1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/CFG.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/InstructionSimplify.h"
27 #include "llvm/Analysis/Loads.h"
28 #include "llvm/Analysis/MemoryLocation.h"
29 #include "llvm/Analysis/MemorySSA.h"
30 #include "llvm/Analysis/MemorySSAUpdater.h"
31 #include "llvm/Analysis/PostDominators.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Transforms/Utils/Local.h"
64 #define DEBUG_TYPE "memcpyopt"
66 static cl::opt
<bool> EnableMemCpyOptWithoutLibcalls(
67 "enable-memcpyopt-without-libcalls", cl::Hidden
,
68 cl::desc("Enable memcpyopt even when libcalls are disabled"));
70 STATISTIC(NumMemCpyInstr
, "Number of memcpy instructions deleted");
71 STATISTIC(NumMemMoveInstr
, "Number of memmove instructions deleted");
72 STATISTIC(NumMemSetInfer
, "Number of memsets inferred");
73 STATISTIC(NumMoveToCpy
, "Number of memmoves converted to memcpy");
74 STATISTIC(NumCpyToSet
, "Number of memcpys converted to memset");
75 STATISTIC(NumCallSlot
, "Number of call slot optimizations performed");
76 STATISTIC(NumStackMove
, "Number of stack-move optimizations performed");
80 /// Represents a range of memset'd bytes with the ByteVal value.
81 /// This allows us to analyze stores like:
86 /// which sometimes happens with stores to arrays of structs etc. When we see
87 /// the first store, we make a range [1, 2). The second store extends the range
88 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
89 /// two ranges into [0, 3) which is memset'able.
91 // Start/End - A semi range that describes the span that this range covers.
92 // The range is closed at the start and open at the end: [Start, End).
95 /// StartPtr - The getelementptr instruction that points to the start of the
99 /// Alignment - The known alignment of the first store.
100 MaybeAlign Alignment
;
102 /// TheStores - The actual stores that make up this range.
103 SmallVector
<Instruction
*, 16> TheStores
;
105 bool isProfitableToUseMemset(const DataLayout
&DL
) const;
108 } // end anonymous namespace
110 bool MemsetRange::isProfitableToUseMemset(const DataLayout
&DL
) const {
111 // If we found more than 4 stores to merge or 16 bytes, use memset.
112 if (TheStores
.size() >= 4 || End
- Start
>= 16)
115 // If there is nothing to merge, don't do anything.
116 if (TheStores
.size() < 2)
119 // If any of the stores are a memset, then it is always good to extend the
121 for (Instruction
*SI
: TheStores
)
122 if (!isa
<StoreInst
>(SI
))
125 // Assume that the code generator is capable of merging pairs of stores
126 // together if it wants to.
127 if (TheStores
.size() == 2)
130 // If we have fewer than 8 stores, it can still be worthwhile to do this.
131 // For example, merging 4 i8 stores into an i32 store is useful almost always.
132 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
133 // memset will be split into 2 32-bit stores anyway) and doing so can
134 // pessimize the llvm optimizer.
136 // Since we don't have perfect knowledge here, make some assumptions: assume
137 // the maximum GPR width is the same size as the largest legal integer
138 // size. If so, check to see whether we will end up actually reducing the
139 // number of stores used.
140 unsigned Bytes
= unsigned(End
- Start
);
141 unsigned MaxIntSize
= DL
.getLargestLegalIntTypeSizeInBits() / 8;
144 unsigned NumPointerStores
= Bytes
/ MaxIntSize
;
146 // Assume the remaining bytes if any are done a byte at a time.
147 unsigned NumByteStores
= Bytes
% MaxIntSize
;
149 // If we will reduce the # stores (according to this heuristic), do the
150 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
152 return TheStores
.size() > NumPointerStores
+ NumByteStores
;
158 using range_iterator
= SmallVectorImpl
<MemsetRange
>::iterator
;
160 /// A sorted list of the memset ranges.
161 SmallVector
<MemsetRange
, 8> Ranges
;
163 const DataLayout
&DL
;
166 MemsetRanges(const DataLayout
&DL
) : DL(DL
) {}
168 using const_iterator
= SmallVectorImpl
<MemsetRange
>::const_iterator
;
170 const_iterator
begin() const { return Ranges
.begin(); }
171 const_iterator
end() const { return Ranges
.end(); }
172 bool empty() const { return Ranges
.empty(); }
174 void addInst(int64_t OffsetFromFirst
, Instruction
*Inst
) {
175 if (auto *SI
= dyn_cast
<StoreInst
>(Inst
))
176 addStore(OffsetFromFirst
, SI
);
178 addMemSet(OffsetFromFirst
, cast
<MemSetInst
>(Inst
));
181 void addStore(int64_t OffsetFromFirst
, StoreInst
*SI
) {
182 TypeSize StoreSize
= DL
.getTypeStoreSize(SI
->getOperand(0)->getType());
183 assert(!StoreSize
.isScalable() && "Can't track scalable-typed stores");
184 addRange(OffsetFromFirst
, StoreSize
.getFixedValue(),
185 SI
->getPointerOperand(), SI
->getAlign(), SI
);
188 void addMemSet(int64_t OffsetFromFirst
, MemSetInst
*MSI
) {
189 int64_t Size
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
190 addRange(OffsetFromFirst
, Size
, MSI
->getDest(), MSI
->getDestAlign(), MSI
);
193 void addRange(int64_t Start
, int64_t Size
, Value
*Ptr
, MaybeAlign Alignment
,
197 } // end anonymous namespace
199 /// Add a new store to the MemsetRanges data structure. This adds a
200 /// new range for the specified store at the specified offset, merging into
201 /// existing ranges as appropriate.
202 void MemsetRanges::addRange(int64_t Start
, int64_t Size
, Value
*Ptr
,
203 MaybeAlign Alignment
, Instruction
*Inst
) {
204 int64_t End
= Start
+ Size
;
206 range_iterator I
= partition_point(
207 Ranges
, [=](const MemsetRange
&O
) { return O
.End
< Start
; });
209 // We now know that I == E, in which case we didn't find anything to merge
210 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
211 // to insert a new range. Handle this now.
212 if (I
== Ranges
.end() || End
< I
->Start
) {
213 MemsetRange
&R
= *Ranges
.insert(I
, MemsetRange());
217 R
.Alignment
= Alignment
;
218 R
.TheStores
.push_back(Inst
);
222 // This store overlaps with I, add it.
223 I
->TheStores
.push_back(Inst
);
225 // At this point, we may have an interval that completely contains our store.
226 // If so, just add it to the interval and return.
227 if (I
->Start
<= Start
&& I
->End
>= End
)
230 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
231 // but is not entirely contained within the range.
233 // See if the range extends the start of the range. In this case, it couldn't
234 // possibly cause it to join the prior range, because otherwise we would have
236 if (Start
< I
->Start
) {
239 I
->Alignment
= Alignment
;
242 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
243 // is in or right at the end of I), and that End >= I->Start. Extend I out to
247 range_iterator NextI
= I
;
248 while (++NextI
!= Ranges
.end() && End
>= NextI
->Start
) {
249 // Merge the range in.
250 I
->TheStores
.append(NextI
->TheStores
.begin(), NextI
->TheStores
.end());
251 if (NextI
->End
> I
->End
)
259 //===----------------------------------------------------------------------===//
260 // MemCpyOptLegacyPass Pass
261 //===----------------------------------------------------------------------===//
263 // Check that V is either not accessible by the caller, or unwinding cannot
264 // occur between Start and End.
265 static bool mayBeVisibleThroughUnwinding(Value
*V
, Instruction
*Start
,
267 assert(Start
->getParent() == End
->getParent() && "Must be in same block");
268 // Function can't unwind, so it also can't be visible through unwinding.
269 if (Start
->getFunction()->doesNotThrow())
272 // Object is not visible on unwind.
273 // TODO: Support RequiresNoCaptureBeforeUnwind case.
274 bool RequiresNoCaptureBeforeUnwind
;
275 if (isNotVisibleOnUnwind(getUnderlyingObject(V
),
276 RequiresNoCaptureBeforeUnwind
) &&
277 !RequiresNoCaptureBeforeUnwind
)
280 // Check whether there are any unwinding instructions in the range.
281 return any_of(make_range(Start
->getIterator(), End
->getIterator()),
282 [](const Instruction
&I
) { return I
.mayThrow(); });
285 void MemCpyOptPass::eraseInstruction(Instruction
*I
) {
286 MSSAU
->removeMemoryAccess(I
);
287 EEA
->removeInstruction(I
);
288 I
->eraseFromParent();
291 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
292 // Start and End must be in the same block.
293 // If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
294 // intrinsic and store it inside SkippedLifetimeStart.
295 static bool accessedBetween(BatchAAResults
&AA
, MemoryLocation Loc
,
296 const MemoryUseOrDef
*Start
,
297 const MemoryUseOrDef
*End
,
298 Instruction
**SkippedLifetimeStart
= nullptr) {
299 assert(Start
->getBlock() == End
->getBlock() && "Only local supported");
300 for (const MemoryAccess
&MA
:
301 make_range(++Start
->getIterator(), End
->getIterator())) {
302 Instruction
*I
= cast
<MemoryUseOrDef
>(MA
).getMemoryInst();
303 if (isModOrRefSet(AA
.getModRefInfo(I
, Loc
))) {
304 auto *II
= dyn_cast
<IntrinsicInst
>(I
);
305 if (II
&& II
->getIntrinsicID() == Intrinsic::lifetime_start
&&
306 SkippedLifetimeStart
&& !*SkippedLifetimeStart
) {
307 *SkippedLifetimeStart
= I
;
317 // Check for mod of Loc between Start and End, excluding both boundaries.
318 // Start and End can be in different blocks.
319 static bool writtenBetween(MemorySSA
*MSSA
, BatchAAResults
&AA
,
320 MemoryLocation Loc
, const MemoryUseOrDef
*Start
,
321 const MemoryUseOrDef
*End
) {
322 if (isa
<MemoryUse
>(End
)) {
323 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
324 // Manually check read accesses between Start and End, if they are in the
325 // same block, for clobbers. Otherwise assume Loc is clobbered.
326 return Start
->getBlock() != End
->getBlock() ||
328 make_range(std::next(Start
->getIterator()), End
->getIterator()),
329 [&AA
, Loc
](const MemoryAccess
&Acc
) {
330 if (isa
<MemoryUse
>(&Acc
))
332 Instruction
*AccInst
=
333 cast
<MemoryUseOrDef
>(&Acc
)->getMemoryInst();
334 return isModSet(AA
.getModRefInfo(AccInst
, Loc
));
338 // TODO: Only walk until we hit Start.
339 MemoryAccess
*Clobber
= MSSA
->getWalker()->getClobberingMemoryAccess(
340 End
->getDefiningAccess(), Loc
, AA
);
341 return !MSSA
->dominates(Clobber
, Start
);
344 // Update AA metadata
345 static void combineAAMetadata(Instruction
*ReplInst
, Instruction
*I
) {
346 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
347 // handled here, but combineMetadata doesn't support them yet
348 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
349 LLVMContext::MD_noalias
,
350 LLVMContext::MD_invariant_group
,
351 LLVMContext::MD_access_group
};
352 combineMetadata(ReplInst
, I
, KnownIDs
, true);
355 /// When scanning forward over instructions, we look for some other patterns to
356 /// fold away. In particular, this looks for stores to neighboring locations of
357 /// memory. If it sees enough consecutive ones, it attempts to merge them
358 /// together into a memcpy/memset.
359 Instruction
*MemCpyOptPass::tryMergingIntoMemset(Instruction
*StartInst
,
362 const DataLayout
&DL
= StartInst
->getDataLayout();
364 // We can't track scalable types
365 if (auto *SI
= dyn_cast
<StoreInst
>(StartInst
))
366 if (DL
.getTypeStoreSize(SI
->getOperand(0)->getType()).isScalable())
369 // Okay, so we now have a single store that can be splatable. Scan to find
370 // all subsequent stores of the same value to offset from the same pointer.
371 // Join these together into ranges, so we can decide whether contiguous blocks
373 MemsetRanges
Ranges(DL
);
375 BasicBlock::iterator
BI(StartInst
);
377 // Keeps track of the last memory use or def before the insertion point for
378 // the new memset. The new MemoryDef for the inserted memsets will be inserted
379 // after MemInsertPoint.
380 MemoryUseOrDef
*MemInsertPoint
= nullptr;
381 for (++BI
; !BI
->isTerminator(); ++BI
) {
383 cast_or_null
<MemoryUseOrDef
>(MSSA
->getMemoryAccess(&*BI
));
385 MemInsertPoint
= CurrentAcc
;
387 // Calls that only access inaccessible memory do not block merging
388 // accessible stores.
389 if (auto *CB
= dyn_cast
<CallBase
>(BI
)) {
390 if (CB
->onlyAccessesInaccessibleMemory())
394 if (!isa
<StoreInst
>(BI
) && !isa
<MemSetInst
>(BI
)) {
395 // If the instruction is readnone, ignore it, otherwise bail out. We
396 // don't even allow readonly here because we don't want something like:
397 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
398 if (BI
->mayWriteToMemory() || BI
->mayReadFromMemory())
403 if (auto *NextStore
= dyn_cast
<StoreInst
>(BI
)) {
404 // If this is a store, see if we can merge it in.
405 if (!NextStore
->isSimple())
408 Value
*StoredVal
= NextStore
->getValueOperand();
410 // Don't convert stores of non-integral pointer types to memsets (which
412 if (DL
.isNonIntegralPointerType(StoredVal
->getType()->getScalarType()))
415 // We can't track ranges involving scalable types.
416 if (DL
.getTypeStoreSize(StoredVal
->getType()).isScalable())
419 // Check to see if this stored value is of the same byte-splattable value.
420 Value
*StoredByte
= isBytewiseValue(StoredVal
, DL
);
421 if (isa
<UndefValue
>(ByteVal
) && StoredByte
)
422 ByteVal
= StoredByte
;
423 if (ByteVal
!= StoredByte
)
426 // Check to see if this store is to a constant offset from the start ptr.
427 std::optional
<int64_t> Offset
=
428 NextStore
->getPointerOperand()->getPointerOffsetFrom(StartPtr
, DL
);
432 Ranges
.addStore(*Offset
, NextStore
);
434 auto *MSI
= cast
<MemSetInst
>(BI
);
436 if (MSI
->isVolatile() || ByteVal
!= MSI
->getValue() ||
437 !isa
<ConstantInt
>(MSI
->getLength()))
440 // Check to see if this store is to a constant offset from the start ptr.
441 std::optional
<int64_t> Offset
=
442 MSI
->getDest()->getPointerOffsetFrom(StartPtr
, DL
);
446 Ranges
.addMemSet(*Offset
, MSI
);
450 // If we have no ranges, then we just had a single store with nothing that
451 // could be merged in. This is a very common case of course.
455 // If we had at least one store that could be merged in, add the starting
456 // store as well. We try to avoid this unless there is at least something
457 // interesting as a small compile-time optimization.
458 Ranges
.addInst(0, StartInst
);
460 // If we create any memsets, we put it right before the first instruction that
461 // isn't part of the memset block. This ensure that the memset is dominated
462 // by any addressing instruction needed by the start of the block.
463 IRBuilder
<> Builder(&*BI
);
465 // Now that we have full information about ranges, loop over the ranges and
466 // emit memset's for anything big enough to be worthwhile.
467 Instruction
*AMemSet
= nullptr;
468 for (const MemsetRange
&Range
: Ranges
) {
469 if (Range
.TheStores
.size() == 1)
472 // If it is profitable to lower this range to memset, do so now.
473 if (!Range
.isProfitableToUseMemset(DL
))
476 // Otherwise, we do want to transform this! Create a new memset.
477 // Get the starting pointer of the block.
478 StartPtr
= Range
.StartPtr
;
480 AMemSet
= Builder
.CreateMemSet(StartPtr
, ByteVal
, Range
.End
- Range
.Start
,
482 AMemSet
->mergeDIAssignID(Range
.TheStores
);
484 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction
*SI
485 : Range
.TheStores
) dbgs()
487 dbgs() << "With: " << *AMemSet
<< '\n');
488 if (!Range
.TheStores
.empty())
489 AMemSet
->setDebugLoc(Range
.TheStores
[0]->getDebugLoc());
491 auto *NewDef
= cast
<MemoryDef
>(
492 MemInsertPoint
->getMemoryInst() == &*BI
493 ? MSSAU
->createMemoryAccessBefore(AMemSet
, nullptr, MemInsertPoint
)
494 : MSSAU
->createMemoryAccessAfter(AMemSet
, nullptr, MemInsertPoint
));
495 MSSAU
->insertDef(NewDef
, /*RenameUses=*/true);
496 MemInsertPoint
= NewDef
;
498 // Zap all the stores.
499 for (Instruction
*SI
: Range
.TheStores
)
500 eraseInstruction(SI
);
508 // This method try to lift a store instruction before position P.
509 // It will lift the store and its argument + that anything that
510 // may alias with these.
511 // The method returns true if it was successful.
512 bool MemCpyOptPass::moveUp(StoreInst
*SI
, Instruction
*P
, const LoadInst
*LI
) {
513 // If the store alias this position, early bail out.
514 MemoryLocation StoreLoc
= MemoryLocation::get(SI
);
515 if (isModOrRefSet(AA
->getModRefInfo(P
, StoreLoc
)))
518 // Keep track of the arguments of all instruction we plan to lift
519 // so we can make sure to lift them as well if appropriate.
520 DenseSet
<Instruction
*> Args
;
521 auto AddArg
= [&](Value
*Arg
) {
522 auto *I
= dyn_cast
<Instruction
>(Arg
);
523 if (I
&& I
->getParent() == SI
->getParent()) {
524 // Cannot hoist user of P above P
531 if (!AddArg(SI
->getPointerOperand()))
534 // Instruction to lift before P.
535 SmallVector
<Instruction
*, 8> ToLift
{SI
};
537 // Memory locations of lifted instructions.
538 SmallVector
<MemoryLocation
, 8> MemLocs
{StoreLoc
};
541 SmallVector
<const CallBase
*, 8> Calls
;
543 const MemoryLocation LoadLoc
= MemoryLocation::get(LI
);
545 for (auto I
= --SI
->getIterator(), E
= P
->getIterator(); I
!= E
; --I
) {
548 // Make sure hoisting does not perform a store that was not guaranteed to
550 if (!isGuaranteedToTransferExecutionToSuccessor(C
))
553 bool MayAlias
= isModOrRefSet(AA
->getModRefInfo(C
, std::nullopt
));
555 bool NeedLift
= false;
559 NeedLift
= llvm::any_of(MemLocs
, [C
, this](const MemoryLocation
&ML
) {
560 return isModOrRefSet(AA
->getModRefInfo(C
, ML
));
564 NeedLift
= llvm::any_of(Calls
, [C
, this](const CallBase
*Call
) {
565 return isModOrRefSet(AA
->getModRefInfo(C
, Call
));
573 // Since LI is implicitly moved downwards past the lifted instructions,
574 // none of them may modify its source.
575 if (isModSet(AA
->getModRefInfo(C
, LoadLoc
)))
577 else if (const auto *Call
= dyn_cast
<CallBase
>(C
)) {
578 // If we can't lift this before P, it's game over.
579 if (isModOrRefSet(AA
->getModRefInfo(P
, Call
)))
582 Calls
.push_back(Call
);
583 } else if (isa
<LoadInst
>(C
) || isa
<StoreInst
>(C
) || isa
<VAArgInst
>(C
)) {
584 // If we can't lift this before P, it's game over.
585 auto ML
= MemoryLocation::get(C
);
586 if (isModOrRefSet(AA
->getModRefInfo(P
, ML
)))
589 MemLocs
.push_back(ML
);
591 // We don't know how to lift this instruction.
596 for (Value
*Op
: C
->operands())
601 // Find MSSA insertion point. Normally P will always have a corresponding
602 // memory access before which we can insert. However, with non-standard AA
603 // pipelines, there may be a mismatch between AA and MSSA, in which case we
604 // will scan for a memory access before P. In either case, we know for sure
605 // that at least the load will have a memory access.
606 // TODO: Simplify this once P will be determined by MSSA, in which case the
607 // discrepancy can no longer occur.
608 MemoryUseOrDef
*MemInsertPoint
= nullptr;
609 if (MemoryUseOrDef
*MA
= MSSA
->getMemoryAccess(P
)) {
610 MemInsertPoint
= cast
<MemoryUseOrDef
>(--MA
->getIterator());
612 const Instruction
*ConstP
= P
;
613 for (const Instruction
&I
: make_range(++ConstP
->getReverseIterator(),
614 ++LI
->getReverseIterator())) {
615 if (MemoryUseOrDef
*MA
= MSSA
->getMemoryAccess(&I
)) {
622 // We made it, we need to lift.
623 for (auto *I
: llvm::reverse(ToLift
)) {
624 LLVM_DEBUG(dbgs() << "Lifting " << *I
<< " before " << *P
<< "\n");
626 assert(MemInsertPoint
&& "Must have found insert point");
627 if (MemoryUseOrDef
*MA
= MSSA
->getMemoryAccess(I
)) {
628 MSSAU
->moveAfter(MA
, MemInsertPoint
);
636 bool MemCpyOptPass::processStoreOfLoad(StoreInst
*SI
, LoadInst
*LI
,
637 const DataLayout
&DL
,
638 BasicBlock::iterator
&BBI
) {
639 if (!LI
->isSimple() || !LI
->hasOneUse() || LI
->getParent() != SI
->getParent())
642 BatchAAResults
BAA(*AA
, EEA
);
643 auto *T
= LI
->getType();
644 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
645 // the corresponding libcalls are not available.
646 // TODO: We should really distinguish between libcall availability and
647 // our ability to introduce intrinsics.
648 if (T
->isAggregateType() &&
649 (EnableMemCpyOptWithoutLibcalls
||
650 (TLI
->has(LibFunc_memcpy
) && TLI
->has(LibFunc_memmove
)))) {
651 MemoryLocation LoadLoc
= MemoryLocation::get(LI
);
652 MemoryUseOrDef
*LoadAccess
= MSSA
->getMemoryAccess(LI
),
653 *StoreAccess
= MSSA
->getMemoryAccess(SI
);
655 // We use MSSA to check if an instruction may store to the memory we load
656 // from in between the load and the store. If such an instruction is found,
657 // we try to promote there instead of at the store position.
658 auto *Clobber
= MSSA
->getWalker()->getClobberingMemoryAccess(
659 StoreAccess
->getDefiningAccess(), LoadLoc
, BAA
);
660 Instruction
*P
= MSSA
->dominates(LoadAccess
, Clobber
)
661 ? cast
<MemoryUseOrDef
>(Clobber
)->getMemoryInst()
664 // If we found an instruction that may write to the loaded memory,
665 // we can try to promote at this position instead of the store
666 // position if nothing aliases the store memory after this and the store
667 // destination is not in the range.
668 if (P
== SI
|| moveUp(SI
, P
, LI
)) {
669 // If we load from memory that may alias the memory we store to,
670 // memmove must be used to preserve semantic. If not, memcpy can
671 // be used. Also, if we load from constant memory, memcpy can be used
672 // as the constant memory won't be modified.
673 bool UseMemMove
= false;
674 if (isModSet(AA
->getModRefInfo(SI
, LoadLoc
)))
677 IRBuilder
<> Builder(P
);
679 Builder
.CreateTypeSize(Builder
.getInt64Ty(), DL
.getTypeStoreSize(T
));
682 M
= Builder
.CreateMemMove(SI
->getPointerOperand(), SI
->getAlign(),
683 LI
->getPointerOperand(), LI
->getAlign(),
686 M
= Builder
.CreateMemCpy(SI
->getPointerOperand(), SI
->getAlign(),
687 LI
->getPointerOperand(), LI
->getAlign(), Size
);
688 M
->copyMetadata(*SI
, LLVMContext::MD_DIAssignID
);
690 LLVM_DEBUG(dbgs() << "Promoting " << *LI
<< " to " << *SI
<< " => " << *M
693 auto *LastDef
= cast
<MemoryDef
>(MSSA
->getMemoryAccess(SI
));
694 auto *NewAccess
= MSSAU
->createMemoryAccessAfter(M
, nullptr, LastDef
);
695 MSSAU
->insertDef(cast
<MemoryDef
>(NewAccess
), /*RenameUses=*/true);
697 eraseInstruction(SI
);
698 eraseInstruction(LI
);
701 // Make sure we do not invalidate the iterator.
702 BBI
= M
->getIterator();
707 // Detect cases where we're performing call slot forwarding, but
708 // happen to be using a load-store pair to implement it, rather than
710 auto GetCall
= [&]() -> CallInst
* {
711 // We defer this expensive clobber walk until the cheap checks
712 // have been done on the source inside performCallSlotOptzn.
713 if (auto *LoadClobber
= dyn_cast
<MemoryUseOrDef
>(
714 MSSA
->getWalker()->getClobberingMemoryAccess(LI
, BAA
)))
715 return dyn_cast_or_null
<CallInst
>(LoadClobber
->getMemoryInst());
719 bool Changed
= performCallSlotOptzn(
720 LI
, SI
, SI
->getPointerOperand()->stripPointerCasts(),
721 LI
->getPointerOperand()->stripPointerCasts(),
722 DL
.getTypeStoreSize(SI
->getOperand(0)->getType()),
723 std::min(SI
->getAlign(), LI
->getAlign()), BAA
, GetCall
);
725 eraseInstruction(SI
);
726 eraseInstruction(LI
);
731 // If this is a load-store pair from a stack slot to a stack slot, we
732 // might be able to perform the stack-move optimization just as we do for
733 // memcpys from an alloca to an alloca.
734 if (auto *DestAlloca
= dyn_cast
<AllocaInst
>(SI
->getPointerOperand())) {
735 if (auto *SrcAlloca
= dyn_cast
<AllocaInst
>(LI
->getPointerOperand())) {
736 if (performStackMoveOptzn(LI
, SI
, DestAlloca
, SrcAlloca
,
737 DL
.getTypeStoreSize(T
), BAA
)) {
738 // Avoid invalidating the iterator.
739 BBI
= SI
->getNextNonDebugInstruction()->getIterator();
740 eraseInstruction(SI
);
741 eraseInstruction(LI
);
751 bool MemCpyOptPass::processStore(StoreInst
*SI
, BasicBlock::iterator
&BBI
) {
755 // Avoid merging nontemporal stores since the resulting
756 // memcpy/memset would not be able to preserve the nontemporal hint.
757 // In theory we could teach how to propagate the !nontemporal metadata to
758 // memset calls. However, that change would force the backend to
759 // conservatively expand !nontemporal memset calls back to sequences of
760 // store instructions (effectively undoing the merging).
761 if (SI
->getMetadata(LLVMContext::MD_nontemporal
))
764 const DataLayout
&DL
= SI
->getDataLayout();
766 Value
*StoredVal
= SI
->getValueOperand();
768 // Not all the transforms below are correct for non-integral pointers, bail
769 // until we've audited the individual pieces.
770 if (DL
.isNonIntegralPointerType(StoredVal
->getType()->getScalarType()))
773 // Load to store forwarding can be interpreted as memcpy.
774 if (auto *LI
= dyn_cast
<LoadInst
>(StoredVal
))
775 return processStoreOfLoad(SI
, LI
, DL
, BBI
);
777 // The following code creates memset intrinsics out of thin air. Don't do
778 // this if the corresponding libfunc is not available.
779 // TODO: We should really distinguish between libcall availability and
780 // our ability to introduce intrinsics.
781 if (!(TLI
->has(LibFunc_memset
) || EnableMemCpyOptWithoutLibcalls
))
784 // There are two cases that are interesting for this code to handle: memcpy
785 // and memset. Right now we only handle memset.
787 // Ensure that the value being stored is something that can be memset'able a
788 // byte at a time like "0" or "-1" or any width, as well as things like
789 // 0xA0A0A0A0 and 0.0.
790 Value
*V
= SI
->getOperand(0);
791 Value
*ByteVal
= isBytewiseValue(V
, DL
);
796 tryMergingIntoMemset(SI
, SI
->getPointerOperand(), ByteVal
)) {
797 BBI
= I
->getIterator(); // Don't invalidate iterator.
801 // If we have an aggregate, we try to promote it to memset regardless
802 // of opportunity for merging as it can expose optimization opportunities
803 // in subsequent passes.
804 auto *T
= V
->getType();
805 if (!T
->isAggregateType())
808 TypeSize Size
= DL
.getTypeStoreSize(T
);
809 if (Size
.isScalable())
812 IRBuilder
<> Builder(SI
);
813 auto *M
= Builder
.CreateMemSet(SI
->getPointerOperand(), ByteVal
, Size
,
815 M
->copyMetadata(*SI
, LLVMContext::MD_DIAssignID
);
817 LLVM_DEBUG(dbgs() << "Promoting " << *SI
<< " to " << *M
<< "\n");
819 // The newly inserted memset is immediately overwritten by the original
820 // store, so we do not need to rename uses.
821 auto *StoreDef
= cast
<MemoryDef
>(MSSA
->getMemoryAccess(SI
));
822 auto *NewAccess
= MSSAU
->createMemoryAccessBefore(M
, nullptr, StoreDef
);
823 MSSAU
->insertDef(cast
<MemoryDef
>(NewAccess
), /*RenameUses=*/false);
825 eraseInstruction(SI
);
828 // Make sure we do not invalidate the iterator.
829 BBI
= M
->getIterator();
833 bool MemCpyOptPass::processMemSet(MemSetInst
*MSI
, BasicBlock::iterator
&BBI
) {
834 // See if there is another memset or store neighboring this memset which
835 // allows us to widen out the memset to do a single larger store.
836 if (isa
<ConstantInt
>(MSI
->getLength()) && !MSI
->isVolatile())
838 tryMergingIntoMemset(MSI
, MSI
->getDest(), MSI
->getValue())) {
839 BBI
= I
->getIterator(); // Don't invalidate iterator.
845 /// Takes a memcpy and a call that it depends on,
846 /// and checks for the possibility of a call slot optimization by having
847 /// the call write its result directly into the destination of the memcpy.
848 bool MemCpyOptPass::performCallSlotOptzn(Instruction
*cpyLoad
,
849 Instruction
*cpyStore
, Value
*cpyDest
,
850 Value
*cpySrc
, TypeSize cpySize
,
853 std::function
<CallInst
*()> GetC
) {
854 // The general transformation to keep in mind is
856 // call @func(..., src, ...)
857 // memcpy(dest, src, ...)
861 // memcpy(dest, src, ...)
862 // call @func(..., dest, ...)
864 // Since moving the memcpy is technically awkward, we additionally check that
865 // src only holds uninitialized values at the moment of the call, meaning that
866 // the memcpy can be discarded rather than moved.
868 // We can't optimize scalable types.
869 if (cpySize
.isScalable())
872 // Require that src be an alloca. This simplifies the reasoning considerably.
873 auto *srcAlloca
= dyn_cast
<AllocaInst
>(cpySrc
);
877 ConstantInt
*srcArraySize
= dyn_cast
<ConstantInt
>(srcAlloca
->getArraySize());
881 const DataLayout
&DL
= cpyLoad
->getDataLayout();
882 TypeSize SrcAllocaSize
= DL
.getTypeAllocSize(srcAlloca
->getAllocatedType());
883 // We can't optimize scalable types.
884 if (SrcAllocaSize
.isScalable())
886 uint64_t srcSize
= SrcAllocaSize
* srcArraySize
->getZExtValue();
888 if (cpySize
< srcSize
)
891 CallInst
*C
= GetC();
895 // Lifetime marks shouldn't be operated on.
896 if (Function
*F
= C
->getCalledFunction())
897 if (F
->isIntrinsic() && F
->getIntrinsicID() == Intrinsic::lifetime_start
)
900 if (C
->getParent() != cpyStore
->getParent()) {
901 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
905 MemoryLocation DestLoc
=
906 isa
<StoreInst
>(cpyStore
)
907 ? MemoryLocation::get(cpyStore
)
908 : MemoryLocation::getForDest(cast
<MemCpyInst
>(cpyStore
));
910 // Check that nothing touches the dest of the copy between
911 // the call and the store/memcpy.
912 Instruction
*SkippedLifetimeStart
= nullptr;
913 if (accessedBetween(BAA
, DestLoc
, MSSA
->getMemoryAccess(C
),
914 MSSA
->getMemoryAccess(cpyStore
), &SkippedLifetimeStart
)) {
915 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
919 // If we need to move a lifetime.start above the call, make sure that we can
920 // actually do so. If the argument is bitcasted for example, we would have to
921 // move the bitcast as well, which we don't handle.
922 if (SkippedLifetimeStart
) {
924 dyn_cast
<Instruction
>(SkippedLifetimeStart
->getOperand(1));
925 if (LifetimeArg
&& LifetimeArg
->getParent() == C
->getParent() &&
926 C
->comesBefore(LifetimeArg
))
930 // Check that storing to the first srcSize bytes of dest will not cause a
931 // trap or data race.
932 bool ExplicitlyDereferenceableOnly
;
933 if (!isWritableObject(getUnderlyingObject(cpyDest
),
934 ExplicitlyDereferenceableOnly
) ||
935 !isDereferenceableAndAlignedPointer(cpyDest
, Align(1), APInt(64, cpySize
),
937 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
941 // Make sure that nothing can observe cpyDest being written early. There are
942 // a number of cases to consider:
943 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
945 // 2. C itself may not access cpyDest (prior to the transform). This is
946 // checked further below.
947 // 3. If cpyDest is accessible to the caller of this function (potentially
948 // captured and not based on an alloca), we need to ensure that we cannot
949 // unwind between C and cpyStore. This is checked here.
950 // 4. If cpyDest is potentially captured, there may be accesses to it from
951 // another thread. In this case, we need to check that cpyStore is
952 // guaranteed to be executed if C is. As it is a non-atomic access, it
953 // renders accesses from other threads undefined.
954 // TODO: This is currently not checked.
955 if (mayBeVisibleThroughUnwinding(cpyDest
, C
, cpyStore
)) {
956 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
960 // Check that dest points to memory that is at least as aligned as src.
961 Align srcAlign
= srcAlloca
->getAlign();
962 bool isDestSufficientlyAligned
= srcAlign
<= cpyDestAlign
;
963 // If dest is not aligned enough and we can't increase its alignment then
965 if (!isDestSufficientlyAligned
&& !isa
<AllocaInst
>(cpyDest
)) {
966 LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
970 // Check that src is not accessed except via the call and the memcpy. This
971 // guarantees that it holds only undefined values when passed in (so the final
972 // memcpy can be dropped), that it is not read or written between the call and
973 // the memcpy, and that writing beyond the end of it is undefined.
974 SmallVector
<User
*, 8> srcUseList(srcAlloca
->users());
975 while (!srcUseList
.empty()) {
976 User
*U
= srcUseList
.pop_back_val();
978 if (isa
<AddrSpaceCastInst
>(U
)) {
979 append_range(srcUseList
, U
->users());
982 if (const auto *IT
= dyn_cast
<IntrinsicInst
>(U
))
983 if (IT
->isLifetimeStartOrEnd())
986 if (U
!= C
&& U
!= cpyLoad
) {
987 LLVM_DEBUG(dbgs() << "Call slot: Source accessed by " << *U
<< "\n");
992 // Check whether src is captured by the called function, in which case there
993 // may be further indirect uses of src.
994 bool SrcIsCaptured
= any_of(C
->args(), [&](Use
&U
) {
995 return U
->stripPointerCasts() == cpySrc
&&
996 !C
->doesNotCapture(C
->getArgOperandNo(&U
));
999 // If src is captured, then check whether there are any potential uses of
1000 // src through the captured pointer before the lifetime of src ends, either
1001 // due to a lifetime.end or a return from the function.
1002 if (SrcIsCaptured
) {
1003 // Check that dest is not captured before/at the call. We have already
1004 // checked that src is not captured before it. If either had been captured,
1005 // then the call might be comparing the argument against the captured dest
1007 Value
*DestObj
= getUnderlyingObject(cpyDest
);
1008 if (!isIdentifiedFunctionLocal(DestObj
) ||
1009 PointerMayBeCapturedBefore(DestObj
, /* ReturnCaptures */ true,
1010 /* StoreCaptures */ true, C
, DT
,
1011 /* IncludeI */ true))
1014 MemoryLocation SrcLoc
=
1015 MemoryLocation(srcAlloca
, LocationSize::precise(srcSize
));
1016 for (Instruction
&I
:
1017 make_range(++C
->getIterator(), C
->getParent()->end())) {
1018 // Lifetime of srcAlloca ends at lifetime.end.
1019 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
)) {
1020 if (II
->getIntrinsicID() == Intrinsic::lifetime_end
&&
1021 II
->getArgOperand(1)->stripPointerCasts() == srcAlloca
&&
1022 cast
<ConstantInt
>(II
->getArgOperand(0))->uge(srcSize
))
1026 // Lifetime of srcAlloca ends at return.
1027 if (isa
<ReturnInst
>(&I
))
1030 // Ignore the direct read of src in the load.
1034 // Check whether this instruction may mod/ref src through the captured
1035 // pointer (we have already any direct mod/refs in the loop above).
1036 // Also bail if we hit a terminator, as we don't want to scan into other
1038 if (isModOrRefSet(BAA
.getModRefInfo(&I
, SrcLoc
)) || I
.isTerminator())
1043 // Since we're changing the parameter to the callsite, we need to make sure
1044 // that what would be the new parameter dominates the callsite.
1045 bool NeedMoveGEP
= false;
1046 if (!DT
->dominates(cpyDest
, C
)) {
1047 // Support moving a constant index GEP before the call.
1048 auto *GEP
= dyn_cast
<GetElementPtrInst
>(cpyDest
);
1049 if (GEP
&& GEP
->hasAllConstantIndices() &&
1050 DT
->dominates(GEP
->getPointerOperand(), C
))
1056 // In addition to knowing that the call does not access src in some
1057 // unexpected manner, for example via a global, which we deduce from
1058 // the use analysis, we also need to know that it does not sneakily
1059 // access dest. We rely on AA to figure this out for us.
1060 MemoryLocation
DestWithSrcSize(cpyDest
, LocationSize::precise(srcSize
));
1061 ModRefInfo MR
= BAA
.getModRefInfo(C
, DestWithSrcSize
);
1062 // If necessary, perform additional analysis.
1063 if (isModOrRefSet(MR
))
1064 MR
= BAA
.callCapturesBefore(C
, DestWithSrcSize
, DT
);
1065 if (isModOrRefSet(MR
))
1068 // We can't create address space casts here because we don't know if they're
1069 // safe for the target.
1070 if (cpySrc
->getType() != cpyDest
->getType())
1072 for (unsigned ArgI
= 0; ArgI
< C
->arg_size(); ++ArgI
)
1073 if (C
->getArgOperand(ArgI
)->stripPointerCasts() == cpySrc
&&
1074 cpySrc
->getType() != C
->getArgOperand(ArgI
)->getType())
1077 // All the checks have passed, so do the transformation.
1078 bool changedArgument
= false;
1079 for (unsigned ArgI
= 0; ArgI
< C
->arg_size(); ++ArgI
)
1080 if (C
->getArgOperand(ArgI
)->stripPointerCasts() == cpySrc
) {
1081 changedArgument
= true;
1082 C
->setArgOperand(ArgI
, cpyDest
);
1085 if (!changedArgument
)
1088 // If the destination wasn't sufficiently aligned then increase its alignment.
1089 if (!isDestSufficientlyAligned
) {
1090 assert(isa
<AllocaInst
>(cpyDest
) && "Can only increase alloca alignment!");
1091 cast
<AllocaInst
>(cpyDest
)->setAlignment(srcAlign
);
1095 auto *GEP
= dyn_cast
<GetElementPtrInst
>(cpyDest
);
1099 if (SkippedLifetimeStart
) {
1100 SkippedLifetimeStart
->moveBefore(C
);
1101 MSSAU
->moveBefore(MSSA
->getMemoryAccess(SkippedLifetimeStart
),
1102 MSSA
->getMemoryAccess(C
));
1105 combineAAMetadata(C
, cpyLoad
);
1106 if (cpyLoad
!= cpyStore
)
1107 combineAAMetadata(C
, cpyStore
);
1113 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1114 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1115 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst
*M
,
1117 BatchAAResults
&BAA
) {
1118 // If dep instruction is reading from our current input, then it is a noop
1119 // transfer and substituting the input won't change this instruction. Just
1120 // ignore the input and let someone else zap MDep. This handles cases like:
1123 if (M
->getSource() == MDep
->getSource())
1126 // We can only optimize non-volatile memcpy's.
1127 if (MDep
->isVolatile())
1130 int64_t MForwardOffset
= 0;
1131 const DataLayout
&DL
= M
->getModule()->getDataLayout();
1132 // We can only transforms memcpy's where the dest of one is the source of the
1133 // other, or they have an offset in a range.
1134 if (M
->getSource() != MDep
->getDest()) {
1135 std::optional
<int64_t> Offset
=
1136 M
->getSource()->getPointerOffsetFrom(MDep
->getDest(), DL
);
1137 if (!Offset
|| *Offset
< 0)
1139 MForwardOffset
= *Offset
;
1142 // The length of the memcpy's must be the same, or the preceding one
1143 // must be larger than the following one.
1144 if (MForwardOffset
!= 0 || MDep
->getLength() != M
->getLength()) {
1145 auto *MDepLen
= dyn_cast
<ConstantInt
>(MDep
->getLength());
1146 auto *MLen
= dyn_cast
<ConstantInt
>(M
->getLength());
1147 if (!MDepLen
|| !MLen
||
1148 MDepLen
->getZExtValue() < MLen
->getZExtValue() + MForwardOffset
)
1152 IRBuilder
<> Builder(M
);
1153 auto *CopySource
= MDep
->getSource();
1154 Instruction
*NewCopySource
= nullptr;
1155 auto CleanupOnRet
= llvm::make_scope_exit([&] {
1156 if (NewCopySource
&& NewCopySource
->use_empty())
1157 // Safety: It's safe here because we will only allocate more instructions
1158 // after finishing all BatchAA queries, but we have to be careful if we
1159 // want to do something like this in another place. Then we'd probably
1160 // have to delay instruction removal until all transforms on an
1161 // instruction finished.
1162 eraseInstruction(NewCopySource
);
1164 MaybeAlign CopySourceAlign
= MDep
->getSourceAlign();
1165 // We just need to calculate the actual size of the copy.
1166 auto MCopyLoc
= MemoryLocation::getForSource(MDep
).getWithNewSize(
1167 MemoryLocation::getForSource(M
).Size
);
1169 // When the forwarding offset is greater than 0, we transform
1171 // memcpy(d2 <- d1+o)
1173 // memcpy(d2 <- s1+o)
1174 if (MForwardOffset
> 0) {
1175 // The copy destination of `M` maybe can serve as the source of copying.
1176 std::optional
<int64_t> MDestOffset
=
1177 M
->getRawDest()->getPointerOffsetFrom(MDep
->getRawSource(), DL
);
1178 if (MDestOffset
== MForwardOffset
)
1179 CopySource
= M
->getDest();
1181 CopySource
= Builder
.CreateInBoundsPtrAdd(
1182 CopySource
, Builder
.getInt64(MForwardOffset
));
1183 NewCopySource
= dyn_cast
<Instruction
>(CopySource
);
1185 // We need to update `MCopyLoc` if an offset exists.
1186 MCopyLoc
= MCopyLoc
.getWithNewPtr(CopySource
);
1187 if (CopySourceAlign
)
1188 CopySourceAlign
= commonAlignment(*CopySourceAlign
, MForwardOffset
);
1191 // Avoid infinite loops
1192 if (BAA
.isMustAlias(M
->getSource(), CopySource
))
1195 // Verify that the copied-from memory doesn't change in between the two
1196 // transfers. For example, in:
1200 // It would be invalid to transform the second memcpy into memcpy(c <- b).
1202 // TODO: If the code between M and MDep is transparent to the destination "c",
1203 // then we could still perform the xform by moving M up to the first memcpy.
1204 if (writtenBetween(MSSA
, BAA
, MCopyLoc
, MSSA
->getMemoryAccess(MDep
),
1205 MSSA
->getMemoryAccess(M
)))
1208 // No need to create `memcpy(a <- a)`.
1209 if (BAA
.isMustAlias(M
->getDest(), CopySource
)) {
1210 // Remove the instruction we're replacing.
1211 eraseInstruction(M
);
1216 // If the dest of the second might alias the source of the first, then the
1217 // source and dest might overlap. In addition, if the source of the first
1218 // points to constant memory, they won't overlap by definition. Otherwise, we
1219 // still want to eliminate the intermediate value, but we have to generate a
1220 // memmove instead of memcpy.
1221 bool UseMemMove
= false;
1222 if (isModSet(BAA
.getModRefInfo(M
, MemoryLocation::getForSource(MDep
)))) {
1223 // Don't convert llvm.memcpy.inline into memmove because memmove can be
1224 // lowered as a call, and that is not allowed for llvm.memcpy.inline (and
1225 // there is no inline version of llvm.memmove)
1226 if (isa
<MemCpyInlineInst
>(M
))
1231 // If all checks passed, then we can transform M.
1232 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1236 // TODO: Is this worth it if we're creating a less aligned memcpy? For
1237 // example we could be moving from movaps -> movq on x86.
1241 Builder
.CreateMemMove(M
->getDest(), M
->getDestAlign(), CopySource
,
1242 CopySourceAlign
, M
->getLength(), M
->isVolatile());
1243 else if (isa
<MemCpyInlineInst
>(M
)) {
1244 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1245 // never allowed since that would allow the latter to be lowered as a call
1246 // to an external function.
1247 NewM
= Builder
.CreateMemCpyInline(M
->getDest(), M
->getDestAlign(),
1248 CopySource
, CopySourceAlign
,
1249 M
->getLength(), M
->isVolatile());
1252 Builder
.CreateMemCpy(M
->getDest(), M
->getDestAlign(), CopySource
,
1253 CopySourceAlign
, M
->getLength(), M
->isVolatile());
1254 NewM
->copyMetadata(*M
, LLVMContext::MD_DIAssignID
);
1256 assert(isa
<MemoryDef
>(MSSA
->getMemoryAccess(M
)));
1257 auto *LastDef
= cast
<MemoryDef
>(MSSA
->getMemoryAccess(M
));
1258 auto *NewAccess
= MSSAU
->createMemoryAccessAfter(NewM
, nullptr, LastDef
);
1259 MSSAU
->insertDef(cast
<MemoryDef
>(NewAccess
), /*RenameUses=*/true);
1261 // Remove the instruction we're replacing.
1262 eraseInstruction(M
);
1267 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1268 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
1269 /// weren't copied over by \p MemCpy.
1271 /// In other words, transform:
1273 /// memset(dst, c, dst_size);
1275 /// memcpy(dst, src, src_size);
1280 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1281 /// memcpy(dst, src, src_size);
1284 /// The memset is sunk to just before the memcpy to ensure that src_size is
1285 /// present when emitting the simplified memset.
1286 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst
*MemCpy
,
1288 BatchAAResults
&BAA
) {
1289 // We can only transform memset/memcpy with the same destination.
1290 if (!BAA
.isMustAlias(MemSet
->getDest(), MemCpy
->getDest()))
1293 // Don't perform the transform if src_size may be zero. In that case, the
1294 // transform is essentially a complex no-op and may lead to an infinite
1295 // loop if BasicAA is smart enough to understand that dst and dst + src_size
1296 // are still MustAlias after the transform.
1297 Value
*SrcSize
= MemCpy
->getLength();
1298 if (!isKnownNonZero(SrcSize
,
1299 SimplifyQuery(MemCpy
->getDataLayout(), DT
, AC
, MemCpy
)))
1302 // Check that src and dst of the memcpy aren't the same. While memcpy
1303 // operands cannot partially overlap, exact equality is allowed.
1304 if (isModSet(BAA
.getModRefInfo(MemCpy
, MemoryLocation::getForSource(MemCpy
))))
1307 // We know that dst up to src_size is not written. We now need to make sure
1308 // that dst up to dst_size is not accessed. (If we did not move the memset,
1309 // checking for reads would be sufficient.)
1310 if (accessedBetween(BAA
, MemoryLocation::getForDest(MemSet
),
1311 MSSA
->getMemoryAccess(MemSet
),
1312 MSSA
->getMemoryAccess(MemCpy
)))
1315 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1316 Value
*Dest
= MemCpy
->getRawDest();
1317 Value
*DestSize
= MemSet
->getLength();
1319 if (mayBeVisibleThroughUnwinding(Dest
, MemSet
, MemCpy
))
1322 // If the sizes are the same, simply drop the memset instead of generating
1323 // a replacement with zero size.
1324 if (DestSize
== SrcSize
) {
1325 eraseInstruction(MemSet
);
1329 // By default, create an unaligned memset.
1330 Align Alignment
= Align(1);
1331 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1333 const Align DestAlign
= std::max(MemSet
->getDestAlign().valueOrOne(),
1334 MemCpy
->getDestAlign().valueOrOne());
1336 if (auto *SrcSizeC
= dyn_cast
<ConstantInt
>(SrcSize
))
1337 Alignment
= commonAlignment(DestAlign
, SrcSizeC
->getZExtValue());
1339 IRBuilder
<> Builder(MemCpy
);
1341 // Preserve the debug location of the old memset for the code emitted here
1342 // related to the new memset. This is correct according to the rules in
1343 // https://llvm.org/docs/HowToUpdateDebugInfo.html about "when to preserve an
1344 // instruction location", given that we move the memset within the basic
1346 assert(MemSet
->getParent() == MemCpy
->getParent() &&
1347 "Preserving debug location based on moving memset within BB.");
1348 Builder
.SetCurrentDebugLocation(MemSet
->getDebugLoc());
1350 // If the sizes have different types, zext the smaller one.
1351 if (DestSize
->getType() != SrcSize
->getType()) {
1352 if (DestSize
->getType()->getIntegerBitWidth() >
1353 SrcSize
->getType()->getIntegerBitWidth())
1354 SrcSize
= Builder
.CreateZExt(SrcSize
, DestSize
->getType());
1356 DestSize
= Builder
.CreateZExt(DestSize
, SrcSize
->getType());
1359 Value
*Ule
= Builder
.CreateICmpULE(DestSize
, SrcSize
);
1360 Value
*SizeDiff
= Builder
.CreateSub(DestSize
, SrcSize
);
1361 Value
*MemsetLen
= Builder
.CreateSelect(
1362 Ule
, ConstantInt::getNullValue(DestSize
->getType()), SizeDiff
);
1363 Instruction
*NewMemSet
=
1364 Builder
.CreateMemSet(Builder
.CreatePtrAdd(Dest
, SrcSize
),
1365 MemSet
->getOperand(1), MemsetLen
, Alignment
);
1367 assert(isa
<MemoryDef
>(MSSA
->getMemoryAccess(MemCpy
)) &&
1368 "MemCpy must be a MemoryDef");
1369 // The new memset is inserted before the memcpy, and it is known that the
1370 // memcpy's defining access is the memset about to be removed.
1371 auto *LastDef
= cast
<MemoryDef
>(MSSA
->getMemoryAccess(MemCpy
));
1373 MSSAU
->createMemoryAccessBefore(NewMemSet
, nullptr, LastDef
);
1374 MSSAU
->insertDef(cast
<MemoryDef
>(NewAccess
), /*RenameUses=*/true);
1376 eraseInstruction(MemSet
);
1380 /// Determine whether the instruction has undefined content for the given Size,
1381 /// either because it was freshly alloca'd or started its lifetime.
1382 static bool hasUndefContents(MemorySSA
*MSSA
, BatchAAResults
&AA
, Value
*V
,
1383 MemoryDef
*Def
, Value
*Size
) {
1384 if (MSSA
->isLiveOnEntryDef(Def
))
1385 return isa
<AllocaInst
>(getUnderlyingObject(V
));
1387 if (auto *II
= dyn_cast_or_null
<IntrinsicInst
>(Def
->getMemoryInst())) {
1388 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
) {
1389 auto *LTSize
= cast
<ConstantInt
>(II
->getArgOperand(0));
1391 if (auto *CSize
= dyn_cast
<ConstantInt
>(Size
)) {
1392 if (AA
.isMustAlias(V
, II
->getArgOperand(1)) &&
1393 LTSize
->getZExtValue() >= CSize
->getZExtValue())
1397 // If the lifetime.start covers a whole alloca (as it almost always
1398 // does) and we're querying a pointer based on that alloca, then we know
1399 // the memory is definitely undef, regardless of how exactly we alias.
1400 // The size also doesn't matter, as an out-of-bounds access would be UB.
1401 if (auto *Alloca
= dyn_cast
<AllocaInst
>(getUnderlyingObject(V
))) {
1402 if (getUnderlyingObject(II
->getArgOperand(1)) == Alloca
) {
1403 const DataLayout
&DL
= Alloca
->getDataLayout();
1404 if (std::optional
<TypeSize
> AllocaSize
=
1405 Alloca
->getAllocationSize(DL
))
1406 if (*AllocaSize
== LTSize
->getValue())
1416 /// Transform memcpy to memset when its source was just memset.
1417 /// In other words, turn:
1419 /// memset(dst1, c, dst1_size);
1420 /// memcpy(dst2, dst1, dst2_size);
1424 /// memset(dst1, c, dst1_size);
1425 /// memset(dst2, c, dst2_size);
1427 /// When dst2_size <= dst1_size.
1428 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst
*MemCpy
,
1430 BatchAAResults
&BAA
) {
1431 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1432 // memcpying from the same address. Otherwise it is hard to reason about.
1433 if (!BAA
.isMustAlias(MemSet
->getRawDest(), MemCpy
->getRawSource()))
1436 Value
*MemSetSize
= MemSet
->getLength();
1437 Value
*CopySize
= MemCpy
->getLength();
1439 if (MemSetSize
!= CopySize
) {
1440 // Make sure the memcpy doesn't read any more than what the memset wrote.
1441 // Don't worry about sizes larger than i64.
1443 // A known memset size is required.
1444 auto *CMemSetSize
= dyn_cast
<ConstantInt
>(MemSetSize
);
1448 // A known memcpy size is also required.
1449 auto *CCopySize
= dyn_cast
<ConstantInt
>(CopySize
);
1452 if (CCopySize
->getZExtValue() > CMemSetSize
->getZExtValue()) {
1453 // If the memcpy is larger than the memset, but the memory was undef prior
1454 // to the memset, we can just ignore the tail. Technically we're only
1455 // interested in the bytes from MemSetSize..CopySize here, but as we can't
1456 // easily represent this location, we use the full 0..CopySize range.
1457 MemoryLocation MemCpyLoc
= MemoryLocation::getForSource(MemCpy
);
1458 bool CanReduceSize
= false;
1459 MemoryUseOrDef
*MemSetAccess
= MSSA
->getMemoryAccess(MemSet
);
1460 MemoryAccess
*Clobber
= MSSA
->getWalker()->getClobberingMemoryAccess(
1461 MemSetAccess
->getDefiningAccess(), MemCpyLoc
, BAA
);
1462 if (auto *MD
= dyn_cast
<MemoryDef
>(Clobber
))
1463 if (hasUndefContents(MSSA
, BAA
, MemCpy
->getSource(), MD
, CopySize
))
1464 CanReduceSize
= true;
1468 CopySize
= MemSetSize
;
1472 IRBuilder
<> Builder(MemCpy
);
1474 Builder
.CreateMemSet(MemCpy
->getRawDest(), MemSet
->getOperand(1),
1475 CopySize
, MemCpy
->getDestAlign());
1476 auto *LastDef
= cast
<MemoryDef
>(MSSA
->getMemoryAccess(MemCpy
));
1477 auto *NewAccess
= MSSAU
->createMemoryAccessAfter(NewM
, nullptr, LastDef
);
1478 MSSAU
->insertDef(cast
<MemoryDef
>(NewAccess
), /*RenameUses=*/true);
1483 // Attempts to optimize the pattern whereby memory is copied from an alloca to
1484 // another alloca, where the two allocas don't have conflicting mod/ref. If
1485 // successful, the two allocas can be merged into one and the transfer can be
1486 // deleted. This pattern is generated frequently in Rust, due to the ubiquity of
1487 // move operations in that language.
1489 // Once we determine that the optimization is safe to perform, we replace all
1490 // uses of the destination alloca with the source alloca. We also "shrink wrap"
1491 // the lifetime markers of the single merged alloca to before the first use
1492 // and after the last use. Note that the "shrink wrapping" procedure is a safe
1493 // transformation only because we restrict the scope of this optimization to
1494 // allocas that aren't captured.
1495 bool MemCpyOptPass::performStackMoveOptzn(Instruction
*Load
, Instruction
*Store
,
1496 AllocaInst
*DestAlloca
,
1497 AllocaInst
*SrcAlloca
, TypeSize Size
,
1498 BatchAAResults
&BAA
) {
1499 LLVM_DEBUG(dbgs() << "Stack Move: Attempting to optimize:\n"
1502 // Make sure the two allocas are in the same address space.
1503 if (SrcAlloca
->getAddressSpace() != DestAlloca
->getAddressSpace()) {
1504 LLVM_DEBUG(dbgs() << "Stack Move: Address space mismatch\n");
1508 // Check that copy is full with static size.
1509 const DataLayout
&DL
= DestAlloca
->getDataLayout();
1510 std::optional
<TypeSize
> SrcSize
= SrcAlloca
->getAllocationSize(DL
);
1511 if (!SrcSize
|| Size
!= *SrcSize
) {
1512 LLVM_DEBUG(dbgs() << "Stack Move: Source alloca size mismatch\n");
1515 std::optional
<TypeSize
> DestSize
= DestAlloca
->getAllocationSize(DL
);
1516 if (!DestSize
|| Size
!= *DestSize
) {
1517 LLVM_DEBUG(dbgs() << "Stack Move: Destination alloca size mismatch\n");
1521 if (!SrcAlloca
->isStaticAlloca() || !DestAlloca
->isStaticAlloca())
1524 // Check that src and dest are never captured, unescaped allocas. Also
1525 // find the nearest common dominator and postdominator for all users in
1526 // order to shrink wrap the lifetimes, and instructions with noalias metadata
1529 SmallVector
<Instruction
*, 4> LifetimeMarkers
;
1530 SmallSet
<Instruction
*, 4> NoAliasInstrs
;
1531 bool SrcNotDom
= false;
1533 // Recursively track the user and check whether modified alias exist.
1534 auto IsDereferenceableOrNull
= [](Value
*V
, const DataLayout
&DL
) -> bool {
1535 bool CanBeNull
, CanBeFreed
;
1536 return V
->getPointerDereferenceableBytes(DL
, CanBeNull
, CanBeFreed
);
1539 auto CaptureTrackingWithModRef
=
1540 [&](Instruction
*AI
,
1541 function_ref
<bool(Instruction
*)> ModRefCallback
) -> bool {
1542 SmallVector
<Instruction
*, 8> Worklist
;
1543 Worklist
.push_back(AI
);
1544 unsigned MaxUsesToExplore
= getDefaultMaxUsesToExploreForCaptureTracking();
1545 Worklist
.reserve(MaxUsesToExplore
);
1546 SmallSet
<const Use
*, 20> Visited
;
1547 while (!Worklist
.empty()) {
1548 Instruction
*I
= Worklist
.back();
1549 Worklist
.pop_back();
1550 for (const Use
&U
: I
->uses()) {
1551 auto *UI
= cast
<Instruction
>(U
.getUser());
1552 // If any use that isn't dominated by SrcAlloca exists, we move src
1553 // alloca to the entry before the transformation.
1554 if (!DT
->dominates(SrcAlloca
, UI
))
1557 if (Visited
.size() >= MaxUsesToExplore
) {
1560 << "Stack Move: Exceeded max uses to see ModRef, bailing\n");
1563 if (!Visited
.insert(&U
).second
)
1565 switch (DetermineUseCaptureKind(U
, IsDereferenceableOrNull
)) {
1566 case UseCaptureKind::MAY_CAPTURE
:
1568 case UseCaptureKind::PASSTHROUGH
:
1569 // Instructions cannot have non-instruction users.
1570 Worklist
.push_back(UI
);
1572 case UseCaptureKind::NO_CAPTURE
: {
1573 if (UI
->isLifetimeStartOrEnd()) {
1574 // We note the locations of these intrinsic calls so that we can
1575 // delete them later if the optimization succeeds, this is safe
1576 // since both llvm.lifetime.start and llvm.lifetime.end intrinsics
1577 // practically fill all the bytes of the alloca with an undefined
1578 // value, although conceptually marked as alive/dead.
1579 int64_t Size
= cast
<ConstantInt
>(UI
->getOperand(0))->getSExtValue();
1580 if (Size
< 0 || Size
== DestSize
) {
1581 LifetimeMarkers
.push_back(UI
);
1585 if (UI
->hasMetadata(LLVMContext::MD_noalias
))
1586 NoAliasInstrs
.insert(UI
);
1587 if (!ModRefCallback(UI
))
1596 // Check that dest has no Mod/Ref, from the alloca to the Store, except full
1597 // size lifetime intrinsics. And collect modref inst for the reachability
1599 ModRefInfo DestModRef
= ModRefInfo::NoModRef
;
1600 MemoryLocation
DestLoc(DestAlloca
, LocationSize::precise(Size
));
1601 SmallVector
<BasicBlock
*, 8> ReachabilityWorklist
;
1602 auto DestModRefCallback
= [&](Instruction
*UI
) -> bool {
1603 // We don't care about the store itself.
1606 ModRefInfo Res
= BAA
.getModRefInfo(UI
, DestLoc
);
1608 if (isModOrRefSet(Res
)) {
1609 // Instructions reachability checks.
1610 // FIXME: adding the Instruction version isPotentiallyReachableFromMany on
1611 // lib/Analysis/CFG.cpp (currently only for BasicBlocks) might be helpful.
1612 if (UI
->getParent() == Store
->getParent()) {
1613 // The same block case is special because it's the only time we're
1614 // looking within a single block to see which instruction comes first.
1615 // Once we start looking at multiple blocks, the first instruction of
1616 // the block is reachable, so we only need to determine reachability
1617 // between whole blocks.
1618 BasicBlock
*BB
= UI
->getParent();
1620 // If A comes before B, then B is definitively reachable from A.
1621 if (UI
->comesBefore(Store
))
1624 // If the user's parent block is entry, no predecessor exists.
1625 if (BB
->isEntryBlock())
1628 // Otherwise, continue doing the normal per-BB CFG walk.
1629 ReachabilityWorklist
.append(succ_begin(BB
), succ_end(BB
));
1631 ReachabilityWorklist
.push_back(UI
->getParent());
1637 if (!CaptureTrackingWithModRef(DestAlloca
, DestModRefCallback
))
1639 // Bailout if Dest may have any ModRef before Store.
1640 if (!ReachabilityWorklist
.empty() &&
1641 isPotentiallyReachableFromMany(ReachabilityWorklist
, Store
->getParent(),
1642 nullptr, DT
, nullptr))
1645 // Check that, from after the Load to the end of the BB,
1646 // - if the dest has any Mod, src has no Ref, and
1647 // - if the dest has any Ref, src has no Mod except full-sized lifetimes.
1648 MemoryLocation
SrcLoc(SrcAlloca
, LocationSize::precise(Size
));
1650 auto SrcModRefCallback
= [&](Instruction
*UI
) -> bool {
1651 // Any ModRef post-dominated by Load doesn't matter, also Load and Store
1652 // themselves can be ignored.
1653 if (PDT
->dominates(Load
, UI
) || UI
== Load
|| UI
== Store
)
1655 ModRefInfo Res
= BAA
.getModRefInfo(UI
, SrcLoc
);
1656 if ((isModSet(DestModRef
) && isRefSet(Res
)) ||
1657 (isRefSet(DestModRef
) && isModSet(Res
)))
1663 if (!CaptureTrackingWithModRef(SrcAlloca
, SrcModRefCallback
))
1666 // We can do the transformation. First, move the SrcAlloca to the start of the
1669 SrcAlloca
->moveBefore(*SrcAlloca
->getParent(),
1670 SrcAlloca
->getParent()->getFirstInsertionPt());
1671 // Align the allocas appropriately.
1672 SrcAlloca
->setAlignment(
1673 std::max(SrcAlloca
->getAlign(), DestAlloca
->getAlign()));
1675 // Merge the two allocas.
1676 DestAlloca
->replaceAllUsesWith(SrcAlloca
);
1677 eraseInstruction(DestAlloca
);
1679 // Drop metadata on the source alloca.
1680 SrcAlloca
->dropUnknownNonDebugMetadata();
1682 // TODO: Reconstruct merged lifetime markers.
1683 // Remove all other lifetime markers. if the original lifetime intrinsics
1685 if (!LifetimeMarkers
.empty()) {
1686 for (Instruction
*I
: LifetimeMarkers
)
1687 eraseInstruction(I
);
1690 // As this transformation can cause memory accesses that didn't previously
1691 // alias to begin to alias one another, we remove !noalias metadata from any
1692 // uses of either alloca. This is conservative, but more precision doesn't
1693 // seem worthwhile right now.
1694 for (Instruction
*I
: NoAliasInstrs
)
1695 I
->setMetadata(LLVMContext::MD_noalias
, nullptr);
1697 LLVM_DEBUG(dbgs() << "Stack Move: Performed staack-move optimization\n");
1702 static bool isZeroSize(Value
*Size
) {
1703 if (auto *I
= dyn_cast
<Instruction
>(Size
))
1704 if (auto *Res
= simplifyInstruction(I
, I
->getDataLayout()))
1706 // Treat undef/poison size like zero.
1707 if (auto *C
= dyn_cast
<Constant
>(Size
))
1708 return isa
<UndefValue
>(C
) || C
->isNullValue();
1712 /// Perform simplification of memcpy's. If we have memcpy A
1713 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1714 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1715 /// circumstances). This allows later passes to remove the first memcpy
1717 bool MemCpyOptPass::processMemCpy(MemCpyInst
*M
, BasicBlock::iterator
&BBI
) {
1718 // We can only optimize non-volatile memcpy's.
1719 if (M
->isVolatile())
1722 // If the source and destination of the memcpy are the same, then zap it.
1723 if (M
->getSource() == M
->getDest()) {
1725 eraseInstruction(M
);
1729 // If the size is zero, remove the memcpy.
1730 if (isZeroSize(M
->getLength())) {
1732 eraseInstruction(M
);
1736 MemoryUseOrDef
*MA
= MSSA
->getMemoryAccess(M
);
1738 // Degenerate case: memcpy marked as not accessing memory.
1741 // If copying from a constant, try to turn the memcpy into a memset.
1742 if (auto *GV
= dyn_cast
<GlobalVariable
>(M
->getSource()))
1743 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
1744 if (Value
*ByteVal
= isBytewiseValue(GV
->getInitializer(),
1745 M
->getDataLayout())) {
1746 IRBuilder
<> Builder(M
);
1747 Instruction
*NewM
= Builder
.CreateMemSet(
1748 M
->getRawDest(), ByteVal
, M
->getLength(), M
->getDestAlign(), false);
1749 auto *LastDef
= cast
<MemoryDef
>(MA
);
1751 MSSAU
->createMemoryAccessAfter(NewM
, nullptr, LastDef
);
1752 MSSAU
->insertDef(cast
<MemoryDef
>(NewAccess
), /*RenameUses=*/true);
1754 eraseInstruction(M
);
1759 BatchAAResults
BAA(*AA
, EEA
);
1760 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
1761 MemoryAccess
*AnyClobber
= MA
->getDefiningAccess();
1762 MemoryLocation DestLoc
= MemoryLocation::getForDest(M
);
1763 const MemoryAccess
*DestClobber
=
1764 MSSA
->getWalker()->getClobberingMemoryAccess(AnyClobber
, DestLoc
, BAA
);
1766 // Try to turn a partially redundant memset + memcpy into
1767 // smaller memset + memcpy. We don't need the memcpy size for this.
1768 // The memcpy must post-dom the memset, so limit this to the same basic
1769 // block. A non-local generalization is likely not worthwhile.
1770 if (auto *MD
= dyn_cast
<MemoryDef
>(DestClobber
))
1771 if (auto *MDep
= dyn_cast_or_null
<MemSetInst
>(MD
->getMemoryInst()))
1772 if (DestClobber
->getBlock() == M
->getParent())
1773 if (processMemSetMemCpyDependence(M
, MDep
, BAA
))
1776 MemoryAccess
*SrcClobber
= MSSA
->getWalker()->getClobberingMemoryAccess(
1777 AnyClobber
, MemoryLocation::getForSource(M
), BAA
);
1779 // There are five possible optimizations we can do for memcpy:
1780 // a) memcpy-memcpy xform which exposes redundance for DSE.
1781 // b) call-memcpy xform for return slot optimization.
1782 // c) memcpy from freshly alloca'd space or space that has just started
1783 // its lifetime copies undefined data, and we can therefore eliminate
1784 // the memcpy in favor of the data that was already at the destination.
1785 // d) memcpy from a just-memset'd source can be turned into memset.
1786 // e) elimination of memcpy via stack-move optimization.
1787 if (auto *MD
= dyn_cast
<MemoryDef
>(SrcClobber
)) {
1788 if (Instruction
*MI
= MD
->getMemoryInst()) {
1789 if (auto *CopySize
= dyn_cast
<ConstantInt
>(M
->getLength())) {
1790 if (auto *C
= dyn_cast
<CallInst
>(MI
)) {
1791 if (performCallSlotOptzn(M
, M
, M
->getDest(), M
->getSource(),
1792 TypeSize::getFixed(CopySize
->getZExtValue()),
1793 M
->getDestAlign().valueOrOne(), BAA
,
1794 [C
]() -> CallInst
* { return C
; })) {
1795 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1796 << " call: " << *C
<< "\n"
1797 << " memcpy: " << *M
<< "\n");
1798 eraseInstruction(M
);
1804 if (auto *MDep
= dyn_cast
<MemCpyInst
>(MI
))
1805 if (processMemCpyMemCpyDependence(M
, MDep
, BAA
))
1807 if (auto *MDep
= dyn_cast
<MemSetInst
>(MI
)) {
1808 if (performMemCpyToMemSetOptzn(M
, MDep
, BAA
)) {
1809 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1810 eraseInstruction(M
);
1817 if (hasUndefContents(MSSA
, BAA
, M
->getSource(), MD
, M
->getLength())) {
1818 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1819 eraseInstruction(M
);
1825 // If the transfer is from a stack slot to a stack slot, then we may be able
1826 // to perform the stack-move optimization. See the comments in
1827 // performStackMoveOptzn() for more details.
1828 auto *DestAlloca
= dyn_cast
<AllocaInst
>(M
->getDest());
1831 auto *SrcAlloca
= dyn_cast
<AllocaInst
>(M
->getSource());
1834 ConstantInt
*Len
= dyn_cast
<ConstantInt
>(M
->getLength());
1837 if (performStackMoveOptzn(M
, M
, DestAlloca
, SrcAlloca
,
1838 TypeSize::getFixed(Len
->getZExtValue()), BAA
)) {
1839 // Avoid invalidating the iterator.
1840 BBI
= M
->getNextNonDebugInstruction()->getIterator();
1841 eraseInstruction(M
);
1849 /// Memmove calls with overlapping src/dest buffers that come after a memset may
1851 bool MemCpyOptPass::isMemMoveMemSetDependency(MemMoveInst
*M
) {
1852 const auto &DL
= M
->getDataLayout();
1853 MemoryUseOrDef
*MemMoveAccess
= MSSA
->getMemoryAccess(M
);
1857 // The memmove is of form memmove(x, x + A, B).
1858 MemoryLocation SourceLoc
= MemoryLocation::getForSource(M
);
1859 auto *MemMoveSourceOp
= M
->getSource();
1860 auto *Source
= dyn_cast
<GEPOperator
>(MemMoveSourceOp
);
1864 APInt
Offset(DL
.getIndexTypeSizeInBits(Source
->getType()), 0);
1865 LocationSize MemMoveLocSize
= SourceLoc
.Size
;
1866 if (Source
->getPointerOperand() != M
->getDest() ||
1867 !MemMoveLocSize
.hasValue() ||
1868 !Source
->accumulateConstantOffset(DL
, Offset
) || Offset
.isNegative()) {
1872 uint64_t MemMoveSize
= MemMoveLocSize
.getValue();
1873 LocationSize TotalSize
=
1874 LocationSize::precise(Offset
.getZExtValue() + MemMoveSize
);
1875 MemoryLocation
CombinedLoc(M
->getDest(), TotalSize
);
1877 // The first dominating clobbering MemoryAccess for the combined location
1878 // needs to be a memset.
1879 BatchAAResults
BAA(*AA
);
1880 MemoryAccess
*FirstDef
= MemMoveAccess
->getDefiningAccess();
1881 auto *DestClobber
= dyn_cast
<MemoryDef
>(
1882 MSSA
->getWalker()->getClobberingMemoryAccess(FirstDef
, CombinedLoc
, BAA
));
1886 auto *MS
= dyn_cast_or_null
<MemSetInst
>(DestClobber
->getMemoryInst());
1890 // Memset length must be sufficiently large.
1891 auto *MemSetLength
= dyn_cast
<ConstantInt
>(MS
->getLength());
1892 if (!MemSetLength
|| MemSetLength
->getZExtValue() < MemMoveSize
)
1895 // The destination buffer must have been memset'd.
1896 if (!BAA
.isMustAlias(MS
->getDest(), M
->getDest()))
1902 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1904 bool MemCpyOptPass::processMemMove(MemMoveInst
*M
, BasicBlock::iterator
&BBI
) {
1905 // See if the source could be modified by this memmove potentially.
1906 if (isModSet(AA
->getModRefInfo(M
, MemoryLocation::getForSource(M
)))) {
1907 // On the off-chance the memmove clobbers src with previously memset'd
1908 // bytes, the memmove may be redundant.
1909 if (!M
->isVolatile() && isMemMoveMemSetDependency(M
)) {
1910 LLVM_DEBUG(dbgs() << "Removed redundant memmove.\n");
1912 eraseInstruction(M
);
1919 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1922 // If not, then we know we can transform this.
1923 Type
*ArgTys
[3] = {M
->getRawDest()->getType(), M
->getRawSource()->getType(),
1924 M
->getLength()->getType()};
1925 M
->setCalledFunction(Intrinsic::getOrInsertDeclaration(
1926 M
->getModule(), Intrinsic::memcpy
, ArgTys
));
1928 // For MemorySSA nothing really changes (except that memcpy may imply stricter
1929 // aliasing guarantees).
1935 /// This is called on every byval argument in call sites.
1936 bool MemCpyOptPass::processByValArgument(CallBase
&CB
, unsigned ArgNo
) {
1937 const DataLayout
&DL
= CB
.getDataLayout();
1938 // Find out what feeds this byval argument.
1939 Value
*ByValArg
= CB
.getArgOperand(ArgNo
);
1940 Type
*ByValTy
= CB
.getParamByValType(ArgNo
);
1941 TypeSize ByValSize
= DL
.getTypeAllocSize(ByValTy
);
1942 MemoryLocation
Loc(ByValArg
, LocationSize::precise(ByValSize
));
1943 MemoryUseOrDef
*CallAccess
= MSSA
->getMemoryAccess(&CB
);
1946 MemCpyInst
*MDep
= nullptr;
1947 BatchAAResults
BAA(*AA
, EEA
);
1948 MemoryAccess
*Clobber
= MSSA
->getWalker()->getClobberingMemoryAccess(
1949 CallAccess
->getDefiningAccess(), Loc
, BAA
);
1950 if (auto *MD
= dyn_cast
<MemoryDef
>(Clobber
))
1951 MDep
= dyn_cast_or_null
<MemCpyInst
>(MD
->getMemoryInst());
1953 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1954 // a memcpy, see if we can byval from the source of the memcpy instead of the
1956 if (!MDep
|| MDep
->isVolatile() ||
1957 ByValArg
->stripPointerCasts() != MDep
->getDest())
1960 // The length of the memcpy must be larger or equal to the size of the byval.
1961 auto *C1
= dyn_cast
<ConstantInt
>(MDep
->getLength());
1962 if (!C1
|| !TypeSize::isKnownGE(
1963 TypeSize::getFixed(C1
->getValue().getZExtValue()), ByValSize
))
1966 // Get the alignment of the byval. If the call doesn't specify the alignment,
1967 // then it is some target specific value that we can't know.
1968 MaybeAlign ByValAlign
= CB
.getParamAlign(ArgNo
);
1972 // If it is greater than the memcpy, then we check to see if we can force the
1973 // source of the memcpy to the alignment we need. If we fail, we bail out.
1974 MaybeAlign MemDepAlign
= MDep
->getSourceAlign();
1975 if ((!MemDepAlign
|| *MemDepAlign
< *ByValAlign
) &&
1976 getOrEnforceKnownAlignment(MDep
->getSource(), ByValAlign
, DL
, &CB
, AC
,
1980 // The type of the memcpy source must match the byval argument
1981 if (MDep
->getSource()->getType() != ByValArg
->getType())
1984 // Verify that the copied-from memory doesn't change in between the memcpy and
1989 // It would be invalid to transform the second memcpy into foo(*b).
1990 if (writtenBetween(MSSA
, BAA
, MemoryLocation::getForSource(MDep
),
1991 MSSA
->getMemoryAccess(MDep
), CallAccess
))
1994 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1995 << " " << *MDep
<< "\n"
1996 << " " << CB
<< "\n");
1998 // Otherwise we're good! Update the byval argument.
1999 combineAAMetadata(&CB
, MDep
);
2000 CB
.setArgOperand(ArgNo
, MDep
->getSource());
2005 /// This is called on memcpy dest pointer arguments attributed as immutable
2006 /// during call. Try to use memcpy source directly if all of the following
2007 /// conditions are satisfied.
2008 /// 1. The memcpy dst is neither modified during the call nor captured by the
2010 /// 2. The memcpy dst is an alloca with known alignment & size.
2011 /// 2-1. The memcpy length == the alloca size which ensures that the new
2012 /// pointer is dereferenceable for the required range
2013 /// 2-2. The src pointer has alignment >= the alloca alignment or can be
2015 /// 3. The memcpy dst and src is not modified between the memcpy and the call.
2016 /// (if MSSA clobber check is safe.)
2017 /// 4. The memcpy src is not modified during the call. (ModRef check shows no
2019 bool MemCpyOptPass::processImmutArgument(CallBase
&CB
, unsigned ArgNo
) {
2020 BatchAAResults
BAA(*AA
, EEA
);
2021 Value
*ImmutArg
= CB
.getArgOperand(ArgNo
);
2023 // 1. Ensure passed argument is immutable during call.
2024 if (!CB
.paramHasAttr(ArgNo
, Attribute::NoCapture
))
2027 // We know that the argument is readonly at this point, but the function
2028 // might still modify the same memory through a different pointer. Exclude
2029 // this either via noalias, or alias analysis.
2030 if (!CB
.paramHasAttr(ArgNo
, Attribute::NoAlias
) &&
2032 BAA
.getModRefInfo(&CB
, MemoryLocation::getBeforeOrAfter(ImmutArg
))))
2035 const DataLayout
&DL
= CB
.getDataLayout();
2037 // 2. Check that arg is alloca
2038 // TODO: Even if the arg gets back to branches, we can remove memcpy if all
2039 // the alloca alignments can be enforced to source alignment.
2040 auto *AI
= dyn_cast
<AllocaInst
>(ImmutArg
->stripPointerCasts());
2044 std::optional
<TypeSize
> AllocaSize
= AI
->getAllocationSize(DL
);
2045 // Can't handle unknown size alloca.
2046 // (e.g. Variable Length Array, Scalable Vector)
2047 if (!AllocaSize
|| AllocaSize
->isScalable())
2049 MemoryLocation
Loc(ImmutArg
, LocationSize::precise(*AllocaSize
));
2050 MemoryUseOrDef
*CallAccess
= MSSA
->getMemoryAccess(&CB
);
2054 MemCpyInst
*MDep
= nullptr;
2055 MemoryAccess
*Clobber
= MSSA
->getWalker()->getClobberingMemoryAccess(
2056 CallAccess
->getDefiningAccess(), Loc
, BAA
);
2057 if (auto *MD
= dyn_cast
<MemoryDef
>(Clobber
))
2058 MDep
= dyn_cast_or_null
<MemCpyInst
>(MD
->getMemoryInst());
2060 // If the immut argument isn't fed by a memcpy, ignore it. If it is fed by
2061 // a memcpy, check that the arg equals the memcpy dest.
2062 if (!MDep
|| MDep
->isVolatile() || AI
!= MDep
->getDest())
2065 // The type of the memcpy source must match the immut argument
2066 if (MDep
->getSource()->getType() != ImmutArg
->getType())
2069 // 2-1. The length of the memcpy must be equal to the size of the alloca.
2070 auto *MDepLen
= dyn_cast
<ConstantInt
>(MDep
->getLength());
2071 if (!MDepLen
|| AllocaSize
!= MDepLen
->getValue())
2074 // 2-2. the memcpy source align must be larger than or equal the alloca's
2075 // align. If not so, we check to see if we can force the source of the memcpy
2076 // to the alignment we need. If we fail, we bail out.
2077 Align MemDepAlign
= MDep
->getSourceAlign().valueOrOne();
2078 Align AllocaAlign
= AI
->getAlign();
2079 if (MemDepAlign
< AllocaAlign
&&
2080 getOrEnforceKnownAlignment(MDep
->getSource(), AllocaAlign
, DL
, &CB
, AC
,
2084 // 3. Verify that the source doesn't change in between the memcpy and
2089 // It would be invalid to transform the second memcpy into foo(*b).
2090 if (writtenBetween(MSSA
, BAA
, MemoryLocation::getForSource(MDep
),
2091 MSSA
->getMemoryAccess(MDep
), CallAccess
))
2094 // 4. The memcpy src must not be modified during the call.
2095 if (isModSet(BAA
.getModRefInfo(&CB
, MemoryLocation::getForSource(MDep
))))
2098 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to Immut src:\n"
2099 << " " << *MDep
<< "\n"
2100 << " " << CB
<< "\n");
2102 // Otherwise we're good! Update the immut argument.
2103 combineAAMetadata(&CB
, MDep
);
2104 CB
.setArgOperand(ArgNo
, MDep
->getSource());
2109 /// Executes one iteration of MemCpyOptPass.
2110 bool MemCpyOptPass::iterateOnFunction(Function
&F
) {
2111 bool MadeChange
= false;
2113 // Walk all instruction in the function.
2114 for (BasicBlock
&BB
: F
) {
2115 // Skip unreachable blocks. For example processStore assumes that an
2116 // instruction in a BB can't be dominated by a later instruction in the
2117 // same BB (which is a scenario that can happen for an unreachable BB that
2118 // has itself as a predecessor).
2119 if (!DT
->isReachableFromEntry(&BB
))
2122 for (BasicBlock::iterator BI
= BB
.begin(), BE
= BB
.end(); BI
!= BE
;) {
2123 // Avoid invalidating the iterator.
2124 Instruction
*I
= &*BI
++;
2126 bool RepeatInstruction
= false;
2128 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
2129 MadeChange
|= processStore(SI
, BI
);
2130 else if (auto *M
= dyn_cast
<MemSetInst
>(I
))
2131 RepeatInstruction
= processMemSet(M
, BI
);
2132 else if (auto *M
= dyn_cast
<MemCpyInst
>(I
))
2133 RepeatInstruction
= processMemCpy(M
, BI
);
2134 else if (auto *M
= dyn_cast
<MemMoveInst
>(I
))
2135 RepeatInstruction
= processMemMove(M
, BI
);
2136 else if (auto *CB
= dyn_cast
<CallBase
>(I
)) {
2137 for (unsigned i
= 0, e
= CB
->arg_size(); i
!= e
; ++i
) {
2138 if (CB
->isByValArgument(i
))
2139 MadeChange
|= processByValArgument(*CB
, i
);
2140 else if (CB
->onlyReadsMemory(i
))
2141 MadeChange
|= processImmutArgument(*CB
, i
);
2145 // Reprocess the instruction if desired.
2146 if (RepeatInstruction
) {
2147 if (BI
!= BB
.begin())
2157 PreservedAnalyses
MemCpyOptPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
2158 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
2159 auto *AA
= &AM
.getResult
<AAManager
>(F
);
2160 auto *AC
= &AM
.getResult
<AssumptionAnalysis
>(F
);
2161 auto *DT
= &AM
.getResult
<DominatorTreeAnalysis
>(F
);
2162 auto *PDT
= &AM
.getResult
<PostDominatorTreeAnalysis
>(F
);
2163 auto *MSSA
= &AM
.getResult
<MemorySSAAnalysis
>(F
);
2165 bool MadeChange
= runImpl(F
, &TLI
, AA
, AC
, DT
, PDT
, &MSSA
->getMSSA());
2167 return PreservedAnalyses::all();
2169 PreservedAnalyses PA
;
2170 PA
.preserveSet
<CFGAnalyses
>();
2171 PA
.preserve
<MemorySSAAnalysis
>();
2175 bool MemCpyOptPass::runImpl(Function
&F
, TargetLibraryInfo
*TLI_
,
2176 AliasAnalysis
*AA_
, AssumptionCache
*AC_
,
2177 DominatorTree
*DT_
, PostDominatorTree
*PDT_
,
2179 bool MadeChange
= false;
2186 MemorySSAUpdater
MSSAU_(MSSA_
);
2188 EarliestEscapeAnalysis
EEA_(*DT
);
2192 if (!iterateOnFunction(F
))
2197 if (VerifyMemorySSA
)
2198 MSSA_
->verifyMemorySSA();