBB) {
5908 // If PN is outside of the loop and BB is in the loop, we want to
5909 // move the block to be immediately before the PHI block, not
5910 // immediately after BB.
5911 if (L->contains(BB) && !L->contains(PN))
5912 NewBB->moveBefore(PN->getParent());
5914 // Splitting the edge can reduce the number of PHI entries we have.
5915 e = PN->getNumIncomingValues();
5916 BB = NewBB;
5917 i = PN->getBasicBlockIndex(BB);
5919 needUpdateFixups = true;
5924 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5925 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5926 if (!Pair.second)
5927 PN->setIncomingValue(i, Pair.first->second);
5928 else {
5929 Value *FullV =
5930 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5932 // If this is reuse-by-noop-cast, insert the noop cast.
5933 Type *OpTy = LF.OperandValToReplace->getType();
5934 if (FullV->getType() != OpTy)
5935 FullV = CastInst::Create(
5936 CastInst::getCastOpcode(FullV, false, OpTy, false), FullV,
5937 LF.OperandValToReplace->getType(), "tmp",
5938 BB->getTerminator()->getIterator());
5940 // If the incoming block for this value is not in the loop, it means the
5941 // current PHI is not in a loop exit, so we must create a LCSSA PHI for
5942 // the inserted value.
5943 if (auto *I = dyn_cast<Instruction>(FullV))
5944 if (L->contains(I) && !L->contains(BB))
5945 InsertedNonLCSSAInsts.insert(I);
5947 PN->setIncomingValue(i, FullV);
5948 Pair.first->second = FullV;
5951 // If LSR splits critical edge and phi node has other pending
5952 // fixup operands, we need to update those pending fixups. Otherwise
5953 // formulae will not be implemented completely and some instructions
5954 // will not be eliminated.
5955 if (needUpdateFixups) {
5956 for (LSRUse &LU : Uses)
5957 for (LSRFixup &Fixup : LU.Fixups)
5958 // If fixup is supposed to rewrite some operand in the phi
5959 // that was just updated, it may be already moved to
5960 // another phi node. Such fixup requires update.
5961 if (Fixup.UserInst == PN) {
5962 // Check if the operand we try to replace still exists in the
5963 // original phi.
5964 bool foundInOriginalPHI = false;
5965 for (const auto &val : PN->incoming_values())
5966 if (val == Fixup.OperandValToReplace) {
5967 foundInOriginalPHI = true;
5968 break;
5971 // If fixup operand found in original PHI - nothing to do.
5972 if (foundInOriginalPHI)
5973 continue;
5975 // Otherwise it might be moved to another PHI and requires update.
5976 // If fixup operand not found in any of the incoming blocks that
5977 // means we have already rewritten it - nothing to do.
5978 for (const auto &Block : PN->blocks())
5979 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5980 ++I) {
5981 PHINode *NewPN = cast<PHINode>(I);
5982 for (const auto &val : NewPN->incoming_values())
5983 if (val == Fixup.OperandValToReplace)
5984 Fixup.UserInst = NewPN;
5991 /// Emit instructions for the leading candidate expression for this LSRUse (this
5992 /// is called "expanding"), and update the UserInst to reference the newly
5993 /// expanded value.
5994 void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5995 const Formula &F,
5996 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
5997 // First, find an insertion point that dominates UserInst. For PHI nodes,
5998 // find the nearest block which dominates all the relevant uses.
5999 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
6000 RewriteForPHI(PN, LU, LF, F, DeadInsts);
6001 } else {
6002 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
6004 // If this is reuse-by-noop-cast, insert the noop cast.
6005 Type *OpTy = LF.OperandValToReplace->getType();
6006 if (FullV->getType() != OpTy) {
6007 Instruction *Cast =
6008 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
6009 FullV, OpTy, "tmp", LF.UserInst->getIterator());
6010 FullV = Cast;
6013 // Update the user. ICmpZero is handled specially here (for now) because
6014 // Expand may have updated one of the operands of the icmp already, and
6015 // its new value may happen to be equal to LF.OperandValToReplace, in
6016 // which case doing replaceUsesOfWith leads to replacing both operands
6017 // with the same value. TODO: Reorganize this.
6018 if (LU.Kind == LSRUse::ICmpZero)
6019 LF.UserInst->setOperand(0, FullV);
6020 else
6021 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
6024 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
6025 DeadInsts.emplace_back(OperandIsInstr);
6028 // Trying to hoist the IVInc to loop header if all IVInc users are in
6029 // the loop header. It will help backend to generate post index load/store
6030 // when the latch block is different from loop header block.
6031 static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup,
6032 const LSRUse &LU, Instruction *IVIncInsertPos,
6033 Loop *L) {
6034 if (LU.Kind != LSRUse::Address)
6035 return false;
6037 // For now this code do the conservative optimization, only work for
6038 // the header block. Later we can hoist the IVInc to the block post
6039 // dominate all users.
6040 BasicBlock *LHeader = L->getHeader();
6041 if (IVIncInsertPos->getParent() == LHeader)
6042 return false;
6044 if (!Fixup.OperandValToReplace ||
6045 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) {
6046 Instruction *UI = cast<Instruction>(U);
6047 return UI->getParent() != LHeader;
6049 return false;
6051 Instruction *I = Fixup.UserInst;
6052 Type *Ty = I->getType();
6053 return Ty->isIntegerTy() &&
6054 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) ||
6055 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty)));
6058 /// Rewrite all the fixup locations with new values, following the chosen
6059 /// solution.
6060 void LSRInstance::ImplementSolution(
6061 const SmallVectorImpl<const Formula *> &Solution) {
6062 // Keep track of instructions we may have made dead, so that
6063 // we can remove them after we are done working.
6064 SmallVector<WeakTrackingVH, 16> DeadInsts;
6066 // Mark phi nodes that terminate chains so the expander tries to reuse them.
6067 for (const IVChain &Chain : IVChainVec) {
6068 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
6069 Rewriter.setChainedPhi(PN);
6072 // Expand the new value definitions and update the users.
6073 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
6074 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
6075 Instruction *InsertPos =
6076 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L)
6077 ? L->getHeader()->getTerminator()
6078 : IVIncInsertPos;
6079 Rewriter.setIVIncInsertPos(L, InsertPos);
6080 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
6081 Changed = true;
6084 auto InsertedInsts = InsertedNonLCSSAInsts.takeVector();
6085 formLCSSAForInstructions(InsertedInsts, DT, LI, &SE);
6087 for (const IVChain &Chain : IVChainVec) {
6088 GenerateIVChain(Chain, DeadInsts);
6089 Changed = true;
6092 for (const WeakVH &IV : Rewriter.getInsertedIVs())
6093 if (IV && dyn_cast<Instruction>(&*IV)->getParent())
6094 ScalarEvolutionIVs.push_back(IV);
6096 // Clean up after ourselves. This must be done before deleting any
6097 // instructions.
6098 Rewriter.clear();
6100 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
6101 &TLI, MSSAU);
6103 // In our cost analysis above, we assume that each addrec consumes exactly
6104 // one register, and arrange to have increments inserted just before the
6105 // latch to maximimize the chance this is true. However, if we reused
6106 // existing IVs, we now need to move the increments to match our
6107 // expectations. Otherwise, our cost modeling results in us having a
6108 // chosen a non-optimal result for the actual schedule. (And yes, this
6109 // scheduling decision does impact later codegen.)
6110 for (PHINode &PN : L->getHeader()->phis()) {
6111 BinaryOperator *BO = nullptr;
6112 Value *Start = nullptr, *Step = nullptr;
6113 if (!matchSimpleRecurrence(&PN, BO, Start, Step))
6114 continue;
6116 switch (BO->getOpcode()) {
6117 case Instruction::Sub:
6118 if (BO->getOperand(0) != &PN)
6119 // sub is non-commutative - match handling elsewhere in LSR
6120 continue;
6121 break;
6122 case Instruction::Add:
6123 break;
6124 default:
6125 continue;
6128 if (!isa<Constant>(Step))
6129 // If not a constant step, might increase register pressure
6130 // (We assume constants have been canonicalized to RHS)
6131 continue;
6133 if (BO->getParent() == IVIncInsertPos->getParent())
6134 // Only bother moving across blocks. Isel can handle block local case.
6135 continue;
6137 // Can we legally schedule inc at the desired point?
6138 if (!llvm::all_of(BO->uses(),
6139 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
6140 continue;
6141 BO->moveBefore(IVIncInsertPos);
6142 Changed = true;
6148 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6149 DominatorTree &DT, LoopInfo &LI,
6150 const TargetTransformInfo &TTI, AssumptionCache &AC,
6151 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
6152 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
6153 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
6154 ? PreferredAddresingMode
6155 : TTI.getPreferredAddressingMode(L, &SE)),
6156 Rewriter(SE, L->getHeader()->getDataLayout(), "lsr", false),
6157 BaselineCost(L, SE, TTI, AMK) {
6158 // If LoopSimplify form is not available, stay out of trouble.
6159 if (!L->isLoopSimplifyForm())
6160 return;
6162 // If there's no interesting work to be done, bail early.
6163 if (IU.empty()) return;
6165 // If there's too much analysis to be done, bail early. We won't be able to
6166 // model the problem anyway.
6167 unsigned NumUsers = 0;
6168 for (const IVStrideUse &U : IU) {
6169 if (++NumUsers > MaxIVUsers) {
6170 (void)U;
6171 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U
6172 << "\n");
6173 return;
6175 // Bail out if we have a PHI on an EHPad that gets a value from a
6176 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
6177 // no good place to stick any instructions.
6178 if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
6179 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
6180 if (isa<FuncletPadInst>(FirstNonPHI) ||
6181 isa<CatchSwitchInst>(FirstNonPHI))
6182 for (BasicBlock *PredBB : PN->blocks())
6183 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
6184 return;
6188 LLVM_DEBUG(dbgs() << "\nLSR on loop ";
6189 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
6190 dbgs() << ":\n");
6192 // Configure SCEVExpander already now, so the correct mode is used for
6193 // isSafeToExpand() checks.
6194 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
6195 Rewriter.setDebugType(DEBUG_TYPE);
6196 #endif
6197 Rewriter.disableCanonicalMode();
6198 Rewriter.enableLSRMode();
6200 // First, perform some low-level loop optimizations.
6201 OptimizeShadowIV();
6202 OptimizeLoopTermCond();
6204 // If loop preparation eliminates all interesting IV users, bail.
6205 if (IU.empty()) return;
6207 // Skip nested loops until we can model them better with formulae.
6208 if (!L->isInnermost()) {
6209 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
6210 return;
6213 // Start collecting data and preparing for the solver.
6214 // If number of registers is not the major cost, we cannot benefit from the
6215 // current profitable chain optimization which is based on number of
6216 // registers.
6217 // FIXME: add profitable chain optimization for other kinds major cost, for
6218 // example number of instructions.
6219 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
6220 CollectChains();
6221 CollectInterestingTypesAndFactors();
6222 CollectFixupsAndInitialFormulae();
6223 CollectLoopInvariantFixupsAndFormulae();
6225 if (Uses.empty())
6226 return;
6228 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
6229 print_uses(dbgs()));
6230 LLVM_DEBUG(dbgs() << "The baseline solution requires ";
6231 BaselineCost.print(dbgs()); dbgs() << "\n");
6233 // Now use the reuse data to generate a bunch of interesting ways
6234 // to formulate the values needed for the uses.
6235 GenerateAllReuseFormulae();
6237 FilterOutUndesirableDedicatedRegisters();
6238 NarrowSearchSpaceUsingHeuristics();
6240 SmallVector<const Formula *, 8> Solution;
6241 Solve(Solution);
6243 // Release memory that is no longer needed.
6244 Factors.clear();
6245 Types.clear();
6246 RegUses.clear();
6248 if (Solution.empty())
6249 return;
6251 #ifndef NDEBUG
6252 // Formulae should be legal.
6253 for (const LSRUse &LU : Uses) {
6254 for (const Formula &F : LU.Formulae)
6255 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
6256 F) && "Illegal formula generated!");
6258 #endif
6260 // Now that we've decided what we want, make it so.
6261 ImplementSolution(Solution);
6264 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
6265 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
6266 if (Factors.empty() && Types.empty()) return;
6268 OS << "LSR has identified the following interesting factors and types: ";
6269 bool First = true;
6271 for (int64_t Factor : Factors) {
6272 if (!First) OS << ", ";
6273 First = false;
6274 OS << '*' << Factor;
6277 for (Type *Ty : Types) {
6278 if (!First) OS << ", ";
6279 First = false;
6280 OS << '(' << *Ty << ')';
6282 OS << '\n';
6285 void LSRInstance::print_fixups(raw_ostream &OS) const {
6286 OS << "LSR is examining the following fixup sites:\n";
6287 for (const LSRUse &LU : Uses)
6288 for (const LSRFixup &LF : LU.Fixups) {
6289 dbgs() << " ";
6290 LF.print(OS);
6291 OS << '\n';
6295 void LSRInstance::print_uses(raw_ostream &OS) const {
6296 OS << "LSR is examining the following uses:\n";
6297 for (const LSRUse &LU : Uses) {
6298 dbgs() << " ";
6299 LU.print(OS);
6300 OS << '\n';
6301 for (const Formula &F : LU.Formulae) {
6302 OS << " ";
6303 F.print(OS);
6304 OS << '\n';
6309 void LSRInstance::print(raw_ostream &OS) const {
6310 print_factors_and_types(OS);
6311 print_fixups(OS);
6312 print_uses(OS);
6315 LLVM_DUMP_METHOD void LSRInstance::dump() const {
6316 print(errs()); errs() << '\n';
6318 #endif
6320 namespace {
6322 class LoopStrengthReduce : public LoopPass {
6323 public:
6324 static char ID; // Pass ID, replacement for typeid
6326 LoopStrengthReduce();
6328 private:
6329 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
6330 void getAnalysisUsage(AnalysisUsage &AU) const override;
6333 } // end anonymous namespace
6335 LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
6336 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
6339 void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
6340 // We split critical edges, so we change the CFG. However, we do update
6341 // many analyses if they are around.
6342 AU.addPreservedID(LoopSimplifyID);
6344 AU.addRequired<LoopInfoWrapperPass>();
6345 AU.addPreserved<LoopInfoWrapperPass>();
6346 AU.addRequiredID(LoopSimplifyID);
6347 AU.addRequired<DominatorTreeWrapperPass>();
6348 AU.addPreserved<DominatorTreeWrapperPass>();
6349 AU.addRequired<ScalarEvolutionWrapperPass>();
6350 AU.addPreserved<ScalarEvolutionWrapperPass>();
6351 AU.addRequired<AssumptionCacheTracker>();
6352 AU.addRequired<TargetLibraryInfoWrapperPass>();
6353 // Requiring LoopSimplify a second time here prevents IVUsers from running
6354 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
6355 AU.addRequiredID(LoopSimplifyID);
6356 AU.addRequired<IVUsersWrapperPass>();
6357 AU.addPreserved<IVUsersWrapperPass>();
6358 AU.addRequired<TargetTransformInfoWrapperPass>();
6359 AU.addPreserved<MemorySSAWrapperPass>();
6362 namespace {
6364 /// Enables more convenient iteration over a DWARF expression vector.
6365 static iterator_range<llvm::DIExpression::expr_op_iterator>
6366 ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
6367 llvm::DIExpression::expr_op_iterator Begin =
6368 llvm::DIExpression::expr_op_iterator(Expr.begin());
6369 llvm::DIExpression::expr_op_iterator End =
6370 llvm::DIExpression::expr_op_iterator(Expr.end());
6371 return {Begin, End};
6374 struct SCEVDbgValueBuilder {
6375 SCEVDbgValueBuilder() = default;
6376 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
6378 void clone(const SCEVDbgValueBuilder &Base) {
6379 LocationOps = Base.LocationOps;
6380 Expr = Base.Expr;
6383 void clear() {
6384 LocationOps.clear();
6385 Expr.clear();
6388 /// The DIExpression as we translate the SCEV.
6389 SmallVector<uint64_t, 6> Expr;
6390 /// The location ops of the DIExpression.
6391 SmallVector<Value *, 2> LocationOps;
6393 void pushOperator(uint64_t Op) { Expr.push_back(Op); }
6394 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
6396 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
6397 /// in the set of values referenced by the expression.
6398 void pushLocation(llvm::Value *V) {
6399 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
6400 auto *It = llvm::find(LocationOps, V);
6401 unsigned ArgIndex = 0;
6402 if (It != LocationOps.end()) {
6403 ArgIndex = std::distance(LocationOps.begin(), It);
6404 } else {
6405 ArgIndex = LocationOps.size();
6406 LocationOps.push_back(V);
6408 Expr.push_back(ArgIndex);
6411 void pushValue(const SCEVUnknown *U) {
6412 llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
6413 pushLocation(V);
6416 bool pushConst(const SCEVConstant *C) {
6417 if (C->getAPInt().getSignificantBits() > 64)
6418 return false;
6419 Expr.push_back(llvm::dwarf::DW_OP_consts);
6420 Expr.push_back(C->getAPInt().getSExtValue());
6421 return true;
6424 // Iterating the expression as DWARF ops is convenient when updating
6425 // DWARF_OP_LLVM_args.
6426 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6427 return ToDwarfOpIter(Expr);
6430 /// Several SCEV types are sequences of the same arithmetic operator applied
6431 /// to constants and values that may be extended or truncated.
6432 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6433 uint64_t DwarfOp) {
6434 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&
6435 "Expected arithmetic SCEV type");
6436 bool Success = true;
6437 unsigned EmitOperator = 0;
6438 for (const auto &Op : CommExpr->operands()) {
6439 Success &= pushSCEV(Op);
6441 if (EmitOperator >= 1)
6442 pushOperator(DwarfOp);
6443 ++EmitOperator;
6445 return Success;
6448 // TODO: Identify and omit noop casts.
6449 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6450 const llvm::SCEV *Inner = C->getOperand(0);
6451 const llvm::Type *Type = C->getType();
6452 uint64_t ToWidth = Type->getIntegerBitWidth();
6453 bool Success = pushSCEV(Inner);
6454 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6455 IsSigned ? llvm::dwarf::DW_ATE_signed
6456 : llvm::dwarf::DW_ATE_unsigned};
6457 for (const auto &Op : CastOps)
6458 pushOperator(Op);
6459 return Success;
6462 // TODO: MinMax - although these haven't been encountered in the test suite.
6463 bool pushSCEV(const llvm::SCEV *S) {
6464 bool Success = true;
6465 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6466 Success &= pushConst(StartInt);
6468 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6469 if (!U->getValue())
6470 return false;
6471 pushLocation(U->getValue());
6473 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6474 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6476 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6477 Success &= pushSCEV(UDiv->getLHS());
6478 Success &= pushSCEV(UDiv->getRHS());
6479 pushOperator(llvm::dwarf::DW_OP_div);
6481 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6482 // Assert if a new and unknown SCEVCastEXpr type is encountered.
6483 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||
6484 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
6485 "Unexpected cast type in SCEV.");
6486 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6488 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6489 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6491 } else if (isa<SCEVAddRecExpr>(S)) {
6492 // Nested SCEVAddRecExpr are generated by nested loops and are currently
6493 // unsupported.
6494 return false;
6496 } else {
6497 return false;
6499 return Success;
6502 /// Return true if the combination of arithmetic operator and underlying
6503 /// SCEV constant value is an identity function.
6504 bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6505 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6506 if (C->getAPInt().getSignificantBits() > 64)
6507 return false;
6508 int64_t I = C->getAPInt().getSExtValue();
6509 switch (Op) {
6510 case llvm::dwarf::DW_OP_plus:
6511 case llvm::dwarf::DW_OP_minus:
6512 return I == 0;
6513 case llvm::dwarf::DW_OP_mul:
6514 case llvm::dwarf::DW_OP_div:
6515 return I == 1;
6518 return false;
6521 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6522 /// builder's expression stack. The stack should already contain an
6523 /// expression for the iteration count, so that it can be multiplied by
6524 /// the stride and added to the start.
6525 /// Components of the expression are omitted if they are an identity function.
6526 /// Chain (non-affine) SCEVs are not supported.
6527 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6528 assert(SAR.isAffine() && "Expected affine SCEV");
6529 // TODO: Is this check needed?
6530 if (isa<SCEVAddRecExpr>(SAR.getStart()))
6531 return false;
6533 const SCEV *Start = SAR.getStart();
6534 const SCEV *Stride = SAR.getStepRecurrence(SE);
6536 // Skip pushing arithmetic noops.
6537 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6538 if (!pushSCEV(Stride))
6539 return false;
6540 pushOperator(llvm::dwarf::DW_OP_mul);
6542 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6543 if (!pushSCEV(Start))
6544 return false;
6545 pushOperator(llvm::dwarf::DW_OP_plus);
6547 return true;
6550 /// Create an expression that is an offset from a value (usually the IV).
6551 void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6552 pushLocation(OffsetValue);
6553 DIExpression::appendOffset(Expr, Offset);
6554 LLVM_DEBUG(
6555 dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
6556 << std::to_string(Offset) << "\n");
6559 /// Combine a translation of the SCEV and the IV to create an expression that
6560 /// recovers a location's value.
6561 /// returns true if an expression was created.
6562 bool createIterCountExpr(const SCEV *S,
6563 const SCEVDbgValueBuilder &IterationCount,
6564 ScalarEvolution &SE) {
6565 // SCEVs for SSA values are most frquently of the form
6566 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6567 // This is because %a is a PHI node that is not the IV. However, these
6568 // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6569 // so its not expected this point will be reached.
6570 if (!isa<SCEVAddRecExpr>(S))
6571 return false;
6573 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *S
6574 << '\n');
6576 const auto *Rec = cast<SCEVAddRecExpr>(S);
6577 if (!Rec->isAffine())
6578 return false;
6580 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6581 return false;
6583 // Initialise a new builder with the iteration count expression. In
6584 // combination with the value's SCEV this enables recovery.
6585 clone(IterationCount);
6586 if (!SCEVToValueExpr(*Rec, SE))
6587 return false;
6589 return true;
6592 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6593 /// builder's expression stack. The stack should already contain an
6594 /// expression for the iteration count, so that it can be multiplied by
6595 /// the stride and added to the start.
6596 /// Components of the expression are omitted if they are an identity function.
6597 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6598 ScalarEvolution &SE) {
6599 assert(SAR.isAffine() && "Expected affine SCEV");
6600 if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6601 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
6602 << SAR << '\n');
6603 return false;
6605 const SCEV *Start = SAR.getStart();
6606 const SCEV *Stride = SAR.getStepRecurrence(SE);
6608 // Skip pushing arithmetic noops.
6609 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6610 if (!pushSCEV(Start))
6611 return false;
6612 pushOperator(llvm::dwarf::DW_OP_minus);
6614 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6615 if (!pushSCEV(Stride))
6616 return false;
6617 pushOperator(llvm::dwarf::DW_OP_div);
6619 return true;
6622 // Append the current expression and locations to a location list and an
6623 // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6624 // the locations already present in the destination list.
6625 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6626 SmallVectorImpl<Value *> &DestLocations) {
6627 assert(!DestLocations.empty() &&
6628 "Expected the locations vector to contain the IV");
6629 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6630 // modified to account for the locations already in the destination vector.
6631 // All builders contain the IV as the first location op.
6632 assert(!LocationOps.empty() &&
6633 "Expected the location ops to contain the IV.");
6634 // DestIndexMap[n] contains the index in DestLocations for the nth
6635 // location in this SCEVDbgValueBuilder.
6636 SmallVector<uint64_t, 2> DestIndexMap;
6637 for (const auto &Op : LocationOps) {
6638 auto It = find(DestLocations, Op);
6639 if (It != DestLocations.end()) {
6640 // Location already exists in DestLocations, reuse existing ArgIndex.
6641 DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6642 continue;
6644 // Location is not in DestLocations, add it.
6645 DestIndexMap.push_back(DestLocations.size());
6646 DestLocations.push_back(Op);
6649 for (const auto &Op : expr_ops()) {
6650 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6651 Op.appendToVector(DestExpr);
6652 continue;
6655 DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6656 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6657 // DestIndexMap[n] contains its new index in DestLocations.
6658 uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6659 DestExpr.push_back(NewIndex);
6664 /// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6665 /// and DIExpression.
6666 struct DVIRecoveryRec {
6667 DVIRecoveryRec(DbgValueInst *DbgValue)
6668 : DbgRef(DbgValue), Expr(DbgValue->getExpression()),
6669 HadLocationArgList(false) {}
6670 DVIRecoveryRec(DbgVariableRecord *DVR)
6671 : DbgRef(DVR), Expr(DVR->getExpression()), HadLocationArgList(false) {}
6673 PointerUnion<DbgValueInst *, DbgVariableRecord *> DbgRef;
6674 DIExpression *Expr;
6675 bool HadLocationArgList;
6676 SmallVector<WeakVH, 2> LocationOps;
6677 SmallVector<const llvm::SCEV *, 2> SCEVs;
6678 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6680 void clear() {
6681 for (auto &RE : RecoveryExprs)
6682 RE.reset();
6683 RecoveryExprs.clear();
6686 ~DVIRecoveryRec() { clear(); }
6688 } // namespace
6690 /// Returns the total number of DW_OP_llvm_arg operands in the expression.
6691 /// This helps in determining if a DIArglist is necessary or can be omitted from
6692 /// the dbg.value.
6693 static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6694 auto expr_ops = ToDwarfOpIter(Expr);
6695 unsigned Count = 0;
6696 for (auto Op : expr_ops)
6697 if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6698 Count++;
6699 return Count;
6702 /// Overwrites DVI with the location and Ops as the DIExpression. This will
6703 /// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6704 /// because a DIArglist is not created for the first argument of the dbg.value.
6705 template <typename T>
6706 static void updateDVIWithLocation(T &DbgVal, Value *Location,
6707 SmallVectorImpl<uint64_t> &Ops) {
6708 assert(numLLVMArgOps(Ops) == 0 && "Expected expression that does not "
6709 "contain any DW_OP_llvm_arg operands.");
6710 DbgVal.setRawLocation(ValueAsMetadata::get(Location));
6711 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6712 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6715 /// Overwrite DVI with locations placed into a DIArglist.
6716 template <typename T>
6717 static void updateDVIWithLocations(T &DbgVal,
6718 SmallVectorImpl<Value *> &Locations,
6719 SmallVectorImpl<uint64_t> &Ops) {
6720 assert(numLLVMArgOps(Ops) != 0 &&
6721 "Expected expression that references DIArglist locations using "
6722 "DW_OP_llvm_arg operands.");
6723 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6724 for (Value *V : Locations)
6725 MetadataLocs.push_back(ValueAsMetadata::get(V));
6726 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6727 DbgVal.setRawLocation(llvm::DIArgList::get(DbgVal.getContext(), ValArrayRef));
6728 DbgVal.setExpression(DIExpression::get(DbgVal.getContext(), Ops));
6731 /// Write the new expression and new location ops for the dbg.value. If possible
6732 /// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6733 /// can be omitted if:
6734 /// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6735 /// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6736 static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6737 SmallVectorImpl<Value *> &NewLocationOps,
6738 SmallVectorImpl<uint64_t> &NewExpr) {
6739 auto UpdateDbgValueInstImpl = [&](auto *DbgVal) {
6740 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6741 if (NumLLVMArgs == 0) {
6742 // Location assumed to be on the stack.
6743 updateDVIWithLocation(*DbgVal, NewLocationOps[0], NewExpr);
6744 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6745 // There is only a single DW_OP_llvm_arg at the start of the expression,
6746 // so it can be omitted along with DIArglist.
6747 assert(NewExpr[1] == 0 &&
6748 "Lone LLVM_arg in a DIExpression should refer to location-op 0.");
6749 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6750 updateDVIWithLocation(*DbgVal, NewLocationOps[0], ShortenedOps);
6751 } else {
6752 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6753 updateDVIWithLocations(*DbgVal, NewLocationOps, NewExpr);
6756 // If the DIExpression was previously empty then add the stack terminator.
6757 // Non-empty expressions have only had elements inserted into them and so
6758 // the terminator should already be present e.g. stack_value or fragment.
6759 DIExpression *SalvageExpr = DbgVal->getExpression();
6760 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6761 SalvageExpr =
6762 DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6763 DbgVal->setExpression(SalvageExpr);
6766 if (isa<DbgValueInst *>(DVIRec.DbgRef))
6767 UpdateDbgValueInstImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6768 else
6769 UpdateDbgValueInstImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef));
6772 /// Cached location ops may be erased during LSR, in which case a poison is
6773 /// required when restoring from the cache. The type of that location is no
6774 /// longer available, so just use int8. The poison will be replaced by one or
6775 /// more locations later when a SCEVDbgValueBuilder selects alternative
6776 /// locations to use for the salvage.
6777 static Value *getValueOrPoison(WeakVH &VH, LLVMContext &C) {
6778 return (VH) ? VH : PoisonValue::get(llvm::Type::getInt8Ty(C));
6781 /// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6782 static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6783 auto RestorePreTransformStateImpl = [&](auto *DbgVal) {
6784 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
6785 << "scev-salvage: post-LSR: " << *DbgVal << '\n');
6786 assert(DVIRec.Expr && "Expected an expression");
6787 DbgVal->setExpression(DVIRec.Expr);
6789 // Even a single location-op may be inside a DIArgList and referenced with
6790 // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6791 if (!DVIRec.HadLocationArgList) {
6792 assert(DVIRec.LocationOps.size() == 1 &&
6793 "Unexpected number of location ops.");
6794 // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6795 // this case was not present before, so force the location back to a
6796 // single uncontained Value.
6797 Value *CachedValue =
6798 getValueOrPoison(DVIRec.LocationOps[0], DbgVal->getContext());
6799 DbgVal->setRawLocation(ValueAsMetadata::get(CachedValue));
6800 } else {
6801 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6802 for (WeakVH VH : DVIRec.LocationOps) {
6803 Value *CachedValue = getValueOrPoison(VH, DbgVal->getContext());
6804 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6806 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6807 DbgVal->setRawLocation(
6808 llvm::DIArgList::get(DbgVal->getContext(), ValArrayRef));
6810 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DbgVal << '\n');
6812 if (isa<DbgValueInst *>(DVIRec.DbgRef))
6813 RestorePreTransformStateImpl(cast<DbgValueInst *>(DVIRec.DbgRef));
6814 else
6815 RestorePreTransformStateImpl(cast<DbgVariableRecord *>(DVIRec.DbgRef));
6818 static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6819 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6820 const SCEV *SCEVInductionVar,
6821 SCEVDbgValueBuilder IterCountExpr) {
6823 if (isa<DbgValueInst *>(DVIRec.DbgRef)
6824 ? !cast<DbgValueInst *>(DVIRec.DbgRef)->isKillLocation()
6825 : !cast<DbgVariableRecord *>(DVIRec.DbgRef)->isKillLocation())
6826 return false;
6828 // LSR may have caused several changes to the dbg.value in the failed salvage
6829 // attempt. So restore the DIExpression, the location ops and also the
6830 // location ops format, which is always DIArglist for multiple ops, but only
6831 // sometimes for a single op.
6832 restorePreTransformState(DVIRec);
6834 // LocationOpIndexMap[i] will store the post-LSR location index of
6835 // the non-optimised out location at pre-LSR index i.
6836 SmallVector<int64_t, 2> LocationOpIndexMap;
6837 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6838 SmallVector<Value *, 2> NewLocationOps;
6839 NewLocationOps.push_back(LSRInductionVar);
6841 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6842 WeakVH VH = DVIRec.LocationOps[i];
6843 // Place the locations not optimised out in the list first, avoiding
6844 // inserts later. The map is used to update the DIExpression's
6845 // DW_OP_LLVM_arg arguments as the expression is updated.
6846 if (VH && !isa<UndefValue>(VH)) {
6847 NewLocationOps.push_back(VH);
6848 LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6849 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << i
6850 << " now at index " << LocationOpIndexMap[i] << "\n");
6851 continue;
6854 // It's possible that a value referred to in the SCEV may have been
6855 // optimised out by LSR.
6856 if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6857 SE.containsUndefs(DVIRec.SCEVs[i])) {
6858 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << i
6859 << " refers to a location that is now undef or erased. "
6860 "Salvage abandoned.\n");
6861 return false;
6864 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << i
6865 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n");
6867 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6868 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6870 // Create an offset-based salvage expression if possible, as it requires
6871 // less DWARF ops than an iteration count-based expression.
6872 if (std::optional<APInt> Offset =
6873 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6874 if (Offset->getSignificantBits() <= 64)
6875 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6876 else
6877 return false;
6878 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6879 SE))
6880 return false;
6883 // Merge the DbgValueBuilder generated expressions and the original
6884 // DIExpression, place the result into an new vector.
6885 SmallVector<uint64_t, 3> NewExpr;
6886 if (DVIRec.Expr->getNumElements() == 0) {
6887 assert(DVIRec.RecoveryExprs.size() == 1 &&
6888 "Expected only a single recovery expression for an empty "
6889 "DIExpression.");
6890 assert(DVIRec.RecoveryExprs[0] &&
6891 "Expected a SCEVDbgSalvageBuilder for location 0");
6892 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6893 B->appendToVectors(NewExpr, NewLocationOps);
6895 for (const auto &Op : DVIRec.Expr->expr_ops()) {
6896 // Most Ops needn't be updated.
6897 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6898 Op.appendToVector(NewExpr);
6899 continue;
6902 uint64_t LocationArgIndex = Op.getArg(0);
6903 SCEVDbgValueBuilder *DbgBuilder =
6904 DVIRec.RecoveryExprs[LocationArgIndex].get();
6905 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6906 // optimise it away. So just translate the argument to the updated
6907 // location index.
6908 if (!DbgBuilder) {
6909 NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6910 assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&
6911 "Expected a positive index for the location-op position.");
6912 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6913 continue;
6915 // The location has a recovery expression.
6916 DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6919 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6920 if (isa<DbgValueInst *>(DVIRec.DbgRef))
6921 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6922 << *cast<DbgValueInst *>(DVIRec.DbgRef) << "\n");
6923 else
6924 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: "
6925 << *cast<DbgVariableRecord *>(DVIRec.DbgRef) << "\n");
6926 return true;
6929 /// Obtain an expression for the iteration count, then attempt to salvage the
6930 /// dbg.value intrinsics.
6931 static void DbgRewriteSalvageableDVIs(
6932 llvm::Loop *L, ScalarEvolution &SE, llvm::PHINode *LSRInductionVar,
6933 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6934 if (DVIToUpdate.empty())
6935 return;
6937 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6938 assert(SCEVInductionVar &&
6939 "Anticipated a SCEV for the post-LSR induction variable");
6941 if (const SCEVAddRecExpr *IVAddRec =
6942 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6943 if (!IVAddRec->isAffine())
6944 return;
6946 // Prevent translation using excessive resources.
6947 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6948 return;
6950 // The iteration count is required to recover location values.
6951 SCEVDbgValueBuilder IterCountExpr;
6952 IterCountExpr.pushLocation(LSRInductionVar);
6953 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6954 return;
6956 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVar
6957 << '\n');
6959 for (auto &DVIRec : DVIToUpdate) {
6960 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6961 IterCountExpr);
6966 /// Identify and cache salvageable DVI locations and expressions along with the
6967 /// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6968 /// cacheing and salvaging.
6969 static void DbgGatherSalvagableDVI(
6970 Loop *L, ScalarEvolution &SE,
6971 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6972 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6973 for (const auto &B : L->getBlocks()) {
6974 for (auto &I : *B) {
6975 auto ProcessDbgValue = [&](auto *DbgVal) -> bool {
6976 // Ensure that if any location op is undef that the dbg.vlue is not
6977 // cached.
6978 if (DbgVal->isKillLocation())
6979 return false;
6981 // Check that the location op SCEVs are suitable for translation to
6982 // DIExpression.
6983 const auto &HasTranslatableLocationOps =
6984 [&](const auto *DbgValToTranslate) -> bool {
6985 for (const auto LocOp : DbgValToTranslate->location_ops()) {
6986 if (!LocOp)
6987 return false;
6989 if (!SE.isSCEVable(LocOp->getType()))
6990 return false;
6992 const SCEV *S = SE.getSCEV(LocOp);
6993 if (SE.containsUndefs(S))
6994 return false;
6996 return true;
6999 if (!HasTranslatableLocationOps(DbgVal))
7000 return false;
7002 std::unique_ptr<DVIRecoveryRec> NewRec =
7003 std::make_unique<DVIRecoveryRec>(DbgVal);
7004 // Each location Op may need a SCEVDbgValueBuilder in order to recover
7005 // it. Pre-allocating a vector will enable quick lookups of the builder
7006 // later during the salvage.
7007 NewRec->RecoveryExprs.resize(DbgVal->getNumVariableLocationOps());
7008 for (const auto LocOp : DbgVal->location_ops()) {
7009 NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
7010 NewRec->LocationOps.push_back(LocOp);
7011 NewRec->HadLocationArgList = DbgVal->hasArgList();
7013 SalvageableDVISCEVs.push_back(std::move(NewRec));
7014 return true;
7016 for (DbgVariableRecord &DVR : filterDbgVars(I.getDbgRecordRange())) {
7017 if (DVR.isDbgValue() || DVR.isDbgAssign())
7018 ProcessDbgValue(&DVR);
7020 auto DVI = dyn_cast<DbgValueInst>(&I);
7021 if (!DVI)
7022 continue;
7023 if (ProcessDbgValue(DVI))
7024 DVIHandles.insert(DVI);
7029 /// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
7030 /// any PHi from the loop header is usable, but may have less chance of
7031 /// surviving subsequent transforms.
7032 static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
7033 const LSRInstance &LSR) {
7035 auto IsSuitableIV = [&](PHINode *P) {
7036 if (!SE.isSCEVable(P->getType()))
7037 return false;
7038 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
7039 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
7040 return false;
7043 // For now, just pick the first IV that was generated and inserted by
7044 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
7045 // by subsequent transforms.
7046 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
7047 if (!IV)
7048 continue;
7050 // There should only be PHI node IVs.
7051 PHINode *P = cast<PHINode>(&*IV);
7053 if (IsSuitableIV(P))
7054 return P;
7057 for (PHINode &P : L.getHeader()->phis()) {
7058 if (IsSuitableIV(&P))
7059 return &P;
7061 return nullptr;
7064 static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
7065 DominatorTree &DT, LoopInfo &LI,
7066 const TargetTransformInfo &TTI,
7067 AssumptionCache &AC, TargetLibraryInfo &TLI,
7068 MemorySSA *MSSA) {
7070 // Debug preservation - before we start removing anything identify which DVI
7071 // meet the salvageable criteria and store their DIExpression and SCEVs.
7072 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
7073 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
7074 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
7076 bool Changed = false;
7077 std::unique_ptr<MemorySSAUpdater> MSSAU;
7078 if (MSSA)
7079 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
7081 // Run the main LSR transformation.
7082 const LSRInstance &Reducer =
7083 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
7084 Changed |= Reducer.getChanged();
7086 // Remove any extra phis created by processing inner loops.
7087 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7088 if (EnablePhiElim && L->isLoopSimplifyForm()) {
7089 SmallVector<WeakTrackingVH, 16> DeadInsts;
7090 const DataLayout &DL = L->getHeader()->getDataLayout();
7091 SCEVExpander Rewriter(SE, DL, "lsr", false);
7092 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
7093 Rewriter.setDebugType(DEBUG_TYPE);
7094 #endif
7095 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
7096 Rewriter.clear();
7097 if (numFolded) {
7098 Changed = true;
7099 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
7100 MSSAU.get());
7101 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7104 // LSR may at times remove all uses of an induction variable from a loop.
7105 // The only remaining use is the PHI in the exit block.
7106 // When this is the case, if the exit value of the IV can be calculated using
7107 // SCEV, we can replace the exit block PHI with the final value of the IV and
7108 // skip the updates in each loop iteration.
7109 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
7110 SmallVector<WeakTrackingVH, 16> DeadInsts;
7111 const DataLayout &DL = L->getHeader()->getDataLayout();
7112 SCEVExpander Rewriter(SE, DL, "lsr", true);
7113 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
7114 UnusedIndVarInLoop, DeadInsts);
7115 Rewriter.clear();
7116 if (Rewrites) {
7117 Changed = true;
7118 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
7119 MSSAU.get());
7120 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
7124 if (SalvageableDVIRecords.empty())
7125 return Changed;
7127 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
7128 // expressions composed using the derived iteration count.
7129 // TODO: Allow for multiple IV references for nested AddRecSCEVs
7130 for (const auto &L : LI) {
7131 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
7132 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
7133 else {
7134 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
7135 "could not be identified.\n");
7139 for (auto &Rec : SalvageableDVIRecords)
7140 Rec->clear();
7141 SalvageableDVIRecords.clear();
7142 DVIHandles.clear();
7143 return Changed;
7146 bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
7147 if (skipLoop(L))
7148 return false;
7150 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
7151 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
7152 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
7153 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
7154 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
7155 *L->getHeader()->getParent());
7156 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
7157 *L->getHeader()->getParent());
7158 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
7159 *L->getHeader()->getParent());
7160 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
7161 MemorySSA *MSSA = nullptr;
7162 if (MSSAAnalysis)
7163 MSSA = &MSSAAnalysis->getMSSA();
7164 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
7167 PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
7168 LoopStandardAnalysisResults &AR,
7169 LPMUpdater &) {
7170 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
7171 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
7172 return PreservedAnalyses::all();
7174 auto PA = getLoopPassPreservedAnalyses();
7175 if (AR.MSSA)
7176 PA.preserve<MemorySSAAnalysis>();
7177 return PA;
7180 char LoopStrengthReduce::ID = 0;
7182 INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",
7183 "Loop Strength Reduction", false, false)
7184 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7185 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
7186 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7187 INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)
7188 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
7189 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7190 INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",
7191 "Loop Strength Reduction", false, false)
7193 Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }