[lld/COFF] Demangle symbol name in discarded section relocation error message (#119726)
[llvm-project.git] / llvm / lib / Transforms / Scalar / NewGVN.cpp
blob0cba8739441bcbd8214827118f5f561ad33c4c6d
1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements the new LLVM's Global Value Numbering pass.
11 /// GVN partitions values computed by a function into congruence classes.
12 /// Values ending up in the same congruence class are guaranteed to be the same
13 /// for every execution of the program. In that respect, congruency is a
14 /// compile-time approximation of equivalence of values at runtime.
15 /// The algorithm implemented here uses a sparse formulation and it's based
16 /// on the ideas described in the paper:
17 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
18 /// Karthik Gargi.
19 ///
20 /// A brief overview of the algorithm: The algorithm is essentially the same as
21 /// the standard RPO value numbering algorithm (a good reference is the paper
22 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23 /// The RPO algorithm proceeds, on every iteration, to process every reachable
24 /// block and every instruction in that block. This is because the standard RPO
25 /// algorithm does not track what things have the same value number, it only
26 /// tracks what the value number of a given operation is (the mapping is
27 /// operation -> value number). Thus, when a value number of an operation
28 /// changes, it must reprocess everything to ensure all uses of a value number
29 /// get updated properly. In constrast, the sparse algorithm we use *also*
30 /// tracks what operations have a given value number (IE it also tracks the
31 /// reverse mapping from value number -> operations with that value number), so
32 /// that it only needs to reprocess the instructions that are affected when
33 /// something's value number changes. The vast majority of complexity and code
34 /// in this file is devoted to tracking what value numbers could change for what
35 /// instructions when various things happen. The rest of the algorithm is
36 /// devoted to performing symbolic evaluation, forward propagation, and
37 /// simplification of operations based on the value numbers deduced so far
38 ///
39 /// In order to make the GVN mostly-complete, we use a technique derived from
40 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
41 /// Algorithm in SSA" by R.R. Pai. The source of incompleteness in most SSA
42 /// based GVN algorithms is related to their inability to detect equivalence
43 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44 /// We resolve this issue by generating the equivalent "phi of ops" form for
45 /// each op of phis we see, in a way that only takes polynomial time to resolve.
46 ///
47 /// We also do not perform elimination by using any published algorithm. All
48 /// published algorithms are O(Instructions). Instead, we use a technique that
49 /// is O(number of operations with the same value number), enabling us to skip
50 /// trying to eliminate things that have unique value numbers.
52 //===----------------------------------------------------------------------===//
54 #include "llvm/Transforms/Scalar/NewGVN.h"
55 #include "llvm/ADT/ArrayRef.h"
56 #include "llvm/ADT/BitVector.h"
57 #include "llvm/ADT/DenseMap.h"
58 #include "llvm/ADT/DenseMapInfo.h"
59 #include "llvm/ADT/DenseSet.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/GraphTraits.h"
62 #include "llvm/ADT/Hashing.h"
63 #include "llvm/ADT/PointerIntPair.h"
64 #include "llvm/ADT/PostOrderIterator.h"
65 #include "llvm/ADT/SetOperations.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Analysis/ValueTracking.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/PatternMatch.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/Use.h"
94 #include "llvm/IR/User.h"
95 #include "llvm/IR/Value.h"
96 #include "llvm/Support/Allocator.h"
97 #include "llvm/Support/ArrayRecycler.h"
98 #include "llvm/Support/Casting.h"
99 #include "llvm/Support/CommandLine.h"
100 #include "llvm/Support/Debug.h"
101 #include "llvm/Support/DebugCounter.h"
102 #include "llvm/Support/ErrorHandling.h"
103 #include "llvm/Support/PointerLikeTypeTraits.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Transforms/Scalar/GVNExpression.h"
106 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
107 #include "llvm/Transforms/Utils/Local.h"
108 #include "llvm/Transforms/Utils/PredicateInfo.h"
109 #include "llvm/Transforms/Utils/VNCoercion.h"
110 #include <algorithm>
111 #include <cassert>
112 #include <cstdint>
113 #include <iterator>
114 #include <map>
115 #include <memory>
116 #include <set>
117 #include <string>
118 #include <tuple>
119 #include <utility>
120 #include <vector>
122 using namespace llvm;
123 using namespace llvm::GVNExpression;
124 using namespace llvm::VNCoercion;
125 using namespace llvm::PatternMatch;
127 #define DEBUG_TYPE "newgvn"
129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
133 STATISTIC(NumGVNMaxIterations,
134 "Maximum Number of iterations it took to converge GVN");
135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
137 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
138 "Number of avoided sorted leader changes");
139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
141 STATISTIC(NumGVNPHIOfOpsEliminations,
142 "Number of things eliminated using PHI of ops");
143 DEBUG_COUNTER(VNCounter, "newgvn-vn",
144 "Controls which instructions are value numbered");
145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
146 "Controls which instructions we create phi of ops for");
147 // Currently store defining access refinement is too slow due to basicaa being
148 // egregiously slow. This flag lets us keep it working while we work on this
149 // issue.
150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
151 cl::init(false), cl::Hidden);
153 /// Currently, the generation "phi of ops" can result in correctness issues.
154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
155 cl::Hidden);
157 //===----------------------------------------------------------------------===//
158 // GVN Pass
159 //===----------------------------------------------------------------------===//
161 // Anchor methods.
162 namespace llvm {
163 namespace GVNExpression {
165 Expression::~Expression() = default;
166 BasicExpression::~BasicExpression() = default;
167 CallExpression::~CallExpression() = default;
168 LoadExpression::~LoadExpression() = default;
169 StoreExpression::~StoreExpression() = default;
170 AggregateValueExpression::~AggregateValueExpression() = default;
171 PHIExpression::~PHIExpression() = default;
173 } // end namespace GVNExpression
174 } // end namespace llvm
176 namespace {
178 // Tarjan's SCC finding algorithm with Nuutila's improvements
179 // SCCIterator is actually fairly complex for the simple thing we want.
180 // It also wants to hand us SCC's that are unrelated to the phi node we ask
181 // about, and have us process them there or risk redoing work.
182 // Graph traits over a filter iterator also doesn't work that well here.
183 // This SCC finder is specialized to walk use-def chains, and only follows
184 // instructions,
185 // not generic values (arguments, etc).
186 struct TarjanSCC {
187 TarjanSCC() : Components(1) {}
189 void Start(const Instruction *Start) {
190 if (Root.lookup(Start) == 0)
191 FindSCC(Start);
194 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
195 unsigned ComponentID = ValueToComponent.lookup(V);
197 assert(ComponentID > 0 &&
198 "Asking for a component for a value we never processed");
199 return Components[ComponentID];
202 private:
203 void FindSCC(const Instruction *I) {
204 Root[I] = ++DFSNum;
205 // Store the DFS Number we had before it possibly gets incremented.
206 unsigned int OurDFS = DFSNum;
207 for (const auto &Op : I->operands()) {
208 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
209 if (Root.lookup(Op) == 0)
210 FindSCC(InstOp);
211 if (!InComponent.count(Op))
212 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
215 // See if we really were the root of a component, by seeing if we still have
216 // our DFSNumber. If we do, we are the root of the component, and we have
217 // completed a component. If we do not, we are not the root of a component,
218 // and belong on the component stack.
219 if (Root.lookup(I) == OurDFS) {
220 unsigned ComponentID = Components.size();
221 Components.resize(Components.size() + 1);
222 auto &Component = Components.back();
223 Component.insert(I);
224 LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
225 InComponent.insert(I);
226 ValueToComponent[I] = ComponentID;
227 // Pop a component off the stack and label it.
228 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
229 auto *Member = Stack.back();
230 LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
231 Component.insert(Member);
232 InComponent.insert(Member);
233 ValueToComponent[Member] = ComponentID;
234 Stack.pop_back();
236 } else {
237 // Part of a component, push to stack
238 Stack.push_back(I);
242 unsigned int DFSNum = 1;
243 SmallPtrSet<const Value *, 8> InComponent;
244 DenseMap<const Value *, unsigned int> Root;
245 SmallVector<const Value *, 8> Stack;
247 // Store the components as vector of ptr sets, because we need the topo order
248 // of SCC's, but not individual member order
249 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
251 DenseMap<const Value *, unsigned> ValueToComponent;
254 // Congruence classes represent the set of expressions/instructions
255 // that are all the same *during some scope in the function*.
256 // That is, because of the way we perform equality propagation, and
257 // because of memory value numbering, it is not correct to assume
258 // you can willy-nilly replace any member with any other at any
259 // point in the function.
261 // For any Value in the Member set, it is valid to replace any dominated member
262 // with that Value.
264 // Every congruence class has a leader, and the leader is used to symbolize
265 // instructions in a canonical way (IE every operand of an instruction that is a
266 // member of the same congruence class will always be replaced with leader
267 // during symbolization). To simplify symbolization, we keep the leader as a
268 // constant if class can be proved to be a constant value. Otherwise, the
269 // leader is the member of the value set with the smallest DFS number. Each
270 // congruence class also has a defining expression, though the expression may be
271 // null. If it exists, it can be used for forward propagation and reassociation
272 // of values.
274 // For memory, we also track a representative MemoryAccess, and a set of memory
275 // members for MemoryPhis (which have no real instructions). Note that for
276 // memory, it seems tempting to try to split the memory members into a
277 // MemoryCongruenceClass or something. Unfortunately, this does not work
278 // easily. The value numbering of a given memory expression depends on the
279 // leader of the memory congruence class, and the leader of memory congruence
280 // class depends on the value numbering of a given memory expression. This
281 // leads to wasted propagation, and in some cases, missed optimization. For
282 // example: If we had value numbered two stores together before, but now do not,
283 // we move them to a new value congruence class. This in turn will move at one
284 // of the memorydefs to a new memory congruence class. Which in turn, affects
285 // the value numbering of the stores we just value numbered (because the memory
286 // congruence class is part of the value number). So while theoretically
287 // possible to split them up, it turns out to be *incredibly* complicated to get
288 // it to work right, because of the interdependency. While structurally
289 // slightly messier, it is algorithmically much simpler and faster to do what we
290 // do here, and track them both at once in the same class.
291 // Note: The default iterators for this class iterate over values
292 class CongruenceClass {
293 public:
294 using MemberType = Value;
295 using MemberSet = SmallPtrSet<MemberType *, 4>;
296 using MemoryMemberType = MemoryPhi;
297 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
299 explicit CongruenceClass(unsigned ID) : ID(ID) {}
300 CongruenceClass(unsigned ID, std::pair<Value *, unsigned int> Leader,
301 const Expression *E)
302 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
304 unsigned getID() const { return ID; }
306 // True if this class has no members left. This is mainly used for assertion
307 // purposes, and for skipping empty classes.
308 bool isDead() const {
309 // If it's both dead from a value perspective, and dead from a memory
310 // perspective, it's really dead.
311 return empty() && memory_empty();
314 // Leader functions
315 Value *getLeader() const { return RepLeader.first; }
316 void setLeader(std::pair<Value *, unsigned int> Leader) {
317 RepLeader = Leader;
319 const std::pair<Value *, unsigned int> &getNextLeader() const {
320 return NextLeader;
322 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
323 bool addPossibleLeader(std::pair<Value *, unsigned int> LeaderPair) {
324 if (LeaderPair.second < RepLeader.second) {
325 NextLeader = RepLeader;
326 RepLeader = LeaderPair;
327 return true;
328 } else if (LeaderPair.second < NextLeader.second) {
329 NextLeader = LeaderPair;
331 return false;
334 Value *getStoredValue() const { return RepStoredValue; }
335 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
336 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
337 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
339 // Forward propagation info
340 const Expression *getDefiningExpr() const { return DefiningExpr; }
342 // Value member set
343 bool empty() const { return Members.empty(); }
344 unsigned size() const { return Members.size(); }
345 MemberSet::const_iterator begin() const { return Members.begin(); }
346 MemberSet::const_iterator end() const { return Members.end(); }
347 void insert(MemberType *M) { Members.insert(M); }
348 void erase(MemberType *M) { Members.erase(M); }
349 void swap(MemberSet &Other) { Members.swap(Other); }
351 // Memory member set
352 bool memory_empty() const { return MemoryMembers.empty(); }
353 unsigned memory_size() const { return MemoryMembers.size(); }
354 MemoryMemberSet::const_iterator memory_begin() const {
355 return MemoryMembers.begin();
357 MemoryMemberSet::const_iterator memory_end() const {
358 return MemoryMembers.end();
360 iterator_range<MemoryMemberSet::const_iterator> memory() const {
361 return make_range(memory_begin(), memory_end());
364 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
365 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
367 // Store count
368 unsigned getStoreCount() const { return StoreCount; }
369 void incStoreCount() { ++StoreCount; }
370 void decStoreCount() {
371 assert(StoreCount != 0 && "Store count went negative");
372 --StoreCount;
375 // True if this class has no memory members.
376 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
378 // Return true if two congruence classes are equivalent to each other. This
379 // means that every field but the ID number and the dead field are equivalent.
380 bool isEquivalentTo(const CongruenceClass *Other) const {
381 if (!Other)
382 return false;
383 if (this == Other)
384 return true;
386 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
387 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
388 Other->RepMemoryAccess))
389 return false;
390 if (DefiningExpr != Other->DefiningExpr)
391 if (!DefiningExpr || !Other->DefiningExpr ||
392 *DefiningExpr != *Other->DefiningExpr)
393 return false;
395 if (Members.size() != Other->Members.size())
396 return false;
398 return llvm::set_is_subset(Members, Other->Members);
401 private:
402 unsigned ID;
404 // Representative leader and its corresponding RPO number.
405 // The leader must have the lowest RPO number.
406 std::pair<Value *, unsigned int> RepLeader = {nullptr, ~0U};
408 // The most dominating leader after our current leader (given by the RPO
409 // number), because the member set is not sorted and is expensive to keep
410 // sorted all the time.
411 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
413 // If this is represented by a store, the value of the store.
414 Value *RepStoredValue = nullptr;
416 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
417 // access.
418 const MemoryAccess *RepMemoryAccess = nullptr;
420 // Defining Expression.
421 const Expression *DefiningExpr = nullptr;
423 // Actual members of this class.
424 MemberSet Members;
426 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
427 // MemoryUses have real instructions representing them, so we only need to
428 // track MemoryPhis here.
429 MemoryMemberSet MemoryMembers;
431 // Number of stores in this congruence class.
432 // This is used so we can detect store equivalence changes properly.
433 int StoreCount = 0;
436 } // end anonymous namespace
438 namespace llvm {
440 struct ExactEqualsExpression {
441 const Expression &E;
443 explicit ExactEqualsExpression(const Expression &E) : E(E) {}
445 hash_code getComputedHash() const { return E.getComputedHash(); }
447 bool operator==(const Expression &Other) const {
448 return E.exactlyEquals(Other);
452 template <> struct DenseMapInfo<const Expression *> {
453 static const Expression *getEmptyKey() {
454 auto Val = static_cast<uintptr_t>(-1);
455 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
456 return reinterpret_cast<const Expression *>(Val);
459 static const Expression *getTombstoneKey() {
460 auto Val = static_cast<uintptr_t>(~1U);
461 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
462 return reinterpret_cast<const Expression *>(Val);
465 static unsigned getHashValue(const Expression *E) {
466 return E->getComputedHash();
469 static unsigned getHashValue(const ExactEqualsExpression &E) {
470 return E.getComputedHash();
473 static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
474 if (RHS == getTombstoneKey() || RHS == getEmptyKey())
475 return false;
476 return LHS == *RHS;
479 static bool isEqual(const Expression *LHS, const Expression *RHS) {
480 if (LHS == RHS)
481 return true;
482 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
483 LHS == getEmptyKey() || RHS == getEmptyKey())
484 return false;
485 // Compare hashes before equality. This is *not* what the hashtable does,
486 // since it is computing it modulo the number of buckets, whereas we are
487 // using the full hash keyspace. Since the hashes are precomputed, this
488 // check is *much* faster than equality.
489 if (LHS->getComputedHash() != RHS->getComputedHash())
490 return false;
491 return *LHS == *RHS;
495 } // end namespace llvm
497 namespace {
499 class NewGVN {
500 Function &F;
501 DominatorTree *DT = nullptr;
502 const TargetLibraryInfo *TLI = nullptr;
503 AliasAnalysis *AA = nullptr;
504 MemorySSA *MSSA = nullptr;
505 MemorySSAWalker *MSSAWalker = nullptr;
506 AssumptionCache *AC = nullptr;
507 const DataLayout &DL;
508 std::unique_ptr<PredicateInfo> PredInfo;
510 // These are the only two things the create* functions should have
511 // side-effects on due to allocating memory.
512 mutable BumpPtrAllocator ExpressionAllocator;
513 mutable ArrayRecycler<Value *> ArgRecycler;
514 mutable TarjanSCC SCCFinder;
515 const SimplifyQuery SQ;
517 // Number of function arguments, used by ranking
518 unsigned int NumFuncArgs = 0;
520 // RPOOrdering of basic blocks
521 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
523 // Congruence class info.
525 // This class is called INITIAL in the paper. It is the class everything
526 // startsout in, and represents any value. Being an optimistic analysis,
527 // anything in the TOP class has the value TOP, which is indeterminate and
528 // equivalent to everything.
529 CongruenceClass *TOPClass = nullptr;
530 std::vector<CongruenceClass *> CongruenceClasses;
531 unsigned NextCongruenceNum = 0;
533 // Value Mappings.
534 DenseMap<Value *, CongruenceClass *> ValueToClass;
535 DenseMap<Value *, const Expression *> ValueToExpression;
537 // Value PHI handling, used to make equivalence between phi(op, op) and
538 // op(phi, phi).
539 // These mappings just store various data that would normally be part of the
540 // IR.
541 SmallPtrSet<const Instruction *, 8> PHINodeUses;
543 // The cached results, in general, are only valid for the specific block where
544 // they were computed. The unsigned part of the key is a unique block
545 // identifier
546 DenseMap<std::pair<const Value *, unsigned>, bool> OpSafeForPHIOfOps;
547 unsigned CacheIdx;
549 // Map a temporary instruction we created to a parent block.
550 DenseMap<const Value *, BasicBlock *> TempToBlock;
552 // Map between the already in-program instructions and the temporary phis we
553 // created that they are known equivalent to.
554 DenseMap<const Value *, PHINode *> RealToTemp;
556 // In order to know when we should re-process instructions that have
557 // phi-of-ops, we track the set of expressions that they needed as
558 // leaders. When we discover new leaders for those expressions, we process the
559 // associated phi-of-op instructions again in case they have changed. The
560 // other way they may change is if they had leaders, and those leaders
561 // disappear. However, at the point they have leaders, there are uses of the
562 // relevant operands in the created phi node, and so they will get reprocessed
563 // through the normal user marking we perform.
564 mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
565 DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
566 ExpressionToPhiOfOps;
568 // Map from temporary operation to MemoryAccess.
569 DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
571 // Set of all temporary instructions we created.
572 // Note: This will include instructions that were just created during value
573 // numbering. The way to test if something is using them is to check
574 // RealToTemp.
575 DenseSet<Instruction *> AllTempInstructions;
577 // This is the set of instructions to revisit on a reachability change. At
578 // the end of the main iteration loop it will contain at least all the phi of
579 // ops instructions that will be changed to phis, as well as regular phis.
580 // During the iteration loop, it may contain other things, such as phi of ops
581 // instructions that used edge reachability to reach a result, and so need to
582 // be revisited when the edge changes, independent of whether the phi they
583 // depended on changes.
584 DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
586 // Mapping from predicate info we used to the instructions we used it with.
587 // In order to correctly ensure propagation, we must keep track of what
588 // comparisons we used, so that when the values of the comparisons change, we
589 // propagate the information to the places we used the comparison.
590 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
591 PredicateToUsers;
593 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
594 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
595 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
596 MemoryToUsers;
598 // A table storing which memorydefs/phis represent a memory state provably
599 // equivalent to another memory state.
600 // We could use the congruence class machinery, but the MemoryAccess's are
601 // abstract memory states, so they can only ever be equivalent to each other,
602 // and not to constants, etc.
603 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
605 // We could, if we wanted, build MemoryPhiExpressions and
606 // MemoryVariableExpressions, etc, and value number them the same way we value
607 // number phi expressions. For the moment, this seems like overkill. They
608 // can only exist in one of three states: they can be TOP (equal to
609 // everything), Equivalent to something else, or unique. Because we do not
610 // create expressions for them, we need to simulate leader change not just
611 // when they change class, but when they change state. Note: We can do the
612 // same thing for phis, and avoid having phi expressions if we wanted, We
613 // should eventually unify in one direction or the other, so this is a little
614 // bit of an experiment in which turns out easier to maintain.
615 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
616 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
618 enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
619 mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
621 // Expression to class mapping.
622 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
623 ExpressionClassMap ExpressionToClass;
625 // We have a single expression that represents currently DeadExpressions.
626 // For dead expressions we can prove will stay dead, we mark them with
627 // DFS number zero. However, it's possible in the case of phi nodes
628 // for us to assume/prove all arguments are dead during fixpointing.
629 // We use DeadExpression for that case.
630 DeadExpression *SingletonDeadExpression = nullptr;
632 // Which values have changed as a result of leader changes.
633 SmallPtrSet<Value *, 8> LeaderChanges;
635 // Reachability info.
636 using BlockEdge = BasicBlockEdge;
637 DenseSet<BlockEdge> ReachableEdges;
638 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
640 // This is a bitvector because, on larger functions, we may have
641 // thousands of touched instructions at once (entire blocks,
642 // instructions with hundreds of uses, etc). Even with optimization
643 // for when we mark whole blocks as touched, when this was a
644 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
645 // the time in GVN just managing this list. The bitvector, on the
646 // other hand, efficiently supports test/set/clear of both
647 // individual and ranges, as well as "find next element" This
648 // enables us to use it as a worklist with essentially 0 cost.
649 BitVector TouchedInstructions;
651 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
652 mutable DenseMap<const IntrinsicInst *, const Value *> IntrinsicInstPred;
654 #ifndef NDEBUG
655 // Debugging for how many times each block and instruction got processed.
656 DenseMap<const Value *, unsigned> ProcessedCount;
657 #endif
659 // DFS info.
660 // This contains a mapping from Instructions to DFS numbers.
661 // The numbering starts at 1. An instruction with DFS number zero
662 // means that the instruction is dead.
663 DenseMap<const Value *, unsigned> InstrDFS;
665 // This contains the mapping DFS numbers to instructions.
666 SmallVector<Value *, 32> DFSToInstr;
668 // Deletion info.
669 SmallPtrSet<Instruction *, 8> InstructionsToErase;
671 public:
672 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
673 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
674 const DataLayout &DL)
675 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), AC(AC), DL(DL),
676 PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
677 SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false,
678 /*CanUseUndef=*/false) {}
680 bool runGVN();
682 private:
683 /// Helper struct return a Expression with an optional extra dependency.
684 struct ExprResult {
685 const Expression *Expr;
686 Value *ExtraDep;
687 const PredicateBase *PredDep;
689 ExprResult(const Expression *Expr, Value *ExtraDep = nullptr,
690 const PredicateBase *PredDep = nullptr)
691 : Expr(Expr), ExtraDep(ExtraDep), PredDep(PredDep) {}
692 ExprResult(const ExprResult &) = delete;
693 ExprResult(ExprResult &&Other)
694 : Expr(Other.Expr), ExtraDep(Other.ExtraDep), PredDep(Other.PredDep) {
695 Other.Expr = nullptr;
696 Other.ExtraDep = nullptr;
697 Other.PredDep = nullptr;
699 ExprResult &operator=(const ExprResult &Other) = delete;
700 ExprResult &operator=(ExprResult &&Other) = delete;
702 ~ExprResult() { assert(!ExtraDep && "unhandled ExtraDep"); }
704 operator bool() const { return Expr; }
706 static ExprResult none() { return {nullptr, nullptr, nullptr}; }
707 static ExprResult some(const Expression *Expr, Value *ExtraDep = nullptr) {
708 return {Expr, ExtraDep, nullptr};
710 static ExprResult some(const Expression *Expr,
711 const PredicateBase *PredDep) {
712 return {Expr, nullptr, PredDep};
714 static ExprResult some(const Expression *Expr, Value *ExtraDep,
715 const PredicateBase *PredDep) {
716 return {Expr, ExtraDep, PredDep};
720 // Expression handling.
721 ExprResult createExpression(Instruction *) const;
722 const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
723 Instruction *) const;
725 // Our canonical form for phi arguments is a pair of incoming value, incoming
726 // basic block.
727 using ValPair = std::pair<Value *, BasicBlock *>;
729 PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
730 BasicBlock *, bool &HasBackEdge,
731 bool &OriginalOpsConstant) const;
732 const DeadExpression *createDeadExpression() const;
733 const VariableExpression *createVariableExpression(Value *) const;
734 const ConstantExpression *createConstantExpression(Constant *) const;
735 const Expression *createVariableOrConstant(Value *V) const;
736 const UnknownExpression *createUnknownExpression(Instruction *) const;
737 const StoreExpression *createStoreExpression(StoreInst *,
738 const MemoryAccess *) const;
739 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
740 const MemoryAccess *) const;
741 const CallExpression *createCallExpression(CallInst *,
742 const MemoryAccess *) const;
743 const AggregateValueExpression *
744 createAggregateValueExpression(Instruction *) const;
745 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
747 // Congruence class handling.
748 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
749 // Set RPO to 0 for values that are always available (constants and function
750 // args). These should always be made leader.
751 unsigned LeaderDFS = 0;
753 // If Leader is not specified, either we have a memory class or the leader
754 // will be set later. Otherwise, if Leader is an Instruction, set LeaderDFS
755 // to its RPO number.
756 if (!Leader)
757 LeaderDFS = ~0;
758 else if (auto *I = dyn_cast<Instruction>(Leader))
759 LeaderDFS = InstrToDFSNum(I);
760 auto *result =
761 new CongruenceClass(NextCongruenceNum++, {Leader, LeaderDFS}, E);
762 CongruenceClasses.emplace_back(result);
763 return result;
766 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
767 auto *CC = createCongruenceClass(nullptr, nullptr);
768 CC->setMemoryLeader(MA);
769 return CC;
772 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
773 auto *CC = getMemoryClass(MA);
774 if (CC->getMemoryLeader() != MA)
775 CC = createMemoryClass(MA);
776 return CC;
779 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
780 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
781 CClass->insert(Member);
782 ValueToClass[Member] = CClass;
783 return CClass;
786 void initializeCongruenceClasses(Function &F);
787 const Expression *makePossiblePHIOfOps(Instruction *,
788 SmallPtrSetImpl<Value *> &);
789 Value *findLeaderForInst(Instruction *ValueOp,
790 SmallPtrSetImpl<Value *> &Visited,
791 MemoryAccess *MemAccess, Instruction *OrigInst,
792 BasicBlock *PredBB);
793 bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
794 SmallPtrSetImpl<const Value *> &);
795 void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
796 void removePhiOfOps(Instruction *I, PHINode *PHITemp);
798 // Value number an Instruction or MemoryPhi.
799 void valueNumberMemoryPhi(MemoryPhi *);
800 void valueNumberInstruction(Instruction *);
802 // Symbolic evaluation.
803 ExprResult checkExprResults(Expression *, Instruction *, Value *) const;
804 ExprResult performSymbolicEvaluation(Instruction *,
805 SmallPtrSetImpl<Value *> &) const;
806 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
807 Instruction *,
808 MemoryAccess *) const;
809 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
810 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
811 ExprResult performSymbolicCallEvaluation(Instruction *) const;
812 void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
813 const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
814 Instruction *I,
815 BasicBlock *PHIBlock) const;
816 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
817 ExprResult performSymbolicCmpEvaluation(Instruction *) const;
818 ExprResult performSymbolicPredicateInfoEvaluation(IntrinsicInst *) const;
820 // Congruence finding.
821 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
822 Value *lookupOperandLeader(Value *) const;
823 CongruenceClass *getClassForExpression(const Expression *E) const;
824 void performCongruenceFinding(Instruction *, const Expression *);
825 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
826 CongruenceClass *, CongruenceClass *);
827 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
828 CongruenceClass *, CongruenceClass *);
829 Value *getNextValueLeader(CongruenceClass *) const;
830 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
831 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
832 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
833 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
834 bool isMemoryAccessTOP(const MemoryAccess *) const;
836 // Ranking
837 unsigned int getRank(const Value *) const;
838 bool shouldSwapOperands(const Value *, const Value *) const;
839 bool shouldSwapOperandsForIntrinsic(const Value *, const Value *,
840 const IntrinsicInst *I) const;
842 // Reachability handling.
843 void updateReachableEdge(BasicBlock *, BasicBlock *);
844 void processOutgoingEdges(Instruction *, BasicBlock *);
845 Value *findConditionEquivalence(Value *) const;
847 // Elimination.
848 struct ValueDFS;
849 void convertClassToDFSOrdered(const CongruenceClass &,
850 SmallVectorImpl<ValueDFS> &,
851 DenseMap<const Value *, unsigned int> &,
852 SmallPtrSetImpl<Instruction *> &) const;
853 void convertClassToLoadsAndStores(const CongruenceClass &,
854 SmallVectorImpl<ValueDFS> &) const;
856 bool eliminateInstructions(Function &);
857 void replaceInstruction(Instruction *, Value *);
858 void markInstructionForDeletion(Instruction *);
859 void deleteInstructionsInBlock(BasicBlock *);
860 Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
861 const BasicBlock *) const;
863 // Various instruction touch utilities
864 template <typename Map, typename KeyType>
865 void touchAndErase(Map &, const KeyType &);
866 void markUsersTouched(Value *);
867 void markMemoryUsersTouched(const MemoryAccess *);
868 void markMemoryDefTouched(const MemoryAccess *);
869 void markPredicateUsersTouched(Instruction *);
870 void markValueLeaderChangeTouched(CongruenceClass *CC);
871 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
872 void markPhiOfOpsChanged(const Expression *E);
873 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
874 void addAdditionalUsers(Value *To, Value *User) const;
875 void addAdditionalUsers(ExprResult &Res, Instruction *User) const;
877 // Main loop of value numbering
878 void iterateTouchedInstructions();
880 // Utilities.
881 void cleanupTables();
882 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
883 void updateProcessedCount(const Value *V);
884 void verifyMemoryCongruency() const;
885 void verifyIterationSettled(Function &F);
886 void verifyStoreExpressions() const;
887 bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
888 const MemoryAccess *, const MemoryAccess *) const;
889 BasicBlock *getBlockForValue(Value *V) const;
890 void deleteExpression(const Expression *E) const;
891 MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
892 MemoryPhi *getMemoryAccess(const BasicBlock *) const;
893 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
895 unsigned InstrToDFSNum(const Value *V) const {
896 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
897 return InstrDFS.lookup(V);
900 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
901 return MemoryToDFSNum(MA);
904 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
906 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
907 // This deliberately takes a value so it can be used with Use's, which will
908 // auto-convert to Value's but not to MemoryAccess's.
909 unsigned MemoryToDFSNum(const Value *MA) const {
910 assert(isa<MemoryAccess>(MA) &&
911 "This should not be used with instructions");
912 return isa<MemoryUseOrDef>(MA)
913 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
914 : InstrDFS.lookup(MA);
917 bool isCycleFree(const Instruction *) const;
918 bool isBackedge(BasicBlock *From, BasicBlock *To) const;
920 // Debug counter info. When verifying, we have to reset the value numbering
921 // debug counter to the same state it started in to get the same results.
922 DebugCounter::CounterState StartingVNCounter;
925 } // end anonymous namespace
927 template <typename T>
928 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
929 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
930 return false;
931 return LHS.MemoryExpression::equals(RHS);
934 bool LoadExpression::equals(const Expression &Other) const {
935 return equalsLoadStoreHelper(*this, Other);
938 bool StoreExpression::equals(const Expression &Other) const {
939 if (!equalsLoadStoreHelper(*this, Other))
940 return false;
941 // Make sure that store vs store includes the value operand.
942 if (const auto *S = dyn_cast<StoreExpression>(&Other))
943 if (getStoredValue() != S->getStoredValue())
944 return false;
945 return true;
948 bool CallExpression::equals(const Expression &Other) const {
949 if (!MemoryExpression::equals(Other))
950 return false;
952 if (auto *RHS = dyn_cast<CallExpression>(&Other))
953 return Call->getAttributes()
954 .intersectWith(Call->getContext(), RHS->Call->getAttributes())
955 .has_value();
957 return false;
960 // Determine if the edge From->To is a backedge
961 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
962 return From == To ||
963 RPOOrdering.lookup(DT->getNode(From)) >=
964 RPOOrdering.lookup(DT->getNode(To));
967 #ifndef NDEBUG
968 static std::string getBlockName(const BasicBlock *B) {
969 return DOTGraphTraits<DOTFuncInfo *>::getSimpleNodeLabel(B, nullptr);
971 #endif
973 // Get a MemoryAccess for an instruction, fake or real.
974 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
975 auto *Result = MSSA->getMemoryAccess(I);
976 return Result ? Result : TempToMemory.lookup(I);
979 // Get a MemoryPhi for a basic block. These are all real.
980 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
981 return MSSA->getMemoryAccess(BB);
984 // Get the basic block from an instruction/memory value.
985 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
986 if (auto *I = dyn_cast<Instruction>(V)) {
987 auto *Parent = I->getParent();
988 if (Parent)
989 return Parent;
990 Parent = TempToBlock.lookup(V);
991 assert(Parent && "Every fake instruction should have a block");
992 return Parent;
995 auto *MP = dyn_cast<MemoryPhi>(V);
996 assert(MP && "Should have been an instruction or a MemoryPhi");
997 return MP->getBlock();
1000 // Delete a definitely dead expression, so it can be reused by the expression
1001 // allocator. Some of these are not in creation functions, so we have to accept
1002 // const versions.
1003 void NewGVN::deleteExpression(const Expression *E) const {
1004 assert(isa<BasicExpression>(E));
1005 auto *BE = cast<BasicExpression>(E);
1006 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
1007 ExpressionAllocator.Deallocate(E);
1010 // If V is a predicateinfo copy, get the thing it is a copy of.
1011 static Value *getCopyOf(const Value *V) {
1012 if (auto *II = dyn_cast<IntrinsicInst>(V))
1013 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1014 return II->getOperand(0);
1015 return nullptr;
1018 // Return true if V is really PN, even accounting for predicateinfo copies.
1019 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
1020 return V == PN || getCopyOf(V) == PN;
1023 static bool isCopyOfAPHI(const Value *V) {
1024 auto *CO = getCopyOf(V);
1025 return CO && isa<PHINode>(CO);
1028 // Sort PHI Operands into a canonical order. What we use here is an RPO
1029 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
1030 // blocks.
1031 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
1032 llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
1033 return BlockInstRange.lookup(P1.second).first <
1034 BlockInstRange.lookup(P2.second).first;
1038 // Return true if V is a value that will always be available (IE can
1039 // be placed anywhere) in the function. We don't do globals here
1040 // because they are often worse to put in place.
1041 static bool alwaysAvailable(Value *V) {
1042 return isa<Constant>(V) || isa<Argument>(V);
1045 // Create a PHIExpression from an array of {incoming edge, value} pairs. I is
1046 // the original instruction we are creating a PHIExpression for (but may not be
1047 // a phi node). We require, as an invariant, that all the PHIOperands in the
1048 // same block are sorted the same way. sortPHIOps will sort them into a
1049 // canonical order.
1050 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
1051 const Instruction *I,
1052 BasicBlock *PHIBlock,
1053 bool &HasBackedge,
1054 bool &OriginalOpsConstant) const {
1055 unsigned NumOps = PHIOperands.size();
1056 auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
1058 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1059 E->setType(PHIOperands.begin()->first->getType());
1060 E->setOpcode(Instruction::PHI);
1062 // Filter out unreachable phi operands.
1063 auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
1064 auto *BB = P.second;
1065 if (auto *PHIOp = dyn_cast<PHINode>(I))
1066 if (isCopyOfPHI(P.first, PHIOp))
1067 return false;
1068 if (!ReachableEdges.count({BB, PHIBlock}))
1069 return false;
1070 // Things in TOPClass are equivalent to everything.
1071 if (ValueToClass.lookup(P.first) == TOPClass)
1072 return false;
1073 OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1074 HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1075 return lookupOperandLeader(P.first) != I;
1077 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1078 [&](const ValPair &P) -> Value * {
1079 return lookupOperandLeader(P.first);
1081 return E;
1084 // Set basic expression info (Arguments, type, opcode) for Expression
1085 // E from Instruction I in block B.
1086 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1087 bool AllConstant = true;
1088 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1089 E->setType(GEP->getSourceElementType());
1090 else
1091 E->setType(I->getType());
1092 E->setOpcode(I->getOpcode());
1093 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1095 // Transform the operand array into an operand leader array, and keep track of
1096 // whether all members are constant.
1097 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1098 auto Operand = lookupOperandLeader(O);
1099 AllConstant = AllConstant && isa<Constant>(Operand);
1100 return Operand;
1103 return AllConstant;
1106 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1107 Value *Arg1, Value *Arg2,
1108 Instruction *I) const {
1109 auto *E = new (ExpressionAllocator) BasicExpression(2);
1110 // TODO: we need to remove context instruction after Value Tracking
1111 // can run without context instruction
1112 const SimplifyQuery Q = SQ.getWithInstruction(I);
1114 E->setType(T);
1115 E->setOpcode(Opcode);
1116 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1117 if (Instruction::isCommutative(Opcode)) {
1118 // Ensure that commutative instructions that only differ by a permutation
1119 // of their operands get the same value number by sorting the operand value
1120 // numbers. Since all commutative instructions have two operands it is more
1121 // efficient to sort by hand rather than using, say, std::sort.
1122 if (shouldSwapOperands(Arg1, Arg2))
1123 std::swap(Arg1, Arg2);
1125 E->op_push_back(lookupOperandLeader(Arg1));
1126 E->op_push_back(lookupOperandLeader(Arg2));
1128 Value *V = simplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), Q);
1129 if (auto Simplified = checkExprResults(E, I, V)) {
1130 addAdditionalUsers(Simplified, I);
1131 return Simplified.Expr;
1133 return E;
1136 // Take a Value returned by simplification of Expression E/Instruction
1137 // I, and see if it resulted in a simpler expression. If so, return
1138 // that expression.
1139 NewGVN::ExprResult NewGVN::checkExprResults(Expression *E, Instruction *I,
1140 Value *V) const {
1141 if (!V)
1142 return ExprResult::none();
1144 if (auto *C = dyn_cast<Constant>(V)) {
1145 if (I)
1146 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1147 << " constant " << *C << "\n");
1148 NumGVNOpsSimplified++;
1149 assert(isa<BasicExpression>(E) &&
1150 "We should always have had a basic expression here");
1151 deleteExpression(E);
1152 return ExprResult::some(createConstantExpression(C));
1153 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1154 if (I)
1155 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1156 << " variable " << *V << "\n");
1157 deleteExpression(E);
1158 return ExprResult::some(createVariableExpression(V));
1161 CongruenceClass *CC = ValueToClass.lookup(V);
1162 if (CC) {
1163 if (CC->getLeader() && CC->getLeader() != I) {
1164 return ExprResult::some(createVariableOrConstant(CC->getLeader()), V);
1166 if (CC->getDefiningExpr()) {
1167 if (I)
1168 LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1169 << " expression " << *CC->getDefiningExpr() << "\n");
1170 NumGVNOpsSimplified++;
1171 deleteExpression(E);
1172 return ExprResult::some(CC->getDefiningExpr(), V);
1176 return ExprResult::none();
1179 // Create a value expression from the instruction I, replacing operands with
1180 // their leaders.
1182 NewGVN::ExprResult NewGVN::createExpression(Instruction *I) const {
1183 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1184 // TODO: we need to remove context instruction after Value Tracking
1185 // can run without context instruction
1186 const SimplifyQuery Q = SQ.getWithInstruction(I);
1188 bool AllConstant = setBasicExpressionInfo(I, E);
1190 if (I->isCommutative()) {
1191 // Ensure that commutative instructions that only differ by a permutation
1192 // of their operands get the same value number by sorting the operand value
1193 // numbers. Since all commutative instructions have two operands it is more
1194 // efficient to sort by hand rather than using, say, std::sort.
1195 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1196 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1197 E->swapOperands(0, 1);
1199 // Perform simplification.
1200 if (auto *CI = dyn_cast<CmpInst>(I)) {
1201 // Sort the operand value numbers so x<y and y>x get the same value
1202 // number.
1203 CmpInst::Predicate Predicate = CI->getPredicate();
1204 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1205 E->swapOperands(0, 1);
1206 Predicate = CmpInst::getSwappedPredicate(Predicate);
1208 E->setOpcode((CI->getOpcode() << 8) | Predicate);
1209 // TODO: 25% of our time is spent in simplifyCmpInst with pointer operands
1210 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1211 "Wrong types on cmp instruction");
1212 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1213 E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1214 Value *V =
1215 simplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), Q);
1216 if (auto Simplified = checkExprResults(E, I, V))
1217 return Simplified;
1218 } else if (isa<SelectInst>(I)) {
1219 if (isa<Constant>(E->getOperand(0)) ||
1220 E->getOperand(1) == E->getOperand(2)) {
1221 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1222 E->getOperand(2)->getType() == I->getOperand(2)->getType());
1223 Value *V = simplifySelectInst(E->getOperand(0), E->getOperand(1),
1224 E->getOperand(2), Q);
1225 if (auto Simplified = checkExprResults(E, I, V))
1226 return Simplified;
1228 } else if (I->isBinaryOp()) {
1229 Value *V =
1230 simplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), Q);
1231 if (auto Simplified = checkExprResults(E, I, V))
1232 return Simplified;
1233 } else if (auto *CI = dyn_cast<CastInst>(I)) {
1234 Value *V =
1235 simplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), Q);
1236 if (auto Simplified = checkExprResults(E, I, V))
1237 return Simplified;
1238 } else if (auto *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1239 Value *V = simplifyGEPInst(GEPI->getSourceElementType(), *E->op_begin(),
1240 ArrayRef(std::next(E->op_begin()), E->op_end()),
1241 GEPI->getNoWrapFlags(), Q);
1242 if (auto Simplified = checkExprResults(E, I, V))
1243 return Simplified;
1244 } else if (AllConstant) {
1245 // We don't bother trying to simplify unless all of the operands
1246 // were constant.
1247 // TODO: There are a lot of Simplify*'s we could call here, if we
1248 // wanted to. The original motivating case for this code was a
1249 // zext i1 false to i8, which we don't have an interface to
1250 // simplify (IE there is no SimplifyZExt).
1252 SmallVector<Constant *, 8> C;
1253 for (Value *Arg : E->operands())
1254 C.emplace_back(cast<Constant>(Arg));
1256 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1257 if (auto Simplified = checkExprResults(E, I, V))
1258 return Simplified;
1260 return ExprResult::some(E);
1263 const AggregateValueExpression *
1264 NewGVN::createAggregateValueExpression(Instruction *I) const {
1265 if (auto *II = dyn_cast<InsertValueInst>(I)) {
1266 auto *E = new (ExpressionAllocator)
1267 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1268 setBasicExpressionInfo(I, E);
1269 E->allocateIntOperands(ExpressionAllocator);
1270 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1271 return E;
1272 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1273 auto *E = new (ExpressionAllocator)
1274 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1275 setBasicExpressionInfo(EI, E);
1276 E->allocateIntOperands(ExpressionAllocator);
1277 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1278 return E;
1280 llvm_unreachable("Unhandled type of aggregate value operation");
1283 const DeadExpression *NewGVN::createDeadExpression() const {
1284 // DeadExpression has no arguments and all DeadExpression's are the same,
1285 // so we only need one of them.
1286 return SingletonDeadExpression;
1289 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1290 auto *E = new (ExpressionAllocator) VariableExpression(V);
1291 E->setOpcode(V->getValueID());
1292 return E;
1295 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1296 if (auto *C = dyn_cast<Constant>(V))
1297 return createConstantExpression(C);
1298 return createVariableExpression(V);
1301 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1302 auto *E = new (ExpressionAllocator) ConstantExpression(C);
1303 E->setOpcode(C->getValueID());
1304 return E;
1307 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1308 auto *E = new (ExpressionAllocator) UnknownExpression(I);
1309 E->setOpcode(I->getOpcode());
1310 return E;
1313 const CallExpression *
1314 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1315 // FIXME: Add operand bundles for calls.
1316 auto *E =
1317 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1318 setBasicExpressionInfo(CI, E);
1319 if (CI->isCommutative()) {
1320 // Ensure that commutative intrinsics that only differ by a permutation
1321 // of their operands get the same value number by sorting the operand value
1322 // numbers.
1323 assert(CI->getNumOperands() >= 2 && "Unsupported commutative intrinsic!");
1324 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1325 E->swapOperands(0, 1);
1327 return E;
1330 // Return true if some equivalent of instruction Inst dominates instruction U.
1331 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1332 const Instruction *U) const {
1333 auto *CC = ValueToClass.lookup(Inst);
1334 // This must be an instruction because we are only called from phi nodes
1335 // in the case that the value it needs to check against is an instruction.
1337 // The most likely candidates for dominance are the leader and the next leader.
1338 // The leader or nextleader will dominate in all cases where there is an
1339 // equivalent that is higher up in the dom tree.
1340 // We can't *only* check them, however, because the
1341 // dominator tree could have an infinite number of non-dominating siblings
1342 // with instructions that are in the right congruence class.
1343 // A
1344 // B C D E F G
1345 // |
1346 // H
1347 // Instruction U could be in H, with equivalents in every other sibling.
1348 // Depending on the rpo order picked, the leader could be the equivalent in
1349 // any of these siblings.
1350 if (!CC)
1351 return false;
1352 if (alwaysAvailable(CC->getLeader()))
1353 return true;
1354 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1355 return true;
1356 if (CC->getNextLeader().first &&
1357 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1358 return true;
1359 return llvm::any_of(*CC, [&](const Value *Member) {
1360 return Member != CC->getLeader() &&
1361 DT->dominates(cast<Instruction>(Member), U);
1365 // See if we have a congruence class and leader for this operand, and if so,
1366 // return it. Otherwise, return the operand itself.
1367 Value *NewGVN::lookupOperandLeader(Value *V) const {
1368 CongruenceClass *CC = ValueToClass.lookup(V);
1369 if (CC) {
1370 // Everything in TOP is represented by poison, as it can be any value.
1371 // We do have to make sure we get the type right though, so we can't set the
1372 // RepLeader to poison.
1373 if (CC == TOPClass)
1374 return PoisonValue::get(V->getType());
1375 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1378 return V;
1381 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1382 auto *CC = getMemoryClass(MA);
1383 assert(CC->getMemoryLeader() &&
1384 "Every MemoryAccess should be mapped to a congruence class with a "
1385 "representative memory access");
1386 return CC->getMemoryLeader();
1389 // Return true if the MemoryAccess is really equivalent to everything. This is
1390 // equivalent to the lattice value "TOP" in most lattices. This is the initial
1391 // state of all MemoryAccesses.
1392 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1393 return getMemoryClass(MA) == TOPClass;
1396 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1397 LoadInst *LI,
1398 const MemoryAccess *MA) const {
1399 auto *E =
1400 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1401 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1402 E->setType(LoadType);
1404 // Give store and loads same opcode so they value number together.
1405 E->setOpcode(0);
1406 E->op_push_back(PointerOp);
1408 // TODO: Value number heap versions. We may be able to discover
1409 // things alias analysis can't on it's own (IE that a store and a
1410 // load have the same value, and thus, it isn't clobbering the load).
1411 return E;
1414 const StoreExpression *
1415 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1416 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1417 auto *E = new (ExpressionAllocator)
1418 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1419 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1420 E->setType(SI->getValueOperand()->getType());
1422 // Give store and loads same opcode so they value number together.
1423 E->setOpcode(0);
1424 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1426 // TODO: Value number heap versions. We may be able to discover
1427 // things alias analysis can't on it's own (IE that a store and a
1428 // load have the same value, and thus, it isn't clobbering the load).
1429 return E;
1432 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1433 // Unlike loads, we never try to eliminate stores, so we do not check if they
1434 // are simple and avoid value numbering them.
1435 auto *SI = cast<StoreInst>(I);
1436 auto *StoreAccess = getMemoryAccess(SI);
1437 // Get the expression, if any, for the RHS of the MemoryDef.
1438 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1439 if (EnableStoreRefinement)
1440 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1441 // If we bypassed the use-def chains, make sure we add a use.
1442 StoreRHS = lookupMemoryLeader(StoreRHS);
1443 if (StoreRHS != StoreAccess->getDefiningAccess())
1444 addMemoryUsers(StoreRHS, StoreAccess);
1445 // If we are defined by ourselves, use the live on entry def.
1446 if (StoreRHS == StoreAccess)
1447 StoreRHS = MSSA->getLiveOnEntryDef();
1449 if (SI->isSimple()) {
1450 // See if we are defined by a previous store expression, it already has a
1451 // value, and it's the same value as our current store. FIXME: Right now, we
1452 // only do this for simple stores, we should expand to cover memcpys, etc.
1453 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1454 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1455 // We really want to check whether the expression we matched was a store. No
1456 // easy way to do that. However, we can check that the class we found has a
1457 // store, which, assuming the value numbering state is not corrupt, is
1458 // sufficient, because we must also be equivalent to that store's expression
1459 // for it to be in the same class as the load.
1460 if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1461 return LastStore;
1462 // Also check if our value operand is defined by a load of the same memory
1463 // location, and the memory state is the same as it was then (otherwise, it
1464 // could have been overwritten later. See test32 in
1465 // transforms/DeadStoreElimination/simple.ll).
1466 if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1467 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1468 LastStore->getOperand(0)) &&
1469 (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1470 StoreRHS))
1471 return LastStore;
1472 deleteExpression(LastStore);
1475 // If the store is not equivalent to anything, value number it as a store that
1476 // produces a unique memory state (instead of using it's MemoryUse, we use
1477 // it's MemoryDef).
1478 return createStoreExpression(SI, StoreAccess);
1481 // See if we can extract the value of a loaded pointer from a load, a store, or
1482 // a memory instruction.
1483 const Expression *
1484 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1485 LoadInst *LI, Instruction *DepInst,
1486 MemoryAccess *DefiningAccess) const {
1487 assert((!LI || LI->isSimple()) && "Not a simple load");
1488 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1489 // Can't forward from non-atomic to atomic without violating memory model.
1490 // Also don't need to coerce if they are the same type, we will just
1491 // propagate.
1492 if (LI->isAtomic() > DepSI->isAtomic() ||
1493 LoadType == DepSI->getValueOperand()->getType())
1494 return nullptr;
1495 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1496 if (Offset >= 0) {
1497 if (auto *C = dyn_cast<Constant>(
1498 lookupOperandLeader(DepSI->getValueOperand()))) {
1499 if (Constant *Res = getConstantValueForLoad(C, Offset, LoadType, DL)) {
1500 LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1501 << " to constant " << *Res << "\n");
1502 return createConstantExpression(Res);
1506 } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1507 // Can't forward from non-atomic to atomic without violating memory model.
1508 if (LI->isAtomic() > DepLI->isAtomic())
1509 return nullptr;
1510 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1511 if (Offset >= 0) {
1512 // We can coerce a constant load into a load.
1513 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1514 if (auto *PossibleConstant =
1515 getConstantValueForLoad(C, Offset, LoadType, DL)) {
1516 LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1517 << " to constant " << *PossibleConstant << "\n");
1518 return createConstantExpression(PossibleConstant);
1521 } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1522 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1523 if (Offset >= 0) {
1524 if (auto *PossibleConstant =
1525 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1526 LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1527 << " to constant " << *PossibleConstant << "\n");
1528 return createConstantExpression(PossibleConstant);
1533 // All of the below are only true if the loaded pointer is produced
1534 // by the dependent instruction.
1535 if (LoadPtr != lookupOperandLeader(DepInst) &&
1536 !AA->isMustAlias(LoadPtr, DepInst))
1537 return nullptr;
1538 // If this load really doesn't depend on anything, then we must be loading an
1539 // undef value. This can happen when loading for a fresh allocation with no
1540 // intervening stores, for example. Note that this is only true in the case
1541 // that the result of the allocation is pointer equal to the load ptr.
1542 if (isa<AllocaInst>(DepInst)) {
1543 return createConstantExpression(UndefValue::get(LoadType));
1545 // If this load occurs either right after a lifetime begin,
1546 // then the loaded value is undefined.
1547 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1548 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1549 return createConstantExpression(UndefValue::get(LoadType));
1550 } else if (auto *InitVal =
1551 getInitialValueOfAllocation(DepInst, TLI, LoadType))
1552 return createConstantExpression(InitVal);
1554 return nullptr;
1557 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1558 auto *LI = cast<LoadInst>(I);
1560 // We can eliminate in favor of non-simple loads, but we won't be able to
1561 // eliminate the loads themselves.
1562 if (!LI->isSimple())
1563 return nullptr;
1565 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1566 // Load of undef is UB.
1567 if (isa<UndefValue>(LoadAddressLeader))
1568 return createConstantExpression(PoisonValue::get(LI->getType()));
1569 MemoryAccess *OriginalAccess = getMemoryAccess(I);
1570 MemoryAccess *DefiningAccess =
1571 MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1573 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1574 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1575 Instruction *DefiningInst = MD->getMemoryInst();
1576 // If the defining instruction is not reachable, replace with poison.
1577 if (!ReachableBlocks.count(DefiningInst->getParent()))
1578 return createConstantExpression(PoisonValue::get(LI->getType()));
1579 // This will handle stores and memory insts. We only do if it the
1580 // defining access has a different type, or it is a pointer produced by
1581 // certain memory operations that cause the memory to have a fixed value
1582 // (IE things like calloc).
1583 if (const auto *CoercionResult =
1584 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1585 DefiningInst, DefiningAccess))
1586 return CoercionResult;
1590 const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1591 DefiningAccess);
1592 // If our MemoryLeader is not our defining access, add a use to the
1593 // MemoryLeader, so that we get reprocessed when it changes.
1594 if (LE->getMemoryLeader() != DefiningAccess)
1595 addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1596 return LE;
1599 NewGVN::ExprResult
1600 NewGVN::performSymbolicPredicateInfoEvaluation(IntrinsicInst *I) const {
1601 auto *PI = PredInfo->getPredicateInfoFor(I);
1602 if (!PI)
1603 return ExprResult::none();
1605 LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1607 const std::optional<PredicateConstraint> &Constraint = PI->getConstraint();
1608 if (!Constraint)
1609 return ExprResult::none();
1611 CmpInst::Predicate Predicate = Constraint->Predicate;
1612 Value *CmpOp0 = I->getOperand(0);
1613 Value *CmpOp1 = Constraint->OtherOp;
1615 Value *FirstOp = lookupOperandLeader(CmpOp0);
1616 Value *SecondOp = lookupOperandLeader(CmpOp1);
1617 Value *AdditionallyUsedValue = CmpOp0;
1619 // Sort the ops.
1620 if (shouldSwapOperandsForIntrinsic(FirstOp, SecondOp, I)) {
1621 std::swap(FirstOp, SecondOp);
1622 Predicate = CmpInst::getSwappedPredicate(Predicate);
1623 AdditionallyUsedValue = CmpOp1;
1626 if (Predicate == CmpInst::ICMP_EQ)
1627 return ExprResult::some(createVariableOrConstant(FirstOp),
1628 AdditionallyUsedValue, PI);
1630 // Handle the special case of floating point.
1631 if (Predicate == CmpInst::FCMP_OEQ && isa<ConstantFP>(FirstOp) &&
1632 !cast<ConstantFP>(FirstOp)->isZero())
1633 return ExprResult::some(createConstantExpression(cast<Constant>(FirstOp)),
1634 AdditionallyUsedValue, PI);
1636 return ExprResult::none();
1639 // Evaluate read only and pure calls, and create an expression result.
1640 NewGVN::ExprResult NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1641 auto *CI = cast<CallInst>(I);
1642 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1643 // Intrinsics with the returned attribute are copies of arguments.
1644 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1645 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1646 if (auto Res = performSymbolicPredicateInfoEvaluation(II))
1647 return Res;
1648 return ExprResult::some(createVariableOrConstant(ReturnedValue));
1652 // FIXME: Currently the calls which may access the thread id may
1653 // be considered as not accessing the memory. But this is
1654 // problematic for coroutines, since coroutines may resume in a
1655 // different thread. So we disable the optimization here for the
1656 // correctness. However, it may block many other correct
1657 // optimizations. Revert this one when we detect the memory
1658 // accessing kind more precisely.
1659 if (CI->getFunction()->isPresplitCoroutine())
1660 return ExprResult::none();
1662 // Do not combine convergent calls since they implicitly depend on the set of
1663 // threads that is currently executing, and they might be in different basic
1664 // blocks.
1665 if (CI->isConvergent())
1666 return ExprResult::none();
1668 if (AA->doesNotAccessMemory(CI)) {
1669 return ExprResult::some(
1670 createCallExpression(CI, TOPClass->getMemoryLeader()));
1671 } else if (AA->onlyReadsMemory(CI)) {
1672 if (auto *MA = MSSA->getMemoryAccess(CI)) {
1673 auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1674 return ExprResult::some(createCallExpression(CI, DefiningAccess));
1675 } else // MSSA determined that CI does not access memory.
1676 return ExprResult::some(
1677 createCallExpression(CI, TOPClass->getMemoryLeader()));
1679 return ExprResult::none();
1682 // Retrieve the memory class for a given MemoryAccess.
1683 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1684 auto *Result = MemoryAccessToClass.lookup(MA);
1685 assert(Result && "Should have found memory class");
1686 return Result;
1689 // Update the MemoryAccess equivalence table to say that From is equal to To,
1690 // and return true if this is different from what already existed in the table.
1691 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1692 CongruenceClass *NewClass) {
1693 assert(NewClass &&
1694 "Every MemoryAccess should be getting mapped to a non-null class");
1695 LLVM_DEBUG(dbgs() << "Setting " << *From);
1696 LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1697 LLVM_DEBUG(dbgs() << NewClass->getID()
1698 << " with current MemoryAccess leader ");
1699 LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1701 auto LookupResult = MemoryAccessToClass.find(From);
1702 bool Changed = false;
1703 // If it's already in the table, see if the value changed.
1704 if (LookupResult != MemoryAccessToClass.end()) {
1705 auto *OldClass = LookupResult->second;
1706 if (OldClass != NewClass) {
1707 // If this is a phi, we have to handle memory member updates.
1708 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1709 OldClass->memory_erase(MP);
1710 NewClass->memory_insert(MP);
1711 // This may have killed the class if it had no non-memory members
1712 if (OldClass->getMemoryLeader() == From) {
1713 if (OldClass->definesNoMemory()) {
1714 OldClass->setMemoryLeader(nullptr);
1715 } else {
1716 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1717 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1718 << OldClass->getID() << " to "
1719 << *OldClass->getMemoryLeader()
1720 << " due to removal of a memory member " << *From
1721 << "\n");
1722 markMemoryLeaderChangeTouched(OldClass);
1726 // It wasn't equivalent before, and now it is.
1727 LookupResult->second = NewClass;
1728 Changed = true;
1732 return Changed;
1735 // Determine if a instruction is cycle-free. That means the values in the
1736 // instruction don't depend on any expressions that can change value as a result
1737 // of the instruction. For example, a non-cycle free instruction would be v =
1738 // phi(0, v+1).
1739 bool NewGVN::isCycleFree(const Instruction *I) const {
1740 // In order to compute cycle-freeness, we do SCC finding on the instruction,
1741 // and see what kind of SCC it ends up in. If it is a singleton, it is
1742 // cycle-free. If it is not in a singleton, it is only cycle free if the
1743 // other members are all phi nodes (as they do not compute anything, they are
1744 // copies).
1745 auto ICS = InstCycleState.lookup(I);
1746 if (ICS == ICS_Unknown) {
1747 SCCFinder.Start(I);
1748 auto &SCC = SCCFinder.getComponentFor(I);
1749 // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1750 if (SCC.size() == 1)
1751 InstCycleState.insert({I, ICS_CycleFree});
1752 else {
1753 bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1754 return isa<PHINode>(V) || isCopyOfAPHI(V);
1756 ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1757 for (const auto *Member : SCC)
1758 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1759 InstCycleState.insert({MemberPhi, ICS});
1762 if (ICS == ICS_Cycle)
1763 return false;
1764 return true;
1767 // Evaluate PHI nodes symbolically and create an expression result.
1768 const Expression *
1769 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1770 Instruction *I,
1771 BasicBlock *PHIBlock) const {
1772 // True if one of the incoming phi edges is a backedge.
1773 bool HasBackedge = false;
1774 // All constant tracks the state of whether all the *original* phi operands
1775 // This is really shorthand for "this phi cannot cycle due to forward
1776 // change in value of the phi is guaranteed not to later change the value of
1777 // the phi. IE it can't be v = phi(undef, v+1)
1778 bool OriginalOpsConstant = true;
1779 auto *E = cast<PHIExpression>(createPHIExpression(
1780 PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1781 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1782 // See if all arguments are the same.
1783 // We track if any were undef because they need special handling.
1784 bool HasUndef = false, HasPoison = false;
1785 auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1786 if (isa<PoisonValue>(Arg)) {
1787 HasPoison = true;
1788 return false;
1790 if (isa<UndefValue>(Arg)) {
1791 HasUndef = true;
1792 return false;
1794 return true;
1796 // If we are left with no operands, it's dead.
1797 if (Filtered.empty()) {
1798 // If it has undef or poison at this point, it means there are no-non-undef
1799 // arguments, and thus, the value of the phi node must be undef.
1800 if (HasUndef) {
1801 LLVM_DEBUG(
1802 dbgs() << "PHI Node " << *I
1803 << " has no non-undef arguments, valuing it as undef\n");
1804 return createConstantExpression(UndefValue::get(I->getType()));
1806 if (HasPoison) {
1807 LLVM_DEBUG(
1808 dbgs() << "PHI Node " << *I
1809 << " has no non-poison arguments, valuing it as poison\n");
1810 return createConstantExpression(PoisonValue::get(I->getType()));
1813 LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1814 deleteExpression(E);
1815 return createDeadExpression();
1817 Value *AllSameValue = *(Filtered.begin());
1818 ++Filtered.begin();
1819 // Can't use std::equal here, sadly, because filter.begin moves.
1820 if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1821 // Can't fold phi(undef, X) -> X unless X can't be poison (thus X is undef
1822 // in the worst case).
1823 if (HasUndef && !isGuaranteedNotToBePoison(AllSameValue, AC, nullptr, DT))
1824 return E;
1826 // In LLVM's non-standard representation of phi nodes, it's possible to have
1827 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1828 // on the original phi node), especially in weird CFG's where some arguments
1829 // are unreachable, or uninitialized along certain paths. This can cause
1830 // infinite loops during evaluation. We work around this by not trying to
1831 // really evaluate them independently, but instead using a variable
1832 // expression to say if one is equivalent to the other.
1833 // We also special case undef/poison, so that if we have an undef, we can't
1834 // use the common value unless it dominates the phi block.
1835 if (HasPoison || HasUndef) {
1836 // If we have undef and at least one other value, this is really a
1837 // multivalued phi, and we need to know if it's cycle free in order to
1838 // evaluate whether we can ignore the undef. The other parts of this are
1839 // just shortcuts. If there is no backedge, or all operands are
1840 // constants, it also must be cycle free.
1841 if (HasBackedge && !OriginalOpsConstant &&
1842 !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1843 return E;
1845 // Only have to check for instructions
1846 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1847 if (!someEquivalentDominates(AllSameInst, I))
1848 return E;
1850 // Can't simplify to something that comes later in the iteration.
1851 // Otherwise, when and if it changes congruence class, we will never catch
1852 // up. We will always be a class behind it.
1853 if (isa<Instruction>(AllSameValue) &&
1854 InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1855 return E;
1856 NumGVNPhisAllSame++;
1857 LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1858 << "\n");
1859 deleteExpression(E);
1860 return createVariableOrConstant(AllSameValue);
1862 return E;
1865 const Expression *
1866 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1867 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1868 auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1869 if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1870 // EI is an extract from one of our with.overflow intrinsics. Synthesize
1871 // a semantically equivalent expression instead of an extract value
1872 // expression.
1873 return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1874 WO->getLHS(), WO->getRHS(), I);
1877 return createAggregateValueExpression(I);
1880 NewGVN::ExprResult NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1881 assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1883 auto *CI = cast<CmpInst>(I);
1884 // See if our operands are equal to those of a previous predicate, and if so,
1885 // if it implies true or false.
1886 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1887 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1888 auto OurPredicate = CI->getPredicate();
1889 if (shouldSwapOperands(Op0, Op1)) {
1890 std::swap(Op0, Op1);
1891 OurPredicate = CI->getSwappedPredicate();
1894 // Avoid processing the same info twice.
1895 const PredicateBase *LastPredInfo = nullptr;
1896 // See if we know something about the comparison itself, like it is the target
1897 // of an assume.
1898 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1899 if (isa_and_nonnull<PredicateAssume>(CmpPI))
1900 return ExprResult::some(
1901 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1903 if (Op0 == Op1) {
1904 // This condition does not depend on predicates, no need to add users
1905 if (CI->isTrueWhenEqual())
1906 return ExprResult::some(
1907 createConstantExpression(ConstantInt::getTrue(CI->getType())));
1908 else if (CI->isFalseWhenEqual())
1909 return ExprResult::some(
1910 createConstantExpression(ConstantInt::getFalse(CI->getType())));
1913 // NOTE: Because we are comparing both operands here and below, and using
1914 // previous comparisons, we rely on fact that predicateinfo knows to mark
1915 // comparisons that use renamed operands as users of the earlier comparisons.
1916 // It is *not* enough to just mark predicateinfo renamed operands as users of
1917 // the earlier comparisons, because the *other* operand may have changed in a
1918 // previous iteration.
1919 // Example:
1920 // icmp slt %a, %b
1921 // %b.0 = ssa.copy(%b)
1922 // false branch:
1923 // icmp slt %c, %b.0
1925 // %c and %a may start out equal, and thus, the code below will say the second
1926 // %icmp is false. c may become equal to something else, and in that case the
1927 // %second icmp *must* be reexamined, but would not if only the renamed
1928 // %operands are considered users of the icmp.
1930 // *Currently* we only check one level of comparisons back, and only mark one
1931 // level back as touched when changes happen. If you modify this code to look
1932 // back farther through comparisons, you *must* mark the appropriate
1933 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1934 // we know something just from the operands themselves
1936 // See if our operands have predicate info, so that we may be able to derive
1937 // something from a previous comparison.
1938 for (const auto &Op : CI->operands()) {
1939 auto *PI = PredInfo->getPredicateInfoFor(Op);
1940 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1941 if (PI == LastPredInfo)
1942 continue;
1943 LastPredInfo = PI;
1944 // In phi of ops cases, we may have predicate info that we are evaluating
1945 // in a different context.
1946 if (!DT->dominates(PBranch->To, I->getParent()))
1947 continue;
1948 // TODO: Along the false edge, we may know more things too, like
1949 // icmp of
1950 // same operands is false.
1951 // TODO: We only handle actual comparison conditions below, not
1952 // and/or.
1953 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1954 if (!BranchCond)
1955 continue;
1956 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1957 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1958 auto BranchPredicate = BranchCond->getPredicate();
1959 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1960 std::swap(BranchOp0, BranchOp1);
1961 BranchPredicate = BranchCond->getSwappedPredicate();
1963 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1964 if (PBranch->TrueEdge) {
1965 // If we know the previous predicate is true and we are in the true
1966 // edge then we may be implied true or false.
1967 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1968 OurPredicate)) {
1969 return ExprResult::some(
1970 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1971 PI);
1974 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1975 OurPredicate)) {
1976 return ExprResult::some(
1977 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1978 PI);
1980 } else {
1981 // Just handle the ne and eq cases, where if we have the same
1982 // operands, we may know something.
1983 if (BranchPredicate == OurPredicate) {
1984 // Same predicate, same ops,we know it was false, so this is false.
1985 return ExprResult::some(
1986 createConstantExpression(ConstantInt::getFalse(CI->getType())),
1987 PI);
1988 } else if (BranchPredicate ==
1989 CmpInst::getInversePredicate(OurPredicate)) {
1990 // Inverse predicate, we know the other was false, so this is true.
1991 return ExprResult::some(
1992 createConstantExpression(ConstantInt::getTrue(CI->getType())),
1993 PI);
1999 // Create expression will take care of simplifyCmpInst
2000 return createExpression(I);
2003 // Substitute and symbolize the instruction before value numbering.
2004 NewGVN::ExprResult
2005 NewGVN::performSymbolicEvaluation(Instruction *I,
2006 SmallPtrSetImpl<Value *> &Visited) const {
2008 const Expression *E = nullptr;
2009 // TODO: memory intrinsics.
2010 // TODO: Some day, we should do the forward propagation and reassociation
2011 // parts of the algorithm.
2012 switch (I->getOpcode()) {
2013 case Instruction::ExtractValue:
2014 case Instruction::InsertValue:
2015 E = performSymbolicAggrValueEvaluation(I);
2016 break;
2017 case Instruction::PHI: {
2018 SmallVector<ValPair, 3> Ops;
2019 auto *PN = cast<PHINode>(I);
2020 for (unsigned i = 0; i < PN->getNumOperands(); ++i)
2021 Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
2022 // Sort to ensure the invariant createPHIExpression requires is met.
2023 sortPHIOps(Ops);
2024 E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
2025 } break;
2026 case Instruction::Call:
2027 return performSymbolicCallEvaluation(I);
2028 break;
2029 case Instruction::Store:
2030 E = performSymbolicStoreEvaluation(I);
2031 break;
2032 case Instruction::Load:
2033 E = performSymbolicLoadEvaluation(I);
2034 break;
2035 case Instruction::BitCast:
2036 case Instruction::AddrSpaceCast:
2037 case Instruction::Freeze:
2038 return createExpression(I);
2039 break;
2040 case Instruction::ICmp:
2041 case Instruction::FCmp:
2042 return performSymbolicCmpEvaluation(I);
2043 break;
2044 case Instruction::FNeg:
2045 case Instruction::Add:
2046 case Instruction::FAdd:
2047 case Instruction::Sub:
2048 case Instruction::FSub:
2049 case Instruction::Mul:
2050 case Instruction::FMul:
2051 case Instruction::UDiv:
2052 case Instruction::SDiv:
2053 case Instruction::FDiv:
2054 case Instruction::URem:
2055 case Instruction::SRem:
2056 case Instruction::FRem:
2057 case Instruction::Shl:
2058 case Instruction::LShr:
2059 case Instruction::AShr:
2060 case Instruction::And:
2061 case Instruction::Or:
2062 case Instruction::Xor:
2063 case Instruction::Trunc:
2064 case Instruction::ZExt:
2065 case Instruction::SExt:
2066 case Instruction::FPToUI:
2067 case Instruction::FPToSI:
2068 case Instruction::UIToFP:
2069 case Instruction::SIToFP:
2070 case Instruction::FPTrunc:
2071 case Instruction::FPExt:
2072 case Instruction::PtrToInt:
2073 case Instruction::IntToPtr:
2074 case Instruction::Select:
2075 case Instruction::ExtractElement:
2076 case Instruction::InsertElement:
2077 case Instruction::GetElementPtr:
2078 return createExpression(I);
2079 break;
2080 case Instruction::ShuffleVector:
2081 // FIXME: Add support for shufflevector to createExpression.
2082 return ExprResult::none();
2083 default:
2084 return ExprResult::none();
2086 return ExprResult::some(E);
2089 // Look up a container of values/instructions in a map, and touch all the
2090 // instructions in the container. Then erase value from the map.
2091 template <typename Map, typename KeyType>
2092 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2093 const auto Result = M.find_as(Key);
2094 if (Result != M.end()) {
2095 for (const typename Map::mapped_type::value_type Mapped : Result->second)
2096 TouchedInstructions.set(InstrToDFSNum(Mapped));
2097 M.erase(Result);
2101 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2102 assert(User && To != User);
2103 if (isa<Instruction>(To))
2104 AdditionalUsers[To].insert(User);
2107 void NewGVN::addAdditionalUsers(ExprResult &Res, Instruction *User) const {
2108 if (Res.ExtraDep && Res.ExtraDep != User)
2109 addAdditionalUsers(Res.ExtraDep, User);
2110 Res.ExtraDep = nullptr;
2112 if (Res.PredDep) {
2113 if (const auto *PBranch = dyn_cast<PredicateBranch>(Res.PredDep))
2114 PredicateToUsers[PBranch->Condition].insert(User);
2115 else if (const auto *PAssume = dyn_cast<PredicateAssume>(Res.PredDep))
2116 PredicateToUsers[PAssume->Condition].insert(User);
2118 Res.PredDep = nullptr;
2121 void NewGVN::markUsersTouched(Value *V) {
2122 // Now mark the users as touched.
2123 for (auto *User : V->users()) {
2124 assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2125 TouchedInstructions.set(InstrToDFSNum(User));
2127 touchAndErase(AdditionalUsers, V);
2130 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2131 LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2132 MemoryToUsers[To].insert(U);
2135 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2136 TouchedInstructions.set(MemoryToDFSNum(MA));
2139 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2140 if (isa<MemoryUse>(MA))
2141 return;
2142 for (const auto *U : MA->users())
2143 TouchedInstructions.set(MemoryToDFSNum(U));
2144 touchAndErase(MemoryToUsers, MA);
2147 // Touch all the predicates that depend on this instruction.
2148 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2149 touchAndErase(PredicateToUsers, I);
2152 // Mark users affected by a memory leader change.
2153 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2154 for (const auto *M : CC->memory())
2155 markMemoryDefTouched(M);
2158 // Touch the instructions that need to be updated after a congruence class has a
2159 // leader change, and mark changed values.
2160 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2161 for (auto *M : *CC) {
2162 if (auto *I = dyn_cast<Instruction>(M))
2163 TouchedInstructions.set(InstrToDFSNum(I));
2164 LeaderChanges.insert(M);
2168 // Give a range of things that have instruction DFS numbers, this will return
2169 // the member of the range with the smallest dfs number.
2170 template <class T, class Range>
2171 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2172 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2173 for (const auto X : R) {
2174 auto DFSNum = InstrToDFSNum(X);
2175 if (DFSNum < MinDFS.second)
2176 MinDFS = {X, DFSNum};
2178 return MinDFS.first;
2181 // This function returns the MemoryAccess that should be the next leader of
2182 // congruence class CC, under the assumption that the current leader is going to
2183 // disappear.
2184 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2185 // TODO: If this ends up to slow, we can maintain a next memory leader like we
2186 // do for regular leaders.
2187 // Make sure there will be a leader to find.
2188 assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2189 if (CC->getStoreCount() > 0) {
2190 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2191 return getMemoryAccess(NL);
2192 // Find the store with the minimum DFS number.
2193 auto *V = getMinDFSOfRange<Value>(make_filter_range(
2194 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2195 return getMemoryAccess(cast<StoreInst>(V));
2197 assert(CC->getStoreCount() == 0);
2199 // Given our assertion, hitting this part must mean
2200 // !OldClass->memory_empty()
2201 if (CC->memory_size() == 1)
2202 return *CC->memory_begin();
2203 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2206 // This function returns the next value leader of a congruence class, under the
2207 // assumption that the current leader is going away. This should end up being
2208 // the next most dominating member.
2209 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2210 // We don't need to sort members if there is only 1, and we don't care about
2211 // sorting the TOP class because everything either gets out of it or is
2212 // unreachable.
2214 if (CC->size() == 1 || CC == TOPClass) {
2215 return *(CC->begin());
2216 } else if (CC->getNextLeader().first) {
2217 ++NumGVNAvoidedSortedLeaderChanges;
2218 return CC->getNextLeader().first;
2219 } else {
2220 ++NumGVNSortedLeaderChanges;
2221 // NOTE: If this ends up to slow, we can maintain a dual structure for
2222 // member testing/insertion, or keep things mostly sorted, and sort only
2223 // here, or use SparseBitVector or ....
2224 return getMinDFSOfRange<Value>(*CC);
2228 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2229 // the memory members, etc for the move.
2231 // The invariants of this function are:
2233 // - I must be moving to NewClass from OldClass
2234 // - The StoreCount of OldClass and NewClass is expected to have been updated
2235 // for I already if it is a store.
2236 // - The OldClass memory leader has not been updated yet if I was the leader.
2237 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2238 MemoryAccess *InstMA,
2239 CongruenceClass *OldClass,
2240 CongruenceClass *NewClass) {
2241 // If the leader is I, and we had a representative MemoryAccess, it should
2242 // be the MemoryAccess of OldClass.
2243 assert((!InstMA || !OldClass->getMemoryLeader() ||
2244 OldClass->getLeader() != I ||
2245 MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2246 MemoryAccessToClass.lookup(InstMA)) &&
2247 "Representative MemoryAccess mismatch");
2248 // First, see what happens to the new class
2249 if (!NewClass->getMemoryLeader()) {
2250 // Should be a new class, or a store becoming a leader of a new class.
2251 assert(NewClass->size() == 1 ||
2252 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2253 NewClass->setMemoryLeader(InstMA);
2254 // Mark it touched if we didn't just create a singleton
2255 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2256 << NewClass->getID()
2257 << " due to new memory instruction becoming leader\n");
2258 markMemoryLeaderChangeTouched(NewClass);
2260 setMemoryClass(InstMA, NewClass);
2261 // Now, fixup the old class if necessary
2262 if (OldClass->getMemoryLeader() == InstMA) {
2263 if (!OldClass->definesNoMemory()) {
2264 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2265 LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2266 << OldClass->getID() << " to "
2267 << *OldClass->getMemoryLeader()
2268 << " due to removal of old leader " << *InstMA << "\n");
2269 markMemoryLeaderChangeTouched(OldClass);
2270 } else
2271 OldClass->setMemoryLeader(nullptr);
2275 // Move a value, currently in OldClass, to be part of NewClass
2276 // Update OldClass and NewClass for the move (including changing leaders, etc).
2277 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2278 CongruenceClass *OldClass,
2279 CongruenceClass *NewClass) {
2280 if (I == OldClass->getNextLeader().first)
2281 OldClass->resetNextLeader();
2283 OldClass->erase(I);
2284 NewClass->insert(I);
2286 // Ensure that the leader has the lowest RPO. If the leader changed notify all
2287 // members of the class.
2288 if (NewClass->getLeader() != I &&
2289 NewClass->addPossibleLeader({I, InstrToDFSNum(I)})) {
2290 markValueLeaderChangeTouched(NewClass);
2293 // Handle our special casing of stores.
2294 if (auto *SI = dyn_cast<StoreInst>(I)) {
2295 OldClass->decStoreCount();
2296 // Okay, so when do we want to make a store a leader of a class?
2297 // If we have a store defined by an earlier load, we want the earlier load
2298 // to lead the class.
2299 // If we have a store defined by something else, we want the store to lead
2300 // the class so everything else gets the "something else" as a value.
2301 // If we have a store as the single member of the class, we want the store
2302 // as the leader
2303 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2304 // If it's a store expression we are using, it means we are not equivalent
2305 // to something earlier.
2306 if (auto *SE = dyn_cast<StoreExpression>(E)) {
2307 NewClass->setStoredValue(SE->getStoredValue());
2308 markValueLeaderChangeTouched(NewClass);
2309 // Shift the new class leader to be the store
2310 LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2311 << NewClass->getID() << " from "
2312 << *NewClass->getLeader() << " to " << *SI
2313 << " because store joined class\n");
2314 // If we changed the leader, we have to mark it changed because we don't
2315 // know what it will do to symbolic evaluation.
2316 NewClass->setLeader({SI, InstrToDFSNum(SI)});
2318 // We rely on the code below handling the MemoryAccess change.
2320 NewClass->incStoreCount();
2322 // True if there is no memory instructions left in a class that had memory
2323 // instructions before.
2325 // If it's not a memory use, set the MemoryAccess equivalence
2326 auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2327 if (InstMA)
2328 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2329 ValueToClass[I] = NewClass;
2330 // See if we destroyed the class or need to swap leaders.
2331 if (OldClass->empty() && OldClass != TOPClass) {
2332 if (OldClass->getDefiningExpr()) {
2333 LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2334 << " from table\n");
2335 // We erase it as an exact expression to make sure we don't just erase an
2336 // equivalent one.
2337 auto Iter = ExpressionToClass.find_as(
2338 ExactEqualsExpression(*OldClass->getDefiningExpr()));
2339 if (Iter != ExpressionToClass.end())
2340 ExpressionToClass.erase(Iter);
2341 #ifdef EXPENSIVE_CHECKS
2342 assert(
2343 (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2344 "We erased the expression we just inserted, which should not happen");
2345 #endif
2347 } else if (OldClass->getLeader() == I) {
2348 // When the leader changes, the value numbering of
2349 // everything may change due to symbolization changes, so we need to
2350 // reprocess.
2351 LLVM_DEBUG(dbgs() << "Value class leader change for class "
2352 << OldClass->getID() << "\n");
2353 ++NumGVNLeaderChanges;
2354 // Destroy the stored value if there are no more stores to represent it.
2355 // Note that this is basically clean up for the expression removal that
2356 // happens below. If we remove stores from a class, we may leave it as a
2357 // class of equivalent memory phis.
2358 if (OldClass->getStoreCount() == 0) {
2359 if (OldClass->getStoredValue())
2360 OldClass->setStoredValue(nullptr);
2362 OldClass->setLeader({getNextValueLeader(OldClass),
2363 InstrToDFSNum(getNextValueLeader(OldClass))});
2364 OldClass->resetNextLeader();
2365 markValueLeaderChangeTouched(OldClass);
2369 // For a given expression, mark the phi of ops instructions that could have
2370 // changed as a result.
2371 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2372 touchAndErase(ExpressionToPhiOfOps, E);
2375 // Perform congruence finding on a given value numbering expression.
2376 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2377 // This is guaranteed to return something, since it will at least find
2378 // TOP.
2380 CongruenceClass *IClass = ValueToClass.lookup(I);
2381 assert(IClass && "Should have found a IClass");
2382 // Dead classes should have been eliminated from the mapping.
2383 assert(!IClass->isDead() && "Found a dead class");
2385 CongruenceClass *EClass = nullptr;
2386 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2387 EClass = ValueToClass.lookup(VE->getVariableValue());
2388 } else if (isa<DeadExpression>(E)) {
2389 EClass = TOPClass;
2391 if (!EClass) {
2392 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2394 // If it's not in the value table, create a new congruence class.
2395 if (lookupResult.second) {
2396 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2397 auto place = lookupResult.first;
2398 place->second = NewClass;
2400 // Constants and variables should always be made the leader.
2401 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2402 NewClass->setLeader({CE->getConstantValue(), 0});
2403 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2404 StoreInst *SI = SE->getStoreInst();
2405 NewClass->setLeader({SI, InstrToDFSNum(SI)});
2406 NewClass->setStoredValue(SE->getStoredValue());
2407 // The RepMemoryAccess field will be filled in properly by the
2408 // moveValueToNewCongruenceClass call.
2409 } else {
2410 NewClass->setLeader({I, InstrToDFSNum(I)});
2412 assert(!isa<VariableExpression>(E) &&
2413 "VariableExpression should have been handled already");
2415 EClass = NewClass;
2416 LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2417 << " using expression " << *E << " at "
2418 << NewClass->getID() << " and leader "
2419 << *(NewClass->getLeader()));
2420 if (NewClass->getStoredValue())
2421 LLVM_DEBUG(dbgs() << " and stored value "
2422 << *(NewClass->getStoredValue()));
2423 LLVM_DEBUG(dbgs() << "\n");
2424 } else {
2425 EClass = lookupResult.first->second;
2426 if (isa<ConstantExpression>(E))
2427 assert((isa<Constant>(EClass->getLeader()) ||
2428 (EClass->getStoredValue() &&
2429 isa<Constant>(EClass->getStoredValue()))) &&
2430 "Any class with a constant expression should have a "
2431 "constant leader");
2433 assert(EClass && "Somehow don't have an eclass");
2435 assert(!EClass->isDead() && "We accidentally looked up a dead class");
2438 bool ClassChanged = IClass != EClass;
2439 bool LeaderChanged = LeaderChanges.erase(I);
2440 if (ClassChanged || LeaderChanged) {
2441 LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2442 << *E << "\n");
2443 if (ClassChanged) {
2444 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2445 markPhiOfOpsChanged(E);
2448 markUsersTouched(I);
2449 if (MemoryAccess *MA = getMemoryAccess(I))
2450 markMemoryUsersTouched(MA);
2451 if (auto *CI = dyn_cast<CmpInst>(I))
2452 markPredicateUsersTouched(CI);
2454 // If we changed the class of the store, we want to ensure nothing finds the
2455 // old store expression. In particular, loads do not compare against stored
2456 // value, so they will find old store expressions (and associated class
2457 // mappings) if we leave them in the table.
2458 if (ClassChanged && isa<StoreInst>(I)) {
2459 auto *OldE = ValueToExpression.lookup(I);
2460 // It could just be that the old class died. We don't want to erase it if we
2461 // just moved classes.
2462 if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2463 // Erase this as an exact expression to ensure we don't erase expressions
2464 // equivalent to it.
2465 auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2466 if (Iter != ExpressionToClass.end())
2467 ExpressionToClass.erase(Iter);
2470 ValueToExpression[I] = E;
2473 // Process the fact that Edge (from, to) is reachable, including marking
2474 // any newly reachable blocks and instructions for processing.
2475 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2476 // Check if the Edge was reachable before.
2477 if (ReachableEdges.insert({From, To}).second) {
2478 // If this block wasn't reachable before, all instructions are touched.
2479 if (ReachableBlocks.insert(To).second) {
2480 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2481 << " marked reachable\n");
2482 const auto &InstRange = BlockInstRange.lookup(To);
2483 TouchedInstructions.set(InstRange.first, InstRange.second);
2484 } else {
2485 LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2486 << " was reachable, but new edge {"
2487 << getBlockName(From) << "," << getBlockName(To)
2488 << "} to it found\n");
2490 // We've made an edge reachable to an existing block, which may
2491 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2492 // they are the only thing that depend on new edges. Anything using their
2493 // values will get propagated to if necessary.
2494 if (MemoryAccess *MemPhi = getMemoryAccess(To))
2495 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2497 // FIXME: We should just add a union op on a Bitvector and
2498 // SparseBitVector. We can do it word by word faster than we are doing it
2499 // here.
2500 for (auto InstNum : RevisitOnReachabilityChange[To])
2501 TouchedInstructions.set(InstNum);
2506 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2507 // see if we know some constant value for it already.
2508 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2509 auto Result = lookupOperandLeader(Cond);
2510 return isa<Constant>(Result) ? Result : nullptr;
2513 // Process the outgoing edges of a block for reachability.
2514 void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2515 // Evaluate reachability of terminator instruction.
2516 Value *Cond;
2517 BasicBlock *TrueSucc, *FalseSucc;
2518 if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2519 Value *CondEvaluated = findConditionEquivalence(Cond);
2520 if (!CondEvaluated) {
2521 if (auto *I = dyn_cast<Instruction>(Cond)) {
2522 SmallPtrSet<Value *, 4> Visited;
2523 auto Res = performSymbolicEvaluation(I, Visited);
2524 if (const auto *CE = dyn_cast_or_null<ConstantExpression>(Res.Expr)) {
2525 CondEvaluated = CE->getConstantValue();
2526 addAdditionalUsers(Res, I);
2527 } else {
2528 // Did not use simplification result, no need to add the extra
2529 // dependency.
2530 Res.ExtraDep = nullptr;
2532 } else if (isa<ConstantInt>(Cond)) {
2533 CondEvaluated = Cond;
2536 ConstantInt *CI;
2537 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2538 if (CI->isOne()) {
2539 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2540 << " evaluated to true\n");
2541 updateReachableEdge(B, TrueSucc);
2542 } else if (CI->isZero()) {
2543 LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2544 << " evaluated to false\n");
2545 updateReachableEdge(B, FalseSucc);
2547 } else {
2548 updateReachableEdge(B, TrueSucc);
2549 updateReachableEdge(B, FalseSucc);
2551 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2552 // For switches, propagate the case values into the case
2553 // destinations.
2555 Value *SwitchCond = SI->getCondition();
2556 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2557 // See if we were able to turn this switch statement into a constant.
2558 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2559 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2560 // We should be able to get case value for this.
2561 auto Case = *SI->findCaseValue(CondVal);
2562 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2563 // We proved the value is outside of the range of the case.
2564 // We can't do anything other than mark the default dest as reachable,
2565 // and go home.
2566 updateReachableEdge(B, SI->getDefaultDest());
2567 return;
2569 // Now get where it goes and mark it reachable.
2570 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2571 updateReachableEdge(B, TargetBlock);
2572 } else {
2573 for (BasicBlock *TargetBlock : successors(SI->getParent()))
2574 updateReachableEdge(B, TargetBlock);
2576 } else {
2577 // Otherwise this is either unconditional, or a type we have no
2578 // idea about. Just mark successors as reachable.
2579 for (BasicBlock *TargetBlock : successors(TI->getParent()))
2580 updateReachableEdge(B, TargetBlock);
2582 // This also may be a memory defining terminator, in which case, set it
2583 // equivalent only to itself.
2585 auto *MA = getMemoryAccess(TI);
2586 if (MA && !isa<MemoryUse>(MA)) {
2587 auto *CC = ensureLeaderOfMemoryClass(MA);
2588 if (setMemoryClass(MA, CC))
2589 markMemoryUsersTouched(MA);
2594 // Remove the PHI of Ops PHI for I
2595 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2596 InstrDFS.erase(PHITemp);
2597 // It's still a temp instruction. We keep it in the array so it gets erased.
2598 // However, it's no longer used by I, or in the block
2599 TempToBlock.erase(PHITemp);
2600 RealToTemp.erase(I);
2601 // We don't remove the users from the phi node uses. This wastes a little
2602 // time, but such is life. We could use two sets to track which were there
2603 // are the start of NewGVN, and which were added, but right nowt he cost of
2604 // tracking is more than the cost of checking for more phi of ops.
2607 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
2608 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2609 Instruction *ExistingValue) {
2610 InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2611 AllTempInstructions.insert(Op);
2612 TempToBlock[Op] = BB;
2613 RealToTemp[ExistingValue] = Op;
2614 // Add all users to phi node use, as they are now uses of the phi of ops phis
2615 // and may themselves be phi of ops.
2616 for (auto *U : ExistingValue->users())
2617 if (auto *UI = dyn_cast<Instruction>(U))
2618 PHINodeUses.insert(UI);
2621 static bool okayForPHIOfOps(const Instruction *I) {
2622 if (!EnablePhiOfOps)
2623 return false;
2624 return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2625 isa<LoadInst>(I);
2628 // Return true if this operand will be safe to use for phi of ops.
2630 // The reason some operands are unsafe is that we are not trying to recursively
2631 // translate everything back through phi nodes. We actually expect some lookups
2632 // of expressions to fail. In particular, a lookup where the expression cannot
2633 // exist in the predecessor. This is true even if the expression, as shown, can
2634 // be determined to be constant.
2635 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2636 SmallPtrSetImpl<const Value *> &Visited) {
2637 SmallVector<Value *, 4> Worklist;
2638 Worklist.push_back(V);
2639 while (!Worklist.empty()) {
2640 auto *I = Worklist.pop_back_val();
2641 if (!isa<Instruction>(I))
2642 continue;
2644 auto OISIt = OpSafeForPHIOfOps.find({I, CacheIdx});
2645 if (OISIt != OpSafeForPHIOfOps.end())
2646 return OISIt->second;
2648 // Keep walking until we either dominate the phi block, or hit a phi, or run
2649 // out of things to check.
2650 if (DT->properlyDominates(getBlockForValue(I), PHIBlock)) {
2651 OpSafeForPHIOfOps.insert({{I, CacheIdx}, true});
2652 continue;
2654 // PHI in the same block.
2655 if (isa<PHINode>(I) && getBlockForValue(I) == PHIBlock) {
2656 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2657 return false;
2660 auto *OrigI = cast<Instruction>(I);
2661 // When we hit an instruction that reads memory (load, call, etc), we must
2662 // consider any store that may happen in the loop. For now, we assume the
2663 // worst: there is a store in the loop that alias with this read.
2664 // The case where the load is outside the loop is already covered by the
2665 // dominator check above.
2666 // TODO: relax this condition
2667 if (OrigI->mayReadFromMemory())
2668 return false;
2670 // Check the operands of the current instruction.
2671 for (auto *Op : OrigI->operand_values()) {
2672 if (!isa<Instruction>(Op))
2673 continue;
2674 // Stop now if we find an unsafe operand.
2675 auto OISIt = OpSafeForPHIOfOps.find({OrigI, CacheIdx});
2676 if (OISIt != OpSafeForPHIOfOps.end()) {
2677 if (!OISIt->second) {
2678 OpSafeForPHIOfOps.insert({{I, CacheIdx}, false});
2679 return false;
2681 continue;
2683 if (!Visited.insert(Op).second)
2684 continue;
2685 Worklist.push_back(cast<Instruction>(Op));
2688 OpSafeForPHIOfOps.insert({{V, CacheIdx}, true});
2689 return true;
2692 // Try to find a leader for instruction TransInst, which is a phi translated
2693 // version of something in our original program. Visited is used to ensure we
2694 // don't infinite loop during translations of cycles. OrigInst is the
2695 // instruction in the original program, and PredBB is the predecessor we
2696 // translated it through.
2697 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2698 SmallPtrSetImpl<Value *> &Visited,
2699 MemoryAccess *MemAccess, Instruction *OrigInst,
2700 BasicBlock *PredBB) {
2701 unsigned IDFSNum = InstrToDFSNum(OrigInst);
2702 // Make sure it's marked as a temporary instruction.
2703 AllTempInstructions.insert(TransInst);
2704 // and make sure anything that tries to add it's DFS number is
2705 // redirected to the instruction we are making a phi of ops
2706 // for.
2707 TempToBlock.insert({TransInst, PredBB});
2708 InstrDFS.insert({TransInst, IDFSNum});
2710 auto Res = performSymbolicEvaluation(TransInst, Visited);
2711 const Expression *E = Res.Expr;
2712 addAdditionalUsers(Res, OrigInst);
2713 InstrDFS.erase(TransInst);
2714 AllTempInstructions.erase(TransInst);
2715 TempToBlock.erase(TransInst);
2716 if (MemAccess)
2717 TempToMemory.erase(TransInst);
2718 if (!E)
2719 return nullptr;
2720 auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2721 if (!FoundVal) {
2722 ExpressionToPhiOfOps[E].insert(OrigInst);
2723 LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2724 << " in block " << getBlockName(PredBB) << "\n");
2725 return nullptr;
2727 if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2728 FoundVal = SI->getValueOperand();
2729 return FoundVal;
2732 // When we see an instruction that is an op of phis, generate the equivalent phi
2733 // of ops form.
2734 const Expression *
2735 NewGVN::makePossiblePHIOfOps(Instruction *I,
2736 SmallPtrSetImpl<Value *> &Visited) {
2737 if (!okayForPHIOfOps(I))
2738 return nullptr;
2740 if (!Visited.insert(I).second)
2741 return nullptr;
2742 // For now, we require the instruction be cycle free because we don't
2743 // *always* create a phi of ops for instructions that could be done as phi
2744 // of ops, we only do it if we think it is useful. If we did do it all the
2745 // time, we could remove the cycle free check.
2746 if (!isCycleFree(I))
2747 return nullptr;
2749 SmallPtrSet<const Value *, 8> ProcessedPHIs;
2750 // TODO: We don't do phi translation on memory accesses because it's
2751 // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2752 // which we don't have a good way of doing ATM.
2753 auto *MemAccess = getMemoryAccess(I);
2754 // If the memory operation is defined by a memory operation this block that
2755 // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2756 // can't help, as it would still be killed by that memory operation.
2757 if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2758 MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2759 return nullptr;
2761 // Convert op of phis to phi of ops
2762 SmallPtrSet<const Value *, 10> VisitedOps;
2763 SmallVector<Value *, 4> Ops(I->operand_values());
2764 BasicBlock *SamePHIBlock = nullptr;
2765 PHINode *OpPHI = nullptr;
2766 if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2767 return nullptr;
2768 for (auto *Op : Ops) {
2769 if (!isa<PHINode>(Op)) {
2770 auto *ValuePHI = RealToTemp.lookup(Op);
2771 if (!ValuePHI)
2772 continue;
2773 LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2774 Op = ValuePHI;
2776 OpPHI = cast<PHINode>(Op);
2777 if (!SamePHIBlock) {
2778 SamePHIBlock = getBlockForValue(OpPHI);
2779 } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2780 LLVM_DEBUG(
2781 dbgs()
2782 << "PHIs for operands are not all in the same block, aborting\n");
2783 return nullptr;
2785 // No point in doing this for one-operand phis.
2786 // Since all PHIs for operands must be in the same block, then they must
2787 // have the same number of operands so we can just abort.
2788 if (OpPHI->getNumOperands() == 1)
2789 return nullptr;
2792 if (!OpPHI)
2793 return nullptr;
2795 SmallVector<ValPair, 4> PHIOps;
2796 SmallPtrSet<Value *, 4> Deps;
2797 auto *PHIBlock = getBlockForValue(OpPHI);
2798 RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2799 for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2800 auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2801 Value *FoundVal = nullptr;
2802 SmallPtrSet<Value *, 4> CurrentDeps;
2803 // We could just skip unreachable edges entirely but it's tricky to do
2804 // with rewriting existing phi nodes.
2805 if (ReachableEdges.count({PredBB, PHIBlock})) {
2806 // Clone the instruction, create an expression from it that is
2807 // translated back into the predecessor, and see if we have a leader.
2808 Instruction *ValueOp = I->clone();
2809 // Emit the temporal instruction in the predecessor basic block where the
2810 // corresponding value is defined.
2811 ValueOp->insertBefore(PredBB->getTerminator());
2812 if (MemAccess)
2813 TempToMemory.insert({ValueOp, MemAccess});
2814 bool SafeForPHIOfOps = true;
2815 VisitedOps.clear();
2816 for (auto &Op : ValueOp->operands()) {
2817 auto *OrigOp = &*Op;
2818 // When these operand changes, it could change whether there is a
2819 // leader for us or not, so we have to add additional users.
2820 if (isa<PHINode>(Op)) {
2821 Op = Op->DoPHITranslation(PHIBlock, PredBB);
2822 if (Op != OrigOp && Op != I)
2823 CurrentDeps.insert(Op);
2824 } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2825 if (getBlockForValue(ValuePHI) == PHIBlock)
2826 Op = ValuePHI->getIncomingValueForBlock(PredBB);
2828 // If we phi-translated the op, it must be safe.
2829 SafeForPHIOfOps =
2830 SafeForPHIOfOps &&
2831 (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2833 // FIXME: For those things that are not safe we could generate
2834 // expressions all the way down, and see if this comes out to a
2835 // constant. For anything where that is true, and unsafe, we should
2836 // have made a phi-of-ops (or value numbered it equivalent to something)
2837 // for the pieces already.
2838 FoundVal = !SafeForPHIOfOps ? nullptr
2839 : findLeaderForInst(ValueOp, Visited,
2840 MemAccess, I, PredBB);
2841 ValueOp->eraseFromParent();
2842 if (!FoundVal) {
2843 // We failed to find a leader for the current ValueOp, but this might
2844 // change in case of the translated operands change.
2845 if (SafeForPHIOfOps)
2846 for (auto *Dep : CurrentDeps)
2847 addAdditionalUsers(Dep, I);
2849 return nullptr;
2851 Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2852 } else {
2853 LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2854 << getBlockName(PredBB)
2855 << " because the block is unreachable\n");
2856 FoundVal = PoisonValue::get(I->getType());
2857 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2860 PHIOps.push_back({FoundVal, PredBB});
2861 LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2862 << getBlockName(PredBB) << "\n");
2864 for (auto *Dep : Deps)
2865 addAdditionalUsers(Dep, I);
2866 sortPHIOps(PHIOps);
2867 auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2868 if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2869 LLVM_DEBUG(
2870 dbgs()
2871 << "Not creating real PHI of ops because it simplified to existing "
2872 "value or constant\n");
2873 // We have leaders for all operands, but do not create a real PHI node with
2874 // those leaders as operands, so the link between the operands and the
2875 // PHI-of-ops is not materialized in the IR. If any of those leaders
2876 // changes, the PHI-of-op may change also, so we need to add the operands as
2877 // additional users.
2878 for (auto &O : PHIOps)
2879 addAdditionalUsers(O.first, I);
2881 return E;
2883 auto *ValuePHI = RealToTemp.lookup(I);
2884 bool NewPHI = false;
2885 if (!ValuePHI) {
2886 ValuePHI =
2887 PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2888 addPhiOfOps(ValuePHI, PHIBlock, I);
2889 NewPHI = true;
2890 NumGVNPHIOfOpsCreated++;
2892 if (NewPHI) {
2893 for (auto PHIOp : PHIOps)
2894 ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2895 } else {
2896 TempToBlock[ValuePHI] = PHIBlock;
2897 unsigned int i = 0;
2898 for (auto PHIOp : PHIOps) {
2899 ValuePHI->setIncomingValue(i, PHIOp.first);
2900 ValuePHI->setIncomingBlock(i, PHIOp.second);
2901 ++i;
2904 RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2905 LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2906 << "\n");
2908 return E;
2911 // The algorithm initially places the values of the routine in the TOP
2912 // congruence class. The leader of TOP is the undetermined value `poison`.
2913 // When the algorithm has finished, values still in TOP are unreachable.
2914 void NewGVN::initializeCongruenceClasses(Function &F) {
2915 NextCongruenceNum = 0;
2917 // Note that even though we use the live on entry def as a representative
2918 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2919 // have no real equivalent to poison for MemoryAccesses, and so we really
2920 // should be checking whether the MemoryAccess is top if we want to know if it
2921 // is equivalent to everything. Otherwise, what this really signifies is that
2922 // the access "it reaches all the way back to the beginning of the function"
2924 // Initialize all other instructions to be in TOP class.
2925 TOPClass = createCongruenceClass(nullptr, nullptr);
2926 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2927 // The live on entry def gets put into it's own class
2928 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2929 createMemoryClass(MSSA->getLiveOnEntryDef());
2931 for (auto *DTN : nodes(DT)) {
2932 BasicBlock *BB = DTN->getBlock();
2933 // All MemoryAccesses are equivalent to live on entry to start. They must
2934 // be initialized to something so that initial changes are noticed. For
2935 // the maximal answer, we initialize them all to be the same as
2936 // liveOnEntry.
2937 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2938 if (MemoryBlockDefs)
2939 for (const auto &Def : *MemoryBlockDefs) {
2940 MemoryAccessToClass[&Def] = TOPClass;
2941 auto *MD = dyn_cast<MemoryDef>(&Def);
2942 // Insert the memory phis into the member list.
2943 if (!MD) {
2944 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2945 TOPClass->memory_insert(MP);
2946 MemoryPhiState.insert({MP, MPS_TOP});
2949 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2950 TOPClass->incStoreCount();
2953 // FIXME: This is trying to discover which instructions are uses of phi
2954 // nodes. We should move this into one of the myriad of places that walk
2955 // all the operands already.
2956 for (auto &I : *BB) {
2957 if (isa<PHINode>(&I))
2958 for (auto *U : I.users())
2959 if (auto *UInst = dyn_cast<Instruction>(U))
2960 if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2961 PHINodeUses.insert(UInst);
2962 // Don't insert void terminators into the class. We don't value number
2963 // them, and they just end up sitting in TOP.
2964 if (I.isTerminator() && I.getType()->isVoidTy())
2965 continue;
2966 TOPClass->insert(&I);
2967 ValueToClass[&I] = TOPClass;
2971 // Initialize arguments to be in their own unique congruence classes
2972 for (auto &FA : F.args())
2973 createSingletonCongruenceClass(&FA);
2976 void NewGVN::cleanupTables() {
2977 for (CongruenceClass *&CC : CongruenceClasses) {
2978 LLVM_DEBUG(dbgs() << "Congruence class " << CC->getID() << " has "
2979 << CC->size() << " members\n");
2980 // Make sure we delete the congruence class (probably worth switching to
2981 // a unique_ptr at some point.
2982 delete CC;
2983 CC = nullptr;
2986 // Destroy the value expressions
2987 SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2988 AllTempInstructions.end());
2989 AllTempInstructions.clear();
2991 // We have to drop all references for everything first, so there are no uses
2992 // left as we delete them.
2993 for (auto *I : TempInst) {
2994 I->dropAllReferences();
2997 while (!TempInst.empty()) {
2998 auto *I = TempInst.pop_back_val();
2999 I->deleteValue();
3002 ValueToClass.clear();
3003 ArgRecycler.clear(ExpressionAllocator);
3004 ExpressionAllocator.Reset();
3005 CongruenceClasses.clear();
3006 ExpressionToClass.clear();
3007 ValueToExpression.clear();
3008 RealToTemp.clear();
3009 AdditionalUsers.clear();
3010 ExpressionToPhiOfOps.clear();
3011 TempToBlock.clear();
3012 TempToMemory.clear();
3013 PHINodeUses.clear();
3014 OpSafeForPHIOfOps.clear();
3015 ReachableBlocks.clear();
3016 ReachableEdges.clear();
3017 #ifndef NDEBUG
3018 ProcessedCount.clear();
3019 #endif
3020 InstrDFS.clear();
3021 InstructionsToErase.clear();
3022 DFSToInstr.clear();
3023 BlockInstRange.clear();
3024 TouchedInstructions.clear();
3025 MemoryAccessToClass.clear();
3026 PredicateToUsers.clear();
3027 MemoryToUsers.clear();
3028 RevisitOnReachabilityChange.clear();
3029 IntrinsicInstPred.clear();
3032 // Assign local DFS number mapping to instructions, and leave space for Value
3033 // PHI's.
3034 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
3035 unsigned Start) {
3036 unsigned End = Start;
3037 if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
3038 InstrDFS[MemPhi] = End++;
3039 DFSToInstr.emplace_back(MemPhi);
3042 // Then the real block goes next.
3043 for (auto &I : *B) {
3044 // There's no need to call isInstructionTriviallyDead more than once on
3045 // an instruction. Therefore, once we know that an instruction is dead
3046 // we change its DFS number so that it doesn't get value numbered.
3047 if (isInstructionTriviallyDead(&I, TLI)) {
3048 InstrDFS[&I] = 0;
3049 LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3050 markInstructionForDeletion(&I);
3051 continue;
3053 if (isa<PHINode>(&I))
3054 RevisitOnReachabilityChange[B].set(End);
3055 InstrDFS[&I] = End++;
3056 DFSToInstr.emplace_back(&I);
3059 // All of the range functions taken half-open ranges (open on the end side).
3060 // So we do not subtract one from count, because at this point it is one
3061 // greater than the last instruction.
3062 return std::make_pair(Start, End);
3065 void NewGVN::updateProcessedCount(const Value *V) {
3066 #ifndef NDEBUG
3067 if (ProcessedCount.count(V) == 0) {
3068 ProcessedCount.insert({V, 1});
3069 } else {
3070 ++ProcessedCount[V];
3071 assert(ProcessedCount[V] < 100 &&
3072 "Seem to have processed the same Value a lot");
3074 #endif
3077 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3078 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3079 // If all the arguments are the same, the MemoryPhi has the same value as the
3080 // argument. Filter out unreachable blocks and self phis from our operands.
3081 // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3082 // self-phi checking.
3083 const BasicBlock *PHIBlock = MP->getBlock();
3084 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3085 return cast<MemoryAccess>(U) != MP &&
3086 !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3087 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3089 // If all that is left is nothing, our memoryphi is poison. We keep it as
3090 // InitialClass. Note: The only case this should happen is if we have at
3091 // least one self-argument.
3092 if (Filtered.begin() == Filtered.end()) {
3093 if (setMemoryClass(MP, TOPClass))
3094 markMemoryUsersTouched(MP);
3095 return;
3098 // Transform the remaining operands into operand leaders.
3099 // FIXME: mapped_iterator should have a range version.
3100 auto LookupFunc = [&](const Use &U) {
3101 return lookupMemoryLeader(cast<MemoryAccess>(U));
3103 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3104 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3106 // and now check if all the elements are equal.
3107 // Sadly, we can't use std::equals since these are random access iterators.
3108 const auto *AllSameValue = *MappedBegin;
3109 ++MappedBegin;
3110 bool AllEqual = std::all_of(
3111 MappedBegin, MappedEnd,
3112 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3114 if (AllEqual)
3115 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3116 << "\n");
3117 else
3118 LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3119 // If it's equal to something, it's in that class. Otherwise, it has to be in
3120 // a class where it is the leader (other things may be equivalent to it, but
3121 // it needs to start off in its own class, which means it must have been the
3122 // leader, and it can't have stopped being the leader because it was never
3123 // removed).
3124 CongruenceClass *CC =
3125 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3126 auto OldState = MemoryPhiState.lookup(MP);
3127 assert(OldState != MPS_Invalid && "Invalid memory phi state");
3128 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3129 MemoryPhiState[MP] = NewState;
3130 if (setMemoryClass(MP, CC) || OldState != NewState)
3131 markMemoryUsersTouched(MP);
3134 // Value number a single instruction, symbolically evaluating, performing
3135 // congruence finding, and updating mappings.
3136 void NewGVN::valueNumberInstruction(Instruction *I) {
3137 LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3138 if (!I->isTerminator()) {
3139 const Expression *Symbolized = nullptr;
3140 SmallPtrSet<Value *, 2> Visited;
3141 if (DebugCounter::shouldExecute(VNCounter)) {
3142 auto Res = performSymbolicEvaluation(I, Visited);
3143 Symbolized = Res.Expr;
3144 addAdditionalUsers(Res, I);
3146 // Make a phi of ops if necessary
3147 if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3148 !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3149 auto *PHIE = makePossiblePHIOfOps(I, Visited);
3150 // If we created a phi of ops, use it.
3151 // If we couldn't create one, make sure we don't leave one lying around
3152 if (PHIE) {
3153 Symbolized = PHIE;
3154 } else if (auto *Op = RealToTemp.lookup(I)) {
3155 removePhiOfOps(I, Op);
3158 } else {
3159 // Mark the instruction as unused so we don't value number it again.
3160 InstrDFS[I] = 0;
3162 // If we couldn't come up with a symbolic expression, use the unknown
3163 // expression
3164 if (Symbolized == nullptr)
3165 Symbolized = createUnknownExpression(I);
3166 performCongruenceFinding(I, Symbolized);
3167 } else {
3168 // Handle terminators that return values. All of them produce values we
3169 // don't currently understand. We don't place non-value producing
3170 // terminators in a class.
3171 if (!I->getType()->isVoidTy()) {
3172 auto *Symbolized = createUnknownExpression(I);
3173 performCongruenceFinding(I, Symbolized);
3175 processOutgoingEdges(I, I->getParent());
3179 // Check if there is a path, using single or equal argument phi nodes, from
3180 // First to Second.
3181 bool NewGVN::singleReachablePHIPath(
3182 SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3183 const MemoryAccess *Second) const {
3184 if (First == Second)
3185 return true;
3186 if (MSSA->isLiveOnEntryDef(First))
3187 return false;
3189 // This is not perfect, but as we're just verifying here, we can live with
3190 // the loss of precision. The real solution would be that of doing strongly
3191 // connected component finding in this routine, and it's probably not worth
3192 // the complexity for the time being. So, we just keep a set of visited
3193 // MemoryAccess and return true when we hit a cycle.
3194 if (!Visited.insert(First).second)
3195 return true;
3197 const auto *EndDef = First;
3198 for (const auto *ChainDef : optimized_def_chain(First)) {
3199 if (ChainDef == Second)
3200 return true;
3201 if (MSSA->isLiveOnEntryDef(ChainDef))
3202 return false;
3203 EndDef = ChainDef;
3205 auto *MP = cast<MemoryPhi>(EndDef);
3206 auto ReachableOperandPred = [&](const Use &U) {
3207 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3209 auto FilteredPhiArgs =
3210 make_filter_range(MP->operands(), ReachableOperandPred);
3211 SmallVector<const Value *, 32> OperandList;
3212 llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3213 bool Okay = all_equal(OperandList);
3214 if (Okay)
3215 return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3216 Second);
3217 return false;
3220 // Verify the that the memory equivalence table makes sense relative to the
3221 // congruence classes. Note that this checking is not perfect, and is currently
3222 // subject to very rare false negatives. It is only useful for
3223 // testing/debugging.
3224 void NewGVN::verifyMemoryCongruency() const {
3225 #ifndef NDEBUG
3226 // Verify that the memory table equivalence and memory member set match
3227 for (const auto *CC : CongruenceClasses) {
3228 if (CC == TOPClass || CC->isDead())
3229 continue;
3230 if (CC->getStoreCount() != 0) {
3231 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3232 "Any class with a store as a leader should have a "
3233 "representative stored value");
3234 assert(CC->getMemoryLeader() &&
3235 "Any congruence class with a store should have a "
3236 "representative access");
3239 if (CC->getMemoryLeader())
3240 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3241 "Representative MemoryAccess does not appear to be reverse "
3242 "mapped properly");
3243 for (const auto *M : CC->memory())
3244 assert(MemoryAccessToClass.lookup(M) == CC &&
3245 "Memory member does not appear to be reverse mapped properly");
3248 // Anything equivalent in the MemoryAccess table should be in the same
3249 // congruence class.
3251 // Filter out the unreachable and trivially dead entries, because they may
3252 // never have been updated if the instructions were not processed.
3253 auto ReachableAccessPred =
3254 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3255 bool Result = ReachableBlocks.count(Pair.first->getBlock());
3256 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3257 MemoryToDFSNum(Pair.first) == 0)
3258 return false;
3259 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3260 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3262 // We could have phi nodes which operands are all trivially dead,
3263 // so we don't process them.
3264 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3265 for (const auto &U : MemPHI->incoming_values()) {
3266 if (auto *I = dyn_cast<Instruction>(&*U)) {
3267 if (!isInstructionTriviallyDead(I))
3268 return true;
3271 return false;
3274 return true;
3277 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3278 for (auto KV : Filtered) {
3279 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3280 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3281 if (FirstMUD && SecondMUD) {
3282 SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3283 assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3284 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3285 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3286 "The instructions for these memory operations should have "
3287 "been in the same congruence class or reachable through"
3288 "a single argument phi");
3290 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3291 // We can only sanely verify that MemoryDefs in the operand list all have
3292 // the same class.
3293 auto ReachableOperandPred = [&](const Use &U) {
3294 return ReachableEdges.count(
3295 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3296 isa<MemoryDef>(U);
3298 // All arguments should in the same class, ignoring unreachable arguments
3299 auto FilteredPhiArgs =
3300 make_filter_range(FirstMP->operands(), ReachableOperandPred);
3301 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3302 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3303 std::back_inserter(PhiOpClasses), [&](const Use &U) {
3304 const MemoryDef *MD = cast<MemoryDef>(U);
3305 return ValueToClass.lookup(MD->getMemoryInst());
3307 assert(all_equal(PhiOpClasses) &&
3308 "All MemoryPhi arguments should be in the same class");
3311 #endif
3314 // Verify that the sparse propagation we did actually found the maximal fixpoint
3315 // We do this by storing the value to class mapping, touching all instructions,
3316 // and redoing the iteration to see if anything changed.
3317 void NewGVN::verifyIterationSettled(Function &F) {
3318 #ifndef NDEBUG
3319 LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3320 if (DebugCounter::isCounterSet(VNCounter))
3321 DebugCounter::setCounterState(VNCounter, StartingVNCounter);
3323 // Note that we have to store the actual classes, as we may change existing
3324 // classes during iteration. This is because our memory iteration propagation
3325 // is not perfect, and so may waste a little work. But it should generate
3326 // exactly the same congruence classes we have now, with different IDs.
3327 std::map<const Value *, CongruenceClass> BeforeIteration;
3329 for (auto &KV : ValueToClass) {
3330 if (auto *I = dyn_cast<Instruction>(KV.first))
3331 // Skip unused/dead instructions.
3332 if (InstrToDFSNum(I) == 0)
3333 continue;
3334 BeforeIteration.insert({KV.first, *KV.second});
3337 TouchedInstructions.set();
3338 TouchedInstructions.reset(0);
3339 OpSafeForPHIOfOps.clear();
3340 CacheIdx = 0;
3341 iterateTouchedInstructions();
3342 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3343 EqualClasses;
3344 for (const auto &KV : ValueToClass) {
3345 if (auto *I = dyn_cast<Instruction>(KV.first))
3346 // Skip unused/dead instructions.
3347 if (InstrToDFSNum(I) == 0)
3348 continue;
3349 // We could sink these uses, but i think this adds a bit of clarity here as
3350 // to what we are comparing.
3351 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3352 auto *AfterCC = KV.second;
3353 // Note that the classes can't change at this point, so we memoize the set
3354 // that are equal.
3355 if (!EqualClasses.count({BeforeCC, AfterCC})) {
3356 assert(BeforeCC->isEquivalentTo(AfterCC) &&
3357 "Value number changed after main loop completed!");
3358 EqualClasses.insert({BeforeCC, AfterCC});
3361 #endif
3364 // Verify that for each store expression in the expression to class mapping,
3365 // only the latest appears, and multiple ones do not appear.
3366 // Because loads do not use the stored value when doing equality with stores,
3367 // if we don't erase the old store expressions from the table, a load can find
3368 // a no-longer valid StoreExpression.
3369 void NewGVN::verifyStoreExpressions() const {
3370 #ifndef NDEBUG
3371 // This is the only use of this, and it's not worth defining a complicated
3372 // densemapinfo hash/equality function for it.
3373 std::set<
3374 std::pair<const Value *,
3375 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3376 StoreExpressionSet;
3377 for (const auto &KV : ExpressionToClass) {
3378 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3379 // Make sure a version that will conflict with loads is not already there
3380 auto Res = StoreExpressionSet.insert(
3381 {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3382 SE->getStoredValue())});
3383 bool Okay = Res.second;
3384 // It's okay to have the same expression already in there if it is
3385 // identical in nature.
3386 // This can happen when the leader of the stored value changes over time.
3387 if (!Okay)
3388 Okay = (std::get<1>(Res.first->second) == KV.second) &&
3389 (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3390 lookupOperandLeader(SE->getStoredValue()));
3391 assert(Okay && "Stored expression conflict exists in expression table");
3392 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3393 assert(ValueExpr && ValueExpr->equals(*SE) &&
3394 "StoreExpression in ExpressionToClass is not latest "
3395 "StoreExpression for value");
3398 #endif
3401 // This is the main value numbering loop, it iterates over the initial touched
3402 // instruction set, propagating value numbers, marking things touched, etc,
3403 // until the set of touched instructions is completely empty.
3404 void NewGVN::iterateTouchedInstructions() {
3405 uint64_t Iterations = 0;
3406 // Figure out where touchedinstructions starts
3407 int FirstInstr = TouchedInstructions.find_first();
3408 // Nothing set, nothing to iterate, just return.
3409 if (FirstInstr == -1)
3410 return;
3411 const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3412 while (TouchedInstructions.any()) {
3413 ++Iterations;
3414 // Walk through all the instructions in all the blocks in RPO.
3415 // TODO: As we hit a new block, we should push and pop equalities into a
3416 // table lookupOperandLeader can use, to catch things PredicateInfo
3417 // might miss, like edge-only equivalences.
3418 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3420 // This instruction was found to be dead. We don't bother looking
3421 // at it again.
3422 if (InstrNum == 0) {
3423 TouchedInstructions.reset(InstrNum);
3424 continue;
3427 Value *V = InstrFromDFSNum(InstrNum);
3428 const BasicBlock *CurrBlock = getBlockForValue(V);
3430 // If we hit a new block, do reachability processing.
3431 if (CurrBlock != LastBlock) {
3432 LastBlock = CurrBlock;
3433 bool BlockReachable = ReachableBlocks.count(CurrBlock);
3434 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3436 // If it's not reachable, erase any touched instructions and move on.
3437 if (!BlockReachable) {
3438 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3439 LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3440 << getBlockName(CurrBlock)
3441 << " because it is unreachable\n");
3442 continue;
3444 // Use the appropriate cache for "OpIsSafeForPHIOfOps".
3445 CacheIdx = RPOOrdering.lookup(DT->getNode(CurrBlock)) - 1;
3446 updateProcessedCount(CurrBlock);
3448 // Reset after processing (because we may mark ourselves as touched when
3449 // we propagate equalities).
3450 TouchedInstructions.reset(InstrNum);
3452 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3453 LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3454 valueNumberMemoryPhi(MP);
3455 } else if (auto *I = dyn_cast<Instruction>(V)) {
3456 valueNumberInstruction(I);
3457 } else {
3458 llvm_unreachable("Should have been a MemoryPhi or Instruction");
3460 updateProcessedCount(V);
3463 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3466 // This is the main transformation entry point.
3467 bool NewGVN::runGVN() {
3468 if (DebugCounter::isCounterSet(VNCounter))
3469 StartingVNCounter = DebugCounter::getCounterState(VNCounter);
3470 bool Changed = false;
3471 NumFuncArgs = F.arg_size();
3472 MSSAWalker = MSSA->getWalker();
3473 SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3475 // Count number of instructions for sizing of hash tables, and come
3476 // up with a global dfs numbering for instructions.
3477 unsigned ICount = 1;
3478 // Add an empty instruction to account for the fact that we start at 1
3479 DFSToInstr.emplace_back(nullptr);
3480 // Note: We want ideal RPO traversal of the blocks, which is not quite the
3481 // same as dominator tree order, particularly with regard whether backedges
3482 // get visited first or second, given a block with multiple successors.
3483 // If we visit in the wrong order, we will end up performing N times as many
3484 // iterations.
3485 // The dominator tree does guarantee that, for a given dom tree node, it's
3486 // parent must occur before it in the RPO ordering. Thus, we only need to sort
3487 // the siblings.
3488 ReversePostOrderTraversal<Function *> RPOT(&F);
3489 unsigned Counter = 0;
3490 for (auto &B : RPOT) {
3491 auto *Node = DT->getNode(B);
3492 assert(Node && "RPO and Dominator tree should have same reachability");
3493 RPOOrdering[Node] = ++Counter;
3495 // Sort dominator tree children arrays into RPO.
3496 for (auto &B : RPOT) {
3497 auto *Node = DT->getNode(B);
3498 if (Node->getNumChildren() > 1)
3499 llvm::sort(*Node, [&](const DomTreeNode *A, const DomTreeNode *B) {
3500 return RPOOrdering[A] < RPOOrdering[B];
3504 // Now a standard depth first ordering of the domtree is equivalent to RPO.
3505 for (auto *DTN : depth_first(DT->getRootNode())) {
3506 BasicBlock *B = DTN->getBlock();
3507 const auto &BlockRange = assignDFSNumbers(B, ICount);
3508 BlockInstRange.insert({B, BlockRange});
3509 ICount += BlockRange.second - BlockRange.first;
3511 initializeCongruenceClasses(F);
3513 TouchedInstructions.resize(ICount);
3514 // Ensure we don't end up resizing the expressionToClass map, as
3515 // that can be quite expensive. At most, we have one expression per
3516 // instruction.
3517 ExpressionToClass.reserve(ICount);
3519 // Initialize the touched instructions to include the entry block.
3520 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3521 TouchedInstructions.set(InstRange.first, InstRange.second);
3522 LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3523 << " marked reachable\n");
3524 ReachableBlocks.insert(&F.getEntryBlock());
3525 // Use index corresponding to entry block.
3526 CacheIdx = 0;
3528 iterateTouchedInstructions();
3529 verifyMemoryCongruency();
3530 verifyIterationSettled(F);
3531 verifyStoreExpressions();
3533 Changed |= eliminateInstructions(F);
3535 // Delete all instructions marked for deletion.
3536 for (Instruction *ToErase : InstructionsToErase) {
3537 if (!ToErase->use_empty())
3538 ToErase->replaceAllUsesWith(PoisonValue::get(ToErase->getType()));
3540 assert(ToErase->getParent() &&
3541 "BB containing ToErase deleted unexpectedly!");
3542 ToErase->eraseFromParent();
3544 Changed |= !InstructionsToErase.empty();
3546 // Delete all unreachable blocks.
3547 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3548 return !ReachableBlocks.count(&BB);
3551 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3552 LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3553 << " is unreachable\n");
3554 deleteInstructionsInBlock(&BB);
3555 Changed = true;
3558 cleanupTables();
3559 return Changed;
3562 struct NewGVN::ValueDFS {
3563 int DFSIn = 0;
3564 int DFSOut = 0;
3565 int LocalNum = 0;
3567 // Only one of Def and U will be set.
3568 // The bool in the Def tells us whether the Def is the stored value of a
3569 // store.
3570 PointerIntPair<Value *, 1, bool> Def;
3571 Use *U = nullptr;
3573 bool operator<(const ValueDFS &Other) const {
3574 // It's not enough that any given field be less than - we have sets
3575 // of fields that need to be evaluated together to give a proper ordering.
3576 // For example, if you have;
3577 // DFS (1, 3)
3578 // Val 0
3579 // DFS (1, 2)
3580 // Val 50
3581 // We want the second to be less than the first, but if we just go field
3582 // by field, we will get to Val 0 < Val 50 and say the first is less than
3583 // the second. We only want it to be less than if the DFS orders are equal.
3585 // Each LLVM instruction only produces one value, and thus the lowest-level
3586 // differentiator that really matters for the stack (and what we use as a
3587 // replacement) is the local dfs number.
3588 // Everything else in the structure is instruction level, and only affects
3589 // the order in which we will replace operands of a given instruction.
3591 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3592 // the order of replacement of uses does not matter.
3593 // IE given,
3594 // a = 5
3595 // b = a + a
3596 // When you hit b, you will have two valuedfs with the same dfsin, out, and
3597 // localnum.
3598 // The .val will be the same as well.
3599 // The .u's will be different.
3600 // You will replace both, and it does not matter what order you replace them
3601 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3602 // operand 2).
3603 // Similarly for the case of same dfsin, dfsout, localnum, but different
3604 // .val's
3605 // a = 5
3606 // b = 6
3607 // c = a + b
3608 // in c, we will a valuedfs for a, and one for b,with everything the same
3609 // but .val and .u.
3610 // It does not matter what order we replace these operands in.
3611 // You will always end up with the same IR, and this is guaranteed.
3612 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3613 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3614 Other.U);
3618 // This function converts the set of members for a congruence class from values,
3619 // to sets of defs and uses with associated DFS info. The total number of
3620 // reachable uses for each value is stored in UseCount, and instructions that
3621 // seem
3622 // dead (have no non-dead uses) are stored in ProbablyDead.
3623 void NewGVN::convertClassToDFSOrdered(
3624 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3625 DenseMap<const Value *, unsigned int> &UseCounts,
3626 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3627 for (auto *D : Dense) {
3628 // First add the value.
3629 BasicBlock *BB = getBlockForValue(D);
3630 // Constants are handled prior to ever calling this function, so
3631 // we should only be left with instructions as members.
3632 assert(BB && "Should have figured out a basic block for value");
3633 ValueDFS VDDef;
3634 DomTreeNode *DomNode = DT->getNode(BB);
3635 VDDef.DFSIn = DomNode->getDFSNumIn();
3636 VDDef.DFSOut = DomNode->getDFSNumOut();
3637 // If it's a store, use the leader of the value operand, if it's always
3638 // available, or the value operand. TODO: We could do dominance checks to
3639 // find a dominating leader, but not worth it ATM.
3640 if (auto *SI = dyn_cast<StoreInst>(D)) {
3641 auto Leader = lookupOperandLeader(SI->getValueOperand());
3642 if (alwaysAvailable(Leader)) {
3643 VDDef.Def.setPointer(Leader);
3644 } else {
3645 VDDef.Def.setPointer(SI->getValueOperand());
3646 VDDef.Def.setInt(true);
3648 } else {
3649 VDDef.Def.setPointer(D);
3651 assert(isa<Instruction>(D) &&
3652 "The dense set member should always be an instruction");
3653 Instruction *Def = cast<Instruction>(D);
3654 VDDef.LocalNum = InstrToDFSNum(D);
3655 DFSOrderedSet.push_back(VDDef);
3656 // If there is a phi node equivalent, add it
3657 if (auto *PN = RealToTemp.lookup(Def)) {
3658 auto *PHIE =
3659 dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3660 if (PHIE) {
3661 VDDef.Def.setInt(false);
3662 VDDef.Def.setPointer(PN);
3663 VDDef.LocalNum = 0;
3664 DFSOrderedSet.push_back(VDDef);
3668 unsigned int UseCount = 0;
3669 // Now add the uses.
3670 for (auto &U : Def->uses()) {
3671 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3672 // Don't try to replace into dead uses
3673 if (InstructionsToErase.count(I))
3674 continue;
3675 ValueDFS VDUse;
3676 // Put the phi node uses in the incoming block.
3677 BasicBlock *IBlock;
3678 if (auto *P = dyn_cast<PHINode>(I)) {
3679 IBlock = P->getIncomingBlock(U);
3680 // Make phi node users appear last in the incoming block
3681 // they are from.
3682 VDUse.LocalNum = InstrDFS.size() + 1;
3683 } else {
3684 IBlock = getBlockForValue(I);
3685 VDUse.LocalNum = InstrToDFSNum(I);
3688 // Skip uses in unreachable blocks, as we're going
3689 // to delete them.
3690 if (!ReachableBlocks.contains(IBlock))
3691 continue;
3693 DomTreeNode *DomNode = DT->getNode(IBlock);
3694 VDUse.DFSIn = DomNode->getDFSNumIn();
3695 VDUse.DFSOut = DomNode->getDFSNumOut();
3696 VDUse.U = &U;
3697 ++UseCount;
3698 DFSOrderedSet.emplace_back(VDUse);
3702 // If there are no uses, it's probably dead (but it may have side-effects,
3703 // so not definitely dead. Otherwise, store the number of uses so we can
3704 // track if it becomes dead later).
3705 if (UseCount == 0)
3706 ProbablyDead.insert(Def);
3707 else
3708 UseCounts[Def] = UseCount;
3712 // This function converts the set of members for a congruence class from values,
3713 // to the set of defs for loads and stores, with associated DFS info.
3714 void NewGVN::convertClassToLoadsAndStores(
3715 const CongruenceClass &Dense,
3716 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3717 for (auto *D : Dense) {
3718 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3719 continue;
3721 BasicBlock *BB = getBlockForValue(D);
3722 ValueDFS VD;
3723 DomTreeNode *DomNode = DT->getNode(BB);
3724 VD.DFSIn = DomNode->getDFSNumIn();
3725 VD.DFSOut = DomNode->getDFSNumOut();
3726 VD.Def.setPointer(D);
3728 // If it's an instruction, use the real local dfs number.
3729 if (auto *I = dyn_cast<Instruction>(D))
3730 VD.LocalNum = InstrToDFSNum(I);
3731 else
3732 llvm_unreachable("Should have been an instruction");
3734 LoadsAndStores.emplace_back(VD);
3738 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3739 patchReplacementInstruction(I, Repl);
3740 I->replaceAllUsesWith(Repl);
3743 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3744 LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
3745 ++NumGVNBlocksDeleted;
3747 // Delete the instructions backwards, as it has a reduced likelihood of having
3748 // to update as many def-use and use-def chains. Start after the terminator.
3749 auto StartPoint = BB->rbegin();
3750 ++StartPoint;
3751 // Note that we explicitly recalculate BB->rend() on each iteration,
3752 // as it may change when we remove the first instruction.
3753 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3754 Instruction &Inst = *I++;
3755 if (!Inst.use_empty())
3756 Inst.replaceAllUsesWith(PoisonValue::get(Inst.getType()));
3757 if (isa<LandingPadInst>(Inst))
3758 continue;
3759 salvageKnowledge(&Inst, AC);
3761 Inst.eraseFromParent();
3762 ++NumGVNInstrDeleted;
3764 // Now insert something that simplifycfg will turn into an unreachable.
3765 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3766 new StoreInst(
3767 PoisonValue::get(Int8Ty),
3768 Constant::getNullValue(PointerType::getUnqual(BB->getContext())),
3769 BB->getTerminator()->getIterator());
3772 void NewGVN::markInstructionForDeletion(Instruction *I) {
3773 LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3774 InstructionsToErase.insert(I);
3777 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3778 LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3779 patchAndReplaceAllUsesWith(I, V);
3780 // We save the actual erasing to avoid invalidating memory
3781 // dependencies until we are done with everything.
3782 markInstructionForDeletion(I);
3785 namespace {
3787 // This is a stack that contains both the value and dfs info of where
3788 // that value is valid.
3789 class ValueDFSStack {
3790 public:
3791 Value *back() const { return ValueStack.back(); }
3792 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3794 void push_back(Value *V, int DFSIn, int DFSOut) {
3795 ValueStack.emplace_back(V);
3796 DFSStack.emplace_back(DFSIn, DFSOut);
3799 bool empty() const { return DFSStack.empty(); }
3801 bool isInScope(int DFSIn, int DFSOut) const {
3802 if (empty())
3803 return false;
3804 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3807 void popUntilDFSScope(int DFSIn, int DFSOut) {
3809 // These two should always be in sync at this point.
3810 assert(ValueStack.size() == DFSStack.size() &&
3811 "Mismatch between ValueStack and DFSStack");
3812 while (
3813 !DFSStack.empty() &&
3814 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3815 DFSStack.pop_back();
3816 ValueStack.pop_back();
3820 private:
3821 SmallVector<Value *, 8> ValueStack;
3822 SmallVector<std::pair<int, int>, 8> DFSStack;
3825 } // end anonymous namespace
3827 // Given an expression, get the congruence class for it.
3828 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3829 if (auto *VE = dyn_cast<VariableExpression>(E))
3830 return ValueToClass.lookup(VE->getVariableValue());
3831 else if (isa<DeadExpression>(E))
3832 return TOPClass;
3833 return ExpressionToClass.lookup(E);
3836 // Given a value and a basic block we are trying to see if it is available in,
3837 // see if the value has a leader available in that block.
3838 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3839 const Instruction *OrigInst,
3840 const BasicBlock *BB) const {
3841 // It would already be constant if we could make it constant
3842 if (auto *CE = dyn_cast<ConstantExpression>(E))
3843 return CE->getConstantValue();
3844 if (auto *VE = dyn_cast<VariableExpression>(E)) {
3845 auto *V = VE->getVariableValue();
3846 if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3847 return VE->getVariableValue();
3850 auto *CC = getClassForExpression(E);
3851 if (!CC)
3852 return nullptr;
3853 if (alwaysAvailable(CC->getLeader()))
3854 return CC->getLeader();
3856 for (auto *Member : *CC) {
3857 auto *MemberInst = dyn_cast<Instruction>(Member);
3858 if (MemberInst == OrigInst)
3859 continue;
3860 // Anything that isn't an instruction is always available.
3861 if (!MemberInst)
3862 return Member;
3863 if (DT->dominates(getBlockForValue(MemberInst), BB))
3864 return Member;
3866 return nullptr;
3869 bool NewGVN::eliminateInstructions(Function &F) {
3870 // This is a non-standard eliminator. The normal way to eliminate is
3871 // to walk the dominator tree in order, keeping track of available
3872 // values, and eliminating them. However, this is mildly
3873 // pointless. It requires doing lookups on every instruction,
3874 // regardless of whether we will ever eliminate it. For
3875 // instructions part of most singleton congruence classes, we know we
3876 // will never eliminate them.
3878 // Instead, this eliminator looks at the congruence classes directly, sorts
3879 // them into a DFS ordering of the dominator tree, and then we just
3880 // perform elimination straight on the sets by walking the congruence
3881 // class member uses in order, and eliminate the ones dominated by the
3882 // last member. This is worst case O(E log E) where E = number of
3883 // instructions in a single congruence class. In theory, this is all
3884 // instructions. In practice, it is much faster, as most instructions are
3885 // either in singleton congruence classes or can't possibly be eliminated
3886 // anyway (if there are no overlapping DFS ranges in class).
3887 // When we find something not dominated, it becomes the new leader
3888 // for elimination purposes.
3889 // TODO: If we wanted to be faster, We could remove any members with no
3890 // overlapping ranges while sorting, as we will never eliminate anything
3891 // with those members, as they don't dominate anything else in our set.
3893 bool AnythingReplaced = false;
3895 // Since we are going to walk the domtree anyway, and we can't guarantee the
3896 // DFS numbers are updated, we compute some ourselves.
3897 DT->updateDFSNumbers();
3899 // Go through all of our phi nodes, and kill the arguments associated with
3900 // unreachable edges.
3901 auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3902 for (auto &Operand : PHI->incoming_values())
3903 if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3904 LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3905 << " for block "
3906 << getBlockName(PHI->getIncomingBlock(Operand))
3907 << " with poison due to it being unreachable\n");
3908 Operand.set(PoisonValue::get(PHI->getType()));
3911 // Replace unreachable phi arguments.
3912 // At this point, RevisitOnReachabilityChange only contains:
3914 // 1. PHIs
3915 // 2. Temporaries that will convert to PHIs
3916 // 3. Operations that are affected by an unreachable edge but do not fit into
3917 // 1 or 2 (rare).
3918 // So it is a slight overshoot of what we want. We could make it exact by
3919 // using two SparseBitVectors per block.
3920 DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3921 for (auto &KV : ReachableEdges)
3922 ReachablePredCount[KV.getEnd()]++;
3923 for (auto &BBPair : RevisitOnReachabilityChange) {
3924 for (auto InstNum : BBPair.second) {
3925 auto *Inst = InstrFromDFSNum(InstNum);
3926 auto *PHI = dyn_cast<PHINode>(Inst);
3927 PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3928 if (!PHI)
3929 continue;
3930 auto *BB = BBPair.first;
3931 if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3932 ReplaceUnreachablePHIArgs(PHI, BB);
3936 // Map to store the use counts
3937 DenseMap<const Value *, unsigned int> UseCounts;
3938 for (auto *CC : reverse(CongruenceClasses)) {
3939 LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3940 << "\n");
3941 // Track the equivalent store info so we can decide whether to try
3942 // dead store elimination.
3943 SmallVector<ValueDFS, 8> PossibleDeadStores;
3944 SmallPtrSet<Instruction *, 8> ProbablyDead;
3945 if (CC->isDead() || CC->empty())
3946 continue;
3947 // Everything still in the TOP class is unreachable or dead.
3948 if (CC == TOPClass) {
3949 for (auto *M : *CC) {
3950 auto *VTE = ValueToExpression.lookup(M);
3951 if (VTE && isa<DeadExpression>(VTE))
3952 markInstructionForDeletion(cast<Instruction>(M));
3953 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3954 InstructionsToErase.count(cast<Instruction>(M))) &&
3955 "Everything in TOP should be unreachable or dead at this "
3956 "point");
3958 continue;
3961 assert(CC->getLeader() && "We should have had a leader");
3962 // If this is a leader that is always available, and it's a
3963 // constant or has no equivalences, just replace everything with
3964 // it. We then update the congruence class with whatever members
3965 // are left.
3966 Value *Leader =
3967 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3968 if (alwaysAvailable(Leader)) {
3969 CongruenceClass::MemberSet MembersLeft;
3970 for (auto *M : *CC) {
3971 Value *Member = M;
3972 // Void things have no uses we can replace.
3973 if (Member == Leader || !isa<Instruction>(Member) ||
3974 Member->getType()->isVoidTy()) {
3975 MembersLeft.insert(Member);
3976 continue;
3979 LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3980 << *Member << "\n");
3981 auto *I = cast<Instruction>(Member);
3982 assert(Leader != I && "About to accidentally remove our leader");
3983 replaceInstruction(I, Leader);
3984 AnythingReplaced = true;
3986 CC->swap(MembersLeft);
3987 } else {
3988 // If this is a singleton, we can skip it.
3989 if (CC->size() != 1 || RealToTemp.count(Leader)) {
3990 // This is a stack because equality replacement/etc may place
3991 // constants in the middle of the member list, and we want to use
3992 // those constant values in preference to the current leader, over
3993 // the scope of those constants.
3994 ValueDFSStack EliminationStack;
3996 // Convert the members to DFS ordered sets and then merge them.
3997 SmallVector<ValueDFS, 8> DFSOrderedSet;
3998 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
4000 // Sort the whole thing.
4001 llvm::sort(DFSOrderedSet);
4002 for (auto &VD : DFSOrderedSet) {
4003 int MemberDFSIn = VD.DFSIn;
4004 int MemberDFSOut = VD.DFSOut;
4005 Value *Def = VD.Def.getPointer();
4006 bool FromStore = VD.Def.getInt();
4007 Use *U = VD.U;
4008 // We ignore void things because we can't get a value from them.
4009 if (Def && Def->getType()->isVoidTy())
4010 continue;
4011 auto *DefInst = dyn_cast_or_null<Instruction>(Def);
4012 if (DefInst && AllTempInstructions.count(DefInst)) {
4013 auto *PN = cast<PHINode>(DefInst);
4015 // If this is a value phi and that's the expression we used, insert
4016 // it into the program
4017 // remove from temp instruction list.
4018 AllTempInstructions.erase(PN);
4019 auto *DefBlock = getBlockForValue(Def);
4020 LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
4021 << " into block "
4022 << getBlockName(getBlockForValue(Def)) << "\n");
4023 PN->insertBefore(&DefBlock->front());
4024 Def = PN;
4025 NumGVNPHIOfOpsEliminations++;
4028 if (EliminationStack.empty()) {
4029 LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
4030 } else {
4031 LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
4032 << EliminationStack.dfs_back().first << ","
4033 << EliminationStack.dfs_back().second << ")\n");
4036 LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
4037 << MemberDFSOut << ")\n");
4038 // First, we see if we are out of scope or empty. If so,
4039 // and there equivalences, we try to replace the top of
4040 // stack with equivalences (if it's on the stack, it must
4041 // not have been eliminated yet).
4042 // Then we synchronize to our current scope, by
4043 // popping until we are back within a DFS scope that
4044 // dominates the current member.
4045 // Then, what happens depends on a few factors
4046 // If the stack is now empty, we need to push
4047 // If we have a constant or a local equivalence we want to
4048 // start using, we also push.
4049 // Otherwise, we walk along, processing members who are
4050 // dominated by this scope, and eliminate them.
4051 bool ShouldPush = Def && EliminationStack.empty();
4052 bool OutOfScope =
4053 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4055 if (OutOfScope || ShouldPush) {
4056 // Sync to our current scope.
4057 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4058 bool ShouldPush = Def && EliminationStack.empty();
4059 if (ShouldPush) {
4060 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4064 // Skip the Def's, we only want to eliminate on their uses. But mark
4065 // dominated defs as dead.
4066 if (Def) {
4067 // For anything in this case, what and how we value number
4068 // guarantees that any side-effects that would have occurred (ie
4069 // throwing, etc) can be proven to either still occur (because it's
4070 // dominated by something that has the same side-effects), or never
4071 // occur. Otherwise, we would not have been able to prove it value
4072 // equivalent to something else. For these things, we can just mark
4073 // it all dead. Note that this is different from the "ProbablyDead"
4074 // set, which may not be dominated by anything, and thus, are only
4075 // easy to prove dead if they are also side-effect free. Note that
4076 // because stores are put in terms of the stored value, we skip
4077 // stored values here. If the stored value is really dead, it will
4078 // still be marked for deletion when we process it in its own class.
4079 auto *DefI = dyn_cast<Instruction>(Def);
4080 if (!EliminationStack.empty() && DefI && !FromStore) {
4081 Value *DominatingLeader = EliminationStack.back();
4082 if (DominatingLeader != Def) {
4083 // Even if the instruction is removed, we still need to update
4084 // flags/metadata due to downstreams users of the leader.
4085 if (!match(DefI, m_Intrinsic<Intrinsic::ssa_copy>()))
4086 patchReplacementInstruction(DefI, DominatingLeader);
4088 markInstructionForDeletion(DefI);
4091 continue;
4093 // At this point, we know it is a Use we are trying to possibly
4094 // replace.
4096 assert(isa<Instruction>(U->get()) &&
4097 "Current def should have been an instruction");
4098 assert(isa<Instruction>(U->getUser()) &&
4099 "Current user should have been an instruction");
4101 // If the thing we are replacing into is already marked to be dead,
4102 // this use is dead. Note that this is true regardless of whether
4103 // we have anything dominating the use or not. We do this here
4104 // because we are already walking all the uses anyway.
4105 Instruction *InstUse = cast<Instruction>(U->getUser());
4106 if (InstructionsToErase.count(InstUse)) {
4107 auto &UseCount = UseCounts[U->get()];
4108 if (--UseCount == 0) {
4109 ProbablyDead.insert(cast<Instruction>(U->get()));
4113 // If we get to this point, and the stack is empty we must have a use
4114 // with nothing we can use to eliminate this use, so just skip it.
4115 if (EliminationStack.empty())
4116 continue;
4118 Value *DominatingLeader = EliminationStack.back();
4120 auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4121 bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4122 if (isSSACopy)
4123 DominatingLeader = II->getOperand(0);
4125 // Don't replace our existing users with ourselves.
4126 if (U->get() == DominatingLeader)
4127 continue;
4129 // If we replaced something in an instruction, handle the patching of
4130 // metadata. Skip this if we are replacing predicateinfo with its
4131 // original operand, as we already know we can just drop it.
4132 auto *ReplacedInst = cast<Instruction>(U->get());
4133 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4134 if (!PI || DominatingLeader != PI->OriginalOp)
4135 patchReplacementInstruction(ReplacedInst, DominatingLeader);
4137 LLVM_DEBUG(dbgs()
4138 << "Found replacement " << *DominatingLeader << " for "
4139 << *U->get() << " in " << *(U->getUser()) << "\n");
4140 U->set(DominatingLeader);
4141 // This is now a use of the dominating leader, which means if the
4142 // dominating leader was dead, it's now live!
4143 auto &LeaderUseCount = UseCounts[DominatingLeader];
4144 // It's about to be alive again.
4145 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4146 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4147 // For copy instructions, we use their operand as a leader,
4148 // which means we remove a user of the copy and it may become dead.
4149 if (isSSACopy) {
4150 auto It = UseCounts.find(II);
4151 if (It != UseCounts.end()) {
4152 unsigned &IIUseCount = It->second;
4153 if (--IIUseCount == 0)
4154 ProbablyDead.insert(II);
4157 ++LeaderUseCount;
4158 AnythingReplaced = true;
4163 // At this point, anything still in the ProbablyDead set is actually dead if
4164 // would be trivially dead.
4165 for (auto *I : ProbablyDead)
4166 if (wouldInstructionBeTriviallyDead(I))
4167 markInstructionForDeletion(I);
4169 // Cleanup the congruence class.
4170 CongruenceClass::MemberSet MembersLeft;
4171 for (auto *Member : *CC)
4172 if (!isa<Instruction>(Member) ||
4173 !InstructionsToErase.count(cast<Instruction>(Member)))
4174 MembersLeft.insert(Member);
4175 CC->swap(MembersLeft);
4177 // If we have possible dead stores to look at, try to eliminate them.
4178 if (CC->getStoreCount() > 0) {
4179 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4180 llvm::sort(PossibleDeadStores);
4181 ValueDFSStack EliminationStack;
4182 for (auto &VD : PossibleDeadStores) {
4183 int MemberDFSIn = VD.DFSIn;
4184 int MemberDFSOut = VD.DFSOut;
4185 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4186 if (EliminationStack.empty() ||
4187 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4188 // Sync to our current scope.
4189 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4190 if (EliminationStack.empty()) {
4191 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4192 continue;
4195 // We already did load elimination, so nothing to do here.
4196 if (isa<LoadInst>(Member))
4197 continue;
4198 assert(!EliminationStack.empty());
4199 Instruction *Leader = cast<Instruction>(EliminationStack.back());
4200 (void)Leader;
4201 assert(DT->dominates(Leader->getParent(), Member->getParent()));
4202 // Member is dominater by Leader, and thus dead
4203 LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4204 << " that is dominated by " << *Leader << "\n");
4205 markInstructionForDeletion(Member);
4206 CC->erase(Member);
4207 ++NumGVNDeadStores;
4211 return AnythingReplaced;
4214 // This function provides global ranking of operations so that we can place them
4215 // in a canonical order. Note that rank alone is not necessarily enough for a
4216 // complete ordering, as constants all have the same rank. However, generally,
4217 // we will simplify an operation with all constants so that it doesn't matter
4218 // what order they appear in.
4219 unsigned int NewGVN::getRank(const Value *V) const {
4220 // Prefer constants to undef to anything else
4221 // Undef is a constant, have to check it first.
4222 // Prefer poison to undef as it's less defined.
4223 // Prefer smaller constants to constantexprs
4224 // Note that the order here matters because of class inheritance
4225 if (isa<ConstantExpr>(V))
4226 return 3;
4227 if (isa<PoisonValue>(V))
4228 return 1;
4229 if (isa<UndefValue>(V))
4230 return 2;
4231 if (isa<Constant>(V))
4232 return 0;
4233 if (auto *A = dyn_cast<Argument>(V))
4234 return 4 + A->getArgNo();
4236 // Need to shift the instruction DFS by number of arguments + 5 to account for
4237 // the constant and argument ranking above.
4238 unsigned Result = InstrToDFSNum(V);
4239 if (Result > 0)
4240 return 5 + NumFuncArgs + Result;
4241 // Unreachable or something else, just return a really large number.
4242 return ~0;
4245 // This is a function that says whether two commutative operations should
4246 // have their order swapped when canonicalizing.
4247 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4248 // Because we only care about a total ordering, and don't rewrite expressions
4249 // in this order, we order by rank, which will give a strict weak ordering to
4250 // everything but constants, and then we order by pointer address.
4251 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4254 bool NewGVN::shouldSwapOperandsForIntrinsic(const Value *A, const Value *B,
4255 const IntrinsicInst *I) const {
4256 auto LookupResult = IntrinsicInstPred.find(I);
4257 if (shouldSwapOperands(A, B)) {
4258 if (LookupResult == IntrinsicInstPred.end())
4259 IntrinsicInstPred.insert({I, B});
4260 else
4261 LookupResult->second = B;
4262 return true;
4265 if (LookupResult != IntrinsicInstPred.end()) {
4266 auto *SeenPredicate = LookupResult->second;
4267 if (SeenPredicate) {
4268 if (SeenPredicate == B)
4269 return true;
4270 else
4271 LookupResult->second = nullptr;
4274 return false;
4277 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4278 // Apparently the order in which we get these results matter for
4279 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4280 // the same order here, just in case.
4281 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4282 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4283 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4284 auto &AA = AM.getResult<AAManager>(F);
4285 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4286 bool Changed =
4287 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getDataLayout())
4288 .runGVN();
4289 if (!Changed)
4290 return PreservedAnalyses::all();
4291 PreservedAnalyses PA;
4292 PA.preserve<DominatorTreeAnalysis>();
4293 return PA;